Nothing Special   »   [go: up one dir, main page]

WO2016035121A1 - 空調システムの制御装置および空調システムの制御方法 - Google Patents

空調システムの制御装置および空調システムの制御方法 Download PDF

Info

Publication number
WO2016035121A1
WO2016035121A1 PCT/JP2014/072919 JP2014072919W WO2016035121A1 WO 2016035121 A1 WO2016035121 A1 WO 2016035121A1 JP 2014072919 W JP2014072919 W JP 2014072919W WO 2016035121 A1 WO2016035121 A1 WO 2016035121A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
parameter
conditioning system
air conditioning
state quantity
Prior art date
Application number
PCT/JP2014/072919
Other languages
English (en)
French (fr)
Inventor
隆也 山本
義隆 宇野
前川 清石
孝洋 中井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480081395.0A priority Critical patent/CN106574797B/zh
Priority to EP14901086.0A priority patent/EP3190348A4/en
Priority to PCT/JP2014/072919 priority patent/WO2016035121A1/ja
Priority to JP2016546206A priority patent/JP6385446B2/ja
Priority to US15/505,850 priority patent/US10533763B2/en
Publication of WO2016035121A1 publication Critical patent/WO2016035121A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to an air conditioning system for feedback control of room temperature and a control method thereof, and more particularly to a method for determining parameters used for feedback control.
  • Some conventional air-conditioning system controllers include a feedback controller (PID controller) for automatically controlling a predetermined process (see, for example, Patent Document 1).
  • PID controller feedback controller
  • the PID control device including the PID controller changes the output of the PID controller in steps within a certain range, and parameters (dead time, first-order lag time constant, process gain) based on the output of the controlled object at that time ) Is identified.
  • the parameter of the PID controller is determined based on a predetermined formula using the parameter to be controlled.
  • JP 2001-350503 A see, for example, [0020] to [0026], FIG. 1 and FIG. 2)
  • Patent Document 1 when identifying a parameter to be controlled, it is necessary to change the output of the PID controller in steps, and it is necessary to perform an operation dedicated to parameter identification that is different from the normal operation of the air conditioning system.
  • the control object uses the time required for the control object to increase to 63% of the final increase when the output of the PID controller is changed stepwise, the first delay time of the control object In order to calculate the constant, it is necessary to wait until the control target reaches the final increase when the output of the PID controller is changed stepwise. For this reason, in an air conditioning system with a large heat capacity to be controlled, it takes a long time to acquire parameters, which may impair comfort.
  • control object is approximated by a dead time and a first-order lag time constant, there is a possibility that the parameters to be identified may vary greatly depending on the initial state when the output of the PID controller is changed stepwise. . Furthermore, since the model of the controlled object is identified only from the output of the PID controller and the output of the controlled object, there is a problem that the influence of disturbance such as the outside temperature cannot be modeled.
  • the present invention has been made in consideration of the above problems, and an object thereof is to provide an air conditioning system control device and an air conditioning system control method that do not impair comfort even during parameter determination.
  • the control apparatus for an air conditioning system generates a state quantity command from a difference between a control parameter and a target value of room temperature and the measured room temperature, and feedback control that controls the room temperature to the target value based on the state quantity command
  • Control target thermal characteristic model calculation for calculating a parameter of a model related to the thermal characteristics of the controlled object from at least the state quantity related to the amount of heat supplied to the controlled object or the state quantity command and the measured room temperature during normal operation
  • control parameter determining means for determining the control parameter using an equation derived from a model relating to the thermal characteristics of the control target and the parameter.
  • the parameters of the feedback control means are determined from the data during normal operation, it is necessary to perform a dedicated operation that may cause the room temperature to be controlled to deviate from the set target temperature.
  • the room temperature can be continuously controlled to the target value even during parameter determination, there is an effect that comfort is not impaired during parameter determination.
  • FIG. 1 is a block diagram of a control device 100 for an air conditioning system according to Embodiment 1 of the present invention.
  • the air conditioning system according to Embodiment 1 includes a control device 100, and the control device 100 controls the room temperature of the building that is the control target 5.
  • the controlled object 5 is a house, but it may be another building, for example, a building, a factory, a house, or a room of the building.
  • a method of air conditioning of the house a method of installing a room air conditioner in some rooms in the house, boiling water with a heat pump installed in the house, and sending the boiled hot water to the place where you want to heat, radiator, There is also a method of heating using a heat radiating device such as a fan coil.
  • a duct is passed through each room of the house, warm air or cold air is generated by a heat pump, and warm air or cold air generated by the heat pump is delivered from the duct to each room to perform air conditioning.
  • hot water is generated by a heat pump, heated water is sent to a place where heating is desired, and heating is performed using a radiator, fan coil, or other heat radiating device (hereinafter referred to as an Air to Water system, ATW system).
  • ATW system Air to Water system
  • the abbreviation is also referred to as the entire building warm water heating system).
  • hot water generated by controlling to follow the tapping temperature command is sent to a heat radiating device such as a radiator to heat the inside of the house, which is the controlled object 5.
  • the control device 100 of the air conditioning system includes a control target thermal characteristic model calculation unit 1, a control parameter determination unit 2, an external environment measurement unit 3, a feedback control unit 4, and a temperature command generation unit 6.
  • the control target thermal characteristic model calculation means 1 is an external temperature that is a disturbance measured by the external environment measurement means 3 and the hot water temperature and flow rate, which are state quantities relating to the amount of heat supplied to the control target 5 house. The temperature and the amount of solar radiation are entered. In addition, when the flow rate of hot water sent inside the house in the ATW system is constant, only the hot water temperature may be used as the state quantity related to the amount of heat supplied to the house.
  • the heat transport equation parameter corresponds to the “model parameter relating to the thermal characteristics of the controlled object” of the present invention.
  • the control parameter determination unit 2 determines a control parameter based on the heat transport equation parameter input from the control target thermal characteristic model calculation unit 1 and outputs the parameter to the feedback control unit 4.
  • the control parameters will be described later.
  • the feedback control means 4 performs feedback control of the room temperature of the controlled object 5 based on the input information.
  • the temperature command generation means 6 outputs a room temperature target value (temperature command) specified by using a remote controller, a HEMS (Home Energy Management System), a programmable thermostud, or the like to the feedback control means 4.
  • FIG. 2 is a block diagram of feedback control means 4 of control device 100 for the air conditioning system according to Embodiment 1 of the present invention.
  • the feedback control unit 4 includes a PID control unit 12 and a state quantity control unit 13 therein, and the PID control unit 12 is a parameter for performing PID control (that is, a parameter of the PID control unit 12).
  • the PID control is performed from the difference between the temperature command (target value of room temperature) and the measured room temperature, a state quantity command is generated, and the generated state quantity command is output to the state quantity control means 13.
  • P represents proportionality
  • I represents integration
  • D represents differentiation.
  • the control parameter determination unit 2 determines a control parameter for performing PI control.
  • FIG. 3 is a block diagram of state quantity control means 13 of feedback control means 4 of control device 100 for the air conditioning system according to Embodiment 1 of the present invention.
  • the state quantity control unit 13 includes a feedback control unit II10 and a refrigeration cycle 11 therein.
  • a hot water temperature command is generated as shown in FIG. 3 and hot water can be generated in accordance with the hot water temperature command (target value of the hot water temperature)
  • the refrigeration cycle 11 of the heat pump is controlled by the feedback control means II10.
  • FIG. 4 is a control parameter determination flow diagram of the feedback control means 4 of the control device 100 of the air conditioning system according to Embodiment 1 of the present invention
  • FIG. 5 shows a thermal circuit network model according to Embodiment 1 of the present invention.
  • the control parameter determination flow of the feedback control means 4 will be described with reference to FIG. First, the process of step 1 is performed, and the state quantity, room temperature, outside temperature, and solar radiation amount related to the amount of heat supplied to the house are recorded in the control target thermal characteristic model calculation unit 1 every moment during normal operation of the air conditioning system.
  • control parameter determination unit 2 has never updated the control parameter of the feedback control unit 4
  • the feedback control unit 4 is operated with the initially set control parameter.
  • step 2 After performing the process of step 2 and recording the state quantity relating to the amount of heat supplied to the house, room temperature, outside temperature, and amount of solar radiation for a specified period of time, the state relating to the amount of heat supplied to the recorded house
  • the model parameters relating to the thermal characteristics of the house are calculated from the quantity, room temperature, outside air temperature, and solar radiation.
  • the thermal network model shown in FIG. 5 is a model relating to the thermal characteristics of the house that is the control target 5. Note that the heat generated by the device and the human body is recorded in advance in the control target thermal characteristic model calculation means 1 as a standard value for each house. At this time, the heat transport equation of the house, which is an expression derived from the model relating to the thermal characteristics of the house, is the following expressions (1) to (3).
  • T o is the outside air temperature
  • T 1 is the outer wall chamber outer surface temperature
  • T 2 is the outer wall interior surface temperature
  • T z is the room temperature
  • R 1 is an outer wall chamber outer heat resistance
  • R 2 is an outer wall thermal resistance
  • R Z the outer wall chamber inner heat resistance
  • C 1 is an outer wall chamber outer heat capacity
  • C 2 is the outer wall indoor heat capacity
  • Q S is the amount of solar radiation
  • Q HVAC is The amount of heat supplied to the house from the air conditioning system
  • is the correction factor for the amount of solar radiation that irradiates the outer wall
  • is the correction factor for the amount of solar radiation that passes through the room
  • is the correction factor for the internal heat generation
  • is supplied to the home from the air conditioning system This is a correction coefficient for the amount of
  • the control target thermal characteristic model calculation means 1 uses the tapping temperature and flow rate, which are state quantities relating to the amount of heat supplied to the recorded house, the room temperature, the outside air temperature, and the amount of solar radiation, to heat (1) to (3) above.
  • FIG. 6 is a diagram showing a transfer function expression of the controlled object thermal characteristic model 8 according to Embodiment 1 of the present invention
  • FIG. 7 is a control parameter determination of the control device 100 of the air conditioning system according to Embodiment 1 of the present invention
  • FIG. 8 is a block diagram showing an internal simulator of the control parameter determining means 2 of the control device 100 of the air conditioning system according to Embodiment 1 of the present invention.
  • step 3 is performed by the control parameter determination means 2. From the heat transport equation (1) to (3) above and the heat transport equation parameter calculated by the control target thermal characteristic model calculation means 1, the amount of heat Q HVAC supplied from the air conditioning system to the house to the room temperature T z of transfer function F1 (S), and determines the transfer function F2 (S) from the outside air temperature T o to room temperature T z.
  • the control parameter determining means 2 includes a simulator shown in FIG. 7 using the transfer functions F1 (S) and F2 (S) of the control target thermal characteristic model 8 shown in FIG.
  • the thermal characteristic model 8 outputs the room temperature by inputting the state quantity to the transfer function F1 (S) and inputting the disturbance to the transfer function F2 (S).
  • the step-like target command from the target command generating means 7 and the step-like disturbance from the disturbance generating means 9 act while changing the value of the control parameter of the feedback control means 4 according to a predetermined rule.
  • a simulation is performed for each combination of control parameters.
  • the stepped disturbance acts time to fit in the error range of the prescribed calculating a T b and the maximum overshoot K b. Then, a combination of control parameters that minimizes the weighted sum of T a , K a , T b , and K b is selected as a candidate.
  • time T c to the target command stepwise instead of T a is within the error range defined when the change.
  • the value of the control parameter selected as a candidate is multiplied by a predetermined correction coefficient and then sent to the feedback control means 4.
  • the value is sent to the value sent from the control parameter determination means 2 when the control device 100 of the air conditioning system is turned off and then on again.
  • the value may be changed to the value to be sent using a moving average filter having a window length designated in advance.
  • FIG. 9 is a diagram illustrating a thermal circuit network model 2 according to the first embodiment of the present invention
  • FIG. 10 is a diagram illustrating a thermal circuit network model 3 according to the first embodiment of the present invention.
  • the control target thermal characteristic model 8 is as shown in FIG. 9, and the calculation is performed assuming that the values of Q EQP and Q OCC are always 0 in the equations (1) to (3).
  • the control target thermal characteristic model 8 is as shown in FIG. 10, and in the equations (1) to (3), calculation is performed with Q s always being 0 in addition to Q EQP and Q OCC .
  • the target in which the room temperature of the controlled object 5 is set is set. There is no need to perform a dedicated operation that may deviate from the temperature, and the room temperature can be continuously controlled to the target value even during the determination of the control parameter.
  • control parameters can be determined in consideration of the influence of disturbance such as the influence of temperature and solar radiation.
  • FIG. 11 is a block diagram of the control device 101 of the air conditioning system according to Embodiment 2 of the present invention
  • FIG. 12 is a parameter determination of the feedback control means 4 of the control device 101 of the air conditioning system according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the external environment measuring means 3 is not provided and the disturbance outside temperature and solar radiation amount are not used for parameter calculation of the control target thermal characteristic model calculating means 1. ing.
  • step 1 the process of step 1 is performed, and the state quantity and the room temperature related to the amount of heat supplied to the house are recorded in the control target thermal characteristic model calculation means 1 every moment during normal operation of the air conditioning system.
  • step 2 the process of step 2 is performed, and the parameter of the control target thermal characteristic model 8 is calculated by the control target thermal characteristic model calculation means 1 from the recorded state quantity related to the amount of heat supplied to the house and the measured room temperature.
  • the heat generated by the device and the human body is recorded in advance in the control target thermal characteristic model calculation means 1 as a standard value for each house. Also, the amount of solar radiation is ignored as 0.
  • step 3 is performed by the control parameter determination means 2.
  • the amount of heat Q HVAC supplied from the air conditioning system to the house is calculated from the room temperature T
  • the transfer function F1 (S) up to z is calculated.
  • the simulator shown in FIG. 7 using the transfer function of the control target thermal characteristic model 8 shown in FIG. 6 is built in the control parameter determining means 2, and F1 (S) is used as the thermal characteristic model in FIG. Is used.
  • T a K weighted sum of a selects a combination of control parameters having the minimum as a parameter candidate.
  • time T c to the target command stepwise is within the error range defined when the change.
  • the selected control parameter value is multiplied by a predetermined correction coefficient and then sent to the feedback control means 4.
  • the feedback control means 4 updates the value to the value sent from the control parameter determination means 2 when the control device 101 of the air conditioning system is turned off and then turned on again. In addition, you may make it the structure changed using the moving average filter of the window length designated beforehand to the value sent.
  • the control parameter can be determined without measuring external environment information.
  • FIG. 13 is a diagram illustrating an example of a specified range of pole arrangement of the control device of the air conditioning system according to Embodiment 3 of the present invention.
  • control parameter determining method in the control parameter determining means 2 is different from the first embodiment.
  • control parameter determination means 2 a closed loop transfer function composed of the feedback control means 4 and the control target thermal characteristic model 8 shown in the block diagram of FIG. 7 when F1 (S) is used as the thermal characteristic model is obtained.
  • G1 (S) is calculated while changing the value of the control parameter of the feedback control means 4 according to a predetermined rule. Then, in the calculated pole of G1 (S), the value of the control parameter that selects the pole closest to the origin within the specified range shown in FIG. 13 is selected. The selected control parameter value is multiplied by a predetermined correction coefficient and then sent to the feedback control means 4.
  • the control parameter of the feedback control unit 4 is determined based on the position of the pole of the transfer function. This has the effect of reducing the time required to calculate.
  • Embodiment 4 FIG.
  • the same elements as those in Embodiment 1 are omitted, and the same or corresponding parts as those in Embodiment 1 are denoted by the same reference numerals.
  • control parameter determination means 2 only the control parameter determination method in the control parameter determination means 2 is different from the first embodiment.
  • the control parameter determination means 2 a closed loop transfer function composed of the feedback control means 4 and the control target thermal characteristic model 8 shown in the block diagram of FIG. 7 when F1 (S) is used as the thermal characteristic model is obtained.
  • G1 (S) is set, and the control parameter is determined so that the coefficient of the denominator polynomial of G1 (S) becomes a predetermined ratio.
  • the denominator polynomial of G1 (S) is
  • the control parameters of the feedback control means 4 are determined so that Note that the values of the equations (7) and (8) are not limited to 2.5, 2, 0.5, etc., and may be other values such as 2.3, 1.8, 0.4. .
  • the control parameter of the feedback control unit 4 is determined from the ratio of the denominator coefficient of the transfer function, the control parameter of the feedback control unit 4 is calculated after the parameter calculation of the control target thermal characteristic model 8. This has the effect of reducing the time required to calculate.
  • FIG. 14 is a block diagram of state quantity control means 13 of feedback control means 4 of the control device for an air conditioning system according to Embodiment 5 of the present invention.
  • the hot water temperature command is used as an example of the state quantity command inside the feedback control means 4, but in the present embodiment 5, the compressor frequency command of the refrigeration cycle 11 is used as the state quantity command.
  • the state quantity control means 13 inside the feedback control means 4 controls the frequency of the compressor as shown in FIG.
  • the compressor frequency is used as the state quantity related to the amount of heat supplied to the house and the quantity of heat Q HVAC supplied from the air conditioning system to the house.
  • a compressor frequency command may be used instead of the compressor frequency.
  • the parameter of the control target thermal characteristic model 8 is calculated using the frequency of the compressor, it is possible to determine the control parameter even when there is an error in the measured value of the tapping temperature. There is an effect that can be done.
  • FIG. 15 is a block diagram of the state quantity control means 13 of the feedback control means 4 of the control device for an air conditioning system according to Embodiment 6 of the present invention.
  • hot water is generated by a heat pump, the boiled hot water is sent to a place where it is desired to be heated, and the ATW system is heated by using a radiator, a fan coil, or the like.
  • a duct air-conditioning system that air-conditions the entire building by sending warm or cold air into ducts that stretch around the room.
  • the state quantity command inside the feedback control means 4 of FIG. 2 is the blowout temperature command, and the state quantity control means 13 is as shown in FIG.
  • the blowout temperature of the air blown out into the duct is used as the state quantity related to the heat quantity supplied to the house and the heat quantity Q HVAC supplied from the air conditioning system to the house.
  • the state quantity related to the amount of heat supplied to the house is the blowing temperature and wind speed
  • the amount of heat Q HVAC supplied from the air conditioning system to the house is the blowing temperature ⁇ wind speed.
  • the entire building is ducted.
  • the control parameters of the feedback control means 4 of the duct air-conditioning system for cooling and heating can be determined without dedicated operation.
  • Embodiment 7 FIG.
  • the same elements as those in Embodiment 1 are omitted, and the same or corresponding parts as those in Embodiment 1 are denoted by the same reference numerals.
  • hot water is generated by a heat pump, the boiled hot water is sent to a place where it is desired to be heated, and the ATW system is heated by using a radiator, a fan coil, or the like.
  • the state quantity command inside the feedback control means 4 of FIG. 2 is a blowout temperature command
  • the state quantity control means 13 is as shown in FIG.
  • the blowing temperature of the air which blows off to each room is used as the quantity of state Q regarding the amount of heat supplied to the house and the amount of heat Q HVAC supplied from the air conditioning system to the house.
  • the air speed of the blown-out air is variable by the fan
  • the state quantity related to the amount of heat supplied to the house is the blowing temperature and wind speed
  • the amount of heat Q HVAC supplied from the air conditioning system to the house is the blowing temperature ⁇ wind speed.
  • the heat transport equations (1) to (3) are equations in the room where the air conditioning system is installed, and the controlled thermal characteristic model 8 shown in FIGS. 5, 9, and 10 is installed with the air conditioning system.
  • the controlled object thermal characteristic model calculation means 1 calculates a thermal characteristic model of the room in which the air conditioning system is installed.
  • control parameter of the feedback control means 4 of the air conditioning system attached to each room can be determined without a dedicated operation.
  • FIG. 16 is a block diagram of control device 102 of the air conditioning system according to Embodiment 8 of the present invention.
  • the eighth embodiment is different from the first embodiment in that a state quantity recording unit 14 is provided outside the controlled object thermal characteristic model calculating unit 1 as shown in FIG.
  • the feedback control means 4, the control target thermal characteristic model calculation means 1, and the control parameter determination means 2 of FIG. 1 are all incorporated in a controller dedicated to the air conditioning system.
  • the feedback control means 4 and the state quantity recording means 14 are built in a controller dedicated to the air conditioning system, and the control target thermal characteristic model calculation means 1 and the control parameter determination means 2 are connected only when the control parameter is determined. Built in personal computer.
  • the state quantity relating to the amount of heat supplied to the house, room temperature, outside temperature, and amount of solar radiation are recorded momentarily in the state quantity recording means 14, and the amount of heat supplied to the house recorded at the time of control parameter determination.
  • State quantity, room temperature, outside air temperature, and amount of solar radiation are sent to the control target thermal characteristic model calculation means 1.
  • control target thermal characteristic model calculation means 1 and the control parameter determination means 2 are built in the personal computer to be connected only at the time of control parameter determination. There is an effect that can be reduced.
  • Embodiment 9 FIG.
  • the same elements as those in Embodiment 1 are omitted, and the same or corresponding parts as those in Embodiment 1 are denoted by the same reference numerals.
  • the ninth embodiment is different from the first embodiment in that the state quantity related to the amount of heat supplied to the house is not the tapping temperature but the tapping temperature command shown in FIG.
  • the control parameter of the feedback control means 4 is determined using the tapping temperature command instead of the tapping temperature, there is an error in the measured value of the tapping temperature or when noise occurs.
  • the heat transport equation parameters of the control target thermal characteristic model 8 can be calculated with high accuracy, and the control parameters of the air conditioning system can be determined without a dedicated operation.
  • FIG. 17 is a block diagram of control device 103 of the air conditioning system according to Embodiment 10 of the present invention.
  • the parameter input to the control target thermal characteristic model calculation unit 1 is not the state quantity related to the amount of heat supplied to the house that is the control target 5 but the control target 5.
  • the point which is the target value (state quantity command) of the state quantity related to the amount of heat supplied to the house is different from the first embodiment.
  • the control target thermal characteristic model calculation means 1 includes a target value (state quantity command) and a flow rate of the hot water temperature, which is a state quantity related to the amount of heat supplied to the house that is the control target 5, and the room temperature inside the house And the outside air temperature and the amount of solar radiation, which are disturbances measured by the external environment measuring means 3, are input.
  • a target value state quantity command
  • a flow rate of the hot water temperature which is a state quantity related to the amount of heat supplied to the house that is the control target 5
  • the room temperature inside the house And the outside air temperature and the amount of solar radiation, which are disturbances measured by the external environment measuring means 3, are input.
  • the flow rate of hot water sent inside the house in the ATW system is constant, only the hot water temperature may be used as the state quantity related to the amount of heat supplied to the house.
  • a heat transport equation parameter is calculated based on each of the above input values, and the parameter is output to the control parameter determining means 2.
  • the heat transport equation parameter corresponds to the “model parameter relating to the thermal characteristics of the controlled object” of the present invention.
  • 1 control target thermal characteristic model calculation means 1 control parameter determination means, 2 control parameter determination means, 3 external environment measurement means, 4 feedback control means, 5 control target, 6 temperature command generation means, 7 target command generation means, 8 control target thermal characteristics model, 9 Disturbance generating means, 10 feedback control means II, 11 refrigeration cycle, 12 PID control means, 13 state quantity control means, 14 state quantity recording means, 100 control device, 101 control device, 102 control device, 103 control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Abstract

制御パラメータおよび室温の目標値と測定された室温との差から状態量指令を生成し、状態量指令に基づいて室温を目標値に制御するフィードバック制御手段(4)と、通常運転時に、少なくとも制御対象(5)に供給される熱量に関する状態量または状態量指令と測定された室温とから、制御対象(5)の熱特性に関するモデルのパラメータを算出する制御対象熱特性モデル算出手段(1)と、制御対象(5)の熱特性に関するモデルから導出された式とパラメータとを用いて制御パラメータを決定する制御パラメータ決定手段(2)とを備えたものである。上記構成により、通常運転時のデータからフィードバック制御手段のパラメータを決定するため、制御対象の室温が設定された目標温度からずれる恐れのある専用運転を行う必要がなく、パラメータ決定中においても継続して室温を目標値に制御できるため、パラメータ決定中も快適性を損なわないという効果を奏する。

Description

空調システムの制御装置および空調システムの制御方法
 本発明は、室温をフィードバック制御する空調システムおよびその制御方法に関し、特にフィードバック制御に用いるパラメータの決定方法に関するものである。
 従来の空調システムの制御装置において、所定のプロセスを自動制御するためのフィードバック制御器(PID制御器)を備えたものがある(たとえば、特許文献1参照)。そのPID制御器を備えたPID制御装置は、PID制御器の出力を一定範囲内でステップ状に変化させ、その際の制御対象の出力に基づいてパラメータ(むだ時間、一次遅れ時定数、プロセスゲイン)を同定する。そして、その制御対象のパラメータを用いて、所定の式に基づいてPID制御器のパラメータを決定している。
特開2001-350503号公報(たとえば、[0020]~[0026]、図1、図2参照)
 特許文献1は、制御対象のパラメータを同定する際に、PID制御器の出力をステップ状に変化させる必要があり、空調システムの通常運転とは異なるパラメータ同定専用の運転を行う必要があった。また、パラメータ同定を行う際に、制御対象がPID制御器の出力をステップ状に変化させたときの最終的な増加量の63%まで増加するのに要する時間を用いて制御対象の一次遅れ時定数を算出するため、制御対象がPID制御器の出力をステップ状に変化させたときの最終的な増加量に到達するまで待つ必要がある。そのため、制御対象の熱容量が大きい空調システムでは、パラメータを取得するまで長時間を要してしまい、快適性が損なわれる恐れがあった。
 また、制御対象をむだ時間と一次遅れ時定数とで近似しているため、PID制御器の出力をステップ状に変化させる際の初期状態に応じて、同定されるパラメータが大きく異なる恐れもあった。さらに、PID制御器の出力と制御対象の出力のみから制御対象のモデルを同定しているため、外気温など外乱の及ぼす影響のモデル化が行えていないという課題があった。
 本発明は、以上のような課題を考慮してなされたもので、パラメータ決定中も快適性を損なわない空調システムの制御装置および空調システムの制御方法を提供することを目的としている。
 本発明に係る空調システムの制御装置は、制御パラメータおよび室温の目標値と測定された室温との差から状態量指令を生成し、前記状態量指令に基づいて室温を目標値に制御するフィードバック制御手段と、通常運転時に、少なくとも制御対象に供給される熱量に関する状態量または前記状態量指令と前記測定された室温とから、制御対象の熱特性に関するモデルのパラメータを算出する制御対象熱特性モデル算出手段と、制御対象の熱特性に関するモデルから導出された式と前記パラメータとを用いて前記制御パラメータを決定する制御パラメータ決定手段と、を備えたものである。
 本発明に係る空調システムの制御装置によれば、通常運転時のデータからフィードバック制御手段のパラメータを決定するため、制御対象の室温が設定された目標温度からずれる恐れのある専用運転を行う必要がなく、パラメータ決定中においても継続して室温を目標値に制御できるため、パラメータ決定中も快適性を損なわない効果がある。
本発明の実施の形態1に係る空調システムの制御装置のブロック図である。 本発明の実施の形態1に係る空調システムの制御装置のフィードバック制御手段のブロック図である。 本発明の実施の形態1に係る空調システムの制御装置のフィードバック制御手段の状態量制御手段のブロック図である。 本発明の実施の形態1に係る空調システムの制御装置のフィードバック制御手段の制御パラメータ決定フロー図である。 本発明の実施の形態1に係る熱回路網モデルその1を示す図である。 本発明の実施の形態1に係る制御対象熱特性モデルの伝達関数表現を示す図である。 本発明の実施の形態1に係る空調システムの制御装置の制御パラメータ決定手段の内部のシミュレータを示すブロック図である。 本発明の実施の形態1に係る空調システムの制御装置の制御パラメータ決定手段の内部のシミュレータ出力の例を示す図である。 本発明の実施の形態1に係る熱回路網モデルその2を示す図である。 本発明の実施の形態1に係る熱回路網モデルその3を示す図である。 本発明の実施の形態2に係る空調システムの制御装置のブロック図である。 本発明の実施の形態2に係る空調システムの制御装置のフィードバック制御手段のパラメータ決定フロー図である。 本発明の実施の形態3に係る空調システムの制御装置の極配置の指定範囲の例を示す図である。 本発明の実施の形態5に係る空調システムの制御装置のフィードバック制御手段の状態量制御手段のブロック図である。 本発明の実施の形態6に係る空調システムの制御装置のフィードバック制御手段の状態量制御手段のブロック図である。 本発明の実施の形態8に係る空調システムの制御装置のブロック図である。 本発明の実施の形態10に係る空調システムの制御装置のブロック図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 
 実施の形態1.
 図1は、本発明の実施の形態1に係る空調システムの制御装置100のブロック図である。
 本実施の形態1に係る空調システムは制御装置100を備え、その制御装置100によって制御対象5である建物の室温を制御する。
 なお、本実施の形態1では制御対象5を住宅とするが、他の建物でもよく、たとえば、ビル、工場、住宅やビルの各部屋などでもよい。
 また、住宅の空調を行う方法として、住宅の中の一部の部屋にルームエアコンを取り付ける方法や、住宅に備え付けたヒートポンプなどでお湯を沸かし、その沸かしたお湯を暖房したいところへ送り、ラジエータ、ファンコイルなどの放熱装置を用いて暖房を行う方法もある。また、住宅の各部屋にダクトを通し、ヒートポンプで暖かい空気や冷たい空気を生成し、ヒートポンプで生成した暖かい空気や冷たい空気をダクトから各部屋に届けることで冷暖房を行う方法もある。
 本実施の形態1ではヒートポンプでお湯を生成し、暖房を行いたいところへ沸かしたお湯を送り、ラジエータ、ファンコイルなどの放熱装置を用いて暖房を行うシステム(以下、Air to Waterシステム、ATWシステムと略記、また、全館温水暖房システムとも呼ばれる)を例に挙げて説明する。
 なお、ATWシステムでは、出湯温度指令に従うように制御して生成されたお湯をラジエータなどの放熱装置に送り、制御対象5である住宅内部の暖房を行う。
 空調システムの制御装置100は、制御対象熱特性モデル算出手段1と、制御パラメータ決定手段2と、外部環境計測手段3と、フィードバック制御手段4と、温度指令生成手段6と、を備えている。
 制御対象熱特性モデル算出手段1は、制御対象5である住宅に供給される熱量に関する状態量である出湯温度および流量と、住宅内部の室温と、外部環境計測手段3で計測した外乱である外気温および日射量と、が入力される。
 なお、ATWシステムにおいて住宅内部で送っているお湯の流量が一定の場合は、住宅に供給される熱量に関する状態量として出湯温度のみでも構わない。
 そして、上記の各入力値に基づいて熱輸送方程式パラメータを算出し、そのパラメータを制御パラメータ決定手段2に出力する。なお、熱輸送方程式パラメータについては後述する。また、熱輸送方程式パラメータは、本発明の「制御対象の熱特性に関するモデルのパラメータ」に相当する。
 制御パラメータ決定手段2は、制御対象熱特性モデル算出手段1から入力された熱輸送方程式パラメータに基づいて制御パラメータを決定し、そのパラメータをフィードバック制御手段4に出力する。なお、制御パラメータについては後述する。
 フィードバック制御手段4は、入力された情報に基づいて制御対象5の室温をフィードバック制御するものである。
 温度指令生成手段6は、リモコン、HEMS(Home Energy Management System)、プログラマブルサーモスタッドなどを用いて指定される室温の目標値(温度指令)を、フィードバック制御手段4に出力するものである。
 図2は、本発明の実施の形態1に係る空調システムの制御装置100のフィードバック制御手段4のブロック図である。
 フィードバック制御手段4は、内部にPID制御手段12と状態量制御手段13とを備え、PID制御手段12は、PID制御を行うためのパラメータ(つまり、PID制御手段12のパラメータ)である上記制御パラメータ、および温度指令(室温の目標値)と測定された室温との差からPID制御を行い、状態量指令を生成し、その生成した状態量指令を状態量制御手段13に出力する。
 なお、Pは比例、Iは積分、Dは微分を意味している。また、PID制御として微分のないPI制御を行っている場合は、制御パラメータ決定手段2はPI制御を行うための制御パラメータを決定することとなる。
 図3は、本発明の実施の形態1に係る空調システムの制御装置100のフィードバック制御手段4の状態量制御手段13のブロック図である。
 状態量制御手段13は、内部にフィードバック制御手段II10と冷凍サイクル11とを備えている。そして、ATWシステムの場合、フィードバック制御手段4の内部の状態量指令の例としては、図3に示すように出湯温度指令となり、出湯温度指令(出湯温度の目標値)に従ったお湯が生成できるよう、フィードバック制御手段II10でヒートポンプの冷凍サイクル11を制御する。
 図4は、本発明の実施の形態1に係る空調システムの制御装置100のフィードバック制御手段4の制御パラメータ決定フロー図、図5は、本発明の実施の形態1に係る熱回路網モデルを示す図である。
 以下、図4を用いてフィードバック制御手段4の制御パラメータ決定フローについて説明する。
 まず、ステップ1の処理を行い、空調システムの通常運転時に、住宅に供給される熱量に関する状態量、室温、外気温、および日射量を制御対象熱特性モデル算出手段1に時々刻々記録する。
 なお、制御パラメータ決定手段2でフィードバック制御手段4の制御パラメータを一度も更新していない場合は、初期設定されている制御パラメータでフィードバック制御手段4を動作させる。
 次に、ステップ2の処理を行い、指定された一定期間、住宅に供給される熱量に関する状態量、室温、外気温、および日射量を記録したのち、その記録した住宅に供給される熱量に関する状態量、室温、外気温、および日射量から住宅の熱特性に関するモデルのパラメータを算出する。
 本実施の形態1では、図5に示す熱回路網モデルを制御対象5である住宅の熱特性に関するモデルとする。なお、機器および人体による発熱は、各住宅の標準的な値としてあらかじめ制御対象熱特性モデル算出手段1の内部に記録しておく。
 このとき、住宅の熱特性に関するモデルから導出された式である住宅の熱輸送方程式は、以下の(1)~(3)式である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、上添え字のiは部屋番号を示しており、全館空調で住宅を1つの熱特性モデルと考えるATWシステムではi=1のみである。また、Tは外気温、Tは外壁室外側表面温度、Tは外壁室内側表面温度、Tは室内温度、Rは外壁室外側熱抵抗、Rは外壁熱抵抗、Rは外壁室内側熱抵抗、Cは外壁室外側熱容量、Cは外壁室内側熱容量、Cは室内熱容量、Qは日射量、QEQPは機器発熱、QOCCは人体発熱、QHVACは空調システムから住宅に供給される熱量、αは外壁へ照射する日射量の補正係数、βは室内に透過する日射量の補正係数、γは内部発熱の補正係数、δは空調システムから住宅に供給される熱量の補正係数である。
 また、住宅に供給される熱量に関する状態量を出湯温度および流量としている場合はQHVAC=出湯温度×流量となり、住宅に供給される熱量に関する状態量を出湯温度のみとしている場合はQHVAC=出湯温度となる。
 制御対象熱特性モデル算出手段1では、記録した住宅に供給される熱量に関する状態量である出湯温度および流量と、室温、外気温、日射量を用いて、上記(1)~(3)の熱輸送方程式のパラメータであるR、R、R、C、C、C、α、β、γ、δ、もしくはその組み合わせから構成される熱輸送方程式パラメータを算出する。そして、その算出した熱輸送方程式パラメータは制御パラメータ決定手段2に送られる。
 図6は、本発明の実施の形態1に係る制御対象熱特性モデル8の伝達関数表現を示す図、図7は、本発明の実施の形態1に係る空調システムの制御装置100の制御パラメータ決定手段2の内部のシミュレータを示すブロック図、図8は、本発明の実施の形態1に係る空調システムの制御装置100の制御パラメータ決定手段2の内部のシミュレータ出力の例を示す図である。
 次に、制御パラメータ決定手段2でステップ3の処理を行う。上記(1)~(3)の熱輸送方程式と、制御対象熱特性モデル算出手段1で算出した熱輸送方程式パラメータとを用いて、空調システムから住宅に供給される熱量QHVACから室温Tまでの伝達関数F1(S)、および外気温Tから室温Tまでの伝達関数F2(S)を決定する。
 なお、制御パラメータ決定手段2の内部には、図6に示す制御対象熱特性モデル8の伝達関数F1(S)、F2(S)を用いた図7に示すシミュレータが内蔵されており、制御対象熱特性モデル8は、状態量を伝達関数F1(S)に入力し、外乱を伝達関数F2(S)に入力することで、室温を出力する。
 本シミュレータでは、あらかじめ定められた規則に従ってフィードバック制御手段4の制御パラメータの値を変更しながら、目標指令生成手段7からのステップ状の目標指令と外乱生成手段9からのステップ状の外乱とが作用するシミュレーションを、制御パラメータの組み合わせごとに行う。
 そのシミュレーションでは、図8に示すように目標指令がステップ状に変化したときの最初に目標値に到達するまでの時間Tおよび最大オーバーシュート量Kと、ステップ状の外乱が作用したときに規定の誤差範囲に収まるまでの時間Tおよび最大オーバーシュート量Kとを算出する。そして、それらT、K、T、Kの重み付き和が最小となる制御パラメータの組み合わせを候補として選択する。なお、Tの代わりにステップ状に目標指令が変化したときに規定の誤差範囲に収まるまでの時間Tを用いても構わない。
 候補として選択された制御パラメータの値はあらかじめ定められた補正係数を乗じてから、フィードバック制御手段4に送られる。フィードバック制御手段4では、制御パラメータの更新がオペレータなどから指定された場合、空調システムの制御装置100の電源をいったん切ってから再投入した際に、制御パラメータ決定手段2から送られる値に更新する。
 なお、あらかじめ指定された窓長の移動平均フィルタを用いて上記送られる値に変更する構成にしてもよい。
 図9は、本発明の実施の形態1に係る熱回路網モデルその2を示す図、図10は、本発明の実施の形態1に係る熱回路網モデルその3を示す図である。
 また、本実施の形態1では機器および人体による発熱を考慮する場合を例に挙げて説明したが、住宅では機器および人体による発熱の比率が小さいことも多く、無視できる場合も多くある。その場合、制御対象熱特性モデル8は図9になり、(1)~(3)式ではQEQPおよびQOCCの値は常時0とみなして演算を行う。
 また、日射も無視する場合は、制御対象熱特性モデル8は図10になり、(1)~(3)式ではQEQPおよびQOCCに加えてQも常時0として演算を行う。
 以上より、本実施の形態1によれば、空調システムの通常運転時のデータからフィードバック制御手段4の内部のPID制御手段12の制御パラメータを決定するため、制御対象5の室温が設定された目標温度からずれる恐れのある専用運転を行う必要がなく、制御パラメータ決定中においても継続して室温を目標値に制御できるため、制御パラメータ決定中も快適性を損なわない効果がある。
 また、熱容量の大きい住宅向けの温水暖房システムにおいても制御パラメータ決定のために長時間待つ必要がない効果がある。また、制御対象5の熱特性を陽に表現したモデルを用いるため、制御パラメータ決定用の動作データを採取する際の状態の影響を受けにくい効果もある。
 また、外気温や日射といった外乱の情報と制御対象5の入力および出力とから制御対象5の熱特性を陽に表現したモデルのパラメータを同定するため、温度設定値に対する追従性だけでなく、外気温や日射の影響など外乱の影響を考慮した制御パラメータの決定を行える効果もある。
 実施の形態2.
 以下、本実施の形態2について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図11は、本発明の実施の形態2に係る空調システムの制御装置101のブロック図、図12は、本発明の実施の形態2に係る空調システムの制御装置101のフィードバック制御手段4のパラメータ決定フロー図である。
 本実施の形態2では、外部環境計測手段3を備えておらず、制御対象熱特性モデル算出手段1のパラメータ算出に、外乱である外気温および日射量を用いない点が実施の形態1と異なっている。
 以下、図12を用いてフィードバック制御手段4のパラメータ決定フローについて説明する。
 まず、ステップ1の処理を行い、空調システムの通常運転時に、住宅に供給される熱量に関する状態量、室温を制御対象熱特性モデル算出手段1に時々刻々記録する。
 次に、ステップ2の処理を行い、その記録した住宅に供給される熱量に関する状態量および測定された室温から、制御対象熱特性モデル算出手段1で制御対象熱特性モデル8のパラメータを算出する。
 なお、機器および人体による発熱は、各住宅の標準的な値としてあらかじめ制御対象熱特性モデル算出手段1の内部に記録しておく。また、日射量は0として無視する。
 また、外気温に関しては、外気温がステップ2で記録した室温の最初の値に一致していると仮定し、実施の形態1と同様に、R、R、R、C、C、C、α、β、γ、δ、もしくはその組み合わせから構成されるパラメータを算出する。なお、α、βは日射を無視しているので0とする。
 次に、制御パラメータ決定手段2でステップ3の処理を行う。まず、上記(1)~(3)の熱輸送方程式と、制御対象熱特性モデル算出手段1で算出した熱輸送方程式パラメータとを用いて、空調システムから住宅に供給される熱量QHVACから室温Tまでの伝達関数F1(S)を算出する。
 なお、制御パラメータ決定手段2の内部には、図6に示す制御対象熱特性モデル8の伝達関数を用いた図7に示すシミュレータが内蔵されており、図7の熱特性モデルとしてF1(S)を用いる。
 本シミュレータでは、フィードバック制御手段4の制御パラメータの値をあらかじめ定められた規則に従って変更しながら、図8に示すようなステップ状の目標指令とステップ状の外乱とが作用するシミュレーションを、制御パラメータの組み合わせごとに実施する。
 各組み合わせで行うシミュレーションでは、図8に示すように目標指令がステップ状に変化したときの最初に目標値に到達するまでの時間Tおよび最大オーバーシュート量Kを算出し、T、Kの重み付き和が最小となる制御パラメータの組み合わせをパラメータの候補として選択する。なお、Tの代わりにステップ状に目標指令が変化したときに規定の誤差範囲に収まるまでの時間Tを用いても構わない。
 選択された制御パラメータの値はあらかじめ定められた補正係数を乗じてから、フィードバック制御手段4に送られる。フィードバック制御手段4では、制御パラメータ更新がオペレータなどから指定された場合、空調システムの制御装置101の電源をいったん切ってから再投入した際に制御パラメータ決定手段2から送られる値に更新する。
なお、送られる値へあらかじめ指定された窓長の移動平均フィルタを用いて変更する構成にしてもよい。
 以上より、本実施の形態2によれば、外気温や日射の情報を使用しないため、外部の環境情報を測定しなくても制御パラメータの決定を行える効果がある。
 実施の形態3.
 以下、本実施の形態3について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図13は、本発明の実施の形態3に係る空調システムの制御装置の極配置の指定範囲の例を示す図である。
 本実施の形態3では、制御パラメータ決定手段2での制御パラメータ決定方法のみが実施の形態1と異なっている。
 制御パラメータ決定手段2では、熱特性モデルとしてF1(S)を用いた場合の、図7のブロック図で示されるフィードバック制御手段4と制御対象熱特性モデル8とで構成される閉ループの伝達関数をG1(S)とし、フィードバック制御手段4の制御パラメータの値をあらかじめ定められた規則に従って変更しながら、G1(S)の極を算出する。そして、算出したG1(S)の極において、図13に示す指定範囲内で、もっとも原点の近くに位置する極が原点から離れる制御パラメータの値を選択する。その選択された制御パラメータの値はあらかじめ定められた補正係数を乗じてから、フィードバック制御手段4に送られる。
 以上より、本実施の形態3によれば、伝達関数の極の位置に基づいてフィードバック制御手段4の制御パラメータを決定するため、制御対象熱特性モデル8のパラメータ算出後にフィードバック制御手段4の制御パラメータを算出するまでの時間を短縮できる効果がある。
 実施の形態4.
 以下、本実施の形態4について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 本実施の形態4では、制御パラメータ決定手段2での制御パラメータ決定方法のみが実施の形態1と異なっている。
 制御パラメータ決定手段2では、熱特性モデルとしてF1(S)を用いた場合の、図7のブロック図で示されるフィードバック制御手段4と制御対象熱特性モデル8とで構成される閉ループの伝達関数をG1(S)とし、G1(S)の分母多項式の係数があらかじめ定められた比になるように制御パラメータを決定する。
 G1(S)の分母多項式が
Figure JPOXMLDOC01-appb-M000004
となるとき、
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
を、
Figure JPOXMLDOC01-appb-M000007
とし、温度指令がステップ状に変化する場合において、ステップ状に変化した目標値に室温が到達するまでの時間の目標値をTとするとき、τが
Figure JPOXMLDOC01-appb-M000008
となるようにフィードバック制御手段4の制御パラメータを決定する。なお、(7)式、(8)式の値は2.5、2、0.5などに限定されるものではなく、2.3、1.8、0.4など別の値でも構わない。
 以上より、本実施の形態4によれば、伝達関数の分母の係数の比からフィードバック制御手段4の制御パラメータを決定するため、制御対象熱特性モデル8のパラメータ算出後にフィードバック制御手段4の制御パラメータを算出するまでの時間を短縮できる効果がある。
 実施の形態5.
 以下、本実施の形態5について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図14は、本発明の実施の形態5に係る空調システムの制御装置のフィードバック制御手段4の状態量制御手段13のブロック図である。
 実施の形態1では、フィードバック制御手段4の内部の状態量指令の例として出湯温度指令としたが、本実施の形態5では状態量指令として冷凍サイクル11の圧縮機の周波数指令とし、図2のフィードバック制御手段4の内部の状態量制御手段13は、図14に示すように圧縮機の周波数を制御する。本実施の形態5では、住宅に供給される熱量に関する状態量、および空調システムから住宅に供給される熱量QHVACとして、圧縮機の周波数を用いる。
 なお、圧縮機の周波数の代わりに圧縮機の周波数指令を用いても構わない。
 以上より、本実施の形態5によれば、圧縮機の周波数を用いて制御対象熱特性モデル8のパラメータを算出するため、出湯温度の測定値に誤差がある場合でも制御パラメータを決定することができる効果がある。
 実施の形態6.
 以下、本実施の形態6について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図15は、本発明の実施の形態6に係る空調システムの制御装置のフィードバック制御手段4の状態量制御手段13のブロック図である。
 実施の形態1ではヒートポンプでお湯を生成し、沸かしたお湯を暖房したいところへ送り、ラジエータ、ファンコイルなどの放熱装置を用いて暖房するATWシステムで説明したが、本実施の形態6では、各部屋に張り巡らせたダクトに暖かい空気や冷たい空気を送り込むことで全館の空調を行うダクト空調システムとする。全館の空調を行うダクト空調システムでは、図2のフィードバック制御手段4の内部の状態量指令は吹き出し温度指令となり、状態量制御手段13は図15となる。
 本実施の形態6では、住宅に供給される熱量に関する状態量、および空調システムから住宅に供給される熱量QHVACとして、ダクトに吹き出す空気の吹き出し温度を使用する。ダクトに吹き出す空気の風速をファンで可変にしている場合は、住宅に供給される熱量に関する状態量が吹き出し温度と風速、空調システムから住宅に供給される熱量QHVACが吹き出し温度×風速となる。
 以上より、本実施の形態6によれば、全館の空調を行うダクト空調システムのダクトに吹き出す空気の吹き出し温度に基づいて制御対象熱特性モデル8の熱輸送方程式パラメータを算出するため、全館をダクトにより冷暖房するダクト空調システムのフィードバック制御手段4の制御パラメータを専用運転なしに決定できる効果がある。
 実施の形態7.
 以下、本実施の形態7について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 実施の形態1ではヒートポンプでお湯を生成し、沸かしたお湯を暖房したいところへ送り、ラジエータ、ファンコイルなどの放熱装置を用いて暖房するATWシステムで説明したが、本実施の形態7では住宅の一部の部屋にルームエアコンを取り付けた部屋毎の個別の空調システムとする。
 部屋毎の個別の空調システムでは、図2のフィードバック制御手段4の内部の状態量指令は吹き出し温度指令となり、状態量制御手段13は図15となる。本実施の形態7では、住宅に供給される熱量に関する状態量、および空調システムから住宅に供給される熱量QHVACとして、各部屋に吹き出す空気の吹き出し温度を使用する。吹き出す空気の風速をファンで可変にしている場合は、住宅に供給される熱量に関する状態量が吹き出し温度と風速、空調システムから住宅に供給される熱量QHVACが吹き出し温度×風速となる。
 また(1)~(3)式の熱輸送方程式は空調システムの取り付けられている部屋での方程式となり、図5、図9、図10の制御対象熱特性モデル8は空調システムの取り付けられている部屋でのモデルとなり、制御対象熱特性モデル算出手段1では、空調システムの取り付けられている部屋の熱特性モデルを算出する。
 以上より、本実施の形態7によれば、各部屋に取り付けた空調システムのフィードバック制御手段4の制御パラメータを専用運転なしに決定できる効果がある。
 実施の形態8.
 以下、本実施の形態8について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図16は、本発明の実施の形態8に係る空調システムの制御装置102のブロック図である。
 本実施の形態8では、図16に示すように制御対象熱特性モデル算出手段1の外部に状態量記録手段14を設けている点が実施の形態1と異なっている。
 実施の形態1では、図1のフィードバック制御手段4、制御対象熱特性モデル算出手段1、制御パラメータ決定手段2がいずれも空調システム専用のコントローラに内蔵されている。一方、本実施の形態8では、フィードバック制御手段4、状態量記録手段14は空調システム専用のコントローラに内蔵し、制御対象熱特性モデル算出手段1、制御パラメータ決定手段2は制御パラメータ決定時のみ接続するパーソナルコンピュータに内蔵されている。
 そして、空調システムの通常運転時に、住宅に供給される熱量に関する状態量、室温、外気温、日射量を状態量記録手段14に時々刻々記録し、制御パラメータ決定時に記録した住宅に供給される熱量に関する状態量、室温、外気温、日射量を制御対象熱特性モデル算出手段1に送る。
 以上より、本実施の形態8によれば、制御対象熱特性モデル算出手段1、制御パラメータ決定手段2は制御パラメータ決定時のみ接続するパーソナルコンピュータに内蔵するため、空調システム専用コントローラのプログラムの規模を小さくできる効果がある。
 実施の形態9.
 以下、本実施の形態9について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 本実施の形態9では、住宅に供給される熱量に関する状態量として、出湯温度ではなく、図3に示される出湯温度指令を用いる点が実施の形態1と異なっている。
 以上より、本実施の形態9によれば、出湯温度ではなく出湯温度指令を用いてフィードバック制御手段4の制御パラメータを決定するため、出湯温度の測定値に誤差がある場合や、ノイズが入る場合でも制御対象熱特性モデル8の熱輸送方程式パラメータを高精度に算出でき、空調システムの制御パラメータを専用運転なしに決定できる効果がある。
 実施の形態10.
 以下、本実施の形態10について説明するが、実施の形態1と重複するものについては省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図17は、本発明の実施の形態10に係る空調システムの制御装置103のブロック図である。
 本実施の形態10では、図17に示すように制御対象熱特性モデル算出手段1に入力されるパラメータとして、制御対象5である住宅に供給される熱量に関する状態量ではなく、制御対象5である住宅に供給される熱量に関する状態量の目標値(状態量指令)である点が実施の形態1と異なっている。
 制御対象熱特性モデル算出手段1は、図17に示すように制御対象5である住宅に供給される熱量に関する状態量である出湯温度の目標値(状態量指令)および流量と、住宅内部の室温と、外部環境計測手段3で計測した外乱である外気温および日射量と、が入力される。
 なお、ATWシステムにおいて住宅内部で送っているお湯の流量が一定の場合は、住宅に供給される熱量に関する状態量として出湯温度のみでも構わない。
 そして、上記の各入力値に基づいて熱輸送方程式パラメータを算出し、そのパラメータを制御パラメータ決定手段2に出力する。また、熱輸送方程式パラメータは、本発明の「制御対象の熱特性に関するモデルのパラメータ」に相当する。
 以上より、本実施の形態10によれば、建物に供給する熱量に関する状態量の測定値にノイズなどが含まれる場合でも、制御対象熱特性モデル8の熱輸送方程式パラメータを高精度に算出できる効果がある。
 1 制御対象熱特性モデル算出手段、2 制御パラメータ決定手段、3 外部環境計測手段、4 フィードバック制御手段、5 制御対象、6 温度指令生成手段、7 目標指令生成手段、8 制御対象熱特性モデル、9 外乱生成手段、10 フィードバック制御手段II、11 冷凍サイクル、12 PID制御手段、13 状態量制御手段、14 状態量記録手段、100 制御装置、101 制御装置、102 制御装置、103 制御装置。

Claims (10)

  1.  制御パラメータおよび室温の目標値と測定された室温との差から状態量指令を生成し、前記状態量指令に基づいて室温を目標値に制御するフィードバック制御手段と、
     通常運転時に、少なくとも制御対象に供給される熱量に関する状態量または前記状態量指令と前記測定された室温とから、制御対象の熱特性に関するモデルのパラメータを算出する制御対象熱特性モデル算出手段と、
     制御対象の熱特性に関するモデルから導出された式と前記パラメータとを用いて前記制御パラメータを決定する制御パラメータ決定手段と、を備えた
     空調システムの制御装置。
  2.  前記制御対象に供給される熱量に関する状態量として、出湯温度に関する状態量を用いる
     請求項1に記載の空調システムの制御装置。
  3.  ダクトを備えた空調システムであって、
     前記制御対象に供給される熱量に関する状態量として、前記ダクトに吹き出す空気の吹き出し温度に関する状態量を用いる
     請求項1に記載の空調システムの制御装置。
  4.  圧縮機を備え、
     前記制御対象に供給される熱量に関する状態量として、前記圧縮機の周波数に関する状態量を用いる
     請求項1に記載の空調システムの制御装置。
  5.  前記制御対象の熱特性に関するモデルとして、熱回路網モデルを用いる
     請求項1~4のいずれか一項に記載の空調システムの制御装置。
  6.  前記制御パラメータ決定手段は、
     あらかじめ定められた規則に従って前記制御パラメータの値を変更しながら、前記制御パラメータの組み合わせごとにシミュレーションを行い、そのシミュレーション結果に基づいて前記制御パラメータを決定する
     請求項1~5のいずれか一項に記載の空調システムの制御装置。
  7.  前記制御パラメータ決定手段は、
     あらかじめ定められた規則に従って前記制御パラメータの値を変更しながら、前記フィードバック制御手段と前記制御対象の熱特性に関するモデルとで構成される閉ループの伝達関数の極を算出し、その算出した極の位置に基づいて前記制御パラメータを決定する
     請求項1~5のいずれか一項に記載の空調システムの制御装置。
  8.  前記制御パラメータ決定手段は、
     前記フィードバック制御手段と前記制御対象の熱特性に関するモデルとで構成される閉ループの伝達関数の分母の係数の比に基づいて前記制御パラメータを決定する
     請求項1~5のいずれか一項に記載の空調システムの制御装置。
  9.  前記制御対象熱特性モデル算出手段は、
     前記制御対象に供給される熱量に関する状態量と前記測定された室温に加え、
     外乱から前記パラメータを算出する
     請求項1~8のいずれか一項に記載の空調システムの制御装置。
  10.  通常運転時に、少なくとも制御対象に供給される熱量に関する状態量と測定された室温とから、制御対象の熱特性に関するモデルのパラメータを算出し、制御対象の熱特性に関するモデルの式と前記パラメータとを用いて制御パラメータ決定手段で室温を目標値に制御するフィードバック制御手段の制御パラメータを決定する
     空調システムの制御方法。
PCT/JP2014/072919 2014-09-01 2014-09-01 空調システムの制御装置および空調システムの制御方法 WO2016035121A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480081395.0A CN106574797B (zh) 2014-09-01 2014-09-01 空调系统的控制装置以及空调系统的控制方法
EP14901086.0A EP3190348A4 (en) 2014-09-01 2014-09-01 Air conditioning system control device and air conditioning system control method
PCT/JP2014/072919 WO2016035121A1 (ja) 2014-09-01 2014-09-01 空調システムの制御装置および空調システムの制御方法
JP2016546206A JP6385446B2 (ja) 2014-09-01 2014-09-01 空調システムの制御装置および空調システムの制御方法
US15/505,850 US10533763B2 (en) 2014-09-01 2014-09-01 Controller of air-conditioning system and method for controlling air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072919 WO2016035121A1 (ja) 2014-09-01 2014-09-01 空調システムの制御装置および空調システムの制御方法

Publications (1)

Publication Number Publication Date
WO2016035121A1 true WO2016035121A1 (ja) 2016-03-10

Family

ID=55439230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072919 WO2016035121A1 (ja) 2014-09-01 2014-09-01 空調システムの制御装置および空調システムの制御方法

Country Status (5)

Country Link
US (1) US10533763B2 (ja)
EP (1) EP3190348A4 (ja)
JP (1) JP6385446B2 (ja)
CN (1) CN106574797B (ja)
WO (1) WO2016035121A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551376A (zh) * 2021-07-28 2021-10-26 珠海格力电器股份有限公司 空调控制方法、装置及空调机组
CN114660928A (zh) * 2022-05-19 2022-06-24 沈阳建筑大学 一种bp神经网络与模糊自适耦合的pid温度调节系统及方法
CN114730162A (zh) * 2019-12-05 2022-07-08 神钢建机株式会社 反馈控制装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475642B1 (ko) * 2016-01-14 2022-12-09 삼성전자 주식회사 전자 장치 및 이의 냉난방 제어 방법
US11900287B2 (en) 2017-05-25 2024-02-13 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with budgetary constraints
US10706375B2 (en) 2017-03-29 2020-07-07 Johnson Controls Technology Company Central plant with asset allocator
US11675322B2 (en) 2017-04-25 2023-06-13 Johnson Controls Technology Company Predictive building control system with discomfort threshold adjustment
US11747800B2 (en) 2017-05-25 2023-09-05 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with automatic service work order generation
US11416955B2 (en) 2017-05-25 2022-08-16 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with integrated measurement and verification functionality
US11409274B2 (en) 2017-05-25 2022-08-09 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system for performing maintenance as soon as economically viable
EP3631704A4 (en) 2017-05-25 2021-07-21 Johnson Controls Technology Company MODELED PREDICTIVE MAINTENANCE SYSTEM FOR CONSTRUCTION EQUIPMENT
US11636429B2 (en) 2017-05-25 2023-04-25 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance systems and methods with automatic parts resupply
CN108489015B (zh) * 2018-03-05 2020-07-14 苏州科技大学 基于极点配置和帕德近似的空调系统温度控制方法
US10767887B2 (en) * 2018-05-16 2020-09-08 Mitsubishi Electric Research Laboratories, Inc. System and method for thermal comfort control
EP3736655A1 (en) * 2019-05-09 2020-11-11 E.ON Sverige AB Method and device for controlling indoor climate in a portion of a building
US11480360B2 (en) * 2019-08-06 2022-10-25 Johnson Controls Tyco IP Holdings LLP Building HVAC system with modular cascaded model

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142A (ja) * 1990-04-16 1992-01-06 Shimizu Corp 温熱環境制御システム
JPH04103946A (ja) * 1990-08-20 1992-04-06 Matsushita Electric Ind Co Ltd 多室型空気調和機
JPH06323595A (ja) * 1993-05-12 1994-11-25 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2001221481A (ja) * 2000-02-10 2001-08-17 Takenaka Komuten Co Ltd 空調制御装置
JP2011214794A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置
JP2013139954A (ja) * 2011-12-29 2013-07-18 Mitsubishi Electric Corp ヒートポンプシステム及びヒートポンプ装置の制御方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247806A (en) 1990-08-20 1993-09-28 Matsushita Electric Industrial Co., Ltd. Multi-system air conditioner
JPH06213493A (ja) * 1992-11-30 1994-08-02 Daikin Ind Ltd 空調運転制御装置
GB2278207B (en) * 1993-05-17 1996-05-15 Ea Tech Ltd Heating control apparatus
US5634590A (en) * 1993-06-16 1997-06-03 Landis & Staefa, Inc. Direct digital control thermostat
JPH07261805A (ja) * 1994-03-18 1995-10-13 Mitsubishi Heavy Ind Ltd 比例積分微分制御パラメータ自動調整装置
JP3435808B2 (ja) 1994-06-07 2003-08-11 ダイキン工業株式会社 空気調和装置の制御装置
JP2001350503A (ja) 2000-06-09 2001-12-21 Toshiba Corp Pid制御装置
JP2002106915A (ja) * 2000-09-28 2002-04-10 Yanmar Diesel Engine Co Ltd ヒートポンプの制御方法及び制御装置
JP2002257423A (ja) 2001-02-26 2002-09-11 Seiko Instruments Inc 冷凍システム制御装置
JP4704677B2 (ja) 2003-12-15 2011-06-15 株式会社山武 冷暖房制御装置
US7687945B2 (en) * 2004-09-25 2010-03-30 Bluwav Systems LLC. Method and system for cooling a motor or motor enclosure
CN1920427B (zh) * 2005-08-23 2010-04-14 陈之启 一种空调机组室温pid控制方法
JP5103778B2 (ja) * 2006-04-17 2012-12-19 ダイキン工業株式会社 空調システム
CN102102897B (zh) * 2009-12-18 2013-04-10 财团法人工业技术研究院 分离式空调设备的温度控制方法
US20110166712A1 (en) * 2010-03-18 2011-07-07 Marcus Kramer Deadband control of pneumatic control devices
US8744631B2 (en) * 2011-01-28 2014-06-03 Hewlett-Packard Development Company, L.P. Manipulating environmental conditions in an infrastructure
US8793003B2 (en) * 2011-03-31 2014-07-29 Mitsubishi Electric Research Laboratories, Inc. Controlling operations of vapor compression system
US8843238B2 (en) * 2011-09-30 2014-09-23 Johnson Controls Technology Company Systems and methods for controlling energy use in a building management system using energy budgets
CN102679505B (zh) * 2012-06-13 2014-04-23 重庆大学 房间温度控制方法
EP2891931B1 (en) * 2012-08-29 2017-07-19 Toyota Jidosha Kabushiki Kaisha Plant control device
US8554376B1 (en) * 2012-09-30 2013-10-08 Nest Labs, Inc Intelligent controller for an environmental control system
JP6197359B2 (ja) * 2013-05-14 2017-09-20 オムロン株式会社 シミュレーション方法、シミュレーションプログラム、シミュレーション装置、および、システム
US10386820B2 (en) * 2014-05-01 2019-08-20 Johnson Controls Technology Company Incorporating a demand charge in central plant optimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142A (ja) * 1990-04-16 1992-01-06 Shimizu Corp 温熱環境制御システム
JPH04103946A (ja) * 1990-08-20 1992-04-06 Matsushita Electric Ind Co Ltd 多室型空気調和機
JPH06323595A (ja) * 1993-05-12 1994-11-25 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2001221481A (ja) * 2000-02-10 2001-08-17 Takenaka Komuten Co Ltd 空調制御装置
JP2011214794A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 空調システム制御装置
JP2013139954A (ja) * 2011-12-29 2013-07-18 Mitsubishi Electric Corp ヒートポンプシステム及びヒートポンプ装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190348A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730162A (zh) * 2019-12-05 2022-07-08 神钢建机株式会社 反馈控制装置
CN113551376A (zh) * 2021-07-28 2021-10-26 珠海格力电器股份有限公司 空调控制方法、装置及空调机组
CN114660928A (zh) * 2022-05-19 2022-06-24 沈阳建筑大学 一种bp神经网络与模糊自适耦合的pid温度调节系统及方法
CN114660928B (zh) * 2022-05-19 2022-09-20 沈阳建筑大学 一种bp神经网络与模糊自适耦合的pid温度调节系统及方法

Also Published As

Publication number Publication date
EP3190348A4 (en) 2018-05-02
EP3190348A1 (en) 2017-07-12
JP6385446B2 (ja) 2018-09-05
US10533763B2 (en) 2020-01-14
CN106574797B (zh) 2019-08-06
US20170268795A1 (en) 2017-09-21
JPWO2016035121A1 (ja) 2017-04-27
CN106574797A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6385446B2 (ja) 空調システムの制御装置および空調システムの制御方法
US11366438B2 (en) Environment control system and environment control method
CN109341013B (zh) 空调器及其控制方法、装置
JP6324628B2 (ja) ヒートポンプ利用システムの制御装置及びそれを備えたヒートポンプ利用システム
JP6004228B2 (ja) 空気調和機
CN104214891B (zh) 控制装置以及控制方法
JPH11218354A (ja) フィードフォーワードとフィードバック制御を有する室圧制御装置および方法
US20080294291A1 (en) Building automation systems and methods for controlling interacting control loops
CN110520679A (zh) 暖通空调机组控制器
JP2018109494A (ja) 空調制御装置、空調制御方法及びコンピュータプログラム
JP2009031866A (ja) 流量制御バルブおよび流量制御方法
Thomas et al. Feed-forward in temperature control of buildings
EP3339754A1 (en) System and method for balancing temperature within a building
KR101731191B1 (ko) 감시 장치 및 감시 방법
CN109323410B (zh) 空调器及其控制方法、装置
Fielsch et al. Model predictive control for hydronic heating systems in residential buildings
JP6344018B2 (ja) 温湿度制御システム
JPH07332732A (ja) 空気調和装置の制御装置
EP3117275A1 (en) Navier-stokes based indoor climate control
FI126110B (fi) Menetelmä, laitteisto ja tietokoneohjelmatuote toimilaitteen ohjaamiseksi lämpötilan säätelyssä
Hussain et al. Internal model controller design for HVAC system
Price et al. Effective tuning of cascaded control loops for nonlinear HVAC systems
Kim et al. Model-based predictive control for buildings with decoupling and reduced-order modeling
US20200340701A1 (en) System and method for building climate control
Wemhoff Hvac system energy minimization via optimization of lumped system models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546206

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014901086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15505850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE