Nothing Special   »   [go: up one dir, main page]

WO2016034795A1 - Jet nozzle of a turbine engine - Google Patents

Jet nozzle of a turbine engine Download PDF

Info

Publication number
WO2016034795A1
WO2016034795A1 PCT/FR2015/052277 FR2015052277W WO2016034795A1 WO 2016034795 A1 WO2016034795 A1 WO 2016034795A1 FR 2015052277 W FR2015052277 W FR 2015052277W WO 2016034795 A1 WO2016034795 A1 WO 2016034795A1
Authority
WO
WIPO (PCT)
Prior art keywords
central body
exhaust
nozzle according
exhaust nozzle
central
Prior art date
Application number
PCT/FR2015/052277
Other languages
French (fr)
Inventor
Yves-Marie LE BAYON
Guy CRABE
Original Assignee
Turbomeca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbomeca filed Critical Turbomeca
Publication of WO2016034795A1 publication Critical patent/WO2016034795A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/04Mounting of an exhaust cone in the jet pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/54Building or constructing in particular ways by sheet metal manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a gas turbine engine exhaust nozzle.
  • the invention relates to a gas exhaust nozzle of a turbine engine of an aircraft.
  • One of the objectives of the gas exhausts of a turbine engine of an aircraft is the evacuation of the flue gases having passed through one or more turbines, and the ventilation of the engine bay for the thermal resistance of the equipment.
  • the aerodynamic performance of the exhausts at the outlet of the free turbine are closely related to the performance of the engine installed.
  • the performance of an escapement is characterized by its ability to transform the dynamic pressure at the exit of the free turbine into a static pressure, this transformation being commonly called diffusion.
  • the nozzle exhaust element at the outlet of the turbine and upstream of the ejector
  • the optimization of the aerodynamic performance of the nozzle directly impacts the specific consumption of the turbine engine.
  • the aerodynamic magnitude related to the performance of the exhaust that is to be improved is the static pressure recovery coefficient which is defined by:
  • the geometric adaptation of the nozzle is essential for optimizing the performance of the nozzle.
  • an aerodynamic detachment non-attachment of the flow to the wall
  • the invention aims to overcome at least some of the disadvantages of known gas exhaust nozzles.
  • the invention aims to provide, in at least one embodiment of the invention, an exhaust nozzle which makes it possible to prevent the appearance of aerodynamic detachments of the exhaust gases.
  • the invention also aims to provide, in at least one embodiment, an exhaust nozzle that reduces the dynamic pressure and increase the static pressure at the free turbine outlet to improve the static pressure recovery coefficient.
  • the invention also aims to provide, in at least one embodiment of the invention, a nozzle that improves the exhaust performance without increasing the total mass of the nozzle.
  • the invention also aims to provide, in at least one embodiment of the invention, a nozzle which improves the exhaust performance while reducing the total mass of the exhaust nozzle.
  • the invention also aims to provide, in at least one embodiment, a nozzle which contributes to reducing the fuel consumption of the engine to which it is connected.
  • the invention also aims to provide, in at least one embodiment, a nozzle which has a reduced cost of manufacture compared to nozzles of the prior art.
  • the invention also aims to provide, in at least one embodiment, a nozzle that fits most turbine engines.
  • the invention also aims to provide a turbine engine equipped with a nozzle according to the invention.
  • the invention relates to a gas turbine engine exhaust nozzle, comprising an outer wall and an inner wall delimiting between them an exhaust flow stream, the inner wall forming a frustoconical central body s' extending along a direction, referred to as the longitudinal direction,
  • the nozzle according to the invention is characterized in that the central body comprises exhaust gas guiding means along said longitudinal direction extending at least partially along said central body.
  • a gas exhaust nozzle according to the invention therefore makes it possible to reduce the aerodynamic detachment by guiding the exhaust gases in the direction of its flow vein of the exhaust ga2, from the exit of the free turbine to the outside of the turbine engine.
  • the guiding of the gases along the longitudinal direction is obtained by the arrangement of guide means on the frustoconical central body of the nozzle.
  • the guidance of the exhaust gases along the longitudinal direction also makes it possible to reduce the dynamic pressure generated by a tangential component of the gas velocity at the outlet of the free turbine, this tangential component, orthogonal to the longitudinal direction, being due to the rotation of the free turbine,
  • the reduction of this dynamic pressure causes an increase in the static pressure due to the preservation of the total pressure, and therefore an increase in the pressure recovery coefficient.
  • the turbine engine is thus more efficient, which also leads to a decrease in consumption.
  • said exhaust gas guiding means are distributed over at least a part of the periphery of said central body.
  • the guide means are distributed uniformly around the perimeter of the central body.
  • the reduction of the aerodynamic detachment and the dynamic pressure is uniform over the entire contour of the central body.
  • said guide means are formed on a dista! E portion of said central body in the direction of flow of gas, over a distance of between half and one third of the total length of the central body.
  • said exhaust gas guiding means are formed of longitudinal grooves
  • the grooves make it possible to form the guide means without adding new elements, therefore without addition of material and without addition of mass.
  • the grooves are for example directly formed by the inner wall of the nozzle.
  • the grooves have a depth that varies between a minimum value, called the starting depth, in a proximal portion of the central body according to the direction of flow of the gases, and a maximum value, called the exit depth, in a distal portion of the central body in the direction of gas flow.
  • the guiding of the gases by grooves having a depth gradually varying from a proximal portion of the central body - in particular a proximal end - to a distal portion of the central body - in particular a distal end - does not allow create abrupt surface change.
  • the gradual variation of the depth between a proximal portion and a distal portion of the central body furthermore makes it possible to obtain at the outlet guide means, gases directed in large part in the direction of flow and in the longitudinal direction.
  • the starting depth is between 0.5mm and 1.2mm.
  • the output depth is between 6mm and 15mm.
  • the grooves have a cross section rounded to a radius of curvature that varies between a minimum value, called the starting radius, in a proximal portion of the central body according to the gas flow direction, and a maximum value, said output radius, in a distal portion of the central body in the direction of gas flow.
  • the reduction of the radius of curvature of each groove dug in the central body allows a progressive guidance of the exhaust gas without creating an abrupt change of radius that can cause disturbances.
  • the reduced exit radius with respect to the starting radius makes it possible to guide the gas substantially in the direction of flow and in the longitudinal direction.
  • said flutes have an output radius of 6 mm.
  • the central body comprises between sixteen and twenty flutes guiding the exhaust gas distributed around the perimeter of the central body.
  • the invention also relates to a turbine engine characterized in that it comprises a gas exhaust nozzle according to the invention.
  • the invention also relates to a nozzle and a turbine engine characterized in combination by all or some of the characteristics mentioned above or below.
  • FIG. 1 is a schematic representation of a turbine engine exhaust comprising a nozzle according to the state of the art
  • FIG. 2 is a schematic representation of an exhaust nozzle according to the state of the art
  • FIG. 3 is a partial schematic representation of a central body of a nozzle according to a first embodiment of the invention
  • FIG. 4 is a partial schematic representation of a central body of a nozzle according to the first embodiment of the invention
  • FIG. 5 is a schematic representation of a central body of a nozzle according to a second embodiment of the invention
  • FIG. 6 is a set of curves representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the second embodiment
  • FIG. 7 is a schematic representation of a central body of a nozzle according to a third embodiment of the invention.
  • FIG. 5 is a set of curves representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the third embodiment
  • FIG. 1 schematically represents a turbine engine exhaust 10 of an aircraft according to the state of the art.
  • the exhaust 10 is designed to improve the performance of the turbine engine mainly by diffusion of exhaust gases from the gas combustion necessary for the operation of the turbine engine.
  • the gases burned by this combustion make it possible to drive a turbine 12 free in rotation, which is generally connected to a shaft to transmit the energy of this rotation and thus allow the propulsion of the aircraft in which the turbine engine is located, for example through a propeller.
  • the flue gases must be discharged through the exhaust 10, which comprises in particular a nozzle 14 and an ejector 16.
  • the gas is discharged in the direction indicated by the arrows 18.
  • the flow of gases is in a flow channel 20 delimited externally by an outer wall 22 of the nozzle 14 and then by the ejector 16.
  • a flow channel 20 delimited externally by an outer wall 22 of the nozzle 14 and then by the ejector 16.
  • one or more inlets 24, 26 allow the fresh air supply, represented by the arrows 27 from a scoop 28 formed in a cover 30 surrounding and protecting the turbine engine,
  • the flow vein 20 is delimited on the outside by the outer wall 22, and on the inside by a central body 32, generally frustoconical in shape, whose axis is oriented in the direction of flow of gas, said longitudinal direction.
  • the central body 32 is held in position by structural arms 34 fixed to the outer wall 22 of the nozzle 14.
  • FIG. 2 is a close-up view of an exhaust nozzle 14 according to the state of the art, as described with reference to FIG. 1.
  • the arrows referenced 36 represent the gas flow stream 20 delimited by the wall 22.
  • the central body 32 has a proximal portion 38, also designated by the terms “upstream portion”, located on the side of the free turbine 12, and a distal portion 40, also designated by the terms "downstream part” located on the other side. side.
  • Figure 3 shows schematically and partially a central body 32 of a nozzle 14 according to a first embodiment of the invention.
  • the central body 32 includes guide means 44 along the longitudinal direction over at least a portion of the length of the central body 32 in the direction of gas flow.
  • the guide means 44 are distributed over at least a portion of the contour of the central body 32, here over the entire contour of the central body 32. Only the upper part of the central body 32 is shown, the lower part being similar because the central body 32 is frustoconical and the guide means 44 are here uniformly distributed over the entire periphery of the central body 32.
  • FIG. 3 shows the exhaust velocity vectors 46, 50 in the upstream portion 38, said upstream speed vector 46, and in the downstream portion 40, said downstream velocity vector 50 of the central body 32.
  • the vectors 46, 50 each have two components, a longitudinal component in the longitudinal direction, i.e. in the direction of gas flow, and a tangential component in a direction perpendicular to the longitudinal direction, due to the rotation of the turbine 12 free.
  • the upstream velocity vector 46 decomposes into a longitudinal upstream velocity vector 47 and a tangential upstream velocity vector 48
  • the downstream velocity vector 50 decomposes into a downstream longitudinal velocity vector 51 and a tangential downstream velocity vector 52.
  • the guide means 44 allow the reduction of the tangential component of these vectors 46, 50 speed.
  • the downstream velocity vector 50 has indeed a reduced tangential component with respect to the upstream velocity vector 46.
  • the reduction of this tangential component allows the reduction of the aerodynamic detachment by orienting the flow of the gases on the surface of the central body 32 in the longitudinal direction, in which the exhaust gases farther away from the central body 32 flow.
  • Reducing the tangential component of the velocity vector also has the effect of reducing the exhaust velocity vector standard, i.e., reducing the velocity of the exhaust gas.
  • This reduction in speed causes a reduction in the dynamic pressure, and therefore an increase in the static pressure, as a principle of conservation of the total pressure equal to the sum of the dynamic pressure and the static pressure.
  • Increasing the static pressure and decreasing the dynamic pressure then make it possible to increase the coefficient of static pressure recovery, stated in the preamble, which makes it possible to increase the performance of the escapement 10 and therefore of the turbine engine.
  • the means 44 for guiding exhaust gases are formed in this embodiment of grooves 54 dug in the central body 32 in the direction of gas flow.
  • the splines 54 are formed on the central body 32 either by boilermaking on a conventional central body or by twist molding of the manufacture of the central body 32.
  • the formation of the splines 54 does not add or very little mass to the central body 32, which makes it possible not to reduce the general performance of the aircraft in which the turbine engine is installed.
  • the mass increase of the central body 32 does not exceed 3%, this mass increase of the internal vein of the primary nozzle can be easily compensated by a reduction in the length of the ejector.
  • the flutes 54 have certain geometric characteristics which are visible and referenced in FIG. 4, which represents a central body 32 according to the same embodiment as FIG.
  • the characteristics of the splines 54 are as follows:
  • the length L of the splines 54 is also associated with a starting abscissa 0 of the splines 54;
  • the depth of the grooves which corresponds to the distance between the part of the grooves 54 furthest from the axis of the central body, that is to say at the level of the spaces between two grooves 54, and the nearest part the axis of the central body 32, that is to say in the groove of the grooves 54.
  • the grooves 54 may have a fixed depth over the entire length or a variable depth, between a minimum depth Pmin of side of the upstream portion 38 of the central body 32, at the starting abscissa 0, and a maximum depth Pmax in the downstream portion 40 of the central body 32, at the end thereof;
  • the radius of the grooves 54 are rounded in their hollow. Like the depth, the radius may be fixed or variable along the length of the grooves, a starting radius Rd upstream of the central body 32 at the starting abscissa 0, and an output radius Rs in the downstream part of the central body 32, at the end thereof.
  • Figures 5 and 7 show two other embodiments of the invention, in which the characteristics of the splines 54 previously stated differ in their values.
  • FIG. 5 represents a second embodiment where the splines 56 have the following characteristics:
  • sixteen splines 56 distributed uniformly over the entire contour of the body 32 centrai;
  • FIG. 6 represents four curves 60, 61, 62, 63 representing the variations of the static pressure recovery coefficient and of the specific consumption of the nozzle according to the second embodiment, at the outlet of the nozzle and at the exit of the ejector of the exhaust comprising the nozzle.
  • the curves 60 and 61 represent the static pressure recovery coefficient variations as a function of the power delivered by the turbine engine, respectively at the outlet of the nozzle and at the outlet of the ejector.
  • the static recovery coefficient is thus increased for all the powers delivered.
  • the curves 62 and 63 represent the variations in the specific fuel consumption as a function of the power delivered by the turbine engine, respectively at the outlet of its nozzle and at the outlet of the ejector.
  • increasing the coefficient of static pressure recovery leads to a decrease in fuel consumption, especially in high power.
  • FIG. 7 represents a third embodiment where the grooves 58 have the following characteristics:
  • FIG. 8 represents two curves 64, 65, 66, 67 representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the third embodiment, and at the level of the ejector of the exhaust comprising the nozzle.
  • the curves 64 and 65 represent the variations of static pressure recovery coefficients as a function of the power delivered by the turbine engine, respectively at the outlet of the nozzle and at the outlet of the ejector. The static recovery coefficient is thus increased for all the powers delivered.
  • the curves 66 and 67 represent the variations in the specific fuel consumption as a function of the power delivered by the turbine engine, respectively at the nozzle and at the level of the ejector.
  • increasing the static pressure recovery coefficient results in a decrease in fuel consumption. Comparing with FIG. 6, however, it will be noted that the third embodiment is more effective over a large part of the operation of the turbine engine, but less efficient at high power.
  • the second and third embodiments shown in FIGS. 5 and 7 have the additional advantage of providing an increase in performance without the grooves 56, 58 being present over an excessive length of the central body 32. Indeed, the absence of grooves in the upstream portion 38 of the central body 32, especially in its first half, makes it easy to implant the structural arms 34 holding the central body 32 in a fixed position, as shown in FIG. effect changes thereof and while maintaining optimum performance generated by the splines 56, 58.
  • the invention is not limited to the embodiments described.
  • other embodiments of the gas exhaust nozzle are possible, for example by varying in particular the number of grooves, the distribution of these grooves on all or part of the contour of the central body, the starting position of the splines, the starting depth of the splines at this starting position, the splitting output depth, the starting radius and the output radius of the splines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

The invention relates to a jet nozzle of a turbine engine, comprising an outer wall and an inner wall defining, between each other, a flow channel for the exhaust gas; the inner wall forming a central frustoconical body oriented in a longitudinal direction. The nozzle is characterised in that the central body (32) comprises means (44) for guiding the exhaust gas in the longitudinal direction over at least part of the length of the central body (32) in the direction of flow of the gas.

Description

TUYÈRE D'ÉCHAPPEMENT DE GAZ DE TURBOMOTEUR  EXHAUST TUBE OF TURBOMOTING GAS
1. Domaine technique de l'invention 1. Technical field of the invention
L'invention concerne une tuyère d'échappement de gaz de turbomoteur. En particulier, l'invention concerne une tuyère d'échappement de gaz d'un turbomoteur d'un aéronef.  The invention relates to a gas turbine engine exhaust nozzle. In particular, the invention relates to a gas exhaust nozzle of a turbine engine of an aircraft.
2. Arrière-plan technologique  2. Technological background
L'un des objectifs des échappements de gaz d'un turbomoteur d'un aéronef est l'évacuation des gaz brûlés ayant traversés une ou plusieurs turbines, et la ventilation de la baie moteur pour la tenue thermique des équipements.  One of the objectives of the gas exhausts of a turbine engine of an aircraft is the evacuation of the flue gases having passed through one or more turbines, and the ventilation of the engine bay for the thermal resistance of the equipment.
Les performances aérodynamiques des échappements en sortie de la turbine libre sont étroitement liées aux performances du moteur installé. La performance d'un échappement se caractérise par sa capacité à transformer la pression dynamique en sortie de la turbine libre en une pression statique, cette transformation étant couramment appelée la diffusion. Plus cette diffusion est importante dans l'échappement et plus le taux de détente de l'étage de la turbine augmente, contribuant à augmenter la puissance délivrée par le turbomoteur. La tuyère (élément de l'échappement en sortie de la turbine et en amont de l'éjecteur) est responsable de plus de trois quarts de la diffusion dans l'échappement. Ainsi l'optimisation des performances aérodynamiques de la tuyère impacte directement la consommation spécifique du turbomoteur.  The aerodynamic performance of the exhausts at the outlet of the free turbine are closely related to the performance of the engine installed. The performance of an escapement is characterized by its ability to transform the dynamic pressure at the exit of the free turbine into a static pressure, this transformation being commonly called diffusion. The greater this diffusion in the exhaust and the higher the expansion rate of the turbine stage, contributing to increase the power delivered by the turbine engine. The nozzle (exhaust element at the outlet of the turbine and upstream of the ejector) is responsible for more than three quarters of the diffusion in the exhaust. Thus, the optimization of the aerodynamic performance of the nozzle directly impacts the specific consumption of the turbine engine.
La grandeur aérodynamique liée aux performances de l'échappement que l'on cherche à améliorer est le coefficient de récupération de pression statique qui se définit par :
Figure imgf000003_0001
The aerodynamic magnitude related to the performance of the exhaust that is to be improved is the static pressure recovery coefficient which is defined by:
Figure imgf000003_0001
avec
Figure imgf000003_0003
te pression statique en entrée de l'échappement,
Figure imgf000003_0002
te pression statique en sortie de l'échappement
Figure imgf000003_0004
la pression dynamique en entrée de l'échappement et
Figure imgf000003_0005
te pression totale en entrée de l'échappement, égale à la somme de
Figure imgf000003_0006
L'entrée de l'échappement correspond à la sortie de la turbine libre. L'adaptation géométrique de ia tuyère est primordiale pour l'optimisation des performances de la tuyère. A certains régimes, un décollement aérodynamique (non rattachement de l'écoulement à la paroi) apparaît, ce qui contribue à réduire la section aérodynamique débitante et la diffusion. Cela entraine une diminution du coefficient de récupération de la pression statique par une augmentation de la pression dynamique et par une diminution de la pression statique en entrée de l'échappement, et donc à une diminution des performances.
with
Figure imgf000003_0003
the static pressure at the inlet of the exhaust,
Figure imgf000003_0002
the static pressure at the outlet of the exhaust
Figure imgf000003_0004
the dynamic pressure at the inlet of the exhaust and
Figure imgf000003_0005
the total inlet pressure of the exhaust, equal to the sum of
Figure imgf000003_0006
The exhaust inlet corresponds to the output of the free turbine. The geometric adaptation of the nozzle is essential for optimizing the performance of the nozzle. At certain speeds, an aerodynamic detachment (non-attachment of the flow to the wall) appears, which contributes to reducing the flowable aerodynamic section and the diffusion. This results in a decrease in the coefficient of recovery of the static pressure by an increase in the dynamic pressure and a decrease in the static pressure at the inlet of the exhaust, and therefore a decrease in performance.
Les solutions existantes proposent des modifications géométriques qui ont un impact important sur la masse totale de la tuyère. En particulier, l'intégration de géométries exotiques sur la paroi extérieure de la tuyère (de type « tuyères à pétales ») s'accompagne d'une augmentation de la masse du système.  Existing solutions offer geometric modifications that have a significant impact on the total mass of the nozzle. In particular, the integration of exotic geometries on the outer wall of the nozzle (of the "petal nozzle" type) is accompanied by an increase in the mass of the system.
3. Objectifs de l'invention  3. Objectives of the invention
L'invention vise à pallier au moins certains des inconvénients des tuyères d'échappement de gaz connus.  The invention aims to overcome at least some of the disadvantages of known gas exhaust nozzles.
En particulier, l'invention vise à fournir, dans au moins un mode de réalisation de l'invention, une tuyère d'échappement qui permet d'empêcher l'apparition de décollements aérodynamiques des gaz d'échappement.  In particular, the invention aims to provide, in at least one embodiment of the invention, an exhaust nozzle which makes it possible to prevent the appearance of aerodynamic detachments of the exhaust gases.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, une tuyère d'échappement qui permet de réduire la pression dynamique et augmenter la pression statique en sortie de turbine libre pour améliorer le coefficient de récupération de pression statique.  The invention also aims to provide, in at least one embodiment, an exhaust nozzle that reduces the dynamic pressure and increase the static pressure at the free turbine outlet to improve the static pressure recovery coefficient.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, une tuyère qui améliore les performances d'échappement sans augmenter la masse totale de la tuyère.  The invention also aims to provide, in at least one embodiment of the invention, a nozzle that improves the exhaust performance without increasing the total mass of the nozzle.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, une tuyère qui améliore les performances d'échappement tout en réduisant la masse totale de la tuyère d'échappement.  The invention also aims to provide, in at least one embodiment of the invention, a nozzle which improves the exhaust performance while reducing the total mass of the exhaust nozzle.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, une tuyère qui contribue à une réduire la consommation de carburant du moteur auquel elle est reliée.  The invention also aims to provide, in at least one embodiment, a nozzle which contributes to reducing the fuel consumption of the engine to which it is connected.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, une tuyère qui présente un cout de fabrication réduit par rapport aux tuyères de l'art antérieur. The invention also aims to provide, in at least one embodiment, a nozzle which has a reduced cost of manufacture compared to nozzles of the prior art.
L'invention vise aussi à fournir, dans au moins un mode de réalisation, une tuyère qui s'adapte à la plupart des turbomoteurs.  The invention also aims to provide, in at least one embodiment, a nozzle that fits most turbine engines.
L'invention vise aussi à fournir un turbomoteur équipé d'une tuyère selon l'invention.  The invention also aims to provide a turbine engine equipped with a nozzle according to the invention.
4. Exposé de l'invention  4. Presentation of the invention
Pour ce faire, l'invention concerne une tuyère d'échappement de gaz de turbomoteur, comprenant une paroi extérieure et une paroi intérieure délimitant entre elles une veine d'écoulement des gaz d'échappement, la paroi intérieure formant un corps central tronconique s'étendant le long d'une direction, dite direction longitudinale,  To do this, the invention relates to a gas turbine engine exhaust nozzle, comprising an outer wall and an inner wall delimiting between them an exhaust flow stream, the inner wall forming a frustoconical central body s' extending along a direction, referred to as the longitudinal direction,
La tuyère selon l'invention est caractérisée en ce que le corps central comprend des moyens de guidage des gaz d'échappement le long de ladite direction longitudinale s'étendant au moins partiellement le long dudit corps central.  The nozzle according to the invention is characterized in that the central body comprises exhaust gas guiding means along said longitudinal direction extending at least partially along said central body.
Une tuyère d'échappement de gaz selon l'invention permet donc la réduction du décollement aérodynamique en guidant les gaz d'échappement dans la direction de Sa veine d'écoulement des ga2 d'échappement, depuis la sortie de la turbine libre vers l'extérieur du turbomoteur. Le guidage des gaz le long de la direction longitudinale est obtenu par l'aménagement de moyens de guidage sur le corps central tronconique de la tuyère. Le guidage des gaz d'échappement le long de la direction longitudinale permet aussi de réduire ia pression dynamique engendrée par une composante tangentielle de la vitesse des gaz en sortie de la turbine libre, cette composante tangentielle, orthogonale à la direction longitudinale, étant due à la rotation de la turbine libre, La réduction de cette pression dynamique engendre une augmentation de la pression statique du fait de la conservation de ia pression totale, et donc une augmentation du coefficient de récupération de pression. Le turbomoteur est ainsi plus performant, ce qui entraine par ailleurs une diminution de la consommation.  A gas exhaust nozzle according to the invention therefore makes it possible to reduce the aerodynamic detachment by guiding the exhaust gases in the direction of its flow vein of the exhaust ga2, from the exit of the free turbine to the outside of the turbine engine. The guiding of the gases along the longitudinal direction is obtained by the arrangement of guide means on the frustoconical central body of the nozzle. The guidance of the exhaust gases along the longitudinal direction also makes it possible to reduce the dynamic pressure generated by a tangential component of the gas velocity at the outlet of the free turbine, this tangential component, orthogonal to the longitudinal direction, being due to the rotation of the free turbine, The reduction of this dynamic pressure causes an increase in the static pressure due to the preservation of the total pressure, and therefore an increase in the pressure recovery coefficient. The turbine engine is thus more efficient, which also leads to a decrease in consumption.
Avantageusement et selon l'invention, iesdits moyens de guidage des gaz d'échappement sont répartis sur au moins une partie du pourtour dudit corps central.  Advantageously and according to the invention, said exhaust gas guiding means are distributed over at least a part of the periphery of said central body.
Avantageusement et selon l'invention, les moyens de guidage sont répartis uniformément sur le pourtour du corps central. Advantageously and according to the invention, the guide means are distributed uniformly around the perimeter of the central body.
Selon cet aspect de l'invention, la réduction du décollement aérodynamique et de la pression dynamique est uniforme sur l'ensemble du contour du corps central.  According to this aspect of the invention, the reduction of the aerodynamic detachment and the dynamic pressure is uniform over the entire contour of the central body.
Avantageusement et selon l'invention, lesdits moyens de guidage sont formés sur une portion dista!e dudit corps central selon le sens d'écoulement des gaz, sur une distance comprise entre la moitié et un tiers de la longueur totale du corps central.  Advantageously and according to the invention, said guide means are formed on a dista! E portion of said central body in the direction of flow of gas, over a distance of between half and one third of the total length of the central body.
Avantageusement et selon l'invention, lesdits moyens de guidage des gaz d'échappement sont formés de cannelures longitudinales,  Advantageously and according to the invention, said exhaust gas guiding means are formed of longitudinal grooves,
Selon cet aspect de l'invention, les cannelures permettent de former les moyens de guidage sans ajout d'éléments nouveaux, donc sans ajout de matière et sans ajout de masse. Les cannelures sont par exemple directement formées par la paroi intérieure de la tuyère.  According to this aspect of the invention, the grooves make it possible to form the guide means without adding new elements, therefore without addition of material and without addition of mass. The grooves are for example directly formed by the inner wall of the nozzle.
Avantageusement et selon l'invention, les cannelures présentent une profondeur qui varie entre une valeur minimale, dite profondeur de départ, dans une portion proximale du corps central selon le sens d'écoulement des gaz, et une valeur maximale, dite profondeur de sortie, dans une portion distale du corps central selon le sens d'écoulement des gaz.  Advantageously and according to the invention, the grooves have a depth that varies between a minimum value, called the starting depth, in a proximal portion of the central body according to the direction of flow of the gases, and a maximum value, called the exit depth, in a distal portion of the central body in the direction of gas flow.
Selon cet aspect de l'invention, le guidage des gaz par des cannelures présentant une profondeur variant progressivement d'une portion proximale du corps central - notamment une extrémité proximale- à une portion distale du corps central - notamment une extrémité distale- permet ne pas créer de changement abrupt de surface. La variation progressive de la profondeur entre une portion proximale et une portion distale du corps centrai, permet en outre d'obtenir en sortie des moyens de guidage, des gaz dirigés en grande partie dans le sens de l'écoulement et de la direction longitudinale.  According to this aspect of the invention, the guiding of the gases by grooves having a depth gradually varying from a proximal portion of the central body - in particular a proximal end - to a distal portion of the central body - in particular a distal end - does not allow create abrupt surface change. The gradual variation of the depth between a proximal portion and a distal portion of the central body, furthermore makes it possible to obtain at the outlet guide means, gases directed in large part in the direction of flow and in the longitudinal direction.
Avantageusement et selon l'invention, la profondeur de départ est comprise entre 0,5mm et 1,2mm.  Advantageously and according to the invention, the starting depth is between 0.5mm and 1.2mm.
Avantageusement et selon l'invention, la profondeur de sortie est comprise entre 6mm et 15mm.  Advantageously and according to the invention, the output depth is between 6mm and 15mm.
Avantageusement et selon l'invention, les cannelures présentent une section droite transversale arrondie selon un rayon de courbure qui varie entre une valeur minimale, dite rayon de départ, dans une portion proximale du corps central selon le sens d'écoulement des gaz, et une valeur maximale, dite rayon de sortie, dans une portion distale du corps central selon îe sens d'écoulement des gaz. Advantageously and according to the invention, the grooves have a cross section rounded to a radius of curvature that varies between a minimum value, called the starting radius, in a proximal portion of the central body according to the gas flow direction, and a maximum value, said output radius, in a distal portion of the central body in the direction of gas flow.
Selon cet aspect de l'invention, la réduction du rayon de courbure de chaque cannelure creusée dans le corps central permet un guidage progressif des gaz d'échappement sans créer de changement abrupt de rayon pouvant provoquer des perturbations. Le rayon de sortie réduit par rapport au rayon de départ permet de guider le gaz en grande partie dans le sens de l'écoulement et dans la direction longitudinale.  According to this aspect of the invention, the reduction of the radius of curvature of each groove dug in the central body allows a progressive guidance of the exhaust gas without creating an abrupt change of radius that can cause disturbances. The reduced exit radius with respect to the starting radius makes it possible to guide the gas substantially in the direction of flow and in the longitudinal direction.
Avantageusement et selon l'invention, lesdites cannelures présentent un rayon de sortie de 6mm.  Advantageously and according to the invention, said flutes have an output radius of 6 mm.
Avantageusement et selon l'invention, le corps central comprend entre seize et vingt cannelures de guidage des gaz d'échappement répartis sur le pourtour du corps central.  Advantageously and according to the invention, the central body comprises between sixteen and twenty flutes guiding the exhaust gas distributed around the perimeter of the central body.
L'invention concerne également un turbomoteur caractérisé en ce qu'il comprend une tuyère d'échappement de gaz selon l'invention.  The invention also relates to a turbine engine characterized in that it comprises a gas exhaust nozzle according to the invention.
L'invention concerne également une tuyère et un turbomoteur caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.  The invention also relates to a nozzle and a turbine engine characterized in combination by all or some of the characteristics mentioned above or below.
5. Liste des figures  5. List of figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :  Other objects, features and advantages of the invention will become apparent on reading the following description given solely by way of non-limiting example and which refers to the appended figures in which:
la figure 1 est une représentation schématique d'un échappement de turbomoteur comprenant une tuyère selon l'état de la technique,  FIG. 1 is a schematic representation of a turbine engine exhaust comprising a nozzle according to the state of the art,
la figure 2 est une représentation schématique d'une tuyère d'échappement selon l'état de la technique,  FIG. 2 is a schematic representation of an exhaust nozzle according to the state of the art,
la figure 3 est une représentation schématique partielle d'un corps central d'une tuyère selon un premier mode de réalisation de l'invention,  FIG. 3 is a partial schematic representation of a central body of a nozzle according to a first embodiment of the invention,
la figure 4 est une représentation schématique partielle d'un corps centrai d'une tuyère selon le premier mode de réalisation de l'invention,  FIG. 4 is a partial schematic representation of a central body of a nozzle according to the first embodiment of the invention,
la figure 5 est une représentation schématique d'un corps central d'une tuyère selon un deuxième mode de réalisation de l'invention, la figure 6 est un ensemble de courbes représentant les variations du coefficient de récupération de pression statique et de la consommation spécifique des tuyères selon le deuxième mode de réalisation, FIG. 5 is a schematic representation of a central body of a nozzle according to a second embodiment of the invention, FIG. 6 is a set of curves representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the second embodiment,
la figure 7 est une représentation schématique d'un corps central d'une tuyère selon un troisième mode de réalisation de l'invention,  FIG. 7 is a schematic representation of a central body of a nozzle according to a third embodiment of the invention,
la figure S est un ensemble de courbes représentant les variations du coefficient de récupération de pression statique et de la consommation spécifique des tuyères selon le troisième mode de réalisation,  FIG. 5 is a set of curves representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the third embodiment,
6. Description détaillée d'un mode de réalisation de l'invention  6. Detailed description of an embodiment of the invention
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées pour fournir d'autres réalisations.  The following achievements are examples. Although the description refers to one or more embodiments, this does not necessarily mean that each reference relates to the same embodiment, or that the features apply only to a single embodiment. Simple features of different embodiments may also be combined to provide other embodiments.
La figure 1 représente schématiquement un échappement 10 de turbomoteur d'un aéronef selon l'état de la technique. L'échappement 10 est conçu pour améliorer les performances du turbomoteur principalement par diffusion des gaz d'échappement provenant de !a combustion de gaz nécessaire au fonctionnement du turbomoteur. Les gaz brûlés par cette combustion permettent d'entraîner une turbine 12 libre en rotation, qui est généralement connectée à un arbre pour transmettre l'énergie de cette rotation et ainsi permettre la propulsion de l'aéronef dans lequel se trouve le turbomoteur, par exemple par l'intermédiaire d'une hélice. En sortie de cette turbine 12, les gaz brûlés doivent être évacués par l'échappement 10, qui comprend notamment une tuyère 14 et un éjecteur 16. Le gaz est évacué selon la direction indiquée par les flèches 18. L'écoulement des gaz se fait dans une veine 20 d'écoulement délimité à l'extérieur par une paroi 22 extérieure de la tuyère 14 puis par l'éjecteur 16. Au niveau de la jonction entre la tuyère 14 et l'éjecteur 16, une ou plusieurs entrées 24, 26 permettent l'arrivée d'air frais, représentée par les flèches 27 provenant d'une écope 28 formée dans un capot 30 entourant et protégeant le turbomoteur,  FIG. 1 schematically represents a turbine engine exhaust 10 of an aircraft according to the state of the art. The exhaust 10 is designed to improve the performance of the turbine engine mainly by diffusion of exhaust gases from the gas combustion necessary for the operation of the turbine engine. The gases burned by this combustion make it possible to drive a turbine 12 free in rotation, which is generally connected to a shaft to transmit the energy of this rotation and thus allow the propulsion of the aircraft in which the turbine engine is located, for example through a propeller. At the outlet of this turbine 12, the flue gases must be discharged through the exhaust 10, which comprises in particular a nozzle 14 and an ejector 16. The gas is discharged in the direction indicated by the arrows 18. The flow of gases is in a flow channel 20 delimited externally by an outer wall 22 of the nozzle 14 and then by the ejector 16. At the junction between the nozzle 14 and the ejector 16, one or more inlets 24, 26 allow the fresh air supply, represented by the arrows 27 from a scoop 28 formed in a cover 30 surrounding and protecting the turbine engine,
Au niveau de la sortie de la turbine 12 libre, la veine 20 d'écoulement des gaz est délimitée à l'extérieur par la paroi 22 extérieure, et à l'intérieur par un corps 32 centrai, généralement de forme tronconique, dont l'axe est orienté dans la direction d'écoulement des gaz, dite direction longitudinale. Le corps 32 central est maintenu en position par des bras 34 structuraux fixés à la paroi 22 extérieure de ia tuyère 14. At the outlet of the free turbine 12, the flow vein 20 is delimited on the outside by the outer wall 22, and on the inside by a central body 32, generally frustoconical in shape, whose axis is oriented in the direction of flow of gas, said longitudinal direction. The central body 32 is held in position by structural arms 34 fixed to the outer wall 22 of the nozzle 14.
La figure 2 représente en vue rapprochée une tuyère 14 d'échappement selon l'état de la technique, telle que décrit en lien avec la figure 1. Les flèches référencées 36 représentent la veine 20 d'écoulement des gaz, délimitée par la paroi 22 extérieure et le corps 32 central tronconique. Le corps 32 central comporte une portion proximale 38, aussi désignée par les termes « partie amont », située du côté de la turbine 12 libre, et une portion distale 40, aussi désignée par les termes « partie avale », située de l'autre côté. Dans la partie 40 avale du corps 32 central se produit un phénomène de décollement dans une zone 42 de décollement, dû à un détachement de l'écoulement de gaz de ia surface du corps 32 central, entraînant une réduction de la diffusion et de la section aérodynamique de l'échappement dans laquelle la veine 20 d'échappement circule.  FIG. 2 is a close-up view of an exhaust nozzle 14 according to the state of the art, as described with reference to FIG. 1. The arrows referenced 36 represent the gas flow stream 20 delimited by the wall 22. outer and central body frustoconical 32. The central body 32 has a proximal portion 38, also designated by the terms "upstream portion", located on the side of the free turbine 12, and a distal portion 40, also designated by the terms "downstream part" located on the other side. side. In the downstream portion 40 of the central body 32 occurs a peeling phenomenon in a zone 42 of detachment, due to a detachment of the gas flow from the surface of the central body 32, resulting in a reduction of the diffusion and the section aerodynamic exhaust in which the exhaust vein circulates.
L'invention vise à résoudre ce problème. Pour cela, la figure 3 représente schématiquement et partiellement un corps 32 central d'une tuyère 14 selon un premier mode de réalisation de l'invention. Le corps 32 central comprend des moyens 44 de guidage le long de la direction longitudinale sur au moins une partie de la longueur du corps 32 central dans !e sens de l'écoulement des gaz. Les moyens 44 de guidage sont répartis sur au moins une partie du contour du corps 32 central, ici sur la totalité du contour du corps 32 central. Seule ia partie supérieure du corps 32 central est représentée, la partie inférieure étant similaire car Se corps 32 central est tronconique et les moyens 44 de guidage sont ici uniformément répartis sur la totalité du pourtour du corps 32 central.  The invention aims to solve this problem. For this, Figure 3 shows schematically and partially a central body 32 of a nozzle 14 according to a first embodiment of the invention. The central body 32 includes guide means 44 along the longitudinal direction over at least a portion of the length of the central body 32 in the direction of gas flow. The guide means 44 are distributed over at least a portion of the contour of the central body 32, here over the entire contour of the central body 32. Only the upper part of the central body 32 is shown, the lower part being similar because the central body 32 is frustoconical and the guide means 44 are here uniformly distributed over the entire periphery of the central body 32.
L'écoulement des gaz s'effectue de la partie 38 amont vers la partie 40 avaie du corps 32 central. La turbine 12 libre étant en rotation, les gaz brûlés en sortie de cette turbine 12 arrivant au niveau de la partie 38 amont ne se propagent pas uniquement dans la direction longitudinale mais ont aussi une composante tangentielle dans le sens de la rotation de la turbine 12. Sur la figure 3 sont représentés les vecteurs 46, 50 de vitesse des gaz d'échappement dans la partie 38 amont, dit vecteur 46 vitesse amont, et dans la partie 40 avale, dit vecteur 50 vitesse aval du corps 32 central. Les vecteurs 46, 50 ont chacun deux composantes, une composante longitudinale dans la direction longitudinale, c'est-à-dire dans le sens de l'écoulement des gaz, et une composante tangentielle dans une direction perpendiculaire à la direction longitudinale, due à ia rotation de la turbine 12 libre. Le vecteur 46 vitesse amont se décompose en un vecteur 47 vitesse amont longitudinal et un vecteur 48 vitesse amont tangentiel, et le vecteur 50 vitesse aval se décompose en un vecteur 51 vitesse aval longitudinal et un vecteur 52 vitesse aval tangentiel. The flow of gases is from the upstream portion 38 to the portion 40 of the central body 32. Since the free turbine 12 is in rotation, the flue gas at the outlet of this turbine 12 arriving at the upstream portion 38 does not propagate only in the longitudinal direction but also has a tangential component in the direction of rotation of the turbine 12 FIG. 3 shows the exhaust velocity vectors 46, 50 in the upstream portion 38, said upstream speed vector 46, and in the downstream portion 40, said downstream velocity vector 50 of the central body 32. The vectors 46, 50 each have two components, a longitudinal component in the longitudinal direction, i.e. in the direction of gas flow, and a tangential component in a direction perpendicular to the longitudinal direction, due to the rotation of the turbine 12 free. The upstream velocity vector 46 decomposes into a longitudinal upstream velocity vector 47 and a tangential upstream velocity vector 48, and the downstream velocity vector 50 decomposes into a downstream longitudinal velocity vector 51 and a tangential downstream velocity vector 52.
Les moyens 44 de guidage permettent la réduction de la composante tangentielle de ces vecteurs 46, 50 vitesse. Le vecteur 50 vitesse aval a en effet une composante tangentielle réduite par rapport au vecteur 46 vitesse amont. La réduction de cette composante tangentielle permet la réduction du décollement aérodynamique en orientant l'écoulement des gaz sur la surface du corps 32 central dans la direction longitudinale, dans laquelle s'écoulent les gaz d'échappement plus éloignés du corps 32 central.  The guide means 44 allow the reduction of the tangential component of these vectors 46, 50 speed. The downstream velocity vector 50 has indeed a reduced tangential component with respect to the upstream velocity vector 46. The reduction of this tangential component allows the reduction of the aerodynamic detachment by orienting the flow of the gases on the surface of the central body 32 in the longitudinal direction, in which the exhaust gases farther away from the central body 32 flow.
La réduction de la composante tangentielle du vecteur vitesse a aussi pour effet de réduire la norme du vecteur vitesse du gaz d'échappement, c'est-à-dire de réduire ia vitesse du gaz d'échappement. Cette réduction de la vitesse entraine une réduction de la pression dynamique, et donc une augmentation de la pression statique, par principe de conservation de la pression totale égaie a la somme de la pression dynamique et de la pression statique. L'augmentation de la pression statique et la diminution de la pression dynamique permettent alors l'augmentation du coefficient de récupération de pression statique, énoncé dans le préambule, ce qui permet d'augmenter la performance de l'échappement 10 et donc du turbomoteur.  Reducing the tangential component of the velocity vector also has the effect of reducing the exhaust velocity vector standard, i.e., reducing the velocity of the exhaust gas. This reduction in speed causes a reduction in the dynamic pressure, and therefore an increase in the static pressure, as a principle of conservation of the total pressure equal to the sum of the dynamic pressure and the static pressure. Increasing the static pressure and decreasing the dynamic pressure then make it possible to increase the coefficient of static pressure recovery, stated in the preamble, which makes it possible to increase the performance of the escapement 10 and therefore of the turbine engine.
Les moyens 44 de guidage des gaz d'échappements sont formés dans ce mode de réalisation de cannelures 54 creusées dans ie corps 32 central dans le sens de l'écoulement des gaz. Les cannelures 54 sont formées sur le corps 32 central soit par chaudronnerie sur un corps central classique, soit par moulage tors de la fabrication du corps 32 central. La formation des cannelures 54 n'ajoute pas ou très peu de masse au corps 32 central, ce qui permet de ne pas réduire les performances générales de l'aéronef dans lequel est installé le turbomoteur. Selon les modes de réalisation de l'invention, l'augmentation de masse du corps 32 central n'excède pas 3%, cette augmentation de masse de la veine interne de la tuyère primaire peut être facilement compensée par une réduction de la longueur de l'éjecteur. The means 44 for guiding exhaust gases are formed in this embodiment of grooves 54 dug in the central body 32 in the direction of gas flow. The splines 54 are formed on the central body 32 either by boilermaking on a conventional central body or by twist molding of the manufacture of the central body 32. The formation of the splines 54 does not add or very little mass to the central body 32, which makes it possible not to reduce the general performance of the aircraft in which the turbine engine is installed. According to the embodiments of the invention, the mass increase of the central body 32 does not exceed 3%, this mass increase of the internal vein of the primary nozzle can be easily compensated by a reduction in the length of the ejector.
Les cannelures 54 possèdent certaines caractéristiques géométriques qui sont visibles et référencées sur la figure 4, qui représente un corps 32 central selon le même mode de réalisation que la figure 3.  The flutes 54 have certain geometric characteristics which are visible and referenced in FIG. 4, which represents a central body 32 according to the same embodiment as FIG.
Les caractéristiques des cannelures 54 sont les suivantes :  The characteristics of the splines 54 are as follows:
- le nombre de cannelures 54, et leur répartition sur le contour du corps 32 central ;  the number of splines 54 and their distribution on the contour of the central body 32;
- la longueur L des cannelures 54. Les cannelures se prolongeant ici jusqu'à l'extrémité en aval du corps 32 central, cette longueur est aussi associée à une abscisse 0 de départ des cannelures 54 ;  the length L of the splines 54. The splines extending here to the end downstream of the central body 32, this length is also associated with a starting abscissa 0 of the splines 54;
- la profondeur des cannelures, qui correspond à la distance entre la partie des cannelures 54 la plus éloignée de l'axe du corps central, c'est-à-dire au niveau des espaces entre deux cannelures 54, et la partie la plus proche de l'axe du corps 32 central, c'est-à-dire dans le creux des cannelures 54. Plus précisément, les cannelures 54 peuvent avoir une profondeur fixe sur toute la longueur ou bien une profondeur variable, entre une profondeur Pmin minimale du côté de la partie 38 amont du corps 32 central, au niveau de l'abscisse 0 de départ, et une profondeur Pmax maximale dans la partie 40 aval du corps 32 central, à l'extrémité de celui-ci ;  the depth of the grooves, which corresponds to the distance between the part of the grooves 54 furthest from the axis of the central body, that is to say at the level of the spaces between two grooves 54, and the nearest part the axis of the central body 32, that is to say in the groove of the grooves 54. More specifically, the grooves 54 may have a fixed depth over the entire length or a variable depth, between a minimum depth Pmin of side of the upstream portion 38 of the central body 32, at the starting abscissa 0, and a maximum depth Pmax in the downstream portion 40 of the central body 32, at the end thereof;
- le rayon des cannelures 54, celles-ci étant arrondies dans leur creux. Comme la profondeur, le rayon peut être fixe ou variable sur la longueur des cannelures, d'un rayon Rd de départ en amont du corps 32 central au niveau de l'abscisse 0 de départ, et d'un rayon Rs de sortie dans la partie aval du corps 32 central, à l'extrémité de celui-ci.  - The radius of the grooves 54, these being rounded in their hollow. Like the depth, the radius may be fixed or variable along the length of the grooves, a starting radius Rd upstream of the central body 32 at the starting abscissa 0, and an output radius Rs in the downstream part of the central body 32, at the end thereof.
Les figures 5 et 7 représentent deux autres modes de réalisation de l'invention, dans iesqueis les caractéristiques des cannelures 54 énoncés précédemment diffèrent par leurs valeurs.  Figures 5 and 7 show two other embodiments of the invention, in which the characteristics of the splines 54 previously stated differ in their values.
La figure 5 représente un deuxième mode de réalisation où les cannelures 56 présentent les caractéristiques suivantes :  FIG. 5 represents a second embodiment where the splines 56 have the following characteristics:
seize cannelures 56 réparties uniformément sur la totalité du contour du corps 32 centrai ;  sixteen splines 56 distributed uniformly over the entire contour of the body 32 centrai;
profondeur de départ de 0,5mm, profondeur de sortie de 15mm ; rayon de sortie de 6mm ; starting depth of 0.5mm, output depth of 15mm; output radius of 6mm;
abscisse de départ à la moitié du corps central, soit une longueur de cannelures 56 égale à la moitié de la longueur du corps 32 central.  starting abscissa at half of the central body, a length of grooves 56 equal to half the length of the central body 32.
La figure 6 représente quatre courbes 60, 61, 62, 63 représentant les variations du coefficient de récupération de pression statique et de la consommation spécifique de la tuyère selon le deuxième mode de réalisation, en sortie de tuyère et en sortie de l'éjecteur de l'échappement comprenant la tuyère.  FIG. 6 represents four curves 60, 61, 62, 63 representing the variations of the static pressure recovery coefficient and of the specific consumption of the nozzle according to the second embodiment, at the outlet of the nozzle and at the exit of the ejector of the exhaust comprising the nozzle.
Les courbes 60 et 61 représentent les variations de coefficients de récupération de pression statique en fonction de la puissance délivrée par le turbomoteur, respectivement au niveau de la sortie de la tuyère et au niveau de la sortie de l'éjecteur. Le coefficient de récupération statique est ainsi augmenté pour toutes les puissances délivrées.  The curves 60 and 61 represent the static pressure recovery coefficient variations as a function of the power delivered by the turbine engine, respectively at the outlet of the nozzle and at the outlet of the ejector. The static recovery coefficient is thus increased for all the powers delivered.
Les courbes 62 et 63 représentent les variations de la consommation spécifique de carburant en fonction de la puissance délivrée par ie turbomoteur, respectivement au niveau de la sortie de Sa tuyère et au niveau de la sortie de l'éjecteur. Ainsi, l'augmentation du coefficient de récupération de pression statique entraîne une diminution de la consommation de carburant, notamment dans les puissances élevées.  The curves 62 and 63 represent the variations in the specific fuel consumption as a function of the power delivered by the turbine engine, respectively at the outlet of its nozzle and at the outlet of the ejector. Thus, increasing the coefficient of static pressure recovery leads to a decrease in fuel consumption, especially in high power.
La figure 7 représente un troisième mode de réalisation où les cannelures 58 présentent les caractéristiques suivantes :  FIG. 7 represents a third embodiment where the grooves 58 have the following characteristics:
vingt cannelures réparties uniformément sur la totalité du contour du corps 32 central ;  twenty splines distributed uniformly over the entire contour of the central body 32;
profondeur de départ de 1,2mm, profondeur de sortie de 6mm ; rayon de sortie de 6mm ;  1.2mm starting depth, 6mm exit depth; output radius of 6mm;
abscisse de départ au deux tiers du corps 32 central en partant de l'extrémité de la partie 38 amont, soit une longueur de cannelures 58 égale à un tiers de la longueur du corps 32 central. Les performances mesurées sont néanmoins optimales pour toute abscisse de départ entre la moitié et deux tiers du corps 32 central, dans ce mode de réalisation.  starting abscissa two-thirds of the central body 32 from the end of the upstream portion 38, a length of grooves 58 equal to one third of the length of the central body 32. The measured performances are nevertheless optimal for any starting abscissa between one-half and two-thirds of the central body 32 in this embodiment.
La figure 8 représente deux courbes 64, 65, 66, 67 représentant les variations du coefficient de récupération de pression statique et de la consommation spécifique des tuyères selon le troisième mode de réalisation, et au niveau de l'éjecteur de l'échappement comprenant la tuyère. Les courbes 64 et 65 représentent les variations de coefficients de récupération de pression statique en fonction de la puissance délivrée par le turbomoteur, respectivement au niveau de la sortie de la tuyère et au niveau de la sortie de l'éjecteur. Le coefficient de récupération statique est ainsi augmenté pour toutes les puissances délivrées. FIG. 8 represents two curves 64, 65, 66, 67 representing the variations of the static pressure recovery coefficient and the specific consumption of the nozzles according to the third embodiment, and at the level of the ejector of the exhaust comprising the nozzle. The curves 64 and 65 represent the variations of static pressure recovery coefficients as a function of the power delivered by the turbine engine, respectively at the outlet of the nozzle and at the outlet of the ejector. The static recovery coefficient is thus increased for all the powers delivered.
Les courbes 66 et 67 représentent les variations de la consommation spécifique de carburant en fonction de la puissance délivrée par le turbomoteur, respectivement au niveau de la tuyère et au niveau de l'éjecteur. Ainsi, l'augmentation du coefficient de récupération de pression statique entraîne une diminution de la consommation de carburant. En comparant avec la figure 6, on remarque cependant que le troisième mode de réalisation est plus efficace sur une grande partie du régime de fonctionnement du turbomoteur, mais moins efficace sur les hautes puissances.  The curves 66 and 67 represent the variations in the specific fuel consumption as a function of the power delivered by the turbine engine, respectively at the nozzle and at the level of the ejector. Thus, increasing the static pressure recovery coefficient results in a decrease in fuel consumption. Comparing with FIG. 6, however, it will be noted that the third embodiment is more effective over a large part of the operation of the turbine engine, but less efficient at high power.
Les deuxième et troisième modes de réalisation représentés figures 5 et 7 ont pour avantage supplémentaire d'apporter une augmentation de performance sans que les cannelures 56, 58 ne soit présentes sur une longueur trop importante du corps 32 central. En effet, l'absence de cannelures dans la partie 38 amont du corps 32 central, notamment dans sa première moitié, permet d'implanter facilement les bras 34 structuraux maintenant le corps 32 central en position fixe, comme représenté figure 1, sans nécessité d'effectuer de changements de celui-ci et tout en conservant des performances optimales engendrées par les cannelures 56, 58.  The second and third embodiments shown in FIGS. 5 and 7 have the additional advantage of providing an increase in performance without the grooves 56, 58 being present over an excessive length of the central body 32. Indeed, the absence of grooves in the upstream portion 38 of the central body 32, especially in its first half, makes it easy to implant the structural arms 34 holding the central body 32 in a fixed position, as shown in FIG. effect changes thereof and while maintaining optimum performance generated by the splines 56, 58.
L'invention ne se limite pas aux seuls modes de réalisation décrits. En particulier, d'autres modes de réaiisation de la tuyère d'échappement de gaz sont possibles, par exemple en faisant varier notamment le nombre de cannelures, la répartition de ces cannelures sur l'ensemble ou une partie du contour du corps central, la position de départ des cannelures, la profondeur de départ des cannelures à cette position de départ, la profondeur de sortie des cannelures, le rayon de départ et le rayon de sortie des cannelures.  The invention is not limited to the embodiments described. In particular, other embodiments of the gas exhaust nozzle are possible, for example by varying in particular the number of grooves, the distribution of these grooves on all or part of the contour of the central body, the starting position of the splines, the starting depth of the splines at this starting position, the splitting output depth, the starting radius and the output radius of the splines.

Claims

REVENDICATIONS
1. Tuyère d'échappement de gaz de turbomoteur, comprenant une paroi (22) extérieure et une paroi intérieure délimitant entre elles une veine (20) d'écoulement des gaz d'échappement, la paroi intérieure formant un corps (32) central tronconique s'étendant le long d'une direction, dite direction longitudinale, caractérisée en ce que ledit corps (32) central comprend des moyens (44, 54, 56, 58) de guidage des gaz d'échappement le long de ladite direction longitudinale s'étendant au moins partiellement le long dudit corps central. Turbomotor gas exhaust nozzle, comprising an outer wall (22) and an inner wall delimiting between them an exhaust gas flow line (20), the inner wall forming a frustoconical central body (32). extending along a direction, said longitudinal direction, characterized in that said central body (32) comprises means (44, 54, 56, 58) for guiding exhaust gases along said longitudinal direction s extending at least partially along said central body.
2. Tuyère d'échappement selon ia revendication 1, caractérisée en ce que Iesdits moyens de guidage des gaz d'échappement sont répartis sur au moins une partie du pourtour dudit corps (32) central. 2. Exhaust nozzle according to claim 1, characterized in that said means for guiding the exhaust gas are distributed over at least a portion of the periphery of said body (32) central.
3. Tuyère d'échappement selon la revendication 2, caractérisée en ce que Iesdits moyens de guidage des gaz d'échappement sont répartis uniformément sur le pourtour dudit corps central,  3. Exhaust nozzle according to claim 2, characterized in that said exhaust gas guiding means are uniformly distributed around the perimeter of said central body,
4. Tuyère d'échappement selon l'une des revendications 1 à 3, caractérisée en ce que Iesdits moyens (44, 54, 56, 58) de guidage sont formés sur une portion distale dudit corps (32) central selon le sens d'écoulement des gaz, sur une distance comprise entre la moitié et un tiers de la longueur totale du corps (32) central.  4. Exhaust nozzle according to one of claims 1 to 3, characterized in that said means (44, 54, 56, 58) for guiding are formed on a distal portion of said body (32) central in the sense of flow of gases, for a distance of between one half and one third of the total length of the central body (32).
5. Tuyère d'échappement selon l'une des revendications 1 à 4, caractérisée en ce que Iesdits moyens (44, 54, 56, 58) de guidage des gaz d'échappement sont formés de cannelures (54, 56, 58) longitudinales. 5. Exhaust nozzle according to one of claims 1 to 4, characterized in that said means (44, 54, 56, 58) for guiding the exhaust gas are formed of longitudinal grooves (54, 56, 58). .
6. Tuyère d'échappement selon la revendication 5, caractérisée en ce que les cannelures présentent une profondeur qui varie entre une valeur minimale, dite profondeur (Pmin) de départ, dans une portion proximale du corps (32) central selon le sens d'écoulement des gaz, et une valeur maximale, dite profondeur (Pmax) de sortie, dans une portion distale du corps (32) central selon le sens d'écoulement des gaz.  6. Exhaust nozzle according to claim 5, characterized in that the grooves have a depth which varies between a minimum value, said depth (Pmin) of departure, in a proximal portion of the body (32) central in the direction of gas flow, and a maximum value, said output depth (Pmax), in a distal portion of the body (32) central in the direction of gas flow.
7. Tuyère d'échappement selon la revendication 6, caractérisée en ce que ia profondeur (Pmin) de départ est comprise entre 0,5mm et 1,2mm.  7. exhaust nozzle according to claim 6, characterized in that the depth (Pmin) of departure is between 0.5mm and 1.2mm.
8. Tuyère d'échappement selon l'une des revendications 6 ou 7, caractérisée en ce que la profondeur (Pmax) de sortie est comprise entre 6mm et 15mm. 8. Exhaust nozzle according to one of claims 6 or 7, characterized in that the output depth (Pmax) is between 6mm and 15mm.
9. Tuyère d'échappement selon l'une des revendications 6 à 8, caractérisée en ce que les cannelures (54, 56, 58) présentent une section droite transversale arrondie selon un rayon de courbure qui varie entre une valeur minimale, dite rayon (Rd) de départ, dans une portion proximale du corps (32) central selon le sens d'écoulement des gaz, et une valeur maximale, dite rayon (Rs) de sortie, dans une portion distale du corps (32) central selon le sens d'écoulement des gaz. 9. Exhaust nozzle according to one of claims 6 to 8, characterized in that the grooves (54, 56, 58) have a cross section rounded to a radius of curvature which varies between a minimum value, called radius ( Rd), in a proximal portion of the central body (32) in the direction of gas flow, and a maximum value, said output radius (Rs), in a distal portion of the central body (32) according to the direction flow of gases.
10. Tuyère d'échappement selon la revendication 9, caractérisée en ce que lesdites cannelures (54, 56, 58) présentent un rayon (Rs) de sortie de 6mm,  10. Exhaust nozzle according to claim 9, characterized in that said grooves (54, 56, 58) have a radius (Rs) output of 6mm,
11. Tuyère d'échappement selon l'une des revendications 5 à 10, caractérisée en ce que le corps (32) central comprend entre seize et vingt cannelures (44, 54, 56, 58) de guidage des gaz d'échappement répartis sur le pourtour du corps (32) central. 11. Exhaust nozzle according to one of claims 5 to 10, characterized in that the body (32) comprises central sixteen and twenty splines (44, 54, 56, 58) for guiding the exhaust gas distributed over the circumference of the central body (32).
12. Turbomoteur, caractérisé en ce qu'il comprend une tuyère d'échappement de gaz selon l'une des revendications 1 à 11. 12. Turbomotor, characterized in that it comprises a gas exhaust nozzle according to one of claims 1 to 11.
PCT/FR2015/052277 2014-09-03 2015-08-27 Jet nozzle of a turbine engine WO2016034795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458248 2014-09-03
FR1458248A FR3025255B1 (en) 2014-09-03 2014-09-03 EXHAUST TUBE OF TURBOMOTING GAS

Publications (1)

Publication Number Publication Date
WO2016034795A1 true WO2016034795A1 (en) 2016-03-10

Family

ID=51688350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052277 WO2016034795A1 (en) 2014-09-03 2015-08-27 Jet nozzle of a turbine engine

Country Status (2)

Country Link
FR (1) FR3025255B1 (en)
WO (1) WO2016034795A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529956A1 (en) * 1982-07-12 1984-01-13 Gen Electric MIXED FLOW EJECTION SYSTEM
EP1482160A1 (en) * 2003-05-28 2004-12-01 Snecma Moteurs Noise reducing nozzle for a jet engine
US20070000234A1 (en) * 2005-06-30 2007-01-04 Anderson Jack H Jet nozzle mixer
FR2919899A1 (en) * 2007-08-06 2009-02-13 Snecma Sa Marguerite type concentric gaseous flow mixer for ducted-fan turbine engine, has rectifying arms distributed around longitudinal axis and integrated to downstream end of annular central body, where arms are in form of aerodynamic sections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529956A1 (en) * 1982-07-12 1984-01-13 Gen Electric MIXED FLOW EJECTION SYSTEM
EP1482160A1 (en) * 2003-05-28 2004-12-01 Snecma Moteurs Noise reducing nozzle for a jet engine
US20070000234A1 (en) * 2005-06-30 2007-01-04 Anderson Jack H Jet nozzle mixer
FR2919899A1 (en) * 2007-08-06 2009-02-13 Snecma Sa Marguerite type concentric gaseous flow mixer for ducted-fan turbine engine, has rectifying arms distributed around longitudinal axis and integrated to downstream end of annular central body, where arms are in form of aerodynamic sections

Also Published As

Publication number Publication date
FR3025255A1 (en) 2016-03-04
FR3025255B1 (en) 2016-11-04

Similar Documents

Publication Publication Date Title
FR3027053B1 (en) AIRCRAFT TURBOMACHINE STATOR
EP3377732B1 (en) Front part of a turbomachine
EP3676480B1 (en) Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly
CA2634615C (en) Turbine engine combustion chamber with helicoidal circulation of air
FR2571428A1 (en) HOLLOW BLADES OF TURBINES COOLED BY A FLUID AND ENGINE EQUIPPED WITH SUCH PALES
CH622063A5 (en)
FR2938502A1 (en) TURBOMACHINE COMPRISING A NON-CARNEY PROPELLER EQUIPPED WITH AIR GUIDING MEANS
FR2564896A1 (en) GAS TURBINE ENGINE BLADE.
CA2695626C (en) Turboshaft engine with reduced noise emission for aircraft
CA2721227A1 (en) Dual-flow turbine engine for aircraft with low noise emission
FR2921977A1 (en) DOUBLE FLOW TURBOMOTEUR FOR AIRCRAFT
CA2980794C (en) Device with gratings for ejecting microjets in order to reduce the jet noise of a turbine engine
FR2536460A1 (en) IMPROVED COMPACT DIFFUSER, PARTICULARLY SUITABLE FOR HIGH-GAS GAS TURBINES
FR3073891B1 (en) MAT OF A PROPULSIVE ASSEMBLY
FR3090033A1 (en) DAWN DIRECTION AND BIFURCATION DIRECTOR SET FOR TURBOMACHINE
WO2016034795A1 (en) Jet nozzle of a turbine engine
FR3068735B1 (en) TURBOREACTOR WITH LOW NOISE OF BLOW
EP2767695B1 (en) Valve of a bypass line of a turbocompressor provided with a shutter with deflector
BE1028097B1 (en) Turbomachine compressor blade, compressor and turbomachine fitted therewith
FR3057616A1 (en) TURBOPROP
WO2023198981A1 (en) Stator part having a fin, in a turbine engine
FR3101915A1 (en) Turbomachine turbine ring comprising internal cooling pipes
FR3139595A1 (en) Guide vane intended to be attached to a stator shroud of a gas turbine engine
WO2024121463A1 (en) Aircraft propulsion assembly
CA3130189A1 (en) Secondary flow rectifier with integrated pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770559

Country of ref document: EP

Kind code of ref document: A1