Nothing Special   »   [go: up one dir, main page]

WO2016031032A1 - 熱交換器および空気調和装置 - Google Patents

熱交換器および空気調和装置 Download PDF

Info

Publication number
WO2016031032A1
WO2016031032A1 PCT/JP2014/072668 JP2014072668W WO2016031032A1 WO 2016031032 A1 WO2016031032 A1 WO 2016031032A1 JP 2014072668 W JP2014072668 W JP 2014072668W WO 2016031032 A1 WO2016031032 A1 WO 2016031032A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
heat
slit
fins
Prior art date
Application number
PCT/JP2014/072668
Other languages
English (en)
French (fr)
Inventor
浩之 豊田
坪江 宏明
杉山 達也
敬大 石部
貴則 五十川
瑞樹 津田
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to PCT/JP2014/072668 priority Critical patent/WO2016031032A1/ja
Publication of WO2016031032A1 publication Critical patent/WO2016031032A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • a finned tube heat exchanger that combines a heat transfer tube for flowing refrigerant and fins is used for heat exchange between the refrigerant and air.
  • a temperature distribution is generated in the heat transfer tube due to pressure loss due to refrigerant flow inside, supercooling in the liquid single-phase region, or overheating in the vapor single-phase region. For this reason, when a temperature difference arises in an adjacent heat exchanger tube, the heat
  • Patent Document 1 proposes a structure in which a slit is provided between the heat transfer tubes of the fins to suppress heat conduction between the heat transfer tubes. Moreover, in patent document 2, in order to improve the drainage property of a slit, the slit shape is changed.
  • the finned tube heat exchanger is assembled by inserting fins into the heat transfer tube.
  • slits are provided in the width direction of the fin, and if the slit width is increased, the fins are easily bent, causing a decrease in strength.
  • the slit width is reduced, the effect of suppressing heat conduction is reduced. For this reason, it is difficult to increase the width of the slit portion with respect to the fin width, and it is difficult to increase the effect of suppressing heat conduction.
  • An object of the present invention is to provide a highly efficient heat exchanger that suppresses a decrease in strength of fins.
  • the present invention provides a heat exchange comprising: a laminated fin; a heat transfer tube that passes through the fin in the lamination direction and through which a refrigerant flows; and a blower that blows air in the width direction of the fin.
  • the fin includes a plurality of through holes through which the heat transfer tube passes, and a slit between the adjacent through holes and having a width longer than the through holes in the width direction of the blower. Furthermore, the fin is provided with a convex portion at the outer edge in the width direction.
  • FIG. 2 shows the shape of a fin tube heat exchanger.
  • the fin tube type heat exchanger includes a large number of fins 1 stacked at a narrow interval and a plurality of heat transfer tubes 6 penetrating these fins 1 so as to be orthogonal to each other.
  • the heat transfer tubes 6 are arranged so as to be orthogonal to the air flow direction 8 that is the direction of the flow of air flowing over the fins 1. Further, the fins 1 are arranged so that air flows in parallel between the stacked layers with respect to the air flow direction 8.
  • the fin 1 is arranged so that the longitudinal direction thereof is parallel to the gravity direction 11, and water that is condensed or water that is formed by melting frost flows to the lower part of the heat exchanger. .
  • the number of heat transfer tubes in the direction in which the air flows is referred to as the number of columns
  • the number of heat transfer tubes in the direction perpendicular to this is referred to as the number of steps
  • the directions are referred to as the column direction and the step direction, respectively.
  • the row direction is the width direction of the fin 1
  • the step direction corresponds to the longitudinal direction of the fin 1.
  • FIG. 2 shows a heat exchanger with two rows and six stages.
  • the heat exchanger of the present invention has a configuration in which two rows of one row of heat exchangers are arranged, and the fins 1 are not connected between the rows, and there is no exchange of heat due to heat conduction.
  • Refrigerant flow 7 flowing through the heat exchanger is an example showing a case where the heat exchanger is used as a condenser.
  • the case where the heat exchanger is used as a condenser is, for example, a case where it is used as an outdoor unit during cooling of an air conditioner.
  • the refrigerant flow is composed of a refrigerant flow 7a in which the gas is in a superheated state and in a volume ratio with a large amount of gas, a state in which the volume ratio is rich in liquid, and a supercooled liquid refrigerant flow 7b.
  • the gas refrigerant flows from the two gas side refrigerant inlets / outlets 6a, merges through the U-shaped tube 9 through the three-way pipe 10 and the like, and reaches the liquid side refrigerant inlet / outlet 6b through the U-shaped tube 9.
  • the refrigerant is overheated at the inlet, the refrigerant is cooled from the overheated state to the saturated state as it passes through the heat exchanger. Exit the heat exchanger in the cold state.
  • the refrigerant temperature is almost constant as long as there is no pressure change, but the superheated and supercooled refrigerant is in a state higher and lower than the saturation temperature.
  • two gas side refrigerant inlets / outlets 6a are provided in order to reduce the flow velocity in the pipe of the gas side refrigerant having a large volume flow rate, and the gas side refrigerant flows through the two heat transfer pipes 6 in parallel.
  • the refrigerant is cooled to a certain degree and the volume flow rate is reduced to some extent, the refrigerant is merged in the middle of the path by the three-way pipe 10 to flow through one heat transfer tube 6 and finally the liquid side provided at one place A path for discharging the refrigerant from the refrigerant inlet / outlet 6b is formed.
  • coolant flow is made small.
  • the change in the refrigerant temperature in the saturated state region is also kept small.
  • the gas side refrigerant inlet / outlet 6a and the liquid side refrigerant inlet / outlet 6b are adjacent to each other in the row direction.
  • Refrigerants flowing through both are superheated gas refrigerant and supercooled refrigerant, and have a large temperature difference.
  • the fins 1 are not connected in the row direction, no heat conduction occurs between the two heat transfer tubes 6.
  • the heat transfer tube 6 in which the saturated refrigerant flows and the heat transfer tube 6 in which the supercooled refrigerant flows may be adjacent in the step direction. In this case, a larger temperature difference such as 0K to 10K occurs in the heat transfer tubes 6 adjacent in the step direction. Due to this temperature difference, heat conduction is generated via the fins 1 from the heat transfer tube 6 in which the high-temperature saturated refrigerant flows to the heat transfer tube 6 in which the low-temperature supercooled refrigerant flows.
  • the heat transfer tube 6 through which the low-temperature supercooled refrigerant flows is suppressed from radiating no matter how much the temperature is higher than the outside air. It may be heated by the heat of the heat transfer tube 6 through which the refrigerant in the state flows. Accordingly, the heat radiation amount of the heat transfer tube 6 through which the high-temperature saturated refrigerant flows increases, so that the heat radiation area on the side of the heat transfer tube 6 through which the low-temperature supercooling refrigerant flows is not completely wasted.
  • it is difficult to obtain the degree of supercooling of the refrigerant it is conceivable that the performance of the entire refrigeration cycle using this heat exchanger is reduced.
  • the refrigerant flow directions in FIG. 2 are all reversed.
  • the case where the heat exchanger is used as an evaporator is, for example, a case where it is used as an outdoor unit during heating of an air conditioner.
  • a liquid-rich state or a supercooled liquid refrigerant flow 7b flows in from the liquid-side refrigerant inlet / outlet 6b at one location.
  • the air temperature is higher than the refrigerant temperature, and the liquid refrigerant flows while being heated and gasified.
  • the gas ratio increases, the refrigerant flow is divided into two heat transfer tubes 6 through the three-way tube 10. From there, it is further heated and finally discharged from two gas-side refrigerant outlets 6a.
  • the three-way pipe 10 is used to increase the flow path of the refrigerant in which the amount of gas increases, and the pressure loss is reduced.
  • the case where the refrigerant is still used as an evaporator as compared with the case where the refrigerant is used as a condenser. Is subject to internal pressure loss.
  • the heat transfer tube 6 in which the refrigerant in the two-phase state flows a slight temperature difference occurs, and heat exchange occurs between the adjacent heat transfer tubes 6 by heat conduction.
  • the decrease in the degree of superheat leads to a decrease in the performance of the entire refrigeration cycle using this heat exchanger.
  • even if it is in a saturated state if heat transfer from the refrigerant to the refrigerant occurs due to heat conduction, this may suppress heat absorption from the outside air.
  • the conventional fin 1 includes a fin collar 2 (through hole) through which the heat transfer tube 6 penetrates and a slit 3 provided between the fin collar 2.
  • the slit 3 is provided in the center of the fin 1, the strength is insufficient.
  • the heat exchanger is often formed by a method in which the heat transfer tubes 6 are inserted into the fin collar 2 after the fins 1 are stacked. Therefore, if the strength of the fin is too low, it is conceivable that the fin 1 bends or breaks during the transportation of the fin 1 alone. This leads to a decrease in production yield, and it can be thought that this leads to an increase in costs including work costs.
  • the width of the slit 3 is reduced in order to ensure the strength, heat flows through the outer edge of the fin 1 where the slit 3 is not cut, so that the effect of suppressing heat conduction is reduced.
  • the heat transfer rate of the fin 1 surface is higher, the amount of heat transferred by heat conduction is smaller. This is because the higher the heat transfer rate, the more difficult it is to transmit the temperature of the fin collar 2 in contact with the heat transfer tube 6 to a long distance. That is, by making a portion having a high heat transfer coefficient on the entire fin 1 and the outer edge of the fin 1, heat passing through the outer edge of the fin 1 bypassing the slit 3 is suppressed, and heat conduction between adjacent heat transfer tubes 6 is performed. It is possible to suppress the movement of heat due to.
  • a step or a notch is provided on the surface of the fin 1 to promote convection, and the temperature boundary layer is thinned by a discontinuous surface.
  • FIG. 1 shows the fin 1 of the first embodiment.
  • a slit 3 is provided in the fin collar 2 on the fin 1 and in the center of the fin collar 2 in parallel with the air flow direction.
  • convex ribs 4 convex portions
  • the fins 1 are arranged in the intermediate part of the adjacent heat transfer tubes, on the outer edge side of the fin 1 relative to the slit 3 parallel to the air flow direction, so as to go straight to the slit 3 and border the outer edge of the fin 1.
  • the rib which becomes a convex part was provided so that it might become one step higher than the outer edge.
  • the structure of the present invention is provided with ribs that are convex portions on both outer edges of the fin 1 so as to have a step with respect to the outer edges, and adjacent heat transfer tubes so as to connect the two ribs. It is the fin 1 which provided the slit 3 in the intermediate part.
  • ribs bent so as to be convex are added to the fin 1.
  • the rib 4 has an upstream inclined surface and a downstream inclined surface in the air flow direction.
  • the upstream inclined surface and the downstream inclined surface are continuously formed, but a flat portion may be provided between both inclined portions.
  • a plurality of ribs 4 may be arranged.
  • the heat transfer coefficient is locally increased at the convex upper surface portion of the rib, and the rib is attached, the heat transfer coefficient is improved as a whole compared to the conventional flat plate shown in FIG. As a result, the heat conduction between the heat transfer tubes can be reduced. Furthermore, since the strength can be ensured by the ribs, the slit 3 can be widened, and the heat conduction can be further suppressed.
  • the shape of the slit 3 in Example 1 is different from the offset fin 1 in the direction parallel to the air flow direction, but uses a cut-and-raised, and deformation due to layering is conceivable.
  • the direction is parallel to the air flow direction and the cut surface is slightly inclined, the pressure loss is not greatly improved. Also, there is no influence on the suppression of heat conduction, which is the target effect.
  • the slit 3 in Example 1 is for suppressing the solid heat conduction by the fins, and is, for example, cut, cut out, or raised. As shown in the BB cross section of FIG. 1 and FIG. 8, a slit was provided as a slit in the center of the fin collar adjacent to the fin 1 in parallel with the air flow. In order to increase the effect of suppressing heat conduction, the slit 3 is preferably formed to have a width longer than the diameter of the heat transfer tube.
  • This cut-and-raised is an offset shape formed so that the cut-out slit portion is lifted up one step. Compared with the cut-out, this slit portion can also be used effectively as a heat radiating surface of the fin 1 so that it can be used as a heat exchanger. High efficiency. In addition, since the air flow is somewhat disturbed by the offset portion, there is an effect of improving the heat transfer coefficient on the surface of the fin 1.
  • FIG. 9 shows another example of the slit 3 shape.
  • an example in which the cut and raised is used as the slit 3 is shown. Even in this shape, the surface area of the fin 1 is not impaired, and the cut and raised portion causes turbulence of the airflow.
  • FIG. 10 shows the temperature distribution of the model fin calculated from the difference between the present invention and the conventional fin structure.
  • air at a temperature of 35 ° C. is flowed from the front at a wind speed of 1 m / s to one element of the fin, and the temperature of the heat transfer tube is simulated.
  • a constant temperature condition of 50 ° C. was given.
  • the slit 3 has a cut-out shape in both the conventional structure and the present invention, and a heat conduction boundary is given to the outer edge of the slit 3 so that the normal heat conduction condition and the complete heat insulation condition can be switched.
  • the conventional structure is a flat plate structure
  • the structure of the present invention is a structure with ribs.
  • the width of the fin 1 is assumed to be the same, and the rib portion is assumed to be somewhat thin during pressing, so that the cross-sectional area of the fin 1 itself is equal in the flat plate condition and the rib presence condition.
  • FIG. 11 is a graph comparing the heat radiation amount of the present invention with that of the conventional method under normal heat conduction conditions. From this result, it can be seen that the heat dissipation rate of the structure of the present invention is larger than that of the conventional structure, and the heat transfer coefficient of the fin 1 is improved.
  • FIG. 12 is a graph comparing the amount of heat conduction from the low temperature side to the high temperature side of the present invention and the conventional one.
  • the amount of heat released from the collar portion when calculated under the complete heat insulation condition is different from the amount of heat released from the collar portion when the heat conduction boundary at the center of the fin 1 is calculated under normal conditions.
  • the heat insulation condition when the heat insulation condition is completely used, the heat radiation from the high temperature side is lost in the collar on the low temperature side, and the amount of heat radiation increases.
  • the collar on the high temperature side heat conduction to the low temperature side is eliminated, so that the amount of heat radiation is reduced. That is, the difference between the fin collar portions when the heat conduction boundary is changed from normal to complete heat insulation is the amount of heat conduction.
  • the amount of heat conduction is smaller under the ribbed condition, indicating that the structure of the present invention has a greater effect of suppressing heat conduction.
  • the heat exchanger is assembled by inserting the fins 1 into the heat transfer tubes 6.
  • the fins 1 having low strength are easily broken during transportation or insertion, so that they must be handled with care. May cause deterioration. Because of this attention, the number of work steps increases or a dedicated jig is required, which may lead to an increase in cost. Therefore, since the fin 1 of the present invention has the rib 4 on the outer edge portion of the fin 1, the strength is increased as compared with the conventional structure, so that the assembling property is improved and the cost is reduced.
  • the fin 1 is required to drain the accumulated water more quickly.
  • water has been drained by the action of the wind flowing on the surface of the fin 1 and the gravity applied to the longitudinal direction (step direction) of the fin 1. Since the slit 3 obstructs the flow of water flowing in the step direction, the drainage performance may be lower than that of a flat plate.
  • FIG. 5 shows a perspective view and a partially enlarged view of the second embodiment.
  • the opening 5 is provided on the side surface 4 a on the heat transfer surface side of the rib 4 on the downstream side of the air flow direction 8 on the fin 1, at a position corresponding to the slit 3 in the one-step direction of the fin. Provided. Thereby, the effect which inhibits the heat conduction of the heat detoured from the side of a slit is acquired.
  • the opening part 5 is provided only in the side surface by the side of the slit of the rib 4, the rib 4 of the outer edge side can maintain intensity
  • the pressure on the leeward side of the rib is low, and if a through hole is provided on the leeward side surface of the rib, it is considered that the wind flows from the back to the front.
  • This wind flow also affects the flow of water, that is, the flow of water drainage on the surface of the fin 1.
  • the openings 5 are provided on the side surfaces of the rib 4 on the slit 3 side on both sides of the slit 3 as in this embodiment, one of the openings 5 becomes the windward side of the rib 4.
  • the water staying in the slit 3 is caused to flow to the leeward side of the fin 1 by the wind passing through the fin 1, the water can be flowed to the concave side of the rib, leading to improved drainage performance.
  • the strength is improved by the ribs 4 and the condensed water remaining in the slits 3 and the ribs 4 can be efficiently drained by providing the ribs 4 with the openings 5.
  • the opening 5 is provided at a position corresponding to the slit 3 in the longitudinal direction (step direction) of the fin 1, thereby producing an effect of reducing heat conduction. Furthermore, by setting the position where the opening 5 is provided on the side facing the air flow direction 8 of the rib 4, the opening 5 can be arranged while maintaining the strength.
  • FIG. 7 shows a perspective view and a partially enlarged view of the third embodiment.
  • the slit 3 was provided so as to be cut out from the side surface portion 4 a on the heat transfer surface side of the rib 4.
  • the width of the slit 3 can be further increased without impairing the strength of the fin 1, and the effect of improving the heat conduction suppressing effect can be obtained.
  • the slit 3 has a shape that penetrates the back surface side of the fin 1 of the rib 4.
  • the cut and raised slit portion is shaped like a beam connecting the ribs 4 on both sides of the fin 1, the strength against the twist of the fin 1 is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 フィンの強度低下を抑制し、かつ、高効率な熱交換器を提供することを目的とする。 積層されたフィンと、前記フィンを積層方向に貫通し内部に冷媒が流れる伝熱管と、前記フィンの幅方向に送風する送風機と、を備える熱交換器において、前記フィンは、前記伝熱管が貫通される複数の貫通穴と、隣接する前記貫通穴の間であって前記フィンの幅方向に前記貫通穴よりも長い幅を有するスリットと、を備え、さらに、前記フィンは幅方向の外縁部に凸部が設けられる

Description

熱交換器および空気調和装置
 本発明は、熱交換器および空気調和装置に関する。
 空気調和装置では、冷媒を流す伝熱管とフィンを組みあわせたフィンチューブ熱交換器が冷媒と空気の熱交換のために用いられる。内部での冷媒流動による圧力損失や、液単相域での過冷却、または蒸気単相域での過熱により、伝熱管には温度分布が発生する。このため、隣り合う伝熱管に温度差が生じた場合、フィンを介して熱伝導により温度の高い冷媒の熱が温度の低い冷媒へ流れてしまう。これは本来の目的の冷媒と空気との熱交換を阻害する要因であった。
 そこで特許文献1では、フィンの伝熱管と伝熱管の間にスリットを設け、伝熱管の間の熱伝導を抑制する構造を提案している。また特許文献2では、さらにスリットの排水性を向上させるために、スリット形状を変更している。
特開平10‐281675号公報 特開2002‐228301号公報
 フィンチューブ熱交換器は、伝熱管にフィンを差し込むことで組立を行う。特許文献1および特許文献2に示された構造は、フィンの幅方向にスリットを設けており、スリット幅を大きく取るとフィンが容易に曲がってしまうなど強度の低下が問題となる。一方でスリット幅を小さくすると熱伝導の抑制効果が低減してしまう。このためスリット部の幅をフィン幅に対して大きく取ることが困難であり、熱伝導の抑制効果を大きくすることが困難であった。
 本発明は、フィンの強度低下を抑制し、かつ、高効率な熱交換器を提供することを目的とする。
 上記課題を解決するために、本発明は、積層されたフィンと、前記フィンを積層方向に貫通し内部に冷媒が流れる伝熱管と、前記フィンの幅方向に送風する送風機と、を備える熱交換器において、前記フィンは、前記伝熱管が貫通される複数の貫通穴と、隣接する前記貫通穴の間であって前記送風機の幅方向に前記貫通穴よりも長い幅を有するスリットと、を備え、さらに、前記フィンは幅方向の外縁部に凸部が設けられる。
 本発明によれば、フィンの強度低下を抑制し、かつ、高効率な熱交換器を提供することができる。
本発明の第1の実施形態(実施例1)になるフィン構造図である。 本発明の熱交換器形状と冷房時の室外機に使用された場合の冷媒の流れと空気の流れを示す図である。 従来のフィン構造を表す図である。 本発明の第2の実施形態(実施例2)になるフィン構造図である。 本発明の第2の実施形態(実施例2)になるフィン構造図である。 本発明の第3の実施形態(実施例3)になるフィン構造図である。 本発明の第3の実施形態(実施例3)になるフィン構造図である。 従来および、本発明の第1の実施形態(実施例1)、本発明の第3の実施形態(実施例3)になるフィン構造のスリット部の断面図である。 本発明の第1の実施形態(実施例1)になるフィン構造のスリット部構造の一例である。 本発明の第1の実施形態(実施例1)になるフィン構造と従来のフィン構造との差を計算したモデルフィンの温度分布を示す図である。 本発明の第1の実施形態(実施例1)になるフィン構造と従来のフィン構造との放熱量を比較したグラフである。 本発明の第1の実施形態(実施例1)になるフィン構造と従来のフィン構造との熱伝導量を比較したグラフである。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 図2は、フィンチューブ型熱交換器の形状を示すものである。フィンチューブ型熱交換器は、互いに狭い間隔で積層し多数のフィン1と、これらのフィン1を直交するように貫通する複数の伝熱管6からなる。フィン1上を流れる空気の流れの向きである空気流方向8に対して伝熱管6は直交するように配置されている。またフィン1は、空気流方向8に対してその積層された間を空気が平行に流れるように配置されている。
 また、フィン1により空気が冷却される際には、フィン1の表面に結露が生じることがある。また空気調和装置の室外機の熱交換器では、フィン1に着いた霜を取り除くため、除霜運転をした場合にも、フィン1表面にて霜が溶け多量の水がフィン1表面を流れる。このために、フィン1は、その長手方向が重力方向11に対して平行となるように配置され、結露した水、または霜が溶けてできた水が熱交換器下部へ流れるようになっている。
 ここでは、熱交換器の伝熱管の配置について、空気が流れる方向の伝熱管数を列数、これに直行する方向の伝熱管数を段数と呼び、その方向をそれぞれ列方向、段方向と呼ぶ。また、列方向はフィン1の幅方向であり、段方向はフィン1の長手方向に対応する。
 図2は、2列6段の熱交換器を示している。本発明の熱交換器は、1列の熱交換器を2列ならべた構成となっており、フィン1は列間でつながっておらず、熱伝導による熱のやり取りはない。
 熱交換器に流れる冷媒の流れ7は、熱交換器を凝縮器として使用した場合を示した例である。熱交換器を凝縮器として使用する場合とは、たとえば空気調和装置の冷房時の室外機として使用した場合である。冷媒の流れは、ガスの過熱状態および体積比でガスが多い状態の冷媒の流れ7aと、体積比で液の多い状態および、過冷却された液冷媒の流れ7bからなる。
 本発明では、2か所のガス側冷媒出入り口6aよりガス冷媒を流し、U字管9を経て三又管10等により合流し、またU字管9を経て液側冷媒出入り口6bへ至る。その間に、たとえば入口で冷媒が過熱状態だったとすれば、熱交換器を通過するうちに冷媒は、過熱状態から飽和状態に冷やされ、さらに冷却が進むと液相のみとなり、さらに冷やされて過冷却状態で熱交換器を出る。ガスと液の2相状態であれば、冷媒温度は圧力変化がない限りほぼ飽和温度一定であるが、過熱および過冷却された冷媒は、飽和温度よりも高いおよび低い状態となる。
 本発明の熱交換機では、体積流量の多いガス側冷媒の管内流速を下げるため、ガス側冷媒出入り口6aを2カ所設けると共に、ガス側冷媒を2本の伝熱管6内を並列に流している。ある程度冷媒が冷却され蒸気が液に変わり体積流量が低下したところで、冷媒を三又管10によりパスの途中で合流させ1本の伝熱管6内を流し、最終的に1箇所に設けた液側冷媒出入り口6bから冷媒を出すパスを形成している。これにより、内部の冷媒流動にともなう圧力損失を小さくしている。これにより飽和状態域の冷媒温度の変化も小さく抑えている。
 本発明の熱交換機上部では、ガス側冷媒出入り口6aと液側冷媒出入り口6bは、列方向に隣接している。両者を流れる冷媒は、過熱ガス冷媒と、過冷却冷媒であり、温度差が大きい。しかしフィン1は列方向にはつながっていないため、この2本の伝熱管6の間で熱伝導は発生しない。しかしながら、パスの途中では、飽和状態の冷媒の流れる伝熱管6と、過冷却状態の冷媒の流れる伝熱管6が段方向に隣接する場合がある。この場合、段方向に隣接する伝熱管6には、たとえば0Kから10Kといった、場合によってはより大きい温度差が発生する。この温度差により、温度の高い飽和状態の冷媒の流れる伝熱管6から、温度の低い過冷却冷媒の流れる伝熱管6へ、フィン1を介して熱伝導が発生する。
 このように温度差がある場合、温度の低い過冷却冷媒の流れる伝熱管6は、いくらその温度が外気よりも高くとも放熱が抑制され、さらには温度差が大きい場合には、温度の高い飽和状態の冷媒の流れる伝熱管6の熱により加熱されることもある。その分、温度の高い飽和状態の冷媒の流れる伝熱管6の放熱量は増すため、温度の低い過冷却冷媒の流れる伝熱管6側の放熱面積が完全に無駄になっているわけではない。しかしながら、冷媒の過冷却度をとることが困難となるため、この熱交換器を利用する冷凍サイクル全体の性能低下につながることが考えられる。
 図2の熱交換器を蒸発器として使用する場合には、図2中の冷媒の流れ方向がすべて逆となる。熱交換器を蒸発器として使用する場合とは、たとえば空気調和装置の暖房時の室外機として使用した場合である。冷媒の流れは、1箇所の液側冷媒出入り口6bより体積比で液の多い状態もしくは、過冷却された液冷媒の流れ7bが流入する。冷媒温度よりも空気温度は高い状態になっており、液冷媒は加熱されガス化しながら流れる。ガスの比率が増えたところで三又管10を経て、冷媒の流れは、2本の伝熱管6に分けられる。そこからさらに加熱され、最終的に2箇所のガス側冷媒出入り口6aより放出される。
 蒸発器として使用する場合には、飽和状態の冷媒が流れる管と過熱ガスの冷媒が流れる管が隣接することが段方向に隣接することが考えられる。これにより、温度の高い過熱ガス状態の冷媒の熱が、温度の低い飽和状態の冷媒へ流れ、過熱ガスの過熱度がとれないことが考えられる。
 また、本発明では、三又管10を用いてガスの多くなった冷媒の流れるパスを増やし圧力損失を低減しているが、それでも凝縮器として使用する場合に比べて、蒸発器として使用する場合には内部の圧力損失がつきやすい。このため2相状態の冷媒の流れる伝熱管6であっても、多少の温度差が発生しており、隣接する伝熱管6の間で熱伝導による熱のやり取りが発生する。過熱度の低下は、この熱交換器を利用する冷凍サイクル全体の性能低下につながることが考えられる。また、飽和状態であっても熱伝導によって冷媒から冷媒への熱移動が生じた場合、これによって外気からの吸熱が抑制される場合もある。
 以上の熱交換器のフィン1を介した熱伝導を抑制するために、従来技術として図3に示すように、スリット3を設けたフィンがある。従来のフィン1は、伝熱管6が貫通するフィンカラー2(貫通穴)とフィンカラー2の間に設けられたスリット3によって成る。
 しかしながら、従来の構造では、フィン1の中央にスリット3を設けるために強度が不足する。熱交換器は、フィン1を積層したのちにそのフィンカラー2に伝熱管6を挿入する方法で形成されることが多い。したがってフィンの強度が低すぎるとフィン1単独の輸送時に、フィン1が曲がったり、折れたりすることが考えられる。これは、生産上の歩留まりを低下させることにつながり、作業コストなども含めてコスト増につながることが考えられる。しかしながら強度を確保するために、スリット3の幅を小さくすると、熱はスリット3の切られていないフィン1の外縁部を通って流れるために、熱伝導の抑制効果は小さくなる。
 また、同じ温度差であっても、フィン1表面の熱伝達率が高い方が、熱伝導により伝わる熱量が小さくなる。これは、熱伝達率が高い方が、伝熱管6と接するフィンカラー2の温度を、遠くまで伝えにくくなるためである。つまり、フィン1全体および、フィン1の外縁に熱伝達率の高い部分を作ることで、スリット3を迂回してフィン1の外縁を通る熱を抑制し、隣接する伝熱管6の間の熱伝導による熱の移動を抑制することができる。
 本発明においては、熱伝達率を向上させるために、フィン1の表面に段差や、切り込み等をつけ、対流を促進させ、また不連続な面によって温度境界層を薄くすることが考えられる。
 図1は、本実施例1のフィン1を示す。このフィン1では、フィン1上のフィンカラー2とフィンカラー2の中央部に空気の流れ方向に平行にスリット3を設けた。さらに伝熱管間の熱伝導の抑制向上を目的に、フィン1の特に外縁部の熱伝達率を向上させるため、段差となる凸形状のリブ4(凸部)を設けた。具体的には、隣接する伝熱管の中間部に設けた、空気流方向に平行なスリット3よりもフィン1の外縁側に、スリット3に直行し、フィン1外縁を縁取るように、フィン1の外縁に対して一段高くなるように凸部となるリブを設けた。
 このリブは、少なくともフィン1外縁の片側、特に風上側に設けるだけでも効果を発揮する。組み立て性や、汎用性をより向上させるには両側に設けることが望ましい。従って本発明の構造は、別な言い方をすれば、フィン1の両外縁に、外縁に対して段差がつくように凸部となるリブを設け、この両リブをつなぐように、隣接する伝熱管の中間部に、スリット3を設けたフィン1である。
 本実施例では、図8のB-B断面に示すように、フィン1に対して、凸となるように折り曲げたリブを追加した。リブ4は、空気流方向の上流側の傾斜面と下流側の傾斜面を有する。図8では、上流側の傾斜面と下流側の傾斜面が連続して構成されているが、両傾斜部の間に平坦部を有していても良い。また、リブ4は複数配置しても良い。
 このリブの凸となる上面部で局所的に熱伝達率が高くなるため、またリブをつけたことで図3に示す従来の平板に比べ、フィン1全体的に熱伝達率が向上し、結果として伝熱管間の熱伝導を低減できる。さらに、リブにより強度を確保できるため、スリット3幅を大きく取ることが可能となり、より熱伝導抑制が可能となる。
 フィン1の熱伝達率を向上させるには、オフセットフィンやルーバーフィンのように空気の流れに対して直行する方向に多数の切り起こし部を設けると良いことが知られている。しかし、このフィン1を室外機に使用する場合、冬季の暖房時にフィン1表面に霜がつくことが考えられる。霜によりオフセット部の形状が変形することが考えられる。これによって、圧力損失が増加し、伝熱性能が十分に発揮されない場合もあるため、本発明のフィン1の形状は、室外機を対象とする場合には、オフセットフィンやルーバーフィンよりもコルゲートフィン等に適用することが望ましい。
 また、実施例1のスリット3の形状も、向きが空気の流れ方向に平行でありオフセットフィン1とは異なるが、切り起こしを使用しており、着層による変形は考えられる。しかし、向きが空気の流れ方向に平行であり、多少切り起こされた面が傾いたとしても、圧力損失を大きく向上させることはない。また目的の効果である熱伝導の抑制についても影響はない。
 実施例1におけるスリット3は、フィンによる固体熱伝導を抑制するためのものであり、切り込みや、切り抜き、切り起こしなどである。図1および図8のB-B断面に示すように、スリットとして、フィン1の隣接するフィンカラーの中央に空気の流れと平行に切り起こしを設けた。スリット3は、熱伝導を抑制する効果を高めるためには、伝熱管の径よりも長い幅を有するように形成すると良い。
 この切り起こしは、切りこまれたスリット部を一段上に持ち上げるように形成したオフセット形状であり、切り抜きと比較すると、このスリット部もまたフィン1の放熱面として有効に利用できるため熱交換器として高効率である。またこのオフセット部により気流が多少乱されるため、フィン1表面の熱伝達率を向上させる効果もある。
 図9にスリット3形状の別例を示す。ここでは切り起こしをスリット3として用いた例を示す。この形状においても、フィン1の表面積を損なわず、かつ切り起こした部分が気流の乱れを生じさせるものである。
 図10には本発明と従来のフィン構造との差を計算したモデルフィンの温度分布を示す。ここではフィンの1要素に対して、前面から風速1m/sで温度35℃の空気を流し、伝熱管の温度を模擬して、フィンのカラー部に低温側には40℃、高温側には50℃の温度一定条件を与えた。スリット3は従来構造、本発明とも切り抜き形状とし、スリット3外縁部には熱伝導境界を与え、通常の熱伝導条件と完全断熱条件を切り替えられるようにしてある。従来構造が平板構造であり、本発明構造がリブあり構造である。またフィン1幅を同じとし、リブ部はプレス加工時に肉厚が多少薄くなることを想定し、フィン1自体の断面積が平板条件とリブあり条件で等しくなるようにしている。
 図11は、通常の熱伝導条件において本発明と従来の放熱量を比較したグラフである。この結果より、本発明構造の方が従来構造よりも放熱量が増えており、フィン1の熱伝達率が向上していることがわかる。また、図12は、本発明と従来の低温側から高温側への熱伝導量を比較したグラフである。
 ここで、フィン1中央の熱伝導境界を通常条件で計算した場合のカラー部からの放熱量に対して、完全断熱条件で計算した場合のカラー部からの放熱量は異なる。つまり完全断熱条件にすると低温側のカラーでは高温側からの熱伝導なくなるので放熱量は増える。逆に高温側のカラーでは、低温側への熱伝導が無くなるので放熱量が減ることとなる。すなわち、熱伝導境界を通常と完全断熱と変えた際の、フィンカラー部の差分が熱伝導量となる。この熱伝導量は、リブあり条件の方が小さくなっており、本発明の構造のほうが、熱伝導抑制効果が大きいことを示している。
 また、熱交換器は、フィン1を伝熱管6に差し込むことで組み立てるが、強度が弱いフィン1は、輸送時、もしくは差し込み時に、容易に折れてしまうためその扱いに注意が必要となり組立性の悪化を招く恐れがある。この注意のために、作業工程が増え、または専用冶具が必要となるため、コストの増加につながることも考えられる。したがって、本発明のフィン1は、フィン1外縁部にリブ4があるため、従来の構造にくらべ強度が増すため、組み立て性の向上効果さらにはコスト低減効果もある。
 以上のように本実施例では、隣接する伝熱管の貫通穴の間に幅方向に長いスリット3を設けることで伝熱管内を流れる冷媒同士の熱伝導を抑制でき、冷媒と空気との熱交換効率を向上することができる。そして、フィン1の外縁部に凸部を設けることでフィン1の強度を向上させることができる。
 フィン1表面で結露した水および、除霜時に発生した水がフィン1表面に対流し続けると、熱交換器の圧力損失が増加するため、風を送るための動力が余計に必要となり省エネ性が低下する。またフィン1表面の熱抵抗を増加させる要因ともなり熱交換性能の低下にもつながる。そこでフィン1には、滞留した水をより素早く排水できることが求められる。従来の平板構造であれば、フィン1表面を流れる風と、フィン1の長手方向(段方向)にかかる重力の作用で水を排水してきた。スリット3は、段方向に流れる水の流れを阻害するため排水性については、平板に比べると低下する虞がある。
 本実施例2のフィンを図4および図5を用いて説明する。図5に実施例2の斜視図および部分拡大図を示す。図5に示すように、フィン1上の空気流方向8の下流側であって、フィン1段方向におけるスリット3と対応する位置、かつ、リブ4の伝熱面側の側面部4aに開口部5を設けた。これにより、スリット横から迂回して伝わる熱の熱伝導を阻害する効果が得られる。また開口部5はリブ4のスリット側の側面のみに設けるので、外縁側のリブ4は強度を保つことができる。
 また平板構造では、フィン1の表面と裏面で圧力差は、ほとんど生じない。しかし、空気の流れに垂直な凸部から成るリブを設けると、リブの凸側の風上で圧力が高くなり、また裏側の凹部は流速が低下するため圧力が高くなる。ここでリブの凸側をフィン1の表、凹側を裏とすれば、リブの風上側側面に貫通孔を設けると、風は表から裏へ流れると考えられる。逆に、リブの凸側の風下は圧力が低く、リブの風下側側面に貫通穴を設ければ、風は裏から表へ流れると考えられる。この風の流れは、水の流れ、つまりフィン1表面の水の排水の流れにも影響を与える。本実施例のように、スリット3の両側で、リブ4のスリット3側の側面に開口部5を設けると、どちらか一方の開口部5が、リブ4の風上側となる。これによって、スリット3によって滞留した水が、フィン1を通過する風によってフィン1の風下側に流された時に、その水をリブの凹側に流すことが可能となり、排水性能向上につながる。
 以上のように実施例2では、リブ4によって強度を向上させるともに、リブ4に開口部5を備えることでスリット3およびリブ4に留まる結露水を効率よく排水することが可能となる。また、開口部5は、フィン1の長手方向(段方向)におけるスリット3に対応する位置に設けることで、熱伝導を低下させる効果を奏する。さらに、開口部5を設ける位置をリブ4の空気流方向8に面する側とすることで、強度を保ったまま開口部5を配置することができる。
 本実施例3のフィン1を図6および図7を用いて説明する。図7に実施例3の斜視図および部分拡大図を示す。図7に示すようにスリット3を、リブ4の伝熱面側の側面部4aから切り起こすように設けた。これにより、スリット3がリブの梁の役割を果たすため、フィン1の強度を損なうことなく、さらにスリット3の幅を大きく取ることができ、熱伝導抑制効果を向上させる効果が得られる。また実施例2の開口部と同様に、スリット3の端がリブ4のフィン1の裏面側と貫通する形状となる。これによりフィン1表面で滞留した結露水などをリブの裏面に排水することが可能となり、フィン1表面の排水性が向上する。また切り起こされたスリット部がフィン1の両側のリブ4をつなぐ梁のような形状となるため、フィン1のねじれに対する強度が増す。
 以上のように本発明について実施例1~3を示したが、これに限定されるものではなく、実施例間の組合せや、実施例における特徴の組合せ等により、変更実施することももちろん可能である。
1 …フィン
2 …フィンカラー(貫通穴)
3 …スリット
4 …リブ
4a…リブ側面部(伝熱管側)
5 …開口部
6 …伝熱管
6a…ガス側冷媒出入り口
6b…液側冷媒出入り口
7 …冷媒の流れる方向
7a…冷媒(ガス側)の流れる方向
7b…冷媒(液側)の流れる方向
8 …空気の流れる方向
9 …U字管
10…三又管
11…重力の方向

Claims (7)

  1.  積層されたフィンと、前記フィンを積層方向に貫通し内部に冷媒が流れる伝熱管と、前記フィンの幅方向に送風する送風機と、を備える熱交換器において、
     前記フィンは、前記伝熱管が貫通される複数の貫通穴と、隣接する前記貫通穴の間であって前記フィンの幅方向に前記貫通穴よりも長い幅を有するスリットと、を備え、
     さらに、前記フィンは幅方向の外縁部に凸部が設けられることを特徴とする熱交換器。
  2.  請求項1に記載の熱交換器において、
     前記凸部は、結露水を排水する開口部を備えることを特徴とする熱交換器。
  3.  請求項2に記載の熱交換器において、
     前記凸部は、前記フィンの長手方向における前記スリットに対応する位置に前記開口部を備えることを特徴とする熱交換器。
  4.  請求項2に記載の熱交換器において、
     前記凸部は、前記フィン上の空気流方向上流側の面に前記開口部を備えることを特徴とする熱交換器。
  5.  請求項1に記載の熱交換器において、
     前記凸部は、前記フィンの外縁部の両側に設けられ、
     前記スリットは、一端側の前記凸部から他端側の前記凸部までを繋ぐ梁形状であることを特徴とする熱交換器。
  6.  請求項1に記載の熱交換器において、
     前記スリットは、切り込みまたは切り欠き、切り起こしで形成されることを特徴とする熱交換器。
  7.  請求項1から6のいずれか一つに記載の熱交換器を用いたことを特徴とする空気調和装置。
PCT/JP2014/072668 2014-08-29 2014-08-29 熱交換器および空気調和装置 WO2016031032A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072668 WO2016031032A1 (ja) 2014-08-29 2014-08-29 熱交換器および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072668 WO2016031032A1 (ja) 2014-08-29 2014-08-29 熱交換器および空気調和装置

Publications (1)

Publication Number Publication Date
WO2016031032A1 true WO2016031032A1 (ja) 2016-03-03

Family

ID=55398968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072668 WO2016031032A1 (ja) 2014-08-29 2014-08-29 熱交換器および空気調和装置

Country Status (1)

Country Link
WO (1) WO2016031032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139677A (ja) * 2019-02-27 2020-09-03 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置
WO2022018877A1 (ja) * 2020-07-24 2022-01-27 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488593A (en) * 1982-09-10 1984-12-18 D. Mulock-Bentley And Associates (Proprietary) Limited Heat exchanger
JPH0828897A (ja) * 1994-07-15 1996-02-02 Shinko Kogyo Co Ltd 空気調和機用熱交換器
JPH109786A (ja) * 1996-06-21 1998-01-16 Matsushita Refrig Co Ltd フィン付熱交換器
JP2000171187A (ja) * 1998-12-04 2000-06-23 Daikin Ind Ltd 空調用熱交換器の伝熱フィン
JP2002228301A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和機のフィン付き熱交換器
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
WO2013157212A1 (ja) * 2012-04-16 2013-10-24 パナソニック株式会社 フィンチューブ熱交換器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488593A (en) * 1982-09-10 1984-12-18 D. Mulock-Bentley And Associates (Proprietary) Limited Heat exchanger
JPH0828897A (ja) * 1994-07-15 1996-02-02 Shinko Kogyo Co Ltd 空気調和機用熱交換器
JPH109786A (ja) * 1996-06-21 1998-01-16 Matsushita Refrig Co Ltd フィン付熱交換器
JP2000171187A (ja) * 1998-12-04 2000-06-23 Daikin Ind Ltd 空調用熱交換器の伝熱フィン
JP2002228301A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和機のフィン付き熱交換器
US20090308585A1 (en) * 2008-06-13 2009-12-17 Goodman Global, Inc. Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
WO2013157212A1 (ja) * 2012-04-16 2013-10-24 パナソニック株式会社 フィンチューブ熱交換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139677A (ja) * 2019-02-27 2020-09-03 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置
JP7061251B2 (ja) 2019-02-27 2022-04-28 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置
WO2022018877A1 (ja) * 2020-07-24 2022-01-27 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置

Similar Documents

Publication Publication Date Title
JP5863956B2 (ja) 熱交換器、熱交換器の製造方法、及び、空気調和機
JP6165360B2 (ja) 熱交換器および空気調和機
WO2013161802A1 (ja) 熱交換器、及び空気調和機
JP2007232246A (ja) 熱交換器
WO2014207785A1 (ja) 熱交換器、熱交換器構造体、及び、熱交換器用のフィン
WO2016139730A1 (ja) フィンアンドチューブ型熱交換器及びこれを備えた冷凍サイクル装置
WO2015004720A1 (ja) 熱交換器、及び空気調和機
JP6734002B1 (ja) 熱交換器および冷凍サイクル装置
JPWO2016013100A1 (ja) 熱交換器およびこの熱交換器を備えた空調冷凍装置
JP2013245884A (ja) フィンチューブ熱交換器
US10557652B2 (en) Heat exchanger and air conditioner
JPWO2018078800A1 (ja) 熱交換器及び冷凍サイクル装置
JP2010025479A (ja) 熱交換器
WO2016031032A1 (ja) 熱交換器および空気調和装置
JP2009150621A (ja) 熱交換器及び空気調和機
WO2018185824A1 (ja) 熱交換器および冷凍サイクル装置
JP2004271113A (ja) 熱交換器
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP5569409B2 (ja) 熱交換器および空気調和機
JP2010139115A (ja) 熱交換器及び熱交換器ユニット
JP5404571B2 (ja) 熱交換器及び機器
JP2010025481A (ja) 熱交換器
JP6678413B2 (ja) 空気調和機
JP2015014397A (ja) 熱交換器
JP5864030B1 (ja) 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901003

Country of ref document: EP

Kind code of ref document: A1