Nothing Special   »   [go: up one dir, main page]

WO2016024565A1 - Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture - Google Patents

Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture Download PDF

Info

Publication number
WO2016024565A1
WO2016024565A1 PCT/JP2015/072621 JP2015072621W WO2016024565A1 WO 2016024565 A1 WO2016024565 A1 WO 2016024565A1 JP 2015072621 W JP2015072621 W JP 2015072621W WO 2016024565 A1 WO2016024565 A1 WO 2016024565A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
axis
motion capture
acceleration
waveform
Prior art date
Application number
PCT/JP2015/072621
Other languages
French (fr)
Japanese (ja)
Inventor
徹 紙田
加藤 千晴
柴田 治
勝宏 田淵
雅人 川妻
昌幸 久保
毅至 林
頼宣 前田
直樹 河原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016542575A priority Critical patent/JP6319446B2/en
Publication of WO2016024565A1 publication Critical patent/WO2016024565A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates to a motion capture device, a motion capture method, an exercise performance diagnostic method, and a body wearing device for motion capture, and in particular, for example, running, tennis racket swing, golf club swing, baseball batting, throwing, kendo swinging, etc.
  • the present invention relates to a motion capture device, a motion capture method, a motion performance diagnosis method, and a body-wearing device for motion capture that capture the motion of a periodic motion site.
  • Patent Documents 1 and 2 include a technique for analyzing a gait and the like using an acceleration sensor.
  • Patent Documents 1 and 2 can be used for personal practice without using a camera, but has the following problems.
  • processing is performed only with the acceleration information output from the acceleration sensor, and the actual movement of the acceleration sensor mounting portion is not known.
  • Patent Document 2 perform frequency analysis, but the movement cannot be visualized, and the evaluation is performed based on the relationship with the actual movement. As described above, the prior art disclosed in Patent Documents 1 and 2 cannot derive the actual movement of the movement site.
  • a main object of the present invention is to provide a motion capture device, a motion capture method, a motion performance diagnosis method, and a body for motion capture, which can visualize the actual motion of a periodic motion site without using a camera. It is to provide a mounting tool.
  • a motion capture device is a motion capture device including an acceleration sensor for measuring acceleration at a periodic motion site and an arithmetic processing unit for arithmetic processing of an acceleration waveform measured by the acceleration sensor. Then, the basic motion of the movement measured at the movement part is set as one cycle, the acceleration at the movement part is measured a plurality of times by the acceleration sensor, and the arithmetic processing unit outputs the acceleration waveform output from the acceleration sensor for two periods.
  • This is a motion capture device that calculates the position of an exercise part by superimposing and averaging the above-described averaged acceleration waveforms and performing time integration twice.
  • one motion of the basic motion measured in a periodic motion region is defined as one cycle
  • the acceleration in the motion region is measured a plurality of times by the acceleration sensor
  • the arithmetic processing unit includes the acceleration sensor.
  • each of the arithmetic processing units removes the DC component from the averaged acceleration waveform in order to remove the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor,
  • the averaged acceleration waveform with the DC component removed is converted to a velocity waveform that represents the relative velocity of the moving part by first integrating the time, and the DC component is removed from the velocity waveform to remove the constant velocity component from the velocity waveform. It is preferable to convert the velocity waveform from which the direct current component has been removed into a position waveform representing the relative position of the exercise site by performing the second time integration.
  • each of the arithmetic processing units superimposes the acceleration waveforms measured by the acceleration sensor in order to clarify the one-cycle section. It is preferable to take an autocorrelation coefficient in a period and to determine that each period has been superimposed at a position where the autocorrelation coefficient is highest. In the motion capture device and the motion capture method according to the present invention, it is preferable that the position waveforms are respectively displayed on a graph in the XY plane, the YZ plane, and the ZX plane orthogonal to each other.
  • the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject.
  • a step of specifying a position of a close intersection in the Z-axis direction is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject.
  • the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor mounted on the waist of the subject.
  • the step of specifying the locus is performed continuously for a certain period of time, and it is diagnosed whether or not the intersection closest to the Z axis among the intersections changes with time in the Z axis direction.
  • a step is included.
  • the method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis.
  • a step of specifying the position coordinates of the subject in the Y plane, a step of specifying the position coordinates a plurality of times, specifying a locus of the subject having at least one intersection, and the X-axis direction of the intersection closest to the X-axis among the intersections A method for diagnosing athletic performance.
  • the step of specifying a trajectory is performed continuously for a certain period of time, and the step of diagnosing whether or not the intersection closest to the X-axis among the intersections is subject to a change in position in the X-axis direction with the passage of time. It is preferable to include.
  • the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject.
  • a step of specifying the position coordinates of the subject in the YZ plane the step of specifying the position coordinates a plurality of times and specifying the path of the subject, and a path on the positive side of the Y axis and a negative direction of the Y axis.
  • a method for diagnosing athletic performance comprising comparing symmetry with a trajectory on the side.
  • the method for diagnosing athletic performance is the step of specifying a locus continuously performed for a certain period of time, and does the symmetry between the locus on the positive side of the Y axis and the locus on the negative side of the Y axis change with time?
  • the method includes a step of diagnosing whether or not.
  • the method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis.
  • the step of specifying the position coordinate of the subject on the Y plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis are symmetrical.
  • a method for diagnosing motor performance comprising the step of comparing gender.
  • the method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis.
  • the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject. Identifying a position coordinate of the subject on the YZ plane, the position coordinates being identified a plurality of times to identify the trajectory of the subject, and comparing at least two different periods This is a method for diagnosing athletic performance.
  • the step of specifying the position coordinates except for the motor performance diagnosis method, in which it is preferable to specify the position coordinates based on information obtained from the acceleration sensor mounted on the waist of the subject, Preferably, the position coordinates are specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject.
  • the method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance using, for example, a motion capture device according to the present invention.
  • the exercise performance diagnosis method according to the present invention is, for example, an exercise performance diagnosis method using the motion capture method according to the present invention.
  • a motion capture body wearing device is a motion capture body wearing device provided with a motion capture device, the body wearing device main body having a portion corresponding to the waist, buttocks or chest, and the body wearing device main body.
  • a body part for motion capture including a storage part provided in a portion corresponding to the waist, buttocks or chest, and the motion capture device according to the present invention stored in the storage part.
  • the acceleration sensor is directly or indirectly attached to a periodic movement site such as a human body, a living organism, or a machine. Then, with one period of the basic motion of the movement measured at the exercise site as one cycle, the acceleration at the exercise site is measured a plurality of times with the acceleration sensor.
  • the arithmetic processing unit calculates the position by superimposing and averaging the acceleration waveforms output from the acceleration sensor for two cycles or more, and further integrating the averaged acceleration waveform twice over time. In this case, the acceleration waveform output from the acceleration sensor is overlapped and averaged for two cycles or more, thereby reducing errors in the acceleration waveform and shortening the time integration period for calculating the position of the motion part.
  • the position of the motion part is calculated by integrating the averaged acceleration waveform twice over time. This makes it possible to visualize not the acceleration of the motion part but the position of the motion part. Therefore, according to the present invention, it is possible to visualize the actual movement of the moving part without using a camera.
  • the arithmetic processing unit in order to clarify the section of one cycle, superimposes acceleration waveforms measured by the acceleration sensor, takes an autocorrelation coefficient between one or more cycles, If it is determined that the respective cycles have been superimposed at the position where the autocorrelation coefficient is the highest, the section of one cycle becomes clear.
  • the arithmetic processing unit removes the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor, removes the DC component from the averaged acceleration waveform, and removes the DC component.
  • the waveform is converted to a velocity waveform representing the relative velocity by integrating the waveform for the first time, and the DC waveform is removed from the velocity waveform to remove the constant velocity component from the velocity waveform. Is converted into a position waveform representing the relative position by integrating the time for the second time, the influence of the gravitational acceleration can be removed and the relative position of the motion site can be visualized.
  • the relative position can be visualized through vision.
  • the step of specifying the position coordinates of the subject in the YZ plane, the step of specifying the position coordinates a plurality of times and specifying the trajectory of the subject having at least one intersection Including the step of specifying the position in the Z-axis direction of the intersection closest to the Z-axis, the interlock between the waist and the upper body or the interlock between the waist and the lower body can be diagnosed.
  • the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor attached to the waist of the subject. Further, in this case, the step of specifying the trajectory is performed continuously for a certain period of time, and includes a step of diagnosing whether or not the intersection closest to the Z-axis among the intersections is subject to a change in position in the Z-axis direction with the passage of time. , Form disorder can be diagnosed.
  • the step of specifying the position coordinates of the subject in the XY plane, the step of specifying the position coordinates a plurality of times and specifying the trajectory of the subject having at least one intersection The step of specifying the position in the X-axis direction of the intersection closest to the X-axis, the position of the center of gravity of the movement with respect to the traveling direction can be diagnosed.
  • the step of specifying the locus is continuously performed for a certain period of time and includes a step of diagnosing whether or not the intersection closest to the X axis among the intersections can be seen to change in position in the X axis direction with time change, Can be diagnosed.
  • the step of specifying the position coordinates of the subject on the YZ plane, the step of specifying the position coordinates a plurality of times to specify the path of the subject, and the path on the positive side of the Y axis. And the step of comparing the symmetry of the trajectory on the negative direction side of the Y axis, the right and left balance can be diagnosed.
  • the step of specifying the trajectory is performed continuously for a certain period of time, and it is diagnosed whether the symmetry between the trajectory on the positive direction side of the Y axis and the trajectory on the negative direction side of the Y axis changes with time. In this case, the disorder of the foam can be diagnosed.
  • the step of specifying the position coordinate of the subject on the XY plane, the step of specifying the position coordinate a plurality of times to specify the locus of the subject, and the locus on the positive side of the Y axis And the step of comparing the symmetry of the trajectory on the negative direction side of the Y axis, the right and left balance can be diagnosed.
  • the step of specifying the position coordinate of the subject on the XY plane, the YZ plane, or the XZ plane, and the step of specifying the position coordinate a plurality of times and specifying the locus of the subject And a step of determining a difference between the maximum value and the minimum value of coordinates on the X-axis, Y-axis, or Z-axis of the trajectory, the running economy can be diagnosed.
  • the step of specifying the position coordinate of the subject on the YZ plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and at least two different periods are provided.
  • the step of specifying the position coordinates is based on information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. It is preferable to specify the position coordinates.
  • the motion capturing device according to the present invention since the motion capturing device according to the present invention is housed in the housing portion provided in the portion corresponding to the waist, buttocks or chest of the body wearing device body, The motion capture device can be easily mounted on the waist, buttocks or chest of the subject simply by wearing the tool body, and the exercise performance of the subject can be diagnosed.
  • a motion capture device a motion capture method, a motion performance diagnosis method, and a body capture device for motion capture, which can visualize the actual movement of a motion site without using a camera.
  • a motion capture device when an acceleration sensor is attached to a motion part of a human body, it is possible to check the motion of the motion part to which the acceleration sensor is attached. Therefore, according to the present invention, it is possible for the player himself to check the running form, which has been known only by camera photography.
  • various exercise performances such as interlocking between the waist and upper body in the running or between the waist and lower body, front and rear balance, left and right balance, running economy, exercise reproducibility, form disturbance, etc.
  • the present invention is not limited to a running form, and the relative position can be confirmed with respect to a periodic movement. For example, confirmation of a competition form using equipment such as tennis, golf, baseball, kendo, etc. Can be used for Furthermore, the present invention can be used for confirming the running state of the racehorse and managing the physical condition by attaching the acceleration sensor to the racehorse other than the human body.
  • a motion capture device it is possible to obtain a motion capture device, a motion capture method, a motion performance diagnosis method, and a body wearing device for motion capture that can visualize the actual motion of the motion site without using a camera.
  • FIG. 2 is a graph showing an example of an acceleration waveform for almost four cycles measured by a three-dimensional acceleration sensor in the motion capture device shown in FIG. 1 and an example of a correlation coefficient of the acceleration waveform, where the horizontal axis indicates time, the vertical axis indicates acceleration and The correlation coefficient is shown.
  • 6 is a graph showing an acceleration waveform for approximately one cycle obtained by averaging the acceleration waveforms shown in FIG.
  • FIG. 5 where the horizontal axis indicates time and the vertical axis indicates acceleration. It is a graph which shows the speed waveform showing the relative speed converted by removing a direct-current component from the acceleration waveform shown in FIG. 6, and performing time integration, a horizontal axis shows time and a vertical axis
  • FIG. 9 is a graph showing acceleration, relative speed, and relative position in the up / down pair front / rear, up / down pair left / right and front / rear pair left / right related to the graphs of FIGS. 6, 7, and 8. It is a graph of up / down pair front / rear, up / down pair left / right and front / rear pair left / right, and upper, middle, and lower are graphs showing acceleration, relative speed, and relative position, respectively.
  • FIG. 4 is a graph showing another example of an acceleration waveform corresponding to approximately four cycles measured by a three-dimensional acceleration sensor in the motion capture device shown in FIG. 1 and a correlation coefficient of the acceleration waveform, in which the horizontal axis indicates time and the vertical axis indicates The acceleration and correlation coefficient are shown.
  • FIG. 12 is a graph showing a velocity waveform representing a relative velocity converted by removing a DC component from the acceleration waveform shown in FIG. 11 and performing time integration, with the horizontal axis representing time and the vertical axis representing relative velocity. It is a graph which shows the position waveform showing the relative position converted by removing a direct-current component from the speed waveform shown in FIG. 12, and time-integrating, a horizontal axis shows time and a vertical axis
  • shaft shows a relative position. 11, FIG. 12 and FIG.
  • a who is a test subject by Embodiment 1 of the motor performance diagnostic method concerning this invention It is a graph which shows the position coordinate of each XY plane of Mr. D who is a test subject by Embodiment 2 of the motor performance diagnostic method concerning this invention of a chest, a waist
  • the whole body image at the time of the landing which looked at the test subject from the back is shown with the graph which shows the position coordinate of each YZ plane of the test subject's waist and buttocks by Embodiment 3 of the motor performance diagnostic method concerning this invention.
  • the whole body image at the time of landing which looked at the test subject from the left side is shown with the graph which shows the position coordinate of XY plane of Mr.
  • A's chest which is the test subject by Embodiment 4 of the motor performance diagnostic method concerning this invention.
  • a who is the subject and the position coordinate of the YZ plane of the waist of Mr. D who is the subject according to Embodiment 5 of the method for diagnosing motor performance according to the present invention is shown. It is a graph. It is a graph which shows the position coordinate of the YZ plane of Mr. A's waist
  • FIG. 1 is a perspective view showing an example of a motion capture device according to the present invention
  • FIG. 2 is a block diagram of the motion capture device shown in FIG.
  • 1 includes a case 12 having a substantially rectangular plate shape, for example.
  • a three-dimensional acceleration sensor 20 as an acceleration sensor, an arithmetic processing unit 22 having a filter, a storage unit 24, a speaker 26, and the like are provided.
  • a touch panel 30 is provided on the front surface of the case 12.
  • a power switch 32 is provided on the right side surface of the case 12.
  • an input / output terminal (not shown) for data such as an acceleration waveform, an image, and a sound is provided on the back surface of the case 12.
  • the three-dimensional acceleration sensor 20 is electrically connected to the arithmetic processing unit 22.
  • the arithmetic processing unit 22 is electrically connected to a storage unit 24, a speaker 26, a touch panel 30, a power switch 32, and an input / output terminal.
  • the three-dimensional acceleration sensor 20 includes a three-dimensional acceleration at a periodic motion site, for example, a motion site of the human body, to which the motion capture device 10 is attached, for example, an X-axis direction, a Y-axis direction, and a Z-axis having a relationship orthogonal to each other. It is for measuring the acceleration in each direction.
  • a three-dimensional acceleration sensor of a smartphone is used as the three-dimensional acceleration sensor 20. Therefore, the three-dimensional acceleration sensor 20 can output respective acceleration waveforms corresponding to the respective accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction from the output end.
  • the arithmetic processing unit 22 is for arithmetic processing of an acceleration waveform measured by the three-dimensional acceleration sensor 20 as described later.
  • the storage unit 24 is for recording data such as measurement data by the three-dimensional acceleration sensor 20 and calculation processing data by the calculation processing unit 22.
  • an operation program for the arithmetic processing unit 22 is written in the storage unit 24 in advance.
  • the acceleration waveform measured by the three-dimensional acceleration sensor 20 can be recorded in the storage unit 24 together with an accurate time.
  • the speaker 26 is for outputting a voice message or the like based on data such as measurement data and arithmetic processing data.
  • the touch panel 30 can display operation buttons, display acceleration, relative speed, and relative position in a graph, and switch display contents and set various items by touching the displayed operation buttons. Etc. can be input.
  • the power switch 32 is for initially turning on the motion capture device 10.
  • Target Human walking (slow and fast) and running (jogging and dash) were measured.
  • Motion capture device such as used acceleration sensor
  • the motion capture device 10 shown in FIG. 1 having a three-dimensional acceleration sensor 20 (a three-dimensional acceleration sensor of a smart phone) was used.
  • Acceleration sampling frequency The acceleration sampling frequency was set to 100 Hz. (Measurement points are recorded with exact time.)
  • the motion capture device 10 was mounted on the subject's lumbar spine as a periodic exercise site, for example, as shown in FIG. In this case, the motion capture device 10 placed in a waist pouch was mounted on the subject's lumbar spine and fixed with a belt. Further, in order to prevent the motion capture device 10 from moving in the waist pouch, a cushioning material was put in the waist pouch to fix the motion capture device 10.
  • Walking distance In each mode, the walking distance was approximately 30 m.
  • the data used for the diagnosis is running data for 240 seconds unless otherwise specified, and was calculated from an average value of a periodic interval of 10 seconds.
  • Collection of Acceleration Data Information from the three-dimensional acceleration sensor 20 is stored in the storage unit 24 as, for example, a CSV file of data of each three axes (X axis, Y axis, Z axis) and measurement time.
  • the three-dimensional acceleration sensor 20 measures the acceleration in the motion region a plurality of times, with one cycle of the basic motion measured in the motion region as one cycle.
  • information from the three-dimensional acceleration sensor 20 may be output from an input / output terminal as a CSV file of data of three axes (X axis, Y axis, Z axis) and measurement time, for example, and may be captured by an external computer.
  • the direction of gravity acceleration G is calculated in a stationary state, and calibration is performed. Specifically, the direction of the gravitational acceleration G with respect to the three-dimensional acceleration sensor 20 is calculated from the output result captured by each axis (X axis, Y axis, Z axis) of the three-dimensional acceleration sensor 20 in a stationary state first, Coordinate conversion is performed from each axis data to the X, Y, and Z axes in the world coordinate system.
  • the motion capture device 10 three-dimensional acceleration sensor 20
  • the deviation of the mounting angle of the sensor 20) from the vertical is the rotation matrix around the Y axis.
  • the unit of acceleration is converted to the SI unit system (m / s 2 ), it is easy to understand the numerical value after processing in the subsequent stage.
  • step S2 in order to clarify the section of one cycle of the acceleration waveform converted in step S1, the converted acceleration waveforms are overlapped one by one, an autocorrelation coefficient is calculated, and the autocorrelation coefficient is the highest.
  • the increased position is determined as the position where the periods overlap.
  • graph data shown in FIG. 5 is obtained.
  • ddX / dt / dt represents the acceleration waveform on the X axis
  • ddY / dt / dt represents the acceleration waveform on the Y axis
  • ddZ / dt / dt represents the acceleration waveform on the Z axis.
  • the correlation coefficient corresponds to the autocorrelation coefficient.
  • the acceleration waveform and the correlation coefficient for approximately four periods are shown.
  • the autocorrelation coefficient may be calculated between one or more periods, and the position where the autocorrelation coefficient is the largest may be determined as the position where the periods overlap.
  • the autocorrelation coefficient is changed while shifting the acceleration waveform in the time axis direction.
  • the position where the maximum value is obtained is calculated.
  • the reason for superimposing the acceleration waveforms in this way is that the acceleration waveforms have a high autocorrelation in the period of each step on the left and right, so that the acceleration waveforms are decomposed and averaged accordingly.
  • step S3 the acceleration waveforms for two periods obtained by superimposing the acceleration waveforms output from the three-dimensional acceleration sensor 20 are averaged.
  • graph data shown in FIG. 6 is obtained.
  • ddX / dt / dt represents an averaged acceleration waveform on the X axis
  • ddY / dt / dt represents an averaged acceleration waveform on the Y axis
  • ddZ / dt / dt represents Z.
  • the averaged acceleration waveform on the axis is shown.
  • step S4 the DC component is removed from the acceleration waveform averaged in step S3 using the filter of the arithmetic processing unit 22.
  • step S5 the averaged acceleration waveform from which DC integration has been removed in step S4 is time-integrated.
  • graph data shown in FIG. 7 is obtained.
  • ddX / dt represents a velocity waveform on the X axis
  • ddY / dt represents a velocity waveform on the Y axis
  • ddZ / dt represents a velocity waveform on the Z axis.
  • step S6 the DC component is removed from the velocity waveform converted in step S5 using the filter of the arithmetic processing unit 22.
  • a constant velocity component such as a component in which the subject moves at a constant speed
  • step S7 the speed waveform from which the DC component is removed in step S6 is time-integrated.
  • graph data shown in FIG. 8 is obtained.
  • X represents a position waveform on the X axis
  • Y represents a position waveform on the Y axis
  • Z represents a position waveform on the Z axis.
  • step S8 the positions of the XY, YZ, and ZX coordinates are plotted on the touch panel 30 that also functions as a display and graphed, and the relative position of the motion site viewed from the subject is displayed.
  • the movement of the relative position of the movement part as seen from the subject is explicitly drawn as a locus by drawing the locus with the information about the relative positions on the X, Y, and Z axes calculated in step S7.
  • the touch panel 30 that also functions as a display, for example, as shown in the graph of FIG. 9, the acceleration, relative speed, relative position, etc. of the motion part to which the motion capture device 10 (three-dimensional acceleration sensor 20) is attached. Can be displayed on a two-dimensional graph.
  • the motion capture device 10 three-dimensional acceleration sensor 20
  • the touch panel 30 is attached by a touch panel 30 that also serves as a display as shown in the graphs of FIGS. 5, 6, 7, and 8.
  • the actual movement such as acceleration, relative speed, and relative position of the moving part can be displayed on a two-dimensional graph.
  • the acceleration waveform of the three-dimensional acceleration sensor 20 is superposed and averaged at each period using the characteristics of the periodic motion. For this reason, in an exercise such as running, an impact from the ground (overshoot) is detected when landing on the ground, but noise components such as overshoot can be reduced, and an accurate time integration result can be obtained.
  • time integration is performed twice, but the DC component is removed by the filter of the arithmetic processing unit 22 before each time integration. Thereby, the influence of gravitational acceleration can be reduced, and the relative speed and the relative position can be obtained.
  • this motion capture device 10 when used, the actual movement of the exercise part of the subject can be directly viewed on the touch panel 30 as is apparent from the graphs of FIGS. 5, 6, 7, 8, and 9. it can.
  • FIGS. 5, 6, 7, 8, and 9 are graphs of walking (when fast) mode for a subject, the same for another subject displayed using this motion capture device 10.
  • the graph of the walking (when fast) mode is shown in FIG. 10, FIG. 11, FIG. 12, FIG. 10, 11, 12, 13, and 14 are graphs of the other subjects, but the graphs of FIGS. 5, 6, 7, 8, and 9 of the previous subject are the same. Each corresponds.
  • the actual movement of the movement site of the other subject can also be directly viewed. For example, in one subject, it can be directly seen that the up / down / left / right movement of the exercise site is drawing a substantially A-shaped trajectory (lower center in FIG. 9), while in the other subject, the up / down / left / right movement of the exercise site is about W. It can be seen directly that the trace of the mold is drawn (the lower center of FIG. 14).
  • FIG. 15 is a diagram showing an example of preconditions for the embodiment of the method for diagnosing athletic performance according to the present invention, in which the subject has a chest in a range of 1 cm above and below, a waist and a tailbone in a range of 1 cm above and below the navel.
  • the subject has a chest in a range of 1 cm above and below, a waist and a tailbone in a range of 1 cm above and below the navel.
  • a graph showing the position coordinates of each of the YZ planes of Mr. A for example, the subject in the buttocks in the range of 1 cm above and below the upper body, the movement locus of the upper body is substantially V type, and the movement locus of the lower body is substantially A type.
  • the position coordinate on the YZ plane is set to the direction from the foot to the head of the subject as the Z-axis, and the left-right direction based on the subject's direction of travel is defined as Y. It is the position coordinate of the subject in the YZ plane, which is the axis.
  • the position coordinates of the YZ plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
  • the motion capture device 10 mounted on the waist, buttocks, or chest of the subject is located on the midline of the subject.
  • the center of gravity in the present invention refers to the dynamic center of gravity of periodic motion, unlike the static center of gravity that is uniquely determined from the body shape such as weight and height.
  • FIG. 16 is a diagram showing another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention, for example, along with a graph showing the position coordinates on the YZ plane of the waist of the subject Mr. B, The relationship between the motion of the motion capture device 10 as an acceleration sensor and traveling is shown.
  • FIG. 17 is a diagram showing still another example of the preconditions for the embodiment of the method for diagnosing athletic performance according to the present invention, a graph showing the position coordinates on the XY plane, and the front, rear, left and right when traveling forward Shows the relationship.
  • the position coordinates on the XY plane are the X-axis in the method for diagnosing the movement performance of the subject traveling forward, with the traveling direction of the subject as the X-axis and the left-right direction based on the traveling direction of the subject as the Y-axis. It is a position coordinate of the subject in the Y plane.
  • the position coordinates on the XY plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
  • FIG. 18 is a diagram showing still another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention. Shows the relationship with the foot.
  • the position coordinates on the XZ plane are determined in the method of diagnosing the subject's movement performance that advances forward, with the direction from the subject's foot to the head as the Z axis and the subject's direction of travel as the X axis.
  • the position coordinates of the XZ plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject.
  • the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
  • FIG. 19 is a diagram showing still another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention, a graph showing the position coordinates on the YZ plane, and the left and right heads when proceeding forward Shows the relationship with the foot.
  • the position coordinate of the YZ plane is determined based on the direction of the subject's advancing direction in the method for diagnosing the subject's movement performance moving forward, with the direction from the subject's foot to the head as the Z axis.
  • the position coordinates on the YZ plane can also be specified by information obtained from an acceleration sensor mounted on the waist, buttocks or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
  • the positive and negative areas of the Z-axis, Y-axis and X-axis are as follows.
  • the positive area on the Z axis indicates the head side of the subject, and the negative area on the Z axis indicates the foot side of the subject.
  • the positive region on the Y axis indicates the right side with respect to the traveling direction of the subject, and the negative region on the Y axis indicates the left side with respect to the traveling direction of the subject.
  • the negative region on the X axis indicates before the subject's traveling direction, and the positive region on the X axis indicates after the opposite direction to the subject's traveling direction.
  • the position coordinate graph that is, the periodic trajectory diagram, shows the position coordinate and the periodic trajectory on the YZ plane. Further, the unit of the horizontal axis and the unit of the vertical axis of the position coordinate graph each represents m. Each position coordinate is specified a plurality of times.
  • Embodiment 1 of Exercise Performance Diagnosis Method the interlock between the waist and upper and lower body is determined by analyzing the waist locus.
  • Embodiment 1 of the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject moving forward, the step of identifying the position coordinates of the subject on the YZ plane, the position coordinates being identified a plurality of times, and at least 1 Identifying a trajectory of the subject having an intersection of points, and identifying a position in the Z-axis direction of the intersection closest to the Z-axis among the intersections.
  • FIG. 20 is a graph showing the position coordinates on the YZ plane of the waist of Mr. C who is the subject according to the first embodiment of the method for diagnosing motor performance according to the present invention.
  • FIG. 21 is a graph showing the position coordinates on the YZ plane of the waist of Mr. E who is the subject according to the first embodiment of the method for diagnosing athletic performance according to the present invention.
  • FIG. 22 is a graph showing the position coordinates on the YZ plane of the waist of Mr. A who is the subject according to Embodiment 1 of the method for diagnosing motor performance according to the present invention.
  • Such a running method can be said to be suitable for sports competitions such as rapid acceleration, sudden stop, and direction change, such as basketball, rugby, tennis, and soccer.
  • Mr. A indicates that the height of the fulcrum of the running exercise is high because the waist is linked to the lower body.
  • Such a running method can be said to be suitable for a sporting event in which a straight movement is continued, for example, a marathon.
  • Embodiment 2 of the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject moving forward, the step of identifying the position coordinates of the subject on the XY plane, the position coordinates being identified a plurality of times, and at least 1
  • the step of specifying the trajectory of the subject having the intersection of the points and the step of specifying the position in the X-axis direction of the intersection closest to the X-axis among the intersections are included.
  • FIG. 23 is a graph showing position coordinates on the XY planes of the chest, waist and buttocks of Mr. D who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
  • FIG. 24 is a graph showing position coordinates on the XY planes of the chest, waist, and buttocks of Mr. E who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
  • FIG. 25 is a graph showing position coordinates on the XY planes of the chest, waist, and buttocks of Mr. A who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
  • the position of the center of gravity of the motion during running can be measured.
  • Mr. D can be said that the running economy is low because the center of gravity of all the parts is behind.
  • Mr. A can be said to have a high running economy because the center of gravity of all the parts is ahead.
  • Embodiment 3 of the Exercise Performance Diagnosis Method the left and right balance is diagnosed by analyzing the periodic trajectory of the waist, buttocks or chest.
  • the third embodiment of the method for diagnosing motor performance is a method for diagnosing the motor performance of a subject moving forward, the step of specifying the position coordinates of the subject in the YZ plane, the position coordinates being specified a plurality of times,
  • the step of specifying a locus includes the step of comparing the symmetry between the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis.
  • the right and left balance of exercise can be diagnosed by comparing the left and right shifts of the periodic locus of the waist, buttocks or chest. For example, compare the distance of the trajectory on the left side of the periodic trajectory with the distance of the trajectory on the right side of the periodic trajectory, or compare the area enclosed by the trajectory on the left side of the periodic trajectory with the area enclosed by the trajectory on the right side of the periodic trajectory.
  • the left and right balance can be diagnosed. Further, from the behavior of the negative region of the Z axis of the periodic motion of the lumbar region, it is possible to diagnose the left and right balance and the shake at the time of landing.
  • FIG. 26 shows a whole body image at the time of landing when the subject is viewed from behind, along with a graph showing the position coordinates of each of the YZ planes of the waist and buttocks of the subject according to the third embodiment of the method for diagnosing athletic performance according to the present invention.
  • the vertical line is a line extending straight from the heel of the subject.
  • Embodiment 4 of Exercise Performance Diagnosis Method right and left balance is diagnosed by analyzing a periodic trajectory of the waist, buttocks or chest.
  • Embodiment 4 of the method for diagnosing motor performance is a method for diagnosing motion performance of a subject that progresses forward, the step of specifying the position coordinates of the subject in the XY plane, the position coordinates being specified a plurality of times, The step of specifying a locus includes the step of comparing the symmetry between the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis.
  • the right and left balance of exercise can be diagnosed by comparing the left and right shifts of the periodic locus of the waist, buttocks or chest. For example, compare the distance of the trajectory on the left side of the periodic trajectory with the distance of the trajectory on the right side of the periodic trajectory, or compare the area enclosed by the trajectory on the left side of the periodic trajectory with the area enclosed by the trajectory on the right side of the periodic trajectory.
  • the left and right balance can be diagnosed.
  • the left and right arm swing balance can be diagnosed by the periodic trajectory of the chest.
  • FIG. 27 is a whole body image at the time of landing when the subject is viewed from the left side together with a graph showing the position coordinates on the XY plane of the chest of Mr.
  • a who is the subject according to the fourth embodiment of the method for diagnosing athletic performance according to the present invention. Indicates.
  • the vertical line is a line extended in a straight line for easy understanding of the left and right arm swing balance.
  • the left and right arm swing balance can be diagnosed by comparing the amplitude in the traveling direction of the periodic trajectory on the left and right.
  • Embodiment 5 of the Exercise Performance Diagnosis Method the running economy is diagnosed by analyzing the periodic trajectory of the waist, hips, or chest.
  • Embodiment 5 of the method for diagnosing motor performance is a method for diagnosing the motion performance of a subject moving forward, the step of specifying the position coordinates of the subject in the XY plane, the YZ plane, or the XZ plane; Specifying the position coordinates a plurality of times to specify the trajectory of the subject, and measuring the amplitude from the difference between the maximum value and the minimum value of the coordinates on the X-axis, Y-axis, or Z-axis of the trajectory.
  • FIG. 28 is a graph showing position coordinates on the YZ plane of the waist of Mr. A who is the subject according to the fifth embodiment of the method for diagnosing athletic performance according to the present invention, and on the YZ plane of the waist of Mr. D who is the subject. It is a graph which shows a position coordinate. Mr. A can be said to have a low running economy because the amplitude in the Y-axis (lateral) direction is large. On the other hand, Mr. D can be said to have a high running economy because the amplitude in the Y-axis (lateral) direction is small.
  • Embodiment 6 of Exercise Performance Diagnosis Method exercise reproducibility is diagnosed by analyzing the variation of the periodic trajectory of the waist, buttocks, or chest.
  • the step of specifying the position coordinate of the subject in the YZ plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and at least two different periods Comparing includes, for example, a step of comparing the locus in the first period and the locus in the second period.
  • Embodiment 6 of the motion performance diagnosis method unlike motion capture using a fixed camera, all motions can be recorded from the start to the end of motion. Therefore, by acquiring a periodic trajectory at regular intervals and measuring the variation, it is possible to diagnose the high reproducibility of the subject's periodic motion.
  • the variation in the periodic motion can be acquired for each of the X axis, the Y axis, and the Z axis.
  • the acquisition method in the standardized acquisition data, the standard deviation of the time-dependent data at each measurement point is individually calculated, and then the arithmetic mean square of the standard deviation at each measurement point is calculated.
  • FIG. 29 is a graph showing the position coordinates on the YZ plane of the waist of Mr.
  • FIG. 30 is a graph showing the position coordinates on the YZ plane of the waist of Mr. E who is the subject according to the sixth embodiment of the method for diagnosing athletic performance according to the present invention.
  • the period acquisition interval was set to 10 seconds with respect to the measurement time of 200 seconds, and the variation in the periodic motion was evaluated from the period data for 20 times.
  • the standard deviation (root-mean-square) in the Y-axis direction was 0.0029
  • the standard deviation (root-mean) in the Z-axis direction was 0.0033.
  • Mr. A has better motion reproducibility than Mr. E in the Y-axis direction. It can also be seen that Mr. A and Mr. E's motion reproducibility does not change in the Z-axis direction.
  • Embodiment 7 of the Exercise Performance Diagnosis Method the disorder of the form is diagnosed by analyzing the temporal trajectory of the waist, hips, or chest.
  • the step of specifying the trajectory is performed continuously for a certain time, and the intersection closest to the Z axis or the X axis among the intersections
  • the method includes a step of diagnosing whether a change in position in the Z-axis direction or the X-axis direction is observed with the change.
  • Embodiment 7 of the motion performance diagnosis method unlike motion capture using a fixed camera, all motions can be recorded from the start to the end of motion. Therefore, it is possible to diagnose form disturbance over time by acquiring periodic trajectories at regular intervals and plotting the changes over time. It is known that in a continuous running exercise such as a marathon, the position of a running fulcrum is lowered due to fatigue during long-distance running. In the seventh embodiment of the method for diagnosing athletic performance, the travel fulcrum position can be measured by measuring the position of the intersection. Therefore, the disturbance of the foam and the degree of fatigue can be measured by plotting the position of the intersection over time. FIG.
  • FIG. 31 is a graph showing the position coordinates on the YZ plane of the waist of the subject according to the seventh embodiment of the method for diagnosing athletic performance according to the present invention.
  • FIG. 32 is a graph showing the relationship between the traveling time of the subject and the intersection position (Z axis) according to the seventh embodiment of the method for diagnosing athletic performance according to the present invention. From the graph shown in FIG. 31, it can be seen that the periodic trajectories do not overlap so much and the form is disturbed. Furthermore, it can be seen from the graph shown in FIG. 32 that with the passage of travel time, the intersection position (Z-axis) decreases and the degree of fatigue increases.
  • Embodiment 8 of Exercise Performance Diagnosis Method the disorder of the form is diagnosed by analyzing the change in the periodic trajectory of the waist, hips, or chest over time.
  • the eighth embodiment of the method for diagnosing athletic performance is the same as the third embodiment of the method for diagnosing athletic performance, in which the step of specifying the locus is performed continuously for a certain period of time, and the locus on the positive side of the Y axis and the negative side of the Y axis are The method includes a step of diagnosing whether or not the symmetry with respect to the trajectory changes with time.
  • FIG. 33 is a graph showing position coordinates on the YZ plane of the waist during Mr. B's 50-minute run according to the eighth embodiment of the method for diagnosing athletic performance according to the present invention.
  • the periodic locus is changed from a dark color to a light color as time passes. Since Mr. B is an O-leg, the negative region of the Z-axis spreads outward. This indicates that the waist is shaken to the left and right when landing.
  • FIG. 34 is a rear view solution diagram showing an example of motion capture sportswear according to the present invention.
  • a motion capture sportswear 100 shown in FIG. 34 is, for example, a motion capture sportswear containing the motion capture device 10 shown in FIG.
  • the motion capture sportswear 100 includes a shirt-like sportswear main body 102 having portions corresponding to, for example, the waist and the chest.
  • the storage part 104 is provided in the part corresponding to the waist part of the sportswear main body 102.
  • the storage unit 104 is for storing, for example, the motion capture device 10 shown in FIG.
  • the storage unit 104 is formed to be approximately the same size as the motion capture device 10 in order to fix the stored motion capture device 10.
  • the storage unit 104 has an opening at the top.
  • the sportswear main body 102 is provided with a lid 106 in the vicinity of the opening of the storage unit 104.
  • the lid body 106 is formed so as to be able to close the opening of the storage portion 104 by, for example, a hook-and-loop fastener. Therefore, it is difficult for the motion capture device 10 stored in the storage unit 104 to inadvertently jump out of the storage unit 104 to the outside.
  • the motion capture device 10 shown in FIG. 1 is stored.
  • an operation program for executing at least one of the first to eighth embodiments of the above-described exercise performance diagnosis method is written in the storage unit 24 in advance.
  • the motion capture device 10 can be easily mounted on the waist of the subject simply by wearing it. Also, in the sportswear 100 for motion capture shown in FIG. 34, any one of the first to eighth embodiments of the above-described exercise performance diagnosis method can be implemented by a written program.
  • the motion capture device 10 outputs a voice message such as “the body is moving greatly to the left and right” from the speaker 26 when it is determined that the body of the subject is moving beyond a predetermined value from side to side. Similarly, when it is determined that the body of the subject is moving beyond a predetermined value back and forth and up and down, a corresponding voice message may be output.
  • the motion capture device 10 determines that the subject's pitch (the reciprocal of one cycle) exceeds a predetermined pitch set in advance by the touch panel 30 or the like, the motion capture device 10 “pitch is too fast” from the speaker 26. Such a voice message may be output. Conversely, when it is determined that the pitch of the subject is too slow, the corresponding voice message may be output.
  • the motion capture device 10 described above includes, for example, a case 12 having a substantially rectangular plate shape, but the case 12 may be formed in other shapes, and may be configured to be worn on an arm like a wristwatch, for example. Or configured to be worn like sunglasses. If the motion capture device 10 is configured in this way, it is possible to directly view the movement of the arm and the movement of the head.
  • the above-described motion capture device 10 includes the speaker 26 and the touch panel 30, but may be connected to an external speaker or earphone or an external display via an input / output terminal. In this case, the display functions of the speaker 26 and the touch panel 30 may be deleted from the motion capture device 10.
  • the three-dimensional acceleration sensor 20 and the arithmetic processing unit 22 are connected by wire, but the three-dimensional acceleration sensor 20 and the arithmetic processing unit 22 may be connected wirelessly.
  • the three-dimensional acceleration sensor 20 of the motion capture device 10 needs to be attached to the subject, but the arithmetic processing unit 22 or the like of the motion capture device 10 need not be attached to the subject.
  • the shirt-like sportswear main body 102 has portions corresponding to the waist and the chest, and the storage portion 104 is provided in a portion corresponding to the waist of the sportswear main body 102.
  • the sportswear main body has a portion corresponding to the waist, buttocks or chest, and the storage portion only needs to be provided in a portion corresponding to the waist, buttocks or chest of the sportswear body.
  • the sportswear main body may be a shirt-shaped sportswear main body, but may be a trouser-shaped sportswear main body having portions corresponding to the waist and the buttocks, or a shirt-shaped sportswear main body. It may be a sportswear body having portions corresponding to the waist, chest, and buttocks that connect the sportswear body and the pants-like sportswear body.
  • the motion capture body wear device is not limited to motion capture sport wear having a sports wear body as a body wear device body, and can be applied to, for example, a hat or a waist pouch.
  • this invention is capable of analyzing all the movements that periodically move in principle. For example, tennis racket swing, golf club swing, baseball batting, pitching, kendo swing, etc. are repeatedly measured, It can be used to improve and improve competition-specific forms.
  • the present invention can be used for confirming the running state of the racehorse and managing the physical condition by applying it to a racehorse other than human beings.
  • the motion capture device is particularly suitably used for capturing periodic movements of a moving part such as running, tennis racket swing, golf club swing, baseball batting, pitching, kendo swinging, etc. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A motion capture device and motion capture method are provided which make it possible to visualize actual motion of a periodically moving part without the use of a camera. This motion capture device 10 includes a case 12. A three-dimensional acceleration sensor 20 and a calculation processing unit 22 are provided in the case 12. The motion capture device 10 is attached to a periodically moving part. The calculation processing unit 22 overlays the acceleration waveforms of the moving part measured by the three-dimensional acceleration sensor 20 on each other, averages the result, removes the DC component, integrates the result over time a first time, and further removes the DC component and integrates the result over time a second time.

Description

モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具Motion capture device, motion capture method, exercise performance diagnosis method, and body wear device for motion capture
 この発明は、モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具に関し、特にたとえば、ランニング、テニスラケットのスイング、ゴルフクラブのスイング、野球のバッティング、投球、剣道の素振りなどの周期的な運動部位の動きを捉えるモーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具に関する。 The present invention relates to a motion capture device, a motion capture method, an exercise performance diagnostic method, and a body wearing device for motion capture, and in particular, for example, running, tennis racket swing, golf club swing, baseball batting, throwing, kendo swinging, etc. The present invention relates to a motion capture device, a motion capture method, a motion performance diagnosis method, and a body-wearing device for motion capture that capture the motion of a periodic motion site.
 ランニングなどにおいてフォームを確認することは重要である。現在、マラソンなどを行っている最中にランニングのフォームを確認する手段としては、カメラによる撮影がある。
 さらに、先行技術として、特許文献1、2には、加速度センサを使用して、歩容などを解析する技術がある。
It is important to check the form when running. As a means of confirming a running form during a marathon or the like, there is a camera shooting.
Furthermore, as prior art, Patent Documents 1 and 2 include a technique for analyzing a gait and the like using an acceleration sensor.
特表2013-537436公報Special table 2013-537436 gazette 特開2013-143996公報JP 2013-143996 A
 しかしながら、カメラによる撮影では、当然ながら被写体であるランナーと一緒に走行しながら撮影する必要があり、個人の練習などでは利用不可能である。
 一方、特許文献1、2に開示されている先行技術では、カメラを使用せずに個人の練習などで利用可能であるが、以下の問題がある。
 特許文献1に開示されている先行技術では、加速度センサから出力される加速度情報のみで処理を行っており、加速度センサ装着部の実際の動きが分からない。
 また、特許文献2に開示されている先行技術では、周波数解析を行うものもあるが、動きを視覚化することができず、実際の動きとの関係性で評価を行っている。
 このように、特許文献1、2に開示されている先行技術では、運動部位の実際の動きを導出することができない。
However, in the case of shooting with a camera, it is naturally necessary to take a shot while traveling with a runner as a subject, and it cannot be used for personal practice.
On the other hand, the prior art disclosed in Patent Documents 1 and 2 can be used for personal practice without using a camera, but has the following problems.
In the prior art disclosed in Patent Document 1, processing is performed only with the acceleration information output from the acceleration sensor, and the actual movement of the acceleration sensor mounting portion is not known.
In addition, some of the prior arts disclosed in Patent Document 2 perform frequency analysis, but the movement cannot be visualized, and the evaluation is performed based on the relationship with the actual movement.
As described above, the prior art disclosed in Patent Documents 1 and 2 cannot derive the actual movement of the movement site.
 それゆえに、この発明の主たる目的は、カメラを使用せずに周期的な運動部位の実際の動きを視覚化することができる、モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具を提供することである。 Therefore, a main object of the present invention is to provide a motion capture device, a motion capture method, a motion performance diagnosis method, and a body for motion capture, which can visualize the actual motion of a periodic motion site without using a camera. It is to provide a mounting tool.
 この発明にかかるモーションキャプチャ装置は、周期的な運動部位における加速度を計測するための加速度センサと、加速度センサで計測された加速度波形を演算処理するための演算処理部とを含む、モーションキャプチャ装置であって、運動部位において計測する運動の基本動作の1回分を1周期として、運動部位における加速度を加速度センサで複数周期回計測し、演算処理部は、加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化し、さらに、平均化した加速度波形を2回時間積分することによって運動部位の位置を算出する、モーションキャプチャ装置である。
 この発明にかかるモーションキャプチャ方法は、周期的な運動部位において計測する運動の基本動作の1回分を1周期として、運動部位における加速度を加速度センサで複数周期回計測し、演算処理部が、加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化し、さらに、平均化した加速度波形を2回時間積分することによって運動部位の位置を算出する、モーションキャプチャ方法である。
 この発明にかかるモーションキャプチャ装置およびモーションキャプチャ方法では、それぞれ、演算処理部は、加速度センサで計測された加速度波形から重力加速度成分を除去するために、平均化した加速度波形から直流成分を除去し、直流成分を除去した平均化した加速度波形を1回目の時間積分することによって運動部位の相対速度を表す速度波形に変換し、速度波形から定速成分を除去するために、速度波形から直流成分を除去し、さらに、直流成分を除去した速度波形を2回目の時間積分することによって運動部位の相対位置を表す位置波形に変換することが好ましい。
 この発明にかかるモーションキャプチャ装置およびモーションキャプチャ方法では、それぞれ、演算処理部は、1周期の区間を明確にするために、加速度センサで計測された加速度波形の重ね合わせを行い、1周期以上の周期間で自己相関係数を取り、最も自己相関係数が高くなる位置で各周期の重ね合わせができたと判断することが好ましい。
 この発明にかかるモーションキャプチャ装置およびモーションキャプチャ方法では、それぞれ、位置波形を、互いに直交するX-Y平面、Y-Z平面およびZ-X平面におけるグラフにディスプレイで表示することが好ましい。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する被験者の軌跡を特定するステップと、交点のうちZ軸に最も近い交点のZ軸方向の位置を特定するステップとを含む、運動性能診断方法である。この運動性能診断方法では、位置座標を特定するステップは、被験者の腰部に装着された加速度センサから得られる情報により位置座標を特定することが好ましい。また、この運動性能診断方法では、軌跡を特定するステップを一定時間連続で行い、交点のうちZ軸に最も近い交点が経時変化に伴いZ軸方向における位置変化が見られるか否かを診断するステップを含むことが好ましい。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の進行方向をX軸とし、被験者の進行方向を基準に左右方向をY軸とした、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する被験者の軌跡を特定するステップと、交点のうちX軸に最も近い交点のX軸方向の位置を特定するステップとを含む、運動性能診断方法である。この運動性能診断方法では、軌跡を特定するステップを一定時間連続で行い、交点のうちX軸に最も近い交点が経時変化に伴いX軸方向における位置変化が見られるか否かを診断するステップを含むことが好ましい。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む、運動性能診断方法である。この運動性能診断方法では、軌跡を特定するステップを一定時間連続で行い、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性が経時変化に伴い変化が見られるか否かを診断するステップを含むことが好ましい。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の進行方向をX軸とし、被験者の進行方向を基準に左右方向をY軸とした、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む、運動性能診断方法である。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の進行方向をX軸とし、被験者の進行方向を基準に左右方向をY軸とした、X-Y平面、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面または被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向をX軸とした、X-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、軌跡のX軸、Y軸またはZ軸における座標の最大値と最小値との差を判定するステップとを含む、運動性能診断方法である。
 この発明にかかる運動性能診断方法は、前方に進行する被験者の運動性能診断方法であって、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、少なくとも異なる2周期以上の周期を比較するステップとを含む、運動性能診断方法である。
 なお、上述の運動性能診断方法では、被験者の腰部に装着された加速度センサから得られる情報により位置座標を特定することが好ましいとされる運動性能診断方法を除いて、位置座標を特定するステップは、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により位置座標を特定することが好ましい。
 また、この発明にかかる運動性能診断方法は、たとえばこの発明にかかるモーションキャプチャ装置を用いた運動性能診断方法である。
 さらに、この発明にかかる運動性能診断方法は、たとえばこの発明にかかるモーションキャプチャ方法を用いた運動性能診断方法である。
 この発明にかかるモーションキャプチャ用身体装着具は、モーションチャプチャ装置を備えたモーションキャプチャ用身体装着具であって、腰部、臀部または胸部に対応する部分を有する身体装着具本体と、身体装着具本体の腰部、臀部または胸部に対応する部分に設けられた収納部と、収納部に収納されたこの発明にかかるモーションキャプチャ装置とを含む、モーションキャプチャ用身体装着具である。
A motion capture device according to the present invention is a motion capture device including an acceleration sensor for measuring acceleration at a periodic motion site and an arithmetic processing unit for arithmetic processing of an acceleration waveform measured by the acceleration sensor. Then, the basic motion of the movement measured at the movement part is set as one cycle, the acceleration at the movement part is measured a plurality of times by the acceleration sensor, and the arithmetic processing unit outputs the acceleration waveform output from the acceleration sensor for two periods. This is a motion capture device that calculates the position of an exercise part by superimposing and averaging the above-described averaged acceleration waveforms and performing time integration twice.
According to the motion capture method of the present invention, one motion of the basic motion measured in a periodic motion region is defined as one cycle, the acceleration in the motion region is measured a plurality of times by the acceleration sensor, and the arithmetic processing unit includes the acceleration sensor. This is a motion capture method in which the acceleration waveform output from is superposed and averaged over two periods or more, and the position of the motion part is calculated by time-integrating the averaged acceleration waveform twice.
In the motion capture device and the motion capture method according to the present invention, each of the arithmetic processing units removes the DC component from the averaged acceleration waveform in order to remove the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor, The averaged acceleration waveform with the DC component removed is converted to a velocity waveform that represents the relative velocity of the moving part by first integrating the time, and the DC component is removed from the velocity waveform to remove the constant velocity component from the velocity waveform. It is preferable to convert the velocity waveform from which the direct current component has been removed into a position waveform representing the relative position of the exercise site by performing the second time integration.
In the motion capture device and the motion capture method according to the present invention, each of the arithmetic processing units superimposes the acceleration waveforms measured by the acceleration sensor in order to clarify the one-cycle section. It is preferable to take an autocorrelation coefficient in a period and to determine that each period has been superimposed at a position where the autocorrelation coefficient is highest.
In the motion capture device and the motion capture method according to the present invention, it is preferable that the position waveforms are respectively displayed on a graph in the XY plane, the YZ plane, and the ZX plane orthogonal to each other.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject. A step of specifying the position coordinate of the subject in the YZ plane as an axis, a step of specifying the position coordinate a plurality of times and specifying a locus of the subject having at least one intersection, and the Z axis among the intersections most And a step of specifying a position of a close intersection in the Z-axis direction. In this motion performance diagnosis method, it is preferable that the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor mounted on the waist of the subject. In this method of diagnosing motor performance, the step of specifying the locus is performed continuously for a certain period of time, and it is diagnosed whether or not the intersection closest to the Z axis among the intersections changes with time in the Z axis direction. Preferably a step is included.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis. A step of specifying the position coordinates of the subject in the Y plane, a step of specifying the position coordinates a plurality of times, specifying a locus of the subject having at least one intersection, and the X-axis direction of the intersection closest to the X-axis among the intersections A method for diagnosing athletic performance. In this method for diagnosing athletic performance, the step of specifying a trajectory is performed continuously for a certain period of time, and the step of diagnosing whether or not the intersection closest to the X-axis among the intersections is subject to a change in position in the X-axis direction with the passage of time. It is preferable to include.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject. A step of specifying the position coordinates of the subject in the YZ plane, the step of specifying the position coordinates a plurality of times and specifying the path of the subject, and a path on the positive side of the Y axis and a negative direction of the Y axis. A method for diagnosing athletic performance, comprising comparing symmetry with a trajectory on the side. In this method for diagnosing athletic performance, is the step of specifying a locus continuously performed for a certain period of time, and does the symmetry between the locus on the positive side of the Y axis and the locus on the negative side of the Y axis change with time? Preferably, the method includes a step of diagnosing whether or not.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis. The step of specifying the position coordinate of the subject on the Y plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis are symmetrical. A method for diagnosing motor performance, comprising the step of comparing gender.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the subject's advancing direction is taken as the X-axis, and the left-right direction based on the subject's advancing direction is taken as the Y-axis. The Y plane, the direction from the subject's foot to the head as the Z axis, and the lateral direction as the Y axis based on the subject's direction of travel, the YZ plane or the direction from the subject's foot to the head as Z Specifying the position coordinates of the subject in the XZ plane, with the direction of travel of the subject as the X-axis, the step of specifying the position coordinates a plurality of times to specify the path of the subject, the X-axis of the path, And determining a difference between the maximum value and the minimum value of the coordinates on the Y-axis or the Z-axis.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance of a subject traveling forward, wherein the direction from the foot to the head of the subject is the Z axis, and the left-right direction is based on the direction of travel of the subject. Identifying a position coordinate of the subject on the YZ plane, the position coordinates being identified a plurality of times to identify the trajectory of the subject, and comparing at least two different periods This is a method for diagnosing athletic performance.
In the above-described motor performance diagnosis method, the step of specifying the position coordinates, except for the motor performance diagnosis method, in which it is preferable to specify the position coordinates based on information obtained from the acceleration sensor mounted on the waist of the subject, Preferably, the position coordinates are specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject.
The method for diagnosing athletic performance according to the present invention is a method for diagnosing athletic performance using, for example, a motion capture device according to the present invention.
Furthermore, the exercise performance diagnosis method according to the present invention is, for example, an exercise performance diagnosis method using the motion capture method according to the present invention.
A motion capture body wearing device according to the present invention is a motion capture body wearing device provided with a motion capture device, the body wearing device main body having a portion corresponding to the waist, buttocks or chest, and the body wearing device main body. A body part for motion capture, including a storage part provided in a portion corresponding to the waist, buttocks or chest, and the motion capture device according to the present invention stored in the storage part.
 この発明では、加速度センサが、たとえば人体、生物、機械などの周期的な運動部位に直接的にまたは間接的に取り付けられる。そして、運動部位において計測する運動の基本動作の1回分を1周期として、運動部位における加速度を加速度センサで複数周期回計測する。演算処理部は、加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化し、さらに、平均化した加速度波形を2回時間積分することによって位置を算出する。この場合、加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化することによって、加速度波形における誤差を低減することができるとともに、運動部位の位置を算出のために時間積分する区間を短縮化することができる。このように時間積分する区間を短縮化することによって、時間積分による累積誤差を最小限に抑えることができる。そのため、平均化した加速度波形を2回時間積分することによって、運動部位の位置が算出される。これによって、運動部位の加速度ではなく、運動部位の位置を視覚化することが可能となる。したがって、この発明によれば、カメラを使用せずに運動部位の実際の動きを視覚化することができる。
 また、この発明では、演算処理部が、1周期の区間を明確にするために、加速度センサで計測された加速度波形の重ね合わせを行い、1周期以上の周期間で自己相関係数を取り、最も自己相関係数が高くなる位置で各周期の重ね合わせができたと判断すると、1周期の区間が明確になる。そのため、運動部位の位置を算出する精度がよくなる。
 さらに、この発明では、演算処理部が、加速度センサで計測された加速度波形から重力加速度成分を除去するために、平均化した加速度波形から直流成分を除去し、直流成分を除去した平均化した加速度波形を1回目の時間積分することによって相対速度を表す速度波形に変換し、速度波形から定速成分を除去するために、速度波形から直流成分を除去し、さらに、直流成分を除去した速度波形を2回目の時間積分することによって相対位置を表す位置波形に変換すると、重力加速度による影響を除去することができるとともに、運動部位の相対位置を視覚化することができる。
 また、この発明では、位置波形を、互いに直交するX-Y平面、Y-Z平面およびZ-X平面におけるグラフにディスプレイで表示すると、視覚を通して相対位置を視覚化することができる。
 この発明にかかる運動性能診断方法では、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する被験者の軌跡を特定するステップと、交点のうちZ軸に最も近い交点のZ軸方向の位置を特定するステップとを含む場合、腰部と上半身との連動または腰部と下半身との連動を診断することができる。この場合、位置座標を特定するステップは、被験者の腰部に装着された加速度センサから得られる情報により位置座標を特定することが好ましい。また、この場合、軌跡を特定するステップを一定時間連続で行い、交点のうちZ軸に最も近い交点が経時変化に伴いZ軸方向における位置変化が見られるか否かを診断するステップを含む場合、フォームの乱れを診断することができる。
 この発明にかかる運動性能診断方法では、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する被験者の軌跡を特定するステップと、交点のうちX軸に最も近い交点のX軸方向の位置を特定するステップとを含む場合、進行方向に対する運動の重心の位置を診断することができる。この場合、軌跡を特定するステップを一定時間連続で行い、交点のうちX軸に最も近い交点が経時変化に伴いX軸方向における位置変化が見られるか否かを診断するステップを含む場合、フォームの乱れを診断することができる。
 この発明にかかる運動性能診断方法では、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む場合、左右のバランスを診断することができる。この場合、軌跡を特定するステップを一定時間連続で行い、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性が経時変化に伴い変化が見られるか否かを診断するステップを含む場合、フォームの乱れを診断することができる。
 この発明にかかる運動性能診断方法では、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む場合、左右のバランスを診断することができる。
 この発明にかかる運動性能診断方法では、X-Y平面、Y-Z平面またはX-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、軌跡のX軸、Y軸またはZ軸における座標の最大値と最小値との差を判定するステップとを含む場合、ランニングエコノミーを診断することができる。
 この発明にかかる運動性能診断方法では、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、少なくとも異なる2周期以上の周期を比較するステップとを含む場合、運動再現性を診断することができる。
 なお、上述の運動性能診断方法では、上述のように特定の運動性能診断方法を除いて、位置座標を特定するステップは、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により位置座標を特定することが好ましい。
 この発明にかかるモーションキャプチャ用身体装着具では、身体装着具本体の腰部、臀部または胸部に対応する部分に設けられた収納部に、この発明にかかるモーションキャプチャ装置が収納されているので、身体装着具本体を着用するだけでモーションキャプチャ装置を被験者の腰部、臀部または胸部に簡単に装着することができるとともに、被験者の運動性能を診断することができる。
In the present invention, the acceleration sensor is directly or indirectly attached to a periodic movement site such as a human body, a living organism, or a machine. Then, with one period of the basic motion of the movement measured at the exercise site as one cycle, the acceleration at the exercise site is measured a plurality of times with the acceleration sensor. The arithmetic processing unit calculates the position by superimposing and averaging the acceleration waveforms output from the acceleration sensor for two cycles or more, and further integrating the averaged acceleration waveform twice over time. In this case, the acceleration waveform output from the acceleration sensor is overlapped and averaged for two cycles or more, thereby reducing errors in the acceleration waveform and shortening the time integration period for calculating the position of the motion part. Can be By shortening the time integration section in this way, the accumulated error due to time integration can be minimized. Therefore, the position of the motion part is calculated by integrating the averaged acceleration waveform twice over time. This makes it possible to visualize not the acceleration of the motion part but the position of the motion part. Therefore, according to the present invention, it is possible to visualize the actual movement of the moving part without using a camera.
Moreover, in this invention, in order to clarify the section of one cycle, the arithmetic processing unit superimposes acceleration waveforms measured by the acceleration sensor, takes an autocorrelation coefficient between one or more cycles, If it is determined that the respective cycles have been superimposed at the position where the autocorrelation coefficient is the highest, the section of one cycle becomes clear. Therefore, the accuracy of calculating the position of the exercise site is improved.
Furthermore, in the present invention, the arithmetic processing unit removes the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor, removes the DC component from the averaged acceleration waveform, and removes the DC component. The waveform is converted to a velocity waveform representing the relative velocity by integrating the waveform for the first time, and the DC waveform is removed from the velocity waveform to remove the constant velocity component from the velocity waveform. Is converted into a position waveform representing the relative position by integrating the time for the second time, the influence of the gravitational acceleration can be removed and the relative position of the motion site can be visualized.
In the present invention, if the position waveform is displayed on a graph in the XY plane, the YZ plane, and the ZX plane orthogonal to each other, the relative position can be visualized through vision.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinates of the subject in the YZ plane, the step of specifying the position coordinates a plurality of times and specifying the trajectory of the subject having at least one intersection, Including the step of specifying the position in the Z-axis direction of the intersection closest to the Z-axis, the interlock between the waist and the upper body or the interlock between the waist and the lower body can be diagnosed. In this case, it is preferable that the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor attached to the waist of the subject. Further, in this case, the step of specifying the trajectory is performed continuously for a certain period of time, and includes a step of diagnosing whether or not the intersection closest to the Z-axis among the intersections is subject to a change in position in the Z-axis direction with the passage of time. , Form disorder can be diagnosed.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinates of the subject in the XY plane, the step of specifying the position coordinates a plurality of times and specifying the trajectory of the subject having at least one intersection, The step of specifying the position in the X-axis direction of the intersection closest to the X-axis, the position of the center of gravity of the movement with respect to the traveling direction can be diagnosed. In this case, when the step of specifying the locus is continuously performed for a certain period of time and includes a step of diagnosing whether or not the intersection closest to the X axis among the intersections can be seen to change in position in the X axis direction with time change, Can be diagnosed.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinates of the subject on the YZ plane, the step of specifying the position coordinates a plurality of times to specify the path of the subject, and the path on the positive side of the Y axis. And the step of comparing the symmetry of the trajectory on the negative direction side of the Y axis, the right and left balance can be diagnosed. In this case, the step of specifying the trajectory is performed continuously for a certain period of time, and it is diagnosed whether the symmetry between the trajectory on the positive direction side of the Y axis and the trajectory on the negative direction side of the Y axis changes with time. In this case, the disorder of the foam can be diagnosed.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinate of the subject on the XY plane, the step of specifying the position coordinate a plurality of times to specify the locus of the subject, and the locus on the positive side of the Y axis And the step of comparing the symmetry of the trajectory on the negative direction side of the Y axis, the right and left balance can be diagnosed.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinate of the subject on the XY plane, the YZ plane, or the XZ plane, and the step of specifying the position coordinate a plurality of times and specifying the locus of the subject And a step of determining a difference between the maximum value and the minimum value of coordinates on the X-axis, Y-axis, or Z-axis of the trajectory, the running economy can be diagnosed.
In the method for diagnosing motor performance according to the present invention, the step of specifying the position coordinate of the subject on the YZ plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and at least two different periods are provided. In this case, it is possible to diagnose motion reproducibility.
In the above-described motor performance diagnosis method, except for the specific motor performance diagnosis method as described above, the step of specifying the position coordinates is based on information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. It is preferable to specify the position coordinates.
In the body wearing device for motion capture according to the present invention, since the motion capturing device according to the present invention is housed in the housing portion provided in the portion corresponding to the waist, buttocks or chest of the body wearing device body, The motion capture device can be easily mounted on the waist, buttocks or chest of the subject simply by wearing the tool body, and the exercise performance of the subject can be diagnosed.
 この発明によれば、カメラを使用せずに運動部位の実際の動きを視覚化することができる、モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具が得られる。
 たとえば、この発明によれば、加速度センサを人体の運動部位に取り付けた場合、加速度センサを取り付けた運動部位の動きを確認することが可能となる。そのため、この発明では、これまでカメラ撮影などでしか知ることができなかったランニングのフォームなどを競技者自身で確認することが可能となる。
 また、この発明によれば、たとえばランニングにおける腰部と上半身との連動または腰部と下半身との連動、前後のバランス、左右のバランス、ランニングエコノミー、運動再現性、フォームの乱れなどの各種の運動性能を診断することができる。
 また、この発明は、ランニングのフォームに限らず、周期性のある動きに対して相対位置を確認することができ、たとえば、テニス、ゴルフ、野球、剣道などの道具を使用する競技のフォームの確認に使用できる。
 さらに、この発明は、加速度センサを人体以外に競走馬に取り付けることで、競走馬の走行状態の確認や体調の管理などにも使用可能である。
According to the present invention, it is possible to obtain a motion capture device, a motion capture method, a motion performance diagnosis method, and a body capture device for motion capture, which can visualize the actual movement of a motion site without using a camera.
For example, according to the present invention, when an acceleration sensor is attached to a motion part of a human body, it is possible to check the motion of the motion part to which the acceleration sensor is attached. Therefore, according to the present invention, it is possible for the player himself to check the running form, which has been known only by camera photography.
In addition, according to the present invention, for example, various exercise performances such as interlocking between the waist and upper body in the running or between the waist and lower body, front and rear balance, left and right balance, running economy, exercise reproducibility, form disturbance, etc. Can be diagnosed.
In addition, the present invention is not limited to a running form, and the relative position can be confirmed with respect to a periodic movement. For example, confirmation of a competition form using equipment such as tennis, golf, baseball, kendo, etc. Can be used for
Furthermore, the present invention can be used for confirming the running state of the racehorse and managing the physical condition by attaching the acceleration sensor to the racehorse other than the human body.
 この発明によれば、カメラを使用せずに運動部位の実際の動きを視覚化することができる、モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具が得られる。 According to the present invention, it is possible to obtain a motion capture device, a motion capture method, a motion performance diagnosis method, and a body wearing device for motion capture that can visualize the actual motion of the motion site without using a camera.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
この発明にかかるモーションキャプチャ装置の一例を示す斜視図である。It is a perspective view which shows an example of the motion capture apparatus concerning this invention. 図1に示すモーションキャプチャ装置のブロック図である。It is a block diagram of the motion capture apparatus shown in FIG. 図1に示すモーションキャプチャ装置による処理を示すフロー図である。It is a flowchart which shows the process by the motion capture apparatus shown in FIG. 図1に示すモーションキャプチャ装置を人体に装着した状態の一例を示す図解図である。It is an illustration figure which shows an example of the state which mounted | wore the human body with the motion capture apparatus shown in FIG. 図1に示すモーションキャプチャ装置において3次元加速度センサで計測されたほぼ4周期分の加速度波形および加速度波形の相関係数の一例を示すグラフであり、横軸が時間を示し、縦軸が加速度および相関係数を示す。FIG. 2 is a graph showing an example of an acceleration waveform for almost four cycles measured by a three-dimensional acceleration sensor in the motion capture device shown in FIG. 1 and an example of a correlation coefficient of the acceleration waveform, where the horizontal axis indicates time, the vertical axis indicates acceleration and The correlation coefficient is shown. 図5に示す加速度波形を平均化したほぼ1周期分の加速度波形を示すグラフであり、横軸が時間を示し、縦軸が加速度を示す。6 is a graph showing an acceleration waveform for approximately one cycle obtained by averaging the acceleration waveforms shown in FIG. 5, where the horizontal axis indicates time and the vertical axis indicates acceleration. 図6に示す加速度波形から直流成分を除去し時間積分することによって変換された相対速度を表す速度波形を示すグラフであり、横軸が時間を示し、縦軸が相対速度を示す。It is a graph which shows the speed waveform showing the relative speed converted by removing a direct-current component from the acceleration waveform shown in FIG. 6, and performing time integration, a horizontal axis shows time and a vertical axis | shaft shows a relative speed. 図7に示す速度波形から直流成分を除去し時間積分することによって変換された相対位置を表す位置波形を示すグラフであり、横軸が時間を示し、縦軸が相対位置を示す。It is a graph which shows the position waveform showing the relative position converted by removing a direct-current component from the speed waveform shown in FIG. 7, and performing time integration, a horizontal axis shows time and a vertical axis | shaft shows a relative position. 図6、図7および図8のグラフに関連する上下対前後、上下対左右および前後対左右の加速度、相対速度および相対位置を示すグラフであって、左列、中列および右列は、それぞれ上下対前後、上下対左右および前後対左右のグラフであり、上段、中段および下段は、それぞれ加速度、相対速度および相対位置を示すグラフである。FIG. 9 is a graph showing acceleration, relative speed, and relative position in the up / down pair front / rear, up / down pair left / right and front / rear pair left / right related to the graphs of FIGS. 6, 7, and 8. It is a graph of up / down pair front / rear, up / down pair left / right and front / rear pair left / right, and upper, middle, and lower are graphs showing acceleration, relative speed, and relative position, respectively. 図1に示すモーションキャプチャ装置において3次元加速度センサで計測されたほぼ4周期分の加速度波形および加速度波形の相関係数の他の例を示すグラフであり、横軸が時間を示し、縦軸が加速度および相関係数を示す。FIG. 4 is a graph showing another example of an acceleration waveform corresponding to approximately four cycles measured by a three-dimensional acceleration sensor in the motion capture device shown in FIG. 1 and a correlation coefficient of the acceleration waveform, in which the horizontal axis indicates time and the vertical axis indicates The acceleration and correlation coefficient are shown. 図10に示す加速度波形を平均化したほぼ1周期分の加速度波形を示すグラフであり、横軸が時間を示し、縦軸が加速度を示す。It is a graph which shows the acceleration waveform for about 1 period which averaged the acceleration waveform shown in FIG. 10, a horizontal axis shows time and a vertical axis | shaft shows an acceleration. 図11に示す加速度波形から直流成分を除去し時間積分することによって変換された相対速度を表す速度波形を示すグラフであり、横軸が時間を示し、縦軸が相対速度を示す。FIG. 12 is a graph showing a velocity waveform representing a relative velocity converted by removing a DC component from the acceleration waveform shown in FIG. 11 and performing time integration, with the horizontal axis representing time and the vertical axis representing relative velocity. 図12に示す速度波形から直流成分を除去し時間積分することによって変換された相対位置を表す位置波形を示すグラフであり、横軸が時間を示し、縦軸が相対位置を示す。It is a graph which shows the position waveform showing the relative position converted by removing a direct-current component from the speed waveform shown in FIG. 12, and time-integrating, a horizontal axis shows time and a vertical axis | shaft shows a relative position. 図11、図12および図13のグラフに関連する上下対前後、上下対左右および前後対左右の加速度、相対速度および相対位置を示すグラフであって、左列、中列および右列は、それぞれ上下対前後、上下対左右および前後対左右のグラフであり、上段、中段および下段は、それぞれ加速度、相対速度および相対位置を示すグラフである。11, FIG. 12 and FIG. 13 are graphs showing the acceleration, the relative speed and the relative position of the up / down pair front / rear, the up / down pair left / right and the front / rear pair left / right, respectively. It is a graph of up / down pair front / rear, up / down pair left / right and front / rear pair left / right, and upper, middle, and lower are graphs showing acceleration, relative speed, and relative position, respectively. この発明にかかる運動性能診断方法の実施の形態の前提条件の一例を示す図である。It is a figure which shows an example of the precondition of embodiment of the athletic performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態の前提条件の他の例を示す図である。It is a figure which shows the other example of the precondition of embodiment of the athletic performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図である。It is a figure which shows the further another example of the precondition of embodiment of the exercise | movement performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図である。It is a figure which shows the further another example of the precondition of embodiment of the exercise | movement performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図である。It is a figure which shows the further another example of the precondition of embodiment of the exercise | movement performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態1による被験者であるC氏の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of Mr. C's waist | hip | lumbar part which is a test subject by Embodiment 1 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態1による被験者であるE氏の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of the waist | hip | lumbar part of Mr. E who is a test subject by Embodiment 1 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態1による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of the waist | hip | lumbar part of Mr. A who is a test subject by Embodiment 1 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態2による被験者であるD氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of each XY plane of Mr. D who is a test subject by Embodiment 2 of the motor performance diagnostic method concerning this invention of a chest, a waist | hip | lumbar part, and a buttocks. この発明にかかる運動性能診断方法の実施の形態2による被験者であるE氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of each X-Y plane of a chest, a waist | hip | lumbar part, and a buttocks of Mr. E who is a test subject by Embodiment 2 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態2による被験者であるA氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of each XY plane of Mr. A who is a subject by Embodiment 2 of the motor performance diagnostic method concerning this invention of a chest, a waist | hip | lumbar part, and a buttocks. この発明にかかる運動性能診断方法の実施の形態3による被験者の腰部および臀部の各Y-Z平面の位置座標を示すグラフとともに、被験者を背後から見た着地時の全身像を示す。The whole body image at the time of the landing which looked at the test subject from the back is shown with the graph which shows the position coordinate of each YZ plane of the test subject's waist and buttocks by Embodiment 3 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態4による被験者であるA氏の胸部のX-Y平面の位置座標を示すグラフとともに、被験者を左横から見た着地時の全身像を示す。The whole body image at the time of landing which looked at the test subject from the left side is shown with the graph which shows the position coordinate of XY plane of Mr. A's chest which is the test subject by Embodiment 4 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態5による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフおよび被験者であるD氏の腰部のY-Z平面の位置座標を示すグラフである。The graph which shows the position coordinate of the YZ plane of the waist of Mr. A who is the subject and the position coordinate of the YZ plane of the waist of Mr. D who is the subject according to Embodiment 5 of the method for diagnosing motor performance according to the present invention is shown. It is a graph. この発明にかかる運動性能診断方法の実施の形態6による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of Mr. A's waist | hip | lumbar part which is a test subject by Embodiment 6 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態6による被験者であるE氏の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of the waist | hip | lumbar part of Mr. E who is a test subject by Embodiment 6 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態7による被験者の腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of the test subject's waist | hip | lumbar part by Embodiment 7 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態7による被験者の走行時間と交点位置(Z軸)との関係を示すグラフである。It is a graph which shows the relationship between the test subject's travel time and intersection position (Z-axis) by Embodiment 7 of the motor performance diagnostic method concerning this invention. この発明にかかる運動性能診断方法の実施の形態8によるB氏の50分間走行における腰部のY-Z平面の位置座標を示すグラフである。It is a graph which shows the position coordinate of the YZ plane of the waist | hip | lumbar part in Mr. B's 50-minute driving | running | working by Embodiment 8 of the athletic performance diagnostic method concerning this invention. この発明にかかるモーションキャプチャ用スポーツウェアの一例を示す背面図解図である。It is a rear view solution figure which shows an example of the sportswear for motion capture concerning this invention.
 図1は、この発明にかかるモーションキャプチャ装置の一例を示す斜視図であり、図2は、図1に示すモーションキャプチャ装置のブロック図である。 FIG. 1 is a perspective view showing an example of a motion capture device according to the present invention, and FIG. 2 is a block diagram of the motion capture device shown in FIG.
 図1に示すモーションキャプチャ装置10は、たとえば略矩形板状のケース12を含む。 1 includes a case 12 having a substantially rectangular plate shape, for example.
 ケース12内には、加速度センサとしての3次元加速度センサ20、フィルタなどを有する演算処理部22、記憶部24およびスピーカ26などが設けられている。また、ケース12の正面には、タッチパネル30が設けられている。さらに、ケース12の右側面には、電源スイッチ32が設けられている。また、ケース12の背面には、加速度波形、画像、音声などのデータのための入出力端子(図示せず)が設けられている。 In the case 12, a three-dimensional acceleration sensor 20 as an acceleration sensor, an arithmetic processing unit 22 having a filter, a storage unit 24, a speaker 26, and the like are provided. A touch panel 30 is provided on the front surface of the case 12. Further, a power switch 32 is provided on the right side surface of the case 12. Further, an input / output terminal (not shown) for data such as an acceleration waveform, an image, and a sound is provided on the back surface of the case 12.
 3次元加速度センサ20は、演算処理部22に電気的に接続されている。演算処理部22は、3次元加速度センサ20のほかに、記憶部24、スピーカ26、タッチパネル30、電源スイッチ32および入出力端子にも電気的に接続されている。 The three-dimensional acceleration sensor 20 is electrically connected to the arithmetic processing unit 22. In addition to the three-dimensional acceleration sensor 20, the arithmetic processing unit 22 is electrically connected to a storage unit 24, a speaker 26, a touch panel 30, a power switch 32, and an input / output terminal.
 3次元加速度センサ20は、モーションキャプチャ装置10が装着された周期的な運動部位たとえば人体の運動部位における3次元方向のそれぞれの加速度たとえば互いに直交する関係を有するX軸方向、Y軸方向およびZ軸方向のそれぞれの加速度を計測するためのものである。3次元加速度センサ20としては、たとえば、スマートホンの3次元加速度センサなどが使用される。そのため、3次元加速度センサ20は、その出力端から、X軸方向、Y軸方向およびZ軸方向のそれぞれの加速度に応じたそれぞれの加速度波形を出力することができる。 The three-dimensional acceleration sensor 20 includes a three-dimensional acceleration at a periodic motion site, for example, a motion site of the human body, to which the motion capture device 10 is attached, for example, an X-axis direction, a Y-axis direction, and a Z-axis having a relationship orthogonal to each other. It is for measuring the acceleration in each direction. As the three-dimensional acceleration sensor 20, for example, a three-dimensional acceleration sensor of a smartphone is used. Therefore, the three-dimensional acceleration sensor 20 can output respective acceleration waveforms corresponding to the respective accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction from the output end.
 演算処理部22は、3次元加速度センサ20で計測された加速度波形などを後述のように演算処理するためのものである。 The arithmetic processing unit 22 is for arithmetic processing of an acceleration waveform measured by the three-dimensional acceleration sensor 20 as described later.
 記憶部24は、3次元加速度センサ20による計測データや演算処理部22による演算処理データなどのデータを記録するためのものである。また、記憶部24には、演算処理部22のための動作プログラムなどが予め書き込まれている。また、記憶部24には、3次元加速度センサ20で計測された加速度波形が、正確な時間とともに記録され得る。 The storage unit 24 is for recording data such as measurement data by the three-dimensional acceleration sensor 20 and calculation processing data by the calculation processing unit 22. In addition, an operation program for the arithmetic processing unit 22 is written in the storage unit 24 in advance. In addition, the acceleration waveform measured by the three-dimensional acceleration sensor 20 can be recorded in the storage unit 24 together with an accurate time.
 スピーカ26は、計測データや演算処理データなどのデータに基づいて、音声メッセージなどを出力するためのものである。 The speaker 26 is for outputting a voice message or the like based on data such as measurement data and arithmetic processing data.
 タッチパネル30は、操作ボタンを表示したり、加速度、相対速度、相対位置をグラフで表示したりすることができるとともに、表示されている操作ボタンにタッチすることによって表示内容の切り替えや各種項目の設定等を入力することができるものである。 The touch panel 30 can display operation buttons, display acceleration, relative speed, and relative position in a graph, and switch display contents and set various items by touching the displayed operation buttons. Etc. can be input.
 電源スイッチ32は、初期的にモーションキャプチャ装置10の電源をオンにするためのものである。 The power switch 32 is for initially turning on the motion capture device 10.
 次に、モーションキャプチャ装置10を用いて運動部位の位置を算出する実施の形態について、図3および図4などを参照して以下に説明する。 Next, an embodiment for calculating the position of an exercise site using the motion capture device 10 will be described below with reference to FIGS.
 1.対象
 人間の歩行(遅い場合、速い場合)、走行(ジョギングの場合、ダッシュの場合)について計測した。
1. Target: Human walking (slow and fast) and running (jogging and dash) were measured.
 2.使用した加速度センサなどのモーションキャプチャ装置
 3次元加速度センサ20(スマートホンの3次元加速度センサ)を有する図1に示すモーションキャプチャ装置10を使用した。
2. Motion capture device such as used acceleration sensor The motion capture device 10 shown in FIG. 1 having a three-dimensional acceleration sensor 20 (a three-dimensional acceleration sensor of a smart phone) was used.
 3.加速度のサンプリング周波数
 加速度のサンプリング周波数を100Hzとした。(測定ポイントは、正確な時間とともに記録される。)
3. Acceleration sampling frequency The acceleration sampling frequency was set to 100 Hz. (Measurement points are recorded with exact time.)
 4.測定方法
 モーションキャプチャ装置10を、たとえば図4に示すように、周期的な運動部位としての被験者の腰部背骨の上に装着した。この場合、被験者の腰部背骨の上にウエストポーチに入れたモーションキャプチャ装置10を装着し、ベルトで固定した。また、ウエストポーチ内でモーションキャプチャ装置10が動かないようにするために、ウエストポーチ内に緩衝材を入れて、モーションキャプチャ装置10を固定した。
4). Measurement Method The motion capture device 10 was mounted on the subject's lumbar spine as a periodic exercise site, for example, as shown in FIG. In this case, the motion capture device 10 placed in a waist pouch was mounted on the subject's lumbar spine and fixed with a belt. Further, in order to prevent the motion capture device 10 from moving in the waist pouch, a cushioning material was put in the waist pouch to fix the motion capture device 10.
 5.計測
 上述の対象の歩行、走行を被験者に2セット実施し、計測中は、モーションキャプチャ装置10の着脱は実施せず、すべてを連続して計測した。なお、それぞれの歩行走行モードの切り替えの際には、約5秒間静止し、この無動作をマーカーとした。
5. Measurement Two sets of the above-mentioned object walking and running were performed on the subject, and during the measurement, the motion capture device 10 was not attached and detached, and all were measured continuously. In addition, when switching each walking running mode, it stopped for about 5 seconds, and this non-operation was made into the marker.
 6.歩行走行距離
 各モードとも、およそ30mの距離を歩行走行した。
 診断に使用したデータは、特に断りが無ければ240秒間の走行データであり、周期間隔10秒の平均値から算出された。
6). Walking distance In each mode, the walking distance was approximately 30 m.
The data used for the diagnosis is running data for 240 seconds unless otherwise specified, and was calculated from an average value of a periodic interval of 10 seconds.
 7.加速度データの収集
 3次元加速度センサ20からの情報を、たとえば各3軸(X軸、Y軸、Z軸)のデータおよび計測時間のCSVファイルとして記憶部24に保存する。ここでは、3次元加速度センサ20で、運動部位において計測する運動の基本動作の1回分を1周期として、運動部位における加速度を複数周期回計測する。なお、3次元加速度センサ20からの情報を、たとえば各3軸(X軸、Y軸、Z軸)のデータおよび計測時間のCSVファイルとして入出力端子から出力し、外部のコンピュータで取り込んでもよい。
7). Collection of Acceleration Data Information from the three-dimensional acceleration sensor 20 is stored in the storage unit 24 as, for example, a CSV file of data of each three axes (X axis, Y axis, Z axis) and measurement time. Here, the three-dimensional acceleration sensor 20 measures the acceleration in the motion region a plurality of times, with one cycle of the basic motion measured in the motion region as one cycle. Note that information from the three-dimensional acceleration sensor 20 may be output from an input / output terminal as a CSV file of data of three axes (X axis, Y axis, Z axis) and measurement time, for example, and may be captured by an external computer.
 8.データ処理
 記憶部24に保存した情報(データ)について、図3のフロー図に示すように、演算処理部22などで以下の処理を実施する。この場合、X軸、Y軸、Z軸のそれぞれの情報(データ)について、以下の処理を実施する。なお、情報(データ)を外部のコンピュータで取り込んだ場合には、そのコンピュータで以下の処理を実施する。
8). Data Processing For information (data) stored in the storage unit 24, as shown in the flowchart of FIG. In this case, the following processing is performed for each information (data) of the X axis, the Y axis, and the Z axis. When information (data) is taken in by an external computer, the following processing is performed on the computer.
 最初のステップS1では、静止状態で重力加速度Gの方向を算出して、キャリブレーションを行う。具体的には、最初に静止した状態での3次元加速度センサ20の各軸(X軸,Y軸,Z軸)がとらえる出力結果から3次元加速度センサ20に対する重力加速度Gの方向を算出し、各軸データからワールド座標系でのX軸、Y軸、Z軸へ座標変換を行う。モーションキャプチャ装置10(3次元加速度センサ20)が図4に示すように3次元加速度センサ20のY軸を中心にいくらか回転して取り付けられている場合、モーションキャプチャ装置10(正確には3次元加速度センサ20)の取り付け角度の垂直からのずれを、Y軸周りの回転行列
Figure JPOXMLDOC01-appb-I000001
によって補正(データ変換)する。ここでは、加速度の単位をSI単位系(m/s2)に変換しておくと、後段での処理後の数値を理解しやすい。
In the first step S1, the direction of gravity acceleration G is calculated in a stationary state, and calibration is performed. Specifically, the direction of the gravitational acceleration G with respect to the three-dimensional acceleration sensor 20 is calculated from the output result captured by each axis (X axis, Y axis, Z axis) of the three-dimensional acceleration sensor 20 in a stationary state first, Coordinate conversion is performed from each axis data to the X, Y, and Z axes in the world coordinate system. When the motion capture device 10 (three-dimensional acceleration sensor 20) is attached with some rotation about the Y axis of the three-dimensional acceleration sensor 20, as shown in FIG. The deviation of the mounting angle of the sensor 20) from the vertical is the rotation matrix around the Y axis.
Figure JPOXMLDOC01-appb-I000001
To correct (data conversion). Here, if the unit of acceleration is converted to the SI unit system (m / s 2 ), it is easy to understand the numerical value after processing in the subsequent stage.
 ステップS2では、ステップS1において変換された加速度波形の1周期の区間を明確にするために、変換された加速度波形を1周期ずつ重ね合わせ、自己相関係数を計算し、最も自己相関係数が大きくなった位置が、各周期が重なった位置と判断する。この場合、たとえば図5に示すグラフのデータが得られる。図5に示すグラフにおいて、ddX/dt/dtはX軸上の加速度波形を示し、ddY/dt/dtはY軸上の加速度波形を示し、ddZ/dt/dtはZ軸上の加速度波形を示し、相関係数は自己相関係数に相当する。図5に示すグラフには、ほほ4周期分の加速度波形および相関係数が示されているが、この発明では、1周期以上の周期間に自己相関係数が大きくなる部分が存在するので、1周期以上の周期間で自己相関係数を計算し、最も自己相関係数が大きくなった位置が、各周期が重なった位置と判断してもよい。各周期の加速度波形の重ね合わせを行うためには、1周期目と2周期目が一致する箇所を探す必要がある。その探し方としては、1周期目の関数と2周期目の関数間において自己相関が最も高い位置の重ね合わせが一致した位置と見なせるため、加速度波形を時間軸方向にずらしながら自己相関係数を求め最大値となる位置を算出する。このように加速度波形を重ね合わせるのは、加速度波形が左右1歩毎の周期で自己相関が高くなるので、これに従って加速度波形を分解して平均化するためである。 In step S2, in order to clarify the section of one cycle of the acceleration waveform converted in step S1, the converted acceleration waveforms are overlapped one by one, an autocorrelation coefficient is calculated, and the autocorrelation coefficient is the highest. The increased position is determined as the position where the periods overlap. In this case, for example, graph data shown in FIG. 5 is obtained. In the graph shown in FIG. 5, ddX / dt / dt represents the acceleration waveform on the X axis, ddY / dt / dt represents the acceleration waveform on the Y axis, and ddZ / dt / dt represents the acceleration waveform on the Z axis. The correlation coefficient corresponds to the autocorrelation coefficient. In the graph shown in FIG. 5, the acceleration waveform and the correlation coefficient for approximately four periods are shown. However, in the present invention, there is a portion where the autocorrelation coefficient increases between one or more periods. The autocorrelation coefficient may be calculated between one or more periods, and the position where the autocorrelation coefficient is the largest may be determined as the position where the periods overlap. In order to superimpose the acceleration waveforms of each cycle, it is necessary to search for a location where the first cycle and the second cycle match. As a search method, since the superposition of the positions having the highest autocorrelation between the function in the first cycle and the function in the second cycle can be regarded as the same position, the autocorrelation coefficient is changed while shifting the acceleration waveform in the time axis direction. The position where the maximum value is obtained is calculated. The reason for superimposing the acceleration waveforms in this way is that the acceleration waveforms have a high autocorrelation in the period of each step on the left and right, so that the acceleration waveforms are decomposed and averaged accordingly.
 ステップS3では、3次元加速度センサ20から出力される加速度波形を重ね合わせた2周期分の加速度波形を平均化する。この場合、たとえば図6に示すグラフのデータが得られる。図6に示すグラフにおいて、ddX/dt/dtはX軸上の平均化した加速度波形を示し、ddY/dt/dtはY軸上の平均化した加速度波形を示し、ddZ/dt/dtはZ軸上の平均化した加速度波形を示す。各周期の平均値を算出することによって、着地時等に発生する大きな加速度変化(オーバーシュート)やノイズ成分を除去することができ、次のステップS4以降に実施する時間積分による誤差の累積を軽減することができる。 In step S3, the acceleration waveforms for two periods obtained by superimposing the acceleration waveforms output from the three-dimensional acceleration sensor 20 are averaged. In this case, for example, graph data shown in FIG. 6 is obtained. In the graph shown in FIG. 6, ddX / dt / dt represents an averaged acceleration waveform on the X axis, ddY / dt / dt represents an averaged acceleration waveform on the Y axis, and ddZ / dt / dt represents Z. The averaged acceleration waveform on the axis is shown. By calculating the average value of each cycle, it is possible to remove large acceleration changes (overshoot) and noise components that occur at the time of landing, etc., and reduce the accumulation of errors due to time integration performed after the next step S4. can do.
 ステップS4では、演算処理部22のフィルタを使用して、ステップS3において平均化した加速度波形から直流成分を除去する。このように直流成分を除去することによって、重力加速度による時間積分での累積誤差を削除することができる。 In step S4, the DC component is removed from the acceleration waveform averaged in step S3 using the filter of the arithmetic processing unit 22. By removing the DC component in this way, it is possible to eliminate the accumulated error in time integration due to gravitational acceleration.
 ステップS5では、ステップS4において直流積分を除去した平均化した加速度波形を時間積分する。この場合、たとえば図7に示すグラフのデータが得られる。図7に示すグラフにおいて、ddX/dtはX軸上の速度波形を示し、ddY/dtはY軸上の速度波形を示し、ddZ/dtはZ軸上の速度波形を示す。このように加速度波形を時間積分することによって、運動部位の相対速度を表す速度波形に変換することができる。 In step S5, the averaged acceleration waveform from which DC integration has been removed in step S4 is time-integrated. In this case, for example, graph data shown in FIG. 7 is obtained. In the graph shown in FIG. 7, ddX / dt represents a velocity waveform on the X axis, ddY / dt represents a velocity waveform on the Y axis, and ddZ / dt represents a velocity waveform on the Z axis. In this way, by integrating the acceleration waveform over time, it can be converted into a velocity waveform representing the relative velocity of the moving part.
 ステップS6では、演算処理部22のフィルタを使用して、ステップS5において変換した速度波形から直流成分を除去する。このように速度波形から直流成分を除去することによって、被験者が等速で運動する成分などの定速成分を除去することができ、被験者から見た運動部位の相対速度を求めることができる。 In step S6, the DC component is removed from the velocity waveform converted in step S5 using the filter of the arithmetic processing unit 22. Thus, by removing the direct current component from the velocity waveform, it is possible to remove a constant velocity component such as a component in which the subject moves at a constant speed, and to obtain the relative velocity of the movement site viewed from the subject.
 ステップS7では、ステップS6において直流成分を除去した速度波形を時間積分する。この場合、たとえば図8に示すグラフのデータが得られる。図8に示すグラフにおいて、XはX軸上の位置波形を示し、YはY軸上の位置波形を示し、ZはZ軸上の位置波形を示す。このように速度波形を時間積分することによって、被験者から見た運動部位の相対位置を表す位置波形に変換することができる。 In step S7, the speed waveform from which the DC component is removed in step S6 is time-integrated. In this case, for example, graph data shown in FIG. 8 is obtained. In the graph shown in FIG. 8, X represents a position waveform on the X axis, Y represents a position waveform on the Y axis, and Z represents a position waveform on the Z axis. In this way, by integrating the velocity waveform over time, it can be converted into a position waveform representing the relative position of the motion site as seen from the subject.
 ステップS8では、X-Y、Y-Z、Z-X座標の位置を、ディスプレイとしても働くタッチパネル30にプロットしグラフ化して、被験者から見た運動部位の相対位置を表示する。この場合、ステップS7において算出されたX、Y、Z軸上の相対位置に関する情報で軌跡を描くことによって、明示的に被験者から見た運動部位の相対位置の動きが軌跡として描かれる。 In step S8, the positions of the XY, YZ, and ZX coordinates are plotted on the touch panel 30 that also functions as a display and graphed, and the relative position of the motion site viewed from the subject is displayed. In this case, the movement of the relative position of the movement part as seen from the subject is explicitly drawn as a locus by drawing the locus with the information about the relative positions on the X, Y, and Z axes calculated in step S7.
 このモーションキャプチャ装置10では、ディスプレイとしても働くタッチパネル30によって、たとえば図9のグラフに示すように、モーションキャプチャ装置10(3次元加速度センサ20)を取り付けた運動部位の加速度、相対速度、相対位置などの実際の動きを2次元上のグラフに表示することができる。なお、このモーションキャプチャ装置10では、ディスプレイとしても働くタッチパネル30によって、たとえば図5、図6、図7および図8のグラフに示すようにも、モーションキャプチャ装置10(3次元加速度センサ20)を取り付けた運動部位の加速度、相対速度、相対位置などの実際の動きを2次元上のグラフに表示することができる。 In this motion capture device 10, the touch panel 30 that also functions as a display, for example, as shown in the graph of FIG. 9, the acceleration, relative speed, relative position, etc. of the motion part to which the motion capture device 10 (three-dimensional acceleration sensor 20) is attached. Can be displayed on a two-dimensional graph. In this motion capture device 10, the motion capture device 10 (three-dimensional acceleration sensor 20) is attached by a touch panel 30 that also serves as a display as shown in the graphs of FIGS. 5, 6, 7, and 8. The actual movement such as acceleration, relative speed, and relative position of the moving part can be displayed on a two-dimensional graph.
 以上のように、このモーションキャプチャ装置10を用いれば、3次元加速度センサ20の加速度波形を、周期運動の特性を利用して、各周期で重ね合わせ平均化する。そのため、ランニング等の運動では地面への着地時に地面からの衝撃(オーバーシュート)を検出するが、オーバーシュートなどのノイズ成分を軽減することができ、精度のよい時間積分の結果が得られる。 As described above, when this motion capture device 10 is used, the acceleration waveform of the three-dimensional acceleration sensor 20 is superposed and averaged at each period using the characteristics of the periodic motion. For this reason, in an exercise such as running, an impact from the ground (overshoot) is detected when landing on the ground, but noise components such as overshoot can be reduced, and an accurate time integration result can be obtained.
 また、このモーションキャプチャ装置10を用いれば、2回時間積分を行うが、それぞれの時間積分の前に直流成分を演算処理部22のフィルタで除去する。これにより、重力加速度の影響を削減することができるとともに、相対速度および相対位置を求めることができる。 If this motion capture device 10 is used, time integration is performed twice, but the DC component is removed by the filter of the arithmetic processing unit 22 before each time integration. Thereby, the influence of gravitational acceleration can be reduced, and the relative speed and the relative position can be obtained.
 そのため、このモーションキャプチャ装置10を用いれば、図5、図6、図7、図8および図9のグラフなどから明らかなように、被験者の運動部位の実際の動きをタッチパネル30で直視することができる。 Therefore, when this motion capture device 10 is used, the actual movement of the exercise part of the subject can be directly viewed on the touch panel 30 as is apparent from the graphs of FIGS. 5, 6, 7, 8, and 9. it can.
 図5、図6、図7、図8および図9には、ある被験者についての歩行(速い場合)モードのグラフを示したが、このモーションキャプチャ装置10を用いて表示した別の被験者についての同じ歩行(速い場合)モードのグラフを図10、図11、図12、図13および図14に示す。図10、図11、図12、図13および図14に示すグラフは、その別の被験者のグラフであるが、先の被験者の図5、図6、図7、図8および図9のグラフにそれぞれ対応する。図10、図11、図12、図13および図14に示すグラフからも明らかなように、その別の被験者の運動部位の実際の動きも直視することができる。たとえば、ある被験者では運動部位の上下左右の動きが略A型の軌跡を描いていることが直視でき(図9下段中央)、一方、その別の被験者では運動部位の上下左右の動きが略W型の軌跡を描いていることが直視できる(図14下段中央)。 5, 6, 7, 8, and 9 are graphs of walking (when fast) mode for a subject, the same for another subject displayed using this motion capture device 10. The graph of the walking (when fast) mode is shown in FIG. 10, FIG. 11, FIG. 12, FIG. 10, 11, 12, 13, and 14 are graphs of the other subjects, but the graphs of FIGS. 5, 6, 7, 8, and 9 of the previous subject are the same. Each corresponds. As is apparent from the graphs shown in FIGS. 10, 11, 12, 13, and 14, the actual movement of the movement site of the other subject can also be directly viewed. For example, in one subject, it can be directly seen that the up / down / left / right movement of the exercise site is drawing a substantially A-shaped trajectory (lower center in FIG. 9), while in the other subject, the up / down / left / right movement of the exercise site is about W. It can be seen directly that the trace of the mold is drawn (the lower center of FIG. 14).
 次に、この発明にかかる運動性能診断方法の実施の形態について説明する。 Next, an embodiment of the exercise performance diagnosis method according to the present invention will be described.
 まず、この発明にかかる運動性能診断方法の実施の形態の前提条件について説明する。 First, the preconditions of the embodiment of the exercise performance diagnosis method according to the present invention will be described.
 図15は、この発明にかかる運動性能診断方法の実施の形態の前提条件の一例を示す図であり、被験者のみぞおちの上下1cmの範囲にある胸部、へその上下1cmの範囲にある腰部および尾骨の上下1cmの範囲にある臀部におけるたとえば被験者であるA氏の各Y-Z平面の位置座標を示すグラフとともに、上半身の動きの軌跡が略V型であり、下半身の動きの軌跡が略A型であることを示す。この場合、Y-Z平面の位置座標は、前方に進行する被験者の運動性能診断方法において、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における被験者の位置座標である。このY-Z平面の位置座標は、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により特定することができる。この場合、加速度センサとしてたとえば図1に示すモーションキャプチャ装置10を用いることができる。また、被験者の腰部、臀部または胸部に装着されるモーションキャプチャ装置10は、被験者の正中線上に位置することが好ましい。
 また、本発明における重心とは、体重や身長などの体型から一意に決まる静的な重心とは異なり、周期運動の動的な重心のことを指す。
FIG. 15 is a diagram showing an example of preconditions for the embodiment of the method for diagnosing athletic performance according to the present invention, in which the subject has a chest in a range of 1 cm above and below, a waist and a tailbone in a range of 1 cm above and below the navel. Along with a graph showing the position coordinates of each of the YZ planes of Mr. A, for example, the subject in the buttocks in the range of 1 cm above and below the upper body, the movement locus of the upper body is substantially V type, and the movement locus of the lower body is substantially A type. Indicates that In this case, in the method of diagnosing the subject's movement performance, the position coordinate on the YZ plane is set to the direction from the foot to the head of the subject as the Z-axis, and the left-right direction based on the subject's direction of travel is defined as Y. It is the position coordinate of the subject in the YZ plane, which is the axis. The position coordinates of the YZ plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor. Moreover, it is preferable that the motion capture device 10 mounted on the waist, buttocks, or chest of the subject is located on the midline of the subject.
In addition, the center of gravity in the present invention refers to the dynamic center of gravity of periodic motion, unlike the static center of gravity that is uniquely determined from the body shape such as weight and height.
 図16は、この発明にかかる運動性能診断方法の実施の形態の前提条件の他の例を示す図であり、たとえば被験者であるB氏の腰部のY-Z平面の位置座標を示すグラフとともに、加速度センサとしてのモーションキャプチャ装置10の動きと走行との関係を示す。 FIG. 16 is a diagram showing another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention, for example, along with a graph showing the position coordinates on the YZ plane of the waist of the subject Mr. B, The relationship between the motion of the motion capture device 10 as an acceleration sensor and traveling is shown.
 図17は、この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図であり、X-Y平面の位置座標を示すグラフと、前方に進行する場合の前後左右との関係を示す。この場合、X-Y平面の位置座標は、前方に進行する被験者の運動性能診断方法において、被験者の進行方向をX軸とし、被験者の進行方向を基準に左右方向をY軸とした、X-Y平面における被験者の位置座標である。このX-Y平面の位置座標は、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により特定することができる。この場合、加速度センサとしてたとえば図1に示すモーションキャプチャ装置10を用いることができる。 FIG. 17 is a diagram showing still another example of the preconditions for the embodiment of the method for diagnosing athletic performance according to the present invention, a graph showing the position coordinates on the XY plane, and the front, rear, left and right when traveling forward Shows the relationship. In this case, the position coordinates on the XY plane are the X-axis in the method for diagnosing the movement performance of the subject traveling forward, with the traveling direction of the subject as the X-axis and the left-right direction based on the traveling direction of the subject as the Y-axis. It is a position coordinate of the subject in the Y plane. The position coordinates on the XY plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
 図18は、この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図であり、X-Z平面の位置座標を示すグラフと、前方に進行する場合の前後頭足との関係を示す。この場合、X-Z平面の位置座標は、前方に進行する被験者の運動性能診断方法において、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向をX軸とした、X-Z平面における被験者の位置座標である。このX-Z平面の位置座標は、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により特定することができる。この場合、加速度センサとしてたとえば図1に示すモーションキャプチャ装置10を用いることができる。 FIG. 18 is a diagram showing still another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention. Shows the relationship with the foot. In this case, the position coordinates on the XZ plane are determined in the method of diagnosing the subject's movement performance that advances forward, with the direction from the subject's foot to the head as the Z axis and the subject's direction of travel as the X axis. -The coordinates of the subject's position in the Z plane. The position coordinates of the XZ plane can be specified by information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
 図19は、この発明にかかる運動性能診断方法の実施の形態の前提条件のさらに他の例を示す図であり、Y-Z平面の位置座標を示すグラフと、前方に進行する場合の左右頭足との関係を示す。この場合、Y-Z平面の位置座標は、上述のように、前方に進行する被験者の運動性能診断方法において、被験者の足部から頭部に向かう方向をZ軸とし、被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における被験者の位置座標である。また、このY-Z平面の位置座標も、被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により特定することができる。この場合、加速度センサとしてたとえば図1に示すモーションキャプチャ装置10を用いることができる。 FIG. 19 is a diagram showing still another example of the preconditions of the embodiment of the method for diagnosing athletic performance according to the present invention, a graph showing the position coordinates on the YZ plane, and the left and right heads when proceeding forward Shows the relationship with the foot. In this case, as described above, the position coordinate of the YZ plane is determined based on the direction of the subject's advancing direction in the method for diagnosing the subject's movement performance moving forward, with the direction from the subject's foot to the head as the Z axis. Are the position coordinates of the subject in the YZ plane with the left-right direction as the Y-axis. The position coordinates on the YZ plane can also be specified by information obtained from an acceleration sensor mounted on the waist, buttocks or chest of the subject. In this case, for example, the motion capture device 10 shown in FIG. 1 can be used as the acceleration sensor.
 図17、18および図19に示す各位置座標を示すグラフにおいて、Z軸、Y軸およびX軸の正の領域および負の領域は、それぞれ、次のとおりである。
 Z軸の正の領域は、被験者の頭側を示し、Z軸の負の領域は、被験者の足側を示す。
 Y軸の正の領域は、被験者の進行方向に対して右側を示し、Y軸の負の領域は、被験者の進行方向に対して左側を示す。
 X軸の負の領域は、被験者の進行方向である前を示し、X軸の正の領域は、被験者の進行方向とは逆の方向である後を示す。
In the graphs showing the position coordinates shown in FIGS. 17, 18 and 19, the positive and negative areas of the Z-axis, Y-axis and X-axis are as follows.
The positive area on the Z axis indicates the head side of the subject, and the negative area on the Z axis indicates the foot side of the subject.
The positive region on the Y axis indicates the right side with respect to the traveling direction of the subject, and the negative region on the Y axis indicates the left side with respect to the traveling direction of the subject.
The negative region on the X axis indicates before the subject's traveling direction, and the positive region on the X axis indicates after the opposite direction to the subject's traveling direction.
 また、この発明にかかる運動性能診断方法の実施の形態では、特に断りがなければ、位置座標のグラフ、すなわち周期軌跡の図は、Y-Z平面の位置座標および周期軌跡を示す。
 さらに、位置座標のグラフの横軸の単位および縦軸の単位は、それぞれ、mを示す。
 また、各位置座標は、それぞれ、複数回特定される。
In the embodiment of the method for diagnosing athletic performance according to the present invention, unless otherwise specified, the position coordinate graph, that is, the periodic trajectory diagram, shows the position coordinate and the periodic trajectory on the YZ plane.
Further, the unit of the horizontal axis and the unit of the vertical axis of the position coordinate graph each represents m.
Each position coordinate is specified a plurality of times.
 運動性能診断方法の実施の形態1について
 運動性能診断方法の実施の形態1では、腰部の周期軌跡解析により腰部と上下半身との連動を判定する。
 運動性能診断方法の実施の形態1は、前方に進行する被験者の運動性能診断方法であって、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する前記被験者の軌跡を特定するステップと、交点のうちZ軸に最も近い交点のZ軸方向の位置を特定するステップとを含む。
About Embodiment 1 of Exercise Performance Diagnosis Method In Embodiment 1 of the exercise performance diagnosis method, the interlock between the waist and upper and lower body is determined by analyzing the waist locus.
Embodiment 1 of the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject moving forward, the step of identifying the position coordinates of the subject on the YZ plane, the position coordinates being identified a plurality of times, and at least 1 Identifying a trajectory of the subject having an intersection of points, and identifying a position in the Z-axis direction of the intersection closest to the Z-axis among the intersections.
 図20は、この発明にかかる運動性能診断方法の実施の形態1による被験者であるC氏の腰部のY-Z平面の位置座標を示すグラフである。
 図21は、この発明にかかる運動性能診断方法の実施の形態1による被験者であるE氏の腰部のY-Z平面の位置座標を示すグラフである。
 図22は、この発明にかかる運動性能診断方法の実施の形態1による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフである。
 Y-Z平面における腰部の周期軌跡の交点の位置に着目すると、腰部が下半身と連動しているとZ軸方向の正領域に交点が存在し、腰部が上半身と連動しているとZ軸方向の負領域に交点が存在する。これは、地面接地時のモーションキャプチャ装置の相対位置と上半身のねじれの関係性から説明可能である。本モーションキャプチャ装置を下半身(例えば臀部)に装着すると、接地時にモーションキャプチャ装置は、最もY軸方向に振幅が大きくなる。そのため、Y-Z平面での周期運動軌跡は上に凸の形になり、交点はZ軸方向の正領域に存在しやすくなる。一方で上半身は下半身とねじれの関係にあるため、本モーションキャプチャ装置を上半身(例えば胸部)に装着すると、接地時にモーションキャプチャ装置は正中線上に位置するため、Y-Z平面での周期運動軌跡は下に凸の形になり、交点はZ軸方向の負領域に存在しやすくなる。たとえば、C氏は、図20に示すように、腰部が上半身と連動し、A氏は、図22に示すように、腰部が下半身と連動し、E氏は、図21に示すように、その中間という診断が可能になる。
 この診断は、たとえば走行運動のスポーツ競技適正診断に用いることが可能である。
 C氏は、腰部が上半身と連動しているため、走行運動の支点の高さが低いことを示している。このような走法は、急加速、急停止、方向転換を頻繁に行うスポーツ競技、たとえばバスケットボール、ラグビー、テニス、サッカーに適しているといえる。
 一方、A氏は、腰部が下半身と連動しているため、走行運動の支点の高さが高いことを示している。このような走法は、直進運動を継続するスポーツ競技、たとえばマラソンに適しているといえる。
FIG. 20 is a graph showing the position coordinates on the YZ plane of the waist of Mr. C who is the subject according to the first embodiment of the method for diagnosing motor performance according to the present invention.
FIG. 21 is a graph showing the position coordinates on the YZ plane of the waist of Mr. E who is the subject according to the first embodiment of the method for diagnosing athletic performance according to the present invention.
FIG. 22 is a graph showing the position coordinates on the YZ plane of the waist of Mr. A who is the subject according to Embodiment 1 of the method for diagnosing motor performance according to the present invention.
Paying attention to the position of the intersection of the waist locus on the YZ plane, if the waist is linked to the lower body, there is an intersection in the positive region in the Z axis direction, and if the waist is linked to the upper body, the Z axis direction There is an intersection in the negative region. This can be explained from the relationship between the relative position of the motion capture device at the time of ground contact and the twist of the upper body. When the motion capture device is attached to the lower body (for example, the buttocks), the amplitude of the motion capture device is greatest in the Y-axis direction when touched. Therefore, the periodic motion trajectory on the YZ plane is convex upward, and the intersection is likely to exist in the positive region in the Z-axis direction. On the other hand, since the upper body is in a twisted relationship with the lower body, when this motion capture device is attached to the upper body (for example, the chest), the motion capture device is positioned on the midline when touched, so the periodic motion trajectory in the YZ plane is It has a downwardly convex shape, and the intersection tends to exist in the negative region in the Z-axis direction. For example, as shown in FIG. 20, Mr. C has a waist that is linked to the upper body, Mr. A has a waist that is linked to the lower body, as shown in FIG. 22, and Mr. E has its waist as shown in FIG. Diagnosis of intermediate is possible.
This diagnosis can be used, for example, for a sports competition appropriateness diagnosis of running exercise.
Mr. C shows that the fulcrum of the running motion is low because the waist is linked to the upper body. Such a running method can be said to be suitable for sports competitions such as rapid acceleration, sudden stop, and direction change, such as basketball, rugby, tennis, and soccer.
On the other hand, Mr. A indicates that the height of the fulcrum of the running exercise is high because the waist is linked to the lower body. Such a running method can be said to be suitable for a sporting event in which a straight movement is continued, for example, a marathon.
 運動性能診断方法の実施の形態2について
 運動性能診断方法の実施の形態2では、腰部、臀部または胸部の周期軌跡解析により前後の重心位置を診断する。
 運動性能診断方法の実施の形態2は、前方に進行する被験者の運動性能診断方法であって、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、少なくとも1点の交点を有する被験者の軌跡を特定するステップと、交点のうちX軸に最も近い交点のX軸方向の位置を特定するステップとを含む。
Second Embodiment of the Exercise Performance Diagnosis Method In the second embodiment of the exercise performance diagnosis method, the front and rear center-of-gravity positions are diagnosed by analyzing the periodic locus of the waist, buttocks, or chest.
Embodiment 2 of the method for diagnosing athletic performance is a method for diagnosing athletic performance of a subject moving forward, the step of identifying the position coordinates of the subject on the XY plane, the position coordinates being identified a plurality of times, and at least 1 The step of specifying the trajectory of the subject having the intersection of the points and the step of specifying the position in the X-axis direction of the intersection closest to the X-axis among the intersections are included.
 図23は、この発明にかかる運動性能診断方法の実施の形態2による被験者であるD氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。
 図24は、この発明にかかる運動性能診断方法の実施の形態2による被験者であるE氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。
 図25は、この発明にかかる運動性能診断方法の実施の形態2による被験者であるA氏の胸部、腰部および臀部の各X-Y平面の位置座標を示すグラフである。
 X-Y平面における胸部、腰部または臀部の周期軌跡の交点のX軸方向の位置に着目すると、走行時の運動の重心の位置が測定できる。
 一般的に効率的に走行できるかを示す指標であるランニングエコノミーを高めるためには、進行方向に対して前側に重心があると、ブレーキがかかりにくく推進力が生まれやすく効率的に走行できるようになる。
 D氏は、図23に示すように、全部位の重心が後ろよりにあるため、ランニングエコノミーが低いといえる。
 一方、A氏は、図25に示すように、全部位の重心が前よりにあるため、ランニングエコノミーが高いといえる。
FIG. 23 is a graph showing position coordinates on the XY planes of the chest, waist and buttocks of Mr. D who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
FIG. 24 is a graph showing position coordinates on the XY planes of the chest, waist, and buttocks of Mr. E who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
FIG. 25 is a graph showing position coordinates on the XY planes of the chest, waist, and buttocks of Mr. A who is the subject according to Embodiment 2 of the method for diagnosing motor performance according to the present invention.
Focusing on the position in the X-axis direction of the intersection of the periodic trajectories of the chest, waist, or buttocks in the XY plane, the position of the center of gravity of the motion during running can be measured.
In order to increase the running economy, which is generally an indicator of whether or not you can drive efficiently, if there is a center of gravity on the front side of the direction of travel, it will be difficult to apply brakes and propulsion will be generated easily and you can drive efficiently Become.
As shown in FIG. 23, Mr. D can be said that the running economy is low because the center of gravity of all the parts is behind.
On the other hand, as shown in FIG. 25, Mr. A can be said to have a high running economy because the center of gravity of all the parts is ahead.
 運動性能診断方法の実施の形態3について
 運動性能診断方法の実施の形態3では、腰部、臀部または胸部の周期軌跡解析により左右のバランスを診断する。
 運動性能診断方法の実施の形態3は、前方に進行する被験者の運動性能診断方法であって、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む。
About Embodiment 3 of the Exercise Performance Diagnosis Method In Embodiment 3 of the exercise performance diagnosis method, the left and right balance is diagnosed by analyzing the periodic trajectory of the waist, buttocks or chest.
The third embodiment of the method for diagnosing motor performance is a method for diagnosing the motor performance of a subject moving forward, the step of specifying the position coordinates of the subject in the YZ plane, the position coordinates being specified a plurality of times, The step of specifying a locus includes the step of comparing the symmetry between the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis.
 運動性能診断方法の実施の形態3では、腰部、臀部または胸部の周期軌跡の左右のずれを比較することで、運動の左右のバランスを診断することができる。たとえば、周期軌跡の左側の軌跡の距離と周期軌跡の右側の軌跡の距離とを比較したり、周期軌跡の左側の軌跡で囲まれる面積と周期軌跡の右側の軌跡で囲まれる面積とを比較したりすることで、左右のバランスを診断することができる。また、腰部の周期運動のZ軸の負の領域の挙動から、着地時の左右のバランスや、ぶれを診断することが可能である。
 図26は、この発明にかかる運動性能診断方法の実施の形態3による被験者の腰部および臀部の各Y-Z平面の位置座標を示すグラフとともに、被験者を背後から見た着地時の全身像を示す。図26の右足着地時および左足着地時の図において、垂直な線は、被験者のかかとから直線状に伸ばした線である。
 ここで、周期運動のZ軸の負の領域の挙動に着目すると、右足着地時には、かかとから膝が比較的直線状に存在し、腰部および臀部のぶれが見られない。(図26の周期軌跡の左側の軌跡を参照)。
 一方、左足着地時には、膝が体の外側に位置している。その結果、腰が右側に流れてしまっており、腰部および臀部が外側へぶれている(図26の周期軌跡の右側の軌跡を参照)。
In the third embodiment of the exercise performance diagnosis method, the right and left balance of exercise can be diagnosed by comparing the left and right shifts of the periodic locus of the waist, buttocks or chest. For example, compare the distance of the trajectory on the left side of the periodic trajectory with the distance of the trajectory on the right side of the periodic trajectory, or compare the area enclosed by the trajectory on the left side of the periodic trajectory with the area enclosed by the trajectory on the right side of the periodic trajectory. The left and right balance can be diagnosed. Further, from the behavior of the negative region of the Z axis of the periodic motion of the lumbar region, it is possible to diagnose the left and right balance and the shake at the time of landing.
FIG. 26 shows a whole body image at the time of landing when the subject is viewed from behind, along with a graph showing the position coordinates of each of the YZ planes of the waist and buttocks of the subject according to the third embodiment of the method for diagnosing athletic performance according to the present invention. . In the figure at the time of landing on the right foot and the left foot in FIG. 26, the vertical line is a line extending straight from the heel of the subject.
Here, paying attention to the behavior of the negative region of the Z axis of the periodic motion, when landing on the right foot, the knee exists relatively straight from the heel, and the shake of the waist and hips is not seen. (See the locus on the left side of the periodic locus in FIG. 26).
On the other hand, when landing on the left foot, the knee is positioned outside the body. As a result, the waist has flowed to the right side, and the waist and buttocks are shaken outward (see the locus on the right side of the periodic locus in FIG. 26).
 運動性能診断方法の実施の形態4について
 運動性能診断方法の実施の形態4では、腰部、臀部または胸部の周期軌跡解析により左右のバランスを診断する。
 運動性能診断方法の実施の形態4は、前方に進行する被験者の運動性能診断方法であって、X-Y平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性を比較するステップとを含む。
About Embodiment 4 of Exercise Performance Diagnosis Method In Embodiment 4 of the exercise performance diagnosis method, right and left balance is diagnosed by analyzing a periodic trajectory of the waist, buttocks or chest.
Embodiment 4 of the method for diagnosing motor performance is a method for diagnosing motion performance of a subject that progresses forward, the step of specifying the position coordinates of the subject in the XY plane, the position coordinates being specified a plurality of times, The step of specifying a locus includes the step of comparing the symmetry between the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis.
 運動性能診断方法の実施の形態4では、腰部、臀部または胸部の周期軌跡の左右のずれを比較することで、運動の左右のバランスを診断することができる。たとえば、周期軌跡の左側の軌跡の距離と周期軌跡の右側の軌跡の距離とを比較したり、周期軌跡の左側の軌跡で囲まれる面積と周期軌跡の右側の軌跡で囲まれる面積とを比較したりすることで、左右のバランスを診断することができる。また、胸部の周期軌跡により、左右の腕振りバランスを診断することができる。
 図27は、この発明にかかる運動性能診断方法の実施の形態4による被験者であるA氏の胸部のX-Y平面の位置座標を示すグラフとともに、被験者を左横から見た着地時の全身像を示す。図27の着地時の図において、垂直な線は、左右の腕振りバランスをわかりやすくするために直線状に伸ばした線である。周期軌跡の進行方向の振幅を左右で比較することにより、左右の腕振りバランスが診断可能である。
In the fourth embodiment of the exercise performance diagnosis method, the right and left balance of exercise can be diagnosed by comparing the left and right shifts of the periodic locus of the waist, buttocks or chest. For example, compare the distance of the trajectory on the left side of the periodic trajectory with the distance of the trajectory on the right side of the periodic trajectory, or compare the area enclosed by the trajectory on the left side of the periodic trajectory with the area enclosed by the trajectory on the right side of the periodic trajectory. The left and right balance can be diagnosed. Also, the left and right arm swing balance can be diagnosed by the periodic trajectory of the chest.
FIG. 27 is a whole body image at the time of landing when the subject is viewed from the left side together with a graph showing the position coordinates on the XY plane of the chest of Mr. A who is the subject according to the fourth embodiment of the method for diagnosing athletic performance according to the present invention. Indicates. In the figure at the time of landing in FIG. 27, the vertical line is a line extended in a straight line for easy understanding of the left and right arm swing balance. The left and right arm swing balance can be diagnosed by comparing the amplitude in the traveling direction of the periodic trajectory on the left and right.
 運動性能診断方法の実施の形態5について
 運動性能診断方法の実施の形態5では、腰部、臀部または胸部の周期軌跡解析によりランニングエコノミーを診断する。
 運動性能診断方法の実施の形態5は、前方に進行する被験者の運動性能診断方法であって、X-Y平面、Y-Z平面またはX-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、軌跡のX軸、Y軸またはZ軸における座標の最大値と最小値の差から振幅を測定するステップとを含む。
About Embodiment 5 of the Exercise Performance Diagnosis Method In Embodiment 5 of the exercise performance diagnosis method, the running economy is diagnosed by analyzing the periodic trajectory of the waist, hips, or chest.
Embodiment 5 of the method for diagnosing motor performance is a method for diagnosing the motion performance of a subject moving forward, the step of specifying the position coordinates of the subject in the XY plane, the YZ plane, or the XZ plane; Specifying the position coordinates a plurality of times to specify the trajectory of the subject, and measuring the amplitude from the difference between the maximum value and the minimum value of the coordinates on the X-axis, Y-axis, or Z-axis of the trajectory.
 運動性能診断方法の実施の形態5では、X-Y平面、Y-Z平面およびX-Z平面における各軸の振幅を容易に測定可能である。振幅を測定することにより、ランニング時の上下左右前後の移動幅が測定できる。この移動幅が少ないほど、ランニングエコノミーが優れていると診断できる。
 図28は、この発明にかかる運動性能診断方法の実施の形態5による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフおよび被験者であるD氏の腰部のY-Z平面の位置座標を示すグラフである。
 A氏は、Y軸(横)方向の振幅が大きいため、ランニングエコノミーが低いといえる。
 一方、D氏は、Y軸(横)方向の振幅が小さいため、ランニングエコノミーが高いといえる。
In the fifth embodiment of the motion performance diagnosis method, the amplitude of each axis in the XY plane, the YZ plane, and the XZ plane can be easily measured. By measuring the amplitude, it is possible to measure the range of movement in the vertical and horizontal directions during running. The smaller the travel width, the better the running economy.
FIG. 28 is a graph showing position coordinates on the YZ plane of the waist of Mr. A who is the subject according to the fifth embodiment of the method for diagnosing athletic performance according to the present invention, and on the YZ plane of the waist of Mr. D who is the subject. It is a graph which shows a position coordinate.
Mr. A can be said to have a low running economy because the amplitude in the Y-axis (lateral) direction is large.
On the other hand, Mr. D can be said to have a high running economy because the amplitude in the Y-axis (lateral) direction is small.
 運動性能診断方法の実施の形態6について
 運動性能診断方法の実施の形態6では、腰部、臀部または胸部の周期軌跡のばらつき解析により運動再現性を診断する。
 運動性能診断方法の実施の形態6は、Y-Z平面における被験者の位置座標を特定するステップと、位置座標を複数回特定し、被験者の軌跡を特定するステップと、少なくとも異なる2周期以上の周期を比較するステップとを含む。この比較するステップは、たとえば第1周期における軌跡と第2周期における軌跡とを比較するステップを含む。
About Embodiment 6 of Exercise Performance Diagnosis Method In Embodiment 6 of the exercise performance diagnosis method, exercise reproducibility is diagnosed by analyzing the variation of the periodic trajectory of the waist, buttocks, or chest.
In the sixth embodiment of the method for diagnosing athletic performance, the step of specifying the position coordinate of the subject in the YZ plane, the step of specifying the position coordinate a plurality of times and specifying the locus of the subject, and at least two different periods Comparing. This comparing step includes, for example, a step of comparing the locus in the first period and the locus in the second period.
 運動性能診断方法の実施の形態6では、固定カメラを用いたモーションキャプチャと異なり、運動開始から終了まで、全ての運動を記録可能である。
 そこで、一定間隔毎に周期軌跡を取得し、そのばらつきを測定することで、被験者の周期運動の再現性の高さが診断可能である。
 なお、周期運動のばらつきは、X軸、Y軸、Z軸毎に取得が可能である。取得方法としては、規格化した取得データにおいて、各測定点の経時的データの標準偏差を個々に計算後、各測定点の標準偏差の算術二乗平均を計算することによって取得する。
 図29は、この発明にかかる運動性能診断方法の実施の形態6による被験者であるA氏の腰部のY-Z平面の位置座標を示すグラフである。
 図30は、この発明にかかる運動性能診断方法の実施の形態6による被験者であるE氏の腰部のY-Z平面の位置座標を示すグラフである。
 図29および図30に示すグラフを得るために、測定時間200秒に対して、周期取得間隔を10秒とし、20回分の周期データから周期運動のばらつきを評価した。
 A氏について、Y軸方向の標準偏差(二乗平均)は、0.0029であり、Z軸方向の標準偏差(二乗平均)は、0.0033であった。
 一方、E氏について、Y軸方向の標準偏差(二乗平均)は、0.0041であり、Z軸方向の標準偏差(二乗平均)は、0.0033であった。
 そのため、A氏は、Y軸方向において、E氏より運動再現性がよいことがわかる。
 また、A氏およびE氏の運動再現性は、Z軸方向において変わらないこともわかる。
In Embodiment 6 of the motion performance diagnosis method, unlike motion capture using a fixed camera, all motions can be recorded from the start to the end of motion.
Therefore, by acquiring a periodic trajectory at regular intervals and measuring the variation, it is possible to diagnose the high reproducibility of the subject's periodic motion.
Note that the variation in the periodic motion can be acquired for each of the X axis, the Y axis, and the Z axis. As the acquisition method, in the standardized acquisition data, the standard deviation of the time-dependent data at each measurement point is individually calculated, and then the arithmetic mean square of the standard deviation at each measurement point is calculated.
FIG. 29 is a graph showing the position coordinates on the YZ plane of the waist of Mr. A who is the subject according to the sixth embodiment of the method for diagnosing athletic performance according to the present invention.
FIG. 30 is a graph showing the position coordinates on the YZ plane of the waist of Mr. E who is the subject according to the sixth embodiment of the method for diagnosing athletic performance according to the present invention.
In order to obtain the graphs shown in FIGS. 29 and 30, the period acquisition interval was set to 10 seconds with respect to the measurement time of 200 seconds, and the variation in the periodic motion was evaluated from the period data for 20 times.
For Mr. A, the standard deviation (root-mean-square) in the Y-axis direction was 0.0029, and the standard deviation (root-mean) in the Z-axis direction was 0.0033.
On the other hand, for Mr. E, the standard deviation (root mean square) in the Y axis direction was 0.0041, and the standard deviation (root mean square) in the Z axis direction was 0.0033.
Therefore, it can be seen that Mr. A has better motion reproducibility than Mr. E in the Y-axis direction.
It can also be seen that Mr. A and Mr. E's motion reproducibility does not change in the Z-axis direction.
 運動性能診断方法の実施の形態7について
 運動性能診断方法の実施の形態7では、腰部、臀部または胸部の周期軌跡の経時変化解析によりフォームの乱れを診断する。
 運動性能診断方法の実施の形態7は、運動性能診断方法の実施の形態1または2において、軌跡を特定するステップを一定時間連続で行い、交点のうちZ軸またはX軸に最も近い交点が経時変化に伴いZ軸方向またはX軸方向における位置変化が見られるか否かを診断するステップを含む。
About Embodiment 7 of the Exercise Performance Diagnosis Method In Embodiment 7 of the exercise performance diagnosis method, the disorder of the form is diagnosed by analyzing the temporal trajectory of the waist, hips, or chest.
In the seventh embodiment of the method for diagnosing athletic performance, in the first or second embodiment of the method for diagnosing athletic performance, the step of specifying the trajectory is performed continuously for a certain time, and the intersection closest to the Z axis or the X axis among the intersections The method includes a step of diagnosing whether a change in position in the Z-axis direction or the X-axis direction is observed with the change.
 運動性能診断方法の実施の形態7では、固定カメラを用いたモーションキャプチャと異なり、運動開始から終了まで、全ての運動を記録可能である。
 そこで、一定間隔毎に周期軌跡を取得し、その経時的変化をプロットすることで、経時的なフォームの乱れを診断することが可能である。
 マラソン等の持続走行運動は、長距離走行時に疲労よって走行支点の位置が下がってくることが知られている。運動性能診断方法の実施の形態7では、交点位置の測定により走行支点位置の測定が可能であるため、経時的に交点位置をプロットすることにより、フォームの乱れや疲労度が測定可能である。
 図31は、この発明にかかる運動性能診断方法の実施の形態7による被験者の腰部のY-Z平面の位置座標を示すグラフである。
 図32は、この発明にかかる運動性能診断方法の実施の形態7による被験者の走行時間と交点位置(Z軸)との関係を示すグラフである。
 図31に示すグラフより、周期軌跡があまり重ならず、フォームに乱れがあることがわかる。
 さらに、図32の示すグラフより、走行時間の経過とともに、交点位置(Z軸)が下がり、疲労度が増していることがわかる。
 また、たとえば被験者の腰部のX-Y平面の位置座標を示すグラフより、前後方向におけるフォームの乱れを診断することができる。
 さらに、被験者の走行時間と交点位置(X軸)との関係を示すグラフより、疲労度を診断することができる。
In Embodiment 7 of the motion performance diagnosis method, unlike motion capture using a fixed camera, all motions can be recorded from the start to the end of motion.
Therefore, it is possible to diagnose form disturbance over time by acquiring periodic trajectories at regular intervals and plotting the changes over time.
It is known that in a continuous running exercise such as a marathon, the position of a running fulcrum is lowered due to fatigue during long-distance running. In the seventh embodiment of the method for diagnosing athletic performance, the travel fulcrum position can be measured by measuring the position of the intersection. Therefore, the disturbance of the foam and the degree of fatigue can be measured by plotting the position of the intersection over time.
FIG. 31 is a graph showing the position coordinates on the YZ plane of the waist of the subject according to the seventh embodiment of the method for diagnosing athletic performance according to the present invention.
FIG. 32 is a graph showing the relationship between the traveling time of the subject and the intersection position (Z axis) according to the seventh embodiment of the method for diagnosing athletic performance according to the present invention.
From the graph shown in FIG. 31, it can be seen that the periodic trajectories do not overlap so much and the form is disturbed.
Furthermore, it can be seen from the graph shown in FIG. 32 that with the passage of travel time, the intersection position (Z-axis) decreases and the degree of fatigue increases.
Further, for example, it is possible to diagnose form disturbance in the front-rear direction from a graph indicating the position coordinates of the waist of the subject on the XY plane.
Furthermore, the degree of fatigue can be diagnosed from a graph showing the relationship between the travel time of the subject and the intersection position (X axis).
 運動性能診断方法の実施の形態8について
 運動性能診断方法の実施の形態8では、腰部、臀部または胸部の周期軌跡の経時変化解析によりフォームの乱れを診断する。
 運動性能診断方法の実施の形態8は、運動性能診断方法の実施の形態3において、軌跡を特定するステップを一定時間連続で行い、Y軸の正方向側における軌跡とY軸の負方向側における軌跡との対称性が経時変化に伴い変化が見られるか否かを診断するステップを含む。
About Embodiment 8 of Exercise Performance Diagnosis Method In Embodiment 8 of the exercise performance diagnosis method, the disorder of the form is diagnosed by analyzing the change in the periodic trajectory of the waist, hips, or chest over time.
The eighth embodiment of the method for diagnosing athletic performance is the same as the third embodiment of the method for diagnosing athletic performance, in which the step of specifying the locus is performed continuously for a certain period of time, and the locus on the positive side of the Y axis and the negative side of the Y axis are The method includes a step of diagnosing whether or not the symmetry with respect to the trajectory changes with time.
 運動性能診断方法の実施の形態8では、固定カメラを用いたモーションキャプチャと異なり、運動開始から終了まで、全ての運動を記録可能である。
 そこで、一定間隔毎に周期軌跡を取得し、その経時的変化をプロットすることで、経時的なフォームの乱れを診断することが可能である。
 図33は、この発明にかかる運動性能診断方法の実施の形態8によるB氏の50分間走行における腰部のY-Z平面の位置座標を示すグラフである。図33に示すグラフでは、時間の経過とともに、周期軌跡が濃色から淡色へと変化させている。
 B氏は、O脚であるため、Z軸の負領域が外側に広がった形になる。これは、着地時に腰部が左右にぶれていることを示している。
 そこで、膝を正中線上に揃えることを意識してランニングした。
 その結果、図33に示すグラフより、最初の10分間ほどは、左右のぶれがおさまっているが、その後に、疲労とともにぶれが大きくなる様子が見て取れる。
 このように疲労によるフォームの経時的な乱れも診断可能である。
In Embodiment 8 of the motion performance diagnosis method, unlike motion capture using a fixed camera, all motions can be recorded from the start to the end of motion.
Therefore, it is possible to diagnose form disturbance over time by acquiring periodic trajectories at regular intervals and plotting the changes over time.
FIG. 33 is a graph showing position coordinates on the YZ plane of the waist during Mr. B's 50-minute run according to the eighth embodiment of the method for diagnosing athletic performance according to the present invention. In the graph shown in FIG. 33, the periodic locus is changed from a dark color to a light color as time passes.
Since Mr. B is an O-leg, the negative region of the Z-axis spreads outward. This indicates that the waist is shaken to the left and right when landing.
Therefore, I ran with the intention of aligning my knees to the midline.
As a result, from the graph shown in FIG. 33, the left and right shakes subside for the first 10 minutes, but after that, it can be seen that the shake increases with fatigue.
In this way, it is possible to diagnose foam over time due to fatigue.
 図34は、この発明にかかるモーションキャプチャ用スポーツウェアの一例を示す背面図解図である。図34に示すモーションキャプチャ用スポーツウェア100は、たとえば図1に示すモーションチャプチャ装置10を収納したモーションキャプチャ用スポーツウェアである。 FIG. 34 is a rear view solution diagram showing an example of motion capture sportswear according to the present invention. A motion capture sportswear 100 shown in FIG. 34 is, for example, a motion capture sportswear containing the motion capture device 10 shown in FIG.
 このモーションキャプチャ用スポーツウェア100は、たとえば腰部および胸部に対応する部分を有するシャツ状のスポーツウェア本体102を含む。 The motion capture sportswear 100 includes a shirt-like sportswear main body 102 having portions corresponding to, for example, the waist and the chest.
 スポーツウェア本体102の腰部に対応する部分には、収納部104が設けられる。収納部104は、たとえば図1に示すモーションキャプチャ装置10を収納するためのものである。収納部104は、収納されたモーションキャプチャ装置10を固定するために、モーションキャプチャ装置10とほぼ同じ大きさに形成される。また、収納部104は、上部に開口を有する。 The storage part 104 is provided in the part corresponding to the waist part of the sportswear main body 102. The storage unit 104 is for storing, for example, the motion capture device 10 shown in FIG. The storage unit 104 is formed to be approximately the same size as the motion capture device 10 in order to fix the stored motion capture device 10. The storage unit 104 has an opening at the top.
 スポーツウェア本体102には、収納部104の開口の近傍に、蓋体106が設けられる。蓋体106は、たとえば面ファスナによって、収納部104の開口をふさぐことができるように形成されている。そのため、収納部104に収納されているモーションキャプチャ装置10が、収納部104から外部に不用意に飛び出しにくい。 The sportswear main body 102 is provided with a lid 106 in the vicinity of the opening of the storage unit 104. The lid body 106 is formed so as to be able to close the opening of the storage portion 104 by, for example, a hook-and-loop fastener. Therefore, it is difficult for the motion capture device 10 stored in the storage unit 104 to inadvertently jump out of the storage unit 104 to the outside.
 収納部104には、図1に示すモーションキャプチャ装置10が収納される。このモーションキャプチャ装置10には、記憶部24に、たとえば上述の運動性能診断方法の実施の形態1~8の少なくとも1つ実施の形態を実施するための動作プログラムも予め書き込まれている。 In the storage unit 104, the motion capture device 10 shown in FIG. 1 is stored. In the motion capture device 10, for example, an operation program for executing at least one of the first to eighth embodiments of the above-described exercise performance diagnosis method is written in the storage unit 24 in advance.
 図34に示すモーションキャプチャ用スポーツウェア100では、着用するだけで、モーションキャプチャ装置10を被験者の腰部に簡単に装着することができる。
 また、図34に示すモーションキャプチャ用スポーツウェア100では、書き込まれているプログラムによって、上述の運動性能診断方法の実施の形態1~8のいずれかを実施することができる。
In the motion capture sportswear 100 shown in FIG. 34, the motion capture device 10 can be easily mounted on the waist of the subject simply by wearing it.
Also, in the sportswear 100 for motion capture shown in FIG. 34, any one of the first to eighth embodiments of the above-described exercise performance diagnosis method can be implemented by a written program.
 上述のモーションキャプチャ装置10は、たとえば、被験者の身体が左右に所定値を超えて動いていると判断した場合に、スピーカ26から「身体が左右に大きく動いています」というような音声メッセージを出力するように構成されてもよく、同様に、被験者の身体が前後、上下に所定値を超えて動いていると判断した場合も、対応する音声メッセージを出力するように構成されてもよい。 For example, the motion capture device 10 outputs a voice message such as “the body is moving greatly to the left and right” from the speaker 26 when it is determined that the body of the subject is moving beyond a predetermined value from side to side. Similarly, when it is determined that the body of the subject is moving beyond a predetermined value back and forth and up and down, a corresponding voice message may be output.
 さらに、このモーションキャプチャ装置10は、たとえば、被験者のピッチ(1周期の逆数)があらかじめタッチパネル30等で設定した所定ピッチを超えていると判断した場合に、スピーカ26から「ピッチが速すぎます」というような音声メッセージを出力するように構成されてもよく、逆に、被験者のピッチが遅すぎると判断した場合も、対応する音声メッセージを出力するように構成されてもよい。 Furthermore, when the motion capture device 10 determines that the subject's pitch (the reciprocal of one cycle) exceeds a predetermined pitch set in advance by the touch panel 30 or the like, the motion capture device 10 “pitch is too fast” from the speaker 26. Such a voice message may be output. Conversely, when it is determined that the pitch of the subject is too slow, the corresponding voice message may be output.
 上述のモーションキャプチャ装置10は、たとえば略矩形板状のケース12を含むが、ケース12は、他の形状に形成されてもよく、たとえば、腕時計のように腕に装着することができるように構成されたり、サングラスのように装着することができるように構成されたりしてもよい。このようにモーションキャプチャ装置10を構成すれば、腕の動きや頭の動きを直視することができる。 The motion capture device 10 described above includes, for example, a case 12 having a substantially rectangular plate shape, but the case 12 may be formed in other shapes, and may be configured to be worn on an arm like a wristwatch, for example. Or configured to be worn like sunglasses. If the motion capture device 10 is configured in this way, it is possible to directly view the movement of the arm and the movement of the head.
 また、上述のモーションキャプチャ装置10は、スピーカ26やタッチパネル30を有するが、入出力端子を介して、外部のスピーカまたはイヤホンや、外部のディスプレイに接続されてもよい。この場合、モーションキャプチャ装置10からスピーカ26やタッチパネル30のディスプレイ機能が削除されてもよい。 The above-described motion capture device 10 includes the speaker 26 and the touch panel 30, but may be connected to an external speaker or earphone or an external display via an input / output terminal. In this case, the display functions of the speaker 26 and the touch panel 30 may be deleted from the motion capture device 10.
 さらに、上述のモーションキャプチャ装置10では、3次元加速度センサ20と演算処理部22とが有線で接続されているが、3次元加速度センサ20と演算処理部22とは、無線で接続されてもよい。その場合、モーションキャプチャ装置10の3次元加速度センサ20を被験者に装着する必要はあるが、モーションキャプチャ装置10の演算処理部22などを被験者に装着する必要はない。 Furthermore, in the motion capture device 10 described above, the three-dimensional acceleration sensor 20 and the arithmetic processing unit 22 are connected by wire, but the three-dimensional acceleration sensor 20 and the arithmetic processing unit 22 may be connected wirelessly. . In this case, the three-dimensional acceleration sensor 20 of the motion capture device 10 needs to be attached to the subject, but the arithmetic processing unit 22 or the like of the motion capture device 10 need not be attached to the subject.
 また、上述のモーションキャプチャ用スポーツウェア100では、シャツ状のスポーツウェア本体102が腰部および胸部に対応する部分を有し、収納部104がスポーツウェア本体102の腰部に対応する部分に設けられているが、スポーツウェア本体は、腰部、臀部または胸部に対応する部分を有し、収納部は、スポーツウェア本体の腰部、臀部または胸部に対応する部分に設けられていればよい。
 スポーツウェア本体は、図34に示すように、シャツ状のスポーツウェア本体であってもよいが、腰部および臀部に対応する部分を有するズボン状のスポーツウェア本体であってよく、あるいは、シャツ状のスポーツウェア本体とズボン状のスポーツウェア本体とをつないだような腰部、胸部および臀部に対応する部分を有するスポーツウェア本体であってもよい。
In the above-described motion capture sportswear 100, the shirt-like sportswear main body 102 has portions corresponding to the waist and the chest, and the storage portion 104 is provided in a portion corresponding to the waist of the sportswear main body 102. However, the sportswear main body has a portion corresponding to the waist, buttocks or chest, and the storage portion only needs to be provided in a portion corresponding to the waist, buttocks or chest of the sportswear body.
As shown in FIG. 34, the sportswear main body may be a shirt-shaped sportswear main body, but may be a trouser-shaped sportswear main body having portions corresponding to the waist and the buttocks, or a shirt-shaped sportswear main body. It may be a sportswear body having portions corresponding to the waist, chest, and buttocks that connect the sportswear body and the pants-like sportswear body.
 この発明にかかるモーションキャプチャ用身体装着具は、身体装着具本体としてのスポーツウェア本体を有するモーションキャプチャ用スポーツウェアに限らず、たとえば、帽子やウエストポーチなどにも適用可能である。 The motion capture body wear device according to the present invention is not limited to motion capture sport wear having a sports wear body as a body wear device body, and can be applied to, for example, a hat or a waist pouch.
 上述のように、この発明では、周期運動に対して重ね合わせを利用し、加速度センサが記録するオーバーシュート、ノイズ、重力加速度が積分出力に影響しないように工夫している。したがって、これまで外部のカメラ等でしかフォームの確認ができなかったが、この発明を利用することによって、個人が一人で練習を行う際のフォーム改善指導や競技中のフォームのくずれ等を指導するためのデータ取得に応用利用することができる。 As described above, in the present invention, superposition is used for periodic motion so that overshoot, noise, and gravitational acceleration recorded by the acceleration sensor do not affect the integrated output. Therefore, until now it was only possible to confirm the form with an external camera, etc., but by using this invention, it is instructed to improve the form when an individual practiced alone or to break the form during competition. Therefore, it can be used for data acquisition.
 また、この発明は、原理的に周期運動するすべての運動解析が可能であり、たとえばテニスラケットのスィング、ゴルフクラブのスィング、野球のバッティング、投球、剣道の素振りなどを複数回繰り返し計測し、各競技独特のフォームの改善指導などに利用可能である。 In addition, this invention is capable of analyzing all the movements that periodically move in principle. For example, tennis racket swing, golf club swing, baseball batting, pitching, kendo swing, etc. are repeatedly measured, It can be used to improve and improve competition-specific forms.
 さらに、この発明は、人間以外にもたとえば競走馬への適用により、競走馬の走行状態の確認や体調の管理などに利用可能である。 Furthermore, the present invention can be used for confirming the running state of the racehorse and managing the physical condition by applying it to a racehorse other than human beings.
 この発明にかかるモーションキャプチャ装置は、特にたとえば、ランニング、テニスラケットのスィング、ゴルフクラブのスィング、野球のバッティング、投球、剣道の素振りなどの周期的な運動部位の動きを捉えるために好適に用いられる。 The motion capture device according to the present invention is particularly suitably used for capturing periodic movements of a moving part such as running, tennis racket swing, golf club swing, baseball batting, pitching, kendo swinging, etc. .
 10 モーションキャプチャ装置
 12 ケース
 20 3次元加速度センサ
 22 演算処理部
 24 記憶部
 26 スピーカ
 30 タッチパネル
 32 電源スイッチ
 100 モーションキャプチャ用スポーツウェア
 102 スポーツウェア本体
 104 収納部
DESCRIPTION OF SYMBOLS 10 Motion capture apparatus 12 Case 20 Three-dimensional acceleration sensor 22 Arithmetic processing part 24 Memory | storage part 26 Speaker 30 Touch panel 32 Power switch 100 Sportswear for motion capture 102 Sportswear main body 104 Storage part

Claims (22)

  1.  周期的な運動部位における加速度を計測するための加速度センサ、および
     前記加速度センサで計測された加速度波形を演算処理するための演算処理部を含む、モーションキャプチャ装置であって、
     前記運動部位において計測する運動の基本動作の1回分を1周期として、前記運動部位における加速度を前記加速度センサで複数周期回計測し、
     前記演算処理部は、
      前記加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化し、さらに
      平均化した加速度波形を2回時間積分することによって前記運動部位の位置を算出する、モーションキャプチャ装置。
    A motion capture device comprising: an acceleration sensor for measuring acceleration in a periodic motion region; and an arithmetic processing unit for arithmetic processing of an acceleration waveform measured by the acceleration sensor,
    One cycle of the basic motion of the movement measured at the exercise site is set as one cycle, and the acceleration at the exercise site is measured a plurality of times by the acceleration sensor,
    The arithmetic processing unit
    A motion capture device that calculates and superimposes two or more cycles of acceleration waveforms output from the acceleration sensor, and calculates the position of the moving part by time-integrating the averaged acceleration waveforms twice.
  2.  前記演算処理部は、
      前記加速度センサで計測された加速度波形から重力加速度成分を除去するために、前記平均化した加速度波形から直流成分を除去し、
      前記直流成分を除去した前記平均化した加速度波形を1回目の時間積分することによって前記運動部位の相対速度を表す速度波形に変換し、
      前記速度波形から定速成分を除去するために、前記速度波形から直流成分を除去し、さらに
      前記直流成分を除去した前記速度波形を2回目の時間積分することによって前記運動部位の相対位置を表す位置波形に変換する、請求項1に記載のモーションキャプチャ装置。
    The arithmetic processing unit
    In order to remove the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor, the DC component is removed from the averaged acceleration waveform,
    The averaged acceleration waveform from which the DC component has been removed is converted into a velocity waveform representing the relative velocity of the exercise site by integrating the time for the first time,
    In order to remove the constant speed component from the velocity waveform, the direct current component is removed from the velocity waveform, and the velocity waveform from which the direct current component has been removed is integrated for the second time to represent the relative position of the moving part. The motion capture device according to claim 1, wherein the motion capture device converts the waveform into a position waveform.
  3.  前記演算処理部は、前記1周期の区間を明確にするために、前記加速度センサで計測された加速度波形の重ね合わせを行い、1周期以上の周期間で自己相関係数を取り、最も自己相関係数が高くなる位置で各周期の重ね合わせができたと判断する、請求項1または請求項2に記載のモーションキャプチャ装置。 The arithmetic processing unit superimposes acceleration waveforms measured by the acceleration sensor in order to clarify the section of one cycle, takes an autocorrelation coefficient between one or more cycles, and sets the most self-phase. The motion capture device according to claim 1, wherein it is determined that the respective cycles are overlapped at a position where the number of relations is high.
  4.  前記位置波形を、互いに直交するX-Y平面、Y-Z平面およびZ-X平面におけるグラフに表示するためのディスプレイをさらに含む、請求項1ないし請求項3のいずれか1項に記載のモーションキャプチャ装置。 The motion according to any one of claims 1 to 3, further comprising a display for displaying the position waveform on a graph in an XY plane, a YZ plane, and a ZX plane orthogonal to each other. Capture device.
  5.  周期的な運動部位において計測する運動の基本動作の1回分を1周期として、前記運動部位における加速度を加速度センサで複数周期回計測し、
     演算処理部が、
      前記加速度センサから出力される加速度波形を2周期以上重ね合わせ平均化し、さらに
      平均化した加速度波形を2回時間積分することによって前記運動部位の位置を算出する、モーションキャプチャ方法。
    With one cycle of the basic motion of movement measured at a periodic motion site as one cycle, the acceleration at the motion site is measured a plurality of times with an acceleration sensor,
    The arithmetic processing unit
    A motion capture method, wherein the acceleration waveform output from the acceleration sensor is superposed and averaged over two periods, and the position of the motion part is calculated by time-integrating the averaged acceleration waveform twice.
  6.  前記演算処理部は、
      前記加速度センサで計測された加速度波形から重力加速度成分を除去するために、前記平均化した加速度波形から直流成分を除去し、
      前記直流成分を除去した前記平均化した加速度波形を1回目の時間積分することによって前記運動部位の相対速度を表す速度波形に変換し、
      前記速度波形から定速成分を除去するために、前記速度波形から直流成分を除去し、さらに
      前記直流成分を除去した前記速度波形を2回目の時間積分することによって前記運動部位の相対位置を表す位置波形に変換する、請求項5に記載のモーションキャプチャ方法。
    The arithmetic processing unit
    In order to remove the gravitational acceleration component from the acceleration waveform measured by the acceleration sensor, the DC component is removed from the averaged acceleration waveform,
    The averaged acceleration waveform from which the DC component has been removed is converted into a velocity waveform representing the relative velocity of the exercise site by integrating the time for the first time,
    In order to remove the constant speed component from the velocity waveform, the direct current component is removed from the velocity waveform, and the velocity waveform from which the direct current component has been removed is integrated for the second time to represent the relative position of the moving part. The motion capture method according to claim 5, wherein the motion capture method is converted into a position waveform.
  7.  前記演算処理部は、前記1周期の区間を明確にするために、前記加速度センサで計測された加速度波形の重ね合わせを行い、1周期以上の周期間で自己相関係数を取り、最も自己相関係数が高くなる位置で各周期の重ね合わせができたと判断する、請求項5または請求項6に記載のモーションキャプチャ方法。 The arithmetic processing unit superimposes acceleration waveforms measured by the acceleration sensor in order to clarify the section of one cycle, takes an autocorrelation coefficient between one or more cycles, and sets the most self-phase. The motion capture method according to claim 5, wherein it is determined that the respective cycles are overlapped at a position where the number of relations is high.
  8.  前記位置波形を、互いに直交するX-Y平面、Y-Z平面およびZ-X平面におけるグラフにディスプレイで表示する、請求項5ないし請求項7のいずれか1項に記載のモーションキャプチャ方法。 The motion capture method according to any one of claims 5 to 7, wherein the position waveform is displayed on a graph in a graph on an XY plane, a YZ plane, and a ZX plane orthogonal to each other.
  9.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の足部から頭部に向かう方向をZ軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、少なくとも1点の交点を有する前記被験者の軌跡を特定するステップと、
     前記交点のうち前記Z軸に最も近い交点のZ軸方向の位置を特定するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    Specifying the position coordinates of the subject in the YZ plane, wherein the direction from the foot to the head of the subject is the Z-axis, and the horizontal direction is the Y-axis with respect to the traveling direction of the subject;
    Identifying the position coordinates a plurality of times and identifying a trajectory of the subject having at least one intersection;
    Specifying the position in the Z-axis direction of the intersection closest to the Z-axis among the intersections.
  10.  前記位置座標を特定するステップは、前記被験者の腰部に装着された加速度センサから得られる情報により位置座標を特定する、請求項9に記載の運動性能診断方法。 10. The method for diagnosing athletic performance according to claim 9, wherein the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor attached to the waist of the subject.
  11.  前記軌跡を特定するステップを一定時間連続で行い、前記交点のうち前記Z軸に最も近い交点が経時変化に伴いZ軸方向における位置変化が見られるか否かを診断するステップを含む、請求項9または請求項10に記載の運動性能診断方法。 The step of performing the step of specifying the trajectory continuously for a certain period of time, and diagnosing whether or not the intersection closest to the Z axis among the intersections is subject to a change in position in the Z axis direction with time change. The method for diagnosing athletic performance according to claim 9 or claim 10.
  12.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の進行方向をX軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、X-Y平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、少なくとも1点の交点を有する前記被験者の軌跡を特定するステップと、
     前記交点のうち前記X軸に最も近い交点のX軸方向の位置を特定するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    Identifying the position coordinates of the subject in the XY plane, where the subject's direction of travel is the X axis, and the left and right direction is the Y axis based on the subject's direction of travel;
    Identifying the position coordinates a plurality of times and identifying a trajectory of the subject having at least one intersection;
    Specifying the position of the intersection closest to the X axis in the X axis direction among the intersections.
  13.  前記軌跡を特定するステップを一定時間連続で行い、前記交点のうち前記X軸に最も近い交点が経時変化に伴いX軸方向における位置変化が見られるか否かを診断するステップを含む、請求項12に記載の運動性能診断方法。 The step of specifying the locus is performed continuously for a certain period of time, and includes a step of diagnosing whether or not the intersection closest to the X axis among the intersections is subject to a change in position in the X axis direction with time. 12. The method for diagnosing motor performance according to item 12.
  14.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の足部から頭部に向かう方向をZ軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、前記被験者の軌跡を特定するステップと、
     前記Y軸の正方向側における軌跡と前記Y軸の負方向側における軌跡との対称性を比較するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    Specifying the position coordinates of the subject in the YZ plane, wherein the direction from the foot to the head of the subject is the Z-axis, and the horizontal direction is the Y-axis with respect to the traveling direction of the subject;
    Identifying the position coordinates a plurality of times and identifying the trajectory of the subject;
    A method for diagnosing athletic performance, comprising: comparing symmetry between a locus on the positive direction side of the Y axis and a locus on the negative direction side of the Y axis.
  15.  前記軌跡を特定するステップを一定時間連続で行い、前記Y軸の正方向側における軌跡と前記Y軸の負方向側における軌跡との対称性が経時変化に伴い変化が見られるか否かを診断するステップを含む、請求項14に記載の運動性能診断方法。 The step of specifying the locus is continuously performed for a certain period of time, and it is diagnosed whether or not the symmetry between the locus on the positive direction side of the Y axis and the locus on the negative direction side of the Y axis changes with time. The method for diagnosing athletic performance according to claim 14, comprising the step of:
  16.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の進行方向をX軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、X-Y平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、前記被験者の軌跡を特定するステップと、
     前記Y軸の正方向側における軌跡と前記Y軸の負方向側における軌跡との対称性を比較するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    Identifying the position coordinates of the subject in the XY plane, where the subject's direction of travel is the X axis, and the left and right direction is the Y axis based on the subject's direction of travel;
    Identifying the position coordinates a plurality of times and identifying the trajectory of the subject;
    A method for diagnosing athletic performance, comprising: comparing symmetry between a locus on the positive direction side of the Y axis and a locus on the negative direction side of the Y axis.
  17.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の進行方向をX軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、X-Y平面、前記被験者の足部から頭部に向かう方向をZ軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面または前記被験者の足部から頭部に向かう方向をZ軸とし、前記被験者の進行方向をX軸とした、X-Z平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、前記被験者の軌跡を特定するステップと、
     前記軌跡のX軸、Y軸またはZ軸における座標の最大値と最小値との差を判定するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    The subject's advancing direction is the X axis, the left and right direction is the Y axis based on the advancing direction of the subject, the XY plane, the direction from the subject's foot to the head is the Z axis, In the XZ plane, the YZ plane or the direction from the subject's foot to the head is the Z axis, and the subject's traveling direction is the X axis, with the left-right direction as the Y axis relative to the direction of travel Identifying the position coordinates of the subject;
    Identifying the position coordinates a plurality of times and identifying the trajectory of the subject;
    Determining a difference between a maximum value and a minimum value of coordinates on the X-axis, Y-axis, or Z-axis of the trajectory.
  18.  前方に進行する被験者の運動性能診断方法であって、
     前記被験者の足部から頭部に向かう方向をZ軸とし、前記被験者の進行方向を基準に左右方向をY軸とした、Y-Z平面における前記被験者の位置座標を特定するステップと、
     前記位置座標を複数回特定し、前記被験者の軌跡を特定するステップと、
     少なくとも異なる2周期以上の周期を比較するステップとを含む、運動性能診断方法。
    A method for diagnosing motor performance of a subject that progresses forward,
    Specifying the position coordinates of the subject in the YZ plane, wherein the direction from the foot to the head of the subject is the Z-axis, and the horizontal direction is the Y-axis with respect to the traveling direction of the subject;
    Identifying the position coordinates a plurality of times and identifying the trajectory of the subject;
    A method for diagnosing athletic performance, comprising comparing at least two different periods.
  19.  前記位置座標を特定するステップは、前記被験者の腰部、臀部または胸部に装着された加速度センサから得られる情報により位置座標を特定する、請求項12ないし請求項18のいずれか1項に記載の運動性能診断方法。 The exercise according to any one of claims 12 to 18, wherein the step of specifying the position coordinates specifies the position coordinates based on information obtained from an acceleration sensor attached to the waist, buttocks, or chest of the subject. Performance diagnostic method.
  20.  請求項1ないし請求項4のいずれか1項に記載するモーションキャプチャ装置を用いた請求項9ないし請求項19のいずれか1項に記載する運動性能診断方法。 The method for diagnosing athletic performance according to any one of claims 9 to 19, wherein the motion capture device according to any one of claims 1 to 4 is used.
  21.  請求項5ないし請求項8のいずれか1項に記載するモーションキャプチャ方法を用いた請求項9ないし請求項19のいずれか1項に記載する運動性能診断方法。 The method for diagnosing athletic performance according to any one of claims 9 to 19, wherein the motion capture method according to any one of claims 5 to 8 is used.
  22.  モーションチャプチャ装置を備えたモーションキャプチャ用身体装着具であって、
     腰部、臀部または胸部に対応する部分を有する身体装着具本体、
     前記身体装着具本体の前記腰部、臀部または胸部に対応する部分に設けられた収納部、および
     前記収納部に収納された請求項1ないし請求項4のいずれか1項に記載のモーションキャプチャ装置を含む、モーションキャプチャ用身体装着具。
    A motion capture body wearing device equipped with a motion capture device,
    Body wearable body having a portion corresponding to the waist, buttocks or chest,
    The storage part provided in the part corresponding to the said waist | hip | lumbar part, the buttocks, or the chest of the said body wearing instrument main body, The motion capture apparatus of any one of Claims 1 thru | or 4 accommodated in the said storage part. Including bodywear for motion capture.
PCT/JP2015/072621 2014-08-13 2015-08-10 Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture WO2016024565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016542575A JP6319446B2 (en) 2014-08-13 2015-08-10 Motion capture device, motion capture method, exercise performance diagnosis method, and body wear device for motion capture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-164823 2014-08-13
JP2014164823 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016024565A1 true WO2016024565A1 (en) 2016-02-18

Family

ID=55304192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072621 WO2016024565A1 (en) 2014-08-13 2015-08-10 Motion capture device, motion capture method, movement performance diagnostic method and device worn on body for motion capture

Country Status (2)

Country Link
JP (1) JP6319446B2 (en)
WO (1) WO2016024565A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088041A1 (en) * 2016-11-11 2018-05-17 ソニー株式会社 Information processing device
WO2019176228A1 (en) * 2018-03-13 2019-09-19 住友電気工業株式会社 Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method
JP2021176347A (en) * 2020-05-07 2021-11-11 コニカミノルタ株式会社 Action information display device
WO2022230097A1 (en) * 2021-04-28 2022-11-03 日本電信電話株式会社 Motor ability estimation device, motor ability estimation method, and program
JP7493721B2 (en) 2020-11-24 2024-06-03 日本電信電話株式会社 Adaptability assessment device, adaptability assessment method, and adaptability assessment program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146103A (en) 2019-03-11 2020-09-17 本田技研工業株式会社 Mounting posture estimation method of inertial sensor
CN111323072B (en) * 2020-03-18 2021-10-22 博深普锐高(上海)工具有限公司 Novel woodworking tool wear online diagnosis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073285A (en) * 2006-09-22 2008-04-03 Seiko Epson Corp Shoe, and walking/running motion evaluation support system for person wearing the shoe
JP2012024275A (en) * 2010-07-22 2012-02-09 Omron Healthcare Co Ltd Walking posture determination device
JP2012205816A (en) * 2011-03-30 2012-10-25 Omron Healthcare Co Ltd Walking posture determination device
JP2013244055A (en) * 2012-05-23 2013-12-09 Mitsubishi Chemicals Corp Information processor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH703381B1 (en) * 2010-06-16 2018-12-14 Myotest Sa Integrated portable device and method for calculating biomechanical parameters of the stride.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073285A (en) * 2006-09-22 2008-04-03 Seiko Epson Corp Shoe, and walking/running motion evaluation support system for person wearing the shoe
JP2012024275A (en) * 2010-07-22 2012-02-09 Omron Healthcare Co Ltd Walking posture determination device
JP2012205816A (en) * 2011-03-30 2012-10-25 Omron Healthcare Co Ltd Walking posture determination device
JP2013244055A (en) * 2012-05-23 2013-12-09 Mitsubishi Chemicals Corp Information processor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOYO TAKENOSHITA ET AL.: "Quantitative Assessment System for Gait of the Elderly Using a Portable Acceleration Monitor Device", TRANSACTIONS OF JAPANESE SOCIETY FOR MEDICAL AND BIOLOGICAL ENGINEERING, vol. 43, no. 1, 10 March 2005 (2005-03-10), pages 140 - 150 *
TEPPEI KOBAYASHI: "Kinematic Analysis System of Walking by Acceleration Sensor -An Estimation of Walk-Mate in Post-operation Rehabilitation of Hip-joint Disease", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 42, no. 5, 31 May 2006 (2006-05-31), pages 567 - 576 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088041A1 (en) * 2016-11-11 2018-05-17 ソニー株式会社 Information processing device
CN109891251A (en) * 2016-11-11 2019-06-14 索尼公司 Information processing equipment
JPWO2018088041A1 (en) * 2016-11-11 2019-09-26 ソニー株式会社 Information processing device
CN109891251B (en) * 2016-11-11 2021-11-23 索尼公司 Information processing apparatus
US11243228B2 (en) 2016-11-11 2022-02-08 Sony Corporation Information processing apparatus
JP7056575B2 (en) 2016-11-11 2022-04-19 ソニーグループ株式会社 Information processing equipment
WO2019176228A1 (en) * 2018-03-13 2019-09-19 住友電気工業株式会社 Motor function evaluation device, motor function evaluation system, motor function evaluation program and motor function evaluation method
JP2021176347A (en) * 2020-05-07 2021-11-11 コニカミノルタ株式会社 Action information display device
JP7493721B2 (en) 2020-11-24 2024-06-03 日本電信電話株式会社 Adaptability assessment device, adaptability assessment method, and adaptability assessment program
WO2022230097A1 (en) * 2021-04-28 2022-11-03 日本電信電話株式会社 Motor ability estimation device, motor ability estimation method, and program

Also Published As

Publication number Publication date
JP6319446B2 (en) 2018-05-09
JPWO2016024565A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6319446B2 (en) Motion capture device, motion capture method, exercise performance diagnosis method, and body wear device for motion capture
CN107174255B (en) Three-dimensional gait information acquisition and analysis method based on Kinect somatosensory technology
JP5724237B2 (en) Walking change judgment device
JP6834553B2 (en) Motion analysis system, motion analysis device, motion analysis program and motion analysis method
JP6075198B2 (en) Walking posture meter and program
JP6596945B2 (en) Motion analysis method, motion analysis apparatus, motion analysis system, and motion analysis program
CN105999682A (en) Sports training monitoring system
WO2012011350A1 (en) Gait posture assessment device
JP5896240B2 (en) Exercise support device, exercise support method, and exercise support program
JP6446941B2 (en) Kinematic analysis apparatus, method, and program
CN108348195B (en) Walking movement display system and program
JP2016034480A (en) Notification device, exercise analysis system, notification method, notification program, exercise support method, and exercise support device
US11660505B2 (en) Stability evaluation system, program, and method
JP2005110850A (en) Body movement evaluating method, swing motion evaluating method, and body movement measuring system
JP2009050721A (en) Swing movement assessment method, swing movement assessment apparatus, swing movement assessment system, and swing movement assessment program
JP6241488B2 (en) Exercise support device, exercise support method, and exercise support program
US20160058373A1 (en) Running Energy Efficiency
JPWO2015129883A1 (en) Walking state detection method and walking state detection device
WO2019063706A1 (en) Device for the determination and analysis of the motor skill and the oculomotor skill of a person
JP6648439B2 (en) Display control device, method, and program
US20110166821A1 (en) System and method for analysis of ice skating motion
JP2012213624A (en) Device and method for determination of physical ability
JP6593683B2 (en) Walking evaluation system
CN112839569B (en) Method and system for assessing human movement
JP2016032525A (en) Exercise ability evaluation method, exercise ability evaluation apparatus, exercise ability evaluation system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832187

Country of ref document: EP

Kind code of ref document: A1