WO2016023332A1 - 一种光网络智能化的实现方法以及装置 - Google Patents
一种光网络智能化的实现方法以及装置 Download PDFInfo
- Publication number
- WO2016023332A1 WO2016023332A1 PCT/CN2015/070337 CN2015070337W WO2016023332A1 WO 2016023332 A1 WO2016023332 A1 WO 2016023332A1 CN 2015070337 W CN2015070337 W CN 2015070337W WO 2016023332 A1 WO2016023332 A1 WO 2016023332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- port
- module
- electronic tag
- management system
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
Definitions
- the present invention relates to the field of optical networks, and in particular, to an implementation method and apparatus for intelligentizing an optical network.
- a passive optical network (PON) system includes: an optical line terminal (OLT) 110, an optical distribution network (ODN) 120, and an optical network.
- OLT optical line terminal
- ODN optical distribution network
- Device 130 resource management system 140, work order system 150, and PON device management system 160.
- the resource management system 140 is configured to manage resource information such as an optical line terminal, an optical distribution network, and an optical network device, and the work order system 150 is used for construction worker construction work order management, and the PON equipment management system 160 pairs the optical line terminal 110 and the light.
- Network device 130 is configured and managed.
- the optical distribution network 120 is generally composed of passive components such as a trunk optical fiber, an optical splitter 121, and a split optical fiber.
- the trunk optical fiber is connected to the optical line terminal 110 and the optical splitter 121, and the optical splitter 121 is connected to the optical network through a split optical fiber.
- Device 130 For the convenience of construction and maintenance management, the trunk fiber and the branch fiber are usually connected at the wiring module.
- the wiring module includes but is not limited to an optical distribution frame (ODF) 122 and a fiber distribution box (Fiber Distribution). Terminal, FDT) 123 and Fiber Access Terminal (FAT) 124, the connection includes, but is not limited to, using a fiber optic connector, a cold junction, or a fusion splicer.
- the traditional optical distribution network usually uses a paper label to identify the fiber link information, that is, a paper label is attached to the optical fiber, and the paper label indicates, but is not limited to, device information and geographical location information of the last connected device from the optical fiber.
- the port number, the device information of the next splicing device to which the fiber is to be connected, the geographical location information, and the port number thereof, and the splicing device includes, but is not limited to, an optical fiber distribution frame, a cable delivery box, and an optical fiber distribution box.
- the paper is manually
- the tag information is entered into the resource management system for subsequent maintenance process to find and use. With the large-scale construction of fiber access networks and the massive growth of optical fibers, the traditional fiber network management problems have become more and more prominent.
- the technical problem to be solved by the embodiments of the present invention is how to solve the technical problem that the optical fiber network management problem in the prior art is inefficient and prone to misoperation.
- the present invention provides a method for implementing an intelligent optical network, comprising: obtaining a connection relationship between a port of a wiring module and an optical line terminal OLT and an optical network device, wherein the wiring module is configured An electronic tag carrier corresponding to the port of the wiring module; generating an electronic tag for the port of the wiring module according to a connection relationship between the port of the wiring module and the OLT and the optical network device; in the wiring module
- the control management module is connected to the electronic tag carrier, and the electronic tag is written into the corresponding electronic tag carrier by the control management module.
- the method further includes: reading an in-position state of the electronic tag carrier, obtaining the wiring module according to an in-position state of the electronic tag carrier The usage status of the port, or reading the electronic tag information in the electronic tag carrier, and obtaining the connection relationship of the port of the wiring module according to the electronic tag information.
- the method further includes: inputting first electronic tag information to the control management module, where the control management module finds the first electronic tag When the information corresponds to the first electronic label carrier, the indicator light of the port of the wiring module corresponding to the first electronic label carrier is operated accordingly.
- the obtaining the connection relationship between the port of the wiring module and the optical line terminal and the optical network device includes: if the resource management system has the complete wiring module Connection between the port and the optical line terminal and the optical network device The relationship is obtained from the resource management system to obtain a connection relationship between the port of the wiring module and the optical line terminal and the optical network device.
- the connection relationship between the port of the acquisition wiring module and the optical line terminal and the optical network device includes: detecting, by the receiving devices in the area to be tested, An optical power, wherein the receiving device is an optical line terminal or an optical network device, the first optical power is power of the receiving device receiving the signal; indicating that the optical fiber connected to the port of the wiring module is bent; Detecting a second optical power received by each receiving device in the area to be tested, where the second optical power is a power that the receiving device receives a signal after the optical fiber is bent; if the first receiving device receives the first Determining, by the first receiving device, that the difference between the optical power and the second optical power is greater than a threshold, or the first receiving device receives the alarm information, determining that a connection relationship exists between the port of the wiring module and the first receiving device, and according to the The connection relationship between the port of the wiring module and the first receiving device acquires a connection relationship between the port of the wiring module and the optical line terminal
- the signal is a signal that is sent when a normal communication service is performed between the transmitting device and the receiving device.
- the port of the wiring module is a port of a fiber distribution frame or a port of a cable delivery box or a port in a fiber distribution box.
- the present invention provides an optical distribution network (ODN) management system, including: an acquisition module, a generation module, and a write module, where the acquisition module is configured to acquire a port of the wiring module, an optical line terminal OLT, and an optical network device.
- ODN optical distribution network
- a connection relationship between the electronic module carrier corresponding to the port of the wiring module, the obtaining module transmitting the connection relationship to the generating module, and the generating module Receiving the connection relationship, generating an electronic tag for a port of the wiring module according to a connection relationship of a port of the wiring module, the generating module transmitting the electronic tag to the writing module;
- a control management module is further disposed in the module, the control management module is connected to the electronic tag carrier, the writing module is configured to receive the electronic tag, and write the electronic tag into a corresponding electronic device by using the control management module In the label carrier.
- the system further includes a reading module, the reading module is configured to read an in-position state of the electronic tag carrier, according to the electronic Obtaining a state of use of a port of the wiring module in an in-position state of the tag carrier, or reading electronic tag information in the electronic tag carrier, and obtaining a connection relationship of a port of the wiring module according to the electronic tag information .
- the system further includes an input module, where the input module is configured to input first electronic tag information to the control management module, where the control management module searches When the first electronic tag carrier corresponding to the first electronic tag information is used, the indicator of the port of the wiring module corresponding to the first electronic tag carrier is correspondingly operated.
- the acquiring module is further configured to have a complete connection between the port of the wiring module and the optical line terminal and the optical network device in the resource management system. And obtaining, by the resource management system, a connection relationship between the port of the wiring module and the optical line terminal and the optical network device.
- the acquiring module further includes a detecting unit, an indicating unit, and a determining unit, where the detecting unit is configured to detect the first received by each receiving device in the area to be tested Optical power, wherein the receiving device is an optical line terminal or an optical network device, the first optical power is power received by the receiving device, and the detecting unit sends the first optical power to the a determining unit, configured to indicate that the optical fiber connected to the port of the wiring module is bent; the detecting unit is further configured to detect a second optical power received by each receiving device in the area to be tested, where The second optical power is power of the receiving device receiving the signal after the optical fiber is bent, the detecting unit sends the second optical power to the determining unit; and the determining unit is configured to receive the first Determining a port of the wiring module and the first part when a difference between a first optical power and a second optical power received by the device is greater than a threshold or the first receiving device receives the alarm information
- the determining unit is configured to receive the first Determin
- the signal is a signal that is sent when a normal communication service is performed between the transmitting device and the receiving device.
- the port of the wiring module is a port of a fiber distribution frame or a port of a cable delivery box or a port in a fiber distribution box.
- the present invention provides an optical network system, including: an optical line terminal, an optical distribution network, an optical network device, a resource management system, and an ODN management system, where the optical line terminal is connected through the optical distribution network.
- the optical network device, the ODN management system is connected to the optical line terminal, and the ODN management system is connected to the resource management system, wherein the ODN management system is the ODN management system according to any one of the above items.
- the present invention provides a method for implementing an optical network intelligentization, including: receiving work order information sent by an ODN management system, and an indication sent by an ODN management system to bend a port of the wiring module,
- the work order information includes information of a port of the wiring module that needs to obtain a connection relationship; and the optical fiber connected to the port of the wiring module is bent according to the work order information; and sent to the ODN management system Information about bent fiber.
- the method further includes: supplying power to the wiring module.
- the method further includes: establishing a connection with the ODN management system by using a wireless manner.
- the method further includes: receiving the cancellation sent by the ODN management system to bend the port of the wiring module And instructing to cancel bending the optical fiber connected to the port of the wiring module according to the work order information.
- the in-position state sent by the control management module is received, and the in-position state is sent to the ODN management system, or received by the control management module.
- Electronic tag information, and the electronic tag information is sent to the ODN management system.
- the method further includes: receiving the first electronic tag information sent by the ODN management system, and sending the first electronic tag information to the control management module, When the control management module finds the first electronic label carrier corresponding to the first electronic label information, the indicator light of the port of the wiring module corresponding to the first electronic label carrier is correspondingly operated.
- the present invention provides an ODN management terminal, including: a receiving module, a bending module, and a sending module, where the receiving module is configured to receive the work sent by the ODN management system. a single information and an indication sent by the ODN management system to bend a port of the wiring module, wherein the work order information includes information of a port of a wiring module that needs to acquire a connection relationship, and the receiving module
- the work order information is sent to the bending module; the bending module is configured to receive the work order information, and bend an optical fiber connected to a port of the wiring module according to the work order information; Transmitting information of the bent fiber to the ODN management system.
- the terminal further includes a power supply module, and the power supply module is configured to supply power to the wiring module.
- the terminal further includes a wireless communication module, where the wireless communication module is configured to establish, by using a wireless manner, the ODN management system connection.
- the receiving module is further configured to receive an indication sent by the ODN management system to cancel bending of the port of the wiring module, and according to the work order information The bending of the optical fiber connected to the port of the wiring module is cancelled.
- the receiving module is further configured to receive an in-position state sent by the control management module, and send the in-position state to the ODN management system, or The receiving module is configured to receive the electronic tag information sent by the control management module, and send the electronic tag information to the ODN management system.
- the receiving module is further configured to receive the first electronic tag information sent by the ODN management system, and send the electronic tag information to the control management module, where When the control management module finds the first electronic label carrier corresponding to the first electronic label information, the indicator light of the port of the wiring module corresponding to the first electronic label carrier is correspondingly operated.
- the traditional optical distribution network is upgraded and upgraded, and the optical fiber distribution frame, the optical cable transfer box, the optical fiber distribution box, and the like are provided.
- the port at the port adds an electronic tag carrier, and the port connection relationship is electronically written to the electronic tag carrier.
- FIG. 1 is a schematic structural diagram of an implementation manner of a prior art passive optical network
- FIG. 2 is a schematic structural diagram of an embodiment of an optical network system according to the present invention.
- FIG. 3 is a schematic diagram of equipment modification of a wiring module in an optical network system according to the present invention.
- FIG. 4 is a flowchart of an implementation manner of an optical network intelligent implementation method according to the present invention.
- FIG. 5 is a schematic structural diagram of a first embodiment of an ODN management system according to the present invention.
- FIG. 6 is a schematic structural diagram of an implementation manner of an acquisition module of an ODN management system according to the present invention.
- FIG. 7 is a schematic structural diagram of a second embodiment of an ODN management system according to the present invention.
- FIG. 8 is a schematic structural diagram of a third embodiment of an ODN management system according to the present invention.
- FIG. 9 is a schematic structural diagram of a fourth embodiment of an ODN management system according to the present invention.
- FIG. 10 is a flowchart of another embodiment of an implementation method of an optical network intelligentization according to the present invention.
- FIG. 11 is a schematic structural diagram of an implementation manner of an ODN management terminal according to the present invention.
- FIG. 12 is a schematic structural diagram of another embodiment of an ODN management terminal according to the present invention.
- FIG. 2 is a schematic structural diagram of an embodiment of an optical network system according to the present invention.
- the system of the present embodiment includes an optical line terminal 110, an optical distribution network 120, an optical network device 130, a resource management system 140, a work order system 150, a PON device management system 160, an ODN management system 170, and an ODN management terminal 180.
- the resource management system 140 is coupled to the PON device management system 160 and the ODN management system 170, respectively.
- the work order system 150 is connected to the PON device management system 160 and the ODN management system 170 respectively.
- the PON device management system 160 communicates with the optical line terminal 110 through the Internet.
- the ODN management system 170 can directly communicate with the optical fiber distribution frame 122 and the optical cable through the wired network.
- the wiring device such as the box 123 and the fiber distribution box 124 communicates, and communication can be established between the optical fiber distribution frame 122, the optical fiber cable transfer box 123, and the optical fiber distribution box 124 by establishing a wireless connection with the management terminal 180.
- the PON device management system 160 and the ODN management system 170 can be two independent systems or two different modules in one management system.
- the optical line terminal 110 establishes a connection relationship with the optical network device 130 through the optical distribution network 120.
- the optical distribution network 120 is generally composed of passive components such as a trunk optical fiber, an optical splitter 121, and a split optical fiber.
- the trunk optical fiber is connected to the optical line terminal 110 and the optical splitter 121, and the optical splitter 121 is connected to the optical fiber through the split optical fiber.
- Optical network device 130 is generally composed of passive components such as a trunk optical fiber, an optical splitter 121, and a split optical fiber.
- the trunk optical fiber is connected to the optical line terminal 110 and the optical splitter 121
- the optical distribution network 120 is typically at the port of the wiring module.
- the connection of the optical fibers is accomplished by a fiber optic connector including, but not limited to, an optical fiber distribution frame 122, a fiber optic cable transfer box 123, and a fiber optic fiber distribution box 124.
- the port on the optical line terminal 1 is connected to the first port of the first fiber distribution frame 122 through the first optical fiber, and the first port of the first optical fiber distribution frame 122 is connected to the second optical fiber through the second optical fiber.
- the first port of the second fiber distribution frame 122, the first port of the second fiber distribution frame 122 is connected to the first port of the cable transfer box 123 through the third optical fiber, and the first port of the cable transfer box 123 passes through the fourth optical fiber.
- the first output port of the optical splitter 121 is connected to the first port in the fiber splitter box 124 through the fifth optical fiber, and the first port in the fiber splitter box 124 passes the first port.
- the six fibers are connected to the ports of the optical network device 1, thereby constituting a fiber link from the optical line terminal 1 to the optical network device 1.
- the optical fiber distribution frame 122 is generally provided with one or more optical fiber distribution trays 200 , and one optical fiber distribution board 200 is disposed in each of the optical fiber distribution trays 200 . Or a plurality of fiber optic adapters 201 for inserting fibers with fiber optic connectors to complete the connection of the fibers.
- control management module 202 and the electronic tag carrier adapter disk 203 are first installed in the fiber distribution frame 122, and the electronic tag carrier 207 is installed on each fiber jumper (not drawn in the figure). And wherein the control management module 202 can provide an interface connected to the ODN management system 170 and the ODN management terminal 180, store information identifying the fiber distribution frame, and establish a connection with the electronic tag carrier adapter disk 203 to read/write electronic Electronic tag information stored in the tag carrier. Further, the control management module 202 further reads the electronic tag carrier by wire or wirelessly, and determines the use state and connection of the fiber adapter port in the fiber distribution frame according to the in-position state of the read electronic tag carrier and the electronic tag information. relationship.
- the interfaces connected to the ODN management system 170 and the ODN management terminal 180 include, but are not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port.
- the electronic tag carrier disk 203 is provided with one or more electronic tag carrier adapters 204, LED (Light Emitting Diode) indicator lights 205, and each electronic tag carrier adapter 204 is used to insert an electronic tag carrier 207 attached to the optical fiber.
- the LED indicator 205 can be associated to a particular fiber optic adapter 201 by physical location.
- each electronic tag carrier adapter disk 203 may further include a management communication interface 206 for establishing the control management module 202 and the respective electronic tag carrier adapter 204, the LED indicator 205, and the insertion on the electronic tag carrier disk 203.
- the communication management interface 206 includes, but is not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port. It can be understood that if each electronic tag carrier has an independent communication management interface and the control management module 202 directly establishes contact, the electronic tag carrier adapter disk 203 may not be installed. Similarly, the wiring device such as the cable transfer box 123 and the fiber splitter box 124 can be modified by the above method, and details are not described herein.
- the ODN management system 170 can be connected to the optical fiber distribution frame through a wired network and/or a wireless network. 122.
- the optical cable transfer box 123 and the optical fiber splitter box 124 are usually installed in places where power supply is inconvenient, and therefore, the ODN management terminal 180 needs to be provided to supply power to the optical cable transfer box 123 or the fiber splitter box 124, and pass GSM (Global System for Mobile Communication, CDMA (Code Division Multiple Access), LTE (Long Term Evolution), WiFi (Wireless Fidelity), WiMax (World Interoperability for Microwave) Access, such as Access, Worldwide Interoperability for Microwave Access, establishes a connection with the ODN management system 170 in a wireless manner.
- GSM Global System for Mobile Communication
- CDMA Code Division Multiple Access
- LTE Long Term Evolution
- WiFi Wireless Fidelity
- WiMax Worldwide Interoperability for Microwave Access
- the ODN management terminal 180 can supply power to the optical fiber distribution frame 122, the optical fiber cable transfer box 123, and the optical fiber distribution box 124 through interfaces such as a serial port, a parallel port, and a USB. Further, the ODN management terminal 180 can establish a wired connection with the optical fiber distribution frame 122, the optical fiber cable transfer box 123, and the optical fiber distribution box 124 through a serial port, a parallel port, a USB interface, or a wireless connection through GSM, CDMA, LTE, WiFi, WiMax, and the like.
- the method establishes a wireless connection with the optical fiber distribution frame 122, the optical fiber cable transfer box 123, and the optical fiber distribution box 124, and simultaneously connects with the ODN management system 170 through wireless methods such as GSM, CDMA, LTE, WiFi, WiMax, etc., and then establishes
- the fiber distribution frame 122, the cable transfer box 123, the fiber distribution box 124, and the ODN management system 170 are in communication connection.
- the electronic tag information is calculated according to the port connection relationship of the wiring module. Specifically, if the resource management system 140 has the port connection relationship information of the accurate and complete wiring module, and the connection has been established between the ODN management system 170 and the resource management system 140, the ODN management system 170 can be imported from the resource management system 140.
- the port connection relationship information of the wiring module if there is no accurate port connection relationship information of the wiring module in the resource management 140, the ODN management system 170 needs to collect the port connection relationship information of the wiring module.
- the ODN management system 170 may adopt one or more combinations of the following manners to collect port connection relationship information of the wiring module.
- the constructor can input the paper label information of the port connection relationship information of the identification wiring module into the resource management system 140 and/or the ODN management system.
- the constructor enters the paper label information into the resource management system 140, and a connection has been established between the ODN management system 170 and the resource management system 140.
- the ODN management system 170 can import the port connection relationship information of the wiring module from the resource management system 140. .
- the port connection relationship information of the wiring module may be collected based on the optical power measurement manner.
- the ODN management system 170 queries the resource management system 140 according to the work order information, and obtains the device information of all the optical line terminals 110 in the area to be constructed, and The PON device management system 160 is notified to transmit, to all optical line terminals 110 in the area to be tested, a command to measure the downlink received optical power of the optical network device 130 or to measure the light of the uplink optical signal sent by the optical network device 130 received by the optical line terminal 110. Power command.
- the optical line terminal 110 in the area to be tested instructs the corresponding optical network device 130 to measure the optical power of the received downlink signal or directly to the received uplink optical signal sent by the corresponding optical network device 130.
- the optical power is measured to obtain a first optical power.
- the optical line terminal 110 transmits the measured first optical power to the ODN management system 170 through the PON device management system 160.
- the ODN management system 170 may instruct the ODN management terminal 180 to bend the optical fiber connected to the port to be tested.
- the construction worker bends the optical fiber connected to the port to be tested according to the indication, and feeds back the information of the bent optical fiber to the ODN through the ODN management terminal 180.
- Management system 170 Management system 170.
- the PON device management system 160 sends a measurement command to all the optical line terminals 110 in the area to be tested again. After receiving the measurement command, the optical network device 130 in the area to be tested again instructs the corresponding optical network device 130 to receive the downlink. The optical power of the signal is measured or the optical power of the received uplink optical signal sent by the corresponding optical network device 130 is directly measured, thereby obtaining a second optical power. Then, the optical line terminal 110 transmits the measured second optical power to the ODN management system 170 through the PON device management system 160. After receiving the second optical power, the ODN management system 170 may instruct the constructor to cancel the fiber bending through the ODN management terminal 180, and compare the received first optical power with the second optical power.
- the optical line terminal 110 instructs the corresponding optical network device 130 to measure the optical power of the received downlink signal, which can be implemented through a management channel between the optical line terminal 110 and the optical network device 130, such as GPON.
- the optical network device 130 reports the optical power to the optical line terminal 110 through the management channel. For example, if the threshold is 1 dB (decibel), the port to be measured is the first port of the first fiber distribution frame, and first all the optical line terminals in the area to be tested complete the first optical power measurement, and the obtained first light is obtained.
- the power is respectively optical network device 1: -25.1 dBm, optical network device 2: -25.8 dBm, optical network device 3: -23.8 dBm, and optical network device 4: -24.4 dBm.
- optical fiber connected to the first port of the first optical fiber distribution frame 122 is bent, and all the optical line terminals 110 in the area to be tested complete the second optical power measurement, and the obtained second optical power is respectively the optical network device 1:-26.3 dBm.
- optical network device 1 1.2 dB
- optical network device 2 1.1 dB
- optical network device 3 -0.2 dB
- optical network device 4 0.1 dB.
- the difference between the first optical power and the second optical power of the optical network device 1 and the optical network device 2 connected to the optical line terminal 1 is greater than a threshold.
- the difference between the first optical power and the second optical power of the optical network device 3 and the optical network device 4 connected to the optical line terminal 2 is less than a threshold value, and the measurement error is met, and it can be determined that the first optical fiber distribution frame 122 There is a connection relationship between the first port and the optical fiber to which it is connected and the optical line terminal 1 and the optical network device 1 and the optical network device 2.
- the optical line terminal 110 can detect the communication interruption alarm or the communication quality degradation alarm of the optical network device 130, and report the alarm information to the ODN management system 170 through the PON device management system 160.
- the ODN management system 170 can determine that there is a connection relationship between the port to be tested and/or the optical fiber and the optical line terminal 110 and the optical network device 130 according to the alarm information.
- the port to be measured is the first port of the first fiber distribution frame 122, and first all the optical line terminals 110 in the area to be tested complete the first optical power measurement, and the obtained One optical power is optical network equipment 1: -27.6 dBm, optical network equipment 2: -27.8 dBm, optical network equipment 3: -23.8 dBm, and optical network equipment 4: -24.4 dBm.
- the optical fiber connected to the first port of the first optical fiber distribution frame 122 is bent, and all optical line terminals 110 in the area to be tested complete the second optical power measurement, and the received optical power exceeds the optical network device 1 due to the link loss introduced by the curved optical fiber.
- the optical line terminal 1 can detect the optical network device 1 and the optical network.
- the device 2 communicates an interrupt alarm or a communication quality degradation alarm (such as a LOS alarm, Loss of Signal), and reports the alarm information to the ODN management system 170.
- the second optical power of the optical network device 3 and the optical network device 4 are respectively optical network device 3: -23.6 dBm and optical network device 4: -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1::, optical network device 2: -, optical network device 3: -0.2 dB, and optical network device 4: 0.1 dB. Since the second optical power is not detected by the optical network device 1 and the optical network device 2 connected to the first optical line terminal OLT1, but there is a communication interruption alarm or a communication quality deterioration alarm, and the optical network device 3 connected to the second optical line terminal OLT2 And the difference between the first optical power and the second optical power of the optical network device 4 is less than a threshold value, and the measurement error may be determined, and then the first port of the first optical fiber distribution frame 122 and the optical fiber and optical line terminal connected thereto may be determined. 1 and optical network device 1 and optical network device There is a connection relationship between 2.
- the ODN management system 170 may send the measurement optical network device to all the optical line terminals 110 in the area to be tested again after canceling the optical fiber bending.
- the optical line terminal 110 does not normally obtain the second optical power, and detects a communication interruption alarm or a communication quality degradation alarm between the optical line terminal 110 and the optical network unit 130 connected thereto, but the third optical power can be normally obtained.
- the difference between the first optical power and the third optical power is less than a threshold, and the communication interruption alarm or the communication quality degradation alarm between the optical line terminal 110 and the optical network unit 130 connected thereto is canceled, and the port to be tested and the light are determined.
- all optical line terminals 110 in the area to be tested may be instructed to measure the optical power of the received downlink signal or directly to all optical networks.
- the optical power of the uplink optical signal sent by the device 130 is separately measured; in order to improve the efficiency, when the port on the trunk link is constructed, it may also indicate that some optical line terminals 110 in the area to be tested are connected to a certain light.
- the network device 130 measures the optical power of the received downlink signal or directly measures the optical power of the uplink optical signal sent by the optical network device 130.
- the network device 130 can indicate All optical line terminals 110 in the measurement area measure the optical power of the received downlink signal or directly measure the optical power of the uplink optical signal sent by all the optical network devices 130; To improve the efficiency, the input port of the optical splitter 121 may be first measured to determine the optical line terminal 110 to which the optical splitter 121 is connected. Directly after the optical network device indicating that all of the optical line terminal 110 is connected to its optical power of the received downlink signal 130 is measured directly measured or optical power of the uplink optical signal transmitted to all optical network device 130.
- the signal for performing power measurement may be a signal sent when the optical line terminal 110 and the optical network device 130 perform normal communication services.
- the command may be sent to the optical line terminal 110, so that the optical line terminal 110 sends a test signal.
- the signal for performing power measurement is a test signal.
- the setting of the threshold may be set according to the empirical value and the loss of the optical fiber link, which is not specifically limited in the present invention.
- the ODN management system 170 may collect the port connection relationship information of the wiring module based on the manner of detecting the specific signal as follows.
- the specific signal includes, but is not limited to, an optical signal of a specific wavelength, an optical signal of a specific frequency.
- the ODN management system 170 queries the resource management system 140 according to the work order information, and obtains the device information of all the optical line terminals 110 in the area to be constructed, and Connected to the ODN management terminal 180 in a wireless manner, and instructs the constructor to perform a bending operation on the optical fiber of the connection to be identified by the ODN management terminal 180 according to the work order information, and then notify the PON device management system 160 to turn on/off each of the areas to be identified one by one.
- the specific signal transmission function of the optical line terminal 110 or the optical network device 130 until the ODN management terminal 180 detects the specific signal the constructor will confirm the specific signal transmitted by the optical line terminal 110 or the optical network device 130 through the ODN management terminal 180.
- the information is sent to the ODN management system 170 through the wireless network. After the ODN management system 170 obtains the confirmation information, the ODN management system 170 acquires the information of the optical line terminal 110 or the optical network device 130 that is currently transmitting the specific signal, and then determines the to-be-identified. Port and current specific signal transmission function There is a connection relationship between the optical line terminal 110 or the optical network device 130.
- the ODN management system 170 After determining the connection relationship between the current to-be-identified port and the optical line terminal 110 or the optical network device 130, the ODN management system 170 notifies the PON device management system 160 to turn off the specific signal transmission function of the optical line terminal 110 or the optical network device 130 that currently transmits the specific signal. Repeat this until all the ports to be identified are completed.
- the ODN management terminal 180 can detect whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent.
- the ODN management system 170 may detect the portable identification optical line terminal 110 and/or based on the following The port connection relationship information of the wiring module is collected in a manner of a signal of the information of the optical network device 130.
- the information identifying the optical line terminal 110 and/or the optical network device 130 includes, but is not limited to, port information of the optical line terminal 110 and/or the optical network device 130, operator information, protocol type of the optical line terminal port, and light.
- the line terminal port transmits optical power, the optical line terminal port power budget level, the optical line terminal port is the primary port or the standby port, the optical line terminal port is connected to the remote device, and the optical line terminal port is connected to the remote device.
- the ODN management system 170 queries the resource management system 140 according to the work order information, and obtains the device information of all the optical line terminals 110 in the area to be constructed, and notifies the information.
- the PON device management system 160 activates the signal transmission function of the information of the optical line terminal 110 and/or the optical network device 130 of all the optical line terminals 110 and/or the optical network device 130 in the area to be constructed, and instructs the construction personnel to adopt according to the work order information.
- the ODN management terminal 180 performs a bending operation on the optical fiber to be connected to the identified port, and acquires a signal for identifying the optical line terminal 110 and/or the optical network device 130 transmitted in the optical fiber, and the ODN management terminal 180 acquires the identification optical line terminal 110 and And the signal of the information of the optical network device 130 is reported to the ODN management system in a wireless manner.
- the ODN management system 170 notifies the PON device management system 160 to close all the optical line terminals 110 and/or the optical line terminals 110 and/or optical networks of the optical network devices 130 in the area to be constructed.
- the ODN management terminal 180 can detect whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent. Further, in order to improve the detection precision of the ODN management device 180, the signal identifying the information of the optical line terminal 110 and/or the optical network device 130 may pass the coding side. Implementation, such as using a PN sequence or one or more periodic sinusoidal signals to represent a signal bit.
- the ODN management system 170 calculates the electronic tag information of each of the wiring module ports according to the port connection relationship of the wiring module.
- the electronic tag information may include, but is not limited to, information identifying a corresponding fiber optic adapter and identifying port connection relationship information.
- the information identifying the corresponding fiber optic adapter includes, but is not limited to, a combination of one or more of a vendor identification, a product type, an operator information, and the like.
- the port connection relationship information may be calculated according to the port connection relationship of the collected wiring modules. For example, as shown in FIG.
- each The relative relationship of the wiring device on the fiber link for example, the first fiber distribution frame is located between the optical line terminal 1 and the second fiber distribution frame, and the second fiber distribution frame is located at the first fiber distribution frame and the cable connection
- the optical route between the optical line terminal 1 and the optical network device 1 is such that the port on the optical line terminal 1 is connected to the first port of the first optical distribution frame 122 through the first optical fiber
- a first port of a fiber distribution frame 122 is connected to a first port of the second fiber distribution frame 122 through a second fiber
- a first port of the second fiber distribution frame 122 is connected to the cable transfer box 123 through a third fiber.
- the first part of the cable transfer box 123 A port is connected to the input port of the optical splitter 121 through the fourth optical fiber, and the first output port of the optical splitter 121 is connected to the first port of the fiber splitter box 124 through the fifth optical fiber, and the fiber splitter box 124 is The first port is connected to the port of the optical network device 1 through the sixth optical fiber.
- the port connection relationship information in the electronic tag information of each fiber connector on the optical link can be assigned incrementally according to the optical routing information.
- the identification port connection relationship information in the electronic tag information of the optical fiber connector of the first optical fiber connected to the optical line terminal 1 port may be set to 001, and the first optical fiber is connected to the optical connection of the first port of the first optical fiber distribution frame 122.
- the port connection relationship information is set to 002; the second fiber is connected to the electronic tag information of the first port of the first fiber distribution frame 122, and the port connection relationship information is set to 003, and the The second optical fiber is connected to the electronic tag information of the optical fiber connector of the first port of the second optical fiber distribution frame 122
- the information about the port connection relationship is set to 004, and so on, and the information about the port connection relationship in the electronic tag information of each fiber connector on the optical link is calculated one by one; alternatively, the same link on the optical link can also be
- the port connection relationship information in the electronic tag information of the two fiber connectors of one fiber is set to the same value to identify the two ends of the same fiber.
- the identification port connection relationship information in the electronic tag information of the two optical fiber connectors connecting the optical fiber terminal 1 port of the first optical fiber and the first optical port of the first optical fiber distribution frame 122 is set to 001;
- the identification port connection relationship information in the electronic tag information of the first fiber port connecting the first fiber distribution frame 122 and the two fiber connectors connecting the first port of the second fiber distribution frame 122 is set to 002.
- the input/output port of the optical splitter 121 can perform electronic label information assignment according to its port number.
- the port connection relationship information in the electronic tag information of the fiber connector of the input port of the optical splitter 121 can be set to 100, and the port connection relationship is identified in the electronic tag information of the fiber connector of the first output port.
- the information is set to 101, the port connection relationship information in the electronic tag information of the fiber connector of the second output port is set to 102, and the port connection relationship information is set in the electronic tag information of the fiber connector of the third output port.
- the port connection relationship information is identified in the electronic tag information of the fiber connector that completes all of its output ports.
- the ODN management system 170 After the electronic tag information calculation of each of the distribution module ports is completed, the ODN management system 170 writes the electronic tag information of each of the distribution module ports into the electronic tag carrier of the corresponding optical fiber connector. It can be understood that since the optical fiber distribution frame 122 is generally disposed at a place where the power supply is easily obtained, such as a central office room, the ODN management system 170 can be connected to the optical fiber distribution frame 122 through a wired network and/or a wireless network. Therefore, the ODN management system 170 can write the electronic tag information of each of the distribution module ports into the electronic tag carrier of the corresponding fiber connector of the fiber distribution frame 122 through a wired network and/or a wireless network.
- the optical cable transfer box 123 and the optical fiber splitter box 124 are usually installed in places where power supply is inconvenient, and therefore, the ODN management terminal 180 needs to be provided to supply power to the optical cable transfer box 123 or the optical fiber split box 124, and pass GSM and CDMA.
- a wireless connection such as LTE, WiFi, WiMax, etc., establishes a connection with the ODN management system 170. Therefore, the ODN management system 170 can write the electronic tag information of each wiring module port to the optical fiber cable transfer box 123 and the optical fiber splitter 124, and the corresponding optical fiber connector of the optical splitter 121 through a wired network and/or a wireless network.
- the label carrier In the label carrier.
- the PON device management system 160 and/or the ODN management system 170 cannot establish a connection with the resource management system 140 and/or the work order system, all optical lines in the area to be constructed can be directly recorded in the ODN management system 170.
- the device information such as the terminal 110, the optical fiber distribution frame 122, the optical fiber cable transfer box 123, and the optical fiber distribution box 124 are created, and a work order is created in the ODN management system 170 for the construction personnel to obtain the work order through the ODN management terminal 180 for construction.
- the electronic label technology can be used to replace the paper label to intelligently manage the optical distribution network.
- the ODN management system can guide the construction process through the ODN management terminal, and indicate the port that needs to be operated and the required operation through LED lights, so that the construction personnel can easily find the operation that needs to be operated. Ports and verification of construction results can avoid connection errors that may result from purely manual management.
- the ODN management system can remotely upgrade, manage, and collect port status on the line or through the ODN management terminal to improve network maintenance efficiency and reduce requirements for construction personnel.
- FIG. 4 is a flowchart of an implementation manner of an optical network intelligentization method according to the present invention.
- the implementation method of the optical network intelligentization in this embodiment includes:
- the ODN management system acquires a connection relationship of a port of the wiring module, wherein the wiring module is provided with a control management module and an electronic label carrier corresponding to the port of the wiring module, and the control management module is connected to the electronic Label carrier.
- the optical line terminal establishes a connection relationship with the optical network device through the optical distribution network.
- the optical distribution network usually consists of passive components such as a backbone optical fiber, an optical splitter, and a split optical fiber.
- the trunk optical fiber is connected to the optical line terminal and the optical splitter, and the optical splitter is connected to the optical network device through the split optical fiber. Due to the distance between the optical line terminal and the optical splitter, the optical splitter and the optical network device may be very far.
- the optical distribution network is usually completed through the optical fiber connector at the port of the wiring module.
- the wiring module includes, but is not limited to, an optical fiber distribution frame, a cable transfer box, and an optical fiber distribution box.
- the port on the optical line terminal 1 is connected to the first port of the first fiber distribution frame through the first optical fiber, and the first port of the first optical distribution frame is connected to the second optical distribution frame through the second optical fiber.
- a port the first port of the second fiber distribution frame is connected to the first port of the cable transfer box through the third optical fiber, and the first port of the cable transfer box is connected to the optical splitter through the fourth optical fiber
- the first output port of the optical splitter is connected to the first port in the fiber splitter box through the fifth fiber
- the first port in the fiber splitter box is connected to the port of the optical network device 1 through the sixth fiber.
- the optical fiber distribution frame 122 is generally provided with one or more optical fiber distribution trays 200 , and one optical fiber distribution board 200 is disposed in each of the optical fiber distribution trays 200 . Or a plurality of fiber optic adapters 201 for inserting fibers with fiber optic connectors to complete the connection of the fibers.
- control management module 202 and the electronic tag carrier adapter disk 203 are first installed in the fiber distribution frame 122, and the electronic tag carrier 207 is installed on each fiber jumper (not drawn in the figure). And the control management module 202 can provide an interface connected to the ODN management system and the ODN management terminal, store information identifying the optical fiber distribution frame, and establish a connection with the electronic tag carrier adapter disk 203 to read/write the electronic tag carrier. Electronic tag information stored in. Further, the control management module 202 can read the electronic tag carrier by wire or wirelessly, and can determine the state of use of the fiber adapter port in the fiber distribution frame according to the in-position state of the read electronic tag carrier.
- the interfaces connected to the management system and the ODN management terminal include, but are not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port.
- the electronic tag carrier disk 203 is provided with one or more electronic tag carriers 204 and LED indicators 205.
- Each electronic tag carrier adapter 204 is used for inserting an electronic tag carrier 207 mounted on the optical fiber for controlling the management module 202 to read/write.
- the LED indicator 205 can be associated to a particular fiber optic adapter 201 by physical location.
- each electronic tag carrier adapter disk 203 may further include a management communication interface 206 for establishing each of the electronic tag carrier adapters 204 and LEDs on the control management module 202 and the electronic tag carrier disk 203.
- a communication connection between the indicator light 205 and the electronic tag carrier 207 inserted into the electronic tag carrier adapter is provided to control the management module 202 to read and write information in the electronic tag carrier 207 and to control the LED indicator light 205.
- the communication management interface 206 includes, but is not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port. It can be understood that if each electronic tag carrier has an independent communication management interface and the control management module 202 directly establishes contact, the electronic tag carrier adapter disk 203 may not be installed. Similarly, if the wiring device such as the cable delivery box 123 and the fiber distribution box 124 is modified by the above method, the details are not described herein.
- the distribution equipment such as the optical fiber distribution frame, the optical fiber cable transfer box, and the optical fiber distribution box
- a distribution device such as an optical fiber distribution frame, a cable transfer box, an optical fiber distribution box, an ODN equipment management system, and an ODN management terminal.
- the optical fiber distribution frame is generally disposed in a location such as a central office room where power is readily available and there is a wired network and/or a wireless network
- the ODN management system can be connected through a wired network and/or to a fiber distribution frame.
- the cable transfer box and the fiber splitter box are usually installed in the field where it is inconvenient to obtain power supply.
- the ODN management terminal needs to be installed to supply power to the cable transfer box or the fiber splitter box, and pass GSM, CDMA, LTE, WiFi, Wireless methods such as WiMax establish a connection with the ODN management system.
- the ODN management terminal can supply power for the optical fiber distribution frame, the optical fiber cable transfer box, and the optical fiber distribution box through the serial port, the parallel port, and the USB interface.
- the ODN management terminal can establish a wired connection through the serial port, the parallel port, the USB interface, the optical fiber distribution frame, the optical cable transfer box, and the optical fiber distribution box, or can be connected to the optical fiber through GSM, CDMA, LTE, WiFi, WiMax, and the like.
- the distribution frame, the cable transfer box, and the fiber distribution box establish a wireless connection, and at the same time, connect with the ODN management system through wireless methods such as GSM, CDMA, LTE, WiFi, WiMax, etc., thereby establishing a fiber distribution frame and a cable transfer box.
- wireless methods such as GSM, CDMA, LTE, WiFi, WiMax, etc.
- the ODN management system After the device modification and the communication connection are established, in order to write the electronic tag information into the electronic tag carrier on the optical connector in the wiring module, it is necessary to obtain the port connection relationship of the wiring module, and then calculate the port connection relationship according to the wiring module.
- Electronic label information Specifically, if there is accurate and complete port connection relationship information of the wiring module in the resource management system, and the connection has been established between the ODN management system 170 and the resource management system 140, the ODN management system can obtain resources from the resource.
- the port connection relationship information of the wiring module is imported in the management system; if there is no accurate and complete port connection relationship information of the wiring module in the resource management, the ODN management system needs to collect the port connection relationship information of the wiring module.
- the ODN management system may adopt one or more combinations of the following manners to collect port connection relationship information of the wiring module.
- the constructor can input the paper label information of the port connection relationship information of the identification wiring module into the resource management system 140 and/or the ODN management system.
- the constructor enters the paper label information into the resource management system 140, and a connection has been established between the ODN management system 170 and the resource management system 140.
- the ODN management system 170 can import the port connection relationship information of the wiring module from the resource management system 140. .
- the port connection relationship information of the wiring module may be collected based on the optical power measurement manner.
- the ODN management system queries the resource management system according to the work order information, obtains all the optical line terminal equipment information in the area to be constructed, and notifies the PON equipment management.
- the system sends a command for measuring the downlink received optical power of the optical network device or a command for measuring the optical power of the uplink optical signal sent by the optical network device to all the optical line terminals in the area to be tested.
- the optical line terminal in the area to be tested instructs the corresponding optical network device to measure the optical power of the received downlink signal or directly perform the optical power of the received uplink optical signal sent by the corresponding optical network device. Measured to obtain a first optical power.
- the optical line terminal transmits the measured first optical power to the ODN management system through the PON equipment management system.
- the ODN management system may instruct the optical fiber connected to the port to be tested to bend through the ODN management terminal.
- the construction worker bends the optical fiber connected to the port to be tested according to the instruction, and feeds back the information of the bent optical fiber to the ODN management system through the ODN management terminal.
- the PON device management system sends a measurement command to all optical line terminals in the area to be tested again. After receiving the measurement command, the optical network device in the area to be tested again instructs the corresponding optical network device to receive the optical power of the downlink signal.
- the optical line terminal sends the measured second optical power to the PON device management system to ODN management system.
- the ODN management system may instruct the constructor to cancel the fiber bending through the ODN management terminal, and compare the received first optical power with the second optical power. If the downlink signal received by the optical network device of an optical line terminal or the received difference between the first optical power and the second optical power of the uplink optical signal sent by the corresponding optical network device is greater than a threshold, determining the port to be tested and There is a connection relationship between the optical line terminal and the optical network device.
- the optical line terminal instructs the corresponding optical network device to measure the optical power of the received downlink signal through the management channel between the optical line terminal and the optical network device (eg, PON channel of EPON, EPON)
- the OAM channel that is, the optical line terminal notifies the optical network device to complete the optical power measurement of the received downlink signal through the management channel, and the optical network device reports the optical power to the optical line terminal through the management channel.
- the threshold is 1 dB (decibel)
- the port to be measured is the first port of the first fiber distribution frame, and first all the optical line terminals in the area to be tested complete the first optical power measurement, and the obtained first light is obtained.
- the power is respectively optical network device 1: -25.1 dBm, optical network device 2: -25.8 dBm, optical network device 3: -23.8 dBm, and optical network device 4: -24.4 dBm.
- optical fiber connected to the first port of the first optical fiber distribution frame 122 is bent, and all the optical line terminals 110 in the area to be tested complete the second optical power measurement, and the obtained second optical power is respectively the optical network device 1:-26.3 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1: 1.2 dB, optical network device 2: 1.1 dB, optical network device 3: -0.2 dB, and optical network device 4: 0.1 dB.
- the difference between the first optical power and the second optical power of the optical network device 1 and the optical network device 2 connected to the optical line terminal 1 is greater than a threshold, and the optical network device 3 and the optical network device 4 connected to the optical line terminal 2 are first.
- the difference between the optical power and the second optical power is less than the threshold. According to the measurement error, it can be determined that the first port of the first optical distribution frame 122 and the optical fiber and optical line terminal 1 and the optical network device 1 and the optical fiber to which it is connected There is a connection relationship between the network devices 2.
- the line terminal can detect the communication interruption alarm or the communication quality deterioration alarm of the optical network device, and report the alarm information to the ODN management system through the PON device management system.
- the ODN management system can determine the port to be tested and/or the optical fiber and the light according to the alarm information. There is a connection relationship between the line terminal and the optical network device.
- the port to be measured is the first port of the first fiber distribution frame, and first all the optical line terminals in the area to be tested complete the first optical power measurement, and the obtained first light is obtained.
- the power is respectively optical network equipment 1: -27.6 dBm, optical network equipment 2: -27.8 dBm, optical network equipment 3: -23.8 dBm, and optical network equipment 4: -24.4 dBm.
- the optical fiber connected to the first port of the first optical fiber distribution frame is bent, and all optical line terminals in the area to be tested complete the second optical power measurement, and the received optical power exceeds the optical network device 1 and the optical network due to the link loss introduced by the curved optical fiber.
- the receiving sensitivity of the device 2 which in turn causes the communication between the optical line terminal 1 and the optical network device 1 and the optical network device 2 to be interrupted, and the second optical power cannot be obtained.
- the optical line terminal 1 can detect the optical network device 1 and the optical network device 2
- the communication interruption alarm or the communication quality degradation alarm (such as LOS alarm, Loss of Signal), and the alarm information is reported to the ODN management system.
- the second optical power of the optical network device 3 and the optical network device 4 are respectively optical network device 3: -23.6 dBm and optical network device 4: -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1::, optical network device 2: -, optical network device 3: -0.2 dB, and optical network device 4: 0.1 dB. Since the second optical power is not detected by the optical network device 1 and the optical network device 2 connected to the first optical line terminal OLT1, but there is a communication interruption alarm or a communication quality deterioration alarm, and the optical network device 3 connected to the second optical line terminal OLT2 And the difference between the first optical power and the second optical power of the optical network device 4 is less than a threshold value, and the measurement error may be determined, and then the first port of the first optical fiber distribution frame and the optical fiber and optical line terminal 1 connected thereto may be determined. There is a connection relationship between the optical network device 1 and the optical network device 2.
- the ODN management system may send the downlink of the measurement optical network device to all optical line terminals in the area to be tested again after canceling the optical fiber bending.
- Receiving optical power or measuring an optical power command of an uplink optical signal sent by the optical network device received by the optical line terminal to obtain a third optical power if a difference between the first optical power and the second optical power obtained by an optical line terminal is greater than The threshold, and the difference between the first optical power and the third optical power is less than the threshold, determining that there is a connection relationship between the port to be tested and the optical line terminal and the corresponding optical network device 130.
- the optical power terminal does not normally obtain the second optical power, and detects a communication interruption alarm or a communication quality degradation alarm between the optical line terminal and the optical network unit connected thereto, but the third optical power can be normally obtained, first Optical power and third optical power If the difference is less than the threshold, and the communication interruption alarm or the communication quality degradation alarm is canceled between the optical line terminal and the optical network unit connected thereto, it is determined that there is a connection between the port to be tested and the optical line terminal and the corresponding optical network device. relationship.
- all the optical line terminals in the area to be tested may be instructed to measure the optical power of the received downlink signal or directly transmit to all the optical network devices.
- the optical power of the uplink optical signal is separately measured; in order to improve the efficiency, when constructing the port on the trunk link, all the optical line terminals in the area to be tested may also be instructed to receive an optical network device connected thereto.
- the terminal measures the optical power of the received downlink signal for all the optical network devices connected thereto or directly measures the optical power of the uplink optical signal sent by all the optical network devices; in order to improve the efficiency, the optical branching may also be performed first.
- the input port of the device performs measurement to determine the optical line terminal to which the optical splitter is connected, and then directly indicates the pair of optical line terminals All optical power of the optical network devices connected to the downstream signal received is measured, or direct measurement of the optical power of the upstream optical signal is transmitted to all optical network devices.
- the signal for performing power measurement may be an optical line terminal and an optical network device.
- the signal sent between normal communication services.
- the command may be sent to the optical line terminal, so that the optical line terminal sends the test signal.
- the signal for performing the power measurement is the test signal.
- the setting of the threshold may be set according to the empirical value and the loss of the optical fiber link, which is not specifically limited in the present invention.
- the ODN management system may collect the port connection relationship information of the wiring module based on the manner of detecting the specific signal as follows.
- the specific signal includes, but is not limited to, an optical signal of a specific wavelength, an optical signal of a specific frequency.
- Construction workers start port connection relationship collection work form construction or construction on ODN management terminal
- the ODN management system queries the resource management system according to the work order information, obtains information of all the optical line terminal devices in the area to be constructed, and connects to the ODN management terminal through the wireless mode, and instructs the construction personnel to adopt the ODN management terminal according to the work order information.
- the ODN management terminal transmits the specific signal confirmation information transmitted by the optical line terminal or the optical network device to the ODN management system through the wireless network, and after obtaining the confirmation information, the ODN management system acquires the current specific signal transmission to the PON device management system.
- the information of the optical line terminal or the optical network device determines that there is a connection relationship between the to-be-identified port and the optical line terminal or the optical network device that currently activates the specific signal transmission function.
- the ODN management system After determining the connection relationship between the current to-be-identified port and the optical line terminal or the optical network device, the ODN management system notifies the PON device management system to disable the optical line terminal or the optical network device specific signal transmission function that currently transmits the specific signal. Repeat this until all the ports to be identified are completed.
- the ODN management terminal can analyze and judge whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent.
- the ODN management system may detect the information carrying the identification optical line terminal and/or the optical network device based on the following The signal connection mode collects the port connection relationship information of the wiring module.
- the identifier optical line terminal and/or optical network device information includes, but is not limited to, port information of the optical line terminal and/or the optical network device, operator information, protocol type of the optical line terminal port, and optical line terminal port transmission.
- the ODN management system queries the resource management system according to the work order information, obtains all the optical line terminal equipment information in the area to be constructed, and notifies the PON equipment management system.
- Opening the identification optical line terminal and/or optical network device of all optical line terminals and/or optical network devices in the area to be constructed The signal transmitting function of the information, and according to the work order information, the construction personnel use the ODN management terminal to perform the bending operation on the optical fiber to be connected to the identification port, and obtain the signal of the identification optical line terminal and/or the optical network device information transmitted in the current operating optical fiber, The ODN management terminal obtains the signal identifying the optical line terminal and/or the optical network device information, and then reports the signal to the ODN management system.
- the ODN management system and the ODN management terminal 180 report the optical line terminal and/or according to the construction port information and/or the ODN management terminal 180.
- the signal of the optical network device information further determines a connection relationship between the to-be-identified port and the optical line terminal or the optical network device. This is repeated until the construction of all the ports to be identified is completed, and the ODN management system notifies the PON device management system to turn off the signal transmission of the identification optical line terminals and/or optical network device information of all optical line terminals and/or optical network devices in the area to be constructed.
- the ODN management terminal can analyze and judge whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent.
- the signal identifying the optical line terminal and/or the optical network device information may be implemented by an encoding method, such as using a PN sequence or one or more periodic sinusoidal signals to represent one signal bit.
- the ODN management system generates an electronic tag for the port of the wiring module according to a connection relationship of ports of the wiring module.
- the ODN management system calculates the electronic tag information of each of the wiring module ports according to the port connection relationship of the wiring module.
- the electronic tag information may include, but is not limited to, information identifying a corresponding fiber optic adapter and identifying port connection relationship information.
- the information identifying the corresponding fiber optic adapter includes, but is not limited to, a combination of one or more of a vendor identification, a product type, an operator information, and the like.
- the port connection relationship information may be calculated according to the port connection relationship of the collected wiring modules. For example, as shown in FIG.
- each The relative relationship of the wiring device on the fiber link for example, the first fiber distribution frame is located between the optical line terminal 1 and the second fiber distribution frame, and the second fiber distribution frame is located at the first fiber distribution frame and the cable connection Between the boxes, it can be known that the optical route between the optical line terminal 1 and the optical network device 1 is an optical line.
- the port on the terminal 1 is connected to the first port of the first fiber distribution frame 122 through the first optical fiber, and the first port of the first optical fiber distribution frame 122 is connected to the first of the second optical distribution frame 122 through the second optical fiber.
- the first port of the second fiber distribution frame 122 is connected to the first port of the cable transfer box 123 through the third optical fiber, and the first port of the cable transfer box 123 is connected to the input port of the optical splitter 121 through the fourth optical fiber.
- the first output port of the optical splitter 121 is connected to the first port of the fiber splitter box 124 through the fifth optical fiber, and the first port of the fiber splitter box 124 is connected to the port of the optical network device 1 through the sixth optical fiber. .
- the port connection relationship information in the electronic tag information of each fiber connector on the optical link can be assigned incrementally according to the optical routing information.
- the identification port connection relationship information may be set to 001, and the first optical fiber is connected to the optical fiber connector of the first port of the first optical fiber distribution frame 122.
- the information indicating the port connection relationship in the electronic tag information is set to 002; the information indicating the port connection relationship in the electronic tag information of the fiber connector of the first port of the first fiber connection frame 122 can be set to 003, and the The information about the port connection relationship in the electronic tag information of the fiber connector of the first port of the second fiber distribution frame 122 is set to 004, and so on, and the electronic tags of the fiber connectors on the optical link are calculated one by one.
- the port connection relationship information is identified in the information; optionally, the port connection relationship information in the electronic tag information of the two fiber connectors belonging to one fiber on the optical link is set to the same value to identify Both ends of the same fiber.
- the identification port connection relationship information in the electronic tag information of the two optical fiber connectors connecting the optical fiber terminal 1 port of the first optical fiber and the first optical port of the first optical fiber distribution frame 122 is set to 001;
- the identification port connection relationship information in the electronic tag information of the first fiber port connecting the first fiber distribution frame 122 and the two fiber connectors connecting the first port of the second fiber distribution frame 122 is set to 002. It can be understood that the input/output port of the optical splitter 121 can perform electronic label information assignment according to its port number.
- the port connection relationship information in the electronic tag information of the fiber connector of the input port of the optical splitter 121 can be set to 100, and the port connection relationship is identified in the electronic tag information of the fiber connector of the first output port.
- the information is set to 101
- the port connection relationship information in the electronic tag information of the fiber connector of the second output port is set to 102
- the port connection relationship information is set in the electronic tag information of the fiber connector of the third output port. Is 103, and so on, until the fiber optic connector of all its output ports is completed
- the port connection relationship information is identified in the electronic tag information.
- the ODN management system writes the electronic tag into a corresponding electronic tag carrier by using a control management module.
- the ODN management system After the electronic tag information of each of the wiring module ports is calculated, the ODN management system writes the electronic tag information of each of the wiring module ports into the electronic tag carrier of the corresponding fiber connector.
- the ODN management system since the optical fiber distribution frame is generally disposed in a place where the power supply is easily obtained, such as a central office room, the ODN management system can be connected to the optical fiber distribution frame through a wired network and/or a wireless network. Therefore, the ODN management system can write the electronic tag information of each wiring module port into the electronic tag carrier of the corresponding optical fiber connector of the optical fiber distribution frame through a wired network and/or a wireless network.
- the cable transfer box and the fiber splitter box are usually installed in the field where it is inconvenient to obtain power supply.
- the ODN management terminal needs to be installed to supply power to the cable transfer box or the fiber splitter box, and pass GSM, CDMA, LTE, WiFi, Wireless methods such as WiMax establish a connection with the ODN management system. Therefore, the ODN management system can write the electronic tag information of each wiring module port into the optical cable carrier of the optical fiber distribution box and the optical fiber distribution box and the optical fiber connector of the optical splitter through the wired network and/or the wireless network.
- the PON device management system and/or the ODN management system cannot establish a connection with the resource management system and/or the work order system, all the optical line terminals and the optical fiber in the area to be constructed can be directly recorded in the ODN management system.
- Equipment information such as wire racks, cable transfer boxes, fiber distribution boxes, etc., and work orders are created in the ODN management system for the construction personnel to obtain work orders through the ODN management terminal for construction.
- the electronic label technology can be used to replace the paper label to intelligently manage the optical distribution network.
- the ODN management system can guide the construction process through the ODN management terminal, and indicate the port that needs to be operated and the required operation through LED lights, so that the construction personnel can easily find the operation that needs to be operated. Ports and verification of construction results can avoid connection errors that may result from purely manual management.
- the ODN management system can remotely upgrade, manage, and collect port status on the line or through the ODN management terminal to improve network maintenance efficiency and reduce requirements for construction personnel.
- FIG. 5 is a schematic structural diagram of a first embodiment of an ODN management system according to the present invention.
- the ODN management system 500 of the present embodiment includes an acquisition module 510, a generation module 520, and a write module 530.
- the obtaining module 510 is configured to obtain a connection relationship of a port of the wiring module, where an electronic tag carrier corresponding to a port of the wiring module is disposed in the wiring module, and the acquiring module 510 sends the connection relationship
- the generation module 520 is given.
- the optical line terminal establishes a connection relationship with the optical network device through the optical distribution network.
- the optical distribution network usually consists of passive components such as a backbone optical fiber, an optical splitter, and a split optical fiber.
- the trunk optical fiber is connected to the optical line terminal and the optical splitter, and the optical splitter is connected to the optical network device through the split optical fiber. Due to the distance between the optical line terminal and the optical splitter, the optical splitter and the optical network device may be very far.
- the optical distribution network is usually completed through the optical fiber connector at the port of the wiring module.
- the wiring module includes, but is not limited to, an optical fiber distribution frame, a cable transfer box, and an optical fiber distribution box.
- the port on the optical line terminal 1 is connected to the first port of the first fiber distribution frame through the first optical fiber, and the first port of the first optical distribution frame is connected to the second optical distribution frame through the second optical fiber.
- a port the first port of the second fiber distribution frame is connected to the first port of the cable transfer box through the third optical fiber, and the first port of the cable transfer box is connected to the input port of the optical splitter through the fourth optical fiber, the optical port
- the first output port of the router is connected to the first port in the fiber splitter box through the fifth fiber, and the first port in the fiber splitter box is connected to the port of the optical network device 1 through the sixth fiber, thereby forming a slave port Optical fiber link of optical line terminal 1 to optical network device 1.
- the optical fiber distribution frame 122 is generally provided with one or more optical fiber distribution trays 200 , and one optical fiber distribution board 200 is disposed in each of the optical fiber distribution trays 200 . Or a plurality of fiber optic adapters 201 for inserting fibers with fiber optic connectors to complete the connection of the fibers.
- control management module 202 and the electronic tag carrier adapter disk 203 are first installed in the fiber distribution frame 122, and the electronic tag carrier 207 is installed on each fiber jumper (not drawn in the figure). And the control management module 202 can provide an interface connected to the ODN management system and the ODN management terminal, and store the identifier The information of the fiber distribution frame is connected with the electronic tag carrier adapter disk 203 to read/write the electronic tag information stored in the electronic tag carrier. Further, the control management module 202 can read the electronic tag carrier by wire or wirelessly, and can determine the state of use of the fiber adapter port in the fiber distribution frame according to the in-position state of the read electronic tag carrier.
- the interfaces connected to the management system and the ODN management terminal include, but are not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port.
- the electronic tag carrier disk 203 is provided with one or more electronic tag carriers 204 and LED indicators 205.
- Each electronic tag carrier adapter 204 is used for inserting an electronic tag carrier 207 mounted on the optical fiber for controlling the management module 202 to read/write.
- the LED indicator 205 can be associated to a particular fiber optic adapter 201 by physical location.
- each electronic tag carrier adapter disk 203 may further include a management communication interface 206 for establishing the control management module 202 and the respective electronic tag carrier adapter 204, the LED indicator 205, and the insertion on the electronic tag carrier disk 203.
- the communication management interface 206 includes, but is not limited to, an Ethernet interface, an RS485 interface, a wireless network interface, a Bluetooth interface, a USB interface, a serial port, and a parallel port. It can be understood that if each electronic tag carrier has an independent communication management interface and the control management module 202 directly establishes contact, the electronic tag carrier adapter disk 203 may not be installed. Similarly, if the wiring device such as the cable delivery box 123 and the fiber distribution box 124 is modified by the above method, the details are not described herein.
- the distribution equipment such as the optical fiber distribution frame, the optical fiber cable transfer box, and the optical fiber distribution box
- a distribution device such as an optical fiber distribution frame, a cable transfer box, an optical fiber distribution box, an ODN equipment management system, and an ODN management terminal.
- the optical fiber distribution frame is generally disposed in a location such as a central office room where power is readily available and there is a wired network and/or a wireless network
- the ODN management system can be connected through a wired network and/or to a fiber distribution frame.
- Optical cable transfer box And the fiber distribution box is usually installed in the field where it is inconvenient to obtain power supply.
- the ODN management terminal needs to be installed to supply power to the cable transfer box or the fiber distribution box, and wirelessly through GSM, CDMA, LTE, WiFi, WiMax, etc.
- the way to establish a connection with the ODN management system can supply power for the optical fiber distribution frame, the optical fiber cable transfer box, and the optical fiber distribution box through the serial port, the parallel port, and the USB interface.
- the ODN management terminal can establish a wired connection through the serial port, the parallel port, the USB interface, the optical fiber distribution frame, the optical cable transfer box, and the optical fiber distribution box, or can be connected to the optical fiber through GSM, CDMA, LTE, WiFi, WiMax, and the like.
- the distribution frame, the cable transfer box, and the fiber distribution box establish a wireless connection, and at the same time, connect with the ODN management system through wireless methods such as GSM, CDMA, LTE, WiFi, WiMax, etc., thereby establishing a fiber distribution frame and a cable transfer box.
- wireless methods such as GSM, CDMA, LTE, WiFi, WiMax, etc.
- the module 510 After the device modification and the communication connection are established, in order to write the electronic tag information into the electronic tag carrier on the fiber connector in the wiring module, the module 510 needs to obtain the port connection relationship of the wiring module, and then according to the port of the wiring module.
- the connection relationship calculates the electronic tag information. Specifically, if the resource management system has the port connection relationship information of the accurate and complete wiring module, and the connection has been established between the ODN management system 170 and the resource management system 140, the obtaining module 510 can import the wiring module from the resource management system.
- the port connection relationship information if there is no accurate and complete port connection relationship information of the wiring module in the resource management, the obtaining module 510 needs to collect the port connection relationship information of the wiring module.
- the obtaining module 510 may adopt one or more combinations of the following manners to collect port connection relationship information of the wiring module.
- the constructor can input the paper label information of the port connection relationship information of the identification wiring module into the resource management system 140 and/or the ODN management system.
- the constructor enters the paper label information into the resource management system 140, and a connection has been established between the ODN management system 170 and the resource management system 140.
- the ODN management system 170 can import the port connection relationship information of the wiring module from the resource management system 140. .
- the port connection relationship information of the wiring module may be collected based on the optical power measurement manner.
- the construction worker starts the port connection relationship on the ODN management terminal 180 to collect the work order construction or After the construction step, the ODN management system 170 queries the resource management system 140 according to the work order information, obtains the device information of all the optical line terminals 110 in the area to be constructed, and notifies the PON device management system 160 to all the optical line terminals 110 in the area to be tested.
- a command to measure the downlink received optical power of the optical network device 130 or a command to measure the optical power of the uplink optical signal transmitted by the optical network device 130 received by the optical line terminal 110 is transmitted.
- the optical line terminal 110 in the area to be tested instructs the corresponding optical network device 130 to measure the optical power of the received downlink signal or directly to the received uplink optical signal sent by the corresponding optical network device 130.
- the optical power is measured to obtain a first optical power.
- the optical line terminal 110 transmits the measured first optical power to the ODN management system 170 through the PON device management system 160.
- the ODN management system 170 may instruct the ODN management terminal 180 to bend the optical fiber connected to the port to be tested.
- the construction worker bends the optical fiber connected to the port to be tested according to the indication, and feeds back the information of the bent optical fiber to the ODN management system 170 through the ODN management terminal 180.
- the bending device iFiberBender can be used to bend the optical fiber.
- the PON device management system 160 sends a measurement command to all the optical line terminals 110 in the area to be tested again. After receiving the measurement command, the optical network device 130 in the area to be tested indicates the corresponding The optical network device 130 measures the optical power of the received downlink signal or directly measures the optical power of the received uplink optical signal sent by the corresponding optical network device 130, thereby obtaining a second optical power. Then, the optical line terminal 110 transmits the measured second optical power to the ODN management system 170 through the PON device management system 160.
- the ODN management system 170 may instruct the constructor to cancel the fiber bending through the ODN management terminal 180, and compare the received first optical power with the second optical power. If the downlink signal received by the optical network device 130 of a certain optical line terminal 110 or the received difference between the first optical power and the second optical power of the uplink optical signal sent by the corresponding optical network device 130 is greater than a threshold, There is a connection relationship between the measurement port and the optical line terminal 110 and the optical network device 130. After receiving the measurement command, the optical line terminal 110 instructs the corresponding optical network device 130 to measure the optical power of the received downlink signal through the management channel between the optical line terminal 110 and the optical network device 130 (eg, GPON).
- the management channel between the optical line terminal 110 and the optical network device 130 eg, GPON
- the OMCI channel, the OAM channel of the EPON, the optical line terminal 110 notifies the optical network device 130 to complete the optical power measurement of the received downlink signal through the management channel, and the optical network device 130 reports the optical power to the optical circuit through the management channel. End End 110.
- the threshold is 1 dB (decibel)
- the port to be measured is the first port of the first fiber distribution frame, and first all the optical line terminals in the area to be tested complete the first optical power measurement, and the obtained first light is obtained.
- the power is respectively optical network device 1: -25.1 dBm, optical network device 2: -25.8 dBm, optical network device 3: -23.8 dBm, and optical network device 4: -24.4 dBm.
- optical network device 1 the optical network device 1:-26.3 dBm.
- optical network equipment 2 -26.9 dBm
- optical network equipment 3 -23.6 dBm
- optical network equipment 4 -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1: 1.2 dB
- optical network device 2 1.1 dB
- optical network device 3 -0.2 dB
- optical network device 4 0.1 dB.
- the difference between the first optical power and the second optical power of the optical network device 1 and the optical network device 2 connected to the optical line terminal 1 is greater than a threshold, and the optical network device 3 and the optical network device 4 connected to the optical line terminal 2 are first.
- the difference between the optical power and the second optical power is less than the threshold. According to the measurement error, it can be determined that the first port of the first optical distribution frame 122 and the optical fiber and optical line terminal 1 and the optical network device 1 and the optical fiber to which it is connected There is a connection relationship between the network devices 2.
- the optical line terminal 110 can detect the communication interruption alarm or the communication quality degradation alarm of the optical network device 130, and report the alarm information to the ODN management system 170 through the PON device management system 160.
- the ODN management system 170 can determine that there is a connection relationship between the port to be tested and/or the optical fiber and the optical line terminal 110 and the optical network device 130 according to the alarm information.
- the port to be measured is the first port of the first fiber distribution frame 122, and first all the optical line terminals 110 in the area to be tested complete the first optical power measurement, and the obtained One optical power is optical network equipment 1: -27.6 dBm, optical network equipment 2: -27.8 dBm, optical network equipment 3: -23.8 dBm, and optical network equipment 4: -24.4 dBm.
- the optical fiber connected to the first port of the first optical fiber distribution frame 122 is bent, and all optical line terminals 110 in the area to be tested complete the second optical power measurement, and the received optical power exceeds the optical network device 1 due to the link loss introduced by the curved optical fiber.
- the method obtains the second optical power, and the optical line terminal 1 can detect the communication interruption alarm or the communication quality degradation alarm (such as the LOS alarm, Loss of Signal) of the optical network device 1 and the optical network device 2, and report the alarm information to the ODN management system 170.
- the second optical power of the optical network device 3 and the optical network device 4 are respectively optical network device 3: -23.6 dBm and optical network device 4: -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1::, optical network device 2: -, optical network device 3: -0.2 dB, and optical network device 4: 0.1 dB. Since the second optical power is not detected by the optical network device 1 and the optical network device 2 connected to the first optical line terminal OLT1, but there is a communication interruption alarm or a communication quality deterioration alarm, and the optical network device 3 connected to the second optical line terminal OLT2 And the difference between the first optical power and the second optical power of the optical network device 4 is less than a threshold value, and the measurement error may be determined, and then the first port of the first optical fiber distribution frame 122 and the optical fiber and optical line terminal connected thereto may be determined. 1 and a connection relationship between the optical network device 1 and the optical network device 2.
- the ODN management system 170 may send the measurement optical network device to all the optical line terminals 110 in the area to be tested again after canceling the optical fiber bending.
- the optical line terminal 110 does not normally obtain the second optical power, and detects a communication interruption alarm or a communication quality degradation alarm between the optical line terminal 110 and the optical network unit 130 connected thereto, but the third optical power can be normally obtained.
- the difference between the first optical power and the third optical power is less than a threshold, and the communication interruption alarm or the communication quality degradation alarm between the optical line terminal 110 and the optical network unit 130 connected thereto is canceled, and the port to be tested and the light are determined.
- all optical line terminals 110 in the area to be tested may be instructed to measure the optical power of the received downlink signal or directly to all optical networks.
- the optical power of the uplink optical signal sent by the device 130 is separately measured; in order to improve the efficiency, when the port on the trunk link is constructed, the indication may also be indicated.
- All optical line terminals 110 in the measurement area measure the optical power of the received downlink signal or directly measure the optical power of the uplink optical signal sent by a certain optical network device 130.
- the port of the optical splitter 121 all the optical line terminals 110 in the area to be tested are instructed to measure the optical power of the received downlink signal or directly to all the optical signals of all the optical network devices 130 connected thereto.
- the optical power of the uplink optical signal sent by the network device 130 is separately measured; in order to improve the efficiency, the input port of the optical splitter 121 may be first measured to determine the optical line terminal 110 to which the optical splitter 121 is connected, and then The optical line terminal 110 is directly instructed to measure the optical power of the downlink signals received by all the optical network devices 130 connected thereto or directly measure the optical power of the uplink optical signals transmitted by all the optical network devices 130.
- the signal for performing the power measurement may be the optical line terminal 110 and the optical network.
- the command may be sent to the optical line terminal 110, so that the optical line terminal 110 sends a test signal.
- the signal for performing power measurement is a test signal.
- the setting of the threshold may be set according to the empirical value and the loss of the optical fiber link, which is not specifically limited in the present invention.
- the acquisition module 510 may collect the port connection relationship information of the wiring module based on the manner of detecting the specific signal as follows.
- the specific signal includes, but is not limited to, an optical signal of a specific wavelength, an optical signal of a specific frequency.
- the ODN management system After the construction worker starts the port connection relationship on the ODN management terminal to collect the work order construction or construction steps, the ODN management system queries the resource management system according to the work order information, obtains the information of all the optical line terminal devices in the area to be constructed, and connects through the wireless connection. To the ODN management terminal, and instructing the construction personnel to use the ODN management terminal to perform bending operation on the optical fiber to be connected to the identification port according to the work order information, and then informing the PON device management system to turn on/off each optical line terminal or optical network device in the to-be-identified area one by one.
- the specific signal confirmation information transmitted by the terminal or the optical network device is sent to the acquiring module 510 through the wireless network, and after obtaining the confirmation information, the acquiring module 510 acquires information about the optical line terminal or the optical network device that is currently enabled to activate the specific signal to the PON device management system. And determining that there is a connection relationship between the to-be-identified port and the optical line terminal or the optical network device that currently turns on the specific signal transmission function.
- the obtaining module 510 After obtaining the connection relationship between the current to-be-identified port and the optical line terminal or the optical network device, the obtaining module 510 notifies the PON device management system to disable the optical line terminal or the optical network device specific signal transmitting function that currently transmits the specific signal. Repeat this until all the ports to be identified are completed.
- the ODN management terminal can analyze and judge whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent.
- the obtaining module 510 may detect the information carrying the identification optical line terminal and/or the optical network device based on the following.
- the signal connection mode collects the port connection relationship information of the wiring module.
- the identifier optical line terminal and/or optical network device information includes, but is not limited to, port information of the optical line terminal and/or the optical network device, operator information, protocol type of the optical line terminal port, and optical line terminal port transmission.
- the ODN management system queries the resource management system according to the work order information, obtains all the optical line terminal equipment information in the area to be constructed, and notifies the PON equipment management system. Turning on the signal transmission function of the identification optical line terminal and/or the optical network device information of all optical line terminals and/or optical network devices in the area to be constructed, and instructing the construction personnel to use the ODN management terminal to identify the connection of the port according to the work order information.
- the optical fiber performs a bending operation to obtain a signal for identifying the optical line terminal and/or the optical network device information transmitted in the optical fiber, and the ODN management terminal obtains the signal identifying the optical line terminal and/or the optical network device information, and then reports the information through the wireless manner.
- the obtaining module 510 determines the port to be identified and the optical line according to the construction port information and the signal of the identification optical line terminal and/or the optical network device information reported by the ODN management terminal 180. There is a connection between the terminal or the optical network device.
- the obtaining module 510 notifies the PON device management system to turn off the signal transmission of the identification optical line terminals and/or the optical network device information of all optical line terminals and/or optical network devices in the area to be constructed.
- the ODN management terminal can analyze and judge whether a specific signal is transmitted in the current optical fiber by detecting an optical signal leaked when the optical fiber is bent. Further, in order to improve the detection precision of the ODN management device, the signal identifying the optical line terminal and/or the optical network device information may be implemented by an encoding method, such as using a PN sequence or one or more periodic sinusoidal signals to represent one signal bit.
- the generating module 520 is configured to receive the connection relationship, generate an electronic label for a port of the wiring module according to a connection relationship of a port of the wiring module, and the generating module 520 sends the electronic label to the Write to module 530.
- the electronic tag information of each of the wiring module ports is calculated according to the port connection relationship of the wiring module.
- the electronic tag information may include, but is not limited to, information identifying a corresponding fiber optic adapter and identifying port connection relationship information.
- the information identifying the corresponding fiber optic adapter includes, but is not limited to, a combination of one or more of a vendor identification, a product type, an operator information, and the like.
- the port connection relationship information may be calculated according to the port connection relationship of the collected wiring modules. For example, as shown in FIG.
- each The relative relationship of the wiring device on the fiber link for example, the first fiber distribution frame is located between the optical line terminal 1 and the second fiber distribution frame, and the second fiber distribution frame is located at the first fiber distribution frame and the cable connection
- the optical route between the optical line terminal 1 and the optical network device 1 is such that the port on the optical line terminal 1 is connected to the first port of the first optical distribution frame 122 through the first optical fiber
- a first port of a fiber distribution frame 122 is connected to a first port of the second fiber distribution frame 122 through a second fiber
- a first port of the second fiber distribution frame 122 is connected to the cable transfer box 123 through a third fiber.
- the first part of the cable transfer box 123 A port is connected to the input port of the optical splitter 121 through the fourth optical fiber, and the first output port of the optical splitter 121 is connected to the light through the fifth optical fiber.
- the first port in the fiber distribution box 124, the first port in the fiber distribution box 124 is connected to the port of the optical network device 1 through the sixth optical fiber. Then, the port connection relationship information in the electronic tag information of each fiber connector on the optical link can be assigned incrementally according to the optical routing information.
- the identification port connection relationship information may be set to 001, and the first optical fiber is connected to the optical fiber connector of the first port of the first optical fiber distribution frame 122.
- the information indicating the port connection relationship in the electronic tag information is set to 002; the information indicating the port connection relationship in the electronic tag information of the fiber connector of the first port of the first fiber connection frame 122 can be set to 003, and the The optical port information of the optical fiber connector of the first port of the second optical fiber distribution frame 122 is identified by the port connection relationship information set to 004, and so on, and the generating module 520 calculates each optical fiber connector on the optical link one by one.
- the port connection relationship information is identified in the electronic tag information.
- the port connection relationship information in the electronic tag information of the two fiber connectors that belong to the same fiber on the optical link may be set to the same value. To identify it as the ends of the same fiber.
- the identification port connection relationship information in the electronic tag information of the two optical fiber connectors connecting the optical fiber terminal 1 port of the first optical fiber and the first optical port of the first optical fiber distribution frame 122 is set to 001;
- the identification port connection relationship information in the electronic tag information of the first fiber port connecting the first fiber distribution frame 122 and the two fiber connectors connecting the first port of the second fiber distribution frame 122 is set to 002. It can be understood that the input/output port of the optical splitter 121 can perform electronic label information assignment according to its port number.
- the port connection relationship information in the electronic tag information of the fiber connector of the input port of the optical splitter 121 can be set to 100, and the port connection relationship is identified in the electronic tag information of the fiber connector of the first output port.
- the information is set to 101
- the port connection relationship information in the electronic tag information of the fiber connector of the second output port is set to 102
- the port connection relationship information is set in the electronic tag information of the fiber connector of the third output port.
- the port connection relationship information is identified in the electronic tag information of the fiber connector that completes all of its output ports.
- the writing module 530 is configured to receive the electronic tag, and write the electronic tag into a corresponding electronic tag carrier by using the control management module.
- the writing module 530 writes the electronic tag information of each of the wiring module ports into the corresponding optical fiber connector.
- the label carrier It can be understood that since the optical fiber distribution frame is generally disposed in a place where the power supply is easily obtained, such as a central office room, the ODN management system can be connected to the optical fiber distribution frame through a wired network and/or a wireless network. Therefore, the writing module 530 can write the electronic tag information of each wiring module port into the electronic tag carrier of the corresponding optical fiber connector of the optical fiber distribution frame through a wired network and/or a wireless network.
- the cable transfer box and the fiber splitter box are usually installed in the field where it is inconvenient to obtain power supply.
- the ODN management terminal needs to be installed to supply power to the cable transfer box or the fiber splitter box, and pass GSM, CDMA, LTE, WiFi, Wireless methods such as WiMax establish a connection with the ODN management system. Therefore, the writing module 530 can write the electronic tag information of each wiring module port into the optical cable carrier of the optical fiber distribution box and the optical fiber distribution box and the optical fiber connector of the optical splitter through a wired network and/or a wireless network. .
- the port of the module is the port of the fiber distribution frame or the port of the cable transfer box or the port in the fiber distribution box.
- FIG. 6 are schematic diagrams showing the structure of an acquisition module 510 of the ODN management system of the present invention. If the optical line terminal and/or the optical network device supports the received optical power measurement, the acquisition module 510 may collect the port connection relationship information of the wiring module based on the optical power measurement manner.
- the obtaining module 510 of the present embodiment includes: a detecting unit 511, an indicating unit 512, and a determining unit 513.
- the detecting unit 511 is configured to detect a first optical power received by each receiving device in the area to be tested, where the receiving device is an optical line terminal or an optical network device, and the first optical power is the receiving device Receiving the power of the signal, the detecting unit 511 transmits the first optical power to the decision unit 513.
- the ODN management system queries the resource management system according to the work order information, obtains information of all optical line terminal devices in the area to be constructed, and notifies
- the PON device management system sends a command for measuring the downlink received optical power of the optical network device or a command for measuring the optical power of the uplink optical signal sent by the optical network device to all the optical line terminals in the area to be tested.
- the optical line terminal in the area to be tested instructs the corresponding optical network device to measure the optical power of the received downlink signal or directly perform the optical power of the received uplink optical signal sent by the corresponding optical network device. Measured to obtain a first optical power.
- the optical line terminal sends the measured first optical power to the detection through the PON equipment management system. Unit 511.
- the optical line terminal After receiving the measurement command, the optical line terminal instructs the corresponding optical network device to measure the optical power of the received downlink signal through the management channel between the optical line terminal and the optical network device (eg, PON channel of EPON, EPON)
- the OAM channel that is, the optical line terminal notifies the optical network device to complete the optical power measurement of the received downlink signal through the management channel, and the optical network device reports the optical power to the optical line terminal through the management channel.
- the indicating unit 512 is configured to indicate that the optical fiber connected to the port of the wiring module is bent.
- the ODN management system may indicate, by the ODN management terminal, that the optical fiber connected to the port to be tested is bent.
- the construction worker bends the optical fiber connected to the port to be tested according to the instruction, and feeds back the information of the bent optical fiber to the ODN management system through the ODN management terminal.
- the detecting unit 511 is further configured to detect a second optical power received by each receiving device in the area to be tested, where the second optical power is a power that the receiving device receives the signal after the optical fiber is bent.
- the detecting unit 511 transmits the second optical power to the determining unit 513.
- the PON device management system sends a measurement command to all the optical line terminals in the area to be tested again, and after receiving the measurement command, the optical network device in the area to be tested again instructs the corresponding optical network device to receive the downlink signal.
- the optical power is measured or directly measured on the received optical power of the uplink optical signal sent by the corresponding optical network device, thereby obtaining a second optical power.
- the optical line terminal transmits the measured second optical power to the detecting unit 511 through the PON device management system.
- the optical line terminal After receiving the measurement command, the optical line terminal instructs the corresponding optical network device to measure the optical power of the received downlink signal through the management channel between the optical line terminal and the optical network device (eg, PON channel of EPON, EPON)
- the OAM channel that is, the optical line terminal notifies the optical network device to complete the optical power measurement of the received downlink signal through the management channel, and the optical network device reports the optical power to the optical line terminal through the management channel.
- the determining unit 513 is configured to determine the wiring when the difference between the first optical power and the second optical power received by the first receiving device is greater than a threshold or the first receiving device receives the alarm information.
- a port is connected to the first receiving device, and a port and an optical line terminal and the light of the wiring module are obtained according to a connection relationship between a port of the wiring module and the first receiving device. The connection relationship between network devices.
- the ODN management system may instruct the constructor to cancel the fiber bending through the ODN management terminal, and the determining unit 513 compares the received first optical power and the second optical power. If the downlink signal received by the optical network device of a certain optical line terminal or the received difference between the first optical power and the second optical power of the uplink optical signal sent by the corresponding optical network device is greater than a threshold, the determining unit 513 determines that There is a connection relationship between the measurement port and the optical line terminal and the optical network device.
- the port to be measured is the first port of the first fiber distribution frame, and first all the optical line terminals in the area to be tested complete the first optical power measurement, and the obtained first light is obtained.
- the power is respectively optical network device 1: -25.1 dBm, optical network device 2: -25.8 dBm, optical network device 3: -23.8 dBm, and optical network device 4: -24.4 dBm.
- the optical fiber connected to the first port of the first optical fiber distribution frame 122 is bent, and all the optical line terminals 110 in the area to be tested complete the second optical power measurement, and the obtained second optical power is respectively the optical network device 1:-26.3 dBm.
- optical network equipment 2 -26.9 dBm
- optical network equipment 3 -23.6 dBm
- optical network equipment 4 -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1: 1.2 dB
- optical network device 2 1.1 dB
- optical network device 3 -0.2 dB
- optical network device 4 0.1 dB.
- the difference between the first optical power and the second optical power of the optical network device 1 and the optical network device 2 connected to the optical line terminal 1 is greater than a threshold, and the optical network device 3 and the optical network device 4 connected to the optical line terminal 2 are first.
- the difference between the optical power and the second optical power is less than the threshold. According to the measurement error, it can be determined that the first port of the first optical distribution frame 122 and the optical fiber and optical line terminal 1 and the optical network device 1 and the optical fiber to which it is connected There is a connection relationship between the network devices 2.
- the line terminal can detect the communication interruption alarm or the communication quality deterioration alarm of the optical network device, and report the alarm information to the ODN management system through the PON device management system.
- the ODN management system may determine, according to the alarm information, a connection relationship between the port to be tested and/or the optical fiber and the optical line terminal and the optical network device. For example, if the threshold is 1dB (decibel, Decibel), the port to be measured is the first port of the first fiber distribution frame.
- optical network equipment 1 the optical network device 1:- 27.6 dBm
- optical network equipment 2 -27.8 dBm
- optical network equipment 3 -23.8 dBm
- optical network equipment 4 -24.4 dBm.
- the receiving sensitivity of the device 2 which in turn causes the communication between the optical line terminal 1 and the optical network device 1 and the optical network device 2 to be interrupted, and the second optical power cannot be obtained.
- the optical line terminal 1 can detect the optical network device 1 and the optical network device 2
- the communication interruption alarm or the communication quality degradation alarm (such as LOS alarm, Loss of Signal), and the alarm information is reported to the ODN management system.
- the second optical power of the optical network device 3 and the optical network device 4 are respectively optical network device 3: -23.6 dBm and optical network device 4: -24.5 dBm.
- the difference between the first optical power and the second optical power is: optical network device 1::, optical network device 2: -, optical network device 3: -0.2 dB, and optical network device 4: 0.1 dB. Since the second optical power is not detected by the optical network device 1 and the optical network device 2 connected to the first optical line terminal OLT1, but there is a communication interruption alarm or a communication quality deterioration alarm, and the optical network device 3 connected to the second optical line terminal OLT2 And the difference between the first optical power and the second optical power of the optical network device 4 is less than a threshold value, and the measurement error may be determined, and then the first port of the first optical fiber distribution frame and the optical fiber and optical line terminal 1 connected thereto may be determined. There is a connection relationship between the optical network device 1 and the optical network device 2.
- the ODN management system may send the downlink of the measurement optical network device to all optical line terminals in the area to be tested again after canceling the optical fiber bending.
- Receiving optical power or measuring an optical power command of an uplink optical signal sent by the optical network device received by the optical line terminal to obtain a third optical power if a difference between the first optical power and the second optical power obtained by an optical line terminal is greater than The threshold, and the difference between the first optical power and the third optical power is less than the threshold, determining that there is a connection relationship between the port to be tested and the optical line terminal and the corresponding optical network device 130.
- the optical power terminal does not normally obtain the second optical power, and detects a communication interruption alarm or a communication quality degradation alarm between the optical line terminal and the optical network unit connected thereto, but the third optical power can be normally obtained, first The difference between the optical power and the third optical power is less than a threshold, and the communication interruption between the optical line terminal and the optical network unit to which it is connected If the alarm or the communication quality deterioration alarm is canceled, it is determined that there is a connection relationship between the port to be tested and the optical line terminal and the corresponding optical network device.
- all the optical line terminals in the area to be tested may be instructed to measure the optical power of the received downlink signal or directly transmit to all the optical network devices.
- the optical power of the uplink optical signal is separately measured; in order to improve the efficiency, when constructing the port on the trunk link, all the optical line terminals in the area to be tested may also be instructed to receive an optical network device connected thereto.
- the terminal measures the optical power of the received downlink signal for all the optical network devices connected thereto or directly measures the optical power of the uplink optical signal sent by all the optical network devices; in order to improve the efficiency, the optical branching may also be performed first.
- the input port of the device performs measurement to determine the optical line terminal to which the optical splitter is connected, and then directly indicates the pair of optical line terminals All optical power of the optical network devices connected to the downstream signal received is measured, or direct measurement of the optical power of the upstream optical signal is transmitted to all optical network devices.
- the signal for performing power measurement may be an optical line terminal and an optical network device.
- the signal sent between normal communication services.
- the command may be sent to the optical line terminal, so that the optical line terminal sends the test signal.
- the signal for performing the power measurement is the test signal.
- the setting of the threshold may be set according to the empirical value and the loss of the optical fiber link, which is not specifically limited in the present invention.
- FIG. 7 is a schematic structural diagram of a second embodiment of an ODN management system according to the present invention.
- the ODN management system 500 of the present embodiment further includes a reading module 540.
- the reading module 540 is configured to read, by the control management module, an in-position state of the electronic tag carrier, thereby obtaining a usage state of a port of the wiring module according to an in-position state of the electronic tag carrier, or Reading the electronic tag information in the electronic tag carrier by the control management module, thereby obtaining the port of the wiring module according to the electronic tag information Connection relationship.
- the present embodiment can bring a lot of convenience to the management of the optical network, if the usage status and/or connection relationship of the port of the wiring module needs to be obtained.
- Only the ODN management system needs to read the in-position state of the electronic tag carrier and/or the electronic tag in the electronic tag carrier through the control management module, and the usage state of the port of the wiring module can be obtained according to the in-position state of the electronic tag carrier.
- the connection relationship of the ports of the wiring module can be obtained according to the electronic tag information in the electronic tag carrier, and the use state and/or the connection relationship of the ports of the wiring module can be observed without the construction worker going to the place where the wiring module is located.
- FIG. 8 is a schematic structural diagram of a third embodiment of an ODN management system according to the present invention.
- the ODN management system 500 of the present embodiment further includes an input module 550.
- the input module 550 is configured to input, to the control management module, a first electronic tag information and a port of the wiring device to be written into the first electronic tag information, where the control management module sends the first electronic tag information Writing to the port of the wiring device to be written with the first electronic tag information; or the input module 550 is configured to input the second electronic tag information to the control management module for the control management module to match A second electronic tag carrier storing the second electronic tag information is found in each electronic tag carrier in the line device, and then determining a port of the wiring device corresponding to the second electronic tag information; optionally, the control management module finds After the second electronic tag carrier storing the second electronic tag information, the blinking state of the indicator of the port of the corresponding wiring module or the blinking state of the indicator of the port of the corresponding wiring module may also be turned on or off.
- the input module 550 can input a single electronic tag information to the control management module for the control management module to write, find a single electronic tag carrier, and/or control an indication corresponding to a port of a single wiring module. Lamp status; multiple electronic tag information may also be input at the same time for the control management module to write, search for multiple electronic tag carriers, and/or control the status of the indicators corresponding to the ports of the individual wiring modules.
- the embodiment can bring a lot of convenience to the management of the optical network. If the port of a certain wiring module needs to be operated, The control management module inputs the electronic standard of the port of this wiring module. When the control management module searches for the corresponding electronic tag information from the electronic tag carrier, the status of the indicator light of the port of the wiring module corresponding to the electronic tag carrier is changed, thereby facilitating the construction personnel to quickly find the port, and Take the appropriate action.
- FIG. 9 is a schematic structural diagram of a fourth embodiment of an ODN management system according to the present invention.
- the ODN management system 900 includes a receiver 910, a processor 920, and a transmitter 930.
- the receiver 910 is configured to acquire a connection relationship of a port of the wiring module, wherein an electronic tag carrier corresponding to a port of the wiring module is disposed in the wiring module.
- the processor 920 is configured to generate electronic tag information for the port of the wiring module according to a connection relationship of ports of the wiring module.
- the transmitter 930 is configured to write the electronic tag information into the corresponding electronic tag carrier by using the control management module.
- the ODN management system 900 in this embodiment also includes a memory 940 that can include read only memory and random access memory and provides instructions and data to the processor 920.
- a portion of the memory 940 may also include non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- Memory 940 stores the following elements, executable modules or data structures, or subsets thereof, or their extended sets:
- Operation instructions include various operation instructions for implementing various operations.
- Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
- the processor 920 performs the above operations by calling an operation instruction stored in the memory 940, which can be stored in the operating system.
- the processor 920 may also be referred to as a CPU (Central Processing Unit).
- Memory 940 can include read only memory and random access memory and provides instructions and data to processor 920. A portion of the memory 940 may also include non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- the components of the ODN management system 900 are coupled together by a bus system 950.
- the bus system 950 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 950 in the figure.
- Processor 920 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 920 or an instruction in a form of software.
- the processor 920 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA off-the-shelf programmable gate array
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in memory 940, and processor 920 reads the information in memory 940 and, in conjunction with its hardware, performs the steps of the above method.
- the receiver 910 reads the in-position state of the electronic tag carrier by using the control management module, thereby obtaining a usage state of the port of the wiring module according to the in-position state of the electronic tag carrier, or
- the electronic tag information in the electronic tag carrier is read by the control management module, so that the connection relationship of the ports of the wiring module is obtained according to the electronic tag information.
- the transmitter 930 inputs the first electronic tag information to the control management module, where the control management module searches for the first electronic tag carrier corresponding to the first electronic tag information,
- the indicator light of the port of the wiring module corresponding to an electronic label carrier performs corresponding operations.
- the receiver 910 is configured to acquire the connection relationship between the port of the distribution module and the optical line terminal and the optical network device in the resource management system.
- the processor 920 is configured to detect a first optical power received by each receiving device in the area to be tested, where the receiving device is an optical line terminal or an optical network device, where the first light is The power is the power of the receiving device receiving the signal; the transmitter is configured to indicate that the optical fiber connected to the port of the wiring module is bent; the processor 920 is configured to detect the second light received by each receiving device in the area to be tested Power, wherein the second optical power is power of the receiving device after the optical fiber is bent; the difference between the first optical power and the second optical power received by the processor 920 at the first receiving device is greater than When the threshold or the first receiving device receives the alarm information, determining that there is a connection relationship between the port of the wiring module and the first receiving device, and according to the port of the wiring module and the first receiving The connection relationship between the devices acquires a connection relationship between the port of the wiring module and the optical line terminal and the optical network device.
- the signal is a signal sent when a normal communication service is performed between the sending device and the receiving device.
- the port of the wiring module is a port of a fiber distribution frame or a port of a cable transfer box or a port in a fiber distribution box.
- the traditional optical distribution network is upgraded and upgraded, and the optical fiber distribution frame, the optical cable transfer box, the optical fiber distribution box, and the like are provided.
- the port at the port adds an electronic tag carrier, and the port connection relationship is electronically written to the electronic tag carrier.
- Using electronic label technology instead of paper labels to intelligently manage optical distribution networks can avoid connection errors caused by pure manual management, and guide network maintenance through computer network technology to improve network maintenance efficiency and reduce requirements for construction personnel. .
- FIG. 10 is a flowchart of another embodiment of an implementation method of an optical network intelligentization according to the present invention.
- the present embodiment is described from the perspective of an ODN management terminal.
- the method for implementing the optical network intelligentization in this embodiment includes:
- the ODN management terminal receives the work order information sent by the ODN management system and the indication sent by the ODN management system to bend the port of the wiring module, where the work order information includes a configuration that needs to acquire a connection relationship. Information about the port of the line module.
- the ODN management terminal bends an optical fiber connected to a port of the wiring module according to the work order information
- the ODN management terminal sends the confirmation information, the obtained optical line terminal, and/or the optical network device information to the ODN management system.
- the confirmation information is confirmation information of the bent optical fiber; if the ODN management system collects the port of the wiring module based on detecting a specific signal Connecting the relationship information, the confirmation information is the confirmation information that the specific signal has been detected; if the ODN management system collects the port connection relationship information of the wiring module based on the manner of detecting the signal carrying the identification optical line terminal and/or the optical network device information, The ODN management terminal transmits the obtained optical line terminal and/or optical network device information to the ODN management system.
- the ODN management terminal supplies power to the wiring module.
- the ODN management terminal establishes a connection with the ODN management system in a wireless manner.
- the ODN management terminal receives an indication sent by the ODN management system to cancel the bending of the port of the wiring module, and cancels bending the optical fiber connected to the port of the wiring module according to the work order information.
- the ODN management terminal receives the in-position state sent by the control management module, and sends the in-position state to the ODN management system, or receives the electronic tag information sent by the control management module, and the The electronic tag information is sent to the ODN management system.
- the ODN management terminal receives the first electronic tag information sent by the ODN management system, and sends the electronic tag information to the control management module, where the control management module searches for the first electronic tag information. Corresponding operation is performed on the indicator light of the port of the wiring module corresponding to the first electronic label carrier.
- FIG. 11 is a schematic structural diagram of an implementation manner of an ODN management terminal according to the present invention.
- the ODN management terminal of the present embodiment includes a receiving module 1110, a bending module 1120, and a sending module 1130.
- the receiving module 1110 is configured to include, but is not limited to, receiving the work order information sent by the ODN management system, and the indication sent by the ODN management system to bend the port of the wiring module, where the work order information includes The information of the port of the wiring module of the connection relationship needs to be acquired, and the receiving module 1110 transmits the work order information to the bending module 1120.
- the bending module 1120 is configured to receive the work order information, and bend an optical fiber connected to a port of the wiring module according to the work order information.
- the sending module 1130 is configured to send the confirmation information, the obtained optical line terminal, and/or the optical network device information to the ODN management system.
- the confirmation information is confirmation information of the bent optical fiber; if the ODN management system collects the port of the wiring module based on detecting a specific signal Connecting the relationship information, the confirmation information is the confirmation information that the specific signal has been detected; if the ODN management system collects the port connection relationship information of the wiring module based on the manner of detecting the signal carrying the identification optical line terminal and/or the optical network device information, The ODN management terminal transmits the obtained optical line terminal and/or optical network device information to the ODN management system.
- the terminal further includes a power supply module 1140, and the power supply module 1140 is configured to supply power to the wiring module.
- the terminal further includes a wireless communication module 1150, where the wireless communication module 1150 is configured to establish a connection with the ODN management system by using a wireless manner including, but not limited to, GSM, CDMA, LTE, WiFi, WiMax, and the like.
- a wireless manner including, but not limited to, GSM, CDMA, LTE, WiFi, WiMax, and the like.
- the receiving module 1110 is configured to receive, by the ODN management system, the configuration, including but not limited to the wiring device configuration management command, the electronic tag carrier in-position query command, the first electronic tag information, the corresponding operation command, and the wiring module.
- the tag is in the status check, the first tag information is written into the electronic tag carrier corresponding to the port of the corresponding wiring module, the electronic tag information in the electronic tag carrier corresponding to the port of the reading wiring module, and the control wiring module are read.
- the corresponding indicator of the port is turned on, off, blinking, and the color of the light.
- the receiving module 1110 is configured to receive the in-position state, the electronic tag information sent by the control management module, including but not limited to the distribution device configuration management result, and the electronic tag carrier, and send the wiring device through the sending module 113.
- the configuration management result, the in-position state of the electronic tag carrier, and the electronic tag information are transmitted to the ODN management system.
- FIG. 12 is a schematic structural diagram of another embodiment of an ODN management terminal according to the present invention.
- the ODN management terminal 1200 includes a receiver 1210, a processor 1220, and a transmitter 1230.
- the receiver 1210 is configured to receive the work order information sent by the ODN management system and the indication sent by the ODN management system to bend the port of the wiring module, where the work order information includes a configuration that needs to acquire a connection relationship. Information about the port of the line module.
- the processor 1220 is configured to bend an optical fiber connected to a port of the wiring module according to the work order information.
- the transmitter 1230 is configured to send the confirmed information, the obtained optical line terminal, and/or the optical network device information to the ODN management system.
- the confirmation information is confirmation information of the bent optical fiber; if the ODN management system collects the port of the wiring module based on detecting a specific signal Connecting the relationship information, the confirmation information is the confirmation information that the specific signal has been detected; if the ODN management system collects the port connection relationship information of the wiring module based on the manner of detecting the signal carrying the identification optical line terminal and/or the optical network device information, The ODN management terminal transmits the obtained optical line terminal and/or optical network device information to the ODN management system.
- the ODN management terminal 1200 in this embodiment further includes a memory 1240, which may include a read only memory and a random access memory, and provides instructions and data to the processor 1220.
- a portion of the memory 1240 may also include non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- the memory 1240 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
- Operation instructions include various operation instructions for implementing various operations.
- Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
- the processor 1220 performs the above operations by calling an operation instruction stored in the memory 1240, which can be stored in the operating system.
- the processor 1220 may also be referred to as a CPU (Central Processing Unit).
- Memory 1240 can include read only memory and random access memory and provides instructions and data to processor 1220.
- a portion of the memory 1240 may also include non-volatile random access memory (NVRAM).
- NVRAM non-volatile random access memory
- each component of the ODN management terminal 1200 is The bus system 1250 is coupled together, wherein the bus system 1250 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1250 in the figure.
- Processor 1220 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1220 or an instruction in the form of software.
- the processor 1220 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA off-the-shelf programmable gate array
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in memory 1240, and processor 1220 reads the information in memory 1240 and, in conjunction with its hardware, performs the steps of the above method.
- the terminal further includes a power source 1260, and the power source 1260 is configured to supply power to the wiring module.
- the terminal further includes a wireless communicator 1270 for establishing a connection with the ODN management system by means of wireless, including but not limited to GSM, CDMA, LTE, WiFi, WiMax, and the like.
- a wireless communicator 1270 for establishing a connection with the ODN management system by means of wireless, including but not limited to GSM, CDMA, LTE, WiFi, WiMax, and the like.
- the receiving module 1110 is configured to receive, by the ODN management system, the configuration, including but not limited to the wiring device configuration management command, the electronic tag carrier in-position query command, the first electronic tag information, the corresponding operation command, and the wiring module.
- the receiving module 1110 is configured to receive the in-position state, the electronic tag information sent by the control management module, including but not limited to the distribution device configuration management result, and the electronic tag carrier, and send the wiring device through the sending module 113.
- the configuration management result, the in-position state of the electronic tag carrier, and the electronic tag information are transmitted to the ODN management system.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Telephonic Communication Services (AREA)
Abstract
本发明公开了一种光网络智能化的实现方法、设备以及系统。所述方法包括:获取配线模块的端口的连接关系,其中,配线模块中设置了与配线模块的端口对应的电子标签载体;根据配线模块的连接关系为配线模块的端口生成电子标签;通过控制管理模块将电子标签写入对应的电子标签载体中。上述的方案中,对传统的光分配网络进行改造升级,给光纤配线架、光缆交接箱和光纤分纤箱等处的端口增加了电子标签载体,并将端口连接关系电子化后写入电子标签载体。
Description
本发明涉及光网络领域,尤其涉及一种光网络智能化的实现方法以及装置。
随着用户对带宽需求的不断增长,传统的铜线宽带接入系统越来越不能适应用户的需求,与此同时,带宽容量巨大的光纤通信技术日益成熟,应用成本逐年下降,光纤接入网成为下一代宽带接入网的有力竞争者。其中,无源光网络是光纤接入网的其中一种。如图1所示,本实施方式中无源光网络(Passive Optical Network,PON)系统包括:光线路终端(Optical Line Terminal,OLT)110、光分配网络(Optical Distribution Network,ODN)120、光网络设备130、资源管理系统140、工单系统150以及PON设备管理系统160。其中资源管理系统140用于对光线路终端、光分配网络、光网络设备等资源信息进行管理,工单系统150则用于施工人员施工工单管理,PON设备管理系统160对光线路终端110和光网络设备130进行配置和管理。
光分配网络120通常由主干光纤、光分路器121和分路光纤等无源器件组成,主干光纤连接光线路终端110和光分路器121,光分路器121通过分路光纤连接至光网络设备130。为了施工、维护管理方便,主干光纤、分路光纤通常在配线模块处进行接续,所述配线模块包括但不限于光纤配线架(Optical Distribution Frame,ODF)122、光缆交接箱(Fiber Distribution Terminal,FDT)123和光纤分纤箱(Fiber Access Terminal,FAT)124,所述接续的方式包括但不限于采用光纤连接器、冷接子连接或采用熔接机熔接。
传统光分配网络通常采用纸质标签标识光纤链路信息,即在光纤上粘贴纸质标签,纸质标签上则标明包括但不限于该光纤来自的上一接续设备的设备信息、地理位置信息及其端口编号、该光纤将连接至的下一接续设备的设备信息、地理位置信息及其端口编号等信息,所述接续设备包括但不限于光纤配线架、光缆交接箱和光纤分纤箱。同时通过人工方式将纸质
标签信息录入资源管理系统,以便后续维护过程查找使用。随着光纤接入网络的大规模建设,光纤海量增长,传统的光纤网络管理问题越来越突出。一方面,人工录入,就不可避免地引入人为错误,同时经过长时间的使用后,纸质标签可能会发生损毁,或者,维修工人在改变端口连接关系后没有相应地修改纸质标签,从而导致光纤链路上端口连接关系混乱,给后续的网络维护、管理工作带来很多困难。另一方面,在后续的网络维护和操作过程中,施工工人需要人工地根据纸质标签在众多光纤中找到需要操作的光纤,不但效率低下,也容易发生误操作现象。
发明内容
本发明实施例所要解决的技术问题是如何解决现有技术中光纤网络管理问题的效率低下、容易发生误操作的技术问题。
第一方面,本发明提供了一种光网络智能化的实现方法,包括:获取配线模块的端口与光线路终端OLT和光网络设备之间的连接关系,其中,所述配线模块中设置了与配线模块的端口对应的电子标签载体;根据所述配线模块的端口与所述OLT和光网络设备之间的连接关系为所述配线模块的端口生成电子标签;所述配线模块中包括控制管理模块,所述控制管理模块连接所述电子标签载体,通过所述控制管理模块将所述电子标签写入对应的电子标签载体中。
结合第一方面,在第一种可能的实施方式中,所述方法还包括:读取所述电子标签载体的在位状态,根据所述电子标签载体的在位状态获得所述配线模块的端口的使用状态,或者,读取所述电子标签载体中的电子标签信息,根据所述电子标签信息获得所述配线模块的端口的连接关系。
结合第一方面,在第二种可能的实施方式中,所述方法还包括:向所述控制管理模块输入第一电子标签信息,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
结合第一方面,在第三种可能的实施方式中,所述获取配线模块的端口与光线路终端和光网络设备之间的连接关系包括:如果资源管理系统内具有完整的所述配线模块的端口与光线路终端和光网络设备之间的连接
关系,则从所述资源管理系统中获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
结合第一方面,在第四种可能的实施方式中,所述获取配线模块的端口与光线路终端和光网络设备之间的连接关系包括:检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光功率是所述接收设备接收到信号的功率;指示对与配线模块的端口连接的光纤进行弯曲;检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率;如果第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息,则确定所述配线模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
结合第一方面,在第五种可能的实施方式中,所述信号为发送设备与接收设备之间进行正常通信业务时所发送的信号。
结合第一方面,在第六种可能的实施方式中,所述配线模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
第二方面,本发明提供了一种光分配网络ODN管理系统,包括::获取模块、生成模块以及写入模块,所述获取模块用于获取配线模块的端口与光线路终端OLT和光网络设备之间的连接关系,其中,所述配线模块中设置了与配线模块的端口对应的电子标签载体,所述获取模块将所述连接关系发送给所述生成模块;所述生成模块用于接收所述连接关系,根据所述配线模块的端口的连接关系为所述配线模块的端口生成电子标签,所述生成模块将所述电子标签发送给所述写入模块;所述配线模块中还设置了控制管理模块,所述控制管理模块连接所述电子标签载体,所述写入模块用于接收所述电子标签,通过所述控制管理模块将所述电子标签写入对应的电子标签载体中。
结合第二方面,在第一种可能的实施方式中,所述系统还包括读取模块,所述读取模块用于读取所述电子标签载体的在位状态,根据所述电子
标签载体的在位状态获得所述配线模块的端口的使用状态,或者,读取所述电子标签载体中的电子标签信息,根据所述电子标签信息获得所述配线模块的端口的连接关系。
结合第二方面,在第二种可能的实施方式中,所述系统还包括输入模块,所述输入模块用于向所述控制管理模块输入第一电子标签信息,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
结合第二方面,在第三种可能的实施方式中,所述获取模块还用于在资源管理系统内具有完整的所述配线模块的端口与光线路终端和光网络设备之间的连接关系时,从所述资源管理系统中获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
结合第二方面,在第四种可能的实施方式中,所述获取模块还包括检测单元、指示单元以及判决单元,所述检测单元用于检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光功率是所述接收设备接收到信号的功率,所述检测单元将所述第一光功率发送给所述判决单元;所述指示单元用于指示对与配线模块的端口连接的光纤进行弯曲;所述检测单元还用于检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率,所述检测单元将所述第二光功率发送给所述判决单元;所述判断单元用于在第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息时,确定所述配线模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
结合第二方面,在第五种可能的实施方式中,所述信号为发送设备与接收设备之间进行正常通信业务时所发送的信号。
结合第二方面,在第六种可能的实施方式中,所述配线模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
第三方面,本发明提供了一种光网络系统,包括:光线路终端、光分配网络、光网络设备、资源管理系统、ODN管理系统,所述光线路终端通过所述光分配网络连接所述光网络设备,所述ODN管理系统连接所述光线路终端,所述ODN管理系统连接所述资源管理系统,其中,所述ODN管理系统为上述任一项所述的ODN管理系统。
第四方面,本发明提供了一种光网络智能化的实现方法,包括:接收ODN管理系统所发送的工单信息以及ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息;根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲;向所述ODN管理系统发送已弯曲光纤的信息。
结合第四方面,在第一种可能的实施方式中,所述方法还包括:向所述配线模块进行供电。
结合第四方面的第一种可能的实施方式,在第二种可能的实施方式中,所述方法还包括:通过无线的方式与所述ODN管理系统建立连接。
结合第四方面,在第三种可能的实施方式中,所述向ODN管理系统发送已弯曲光纤的信息之后之后还包括:接收ODN管理系统所发送的取消对所述配线模块的端口进行弯曲的指示,并根据所述工单信息取消对与所述配线模块的端口连接的光纤进行弯曲。
结合第四方面,在第四种可能的实施方式中,接收控制管理模块所发送的在位状态,并将所述在位状态向所述ODN管理系统发送,或,接收控制管理模块所发送的电子标签信息,并将所述电子标签信息向所述ODN管理系统发送。
结合第四方面,在第五种可能的实施方式中,所述方法还包括:接收ODN管理系统所发送的第一电子标签信息,并将所述第一电子标签信息向控制管理模块发送,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
第五方面,本发明提供了一种ODN管理终端,包括:接收模块、弯曲模块以及发送模块,所述接收模块用于接收ODN管理系统所发送的工
单信息以及ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息,所述接收模块将所述工单信息发送给所述弯曲模块;所述弯曲模块用于接收所述工单信息,根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲;所述发送模块用于向所述ODN管理系统发送已弯曲光纤的信息。
结合第五方面,在第一种可能的实施方式中,所述终端还包括供电模块,所述供电模块用于向所述配线模块进行供电。
结合第五方面的第一种可能的实施方式,在第二种可能的实施方式中,所述终端还包括无线通信模块,所述无线通信模块用于通过无线的方式与所述ODN管理系统建立连接。
结合第五方面,在第三种可能的实施方式中,所述接收模块还用于接收ODN管理系统所发送的取消对所述配线模块的端口进行弯曲的指示,并根据所述工单信息取消对与所述配线模块的端口连接的光纤进行弯曲。
结合第五方面,在第四种可能的实施方式中,所述接收模块还用于接收控制管理模块所发送的在位状态,并且将所述在位状态向所述ODN管理系统发送,或,接收模块用于接收控制管理模块所发送的电子标签信息,并且将所述电子标签信息向所述ODN管理系统发送。
结合第五方面,在第五种可能的实施方式中,接收模块还用于接收ODN管理系统所发送的第一电子标签信息,并将所述电子标签信息向控制管理模块发送,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
上述的方案中,为了获得智能化的光分配网络所带来的光网络维护和管理的便利,对传统的光分配网络进行改造升级,给光纤配线架、光缆交接箱和光纤分纤箱等处的端口增加了电子标签载体,并将端口连接关系电子化后写入电子标签载体。
利用电子标签技术替代纸质标签对光分配网络进行智能化管理,可以避免纯粹人工管理可能导致的连接错误,并通过计算机网络技术对网络维
护进行指导,提高网络维护效率,降低对施工人员的要求。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术无源光网络一实施方式的结构示意图;
图2是本发明光网络系统一实施方式的结构示意图;
图3是本发明光网络系统中对配线模块进行设备改造的示意图;
图4是本发明光网络智能化的实现方法一实施方式的流程图;
图5是本发明ODN管理系统第一实施方式的结构示意图;
图6是本发明ODN管理系统的获取模块一实施方式的结构示意图;
图7是本发明ODN管理系统第二实施方式的结构示意图;
图8是本发明ODN管理系统第三实施方式的结构示意图;
图9是本发明ODN管理系统第四实施方式的结构示意图;
图10是本发明光网络智能化的实现方法另一实施方式的流程图;
图11是本发明ODN管理终端一实施方式的结构示意图;
图12是本发明ODN管理终端另一实施方式的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除
非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
参阅图2,图2是本发明光网络系统一实施方式的结构示意图。本实施方式的系统包括:光线路终端110、光分配网络120、光网络设备130、资源管理系统140、工单系统150、PON设备管理系统160、ODN管理系统170以及ODN管理终端180。资源管理系统140分别与PON设备管理系统160和ODN管理系统170连接。工单系统150分别与PON设备管理系统160和ODN管理系统170连接,PON设备管理系统160通过互联网和光线路终端110进行通信,ODN管理系统170可以通过有线网络直接和光纤配线架122、光缆交接箱123以及光纤分纤箱124等配线设备进行通信,也可以通过与管理终端180之间建立无线连接,进而和光纤配线架122、光缆交接箱123以及光纤分纤箱124之间建立通信。其中,PON设备管理系统160和ODN管理系统170可以为两个独立的系统,也可以为一个管理系统中的两个不同模块。光线路终端110通过光分配网络120与光网络设备130建立连接关系。其中,光分配网络120通常由主干光纤、光分路器121和分路光纤等无源器件组成,主干光纤连接光线路终端110和光分路器121,光分路器121通过分路光纤连接至光网络设备130。
由于光线路终端110与光分路器121,光分路器121与光网络设备130之间的距离可能很远,为了便于施工、管理和维护,光分配网络120通常在配线模块的端口处通过光纤连接器完成光纤的接续,所述配线模块包括但不限于光纤配线架122、光缆交接箱123和光纤分纤箱124。例如,如图2所示,光线路终端1上的端口通过第一光纤连接到第一光纤配线架122的第一端口,第一光纤配线架122的第一端口通过第二光纤连接到第二光纤配线架122的第一端口,第二光纤配线架122的第一端口通过第三光纤连接到光缆交接箱123的第一端口,光缆交接箱123的第一端口通过第四光纤连接到光分路器121的输入端口,光分路器121的第一输出端口通过第五光纤连接到光纤分纤箱124中的第一端口,光纤分纤箱124中的第一端口通过第六光纤连接到光网络设备1的端口,从而构成了一条从光线路终端1至光网络设备1的光纤链路。
为了使光网络实现智能化,通常在工单系统中创建工单,以明确需要实现智能化的配线设备、施工人员等,施工工人可通过ODN管理终端180下载工单,更根据工单指示进行施工。首先需要对配线模块进行设备改造。具体地,如图3所示,以光纤配线架122为例,传统的光纤配线架122内通常设有一个或多个光纤配线盘200,每个光纤配线盘200内设有一个或多个光纤适配器201,所述光纤适配器201用于插入带有光纤连接器的光纤,以完成光纤的接续。对其进行设备改造时,首先需要在光纤配线架122内加装控制管理模块202和电子标签载体适配器盘203,并在每根光纤跳线上加装电子标签载体207(未在图中画出),其中控制管理模块202可提供和ODN管理系统170以及ODN管理终端180连接的接口、存储标识该光纤配线架的信息,并和电子标签载体适配器盘203建立连接,以读/写电子标签载体中存储的电子标签信息。进一步地控制管理模块202还通过有线或者无线的方式读取电子标签载体,并根据读取的电子标签载体的在位状态和电子标签信息,判断该光纤配线架中光纤适配器端口使用状态和连接关系。所述和ODN管理系统170以及ODN管理终端180连接的接口包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。其中电子标签载体盘203设有一个或多个电子标签载体适配器204、LED(Light Emitting Diode,发光二极管)指示灯205,每个电子标签载体适配器204用于插入光纤上加装的电子标签载体207,以便控制管理模块202读/写其中的电子标签信息。同时,LED指示灯205可通过物理位置关联到特定的光纤适配器201。例如,LED指示灯205位于某个配线模块的端口的正上方或正下方,表示该LED指示灯205对应该配线模块的端口,ODN管理系统170可通过控制LED指示灯205的开启、关闭、闪烁状态、灯光颜色等来指示施工人员对该配线设备的端口进行不同操作,例如插入光纤连接器、拔出光纤连接器等。进一步地,每个电子标签载体适配器盘203上还可以包括一个管理通信接口206,用于建立控制管理模块202与电子标签载体盘203上的各个电子标签载体适配器204、LED指示灯205、以及插入电子标签载体适配器中的电子标签载体207之间的通信连接,以便控制管理模块202读写电子标签
载体207中的电子标签信息,并控制LED指示灯205。所述通信管理接口206包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。可以理解地,如果每个电子标签载体都具有独立的通信管理接口和控制管理模块202直接建立联系,可不安装电子标签载体适配器盘203。类似地,可采用上述的办法对光缆交接箱123、光纤分纤箱124等配线设备进行改造,此处不展开赘述。
完成光纤配线架122、光缆交接箱123、光纤分纤箱124等配线设备改造后,需要建立光纤配线架122、光缆交接箱123、光纤分纤箱124等配线设备和ODN设备管理系统170以及ODN管理终端180之间的通信连接。由于光纤配线架122一般都设置在局方机房等易于获得供电和存在有线网络和/或无线网络的地方,所以,ODN管理系统170可以通过有线网络和/或无线网络连接至光纤配线架122。而光缆交接箱123和光纤分纤箱124通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端180对光缆交接箱123或光纤分纤箱124进行供电,并通过GSM(Global System for Mobile Communication,全球移动通信系统)、CDMA(Code Division Multiple Access,码分多址)、LTE(Long Term Evolution,长期演进)、WiFi(Wireless Fidelity,无线保真)、WiMax(World Interoperability for Microwave Access,全球微波接入互操作性)等无线的方式与ODN管理系统170建立连接。可以理解的是,ODN管理终端180可以通过串口、并口、USB等接口为光纤配线架122、光缆交接箱123、光纤分纤箱124进行供电。进一步地,ODN管理终端180可以通过串口、并口、USB接口与光纤配线架122、光缆交接箱123、光纤分纤箱124建立有线连接,也可以通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与光纤配线架122、光缆交接箱123、光纤分纤箱124建立无线连接,同时再通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统170进行连接,进而建立起光纤配线架122、光缆交接箱123、光纤分纤箱124与ODN管理系统170之间的通信连接。
完成设备改造和通信连接建立后,为了向配线模块内光纤连接器上的电子标签载体207中写入电子标签信息,需要获得配线模块的端口连接关
系,进而根据配线模块的端口连接关系计算电子标签信息。具体地,如果资源管理系统140内有准确完整的配线模块的端口连接关系信息,且ODN管理系统170和资源管理系统140之间已经建立连接,ODN管理系统170可从资源管理系统140内导入配线模块的端口连接关系信息;如果资源管理140内没有准确完整的配线模块的端口连接关系信息,则ODN管理系统170需收集配线模块的端口连接关系信息。具体地,ODN管理系统170可采用如下方式中的一种或多种组合来收集配线模块的端口连接关系信息。
方式一:如果光分配网络120中具有准确完整的纸质标签信息,施工人员可将标识配线模块的端口连接关系信息的纸质标签信息录入资源管理系统140和/或ODN管理系统内,如果施工人员讲纸质标签信息录入资源管理系统140内,且ODN管理系统170和资源管理系统140之间已经建立连接,ODN管理系统170可从资源管理系统140内导入配线模块的端口连接关系信息。
方式二:如果光线路终端110和/或光网络设备130支持接收光功率测量,则可基于光功率测量方式收集配线模块的端口连接关系信息。
施工工人在ODN管理终端180上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统170根据工单信息查询资源管理系统140,获得待施工区域内的所有光线路终端110设备信息,并通知PON设备管理系统160向待测区域内的所有光线路终端110发送测量光网络设备130的下行接收光功率的命令或测量光线路终端110接收到的光网络设备130发送的上行光信号的光功率的命令。待测区域内的光线路终端110在接收到命令后,指示相应的光网络设备130对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备130发送的上行光信号的光功率进行测量,从而得到第一光功率。然后,光线路终端110将测量得到的第一光功率通过PON设备管理系统160发送给ODN管理系统170。ODN管理系统170在接收到第一光功率后,可通过ODN管理终端180指示对与待测端口连接的光纤进行弯曲。施工工人根据指示对与待测端口连接的光纤进行弯曲,并通过ODN管理终端180反馈已弯曲光纤的信息至ODN
管理系统170。PON设备管理系统160再次向待测区域内的所有光线路终端110发送测量命令,待测区域内的光网络设备130在接收到测量命令后,再次指示相应的光网络设备130对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备130发送的上行光信号的光功率进行测量,从而得到第二光功率。然后,光线路终端110将测量得到的第二光功率通过PON设备管理系统160发送给ODN管理系统170。ODN管理系统170在接收到第二光功率后,可通过ODN管理终端180指示施工人员取消光纤弯曲,并将接收到的第一光功率和第二光功率进行比较。如果某个光线路终端110的光网络设备130接收到的下行信号或其接收到的相应光网络设备130发送的上行光信号的第一光功率与第二光功率之差大于阈值,则确定待测端口与该光线路终端110和光网络设备130之间存在连接关系。所述光线路终端110在接收到测量命令后,指示相应的光网络设备130对接收到的下行信号的光功率进行测量可通过光线路终端110和光网络设备130之间管理通道实现,比如GPON的OMCI(ONU Management and Control Interface,光网络单元管理和控制接口)通道,EPON的OAM(Operation Administration and Maintenance,操作管理维护)通道,即光线路终端110通过管理通道通知光网络设备130完成接收到的下行信号的光功率测量,光网络设备130完成光功率测量后,通过管理通道上报给光线路终端110。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-25.1dBm、光网络设备2:-25.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,得到的第二光功率分别为光网络设备1:-26.3dBm、光网络设备2:-26.9dBm、光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:1.2dB、光网络设备2:1.1dB、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于光线路终端1连接的光网络设备1和光网络设备2的第一光功率和第二光功率的差值均大于阈
值,而光线路终端2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,如果弯曲光纤带来的损耗过大,导致光线路终端110和光网络设备130之间的通信中断导致无法进行第二光功率的测量或通信质量劣化严重导致无法上报第二光功率时,光线路终端110可检测到光网络设备130通信中断告警或通信质量劣化告警,并将告警信息通过PON设备管理系统160上报ODN管理系统170。ODN管理系统170可根据告警信息确定待测端口和/或光纤与该光线路终端110和光网络设备130之间存在连接关系。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架122的第一端口,首先待测区域内的所有光线路终端110完成第一光功率测量,得到的第一光功率分别为光网络设备1:-27.6dBm、光网络设备2:-27.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,由于弯曲光纤引入链路损耗导致接收光功率超过光网络设备1和光网络设备2的接收灵敏度,进而导致光线路终端1与光网络设备1和光网络设备2之间的通信中断,无法获得第二光功率,此时光线路终端1可检测到光网络设备1和光网络设备2通信中断告警或通信质量劣化告警(如LOS告警,Loss of Signal),并将告警信息上报ODN管理系统170。而光网络设备3和光网络设备4的第二光功率分别为光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:-、光网络设备2:-、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于第一光线路终端OLT1连接的光网络设备1和光网络设备2的未检测到第二光功率,但有通信中断告警或通信质量劣化告警,而第二光线路终端OLT2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备
2之间存在连接关系。
可选地,为了提高光网络连接关系的准确性,在完成第二光功率测量后,ODN管理系统170可在取消光纤弯曲后再次向待测区域内的所有光线路终端110发送测量光网络设备130的下行接收光功率或测量光线路终端110接收到的光网络设备130发送的上行光信号的光功率命令,以获得第三光功率,如果某光线路终端获得的第一光功率和第二光功率之差大于阈值,而第一光功率和第三光功率之差小于阈值,则确定待测端口与该光线路终端110和相应的光网络设备130之间存在连接关系。或者,某光线路终端110未正常获得第二光功率,并检测到该光线路终端110和其连接的光网络单元130之间通信中断告警或通信质量劣化告警,但可正常获得第三光功率,第一光功率和第三光功率之差小于阈值,且该光线路终端110和其连接的光网络单元130之间的通信中断告警或通信质量劣化告警取消,则确定待测端口与该光线路终端110和相应的光网络设备130之间存在连接关系。
在对主干链路上的端口进行施工时,可指示待测区域内的所有光线路终端110对其连接的所有光网络设备130对接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率分别进行测量;为了提高效率,在对主干链路上的端口进行施工时,也可指示待测区域内的所有光线路终端110对其连接的某个光网络设备130对接收到的下行信号的光功率进行测量或直接对某个光网络设备130发送的上行光信号的光功率进行测量;而对光分路器121的端口进行施工时,可指示待测区域内的所有光线路终端110对其连接的所有光网络设备130对接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率分别进行测量;为了提高效率,也可先对光分路器121的输入端口进行测量以判断该光分路器121所连接的光线路终端110,然后直接指示该光线路终端110对其所连接的所有光网络设备130接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率进行测量。
可以理解的是,为了不影响正在使用网络的用户正常进行通信,对于
有进行通信的光纤链路上的待测端口进行连接关系确定时,进行功率测量的信号可以是光线路终端110与光网络设备130之间进行正常通信业务时所发送的信号。对于没有进行通信的光纤链路上的待测端口进行连接关系确定时,可向光线路终端110发送命令,使得光线路终端110发送测试信号,此时,进行功率测量的信号则为测试信号。
此外,阈值的设置可以根据经验值以及光纤链路的损耗而进行设置,本发明不作具体限定。
方式三:如果光线路终端110和/或光网络设备130支持发射特定信号的功能,则ODN管理系统170可基于如下检测特定信号的方式收集配线模块的端口连接关系信息。所述特定信号包括但不限于特定波长的光信号、特定频率的光信号。
施工工人在ODN管理终端180上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统170根据工单信息查询资源管理系统140,获得待施工区域内的所有光线路终端110设备信息,并通过无线方式连接至ODN管理终端180,并根据工单信息指示施工人员采用ODN管理终端180对待识别端口的连接的光纤进行弯曲操作,然后通知PON设备管理系统160逐个开启/关闭待识别区域内各个光线路终端110或光网络设备130的特定信号发射功能,直到ODN管理终端180探测到该特定信号,施工人员通过ODN管理终端180将探测到光线路终端110或光网络设备130发射的特定信号确认信息通过无线网络发送给ODN管理系统170,ODN管理系统170获取到确认信息后,向PON设备管理系统160获取当前开启特定信号发射的光线路终端110或光网络设备130的信息,进而确定待识别端口与当前开启特定信号发射功能的光线路终端110或光网络设备130之间存在连接关系。ODN管理系统170确定当前待识别端口与光线路终端110或光网络设备130的连接关系后,通知PON设备管理系统160关闭当前发射特定信号的光线路终端110或光网络设备130特定信号发射功能。如此重复,直至所有待识别端口施工完成。其中ODN管理终端180可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。
方式四:如果光线路终端110和/或光网络设备130支持发射标识光线路终端110和/或光网络设备130信息的信号,则ODN管理系统170可基于如下检测携带标识光线路终端110和/或光网络设备130信息的信号的方式收集配线模块的端口连接关系信息。所述标识光线路终端110和/或光网络设备130信息包括但不限于:所述光线路终端110和/或光网络设备130的端口信息,运营商信息,光线路终端端口的协议类型,光线路终端端口发射光功率,光线路终端端口功率预算等级,光线路终端端口为主用端口还是备用端口,光线路终端端口是否连接到拉远设备,光线路终端端口连接到拉远设备时拉远设备的发射光功率,光线路终端端口采用的线路编码方式,光线路终端接收到的光节点发射波长信息的任意一种或几种的组合。
施工工人在ODN管理终端180上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统170根据工单信息查询资源管理系统140,获得待施工区域内的所有光线路终端110设备信息,通知PON设备管理系统160开启待施工区域内所有光线路终端110和/或光网络设备130的标识光线路终端110和/或光网络设备130信息的信号发射功能,并根据工单信息指示施工人员采用ODN管理终端180对待识别端口的连接的光纤进行弯曲操作,获取当前操作光纤中传输的标识光线路终端110和/或光网络设备130信息的信号,ODN管理终端180获取到标识光线路终端110和/或光网络设备130信息的信号后,通过无线方式上报给ODN管理系统,ODN管理系统170根据施工端口信息和ODN管理终端180上报的标识光线路终端110和/或光网络设备130信息的信号,进而确定待识别端口与光线路终端110或光网络设备130之间存在连接关系。如此重复,直至所有待识别端口施工完成后,ODN管理系统170通知PON设备管理系统160关闭待施工区域内所有光线路终端110和/或光网络设备130的标识光线路终端110和/或光网络设备130信息的信号发射功能。其中ODN管理终端180可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。进一步地,为了提高ODN管理设备180探测精度,标识光线路终端110和/或光网络设备130信息的信号可通过编码方
式实现,如采用一个PN序列或一个或多个周期的正弦信号表示一个信号位。
ODN管理系统170获得配线模块的端口连接关系后,根据配线模块的端口连接关系计算每个配线模块端口的电子标签信息。
所述电子标签信息可包含但不限于标识相应的光纤适配器的信息以及标识端口连接关系信息。所述标识相应的光纤适配器的信息包括但不限于厂商标识、产品类型、运营商信息等一种或多种的组合。所述端口连接关系信息可根据收集的配线模块的端口连接关系计算获得。例如,如图2,根据收集到配线端口连接关系信息,可知第一光纤配线架122的第一端口、第二光纤配线架122的第一端口、光缆交接箱123的第一端口、光分路器121的输入端口、光分路器121的第一输出端口、124光纤分纤箱的第一端口都与光线路终端1和光网络设备1相连,同时,根据运营商规划信息可知各配线设备在光纤链路上的相对关系,例如第一光纤配线架位于光线路终端1和第二光纤配线架之间,第二光纤配线架位于第一光纤配线架和光缆交接箱之间等,就可得知光线路终端1与光网络设备1之间的光路由为光线路终端1上的端口通过第一光纤连接到第一光纤配线架122的第一端口,第一光纤配线架122的第一端口通过第二光纤连接到第二光纤配线架122的第一端口,第二光纤配线架122的第一端口通过第三光纤连接到光缆交接箱123的第一端口,光缆交接箱123的第一端口通过第四光纤连接到光分路器121的输入端口,光分路器121的第一输出端口通过第五光纤连接到光纤分纤箱124中的第一端口,光纤分纤箱124中的第一端口通过第六光纤连接到光网络设备1的端口。则该光链路上的各个光纤连接器的电子标签信息中标识端口连接关系信息可根据光路由信息逐个递增方式赋值。例如,可以将第一光纤连接光线路终端1端口的光纤连接器的电子标签信息中标识端口连接关系信息设为001,而第一光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为002;第二光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为003,而第二光纤连接第二光纤配线架122的第一端口的光纤连接器的电子标签信息中
标识端口连接关系信息设为004,以此类推,逐个计算该光链路上各个光纤连接器的电子标签信息中标识端口连接关系信息;可选地,也可将该光链路上的同属于一根光纤的两个光纤连接器的电子标签信息中标识端口连接关系信息设置为相同值,以标识其为同一根光纤的两端。例如,将第一光纤的连接光线路终端1端口和连接第一光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为001;将第二光纤的连接第一光纤配线架122第一端口和连接第二光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为002。可以理解地,对光分路器121的输入/输出端口可以根据其端口编号进行电子标签信息赋值。例如,可以将光分路器121的输入端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为100,而将其第一输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为101,将其第二输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为102,将其第三输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为103,以此类推,直至完成其所有输出端口的光纤连接器的电子标签信息中标识端口连接关系信息赋值。
完成各个配线模块端口的电子标签信息计算后,ODN管理系统170将各个配线模块端口的电子标签信息写入对应的光纤连接器的电子标签载体中。可以理解地,由于光纤配线架122一般都设置在局方机房等易于获得供电的地方,所以,ODN管理系统170可以通过有线网络和/或无线网络连接至光纤配线架122。所以ODN管理系统170可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光纤配线架122的相应的光纤连接器的电子标签载体中。而光缆交接箱123和光纤分纤箱124通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端180对光缆交接箱123或光纤分纤箱124进行供电,并通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统170建立连接。所以ODN管理系统170可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光缆交接箱123和光纤分纤箱124、光分路器121的相应的光纤连接器的电子标签载体中。
可以理解地,如果PON设备管理系统160和/或ODN管理系统170无法和资源管理系统140和/或工单系统无法建立连接,则可在ODN管理系统170内直接录入待施工区域内所有光线路终端110、光纤配线架122、光缆交接箱123、光纤分纤箱124等设备信息,并在ODN管理系统170内创建工单,以供施工人员通过ODN管理终端180获得工单,进行施工。
通过本发明将传统光网络改造成具有电子标签的智能光网络后,可利用电子标签技术替代纸质标签对光分配网络进行智能化管理。在后续网络维护操作过程中,ODN管理系统可通过ODN管理终端对施工过程进行指导,并通过LED灯指示当前需要操作的端口以及所需进行的操作,从而使得施工人员极容易寻找到需要操作的端口,并对施工结果进行校验,可以避免纯粹人工管理可能导致的连接错误。同时,ODN管理系统可在线或通过ODN管理终端对配线设备进行远程升级、管理、端口状态收集等,提高网络维护效率,降低对施工人员的要求。
参阅图4,图4是本发明光网络智能化的实现方法一实施方式的流程图。本实施方式的光网络智能化的实现方法包括:
410:ODN管理系统获取配线模块的端口的连接关系,其中,所述配线模块中设置了控制管理模块以及与配线模块的端口对应的电子标签载体,所述控制管理模块连接所述电子标签载体。
具体地,光线路终端通过光分配网络与光网络设备建立连接关系。其中,光分配网络通常由主干光纤、光分路器和分路光纤等无源器件组成,主干光纤连接光线路终端和光分路器,光分路器通过分路光纤连接至光网络设备。由于光线路终端与光分路器,光分路器与光网络设备之间的距离可能很远,为了便于施工、管理和维护,光分配网络通常在配线模块的端口处通过光纤连接器完成光纤的接续,所述配线模块包括但不限于光纤配线架、光缆交接箱和光纤分纤箱。
例如,光线路终端1上的端口通过第一光纤连接到第一光纤配线架的第一端口,第一光纤配线架的第一端口通过第二光纤连接到第二光纤配线架的第一端口,第二光纤配线架的第一端口通过第三光纤连接到光缆交接箱的第一端口,光缆交接箱的第一端口通过第四光纤连接到光分路器的输
入端口,光分路器的第一输出端口通过第五光纤连接到光纤分纤箱中的第一端口,光纤分纤箱中的第一端口通过第六光纤连接到光网络设备1的端口,从而构成了一条从光线路终端1至光网络设备1的光纤链路。
为了使光网络实现智能化,通常在工单系统中创建工单,以明确需要实现智能化的配线设备、施工人员等,施工工人可通过ODN管理终端下载工单,更根据工单指示进行施工。首先需要对配线模块进行设备改造。具体地,如图3所示,以光纤配线架122为例,传统的光纤配线架122内通常设有一个或多个光纤配线盘200,每个光纤配线盘200内设有一个或多个光纤适配器201,所述光纤适配器201用于插入带有光纤连接器的光纤,以完成光纤的接续。对其进行设备改造时,首先需要在光纤配线架122内加装控制管理模块202和电子标签载体适配器盘203,并在每根光纤跳线上加装电子标签载体207(未在图中画出),其中控制管理模块202可提供和ODN管理系统以及ODN管理终端连接的接口、存储标识该光纤配线架的信息,并和电子标签载体适配器盘203建立连接,以读/写电子标签载体中存储的电子标签信息。进一步地控制管理模块202可以通过有线或无线的方式读取电子标签载体,并可根据读取的电子标签载体的在位状态,判断该光纤配线架中光纤适配器端口使用状态。所述和管理系统以及ODN管理终端连接的接口包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。其中电子标签载体盘203设有一个或多个电子标签载体204、LED指示灯205,每个电子标签载体适配器204用于插入光纤上加装的电子标签载体207,以便控制管理模块202读/写其中的电子标签信息。同时,LED指示灯205可通过物理位置关联到特定的光纤适配器201。例如,LED指示灯205位于某个配线模块的端口的正上方或正下方,表示该LED指示灯205对应该配线模块的端口,ODN管理系统可通过点亮LED指示灯205的开启、关闭、闪烁状态、灯光颜色等来指示施工人员对该配线设备的端口进行不同操作,例如插入光纤连接器、拔出光纤连接器等。进一步地,每个电子标签载体适配器盘203上还可以包括一个管理通信接口206,用于建立控制管理模块202与电子标签载体盘203上的各个电子标签载体适配器204、LED
指示灯205、以及插入电子标签载体适配器中的电子标签载体207之间的通信连接,以便控制管理模块202读写电子标签载体207中的信息,并控制LED指示灯205。所述通信管理接口206包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。可以理解地,如果每个电子标签载体都具有独立的通信管理接口和控制管理模块202直接建立联系,可不安装电子标签载体适配器盘203。类似地,如果可采用上述的办法对光缆交接箱123、光纤分纤箱124等配线设备进行改造,此处不展开赘述。
完成光纤配线架、光缆交接箱、光纤分纤箱等配线设备改造后,需要建立光纤配线架、光缆交接箱、光纤分纤箱等配线设备和ODN设备管理系统以及ODN管理终端之间的通信连接。由于光纤配线架一般都设置在局方机房等易于获得供电和存在有线网络和/或无线网络的地方,所以,ODN管理系统可以通过有线网络连接和/或至光纤配线架。而光缆交接箱和光纤分纤箱通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端对光缆交接箱或光纤分纤箱进行供电,并通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统建立连接。可以理解的是,ODN管理终端可以通过串口、并口、USB接口为光纤配线架、光缆交接箱、光纤分纤箱进行供电。进一步地,ODN管理终端可以通过串口、并口、USB接口与光纤配线架、光缆交接箱、光纤分纤箱建立有线连接,也可以通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与光纤配线架、光缆交接箱、光纤分纤箱建立无线连接,同时再通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统进行连接,进而建立起光纤配线架、光缆交接箱、光纤分纤箱与ODN管理系统之间的通信连接。
完成设备改造和通信连接建立后,为了向配线模块内光纤连接器上的电子标签载体中写入电子标签信息,需要获得配线模块的端口连接关系,进而根据配线模块的端口连接关系计算电子标签信息。具体地,如果资源管理系统内有准确完整的配线模块的端口连接关系信息,且ODN管理系统170和资源管理系统140之间已经建立连接,ODN管理系统可从资源
管理系统内导入配线模块的端口连接关系信息;如果资源管理内没有准确完整的配线模块的端口连接关系信息,则ODN管理系统需收集配线模块的端口连接关系信息。具体地,ODN管理系统可采用如下方式中的一种或多种组合来收集配线模块的端口连接关系信息。
方式一:如果光分配网络120中具有准确完整的纸质标签信息,施工人员可将标识配线模块的端口连接关系信息的纸质标签信息录入资源管理系统140和/或ODN管理系统内,如果施工人员讲纸质标签信息录入资源管理系统140内,且ODN管理系统170和资源管理系统140之间已经建立连接,ODN管理系统170可从资源管理系统140内导入配线模块的端口连接关系信息。
方式二:如果光线路终端和/或光网络设备支持接收光功率测量,则可基于光功率测量方式收集配线模块的端口连接关系信息。
施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,并通知PON设备管理系统向待测区域内的所有光线路终端发送测量光网络设备的下行接收光功率的命令或测量光线路终端接收到的光网络设备发送的上行光信号的光功率的命令。待测区域内的光线路终端在接收到命令后,指示相应的光网络设备对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备发送的上行光信号的光功率进行测量,从而得到第一光功率。然后,光线路终端将测量得到的第一光功率通过PON设备管理系统发送给ODN管理系统。ODN管理系统在接收到第一光功率后,可通过ODN管理终端指示对与待测端口连接的光纤进行弯曲。施工工人根据指示对与待测端口连接的光纤进行弯曲,并通过ODN管理终端反馈已弯曲光纤的信息至ODN管理系统。PON设备管理系统再次向待测区域内的所有光线路终端发送测量命令,待测区域内的光网络设备在接收到测量命令后,再次指示相应的光网络设备对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备发送的上行光信号的光功率进行测量,从而得到第二光功率。然后,光线路终端将测量得到的第二光功率通过PON设备管理系统发送给
ODN管理系统。ODN管理系统在接收到第二光功率后,可通过ODN管理终端指示施工人员取消光纤弯曲,并将接收到的第一光功率和第二光功率进行比较。如果某个光线路终端的光网络设备接收到的下行信号或其接收到的相应光网络设备发送的上行光信号的第一光功率与第二光功率之差大于阈值,则确定待测端口与该光线路终端和光网络设备之间存在连接关系。所述光线路终端在接收到测量命令后,指示相应的光网络设备对接收到的下行信号的光功率进行测量可通过光线路终端和光网络设备之间管理通道实现(如GPON的OMCI通道,EPON的OAM通道),即光线路终端通过管理通道通知光网络设备完成接收到的下行信号的光功率测量,光网络设备完成光功率测量后,通过管理通道上报给光线路终端。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-25.1dBm、光网络设备2:-25.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,得到的第二光功率分别为光网络设备1:-26.3dBm、光网络设备2:-26.9dBm、光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:1.2dB、光网络设备2:1.1dB、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于光线路终端1连接的光网络设备1和光网络设备2的第一光功率和第二光功率的差值均大于阈值,而光线路终端2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,如果弯曲光纤带来的损耗过大,导致光线路终端和光网络设备之间的通信中断导致无法进行第二光功率的测量或通信质量劣化严重导致无法上报第二光功率时,光线路终端可检测到光网络设备通信中断告警或通信质量劣化告警,并通过PON设备管理系统将告警信息上报ODN管理系统。ODN管理系统可根据告警信息确定待测端口和/或光纤与该光
线路终端和光网络设备之间存在连接关系。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-27.6dBm、光网络设备2:-27.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架的第一端口连接的光纤,待测区域内的所有光线路终端完成第二光功率测量,由于弯曲光纤引入链路损耗导致接收光功率超过光网络设备1和光网络设备2的接收灵敏度,进而导致光线路终端1与光网络设备1和光网络设备2之间的通信中断,无法获得第二光功率,此时光线路终端1可检测到光网络设备1和光网络设备2通信中断告警或通信质量劣化告警(如LOS告警,Loss of Signal),并将告警信息上报ODN管理系统。而光网络设备3和光网络设备4的第二光功率分别为光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:-、光网络设备2:-、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于第一光线路终端OLT1连接的光网络设备1和光网络设备2的未检测到第二光功率,但有通信中断告警或通信质量劣化告警,而第二光线路终端OLT2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,为了提高光网络连接关系的准确性,在完成第二光功率测量后,ODN管理系统可在取消光纤弯曲后再次向待测区域内的所有光线路终端发送测量光网络设备的下行接收光功率或测量光线路终端接收到的光网络设备发送的上行光信号的光功率命令,以获得第三光功率,如果某光线路终端获得的第一光功率和第二光功率之差大于阈值,而第一光功率和第三光功率之差小于阈值,则确定待测端口与该光线路终端和相应的光网络设备130之间存在连接关系。或者,某光线路终端未正常获得第二光功率,并检测到该光线路终端和其连接的光网络单元之间通信中断告警或通信质量劣化告警,但可正常获得第三光功率,第一光功率和第三光功率
之差小于阈值,且该光线路终端和其连接的光网络单元之间的通信中断告警或通信质量劣化告警取消,则确定待测端口与该光线路终端和相应的光网络设备之间存在连接关系。
在对主干链路上的端口进行施工时,可指示待测区域内的所有光线路终端对其连接的所有光网络设备对接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率分别进行测量;为了提高效率,在对主干链路上的端口进行施工时,也可指示待测区域内的所有光线路终端对其连接的某个光网络设备对接收到的下行信号的光功率进行测量或直接对某个光网络设备发送的上行光信号的光功率进行测量;而对光分路器的端口进行施工时,可指示待测区域内的所有光线路终端对其连接的所有光网络设备对接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率分别进行测量;为了提高效率,也可先对光分路器的输入端口进行测量以判断该光分路器所连接的光线路终端,然后直接指示该光线路终端对其所连接的所有光网络设备接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率进行测量。
可以理解的是,为了不影响正在使用网络的用户正常进行通信,对于有进行通信的光纤链路上的待测端口进行连接关系确定时,进行功率测量的信号可以是光线路终端与光网络设备之间进行正常通信业务时所发送的信号。对于没有进行通信的光纤链路上的待测端口进行连接关系确定时,可向光线路终端发送命令,使得光线路终端发送测试信号,此时,进行功率测量的信号则为测试信号。
此外,阈值的设置可以根据经验值以及光纤链路的损耗而进行设置,本发明不作具体限定。
方式三:如果光线路终端和/或光网络设备支持发射特定信号的功能,则ODN管理系统可基于如下检测特定信号的方式收集配线模块的端口连接关系信息。所述特定信号包括但不限于特定波长的光信号、特定频率的光信号。
施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工
步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,并通过无线方式连接至ODN管理终端,并根据工单信息指示施工人员采用ODN管理终端对待识别端口的连接的光纤进行弯曲操作,然后通知PON设备管理系统逐个开启/关闭待识别区域内各个光线路终端或光网络设备的特定信号发射功能,直到ODN管理终端探测到该特定信号,施工人员通过ODN管理终端将探测到光线路终端或光网络设备发射的特定信号确认信息通过无线网络发送给ODN管理系统,ODN管理系统获取到确认信息后,向PON设备管理系统获取当前开启特定信号发射的光线路终端或光网络设备的信息,进而确定待识别端口与当前开启特定信号发射功能的光线路终端或光网络设备之间存在连接关系。ODN管理系统确定当前待识别端口与光线路终端或光网络设备的连接关系后,通知PON设备管理系统关闭当前发射特定信号的光线路终端或光网络设备特定信号发射功能。如此重复,直至所有待识别端口施工完成。其中ODN管理终端可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。
方式四:如果光线路终端和/或光网络设备支持发射标识光线路终端和/或光网络设备信息的信号,则ODN管理系统可基于如下检测携带标识光线路终端和/或光网络设备信息的信号的方式收集配线模块的端口连接关系信息。所述标识光线路终端和/或光网络设备信息包括但不限于:所述光线路终端和/或光网络设备的端口信息,运营商信息,光线路终端端口的协议类型,光线路终端端口发射光功率,光线路终端端口功率预算等级,光线路终端端口为主用端口还是备用端口,光线路终端端口是否连接到拉远设备,光线路终端端口连接到拉远设备时拉远设备的发射光功率,光线路终端端口采用的线路编码方式,光线路终端接收到的光节点发射波长信息的任意一种或几种的组合。
施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,通知PON设备管理系统开启待施工区域内所有光线路终端和/或光网络设备的标识光线路终端和/或光网络设备
信息的信号发射功能,并根据工单信息指示施工人员采用ODN管理终端对待识别端口的连接的光纤进行弯曲操作,获取当前操作光纤中传输的标识光线路终端和/或光网络设备信息的信号,ODN管理终端获取到标识光线路终端和/或光网络设备信息的信号后,通过无线方式上报给ODN管理系统,ODN管理系统根据施工端口信息和ODN管理终端180上报的标识光线路终端和/或光网络设备信息的信号,进而确定待识别端口与光线路终端或光网络设备之间存在连接关系。如此重复,直至所有待识别端口施工完成后,ODN管理系统通知PON设备管理系统关闭待施工区域内所有光线路终端和/或光网络设备的标识光线路终端和/或光网络设备信息的信号发射功能。其中ODN管理终端可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。进一步地,为了提高ODN管理设备探测精度,标识光线路终端和/或光网络设备信息的信号可通过编码方式实现,如采用一个PN序列或一个或多个周期的正弦信号表示一个信号位。
420:ODN管理系统根据所述配线模块的端口的连接关系为所述配线模块的端口生成电子标签。
具体地,ODN管理系统获得配线模块的端口连接关系后,根据配线模块的端口连接关系计算每个配线模块端口的电子标签信息。所述电子标签信息可包含但不限于标识相应的光纤适配器的信息以及标识端口连接关系信息。所述标识相应的光纤适配器的信息包括但不限于厂商标识、产品类型、运营商信息等一种或多种的组合。所述端口连接关系信息可根据收集的配线模块的端口连接关系计算获得。例如,如图2,根据收集到配线端口连接关系信息,可知第一光纤配线架122的第一端口、第二光纤配线架122的第一端口、光缆交接箱123的第一端口、光分路器121的输入端口、光分路器121的第一输出端口、124光纤分纤箱的第一端口都与光线路终端1和光网络设备1相连,同时,根据运营商规划信息可知各配线设备在光纤链路上的相对关系,例如第一光纤配线架位于光线路终端1和第二光纤配线架之间,第二光纤配线架位于第一光纤配线架和光缆交接箱之间等,就可得知光线路终端1与光网络设备1之间的光路由为光线路
终端1上的端口通过第一光纤连接到第一光纤配线架122的第一端口,第一光纤配线架122的第一端口通过第二光纤连接到第二光纤配线架122的第一端口,第二光纤配线架122的第一端口通过第三光纤连接到光缆交接箱123的第一端口,光缆交接箱123的第一端口通过第四光纤连接到光分路器121的输入端口,光分路器121的第一输出端口通过第五光纤连接到光纤分纤箱124中的第一端口,光纤分纤箱124中的第一端口通过第六光纤连接到光网络设备1的端口。则该光链路上的各个光纤连接器的电子标签信息中标识端口连接关系信息可根据光路由信息逐个递增方式赋值。例如,第一光纤连接光线路终端1端口的光纤连接器的电子标签信息中标识端口连接关系信息可以设为001,而第一光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为002;第二光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息可以设为003,而第二光纤连接第二光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为004,以此类推,逐个计算该光链路上各个光纤连接器的电子标签信息中标识端口连接关系信息;可选地,也可将该光链路上的同属于一根光纤的两个光纤连接器的电子标签信息中标识端口连接关系信息设置为相同值,以标识其为同一根光纤的两端。例如,将第一光纤的连接光线路终端1端口和连接第一光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为001;将第二光纤的连接第一光纤配线架122第一端口和连接第二光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为002。可以理解地,对光分路器121的输入/输出端口可以根据其端口编号进行电子标签信息赋值。例如,可以将光分路器121的输入端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为100,而将其第一输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为101,将其第二输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为102,将其第三输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为103,以此类推,直至完成其所有输出端口的光纤连接器的
电子标签信息中标识端口连接关系信息赋值。
430:ODN管理系统通过控制管理模块将所述电子标签写入对应的电子标签载体中。
具体地,完成各个配线模块端口的电子标签信息计算后,ODN管理系统将各个配线模块端口的电子标签信息写入对应的光纤连接器的电子标签载体中。可以理解地,由于光纤配线架一般都设置在局方机房等易于获得供电的地方,所以,ODN管理系统可以通过有线网络和/或无线网络连接至光纤配线架。所以ODN管理系统可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光纤配线架的相应的光纤连接器的电子标签载体中。而光缆交接箱和光纤分纤箱通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端对光缆交接箱或光纤分纤箱进行供电,并通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统建立连接。所以ODN管理系统可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光缆交接箱和光纤分纤箱、光分路器的相应的光纤连接器的电子标签载体中。
可以理解地,如果PON设备管理系统和/或ODN管理系统无法和资源管理系统和/或工单系统无法建立连接,则可在ODN管理系统内直接录入待施工区域内所有光线路终端、光纤配线架、光缆交接箱、光纤分纤箱等设备信息,并在ODN管理系统内创建工单,以供施工人员通过ODN管理终端获得工单,进行施工。
通过本发明将传统光网络改造成具有电子标签的智能光网络后,可利用电子标签技术替代纸质标签对光分配网络进行智能化管理。在后续网络维护操作过程中,ODN管理系统可通过ODN管理终端对施工过程进行指导,并通过LED灯指示当前需要操作的端口以及所需进行的操作,从而使得施工人员极容易寻找到需要操作的端口,并对施工结果进行校验,可以避免纯粹人工管理可能导致的连接错误。同时,ODN管理系统可在线或通过ODN管理终端对配线设备进行远程升级、管理、端口状态收集等,提高网络维护效率,降低对施工人员的要求。
参阅图5,图5是本发明ODN管理系统第一实施方式的结构示意图。
本实施方式的ODN管理系统500包括:获取模块510、生成模块520以及写入模块530。
所述获取模块510用于获取配线模块的端口的连接关系,其中,所述配线模块中设置了与配线模块的端口对应的电子标签载体,所述获取模块510将所述连接关系发送给所述生成模块520。
具体地,光线路终端通过光分配网络与光网络设备建立连接关系。其中,光分配网络通常由主干光纤、光分路器和分路光纤等无源器件组成,主干光纤连接光线路终端和光分路器,光分路器通过分路光纤连接至光网络设备。由于光线路终端与光分路器,光分路器与光网络设备之间的距离可能很远,为了便于施工、管理和维护,光分配网络通常在配线模块的端口处通过光纤连接器完成光纤的接续,所述配线模块包括但不限于光纤配线架、光缆交接箱和光纤分纤箱。
例如,光线路终端1上的端口通过第一光纤连接到第一光纤配线架的第一端口,第一光纤配线架的第一端口通过第二光纤连接到第二光纤配线架的第一端口,第二光纤配线架的第一端口通过第三光纤连接到光缆交接箱的第一端口,光缆交接箱的第一端口通过第四光纤连接到光分路器的输入端口,光分路器的第一输出端口通过第五光纤连接到光纤分纤箱中的第一端口,光纤分纤箱中的第一端口通过第六光纤连接到光网络设备1的端口,从而构成了一条从光线路终端1至光网络设备1的光纤链路。
为了使光网络实现智能化,通常在工单系统中创建工单,以明确需要实现智能化的配线设备、施工人员等,施工工人可通过ODN管理终端下载工单,更根据工单指示进行施工。首先需要对配线模块进行设备改造。具体地,如图3所示,以光纤配线架122为例,传统的光纤配线架122内通常设有一个或多个光纤配线盘200,每个光纤配线盘200内设有一个或多个光纤适配器201,所述光纤适配器201用于插入带有光纤连接器的光纤,以完成光纤的接续。对其进行设备改造时,首先需要在光纤配线架122内加装控制管理模块202和电子标签载体适配器盘203,并在每根光纤跳线上加装电子标签载体207(未在图中画出),其中控制管理模块202可提供和ODN管理系统以及ODN管理终端连接的接口、存储标识该光
纤配线架的信息,并和电子标签载体适配器盘203建立连接,以读/写电子标签载体中存储的电子标签信息。进一步地控制管理模块202可以通过有线或无线的方式读取电子标签载体,并可根据读取的电子标签载体的在位状态,判断该光纤配线架中光纤适配器端口使用状态。所述和管理系统以及ODN管理终端连接的接口包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。其中电子标签载体盘203设有一个或多个电子标签载体204、LED指示灯205,每个电子标签载体适配器204用于插入光纤上加装的电子标签载体207,以便控制管理模块202读/写其中的电子标签信息。同时,LED指示灯205可通过物理位置关联到特定的光纤适配器201。例如,LED指示灯205位于某个配线模块的端口的正上方或正下方,表示该LED指示灯205对应该配线模块的端口,ODN管理系统可通过点亮LED指示灯205的开启、关闭、闪烁状态、灯光颜色等来指示施工人员对该配线设备的端口进行不同操作,例如插入光纤连接器、拔出光纤连接器等。进一步地,每个电子标签载体适配器盘203上还可以包括一个管理通信接口206,用于建立控制管理模块202与电子标签载体盘203上的各个电子标签载体适配器204、LED指示灯205、以及插入电子标签载体适配器中的电子标签载体207之间的通信连接,以便控制管理模块202读写电子标签载体207中的信息,并控制LED指示灯205。所述通信管理接口206包括但不限于以太网接口、RS485接口、无线网络接口、蓝牙接口、USB接口、串口和并口等。可以理解地,如果每个电子标签载体都具有独立的通信管理接口和控制管理模块202直接建立联系,可不安装电子标签载体适配器盘203。类似地,如果可采用上述的办法对光缆交接箱123、光纤分纤箱124等配线设备进行改造,此处不展开赘述。
完成光纤配线架、光缆交接箱、光纤分纤箱等配线设备改造后,需要建立光纤配线架、光缆交接箱、光纤分纤箱等配线设备和ODN设备管理系统以及ODN管理终端之间的通信连接。由于光纤配线架一般都设置在局方机房等易于获得供电和存在有线网络和/或无线网络的地方,所以,ODN管理系统可以通过有线网络连接和/或至光纤配线架。而光缆交接箱
和光纤分纤箱通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端对光缆交接箱或光纤分纤箱进行供电,并通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统建立连接。可以理解的是,ODN管理终端可以通过串口、并口、USB接口为光纤配线架、光缆交接箱、光纤分纤箱进行供电。进一步地,ODN管理终端可以通过串口、并口、USB接口与光纤配线架、光缆交接箱、光纤分纤箱建立有线连接,也可以通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与光纤配线架、光缆交接箱、光纤分纤箱建立无线连接,同时再通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统进行连接,进而建立起光纤配线架、光缆交接箱、光纤分纤箱与ODN管理系统之间的通信连接。
完成设备改造和通信连接建立后,为了向配线模块内光纤连接器上的电子标签载体中写入电子标签信息,需要获取模块510获得配线模块的端口连接关系,进而根据配线模块的端口连接关系计算电子标签信息。具体地,如果资源管理系统内有准确完整的配线模块的端口连接关系信息,且ODN管理系统170和资源管理系统140之间已经建立连接,获取模块510可从资源管理系统内导入配线模块的端口连接关系信息;如果资源管理内没有准确完整的配线模块的端口连接关系信息,则获取模块510需收集配线模块的端口连接关系信息。具体地,获取模块510可采用如下方式中的一种或多种组合来收集配线模块的端口连接关系信息。
方式一:如果光分配网络120中具有准确完整的纸质标签信息,施工人员可将标识配线模块的端口连接关系信息的纸质标签信息录入资源管理系统140和/或ODN管理系统内,如果施工人员讲纸质标签信息录入资源管理系统140内,且ODN管理系统170和资源管理系统140之间已经建立连接,ODN管理系统170可从资源管理系统140内导入配线模块的端口连接关系信息。
方式二:如果光线路终端110和/或光网络设备130支持接收光功率测量,则可基于光功率测量方式收集配线模块的端口连接关系信息。
施工工人在ODN管理终端180上启动端口连接关系收集工单施工或
施工步骤后,ODN管理系统170根据工单信息查询资源管理系统140,获得待施工区域内的所有光线路终端110设备信息,并通知PON设备管理系统160向待测区域内的所有光线路终端110发送测量光网络设备130的下行接收光功率的命令或测量光线路终端110接收到的光网络设备130发送的上行光信号的光功率的命令。待测区域内的光线路终端110在接收到命令后,指示相应的光网络设备130对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备130发送的上行光信号的光功率进行测量,从而得到第一光功率。然后,光线路终端110将测量得到的第一光功率通过PON设备管理系统160发送给ODN管理系统170。ODN管理系统170在接收到第一光功率后,可通过ODN管理终端180指示对与待测端口连接的光纤进行弯曲。施工工人根据指示对与待测端口连接的光纤进行弯曲,并通过ODN管理终端180反馈已弯曲光纤的信息至ODN管理系统170。对光纤进行弯曲可以采用弯曲设备iFiberBender,PON设备管理系统160再次向待测区域内的所有光线路终端110发送测量命令,待测区域内的光网络设备130在接收到测量命令后,再次指示相应的光网络设备130对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备130发送的上行光信号的光功率进行测量,从而得到第二光功率。然后,光线路终端110将测量得到的第二光功率通过PON设备管理系统160发送给ODN管理系统170。ODN管理系统170在接收到第二光功率后,可通过ODN管理终端180指示施工人员取消光纤弯曲,并将接收到的第一光功率和第二光功率进行比较。如果某个光线路终端110的光网络设备130接收到的下行信号或其接收到的相应光网络设备130发送的上行光信号的第一光功率与第二光功率之差大于阈值,则确定待测端口与该光线路终端110和光网络设备130之间存在连接关系。所述光线路终端110在接收到测量命令后,指示相应的光网络设备130对接收到的下行信号的光功率进行测量可通过光线路终端110和光网络设备130之间管理通道实现(如GPON的OMCI通道,EPON的OAM通道),即光线路终端110通过管理通道通知光网络设备130完成接收到的下行信号的光功率测量,光网络设备130完成光功率测量后,通过管理通道上报给光线路终
端110。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-25.1dBm、光网络设备2:-25.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,得到的第二光功率分别为光网络设备1:-26.3dBm、光网络设备2:-26.9dBm、光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:1.2dB、光网络设备2:1.1dB、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于光线路终端1连接的光网络设备1和光网络设备2的第一光功率和第二光功率的差值均大于阈值,而光线路终端2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,如果弯曲光纤带来的损耗过大,导致光线路终端110和光网络设备130之间的通信中断导致无法进行第二光功率的测量或通信质量劣化严重导致无法上报第二光功率时,光线路终端110可检测到光网络设备130通信中断告警或通信质量劣化告警,并将告警信息通过PON设备管理系统160上报ODN管理系统170。ODN管理系统170可根据告警信息确定待测端口和/或光纤与该光线路终端110和光网络设备130之间存在连接关系。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架122的第一端口,首先待测区域内的所有光线路终端110完成第一光功率测量,得到的第一光功率分别为光网络设备1:-27.6dBm、光网络设备2:-27.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,由于弯曲光纤引入链路损耗导致接收光功率超过光网络设备1和光网络设备2的接收灵敏度,进而导致光线路终端1与光网络设备1和光网络设备2之间的通信中断,无
法获得第二光功率,此时光线路终端1可检测到光网络设备1和光网络设备2通信中断告警或通信质量劣化告警(如LOS告警,Loss of Signal),并将告警信息上报ODN管理系统170。而光网络设备3和光网络设备4的第二光功率分别为光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:-、光网络设备2:-、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于第一光线路终端OLT1连接的光网络设备1和光网络设备2的未检测到第二光功率,但有通信中断告警或通信质量劣化告警,而第二光线路终端OLT2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,为了提高光网络连接关系的准确性,在完成第二光功率测量后,ODN管理系统170可在取消光纤弯曲后再次向待测区域内的所有光线路终端110发送测量光网络设备130的下行接收光功率或测量光线路终端110接收到的光网络设备130发送的上行光信号的光功率命令,以获得第三光功率,如果某光线路终端获得的第一光功率和第二光功率之差大于阈值,而第一光功率和第三光功率之差小于阈值,则确定待测端口与该光线路终端110和相应的光网络设备130之间存在连接关系。或者,某光线路终端110未正常获得第二光功率,并检测到该光线路终端110和其连接的光网络单元130之间通信中断告警或通信质量劣化告警,但可正常获得第三光功率,第一光功率和第三光功率之差小于阈值,且该光线路终端110和其连接的光网络单元130之间的通信中断告警或通信质量劣化告警取消,则确定待测端口与该光线路终端110和相应的光网络设备130之间存在连接关系。
在对主干链路上的端口进行施工时,可指示待测区域内的所有光线路终端110对其连接的所有光网络设备130对接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率分别进行测量;为了提高效率,在对主干链路上的端口进行施工时,也可指示待
测区域内的所有光线路终端110对其连接的某个光网络设备130对接收到的下行信号的光功率进行测量或直接对某个光网络设备130发送的上行光信号的光功率进行测量;而对光分路器121的端口进行施工时,可指示待测区域内的所有光线路终端110对其连接的所有光网络设备130对接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率分别进行测量;为了提高效率,也可先对光分路器121的输入端口进行测量以判断该光分路器121所连接的光线路终端110,然后直接指示该光线路终端110对其所连接的所有光网络设备130接收到的下行信号的光功率进行测量或直接对所有光网络设备130发送的上行光信号的光功率进行测量。
可以理解的是,为了不影响正在使用网络的用户正常进行通信,对于有进行通信的光纤链路上的待测端口进行连接关系确定时,进行功率测量的信号可以是光线路终端110与光网络设备130之间进行正常通信业务时所发送的信号。对于没有进行通信的光纤链路上的待测端口进行连接关系确定时,可向光线路终端110发送命令,使得光线路终端110发送测试信号,此时,进行功率测量的信号则为测试信号。
此外,阈值的设置可以根据经验值以及光纤链路的损耗而进行设置,本发明不作具体限定。
方式三:如果光线路终端和/或光网络设备支持发射特定信号的功能,则获取模块510可基于如下检测特定信号的方式收集配线模块的端口连接关系信息。所述特定信号包括但不限于特定波长的光信号、特定频率的光信号。
施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,并通过无线方式连接至ODN管理终端,并根据工单信息指示施工人员采用ODN管理终端对待识别端口的连接的光纤进行弯曲操作,然后通知PON设备管理系统逐个开启/关闭待识别区域内各个光线路终端或光网络设备的特定信号发射功能,直到ODN管理终端探测到该特定信号,施工人员通过ODN管理终端将探测到光线路终
端或光网络设备发射的特定信号确认信息通过无线网络发送给获取模块510,获取模块510获取到确认信息后,向PON设备管理系统获取当前开启特定信号发射的光线路终端或光网络设备的信息,进而确定待识别端口与当前开启特定信号发射功能的光线路终端或光网络设备之间存在连接关系。获取模块510获取当前待识别端口与光线路终端或光网络设备的连接关系后,通知PON设备管理系统关闭当前发射特定信号的光线路终端或光网络设备特定信号发射功能。如此重复,直至所有待识别端口施工完成。其中ODN管理终端可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。
方式四:如果光线路终端和/或光网络设备支持发射标识光线路终端和/或光网络设备信息的信号,则获取模块510可基于如下检测携带标识光线路终端和/或光网络设备信息的信号的方式收集配线模块的端口连接关系信息。所述标识光线路终端和/或光网络设备信息包括但不限于:所述光线路终端和/或光网络设备的端口信息,运营商信息,光线路终端端口的协议类型,光线路终端端口发射光功率,光线路终端端口功率预算等级,光线路终端端口为主用端口还是备用端口,光线路终端端口是否连接到拉远设备,光线路终端端口连接到拉远设备时拉远设备的发射光功率,光线路终端端口采用的线路编码方式,光线路终端接收到的光节点发射波长信息的任意一种或几种的组合。
施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,通知PON设备管理系统开启待施工区域内所有光线路终端和/或光网络设备的标识光线路终端和/或光网络设备信息的信号发射功能,并根据工单信息指示施工人员采用ODN管理终端对待识别端口的连接的光纤进行弯曲操作,获取当前操作光纤中传输的标识光线路终端和/或光网络设备信息的信号,ODN管理终端获取到标识光线路终端和/或光网络设备信息的信号后,通过无线方式上报给获取模块510,获取模块510根据施工端口信息和ODN管理终端180上报的标识光线路终端和/或光网络设备信息的信号,进而确定待识别端口与光线路
终端或光网络设备之间存在连接关系。如此重复,直至所有待识别端口施工完成后,获取模块510通知PON设备管理系统关闭待施工区域内所有光线路终端和/或光网络设备的标识光线路终端和/或光网络设备信息的信号发射功能。其中ODN管理终端可通过探测弯曲光纤时泄露的光信号,以解析判断当前光纤中是否传输有特定信号。进一步地,为了提高ODN管理设备探测精度,标识光线路终端和/或光网络设备信息的信号可通过编码方式实现,如采用一个PN序列或一个或多个周期的正弦信号表示一个信号位。
所述生成模块520用于接收所述连接关系,根据所述配线模块的端口的连接关系为所述配线模块的端口生成电子标签,所述生成模块520将所述电子标签发送给所述写入模块530。
具体地,生成模块520获得配线模块的端口连接关系后,根据配线模块的端口连接关系计算每个配线模块端口的电子标签信息。所述电子标签信息可包含但不限于标识相应的光纤适配器的信息以及标识端口连接关系信息。所述标识相应的光纤适配器的信息包括但不限于厂商标识、产品类型、运营商信息等一种或多种的组合。所述端口连接关系信息可根据收集的配线模块的端口连接关系计算获得。例如,如图2,根据收集到配线端口连接关系信息,可知第一光纤配线架122的第一端口、第二光纤配线架122的第一端口、光缆交接箱123的第一端口、光分路器121的输入端口、光分路器121的第一输出端口、124光纤分纤箱的第一端口都与光线路终端1和光网络设备1相连,同时,根据运营商规划信息可知各配线设备在光纤链路上的相对关系,例如第一光纤配线架位于光线路终端1和第二光纤配线架之间,第二光纤配线架位于第一光纤配线架和光缆交接箱之间等,就可得知光线路终端1与光网络设备1之间的光路由为光线路终端1上的端口通过第一光纤连接到第一光纤配线架122的第一端口,第一光纤配线架122的第一端口通过第二光纤连接到第二光纤配线架122的第一端口,第二光纤配线架122的第一端口通过第三光纤连接到光缆交接箱123的第一端口,光缆交接箱123的第一端口通过第四光纤连接到光分路器121的输入端口,光分路器121的第一输出端口通过第五光纤连接到光
纤分纤箱124中的第一端口,光纤分纤箱124中的第一端口通过第六光纤连接到光网络设备1的端口。则该光链路上的各个光纤连接器的电子标签信息中标识端口连接关系信息可根据光路由信息逐个递增方式赋值。例如,第一光纤连接光线路终端1端口的光纤连接器的电子标签信息中标识端口连接关系信息可以设为001,而第一光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为002;第二光纤连接第一光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息可以设为003,而第二光纤连接第二光纤配线架122的第一端口的光纤连接器的电子标签信息中标识端口连接关系信息设为004,以此类推,生成模块520逐个计算该光链路上各个光纤连接器的电子标签信息中标识端口连接关系信息;可选地,也可将该光链路上的同属于一根光纤的两个光纤连接器的电子标签信息中标识端口连接关系信息设置为相同值,以标识其为同一根光纤的两端。例如,将第一光纤的连接光线路终端1端口和连接第一光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为001;将第二光纤的连接第一光纤配线架122第一端口和连接第二光纤配线架122第一端口的两个光纤连接器的电子标签信息中标识端口连接关系信息均设为002。可以理解地,对光分路器121的输入/输出端口可以根据其端口编号进行电子标签信息赋值。例如,可以将光分路器121的输入端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为100,而将其第一输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为101,将其第二输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为102,将其第三输出端口的光纤连接器的电子标签信息中标识端口连接关系信息设置为103,以此类推,直至完成其所有输出端口的光纤连接器的电子标签信息中标识端口连接关系信息赋值。
所述写入模块530用于接收所述电子标签,通过所述控制管理模块将所述电子标签写入对应的电子标签载体中。
具体地,完成各个配线模块端口的电子标签信息计算后,写入模块530将各个配线模块端口的电子标签信息写入对应的光纤连接器的电子
标签载体中。可以理解地,由于光纤配线架一般都设置在局方机房等易于获得供电的地方,所以,ODN管理系统可以通过有线网络和/或无线网络连接至光纤配线架。所以写入模块530可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光纤配线架的相应的光纤连接器的电子标签载体中。而光缆交接箱和光纤分纤箱通常设置于野外等不方便获得供电的地方,所以,需设置ODN管理终端对光缆交接箱或光纤分纤箱进行供电,并通过GSM、CDMA、LTE、WiFi、WiMax等无线的方式与ODN管理系统建立连接。所以写入模块530可以通过有线网络和/或无线网络将各个配线模块端口的电子标签信息写入光缆交接箱和光纤分纤箱、光分路器的相应的光纤连接器的电子标签载体中。模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
参阅图6、图6是本发明ODN管理系统的获取模块510一实施方式的结构示意图。如果光线路终端和/或光网络设备支持接收光功率测量,则获取模块510可基于光功率测量方式收集配线模块的端口连接关系信息。本实施方式的获取模块510包括:检测单元511、指示单元512以及判决单元513。
所述检测单元511用于检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光功率是所述接收设备接收到信号的功率,所述检测单元511将所述第一光功率发送给所述判决单元513。
具体地,施工工人在ODN管理终端上启动端口连接关系收集工单施工或施工步骤后,ODN管理系统根据工单信息查询资源管理系统,获得待施工区域内的所有光线路终端设备信息,并通知PON设备管理系统向待测区域内的所有光线路终端发送测量光网络设备的下行接收光功率的命令或测量光线路终端接收到的光网络设备发送的上行光信号的光功率的命令。待测区域内的光线路终端在接收到命令后,指示相应的光网络设备对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备发送的上行光信号的光功率进行测量,从而得到第一光功率。然后,光线路终端将测量得到的第一光功率通过PON设备管理系统发送给检测
单元511。
所述光线路终端在接收到测量命令后,指示相应的光网络设备对接收到的下行信号的光功率进行测量可通过光线路终端和光网络设备之间管理通道实现(如GPON的OMCI通道,EPON的OAM通道),即光线路终端通过管理通道通知光网络设备完成接收到的下行信号的光功率测量,光网络设备完成光功率测量后,通过管理通道上报给光线路终端。
所述指示单元512用于指示对与配线模块的端口连接的光纤进行弯曲。
具体地,ODN管理系统在接收到第一光功率后,指示单元512可通过ODN管理终端指示对与待测端口连接的光纤进行弯曲。施工工人根据指示对与待测端口连接的光纤进行弯曲,并通过ODN管理终端反馈已弯曲光纤的信息至ODN管理系统。
所述检测单元511还用于检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率,所述检测单元511将所述第二光功率发送给所述判决单元513。
具体地,PON设备管理系统再次向待测区域内的所有光线路终端发送测量命令,待测区域内的光网络设备在接收到测量命令后,再次指示相应的光网络设备对接收到的下行信号的光功率进行测量或直接对接收到的相应光网络设备发送的上行光信号的光功率进行测量,从而得到第二光功率。然后,光线路终端将测量得到的第二光功率通过PON设备管理系统发送给检测单元511。
所述光线路终端在接收到测量命令后,指示相应的光网络设备对接收到的下行信号的光功率进行测量可通过光线路终端和光网络设备之间管理通道实现(如GPON的OMCI通道,EPON的OAM通道),即光线路终端通过管理通道通知光网络设备完成接收到的下行信号的光功率测量,光网络设备完成光功率测量后,通过管理通道上报给光线路终端。
所述判决单元513用于在第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息时,确定所述配线
模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
具体地,ODN管理系统在接收到第二光功率后,可通过ODN管理终端指示施工人员取消光纤弯曲,判决单元513将接收到的第一光功率和第二光功率进行比较。如果某个光线路终端的光网络设备接收到的下行信号或其接收到的相应光网络设备发送的上行光信号的第一光功率与第二光功率之差大于阈值,则判决单元513确定待测端口与该光线路终端和光网络设备之间存在连接关系。例如,如果阈值为1dB(decibel,分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-25.1dBm、光网络设备2:-25.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架122的第一端口连接的光纤,待测区域内的所有光线路终端110完成第二光功率测量,得到的第二光功率分别为光网络设备1:-26.3dBm、光网络设备2:-26.9dBm、光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:1.2dB、光网络设备2:1.1dB、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于光线路终端1连接的光网络设备1和光网络设备2的第一光功率和第二光功率的差值均大于阈值,而光线路终端2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架122的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,如果弯曲光纤带来的损耗过大,导致光线路终端和光网络设备之间的通信中断导致无法进行第二光功率的测量或通信质量劣化严重导致无法上报第二光功率时,光线路终端可检测到光网络设备通信中断告警或通信质量劣化告警,并通过PON设备管理系统将告警信息上报ODN管理系统。ODN管理系统可根据告警信息确定待测端口和/或光纤与该光线路终端和光网络设备之间存在连接关系。例如,如果阈值为1dB(decibel,
分贝),待测量的端口为第一光纤配线架的第一端口,首先待测区域内的所有光线路终端完成第一光功率测量,得到的第一光功率分别为光网络设备1:-27.6dBm、光网络设备2:-27.8dBm、光网络设备3:-23.8dBm以及光网络设备4:-24.4dBm。然后弯曲第一光纤配线架的第一端口连接的光纤,待测区域内的所有光线路终端完成第二光功率测量,由于弯曲光纤引入链路损耗导致接收光功率超过光网络设备1和光网络设备2的接收灵敏度,进而导致光线路终端1与光网络设备1和光网络设备2之间的通信中断,无法获得第二光功率,此时光线路终端1可检测到光网络设备1和光网络设备2通信中断告警或通信质量劣化告警(如LOS告警,Loss of Signal),并将告警信息上报ODN管理系统。而光网络设备3和光网络设备4的第二光功率分别为光网络设备3:-23.6dBm以及光网络设备4:-24.5dBm。则第一光功率和第二光功率的差值分别为:光网络设备1:-、光网络设备2:-、光网络设备3:-0.2dB以及光网络设备4:0.1dB。由于第一光线路终端OLT1连接的光网络设备1和光网络设备2的未检测到第二光功率,但有通信中断告警或通信质量劣化告警,而第二光线路终端OLT2连接的光网络设备3和光网络设备4的第一光功率和第二光功率的差值均小于阈值,符合测量误差,则可以判断,第一光纤配线架的第一端口和其所连接的光纤与光线路终端1以及光网络设备1和光网络设备2之间存在连接关系。
可选地,为了提高光网络连接关系的准确性,在完成第二光功率测量后,ODN管理系统可在取消光纤弯曲后再次向待测区域内的所有光线路终端发送测量光网络设备的下行接收光功率或测量光线路终端接收到的光网络设备发送的上行光信号的光功率命令,以获得第三光功率,如果某光线路终端获得的第一光功率和第二光功率之差大于阈值,而第一光功率和第三光功率之差小于阈值,则确定待测端口与该光线路终端和相应的光网络设备130之间存在连接关系。或者,某光线路终端未正常获得第二光功率,并检测到该光线路终端和其连接的光网络单元之间通信中断告警或通信质量劣化告警,但可正常获得第三光功率,第一光功率和第三光功率之差小于阈值,且该光线路终端和其连接的光网络单元之间的通信中断告
警或通信质量劣化告警取消,则确定待测端口与该光线路终端和相应的光网络设备之间存在连接关系。
在对主干链路上的端口进行施工时,可指示待测区域内的所有光线路终端对其连接的所有光网络设备对接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率分别进行测量;为了提高效率,在对主干链路上的端口进行施工时,也可指示待测区域内的所有光线路终端对其连接的某个光网络设备对接收到的下行信号的光功率进行测量或直接对某个光网络设备发送的上行光信号的光功率进行测量;而对光分路器的端口进行施工时,可指示待测区域内的所有光线路终端对其连接的所有光网络设备对接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率分别进行测量;为了提高效率,也可先对光分路器的输入端口进行测量以判断该光分路器所连接的光线路终端,然后直接指示该光线路终端对其所连接的所有光网络设备接收到的下行信号的光功率进行测量或直接对所有光网络设备发送的上行光信号的光功率进行测量。
可以理解的是,为了不影响正在使用网络的用户正常进行通信,对于有进行通信的光纤链路上的待测端口进行连接关系确定时,进行功率测量的信号可以是光线路终端与光网络设备之间进行正常通信业务时所发送的信号。对于没有进行通信的光纤链路上的待测端口进行连接关系确定时,可向光线路终端发送命令,使得光线路终端发送测试信号,此时,进行功率测量的信号则为测试信号。
此外,阈值的设置可以根据经验值以及光纤链路的损耗而进行设置,本发明不作具体限定。
参阅图7,图7是本发明ODN管理系统第二实施方式的结构示意图。本实施方式的ODN管理系统500还包括读取模块540。
所述读取模块540用于通过所述控制管理模块读取所述电子标签载体的在位状态,从而根据所述电子标签载体的在位状态获得所述配线模块的端口的使用状态,或者,通过所述控制管理模块读取所述电子标签载体中的电子标签信息,从而根据所述电子标签信息获得所述配线模块的端口
的连接关系。
可以理解,本实施方式除了能对应执行图4所示的方法的各个步骤外,还能给光网络的管理带来很多的便利,如果需要获得配线模块的端口的使用状态和/或连接关系,只需要ODN管理系统通过控制管理模块读取电子标签载体的在位状态和/或电子标签载体中的电子标签,就可以根据电子标签载体在位状态获得配线模块的端口的使用状态,也可以根据电子标签载体中的电子标签信息获得配线模块的端口的连接关系,而无需施工工人前往配线模块所在之处才能观察到配线模块的端口的使用状态和/或连接关系。
参阅图8,图8是本发明ODN管理系统第三实施方式的结构示意图。本实施方式的ODN管理系统500还包括输入模块550。
所述输入模块550用于向所述控制管理模块输入第一电子标签信息和待写入第一电子标签信息的配线设备的端口,以供所述控制管理模块将所述第一电子标签信息写入所述待写入第一电子标签信息的配线设备的端口;或者,所述输入模块550用于向所述控制管理模块输入第二电子标签信息,以供所述控制管理模块从配线设备内各电子标签载体中找到存储第二电子标签信息的第二电子标签载体,进而判断与第二电子标签信息相对应的配线设备的端口;可选地,所述控制管理模块查找到存储第二电子标签信息的第二电子标签载体后,还可通过开启、关闭对应的所述配线模块的端口的指示灯或改变所述对应的配线模块的端口的指示灯的闪烁状态和/或指示灯的颜色来指导使用人员对对应的配线模块的端口所连接的光纤进行不同的操作。可以理解的是,所述输入模块550可以向所述控制管理模块输入单个电子标签信息,以供控制管理模块写入、查找单个电子标签载体,和/或控制单个配线模块的端口对应的指示灯状态;也可以同时输入多个电子标签信息,以供控制管理模块写入、查找多个电子标签载体,和/或控制单个配线模块的端口对应的指示灯状态。
可以理解,本实施方式除了能对应执行图4所示的方法的各个步骤外,还能给光网络的管理带来很多的便利,如果需要对某个配线模块的端口进行操作时,可以向控制管理模块输入这个配线模块的端口的电子标
签,以供控制管理模块从电子标签载体中查找到对应的电子标签信息时,改变这个电子标签载体对应的配线模块的端口的指示灯的状态,从而方便了施工人员快速寻找该端口,并进行相应的操作。
参阅图9,图9是本发明ODN管理系统第四实施方式的结构示意图。本实施方式中,ODN管理系统900包括:接收器910、处理器920以及发送器930。
接收器910用于获取配线模块的端口的连接关系,其中,所述配线模块中设置了与配线模块的端口对应的电子标签载体。
处理器920用于根据所述配线模块的端口的连接关系为所述配线模块的端口生成电子标签信息。
发送器930用于通过所述控制管理模块将所述电子标签信息写入对应的电子标签载体中。
本实施方式中的ODN管理系统900还包括存储器940,存储器940可以包括只读存储器和随机存取存储器,并向处理器920提供指令和数据。存储器940的一部分还可以包括非易失性随机存取存储器(NVRAM)。
存储器940存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器920通过调用存储器940存储的操作指令(该操作指令可存储在操作系统中),来执行上述操作。
处理器920还可以称为CPU(Central Processing Unit,中央处理单元)。存储器940可以包括只读存储器和随机存取存储器,并向处理器920提供指令和数据。存储器940的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,ODN管理系统900的各个组件通过总线系统950耦合在一起,其中总线系统950除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统950。
上述本发明实施例揭示的方法可以应用于处理器920中,或者由处理器920实现。处理器920可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器920中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器920可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器940,处理器920读取存储器940中的信息,结合其硬件完成上述方法的步骤。
可选地,接收器910通过所述控制管理模块读取所述电子标签载体的在位状态,从而根据所述电子标签载体的在位状态获得所述配线模块的端口的使用状态,或者,通过所述控制管理模块读取所述电子标签载体中的电子标签信息,从而根据所述电子标签信息获得所述配线模块的端口的连接关系。
可选地,发送器930向所述控制管理模块输入第一电子标签信息,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
可选地,所述接收器910用于在资源管理系统内具有完整的所述配线模块的端口与光线路终端和光网络设备之间的连接关系时,从所述资源管理系统中获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
可选地,处理器920用于检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光
功率是所述接收设备接收到信号的功率;发送器用于指示对与配线模块的端口连接的光纤进行弯曲;处理器920用于检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率;处理器920用于在第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息时,确定所述配线模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
可选地,所述信号为发送设备与接收设备之间进行正常通信业务时所发送的信号。
可选地,所述配线模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
上述的方案中,为了获得智能化的光分配网络所带来的光网络维护和管理的便利,对传统的光分配网络进行改造升级,给光纤配线架、光缆交接箱和光纤分纤箱等处的端口增加了电子标签载体,并将端口连接关系电子化后写入电子标签载体。
利用电子标签技术替代纸质标签对光分配网络进行智能化管理,可以避免纯粹人工管理可能导致的连接错误,并通过计算机网络技术对网络维护进行指导,提高网络维护效率,降低对施工人员的要求。
参阅图10,图10是本发明光网络智能化的实现方法另一实施方式的流程图。本实施方式从ODN管理终端的角度出发进行描述,本实施方式的光网络智能化的实现方法包括:
1010:ODN管理终端接收ODN管理系统所发送的工单信息以及ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息。
1020:ODN管理终端根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲;
1030:ODN管理终端向所述ODN管理系统发送确认信息、获得的光线路终端和/或光网络设备信息。
进一步地,如果ODN管理系统基于光功率测量方式收集配线模块的端口连接关系信息,所述确认信息为已弯曲光纤的确认信息;如果ODN管理系统基于检测特定信号的方式收集配线模块的端口连接关系信息,所述确认信息为已探测到特定信号的确认信息;如果ODN管理系统基于检测携带标识光线路终端和/或光网络设备信息的信号的方式收集配线模块的端口连接关系信息,ODN管理终端向所述ODN管理系统发送获得的光线路终端和/或光网络设备信息。
可选地,ODN管理终端向所述配线模块进行供电。
可选地,ODN管理终端通过无线的方式与所述ODN管理系统建立连接。
可选地,ODN管理终端接收ODN管理系统所发送的取消对所述配线模块的端口进行弯曲的指示,并根据所述工单信息取消对与所述配线模块的端口连接的光纤进行弯曲。
可选地,ODN管理终端接收控制管理模块所发送的在位状态,并将所述在位状态向所述ODN管理系统发送,或,接收控制管理模块所发送的电子标签信息,并将所述电子标签信息向所述ODN管理系统发送。
可选地,ODN管理终端接收ODN管理系统所发送的第一电子标签信息,并将所述电子标签信息向控制管理模块发送,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
参阅图11,图11是本发明ODN管理终端一实施方式的结构示意图。本实施方式的ODN管理终端包括:接收模块1110、弯曲模块1120以及发送模块1130。
所述接收模块1110用于包括但不限于接收ODN管理系统所发送的工单信息、ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息,所述接收模块1110将所述工单信息发送给所述弯曲模块1120。
所述弯曲模块1120用于接收所述工单信息,根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲。
所述发送模块1130用于向所述ODN管理系统发送确认信息、获得的光线路终端和/或光网络设备信息。
进一步地,如果ODN管理系统基于光功率测量方式收集配线模块的端口连接关系信息,所述确认信息为已弯曲光纤的确认信息;如果ODN管理系统基于检测特定信号的方式收集配线模块的端口连接关系信息,所述确认信息为已探测到特定信号的确认信息;如果ODN管理系统基于检测携带标识光线路终端和/或光网络设备信息的信号的方式收集配线模块的端口连接关系信息,ODN管理终端向所述ODN管理系统发送获得的光线路终端和/或光网络设备信息。
可选地,所述终端还包括供电模块1140,所述供电模块1140用于向所述配线模块进行供电。
可选地,所述终端还包括无线通信模块1150,所述无线通信模块1150用于通过包括但不限于GSM、CDMA、LTE、WiFi、WiMax等无线的方式与所述ODN管理系统建立连接。
可选地,接收模块1110用于接收ODN管理系统所发送的包括但不限于配线设备配置管理指令、电子标签载体在位状态查询指令、第一电子标签信息及相应操作指令、配线模块的端口操作指令、配线模块的端口的指示灯操作指令,并通过发送模块1130向配线设备中的控制管理模块发送,以供所述控制管理模块进行包括但不限于配线模块配置管理、电子标签在位状态查询、将第一标签信息写入到相应的配线模块的端口对应的电子标签载体中、读取配线模块的端口对应的电子标签载体中的电子标签信息、控制配线模块的端口对应的指示灯的开启、关闭、闪烁状态、灯光颜色等。
可选地,接收模块1110用于接收控制管理模块所发送的包括但不限于配线设备配置管理结果、电子标签载体的在位状态、电子标签信息,并通过发送模块113将所述配线设备配置管理结果、电子标签载体的在位状态、电子标签信息向所述ODN管理系统发送。
参阅图12,图12是本发明ODN管理终端另一实施方式的结构示意图。本实施方式中,ODN管理终端1200包括:接收器1210、处理器1220以及发送器1230。
接收器1210用于接收ODN管理系统所发送的工单信息以及ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息。
处理器1220用于根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲。
发送器1230用于向所述ODN管理系统发送已确认信息、获得的光线路终端和/或光网络设备信息。
进一步地,如果ODN管理系统基于光功率测量方式收集配线模块的端口连接关系信息,所述确认信息为已弯曲光纤的确认信息;如果ODN管理系统基于检测特定信号的方式收集配线模块的端口连接关系信息,所述确认信息为已探测到特定信号的确认信息;如果ODN管理系统基于检测携带标识光线路终端和/或光网络设备信息的信号的方式收集配线模块的端口连接关系信息,ODN管理终端向所述ODN管理系统发送获得的光线路终端和/或光网络设备信息。
本实施方式中的ODN管理终端1200还包括存储器1240,存储器1240可以包括只读存储器和随机存取存储器,并向处理器1220提供指令和数据。存储器1240的一部分还可以包括非易失性随机存取存储器(NVRAM)。
存储器1240存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器1220通过调用存储器1240存储的操作指令(该操作指令可存储在操作系统中),来执行上述操作。
处理器1220还可以称为CPU(Central Processing Unit,中央处理单元)。存储器1240可以包括只读存储器和随机存取存储器,并向处理器1220提供指令和数据。存储器1240的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,ODN管理终端1200的各个组件通
过总线系统1250耦合在一起,其中总线系统1250除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1250。
上述本发明实施例揭示的方法可以应用于处理器1220中,或者由处理器1220实现。处理器1220可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1220中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1220可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1240,处理器1220读取存储器1240中的信息,结合其硬件完成上述方法的步骤。
可选地,所述终端还包括电源1260,所述电源1260用于向所述配线模块进行供电。
可选地,所述终端还包括无线通信器1270,所述无线通信器1270用于通过包括但不限于GSM、CDMA、LTE、WiFi、WiMax等无线的方式与所述ODN管理系统建立连接。
可选地,接收模块1110用于接收ODN管理系统所发送的包括但不限于配线设备配置管理指令、电子标签载体在位状态查询指令、第一电子标签信息及相应操作指令、配线模块的端口操作指令、配线模块的端口的指示灯操作指令,并通过发送模块1130向配线设备中的控制管理模块发送,以供所述控制管理模块进行包括但不限于配线模块配置管理、电子标签在位状态查询、将第一标签信息写入到相应的配线模块的端口对应的电子标签载体中、读取配线模块的端口对应的电子标签载体中的电子标签信息、
控制配线模块的端口对应的指示灯的开启、关闭、闪烁状态、灯光颜色等。
可选地,接收模块1110用于接收控制管理模块所发送的包括但不限于配线设备配置管理结果、电子标签载体的在位状态、电子标签信息,并通过发送模块113将所述配线设备配置管理结果、电子标签载体的在位状态、电子标签信息向所述ODN管理系统发送。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。
Claims (27)
- 一种光网络智能化的实现方法,其特征在于,包括:获取配线模块的端口与光线路终端OLT和光网络设备之间的连接关系,其中,所述配线模块中设置了配线模块的端口对应的电子标签载体;根据所述配线模块的端口与所述OLT和所述光网络设备之间的连接关系为所述配线模块的端口生成电子标签;所述配线模块中包括控制管理模块,所述控制管理模块连接所述电子标签载体,通过所述控制管理模块将所述电子标签写入对应的电子标签载体中。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:读取所述电子标签载体的在位状态,根据所述电子标签载体的在位状态获得所述配线模块的端口的使用状态,或者,读取所述电子标签载体中的电子标签信息,根据所述电子标签信息获得所述配线模块的端口的连接关系。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:向所述控制管理模块输入第一电子标签信息,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
- 根据权利要求1~3任意一项所述的方法,其特征在于,所述获取配线模块的端口与光线路终端和光网络设备之间的连接关系,具体包括:如果资源管理系统内具有完整的所述配线模块的端口与光线路终端和光网络设备之间的连接关系,则从所述资源管理系统中获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
- 根据权利要求1~3任意一项所述的方法,其特征在于,所述获取配线模块的端口与光线路终端和光网络设备之间的连接关系,具体包括:检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光功率是所述接收设备接收到信号的功率;指示对与配线模块的端口连接的光纤进行弯曲;检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率;如果第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息,则确定所述配线模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
- 根据权利要求1~5任意一项所述的方法,其特征在于,所述信号为发送设备与接收设备之间进行正常通信业务时所发送的信号。
- 根据权利要求1~6任意一项所述的方法,其特征在于,所述配线模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
- 一种光分配网络ODN管理系统,其特征在于,包括:获取模块、生成模块以及写入模块,所述获取模块用于获取配线模块的端口与光线路终端OLT和光网络设备之间的连接关系,其中,所述配线模块中设置了与配线模块的端口对应的电子标签载体,所述获取模块将所述连接关系发送给所述生成模块;所述生成模块用于接收所述连接关系,根据所述配线模块的端口的连接关系为所述配线模块的端口生成电子标签,所述生成模块将所述电子标签发送给所述写入模块;所述配线模块中还设置了控制管理模块,所述控制管理模块连接所述电子标签载体,所述写入模块用于接收所述电子标签,通过所述控制管理模块将所述电子标签写入对应的电子标签载体中。
- 根据权利要求8所述的系统,其特征在于,所述系统还包括读取模块,所述读取模块用于读取所述电子标签载体的在位状态,根据所述电子标签载体的在位状态获得所述配线模块的端口的使用状态,或者,读取所述电子标签载体中的电子标签信息,根据所述电子标签信息获得所述配线模块的端口的连接关系。
- 根据权利要求8所述的系统,其特征在于,所述系统还包括输入 模块,所述输入模块用于向所述控制管理模块输入第一电子标签信息,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
- 根据权利要求8~10任意一项所述的系统,其特征在于,所述获取模块还用于当资源管理系统内具有完整的所述配线模块的端口与光线路终端和光网络设备之间的连接关系时,从所述资源管理系统中获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
- 根据权利要求8~10任意一项所述的系统,其特征在于,所述获取模块还包括检测单元、指示单元以及判决单元,所述检测单元用于检测待测区域内的各接收设备所接收的第一光功率,其中,所述接收设备为光线路终端或者光网络设备,所述第一光功率是所述接收设备接收到信号的功率,所述检测单元将所述第一光功率发送给所述判决单元;所述指示单元用于指示对与配线模块的端口连接的光纤进行弯曲;所述检测单元还用于检测所述待测区域内各接收设备所接收的第二光功率,其中,所述第二光功率是所述光纤弯曲后所述接收设备接收到信号的功率,所述检测单元将所述第二光功率发送给所述判决单元;所述判断单元用于在第一接收设备接收的第一光功率与第二光功率之差大于阈值或所述第一接收设备接收到告警信息时,确定所述配线模块的端口与所述第一接收设备之间存在连接关系,并根据所述配线模块的端口与所述第一接收设备之间的连接关系获取所述配线模块的端口与光线路终端和光网络设备之间的连接关系。
- 根据权利要求8~12任意一项所述的系统,其特征在于,所述信号为发送设备与接收设备之间进行正常通信业务时所发送的信号。
- 根据权利要求8~12任意一项所述的系统,其特征在于,所述配线模块的端口为光纤配线架的端口或光缆交接箱的端口或光纤分纤箱中的端口。
- 一种光网络系统,其特征在于,包括:光线路终端、光分配网络、 光网络设备、资源管理系统、光分配网络ODN管理系统,所述光线路终端通过所述光分配网络连接所述光网络设备,所述ODN管理系统连接所述光线路终端,所述ODN管理系统连接所述资源管理系统,其中,所述ODN管理系统为如权利要求8-14任一权利要求所述的ODN管理系统。
- 一种光网络智能化的实现方法,其特征在于,包括:接收光分配网络ODN管理系统所发送的工单信息以及所述ODN管理系统所发送的对所述配线模块的端口连接的光纤进行弯曲的指示,其中,所述工单信息包含了需要获取配线模块与光线路终端OLT和光网络单元连接关系的端口的信息;根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲;向所述ODN管理系统发送已弯曲光纤的信息。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:向所述配线模块进行供电。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:通过无线的方式与所述ODN管理系统建立连接。
- 根据权利要求16所述的方法,其特征在于,所述向ODN管理系统发送已弯曲光纤的信息之后还包括:接收所述ODN管理系统所发送的取消对所述配线模块的端口进行弯曲的指示,并根据所述工单信息取消对与所述配线模块的端口连接的光纤进行弯曲。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:接收控制管理模块所发送的在位状态,并将所述在位状态向所述ODN管理系统发送,或,接收控制管理模块所发送的电子标签信息,并将所述电子标签信息向所述ODN管理系统发送。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:接收ODN管理系统所发送的第一电子标签信息,并将所述第一电子标签信息向控制管理模块发送,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
- 一种光分配网络ODN管理终端,其特征在于,包括:接收模块、弯曲模块以及发送模块,所述接收模块用于接收ODN管理系统所发送的工单信息以及ODN管理系统所发送的对所述配线模块的端口进行弯曲的指示,其中,所述工单信息包含了需要获取连接关系的配线模块的端口的信息,所述接收模块将所述工单信息发送给所述弯曲模块;所述弯曲模块用于接收所述工单信息,根据所述工单信息对与所述配线模块的端口连接的光纤进行弯曲;所述发送模块用于向所述ODN管理系统发送已弯曲光纤的信息。
- 根据权利要求22所述的终端,其特征在于,所述终端还包括供电模块,所述供电模块用于向所述配线模块进行供电。
- 根据权利要求23所述的终端,其特征在于,所述终端还包括无线通信模块,所述无线通信模块用于通过无线的方式与所述ODN管理系统建立连接。
- 根据权利要求22所述的终端,其特征在于,所述接收模块还用于接收ODN管理系统所发送的取消对所述配线模块的端口进行弯曲的指示,并根据所述工单信息取消对与所述配线模块的端口连接的光纤进行弯曲。
- 根据权利要求22所述的终端,其特征在于,所述接收模块还用于接收控制管理模块所发送的在位状态,并且将所述在位状态向所述ODN管理系统发送,或,接收模块用于接收控制管理模块所发送的电子标签信息,并且将所述电子标签信息向所述ODN管理系统发送。
- 根据权利要求22所述的终端,其特征在于,接收模块还用于接收ODN管理系统所发送的第一电子标签信息,并将所述电子标签信息向控制管理模块发送,以供所述控制管理模块查找到与所述第一电子标签信息对应的第一电子标签载体时,对所述第一电子标签载体对应的所述配线模块的端口的指示灯进行相应的操作。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410393608.5A CN105338432B (zh) | 2014-08-12 | 2014-08-12 | 一种光网络智能化的实现方法以及装置 |
CN201410393608.5 | 2014-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016023332A1 true WO2016023332A1 (zh) | 2016-02-18 |
Family
ID=55288652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/070337 WO2016023332A1 (zh) | 2014-08-12 | 2015-01-08 | 一种光网络智能化的实现方法以及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105338432B (zh) |
WO (1) | WO2016023332A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183830A (zh) * | 2018-02-27 | 2018-06-19 | 辽宁煜鑫通达科技有限公司 | 光分配网络智能化管理方法、装置、计算机可读存储介质及终端设备 |
CN110971705A (zh) * | 2019-09-09 | 2020-04-07 | 张成菊 | 一种光纤传输定位方法及装置 |
CN111178463A (zh) * | 2019-12-16 | 2020-05-19 | 武汉武钢绿色城市技术发展有限公司 | 一种光纤配线柜标签管理方法和系统 |
CN112740576A (zh) * | 2018-08-22 | 2021-04-30 | 南京续点通信科技有限公司 | 光纤网络智能维护系统及光纤网络智能维护app |
CN113033725A (zh) * | 2019-12-25 | 2021-06-25 | 北京华为数字技术有限公司 | Odn资源信息管理方法、装置及存储介质 |
CN113810222A (zh) * | 2021-08-13 | 2021-12-17 | 柳州达迪通信技术股份有限公司 | 网络配线链路识别装置、系统及方法 |
CN113873362A (zh) * | 2021-10-22 | 2021-12-31 | 上海思源弘瑞自动化有限公司 | 一种电力二次设备的光功率告警方法和告警装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107360014A (zh) * | 2016-05-10 | 2017-11-17 | 中兴通讯股份有限公司 | 智能管理终端、智能光分配网络设备及其管理方法和系统 |
CN106506214A (zh) * | 2016-11-09 | 2017-03-15 | 深圳云联讯数据科技有限公司 | 一种设备连接关系的自动化管理系统及方法 |
CN108234024A (zh) * | 2016-12-21 | 2018-06-29 | 中兴通讯股份有限公司 | Odn系统及其工作方法 |
CN107483116B (zh) * | 2017-08-29 | 2019-03-05 | 沈阳市电信规划设计院股份有限公司 | 一种通信运营商的光纤资源动态管理系统与方法 |
CN110392316B (zh) * | 2018-04-16 | 2020-11-10 | 华为技术有限公司 | 一种odn的资源管理方法及装置 |
CN109068196A (zh) * | 2018-06-11 | 2018-12-21 | 南京艾瑞塔信息科技有限公司 | 一种网络智能综合布线方法及装置 |
CN109583528B (zh) * | 2018-11-05 | 2022-03-29 | 广西电网有限责任公司防城港供电局 | 基于七彩二维码的信息机房线缆标识及寻线管理方法 |
CN109861749A (zh) * | 2018-11-16 | 2019-06-07 | 江苏续点通信科技有限公司 | 基于路由端口定位装置的定位系统和管理系统 |
CN111007607A (zh) * | 2019-12-12 | 2020-04-14 | 四川天邑康和通信股份有限公司 | 一种大容量的智能光纤配线架及管理方法 |
CN112969109B (zh) * | 2021-03-03 | 2023-05-23 | 北京电信规划设计院有限公司 | 光配线设施的数字化系统及其应用 |
CN113473273B (zh) * | 2021-07-02 | 2023-03-24 | 烽火通信科技股份有限公司 | 一种光纤网络管理系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964680A (zh) * | 2009-07-23 | 2011-02-02 | 华为技术有限公司 | 端口识别系统、方法及故障定位的方法 |
CN102932062A (zh) * | 2012-10-24 | 2013-02-13 | 沈越 | 智能光纤连接分配系统及适配器端口状态信息标识方法 |
CN103454736A (zh) * | 2013-09-11 | 2013-12-18 | 上海亨通宏普通信技术有限公司 | 一种智能光纤配线装置、配线方法以及管理系统 |
CN203445880U (zh) * | 2013-08-08 | 2014-02-19 | 北京建飞科联科技有限公司 | 一种分光器的温湿度检测装置 |
CN103746850A (zh) * | 2014-01-13 | 2014-04-23 | 中国联合网络通信集团有限公司 | 一种故障定位方法、装置及pon系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102307107A (zh) * | 2011-08-16 | 2012-01-04 | 无锡互惠信息技术有限公司 | 基于射频识别的光分配网络(odn)智能管理系统 |
CN103809252B (zh) * | 2012-11-07 | 2015-12-16 | 华为技术有限公司 | 标识芯片收容装置、光纤熔配模块、光纤管理装置和装配方法 |
-
2014
- 2014-08-12 CN CN201410393608.5A patent/CN105338432B/zh active Active
-
2015
- 2015-01-08 WO PCT/CN2015/070337 patent/WO2016023332A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101964680A (zh) * | 2009-07-23 | 2011-02-02 | 华为技术有限公司 | 端口识别系统、方法及故障定位的方法 |
CN102932062A (zh) * | 2012-10-24 | 2013-02-13 | 沈越 | 智能光纤连接分配系统及适配器端口状态信息标识方法 |
CN203445880U (zh) * | 2013-08-08 | 2014-02-19 | 北京建飞科联科技有限公司 | 一种分光器的温湿度检测装置 |
CN103454736A (zh) * | 2013-09-11 | 2013-12-18 | 上海亨通宏普通信技术有限公司 | 一种智能光纤配线装置、配线方法以及管理系统 |
CN103746850A (zh) * | 2014-01-13 | 2014-04-23 | 中国联合网络通信集团有限公司 | 一种故障定位方法、装置及pon系统 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183830A (zh) * | 2018-02-27 | 2018-06-19 | 辽宁煜鑫通达科技有限公司 | 光分配网络智能化管理方法、装置、计算机可读存储介质及终端设备 |
CN112740576A (zh) * | 2018-08-22 | 2021-04-30 | 南京续点通信科技有限公司 | 光纤网络智能维护系统及光纤网络智能维护app |
CN112740576B (zh) * | 2018-08-22 | 2022-10-14 | 南京续点通信科技有限公司 | 光纤网络智能维护系统 |
CN110971705A (zh) * | 2019-09-09 | 2020-04-07 | 张成菊 | 一种光纤传输定位方法及装置 |
CN110971705B (zh) * | 2019-09-09 | 2022-10-18 | 张成菊 | 一种光纤传输定位方法及装置 |
CN111178463A (zh) * | 2019-12-16 | 2020-05-19 | 武汉武钢绿色城市技术发展有限公司 | 一种光纤配线柜标签管理方法和系统 |
CN111178463B (zh) * | 2019-12-16 | 2024-03-19 | 宝信软件(武汉)有限公司 | 一种光纤配线柜标签管理方法和系统 |
CN113033725A (zh) * | 2019-12-25 | 2021-06-25 | 北京华为数字技术有限公司 | Odn资源信息管理方法、装置及存储介质 |
CN113810222A (zh) * | 2021-08-13 | 2021-12-17 | 柳州达迪通信技术股份有限公司 | 网络配线链路识别装置、系统及方法 |
CN113873362A (zh) * | 2021-10-22 | 2021-12-31 | 上海思源弘瑞自动化有限公司 | 一种电力二次设备的光功率告警方法和告警装置 |
CN113873362B (zh) * | 2021-10-22 | 2024-03-26 | 上海思源弘瑞自动化有限公司 | 一种电力二次设备的光功率告警方法和告警装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105338432A (zh) | 2016-02-17 |
CN105338432B (zh) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016023332A1 (zh) | 一种光网络智能化的实现方法以及装置 | |
CN105634605B (zh) | 快速收集光纤互连信息的方法及装置 | |
US10931394B2 (en) | Optical-fiber link routing look-up method, fault detection method and diagnostic system | |
CN102571201B (zh) | 一种光纤网络管理方法、终端及系统 | |
CN108964756B (zh) | 光分配网络的故障检测方法及装置、无源光网络系统 | |
JP6998164B2 (ja) | 光給電システム | |
EP2854307B1 (en) | User interaction reduced optical fiber testing using optical loss test instrument | |
KR102037207B1 (ko) | 스마트 리모트 노드 광통신 단말장치 및 그에 따른 리모트 노드 운용방법 | |
CN102684779B (zh) | 集中测量装置、故障监控方法和系统 | |
CN108809414B (zh) | 光纤网络智能维护装置及其光纤全数据检测仪 | |
CN103746850A (zh) | 一种故障定位方法、装置及pon系统 | |
CN109819352A (zh) | 一种光纤数据处理系统架构及处理方法 | |
CN105307062A (zh) | 基于eID的支持近端操作和远端指导施工的sODN系统及方法 | |
WO2016023331A1 (zh) | 一种光网络连接关系确定方法、设备以及系统 | |
CN102026052A (zh) | 故障诊断方法和系统 | |
CN208768070U (zh) | 一种光纤线路损耗及光纤端面损耗检测系统 | |
KR102566847B1 (ko) | 인공지능을 활용한 능동형 광선로 관리 시스템 및 방법 | |
CN113396560A (zh) | 一种建立光缆连接的方法及装置 | |
KR102669638B1 (ko) | 스마트 선번관리형 광분배기 | |
CN105281837A (zh) | 一种基于rfid的光纤尾纤智能配对方法 | |
CN207283558U (zh) | 一种光纤路由识别云端管理系统 | |
CN103840879B (zh) | 一种光纤局向识别方法、装置和系统 | |
CN105915281B (zh) | 一种纤芯信息采集设备、方法 | |
CN102447592B (zh) | 带有光功率测试的网络测试装置 | |
CN111934754A (zh) | 一种光缆在线监测告警管理调用系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15832472 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15832472 Country of ref document: EP Kind code of ref document: A1 |