Nothing Special   »   [go: up one dir, main page]

WO2016022311A1 - Roll-to-roll electroless plating system with low dissolved oxygen content - Google Patents

Roll-to-roll electroless plating system with low dissolved oxygen content Download PDF

Info

Publication number
WO2016022311A1
WO2016022311A1 PCT/US2015/042163 US2015042163W WO2016022311A1 WO 2016022311 A1 WO2016022311 A1 WO 2016022311A1 US 2015042163 W US2015042163 W US 2015042163W WO 2016022311 A1 WO2016022311 A1 WO 2016022311A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
plating solution
electroless plating
pan
inert gas
Prior art date
Application number
PCT/US2015/042163
Other languages
French (fr)
Inventor
Gary P. WAINRIGHT
Shawn A. REUTER
Original Assignee
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Company filed Critical Eastman Kodak Company
Publication of WO2016022311A1 publication Critical patent/WO2016022311A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • C23C18/163Supporting devices for articles to be coated

Definitions

  • This invention pertains to the field of roll-to-roll electroless plating, and more particularly to a system and method for providing low dissolved oxygen content in the plating solution.
  • Electroless plating also known as chemical or auto-catalytic plating, is a non-galvanic plating process that involves chemical reactions in an aqueous plating solution that occur without the use of external electrical power.
  • the plating occurs as hydrogen is released by a reducing agent and oxidized, thus producing a negative charge on the surface of the part to be plated.
  • the negative charge attracts metal ions out of the plating solution to adhere as a metalized layer on the surface.
  • Using electroless plating to provide metallization in predetermined locations can be facilitated by first depositing a catalytic material in the predetermined locations. This can be done, for example by printing features using an ink containing a catalytic component.
  • Touch screens are visual displays with areas that may be configured to detect both the presence and location of a touch by, for example, a finger, a hand or a stylus. Touch screens may be found in televisions, computers, computer peripherals, mobile computing devices, automobiles, appliances and game consoles, as well as in other industrial, commercial and household applications.
  • a capacitive touch screen includes a substantially transparent substrate which is provided with electrically conductive patterns that do not excessively impair the transparency— either because the conductors are made of a material, such as indium tin oxide, that is substantially transparent, or because the conductors are sufficiently narrow that the transparency is provided by the comparatively large open areas not containing conductors. For capacitive touch screens having metallic conductors, it is advantageous for the features to be highly conductive but also very narrow. Capacitive touch screen sensor films are an example of an article having very fine features with improved electrical conductivity resulting from an electroless plated metal layer.
  • Projected capacitive touch technology is a variant of capacitive touch technology.
  • Projected capacitive touch screens are made up of a matrix of rows and columns of conductive material that form a grid. Voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. The capacitance can be measured at every intersection point on the grid. In this way, the system is able to accurately track touches.
  • Projected capacitive touch screens can use either mutual capacitive sensors or self capacitive sensors. In mutual capacitive sensors, there is a capacitor at every intersection of each row and each column.
  • a 16x14 array for example, would have 224 independent capacitors.
  • a voltage is applied to the rows or columns.
  • Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field which reduces the mutual capacitance.
  • the capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis.
  • Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.
  • WO 2013/063188 by Petcavich et al. discloses a method of manufacturing a capacitive touch sensor using a roll-to-roll process to print a conductor pattern on a flexible transparent dielectric substrate.
  • a first conductor pattern is printed on a first side of the dielectric substrate using a first fiexographic printing plate and is then cured.
  • a second conductor pattern is printed on a second side of the dielectric substrate using a second fiexographic printing plate and is then cured.
  • the ink used to print the patterns includes a catalyst that acts as seed layer during subsequent electroless plating.
  • the electrolessly plated material e.g., copper
  • Flexography is a method of printing or pattern formation that is commonly used for high- volume printing runs. It is typically employed in a roll- to-roll format for printing on a variety of soft or easily deformed materials including, but not limited to, paper, paperboard stock, corrugated board, polymeric films, fabrics, metal foils, glass, glass-coated materials, flexible glass materials and laminates of multiple materials. Coarse surfaces and stretchable polymeric films are also economically printed using flexography.
  • Flexographic printing members are sometimes known as relief printing members, relief-containing printing plates, printing sleeves, or printing cylinders, and are provided with raised relief images onto which ink is applied for application to a printable material. While the raised relief images are inked, the recessed relief "floor" should remain free of ink.
  • flexographic printing has conventionally been used in the past for printing of images
  • flexographic printing have included functional printing of devices, such as touch screen sensor films, antennas, and other devices to be used in electronics or other industries.
  • Such devices typically include electrically conductive patterns.
  • the width of the grid lines be approximately 2 to 10 microns, and even more preferably to be 4 to 8 microns.
  • the roll of flexographically printed material in order to be compatible with the high-volume roll-to-roll manufacturing process, it is preferable for the roll of flexographically printed material to be electroless plated in a roll-to-roll electroless plating system. More conventionally, electroless plating is performed by immersing the item to be plated in a tank of plating solution. However, for high volume uniform plating of features on both sides of the web of substrate material, it is preferable to perform the electroless plating in a roll-to-roll electroless plating system.
  • Roll-to-roll electroless plating systems are commercially available from Chemcut Corporation, for example. However, commercially available roll- to-roll electroless plating systems are adapted to be used with plating solutions that include a relatively high amount of dissolved oxygen, for example greater than three parts per million. Such plating solutions can work well for plating copper in the context of printed circuit board manufacture where the minimum line width is on the order of 100 microns. However, it has been found that such oxygen-rich plating solutions do not provide uniform metallization at high yield on features having line widths of 10 microns or less.
  • Dissolved oxygen content of an electroless plating solution influences the rate and quality of the plating.
  • U.S. Patent 4,616,596 Helber Jr. et a!. entitled “Electroless plating apparatus”
  • U.S. Patent 4,684,545 to Fey et al. entitled “Electroless plating with bi-level control of dissolved oxygen”
  • U.S. Patent Application Publication No. 201 1/0214608 to Ivanov et al. entitled “Electroless Plating System”
  • increased oxygen content tends to stabilize plating and decrease the plating rate. Decreased oxygen content tends to increase plating activity.
  • the present invention represents a roll-to-roll electroless plating system, comprising:
  • a sump containing a first volume of a plating solution; a pan containing a second volume of the plating solution, the second volume being less than the first volume;
  • a web advance system for advancing a web of media from an input roll though the plating solution in the pan along a web advance direction and to a take-up-roll, wherein a plating substance in the plating solution is plated onto predetermined locations on a surface of the web of media as it is advanced through the plating solution in the pan;
  • a pan-replenishing pump for moving plating solution from the sump to the pan through a pipe connected to an outlet of the pan-replenishing pump;
  • This invention has the advantage that the injection of the inert gas reduces the amount of dissolved oxygen in the plating solution to provide dissolved oxygen levels appropriate for use with plating solutions whose performance degrades at higher levels of dissolved oxygen.
  • the amount of dissolved oxygen can be controlled to be in a range which is optimal for use with a particular plating solution.
  • FIG. 1 is a schematic side view of a flexographic printing system for roll-to-roll printing on both sides of a substrate;
  • FIG. 2 is a schematic side view of a prior art roll-to-roll electroless plating system
  • FIG. 3 is a schematic side view of a roll-to-roll electroless plating system according to an embodiment of the invention.
  • FIG. 4 is a schematic side view of a roll-to-roll electroless plating system according to another embodiment of the invention.
  • FIG. 5A is a top view of an exemplary embodiment of a plumbing assembly for distributing inert gas bubbles into the plating solution;
  • FIG. 5B is a top view of another exemplary embodiment of a plumbing assembly for distributing inert gas bubbles into the plating solution;
  • FIG. 6 is a side view of an injector for injecting inert gas at a localized low pressure region
  • FIG. 7 is a high-level system diagram for an apparatus having a touch screen with a touch sensor that can be printed using embodiments of the invention
  • FIG. 8 is a side view of the touch sensor of FIG. 7;
  • FIG. 9 is a top view of a conductive pattern printed on a first side of the touch sensor of FIG. 8;
  • FIG. 10 is a top view of a conductive pattern printed on a second side of the touch sensor of FIG. 8.
  • references to upstream and downstream herein refer to direction of flow.
  • Web media moves along a media path in a web advance direction from upstream to downstream.
  • fluids flow through a fluid line in a direction from upstream to downstream.
  • the example embodiments of the present invention provide a roll-to-roll electroless plating system and methods for providing and maintaining low dissolved oxygen content in the plating solution.
  • the roH-to-roll electroless plating system is useful for metalizing printed features in sensor films incorporated into touch screens.
  • many other applications are emerging for printing and electroless plating of functional devices that can be incorporated into other electronic, communications, industrial, household, packaging and product identification systems (such as RFID) in addition to touch screens.
  • roll-to-roll electroless plating systems can be used to plate items for decorative purposes rather than electronic purposes and such applications are contemplated as well.
  • FIG. 1 is a schematic side view of a flexographic printing system 100 that can be used in embodiments of the invention for roll-to-roll printing of a catalytic ink on both sides of a substrate 150 for subsequent electroless plating.
  • Substrate 150 is fed as a web from supply roll 102 to take-up roll 104 through flexographic printing system 100.
  • Substrate 150 has a first side 151 and a second side 152.
  • the flexographic printing system 100 includes two print modules 120 and 140 that are configured to print on the first side 151 of substrate 150, as well as two print modules 1 10 and 130 that are configured to print on the second side 152 of substrate 150.
  • the web of substrate 150 travels overall in roll-to-roll direction 105 (left to right in the example of FIG. 1).
  • various rollers 106 and 107 are used to locally change the direction of the web of substrate as needed for adjusting web tension, providing a buffer, and reversing the substrate 1 0 for printing on an opposite side.
  • print module 120 roller 107 serves to reverse the local direction of the web of substrate 150 so that it is moving substantially in a right-to-left direction.
  • Each of the print modules 1 10, 120, 130, 140 includes some similar components including a respective plate cylinder 11 1, 121, 131, 141, on which is mounted a respective flexographic printing plate 1 12, 122, 132, 142, respectively.
  • Each flexographic printing plate 112, 122, 132, 142 has raised features 1 13 defining an image pattern to be printed on the substrate 150.
  • Each print module 1 10, 120, 130, 140 also includes a respective impression cylinder 1 14, 124, 1 4, 144 that is configured to force a side of the substrate 150 into contact with the corresponding flexographic printing plate 1 12, 122, 132, 142.
  • Impression cylinders 124 and 144 of print modules 120 and 140 (for printing on first side 151 of substrate 150) rotate counter-clockwise in the view shown in FIG. 1
  • impression cylinders 114 and 134 of print modules 1 10 and 130 (for printing on second side 152 of substrate 150) rotate clockwise in this view.
  • Each print module 1 10, 120, 130, 140 also incl udes a respective anilox roller 115, 125, 135, 145 for providing ink to the corresponding flexographic printing plate 1 12, 122, 132, 142.
  • an anilox roller is a hard cylinder, usually constructed of a steel or aluminum core, having an outer surface containing millions of very fine dimples, known as cells. Ink is provided to the anilox roller by a tray or chambered reservoir (not shown).
  • some or all of the print modules 1 10, 120, 130, 140 also include respective UV curing stations 116, 126, 136, 146 for curing the printed ink on substrate 150.
  • FIG. 2 is a schematic side view of a prior art roll-to-roll electroless plating system 200, similar to a configuration available from Chemcut
  • the roll-to-roll electroless plating system 200 performs well with plating solutions 210 that are formulated for optimized plating with relatively high dissolved oxygen content (e.g., greater than 3 parts per million).
  • Substrate 250 is fed as a web of media from supply roll 202 to take-up roll 204.
  • Drive rollers 206 advance the web in a web advance direction 205 from the supply roll 202 through a reservoir of the plating solution 210 to the take-up roll 204.
  • a sump 230 contains a large volume of the plating solution 210, and a pan 220 positioned above the sump contains a smaller volume of the plating solution 210.
  • a metallic plating substance such as copper, silver, nickel or palladium is electrolessly plated from the plating solution 210 onto predetermined locations on one or both of a first surface 251 and a second surface 252 of the substrate 250.
  • concentration of the metal in the plating solution 210 in the pan 220 decreases and the plating solution 210 needs to be refreshed.
  • a lower lift pump 232 moves plating solution 210 from the sump 230 through a pipe 233 to a lower flood bar 222 for distribution into the pan 220 below the substrate 250.
  • an upper lift pump 234 moves plating solution 210 from the sump 230 through a pipe 235 to an upper flood bar 224 for distribution into the pan 220 above the substrate 250. Excess plating solution 210 waterfalls back into the sump 230 at freefall return 236. Occasionally the plating solution 210 is chemically analyzed, for example by titration, and fresh plating solution 210, or components of the plating solution 210, are added to the sump 230 as needed. Air inlet tubes 240 are provided to provide additional oxygen to the plating solution 210 in sump 230 as needed.
  • FIG. 3 is a schematic side view of an improved roll-to-roll electroless plating system 300 which is useful for plating solutions 310 having a low level of dissolved oxygen content.
  • a substrate 350 is fed as a web of media from a supply roll 302 to a take-up roll 304.
  • Drive rollers 306 advance the web of substrate 350 along a web advance direction 305 from the supply roll 302 through a reservoir of plating solution 310 to the take-up roil 304.
  • a sump 330 contains a large volume of the plating solution 310 and a pan 320 positioned above the sump contains a smaller volume of the plating solution 310.
  • the term "reservoir" can be used to refer to either the sump 330 or the pan 320.
  • a metallic plating substance such as copper, silver, nickel or palladium is electrolessly plated from the plating solution 310 onto predetermined locations on one or both of a first surface 351 and a second surface 352 of the substrate 350.
  • the predetermined locations can be provided, for example, by the prior printing of a catalytic ink.
  • a number of modifications have been made relative to the prior art similar to a configuration available from roll-to-roll electroless plating system 200 of FIG. 2 to control the amount of dissolved oxygen in the plating solution within a lower range of about 0.5 to about 2 parts per million.
  • the modifications include measures to a) reduce the amount of turbulence in the plating solution 310 in portions of the roll-to-roll electroless plating system 300 that are exposed to air, b) reduce the exposure of the plating solution 310 to ambient air, c) displace dissolved oxygen from the plating solution 310, and d) sense the amount of dissolved oxygen in the plating solution 310.
  • Modifications for reducing turbulence in the roll-to-roll electroless plating system 300 of FIG. 3 relative to the prior art roll-to-roll electroless plating system 200 of FIG. 2 include replacing the freefall return 236 (FIG. 2) with a more controlled flow of the plating solution 310 through a drain pipe 336;
  • drain pipe 336 In addition to reducing splashing and other forms of turbulence, drain pipe 336 also reduces the exposure of plating solution 310 to ambient air.
  • the top of drain pipe 336 is within the plating solution 310 in pan 320, and the bottom of drain pipe 336 is within the plating solution 310 in sump 330.
  • Other measures for reducing the exposure of plating solution 310 to ambient air include providing a sump cover 338 and optionally providing a pan cover 328 (see FIG. 4).
  • Preferred embodiments of the invention also include modifications that provide for the displacement of dissolved oxygen from the plating solution 310. This is done by injecting an inert gas into the plating solution 310 via a distribution s stem.
  • the term inert gas refers to a gas that does not take part in the chemical reactions necessary for electroless plating. Nitrogen is an example of such an inert gas. Another example of an inert gas would be argon.
  • the inert gas can also be injected into one or both of the sump 330 and pan 320.
  • FIG. 3 shows inert gas being injected into the pan 320 from an inert gas source 345. In the illustrated embodiment, the inert gas from the inert gas source 345 is inserted into pipe 333 at through tee 334, forming bubbles 344 which are carried into the pan 320.
  • FIG. 3 also shows bubbles 344 of inert gas being injected into the sump 330 from inert gas source 340.
  • the inert gas As the inert gas is dissolved in the plating solution 310, the amount of dissolved oxygen decreases.
  • the bubbles 344 are injected through a plumbing assembly 342 located near a bottom 339 of sump 330 so that the injected bubbles 344 will rise through nearly the entire height of the plating solution 310.
  • the inert gas enters the plumbing assembly 342 from the inert gas source 340 through an inert gas inlet 341.
  • the plumbing assembly 342 has a network of distributed orifices 343, so that the inert gas bubbles 344 enter the plating solution 310 more uniformly, thereby facilitating dissolution by avoiding forming a few regions of inert-gas-saturated plating solution 310.
  • micro-bubbles are defined as bubbles having a diameter between about one micron (one thousandth of a millimeter) and one millimeter. Since the ratio of surface area to volume of a sphere is inversely dependent upon diameter, micro-bubbles have a larger surface area to volume ratio than larger bubbles, thereby facilitating efficient dissolution into the plating solution 310. In addition, micro-bubbles tend to stay suspended longer in the plating solution 310 rather than rising and bursting rapidly. As described below, there are a variety of ways to inject the inert gas into the plating solution 310 in the form of micro-bubbles.
  • An oxygen sensor 360 can be immersed into, or periodically dipped into, the plating solution 310 to measure the dissolved oxygen content.
  • the data from the oxygen sensor 360 can be provided to a controller 315 to control the rate of flow of inert gas injected into plating solution 310 from inert gas source 340 or inert gas source 345, for example by controlling flow rate through a needle valve (not shown).
  • FIG. 4 shows a schematic side view of an alternate embodiment of a roll-to-roll electroless plating system 300 that injects micro-bubbles of inert gas into the sump 330 by means of a recirculation system including a recirculation pump 370 having an inlet 373 and an outlet 375; an inlet line 372 for moving plating solution 310 from the sump 330 to the pump inlet 373; and an outlet line 374 for returning plating solution 310 from the pump outlet 375 to the sump 330.
  • inert gas is injected into the low pressure inlet 73 of the recirculation pump 370 from an inert gas source 376 connected to inlet 373 by tee 378.
  • recirculation pump 370 tends to break inert gas bubbles into micro-bubbles, which then flow together with plating solution 310 from the pump outlet 375 into the sump 330 through a plumbing assembly 342 located near bottom 339 of sump 330 providing the bubbles 344.
  • a filter 377 can be disposed in the outlet line 374 for removing particulates so that they do not re-enter the sump 330.
  • a second function of filter 377 which may have a pore size on the order of one micron, can optionally be used to break up bubbles of inert gas into micro-bubbles.
  • inert gas is injected into the plating solution 310 outside the sump 330 to provide an inert- gas-rich plating solution 310, and the inert-gas-rich plating solution 310 is delivered into the sump 330.
  • FIG. 5B shows a top view of an exemplary embodiment of the plumbing assembly 379, where the inert gas is injected from the inert gas source 376 into the inlet line 372 to the recirculation pump 370.
  • the inert gas bubbles pass through a filter 377 before entering plumbing assembly 379.
  • the bubbles of inert gas have a long flow path within plumbing assembly 379 before exiting at distributed orifices 371, thereby aiding dissolution of the inert gas into the plating solution 310 (FIG. 4) within the plumbing assembly 379.
  • FIG. 4 also shows inert gas flowing from inert gas source 345 through a tee 334 into pipe 333 downstream of the outlet 335 of pan-replenishing pump 332.
  • inert gas is injected into the plating solution 310 outside the pan 320 to provide an inert-gas- rich plating solution 310, and the inert-gas-rich plating solution 310 is delivered into the pan 320 through the pipe 333.
  • a filter 348 can be used for further reducing the size of bubbles.
  • a static mixer (not shown) having a tortuous flow path around baffles can be inserted in-line with pipe 333 to facilitate dissolution of the inert gas micro-bubbles within the plating solution 310 being returned to pan 320 through pipe 333.
  • FIG. 4 shows inert gas provided upstream of the inlet 373 of recirculation pump 370, and shows inert gas provided downstream of the outlet 335 of pan-replenishing pump 332, alternatively inert gas could be provide downstream of outlet 375 of recirculation pump 370 or upstream of inlet 331 of pan-replenishing pump 332.
  • inert gas could be provide downstream of the outlet 375 of recirculation pump 370 or upstream of inlet 331 of pan-replenishing pump 332.
  • the inert gas is provided downstream of the outlet of a pump (i.e., on the high pressure side of the pump)
  • it is advantageous to provide a local low pressure region where the inert gas can be injected For example, in FIG. 4, it can be useful to provide a local low pressure region where the inert gas is injected downstream of the outlet 335 of the pan- replenishing pump 332.
  • FIG. 6 is a side view of an injector 380 (sometimes called a Venturi injector) for providing a local low pressure region at a gas injection site.
  • the injector 380 can be used at the position of the tee 334 in FIG. 4.
  • Injector 380 includes a throat 386; converging tube segment 382 upstream of the throat 386 having a diameter Dl that decreases from an upstream portion to a downstream portion; and a diverging tube segment 384 downstream of the throat 386 having a diameter D2 that increases from an upstream portion to a downstream portion.
  • the throat 386 is formed by the junction of the converging tube segment 382 and the diverging tube segment 384.
  • the plating solution 310 flows through the injector 380 from upstream to downstream in flow direction 385. Due to the Venturi effect, a localized low pressure region is formed at the throat 386.
  • a low pressure source of inert gas such as inert gas sources 340, 345 (FIG. 4) can be used.
  • an injector 380 can be also be used to inject inert gas downstream of the outlet 375 of the recirculation pump 370 (FIG. 4).
  • an amount of dissolved oxygen in the plating solution 310 is measured using oxygen sensor 360.
  • the measured amount of dissolved oxygen is compared to a target range of dissolved oxygen. If the measured amount of dissolved oxygen is greater than the target range of dissolved oxygen, then the rate of injecting the inert gas is increased, for example by further opening a needle valve through which the inert gas flows to increase the flow rate. If the measured amount of dissolved oxygen is less than the target range of dissolved oxygen, then the rate of injecting the inert gas is decreased, for example by further closing a needle valve through which the inert gas flows to decrease the flow rate.
  • the measuring of the amount of dissolved oxygen can be repeated at specified time intervals, for example once every five minutes or once every hour.
  • the plating solution 310 tends to be somewhat oxygen rich. Therefore, it can be advantageous to measure the dissolved oxygen content at a relatively high repetition frequency (e.g., once every five minutes) during a start-up phase, and then to measure the dissolved oxygen content at a lower repetition frequency (e.g., once per thirty minutes) after the system has stabilized and the dissolved oxygen content has reached the target range.
  • measurement of dissolved oxygen content can also be initiated by the controller 315 if it detects that an environmental condition has changed. For example, a measurement can be initiated if the controller 315 senses that the temperature of the plating solution 310 has changed by more than a predetermined threshold, as gas solubility is a function of temperature.
  • measurement of dissolved oxygen content can also be initiated when a system operating condition changes. For example, a measurement can be initiated if the pan cover 328 is removed for service, thereby exposing the surface of the plating solution 310 to the air. Likewise, a measurement can be initiated when fresh plating solution 310, or components of the plating solution 310, are added to the sump 330.
  • measurement of dissolved oxygen content can also be initiated when an indication is detected that the system may not be performing in the intended manner. For example, a measurement can be initiated if it is observed that elements of the plating solution 310 are plating onto extraneous surfaces other than the intended features on the substrate 250.
  • a user interface can be provided to enable the measurement of dissolved oxygen to be manually initiated by an operator. For example, if it is observed that the system performance has been degraded.
  • the rates of injection can be independently controlled by controller 315.
  • the injection of the inert gas into the plating solution 310 for delivery into the sump 330 can be done at a first rate
  • the injection of inert gas into the plating solution 310 for delivery into the pan 320 can be done at a second rate that is different from the first rate.
  • FIG. 3 shows the oxygen sensor 360 submerged within the plating solution 310 in pan 320.
  • the oxygen sensor 360 is configured to be repositionable.
  • a motor 362 controllably lowers the oxygen sensor 360 to dip it into the plating solution 310 (e.g., through an opening in the pan cover 328) in order to measure dissolved oxygen content.
  • the controller 315 can then control the motor 362 to raise the oxygen sensor 360 to remove it from the plating solution after the measurement is made.
  • Data indicating the measured amount of dissolved oxygen can be sent to controller 315 either before or after the oxygen sensor 360 is removed from the plating solution 310.
  • FIG. 7 shows a high-level system diagram for an apparatus 400 having a touch screen 410 including a display device 420 and a touch sensor 430 that overlays at least a portion of a viewable area of display device 420.
  • Touch sensor 430 senses touch and conveys electrical signals (related to capacitance values for example) corresponding to the sensed touch to a controller 480.
  • Touch sensor 430 is an example of an article that can be printed on one or both sides by the flexographic printing system 100 and plated using an embodiment of roll-to- roll electroless plating system 300 with low dissolved oxygen content described above.
  • FIG. 8 shows a schematic side view of a touch sensor 430.
  • Transparent substrate 440 for example polyethylene terephthalate, has a first conductive pattern 450 printed and plated on a first side 441, and a second conductive pattern 460 printed and plated on a second side 442.
  • the length and width of the transparent substrate 440, which is cut from the take-up roll 104 (FIG. 1), is not larger than the flexographic printing plates 1 12, 122, 132, 142 of flexographic printing system 100 (FIG. 1), but it could be smaller than the flexographic printing plates 1 12, 122, 132, 142.
  • FIG. 9 shows an example of a conductive pattern 450 that can be printed on first side 441 (FIG. 8) of substrate 440 (FIG. 8) using one or more print modules such as print modules 120 and 140 of flexographic printing system (FIG. 1), followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4).
  • Conductive pattern 450 includes a grid 452 including grid columns 455 of intersecting fine lines 4 1 and 453 that are connected to an array of channel pads 454.
  • Interconnect lines 456 connect the channel pads 454 to the connector pads 458 that are connected to controller 480 (FIG. 7).
  • Conductive pattern 450 can be printed by a single print module 120 in some embodiments.
  • the optimal print conditions for fine lines 451 and 453 are typically different than for printing the wider channel pads 454, connector pads 458 and interconnect lines 456, it can be advantageous to use one print module 120 for printing the fine lines 451 and 453 and a second print module 140 for printing the wider features. Furthermore, for clean intersections of fine lines 451 and 453, it can be further advantageous to print and cure one set of fine lines 451 using one print module 120, and to print and cure the second set of fine lines 453 using a second print module 140, and to print the wider features using a third print module (not shown in FIG. 1) configured similarly to print modules 120 and 140.
  • FIG. 10 shows an example of a conductive pattern 460 that can be printed on second side 442 (FIG. 8) of substrate 440 (FIG. 8) using one or more print modules such as print modules 110 and 130 of flexographic printing system (FIG. 1 ), followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4).
  • Conductive pattern 460 includes a grid 462 including grid rows 465 of intersecting fine lines 461 and 463 that are connected to an array of channel pads 464. Interconnect lines 466 connect the channel pads 464 to the connector pads 468 that are connected to controller 480 (FIG. 7).
  • conductive pattern 460 can be printed by a single print module 1 10.
  • the optimal print conditions for fine lines 461 and 463 are typically different than for the wider channel pads 464, connector pads 468 and interconnect lines 466, it can be advantageous to use one print module 110 for printing the fine lines 461 and 463 and a second print module 130 for printing the wider features. Furthermore, for clean intersections of fine lines 461 and 463, it can be further advantageous to print and cure one set of fine lines 461 using one print module 1 10, and to print and cure the second set of fine lines 463 using a second print module 130, and to print the wider features using a third print module (not shown in FIG. 1 ) configured similarly to print modules 1 10 and 130.
  • conductive pattern 450 can be printed using one or more print modules configured like print modules 1 10 and 130, and conductive pattern 460 can be printed using one or more print modules configured like print modules 120 and 140 of FIG. 1 followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4).
  • controller 480 in operation of touch screen 410, can sequentially electrically drive grid columns 455 via connector pads 458 and can sequentially sense electrical signals on grid rows 465 via connector pads 468. In other embodiments, the driving and sensing roles of the grid columns 455 and the grid rows 465 can be reversed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)

Abstract

A roll-to-roll electroless plating system including a sump containing a first volume of a plating solution, and a pan containing a second volume of the plating solution, the second volume being less than the first volume. A web advance system advances a web of media though the plating solution in the pan, wherein a plating substance in the plating solution is plated onto predetermined locations on a surface of the web of media. A pan-replenishing pump moves plating solution from the sump to the pan through a pipe. A distribution system injects an inert gas into the plating solution to reduce the amount of dissolved oxygen.

Description

ROLL-TO-ROLL ELECTROLESS PLATING SYSTEM WITH LOW
DISSOLVED OXYGEN CONTENT
FIELD OF THE INVENTION
This invention pertains to the field of roll-to-roll electroless plating, and more particularly to a system and method for providing low dissolved oxygen content in the plating solution.
BACKGROUND OF THE INVENTION
Electroless plating, also known as chemical or auto-catalytic plating, is a non-galvanic plating process that involves chemical reactions in an aqueous plating solution that occur without the use of external electrical power. Typically, the plating occurs as hydrogen is released by a reducing agent and oxidized, thus producing a negative charge on the surface of the part to be plated. The negative charge attracts metal ions out of the plating solution to adhere as a metalized layer on the surface. Using electroless plating to provide metallization in predetermined locations can be facilitated by first depositing a catalytic material in the predetermined locations. This can be done, for example by printing features using an ink containing a catalytic component.
Touch screens are visual displays with areas that may be configured to detect both the presence and location of a touch by, for example, a finger, a hand or a stylus. Touch screens may be found in televisions, computers, computer peripherals, mobile computing devices, automobiles, appliances and game consoles, as well as in other industrial, commercial and household applications. A capacitive touch screen includes a substantially transparent substrate which is provided with electrically conductive patterns that do not excessively impair the transparency— either because the conductors are made of a material, such as indium tin oxide, that is substantially transparent, or because the conductors are sufficiently narrow that the transparency is provided by the comparatively large open areas not containing conductors. For capacitive touch screens having metallic conductors, it is advantageous for the features to be highly conductive but also very narrow. Capacitive touch screen sensor films are an example of an article having very fine features with improved electrical conductivity resulting from an electroless plated metal layer.
Projected capacitive touch technology is a variant of capacitive touch technology. Projected capacitive touch screens are made up of a matrix of rows and columns of conductive material that form a grid. Voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. The capacitance can be measured at every intersection point on the grid. In this way, the system is able to accurately track touches. Projected capacitive touch screens can use either mutual capacitive sensors or self capacitive sensors. In mutual capacitive sensors, there is a capacitor at every intersection of each row and each column. A 16x14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field which reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.
WO 2013/063188 by Petcavich et al. discloses a method of manufacturing a capacitive touch sensor using a roll-to-roll process to print a conductor pattern on a flexible transparent dielectric substrate. A first conductor pattern is printed on a first side of the dielectric substrate using a first fiexographic printing plate and is then cured. A second conductor pattern is printed on a second side of the dielectric substrate using a second fiexographic printing plate and is then cured. The ink used to print the patterns includes a catalyst that acts as seed layer during subsequent electroless plating. The electrolessly plated material (e.g., copper) provides the low resistivity in the narrow lines of the grid needed for excellent performance of the capacitive touch sensor. Petcavich et al. indicate that the line width of the flexographically printed material can be 1 to 50 microns. Flexography is a method of printing or pattern formation that is commonly used for high- volume printing runs. It is typically employed in a roll- to-roll format for printing on a variety of soft or easily deformed materials including, but not limited to, paper, paperboard stock, corrugated board, polymeric films, fabrics, metal foils, glass, glass-coated materials, flexible glass materials and laminates of multiple materials. Coarse surfaces and stretchable polymeric films are also economically printed using flexography.
Flexographic printing members are sometimes known as relief printing members, relief-containing printing plates, printing sleeves, or printing cylinders, and are provided with raised relief images onto which ink is applied for application to a printable material. While the raised relief images are inked, the recessed relief "floor" should remain free of ink.
Although flexographic printing has conventionally been used in the past for printing of images, more recent uses of flexographic printing have included functional printing of devices, such as touch screen sensor films, antennas, and other devices to be used in electronics or other industries. Such devices typically include electrically conductive patterns.
To improve the optical quality and reliability of the touch screen, it has been found to be preferable that the width of the grid lines be approximately 2 to 10 microns, and even more preferably to be 4 to 8 microns. In addition, in order to be compatible with the high-volume roll-to-roll manufacturing process, it is preferable for the roll of flexographically printed material to be electroless plated in a roll-to-roll electroless plating system. More conventionally, electroless plating is performed by immersing the item to be plated in a tank of plating solution. However, for high volume uniform plating of features on both sides of the web of substrate material, it is preferable to perform the electroless plating in a roll-to-roll electroless plating system.
Roll-to-roll electroless plating systems are commercially available from Chemcut Corporation, for example. However, commercially available roll- to-roll electroless plating systems are adapted to be used with plating solutions that include a relatively high amount of dissolved oxygen, for example greater than three parts per million. Such plating solutions can work well for plating copper in the context of printed circuit board manufacture where the minimum line width is on the order of 100 microns. However, it has been found that such oxygen-rich plating solutions do not provide uniform metallization at high yield on features having line widths of 10 microns or less.
Dissolved oxygen content of an electroless plating solution influences the rate and quality of the plating. As indicated in U.S. Patent 4,616,596 Helber Jr. et a!., entitled "Electroless plating apparatus," U.S. Patent 4,684,545 to Fey et al., entitled "Electroless plating with bi-level control of dissolved oxygen," and U.S. Patent Application Publication No. 201 1/0214608 to Ivanov et al., entitled "Electroless Plating System," increased oxygen content tends to stabilize plating and decrease the plating rate. Decreased oxygen content tends to increase plating activity.
It has been found that a copper electroless plating solution made by Enthone is well-suited to provide high quality plating on features having minimum line widths of 10 microns or less in a low dissolved oxygen content tank plating system, but not in a commercially available roll-to-roll electroless plating system. What is needed is a roll-to-roll plating system and method that can provide and maintain low dissolved oxygen content in the plating solution. SUMMARY OF THE INVENTION
The present invention represents a roll-to-roll electroless plating system, comprising:
a sump containing a first volume of a plating solution; a pan containing a second volume of the plating solution, the second volume being less than the first volume;
a web advance system for advancing a web of media from an input roll though the plating solution in the pan along a web advance direction and to a take-up-roll, wherein a plating substance in the plating solution is plated onto predetermined locations on a surface of the web of media as it is advanced through the plating solution in the pan; a pan-replenishing pump for moving plating solution from the sump to the pan through a pipe connected to an outlet of the pan-replenishing pump; and
a distribution system for injecting an inert gas into the plating solution.
This invention has the advantage that the injection of the inert gas reduces the amount of dissolved oxygen in the plating solution to provide dissolved oxygen levels appropriate for use with plating solutions whose performance degrades at higher levels of dissolved oxygen.
It has the additional advantage that the exposure of the plating solution to air is minimized, thereby further reducing the amount of dissolved oxygen.
It has the further advantage that the amount of dissolved oxygen can be controlled to be in a range which is optimal for use with a particular plating solution.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view of a flexographic printing system for roll-to-roll printing on both sides of a substrate;
FIG. 2 is a schematic side view of a prior art roll-to-roll electroless plating system;
FIG. 3 is a schematic side view of a roll-to-roll electroless plating system according to an embodiment of the invention;
FIG. 4 is a schematic side view of a roll-to-roll electroless plating system according to another embodiment of the invention;
FIG. 5A is a top view of an exemplary embodiment of a plumbing assembly for distributing inert gas bubbles into the plating solution;
FIG. 5B is a top view of another exemplary embodiment of a plumbing assembly for distributing inert gas bubbles into the plating solution;
FIG. 6 is a side view of an injector for injecting inert gas at a localized low pressure region; FIG. 7 is a high-level system diagram for an apparatus having a touch screen with a touch sensor that can be printed using embodiments of the invention;
FIG. 8 is a side view of the touch sensor of FIG. 7; FIG. 9 is a top view of a conductive pattern printed on a first side of the touch sensor of FIG. 8; and
FIG. 10 is a top view of a conductive pattern printed on a second side of the touch sensor of FIG. 8.
It is to be understood that the attached drawings are for purposes of illustrating the concepts of the invention and may not be to scale.
DETAILED DESCRIPTION OF THE INVENTION
The present description will be directed in particular to elements forming part of, or cooperating more directly with, an apparatus in accordance with the present invention. It is to be understood that elements not specifically shown, labeled, or described can take various forms well known to those skilled in the art. In the following description and drawings, identical reference numerals have been used, where possible, to designate identical elements. It is to be understood that elements and components can be referred to in singular or plural form, as appropriate, without limiting the scope of the invention.
The invention is inclusive of combinations of the embodiments described herein. References to "a particular embodiment" and the like refer to features that are present in at least one embodiment of the invention. Separate references to "an embodiment" or "particular embodiments" or the like do not necessarily refer to the same embodiment or embodiments; however, such embodiments are not mutually exclusive, unless so indicated or as are readily apparent to one of skill in the art. It should be noted that, unless otherwise explicitly noted or required by context, the word "or" is used in this disclosure in a non-exclusive sense.
The example embodiments of the present invention are illustrated schematically and not to scale for the sake of clarity. One of ordinary skill in the art will be able to readily determine the specific size and interconnections of the elements of the example embodiments of the present invention.
References to upstream and downstream herein refer to direction of flow. Web media moves along a media path in a web advance direction from upstream to downstream. Similarly, fluids flow through a fluid line in a direction from upstream to downstream.
As described herein, the example embodiments of the present invention provide a roll-to-roll electroless plating system and methods for providing and maintaining low dissolved oxygen content in the plating solution. The roH-to-roll electroless plating system is useful for metalizing printed features in sensor films incorporated into touch screens. However, many other applications are emerging for printing and electroless plating of functional devices that can be incorporated into other electronic, communications, industrial, household, packaging and product identification systems (such as RFID) in addition to touch screens. In addition, roll-to-roll electroless plating systems can be used to plate items for decorative purposes rather than electronic purposes and such applications are contemplated as well.
FIG. 1 is a schematic side view of a flexographic printing system 100 that can be used in embodiments of the invention for roll-to-roll printing of a catalytic ink on both sides of a substrate 150 for subsequent electroless plating. Substrate 150 is fed as a web from supply roll 102 to take-up roll 104 through flexographic printing system 100. Substrate 150 has a first side 151 and a second side 152.
The flexographic printing system 100 includes two print modules 120 and 140 that are configured to print on the first side 151 of substrate 150, as well as two print modules 1 10 and 130 that are configured to print on the second side 152 of substrate 150. The web of substrate 150 travels overall in roll-to-roll direction 105 (left to right in the example of FIG. 1). However, various rollers 106 and 107 are used to locally change the direction of the web of substrate as needed for adjusting web tension, providing a buffer, and reversing the substrate 1 0 for printing on an opposite side. In particular, note that in print module 120 roller 107 serves to reverse the local direction of the web of substrate 150 so that it is moving substantially in a right-to-left direction.
Each of the print modules 1 10, 120, 130, 140 includes some similar components including a respective plate cylinder 11 1, 121, 131, 141, on which is mounted a respective flexographic printing plate 1 12, 122, 132, 142, respectively. Each flexographic printing plate 112, 122, 132, 142 has raised features 1 13 defining an image pattern to be printed on the substrate 150. Each print module 1 10, 120, 130, 140 also includes a respective impression cylinder 1 14, 124, 1 4, 144 that is configured to force a side of the substrate 150 into contact with the corresponding flexographic printing plate 1 12, 122, 132, 142. Impression cylinders 124 and 144 of print modules 120 and 140 (for printing on first side 151 of substrate 150) rotate counter-clockwise in the view shown in FIG. 1 , while impression cylinders 114 and 134 of print modules 1 10 and 130 (for printing on second side 152 of substrate 150) rotate clockwise in this view.
Each print module 1 10, 120, 130, 140 also incl udes a respective anilox roller 115, 125, 135, 145 for providing ink to the corresponding flexographic printing plate 1 12, 122, 132, 142. As is well known in the printing industry, an anilox roller is a hard cylinder, usually constructed of a steel or aluminum core, having an outer surface containing millions of very fine dimples, known as cells. Ink is provided to the anilox roller by a tray or chambered reservoir (not shown). In some embodiments, some or all of the print modules 1 10, 120, 130, 140 also include respective UV curing stations 116, 126, 136, 146 for curing the printed ink on substrate 150.
FIG. 2 is a schematic side view of a prior art roll-to-roll electroless plating system 200, similar to a configuration available from Chemcut
Corporation, for use with a plating solution 210. The roll-to-roll electroless plating system 200 performs well with plating solutions 210 that are formulated for optimized plating with relatively high dissolved oxygen content (e.g., greater than 3 parts per million). Substrate 250 is fed as a web of media from supply roll 202 to take-up roll 204. Drive rollers 206 advance the web in a web advance direction 205 from the supply roll 202 through a reservoir of the plating solution 210 to the take-up roll 204. In the configuration shown in FIG. 2, a sump 230 contains a large volume of the plating solution 210, and a pan 220 positioned above the sump contains a smaller volume of the plating solution 210.
As the substrate 250 is advanced through the plating solution 210 in the pan 220, a metallic plating substance such as copper, silver, nickel or palladium is electrolessly plated from the plating solution 210 onto predetermined locations on one or both of a first surface 251 and a second surface 252 of the substrate 250. As a result, the concentration of the metal in the plating solution 210 in the pan 220 decreases and the plating solution 210 needs to be refreshed. To refresh the plating solution 210, it is recirculated between the sump 230 and the pan 220. A lower lift pump 232 moves plating solution 210 from the sump 230 through a pipe 233 to a lower flood bar 222 for distribution into the pan 220 below the substrate 250. Likewise, an upper lift pump 234 moves plating solution 210 from the sump 230 through a pipe 235 to an upper flood bar 224 for distribution into the pan 220 above the substrate 250. Excess plating solution 210 waterfalls back into the sump 230 at freefall return 236. Occasionally the plating solution 210 is chemically analyzed, for example by titration, and fresh plating solution 210, or components of the plating solution 210, are added to the sump 230 as needed. Air inlet tubes 240 are provided to provide additional oxygen to the plating solution 210 in sump 230 as needed.
Although the prior art roll-to-roll electroless plating system 200 shown in FIG. 2 works well for plating solutions 210 that are designed to plate at relatively high levels of dissolved oxygen, for example greater than 3 parts per million, it has been found that it does not work well for plating solutions 210 that are designed to plate at a lower level of dissolved oxygen, for example between about 0.5 parts per million and about 2 parts per million. Not adding air through the air inlet tubes 240 is an obvious measure for reducing the dissolved oxygen content in the plating solution 210. However, in order to control the dissolved oxygen content at the desired low level, it is necessary to make significant modifications to the roll-to-roll electroless plating system 200.
FIG. 3 is a schematic side view of an improved roll-to-roll electroless plating system 300 which is useful for plating solutions 310 having a low level of dissolved oxygen content. As in the prior art electroless plating system 200, a substrate 350 is fed as a web of media from a supply roll 302 to a take-up roll 304. Drive rollers 306 advance the web of substrate 350 along a web advance direction 305 from the supply roll 302 through a reservoir of plating solution 310 to the take-up roil 304. A sump 330 contains a large volume of the plating solution 310 and a pan 320 positioned above the sump contains a smaller volume of the plating solution 310. The term "reservoir" can be used to refer to either the sump 330 or the pan 320.
As the substrate 350 is advanced through the plating solution 310 in pan 320, a metallic plating substance such as copper, silver, nickel or palladium is electrolessly plated from the plating solution 310 onto predetermined locations on one or both of a first surface 351 and a second surface 352 of the substrate 350. The predetermined locations can be provided, for example, by the prior printing of a catalytic ink.
A number of modifications have been made relative to the prior art similar to a configuration available from roll-to-roll electroless plating system 200 of FIG. 2 to control the amount of dissolved oxygen in the plating solution within a lower range of about 0.5 to about 2 parts per million. The modifications include measures to a) reduce the amount of turbulence in the plating solution 310 in portions of the roll-to-roll electroless plating system 300 that are exposed to air, b) reduce the exposure of the plating solution 310 to ambient air, c) displace dissolved oxygen from the plating solution 310, and d) sense the amount of dissolved oxygen in the plating solution 310.
Modifications for reducing turbulence in the roll-to-roll electroless plating system 300 of FIG. 3 relative to the prior art roll-to-roll electroless plating system 200 of FIG. 2 include replacing the freefall return 236 (FIG. 2) with a more controlled flow of the plating solution 310 through a drain pipe 336;
eliminating the lower flood bar 222 and the upper flood bar 224 (FIG. 2); and removing the upper lift pump 234 and its associated plumbing. Instead, in roll-to- roll electroless plating system 300, there is only a single pan-replenishing pump 332 that moves plating solution 310 from the sump 330 to the pan 320 through a pipe 333 connected to an outlet 335 of the pan-replenishing pump 332. Plating solution 310 enters the pan-replenishing pump 332 from sump 330 via an inlet 331.
In addition to reducing splashing and other forms of turbulence, drain pipe 336 also reduces the exposure of plating solution 310 to ambient air. The top of drain pipe 336 is within the plating solution 310 in pan 320, and the bottom of drain pipe 336 is within the plating solution 310 in sump 330. Other measures for reducing the exposure of plating solution 310 to ambient air include providing a sump cover 338 and optionally providing a pan cover 328 (see FIG. 4).
Preferred embodiments of the invention also include modifications that provide for the displacement of dissolved oxygen from the plating solution 310. This is done by injecting an inert gas into the plating solution 310 via a distribution s stem. As used herein, the term inert gas refers to a gas that does not take part in the chemical reactions necessary for electroless plating. Nitrogen is an example of such an inert gas. Another example of an inert gas would be argon. In various embodiments, the inert gas can also be injected into one or both of the sump 330 and pan 320. FIG. 3 shows inert gas being injected into the pan 320 from an inert gas source 345. In the illustrated embodiment, the inert gas from the inert gas source 345 is inserted into pipe 333 at through tee 334, forming bubbles 344 which are carried into the pan 320.
FIG. 3 also shows bubbles 344 of inert gas being injected into the sump 330 from inert gas source 340. As the inert gas is dissolved in the plating solution 310, the amount of dissolved oxygen decreases. To facilitate dissolution of the inert gas, it is advantageous to inject the inert gas as micro-bubbles and to distribute the inert gas in such a way as to promote longer paths through the plating solution 310 before exiting. In the embodiment of FIG. 3, the bubbles 344 are injected through a plumbing assembly 342 located near a bottom 339 of sump 330 so that the injected bubbles 344 will rise through nearly the entire height of the plating solution 310. The inert gas enters the plumbing assembly 342 from the inert gas source 340 through an inert gas inlet 341. As shown in the top view of FIG. 5 A, in an exemplary embodiment the plumbing assembly 342 has a network of distributed orifices 343, so that the inert gas bubbles 344 enter the plating solution 310 more uniformly, thereby facilitating dissolution by avoiding forming a few regions of inert-gas-saturated plating solution 310.
Within the context of the present invention, micro-bubbles are defined as bubbles having a diameter between about one micron (one thousandth of a millimeter) and one millimeter. Since the ratio of surface area to volume of a sphere is inversely dependent upon diameter, micro-bubbles have a larger surface area to volume ratio than larger bubbles, thereby facilitating efficient dissolution into the plating solution 310. In addition, micro-bubbles tend to stay suspended longer in the plating solution 310 rather than rising and bursting rapidly. As described below, there are a variety of ways to inject the inert gas into the plating solution 310 in the form of micro-bubbles.
It is also advantageous to control the amount of flow of inert gas into the plating solution 310 according to a measured amount of dissolved oxygen in the plating solution 310. An oxygen sensor 360 can be immersed into, or periodically dipped into, the plating solution 310 to measure the dissolved oxygen content. The data from the oxygen sensor 360 can be provided to a controller 315 to control the rate of flow of inert gas injected into plating solution 310 from inert gas source 340 or inert gas source 345, for example by controlling flow rate through a needle valve (not shown).
FIG. 4 shows a schematic side view of an alternate embodiment of a roll-to-roll electroless plating system 300 that injects micro-bubbles of inert gas into the sump 330 by means of a recirculation system including a recirculation pump 370 having an inlet 373 and an outlet 375; an inlet line 372 for moving plating solution 310 from the sump 330 to the pump inlet 373; and an outlet line 374 for returning plating solution 310 from the pump outlet 375 to the sump 330. In the example shown in FIG. 4, inert gas is injected into the low pressure inlet 73 of the recirculation pump 370 from an inert gas source 376 connected to inlet 373 by tee 378. Mechanical action within recirculation pump 370 tends to break inert gas bubbles into micro-bubbles, which then flow together with plating solution 310 from the pump outlet 375 into the sump 330 through a plumbing assembly 342 located near bottom 339 of sump 330 providing the bubbles 344. Furthermore, a filter 377 can be disposed in the outlet line 374 for removing particulates so that they do not re-enter the sump 330. A second function of filter 377, which may have a pore size on the order of one micron, can optionally be used to break up bubbles of inert gas into micro-bubbles. Thus, inert gas is injected into the plating solution 310 outside the sump 330 to provide an inert- gas-rich plating solution 310, and the inert-gas-rich plating solution 310 is delivered into the sump 330.
FIG. 5B shows a top view of an exemplary embodiment of the plumbing assembly 379, where the inert gas is injected from the inert gas source 376 into the inlet line 372 to the recirculation pump 370. The inert gas bubbles pass through a filter 377 before entering plumbing assembly 379. The bubbles of inert gas have a long flow path within plumbing assembly 379 before exiting at distributed orifices 371, thereby aiding dissolution of the inert gas into the plating solution 310 (FIG. 4) within the plumbing assembly 379.
An advantage of injecting inert gas on the low pressure inlet side of a pump is that the inert gas source 376 can be a low pressure source for improved flow control. However, a potential disadvantage of injecting inert gas into a pump inlet is cavitation damage within the pump. FIG. 4 also shows inert gas flowing from inert gas source 345 through a tee 334 into pipe 333 downstream of the outlet 335 of pan-replenishing pump 332. Thus, inert gas is injected into the plating solution 310 outside the pan 320 to provide an inert-gas- rich plating solution 310, and the inert-gas-rich plating solution 310 is delivered into the pan 320 through the pipe 333. A filter 348 can be used for further reducing the size of bubbles.
In some embodiments, a static mixer (not shown) having a tortuous flow path around baffles can be inserted in-line with pipe 333 to facilitate dissolution of the inert gas micro-bubbles within the plating solution 310 being returned to pan 320 through pipe 333.
Although FIG. 4 shows inert gas provided upstream of the inlet 373 of recirculation pump 370, and shows inert gas provided downstream of the outlet 335 of pan-replenishing pump 332, alternatively inert gas could be provide downstream of outlet 375 of recirculation pump 370 or upstream of inlet 331 of pan-replenishing pump 332. For configurations where the inert gas is provided downstream of the outlet of a pump (i.e., on the high pressure side of the pump), it is advantageous to provide a local low pressure region where the inert gas can be injected. For example, in FIG. 4, it can be useful to provide a local low pressure region where the inert gas is injected downstream of the outlet 335 of the pan- replenishing pump 332. FIG. 6 is a side view of an injector 380 (sometimes called a Venturi injector) for providing a local low pressure region at a gas injection site. The injector 380 can be used at the position of the tee 334 in FIG. 4. Injector 380 includes a throat 386; converging tube segment 382 upstream of the throat 386 having a diameter Dl that decreases from an upstream portion to a downstream portion; and a diverging tube segment 384 downstream of the throat 386 having a diameter D2 that increases from an upstream portion to a downstream portion. The throat 386 is formed by the junction of the converging tube segment 382 and the diverging tube segment 384. The plating solution 310 flows through the injector 380 from upstream to downstream in flow direction 385. Due to the Venturi effect, a localized low pressure region is formed at the throat 386. By providing an inlet 388 for inert gas 389 in proximity to the throat 386, a low pressure source of inert gas, such as inert gas sources 340, 345 (FIG. 4) can be used. In some operating conditions it has been found that micro-bubbles tend to be formed when the inert gas is injected using injector 380, thereby providing an additional advantage for the use of this device. In some embodiments, an injector 380 can be also be used to inject inert gas downstream of the outlet 375 of the recirculation pump 370 (FIG. 4).
Having described exemplary embodiments of the roll-to-roll electroless plating system 300, a context has been provided for describing further details of methods for controlling the dissolved oxygen content to be at its desired low range (e.g., in the range of about 0.5 to about 2 parts per million). As described above, an amount of dissolved oxygen in the plating solution 310 is measured using oxygen sensor 360. The measured amount of dissolved oxygen is compared to a target range of dissolved oxygen. If the measured amount of dissolved oxygen is greater than the target range of dissolved oxygen, then the rate of injecting the inert gas is increased, for example by further opening a needle valve through which the inert gas flows to increase the flow rate. If the measured amount of dissolved oxygen is less than the target range of dissolved oxygen, then the rate of injecting the inert gas is decreased, for example by further closing a needle valve through which the inert gas flows to decrease the flow rate.
In some embodiments, the measuring of the amount of dissolved oxygen can be repeated at specified time intervals, for example once every five minutes or once every hour. During start-up of the electroless plating process, prior to injecting inert gas, the plating solution 310 tends to be somewhat oxygen rich. Therefore, it can be advantageous to measure the dissolved oxygen content at a relatively high repetition frequency (e.g., once every five minutes) during a start-up phase, and then to measure the dissolved oxygen content at a lower repetition frequency (e.g., once per thirty minutes) after the system has stabilized and the dissolved oxygen content has reached the target range.
In some embodiments, measurement of dissolved oxygen content can also be initiated by the controller 315 if it detects that an environmental condition has changed. For example, a measurement can be initiated if the controller 315 senses that the temperature of the plating solution 310 has changed by more than a predetermined threshold, as gas solubility is a function of temperature.
In some embodiments, measurement of dissolved oxygen content can also be initiated when a system operating condition changes. For example, a measurement can be initiated if the pan cover 328 is removed for service, thereby exposing the surface of the plating solution 310 to the air. Likewise, a measurement can be initiated when fresh plating solution 310, or components of the plating solution 310, are added to the sump 330.
In some embodiments, measurement of dissolved oxygen content can also be initiated when an indication is detected that the system may not be performing in the intended manner. For example, a measurement can be initiated if it is observed that elements of the plating solution 310 are plating onto extraneous surfaces other than the intended features on the substrate 250. In some embodiments, a user interface can be provided to enable the measurement of dissolved oxygen to be manually initiated by an operator. For example, if it is observed that the system performance has been degraded.
For embodiments where the inert gas is injected into the plating solution 310 for delivery into both the sump 330 and the pan 320, the rates of injection can be independently controlled by controller 315. For example, the injection of the inert gas into the plating solution 310 for delivery into the sump 330 can be done at a first rate, and the injection of inert gas into the plating solution 310 for delivery into the pan 320 can be done at a second rate that is different from the first rate.
FIG. 3 shows the oxygen sensor 360 submerged within the plating solution 310 in pan 320. In some embodiments, if the oxygen sensor 360 is kept within the plating solution 310, metal can deposit on it, thereby affecting its performance. FIG. 4 shows an embodiment where the oxygen sensor 360 is configured to be repositionable. Under control of controller 315, a motor 362 controllably lowers the oxygen sensor 360 to dip it into the plating solution 310 (e.g., through an opening in the pan cover 328) in order to measure dissolved oxygen content. The controller 315 can then control the motor 362 to raise the oxygen sensor 360 to remove it from the plating solution after the measurement is made. Data indicating the measured amount of dissolved oxygen can be sent to controller 315 either before or after the oxygen sensor 360 is removed from the plating solution 310.
FIG. 7 shows a high-level system diagram for an apparatus 400 having a touch screen 410 including a display device 420 and a touch sensor 430 that overlays at least a portion of a viewable area of display device 420. Touch sensor 430 senses touch and conveys electrical signals (related to capacitance values for example) corresponding to the sensed touch to a controller 480. Touch sensor 430 is an example of an article that can be printed on one or both sides by the flexographic printing system 100 and plated using an embodiment of roll-to- roll electroless plating system 300 with low dissolved oxygen content described above. FIG. 8 shows a schematic side view of a touch sensor 430.
Transparent substrate 440, for example polyethylene terephthalate, has a first conductive pattern 450 printed and plated on a first side 441, and a second conductive pattern 460 printed and plated on a second side 442. The length and width of the transparent substrate 440, which is cut from the take-up roll 104 (FIG. 1), is not larger than the flexographic printing plates 1 12, 122, 132, 142 of flexographic printing system 100 (FIG. 1), but it could be smaller than the flexographic printing plates 1 12, 122, 132, 142.
FIG. 9 shows an example of a conductive pattern 450 that can be printed on first side 441 (FIG. 8) of substrate 440 (FIG. 8) using one or more print modules such as print modules 120 and 140 of flexographic printing system (FIG. 1), followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4). Conductive pattern 450 includes a grid 452 including grid columns 455 of intersecting fine lines 4 1 and 453 that are connected to an array of channel pads 454. Interconnect lines 456 connect the channel pads 454 to the connector pads 458 that are connected to controller 480 (FIG. 7). Conductive pattern 450 can be printed by a single print module 120 in some embodiments. However, because the optimal print conditions for fine lines 451 and 453 (e.g., having line widths on the order of 4 to 8 microns) are typically different than for printing the wider channel pads 454, connector pads 458 and interconnect lines 456, it can be advantageous to use one print module 120 for printing the fine lines 451 and 453 and a second print module 140 for printing the wider features. Furthermore, for clean intersections of fine lines 451 and 453, it can be further advantageous to print and cure one set of fine lines 451 using one print module 120, and to print and cure the second set of fine lines 453 using a second print module 140, and to print the wider features using a third print module (not shown in FIG. 1) configured similarly to print modules 120 and 140.
FIG. 10 shows an example of a conductive pattern 460 that can be printed on second side 442 (FIG. 8) of substrate 440 (FIG. 8) using one or more print modules such as print modules 110 and 130 of flexographic printing system (FIG. 1 ), followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4). Conductive pattern 460 includes a grid 462 including grid rows 465 of intersecting fine lines 461 and 463 that are connected to an array of channel pads 464. Interconnect lines 466 connect the channel pads 464 to the connector pads 468 that are connected to controller 480 (FIG. 7). In some embodiments, conductive pattern 460 can be printed by a single print module 1 10. However, because the optimal print conditions for fine lines 461 and 463 (e.g., having line widths on the order of 4 to 8 microns) are typically different than for the wider channel pads 464, connector pads 468 and interconnect lines 466, it can be advantageous to use one print module 110 for printing the fine lines 461 and 463 and a second print module 130 for printing the wider features. Furthermore, for clean intersections of fine lines 461 and 463, it can be further advantageous to print and cure one set of fine lines 461 using one print module 1 10, and to print and cure the second set of fine lines 463 using a second print module 130, and to print the wider features using a third print module (not shown in FIG. 1 ) configured similarly to print modules 1 10 and 130.
Alternatively, in some embodiments conductive pattern 450 can be printed using one or more print modules configured like print modules 1 10 and 130, and conductive pattern 460 can be printed using one or more print modules configured like print modules 120 and 140 of FIG. 1 followed by plating using an embodiment of roll-to-roll electroless plating system 300 (FIGS. 3 and 4).
With reference to FIGS. 7-10, in operation of touch screen 410, controller 480 can sequentially electrically drive grid columns 455 via connector pads 458 and can sequentially sense electrical signals on grid rows 465 via connector pads 468. In other embodiments, the driving and sensing roles of the grid columns 455 and the grid rows 465 can be reversed.
PARTS LIST
100 flexographic printing system
102 supply roll
104 take-up roll
105 roll-to-roll direction
106 roller
107 roller
1 10 print module
1 1 1 plate cylinder
1 12 flexographic printing plate
1 13 raised features
114 impression cylinder
1 15 anilox roller
1 16 UV curing station
120 print module
121 plate cylinder
122 flexographic printing plate
124 impression cylinder
125 anilox roller
126 UV curing station
130 print module
131 plate cylinder
132 flexographic printing plate
134 impression cylinder
135 anilox roller
136 UV curing station
140 print module
141 plate cylinder
142 flexographic printing plate
144 impression cylinder
145 anilox roller
146 UV curing station 150 substrate
151 first side
152 second side
200 roll-to-roll electroiess plating system
202 supply roll
204 take-up roll
205 web advance direction
206 drive roller
210 plating solution
220 pan
222 lower flood bar
224 upper flood bar
230 sump
232 lower lift pump
233 pipe
234 upper lift pump
235 pipe
236 freefall return
240 air inlet tube
250 substrate
251 first surface
252 second surface
300 roll-to-roll electroiess plating system
302 supply roll
304 take-up roll
305 web advance direction
306 drive roller
310 plating solution
315 controller
320 pan
328 pan cover
330 sump 331 inlet
332 pan-replenishing pump
333 pipe
334 tee
335 outlet
336 drain pipe
338 sump cover
339 bottom
340 inert gas source
341 inert gas inlet
342 plumbing assembly
343 orifices
344 bubbles
345 inert gas source
348 filter
350 substrate
351 first surface
352 second surface
360 oxygen sensor
362 motor
370 recirculation pump
371 orifices
372 inlet line
373 inlet
374 outlet line
375 outlet
376 inert gas source
377 filter
378 tee
379 plumbing assembly
380 injector
382 converging tube segme 384 diverging tube segment
385 flow direction
386 throat
388 inlet
389 inert gas
400 apparatus
410 touch screen
420 display device
430 touch sensor
440 transparent substrate
441 first side
442 second side
450 conductive pattern
451 fine lines
452 grid
453 fine lines
454 channel pads
455 grid column
456 interconnect lines
458 connector pads
460 conductive pattern
461 fine lines
462 grid
463 fine lines
464 channel pads
465 grid row
466 interconnect lines
468 connector pads
480 controller
Dl diameter
D2 diameter

Claims

CLAIMS:
1. A roll-to-roll electroless plating system, comprising:
a sump containing a first volume of a plating solution; a pan containing a second volume of the plating solution, the second volume being less than the first volume;
a web advance system for advancing a web of media from an input roll though the plating solution in the pan along a web advance direction and to a take-up-roll, wherein a plating substance in the plating solution is plated onto predetermined locations on a surface of the web of media as it is advanced through the plating solution in the pan;
a pan-replenishing pump for moving plating solution from the sump to the pan through a pipe connected to an outlet of the pan-replenishing pump; and
a distribution system for injecting an inert gas into the plating solution.
2. The roll-to-roll electroless plating system of claim 1 , wherein the distribution system is configured to inject micro-bubbles of the inert gas into the plating solution, wherein the micro-bubbles have a diameter between about one micron and one millimeter.
3. The roll-to-roll electroless plating system of claim 1 , wherein the plating substance is copper, silver, nickel or palladium.
4. The roll-to-roll electroless plating system of claim 1 , wherein the inert gas is nitrogen or argon.
5. The roll-to-roll electroless plating system of claim 1 , wherein the distribution system is configured to inject the inert gas into the plating solution in the sump.
6. The roll-to-roH electroless plating system of claim 1, further including a recirculation system including:
a recirculation pump including an inlet and an outlet; an inlet line for moving plating solution from the sump to the pump inlet; and
an outlet line for returning plating solution from the pump outlet to the sump.
7. The roll-to-roll electroless plating system of claim 6, wherein the distribution system is configured to inject the inert gas into the inlet of the recirculation pump.
8. The roll-to-roll electroless plating system of claim 6, further comprising a filter in the outlet line.
9. The roll-to-roll electroless plating system of claim 6, further including an injector downstream of the recirculation pump outlet, the injector including:
a converging tube segment having a diameter that decreases with distance from the recirculation pump outlet;
a diverging tube segment downstream of the converging tube segment, the diverging tube segment having a diameter that increases with distance from the converging tube segment;
a throat formed at a junction of the converging tube segment and the diverging tube segment; and
an inlet for the inert gas in proximity to the throat.
10. The roll-to-roll electroless plating system of claim 1, wherein the distribution system includes a plumbing assembly having a plurality of distributed orifices for injecting the inert gas into the plating solution for providing bubbles of inert gas into the sump.
11. The roH-to-roll electroless plating system of claim 10, wherein the plumbing assembly is disposed proximate to a bottom of the sump.
12. The roll-to-roll electroless plating system of claim 1, wherein the distribution system is configured to inject the inert gas into the pipe through which plating solution is moved from the sump to the pan.
13. The roll-to-roll electroless plating system of claim 12, further including an injector downstream of the pan-replenishing pump outlet, the injector including:
a converging tube segment having a diameter that decreases with distance from the pan-replenishing pump outlet;
a diverging tube segment downstream of the converging tube segment, the diverging tube segment having a diameter that increases with distance from the converging tube segment;
a throat formed by a junction of the converging tube segment and the diverging tube segment; and
an inlet for the inert gas in proximity to the throat.
14. The roll-to-roll electroless plating system of claim 1, further comprising an oxygen sensor.
15. The roll-to-roll electroless plating system of claim 14, further comprising a controller, wherein the controller is configured to receive data from the oxygen sensor and to control a rate of injection of the inert gas into the plating solution in response to the data received from the oxygen sensor.
16. The roll-to-roll electroless plating system of claim 15, wherein a dissolved oxygen content of the plating solution is controlled to be between 0.5 and 2 parts per million.
17. The roll-to-roll electroless plating system of claim 1, further comprising a drain pipe extending from the pan into the the sump for draining plating solution from the pan to the sump, such that plating solution in the drain pipe is not exposed to air.
18. The roll-to-roll electroless plating system of claim 1 , wherein the sump further includes a sump cover.
19. The roll-to-roll electroless plating system of claim 1, wherein the pan further includes a pan cover.
20. The roll-to-roll electroless plating system of claim 1 , wherein the distribution system further includes a static mixer.
21. The roll-to-roll electroless plating system of claim 1 , wherein the predetermined locations include features printed onto the web of media with ink including a catalyst for plating.
22. An article having features that were plated using the roll-to- roll electroless plating system of claim 1 ,
23. The article of claim 22, wherein at least some of the features have widths between 2 microns and 10 microns.
PCT/US2015/042163 2014-08-08 2015-07-27 Roll-to-roll electroless plating system with low dissolved oxygen content WO2016022311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/455,196 US20160040292A1 (en) 2014-08-08 2014-08-08 Roll-to-roll electroless plating system with low dissolved oxygen content
US14/455,196 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016022311A1 true WO2016022311A1 (en) 2016-02-11

Family

ID=53785751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/042163 WO2016022311A1 (en) 2014-08-08 2015-07-27 Roll-to-roll electroless plating system with low dissolved oxygen content

Country Status (3)

Country Link
US (1) US20160040292A1 (en)
TW (1) TW201612359A (en)
WO (1) WO2016022311A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758075A (en) * 1951-10-15 1956-08-07 Du Pont Electrodeposition of tin
US4444636A (en) * 1980-06-25 1984-04-24 Siemens Aktiengesellschaft System for the galvanic deposition of metals such as aluminum
US4616596A (en) 1985-10-21 1986-10-14 Hughes Aircraft Company Electroless plating apparatus
US4684545A (en) 1986-02-10 1987-08-04 International Business Machines Corporation Electroless plating with bi-level control of dissolved oxygen
JP2008240149A (en) * 2007-02-28 2008-10-09 Konica Minolta Holdings Inc Electrolytic plating method, electrolytic plating device, and transparent conductive film and its manufacturing method
US20090238979A1 (en) * 2008-03-21 2009-09-24 William Decesare Method of Applying Catalytic Solution for Use in Electroless Deposition
US20110007011A1 (en) * 2009-07-13 2011-01-13 Ocular Lcd Inc. Capacitive touch screen with a mesh electrode
US20110214608A1 (en) 2005-10-14 2011-09-08 Igor Ivanov Electroless Plating System
US20120298515A1 (en) * 2009-12-28 2012-11-29 Atotech Deutschland Gmbh Method and device for the wet-chemical treatment of material to be treated
WO2013063188A1 (en) 2011-10-25 2013-05-02 Unipixel Displays, Inc. Method of manufacturing a capacative touch sensor circuit using a roll-to-roll process to print a conductive microscopic patterns on a flexible dielectric substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123400A (en) * 1980-02-29 1981-09-28 Nippon Light Metal Co Ltd Transfer method of web
US4554184A (en) * 1984-07-02 1985-11-19 International Business Machines Corporation Method for plating from an electroless plating bath
US6568900B2 (en) * 1999-02-01 2003-05-27 Fantom Technologies Inc. Pressure swing contactor for the treatment of a liquid with a gas
KR101206185B1 (en) * 2004-06-23 2012-11-28 앳슈랜드 라이센싱 앤드 인텔렉츄얼 프라퍼티 엘엘씨 Devices and methods for treating fluids utilized in electrocoating processes with ultrasound

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758075A (en) * 1951-10-15 1956-08-07 Du Pont Electrodeposition of tin
US4444636A (en) * 1980-06-25 1984-04-24 Siemens Aktiengesellschaft System for the galvanic deposition of metals such as aluminum
US4616596A (en) 1985-10-21 1986-10-14 Hughes Aircraft Company Electroless plating apparatus
US4684545A (en) 1986-02-10 1987-08-04 International Business Machines Corporation Electroless plating with bi-level control of dissolved oxygen
US20110214608A1 (en) 2005-10-14 2011-09-08 Igor Ivanov Electroless Plating System
JP2008240149A (en) * 2007-02-28 2008-10-09 Konica Minolta Holdings Inc Electrolytic plating method, electrolytic plating device, and transparent conductive film and its manufacturing method
US20090238979A1 (en) * 2008-03-21 2009-09-24 William Decesare Method of Applying Catalytic Solution for Use in Electroless Deposition
US20110007011A1 (en) * 2009-07-13 2011-01-13 Ocular Lcd Inc. Capacitive touch screen with a mesh electrode
US20120298515A1 (en) * 2009-12-28 2012-11-29 Atotech Deutschland Gmbh Method and device for the wet-chemical treatment of material to be treated
WO2013063188A1 (en) 2011-10-25 2013-05-02 Unipixel Displays, Inc. Method of manufacturing a capacative touch sensor circuit using a roll-to-roll process to print a conductive microscopic patterns on a flexible dielectric substrate

Also Published As

Publication number Publication date
TW201612359A (en) 2016-04-01
US20160040292A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
US20160168713A1 (en) Roll-to-roll electroless plating system with liquid flow bearing
US9233531B2 (en) Flexographic printing system with solvent replenishment
US9669617B2 (en) Anilox roll with low surface energy zone
US9302464B2 (en) Inking system for flexographic printing
US9327489B2 (en) Controlling line widths in flexographic printing
US10334739B1 (en) Printing an electrical device using flexographic plate with protective features
US9890459B2 (en) Roll-to-roll electroless plating system with spreader duct
US20160040291A1 (en) Roll-to-roll electroless plating system with micro-bubble injector
US20160040293A1 (en) Method for roll-to-roll electroless plating with low dissolved oxygen content
US20160040292A1 (en) Roll-to-roll electroless plating system with low dissolved oxygen content
US9925761B2 (en) Liquid ejection hole orientation for web guide
US20150352835A1 (en) Solvent replenishment using density sensor for flexographic printer
CN107111401B (en) Anilox roll with low surface energy regions
US20160059540A1 (en) Controlling flexographic printing system pressure using optical measurement
US9862179B2 (en) Web transport system including scavenger blade
US9771655B2 (en) Web transport system including fluid shield
US9689073B2 (en) Electroless plating system including bubble guide
US9346260B2 (en) Flexographic printing system providing controlled feature characteristics
WO2015163867A1 (en) Method of fabricating a conductive pattern with high optical transmission, low reflectance, and low visibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15747913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15747913

Country of ref document: EP

Kind code of ref document: A1