Nothing Special   »   [go: up one dir, main page]

WO2016017572A1 - 有機物質を製造する装置及び有機物質を製造する方法 - Google Patents

有機物質を製造する装置及び有機物質を製造する方法 Download PDF

Info

Publication number
WO2016017572A1
WO2016017572A1 PCT/JP2015/071224 JP2015071224W WO2016017572A1 WO 2016017572 A1 WO2016017572 A1 WO 2016017572A1 JP 2015071224 W JP2015071224 W JP 2015071224W WO 2016017572 A1 WO2016017572 A1 WO 2016017572A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
fermenter
methane
organic substance
fermentation
Prior art date
Application number
PCT/JP2015/071224
Other languages
English (en)
French (fr)
Inventor
周知 佐藤
心 濱地
郡 悌之
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US15/324,346 priority Critical patent/US10550408B2/en
Priority to EP15828254.1A priority patent/EP3176250A4/en
Priority to JP2016538335A priority patent/JP6632978B2/ja
Priority to CN201580037707.2A priority patent/CN106488978A/zh
Priority to CA2954614A priority patent/CA2954614A1/en
Publication of WO2016017572A1 publication Critical patent/WO2016017572A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/04Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an apparatus for producing an organic substance and a method for producing an organic substance.
  • Patent Document 1 In recent years, for example, practical application of a method for producing a chemical substance such as ethanol by microbial fermentation of synthesis gas containing carbon monoxide synthesized from exhaust gas from a steel mill or the like has been studied (for example, Patent Document 1). See).
  • the main object of the present invention is to reduce the amount of carbon dioxide emitted when producing an organic substance.
  • the first organic substance manufacturing apparatus includes a synthesis gas generation furnace and a fermenter.
  • the synthesis gas generation furnace generates synthesis gas by partially oxidizing waste.
  • Fermenters contain microorganisms that produce organic material from synthesis gas.
  • the fermenter has a first fermenter and a second fermenter.
  • the first fermenter is connected to a synthesis gas generation furnace.
  • a 1st fermenter contains Clostridium autoethanogenum (Clostridium autoethanogenum) as microorganisms.
  • the second fermenter is connected to the first fermenter.
  • the second fermenter contains Clostridium ljungdahlii as a microorganism.
  • the first organic substance production apparatus preferably further includes a methane fermenter that obtains methane by subjecting carbon dioxide produced in the fermenter to methane fermentation.
  • the manufacturing apparatus of the 1st organic substance which concerns on this invention may be further equipped with the synthesis gas production
  • the second apparatus for producing an organic substance according to the present invention includes a fermenter that obtains carbon dioxide and an organic substance by microbial fermentation of synthesis gas, and methane fermentation by methane fermentation of carbon dioxide generated in the fermenter.
  • the second organic substance manufacturing apparatus may further include a synthesis gas generation furnace for generating synthesis gas from methane from the methane fermenter.
  • synthesis gas is generated by partially oxidizing waste in a synthesis gas generation furnace.
  • a first fermentation process is performed in which synthesis gas is supplied and fermented to a first fermentor containing Clostridium autoethanogenum.
  • a second fermenter containing Clostridium ljungdahlii is supplied with the exhaust gas from the first fermentor to perform a second fermentation step.
  • the first method for producing an organic substance according to the present invention it is preferable to perform the first fermentation step so that the exhaust gas contains hydrogen.
  • the first method for producing an organic substance according to the present invention preferably further includes a step of obtaining methane by subjecting carbon dioxide generated in the fermentation step to methane fermentation.
  • a step of obtaining methane by subjecting carbon dioxide generated in the fermentation step to methane fermentation.
  • a fermentation process is performed in which carbon dioxide and an organic substance are obtained by microbial fermentation of synthesis gas in a fermenter.
  • Methane is obtained by methane fermentation of carbon dioxide produced in the fermentation process.
  • a step of obtaining synthesis gas from methane may be further performed.
  • FIG. 1 is a schematic view of an organic substance manufacturing apparatus according to the first embodiment.
  • FIG. 2 is a schematic view of an organic substance manufacturing apparatus according to the second embodiment.
  • FIG. 3 is a schematic view of an organic material manufacturing apparatus according to the third embodiment.
  • FIG. 1 is a schematic diagram of an apparatus for producing an organic substance from waste according to this embodiment.
  • a manufacturing apparatus 1 shown in FIG. 1 is an apparatus for manufacturing an organic substance from waste including waste plastic and the like.
  • the organic substance to be produced may be, for example, alcohol, organic acid, fatty acid, fat or oil, ketone, biomass, sugar or the like.
  • Specific examples of alcohols, organic acids, fatty acids, fats and oils, ketones, biomass, sugars and the like include ethanol, acetic acid, butanediol, and the like.
  • the use of the produced organic substance is not particularly limited.
  • the produced organic substance can be used as a raw material for plastics and resins, for example, and can also be used as a fuel.
  • the production apparatus 1 includes a synthesis gas generation furnace 11, a fermenter 13, and a purifier 14.
  • the synthesis gas generation furnace 11 is supplied with waste containing organic substances such as plastic and resin.
  • the waste is partially oxidized in the synthesis gas generation furnace 11 to generate synthesis gas.
  • synthesis gas contains carbon dioxide, hydrogen gas, and nitrogen gas in addition to carbon monoxide.
  • the synthesis gas generation furnace 11 is connected to a fermenter 13.
  • the synthesis gas produced in the synthesis gas production furnace 11 is supplied to the fermenter 13.
  • the fermenter 13 contains microorganisms. Microorganisms produce organic substances to be produced from synthesis gas.
  • the fermenter 13 is connected to a refiner 14.
  • the product in the fermenter 13 is transferred to the refiner 14.
  • the fermenter 13 generates other organic substances in addition to the organic substance to be manufactured.
  • the refiner 14 purifies the product in the fermenter 13. Thereby, the target organic substance can be obtained.
  • the fermenter 13 includes a first fermenter 13a and a second fermenter 13b.
  • the first fermenter 13 a is connected to the synthesis gas generation furnace 11.
  • the first fermenter 13a includes Clostridium autoethanogenum as a microorganism.
  • the second fermenter 13b is connected to the first fermenter 13a.
  • the second fermenter 13b includes Clostridium ljungdahlii as a microorganism.
  • the Clostridium autoethanogenum contained in the first fermenter 13a consumes carbon monoxide and hydrogen to produce organic substances and emit carbon dioxide. For this reason, the discharge amount of carbon dioxide increases only with the first fermenter 13a.
  • the ratio of carbon monoxide to hydrogen in the synthesis gas is approximately 1: 1.
  • Clostridium autoethanogenum consumes more carbon monoxide than hydrogen. For this reason, hydrogen is contained in the exhaust gas from the 1st fermenter 13a with a carbon dioxide. This exhaust gas is supplied to the second fermenter 13b.
  • the 2nd fermenter 13b contains Clostridium ljungdahlii (Clostridium ljungdahlii). Clostridium ljungdahlii consumes carbon dioxide in the presence of hydrogen to produce organic substances. Therefore, in the manufacturing apparatus 1, the amount of carbon dioxide emission is small. In addition, the amount of organic substances produced is large.
  • the production apparatus 1 includes the synthesis gas generation furnace 11
  • the present invention is not limited to this configuration.
  • the synthesis gas generation furnace may be provided separately from the manufacturing apparatus.
  • the production apparatus 1a shown in FIG. 2 is an apparatus for producing an organic substance by subjecting a gas obtained by partial oxidation of a carbon source to microbial fermentation.
  • the carbon source may be, for example, waste including plastic or resin, or coke.
  • the organic substance to be manufactured may be an oxygen-containing organic substance.
  • the organic substance to be produced may be, for example, alcohol, organic acid, fatty acid, fat or oil, ketone, biomass, sugar or the like.
  • alcohols, organic acids, fatty acids, fats and oils, ketones, biomass, and sugars include ethanol, acetic acid, and butanediol.
  • the use of the produced organic substance is not particularly limited.
  • the produced organic substance can be used as a raw material for plastics and resins, for example, and can also be used as a fuel.
  • the manufacturing apparatus 1 a includes a synthesis gas generation furnace 11.
  • synthesis gas generation furnace 11 partial oxidation of the carbon source is performed.
  • synthesis gas containing carbon monoxide is generated (gas generation step).
  • Syngas usually contains carbon dioxide and hydrogen in addition to carbon monoxide.
  • the synthesis gas may further contain, for example, a hydrocarbon.
  • the synthesis gas generation furnace 11 may be a waste incinerator, for example.
  • the synthesis gas generation furnace 11 may be, for example, an iron making furnace.
  • the synthesis gas generation furnace 11 is connected to a fermenter 13.
  • the fermenter 13 contains microorganisms and water. That is, the fermenter 13 is provided with water containing microorganisms.
  • the microorganism performs synthesis gas fermentation. As a result, an organic substance to be manufactured is generated.
  • the microorganism may be an anaerobic bacterium.
  • specific examples of microorganisms suitably used for producing alcohols such as ethanol include Clostridium genus.
  • carbon dioxide is generated in addition to the desired organic material.
  • the fermenter 13 is connected to a refiner 14. A part of the product in the fermenter 13 is transferred to the refiner 14. In general, the fermenter 13 generates other organic substances in addition to the organic substance to be manufactured.
  • the refiner 14 purifies the product in the fermenter 13 (purification step). Thereby, the target organic substance can be obtained. In the refiner 14, a residue of microbial fermentation is produced together with the target organic substance. Residues usually contain organic substances not intended for production, dead microorganisms, water, and the like.
  • the fermenter 13 is connected to the methane fermenter 15.
  • Carbon dioxide and hydrogen are supplied to the methane fermenter 15 from the fermenter 13.
  • the carbon dioxide supplied to the fermenter 15 includes carbon dioxide contained in the synthesis gas and carbon dioxide generated by fermentation in the fermenter 13.
  • the methane fermenter 15 generates methane by subjecting these carbon dioxide and hydrogen to methane fermentation. For this reason, the carbon dioxide amount discharged
  • methane can be obtained. In the manufacturing apparatus 1a, this methane is supplied to the synthesis gas generation furnace 11 as a raw material.
  • the ratio of the amount of the organic substance to be produced to the amount of the carbon source to be input ((amount of organic substance to be produced) / (amount of carbon source to be input)) can be increased. Further, the obtained methane may be recovered and used for other purposes.
  • methane produced in the methane fermenter 15 is partially oxidized in the synthesis gas production furnace 11 to become synthesis gas.
  • the present invention is not limited to this.
  • methane may be converted into a synthesis gas by steam reforming or carbon dioxide reforming.
  • you may use methane as a fuel.
  • the synthesis gas from the first fermenter 13a is fed into the second fermenter 13b.
  • the water from the 1st fermenter 13a does not necessarily need to be sent into the 2nd fermenter 13b.
  • at least a part of the water from the first fermenter 13a may not be sent to the second fermenter 13b.
  • FIG. 3 is a schematic view of an organic substance manufacturing apparatus 1b according to the present embodiment.
  • the manufacturing apparatus 1b is different from the manufacturing apparatus 1b according to the second embodiment in that the fermenter 13 includes a first fermenter 13a and a second fermenter 13b.
  • the 1st fermenter 13a has the structure substantially the same as the 1st fermenter 13a of 1st Embodiment.
  • the 2nd fermenter 13b has the structure substantially the same as the 2nd fermenter 13b of 1st Embodiment.
  • the methane fermenter 15 is connected to each of the first and second fermenters 13a and 13b.
  • the methane fermenter 15 is supplied with carbon dioxide produced in at least one of the first and second fermenters 13a and 13b.
  • Carbon dioxide contained in the synthesis gas may be further supplied to the methane fermenter 15.
  • the supplied carbon dioxide undergoes methane fermentation in the methane fermenter 15 to generate methane.
  • At least a part of the methane generated in the methane fermenter 15 is supplied to the synthesis gas generation furnace 11 and partially oxidized to become synthesis gas.
  • the second fermenter including Clostridium ljungdahlii in the rear stage of the first fermenter 13a including Clostridium autoethanogenum. 13b is connected.
  • At least a part of the carbon dioxide produced in the fermenter 13 is methane-fermented in the methane fermenter 15 to become methane. For this reason, the discharge amount of carbon dioxide can be further reduced.
  • the ratio of the amount of the organic substance to be produced to the amount of the carbon source to be input ((amount of organic substance to be produced) / (amount of carbon source to be input)) can be increased.
  • the microorganisms cultured in the first fermenter 13a and the microorganisms cultured in the second fermenter 13b are different from each other. For this reason, it is preferable to connect the adjuster for implement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 有機物質を製造する際に排出される二酸化炭素量を低減する。 有機物質の製造装置1は、合成ガス生成炉11と、発酵器13と、を備える。合成ガス生成炉11は、廃棄物を部分酸化させることにより合成ガスを生成させる。発酵器13は、合成ガスから有機物質を生成させる微生物を含む。発酵器13は、第1の発酵器13aと、第2の発酵器13bと、を有する。第1の発酵器13aは、合成ガス生成炉11に接続されている。第1の発酵器13aは、微生物としてクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む。第2の発酵器13bは、第1の発酵器13aに接続されている。第2の発酵器13bは、微生物としてクロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む。

Description

有機物質を製造する装置及び有機物質を製造する方法
 本発明は、有機物質を製造する装置及び有機物質を製造する方法に関する。
 近年、例えば、製鉄所からの排気ガス等から合成された一酸化炭素を含む合成ガスを微生物発酵させることによりエタノールなどの化学物質を製造する方法の実用化が検討されている(例えば特許文献1を参照)。
国際公開第2011/087380号公報
 しかしながら、廃棄物から有機物質を製造する装置は、現在のところ、実用化に至っておらず、十分に検討されていないのが実情である。
 廃棄物から有機物質を製造する際に排出される二酸化炭素量を低減したいという要望がある。
 本発明の主な目的は、有機物質を製造する際に排出される二酸化炭素量を低減することにある。
 本発明に係る第1の有機物質の製造装置は、合成ガス生成炉と、発酵器と、を備える。合成ガス生成炉は、廃棄物を部分酸化させることにより合成ガスを生成させる。発酵器は、合成ガスから有機物質を生成させる微生物を含む。発酵器は、第1の発酵器と、第2の発酵器と、を有する。第1の発酵器は、合成ガス生成炉に接続されている。第1の発酵器は、微生物としてクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む。第2の発酵器は、第1の発酵器に接続されている。第2の発酵器は、微生物としてクロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む。
 本発明に係る第1の有機物質の製造装置は、発酵器において生じた二酸化炭素をメタン発酵させることによりメタンを得るメタン発酵器をさらに備えていることが好ましい。その場合、本発明に係る第1の有機物質の製造装置は、メタン発酵器からのメタンから合成ガスを生成させる合成ガス生成炉をさらに備えていてもよい。
 本発明に係る第2の有機物質の製造装置は、合成ガスを微生物発酵させることにより二酸化炭素と、有機物質とを得る発酵器と、発酵器において生じた二酸化炭素をメタン発酵させることによりメタンを得るメタン発酵器とを備える。
 本発明に係る第2の有機物質の製造装置は、メタン発酵器からのメタンから合成ガスを生成させる合成ガス生成炉をさらに備えていてもよい。
 本発明に係る第1の有機物質の製造方法では、合成ガス生成炉において廃棄物を部分酸化させることにより合成ガスを生成させる。クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む第1の発酵器に、合成ガスを供給し、発酵させる第1の発酵工程を行う。クロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む第2の発酵器に、第1の発酵器からの排出ガスを供給し、発酵させる第2の発酵工程を行う。
 本発明に係る第1の有機物質の製造方法では、排出ガスが、水素を含むように第1の発酵工程を行うことが好ましい。
 本発明に係る第1の有機物質の製造方法は、発酵工程において生じた二酸化炭素をメタン発酵させることによりメタンを得る工程をさらに備えていることが好ましい。その場合、本発明に係る第1の有機物質の製造方法では、メタンから合成ガスを得る工程をさらに行ってもよい。
 本発明に係る第2の有機物質の製造方法では、発酵器において合成ガスを微生物発酵させることにより二酸化炭素と、有機物質をと得る発酵工程を行う。発酵工程において生じた二酸化炭素をメタン発酵させることによりメタンを得る。
 本発明に係る第2の有機物質の製造方法では、メタンから合成ガスを得る工程をさらに行ってもよい。
 本発明によれば、有機物質を製造する際に排出される二酸化炭素量を低減することができる。
図1は、第1の実施形態に係る有機物質の製造装置の模式図である。 図2は、第2の実施形態に係る有機物質の製造装置の模式図である。 図3は、第3の実施形態に係る有機物質の製造装置の模式図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 (第1の実施形態)
 図1は、本実施形態に係る廃棄物からの有機物質の製造装置の模式図である。図1に示される製造装置1は、廃棄プラスチック等を含む廃棄物から、有機物質を製造するための装置である。製造される有機物質は、例えば、アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖等であってもよい。アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖等の具体例としては、例えば、エタノールや酢酸、ブタンジオール等が挙げられる。
 製造された有機物質の用途は、特に限定されない。製造された有機物質は、例えば、プラスチックや樹脂等の原料として用いることもできるし、燃料として用いることもできる。
 製造装置1は、合成ガス生成炉11と、発酵器13と、精製機14とを備えている。合成ガス生成炉11には、プラスチックや樹脂などの有機物を含む廃棄物が供給される。廃棄物は、合成ガス生成炉11において部分酸化され、合成ガスが生成する。通常、合成ガスは、一酸化炭素に加え、二酸化炭素や水素ガス、窒素ガスを含んでいる。
 合成ガス生成炉11は、発酵器13に接続されている。合成ガス生成炉11において生成した合成ガスは、発酵器13に供給される。発酵器13は、微生物を含む。微生物は、合成ガスから、製造しようとする有機物質を生成させる。
 発酵器13は、精製機14に接続されている。発酵器13における生成物は、精製機14に移送される。通常、発酵器13においては、製造しようとする有機物質に加え、他の有機物質も生成する。精製機14は、発酵器13における生成物を精製する。これにより、目的とする有機物質を得ることができる。
 発酵器13は、第1の発酵器13aと、第2の発酵器13bとを有する。第1の発酵器13aは、合成ガス生成炉11に接続されている。第1の発酵器13aは、微生物としてクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む。
 第2の発酵器13bは、第1の発酵器13aに接続されている。第2の発酵器13bは、微生物としてクロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む。
 第1の発酵器13aに含まれるクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)は、一酸化炭素と水素を消費して、有機物質を生成させると共に、二酸化炭素を排出する。このため、第1の発酵器13aのみでは、二酸化炭素の排出量が増加する。
 製造装置1では、合成ガス生成炉11において廃棄物を部分酸化させるため、合成ガスにおける一酸化炭素と水素の比は、おおよそ1:1となる。クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)は、水素より一酸化炭素を多く消費する。このため、第1の発酵器13aからの排出ガスには、二酸化炭素と共に水素が含まれる。この排出ガスは、第2の発酵器13bに供給される。第2の発酵器13bは、クロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む。クロストリジウム・リュングダリイ(Clostridium ljungdahlii)は、水素存在下において、二酸化炭素を消費し、有機物質を生成させる。従って、製造装置1では、二酸化炭素の排出量が少ない。また、有機物質の生成量が多い。
 なお、本実施形態では、製造装置1が合成ガス生成炉11を有している例について説明した。但し、本発明は、この構成に限定されない。合成ガス生成炉が製造装置とは別個に設けられていてもよい。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図2に示される製造装置1aは、炭素源を部分酸化させて得られるガスを微生物発酵させることにより有機物質を製造するための装置である。
 炭素源は、例えば、プラスチックや樹脂を含む廃棄物であってもよいし、コークス等であってもよい。
 製造される有機物質は、含酸素有機物であってもよい。製造される有機物質は、例えば、アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖等であってもよい。アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖の具体例としては、例えば、エタノール、酢酸、ブタンジオール等が挙げられる。
 製造された有機物質の用途は、特に限定されない。製造された有機物質は、例えば、プラスチックや樹脂等の原料として用いることもできるし、燃料として用いることもできる。
 製造装置1aは、合成ガス生成炉11を有する。合成ガス生成炉11では、炭素源の部分酸化が行われる。合成ガス生成炉11において炭素源の部分酸化が行われることにより、一酸化炭素を含む合成ガスが生成する(ガス生成工程)。合成ガスは、通常、一酸化炭素に加え、二酸化炭素や水素を含んでいる。合成ガスは、例えば、炭化水素等をさらに含んでいてもよい。
 なお、炭素源が廃棄物である場合は、合成ガス生成炉11は、例えば廃棄物の焼却炉であってもよい。炭素源がコークスである場合は、合成ガス生成炉11は、例えば製鉄炉であってもよい。
 合成ガス生成炉11は、発酵器13に接続されている。発酵器13は、微生物と水とを含む。すなわち、発酵器13には、微生物を含む水が配されている。発酵器13において、微生物が合成ガス発酵を行う。その結果、製造しようとする有機物質が生成する。微生物は、嫌気性菌であってもよい。例えば、エタノール等のアルコールを生成させる場合に好適に用いられる微生物の具体例としては、例えば、クロストリジウム属等が挙げられる。発酵器13においては、所望する有機物質に加えて、二酸化炭素が生成する。
 発酵器13は、精製機14に接続されている。発酵器13における生成物の一部は、精製機14に移送される。通常、発酵器13においては、製造しようとする有機物質に加え、他の有機物質も生成する。精製機14は、発酵器13における生成物を精製する(精製工程)。これにより、目的とする有機物質を得ることができる。精製機14では、目的とする有機物質と共に、微生物発酵の残渣が生じる。通常、残渣には、製造目的としていない有機物質、微生物の死骸、水等が含まれている。
 また、発酵器13は、メタン発酵器15に接続されている。発酵器13からは、二酸化炭素と水素とがメタン発酵器15に供給される。発酵器15に供給される二酸化炭素は、合成ガスに含まれていた二酸化炭素と、発酵器13における発酵により生じた二酸化炭素とを含む。メタン発酵器15は、これらの二酸化炭素と水素とをメタン発酵させることにより、メタンを生成させる。このため、製造装置1aから排出される二酸化炭素量が低減されている。また、所望するアルコール等の有機物質に加えてメタンを得ることができる。製造装置1aでは、このメタンは、合成ガス生成炉11に原料として供給される。従って、投入する炭素源の量に対する、製造される有機物質の量の比((製造される有機物質の量)/(投入する炭素源の量))を高くすることができる。また、得られたメタンを回収し、他の用途に使用してもよい。
 なお、本実施形態では、メタン発酵器15において生成したメタンは、合成ガス生成炉11において部分酸化され合成ガスとされる。但し、本発明は、これに限定されない。例えば、メタンを水蒸気改質したり二酸化炭素改質したりすることにより合成ガス化してもよい。また、メタンを燃料として用いてもよい。
 本実施形態において、第1の発酵器13aからの合成ガスは、第2の発酵器13bに送入される。第1の発酵器13aからの水は、第2の発酵器13bに送入される必要は必ずしもない。例えば、第1の発酵器13aからの水の少なくとも一部が第2の発酵器13bに送入されなくてもよい。
 (第3の実施形態)
 図3は、本実施形態に係る有機物質の製造装置1bの模式図である。
 製造装置1bは、発酵器13が第1の発酵器13aと第2の発酵器13bとを有している点で第2の実施形態に係る製造装置1bと異なる。第1の発酵器13aは、第1の実施形態の第1の発酵器13aと実質的に同様の構成を有する。第2の発酵器13bは、第1の実施形態の第2の発酵器13bと実質的に同様の構成を有する。
 本実施形態では、メタン発酵器15は、第1及び第2の発酵器13a、13bのそれぞれに接続されている。メタン発酵器15には、第1及び第2の発酵器13a、13bの少なくとも一方において生じた二酸化炭素が供給される。メタン発酵器15には、合成ガスに含まれていた二酸化炭素がさらに供給されてもよい。供給された二酸化炭素は、メタン発酵器15においてメタン発酵し、メタンが発生する。メタン発酵器15において発生したメタンの少なくとも一部は、合成ガス生成炉11に供給され、部分酸化されることにより合成ガスとなる。
 本実施形態においては、第1の実施形態と同様に、クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む第1の発酵器13aの後段に、クロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む第2の発酵器13bが接続されている。このため、第1の実施形態と同様に、第3の実施形態においても、発酵器13から排出される二酸化炭素の量を低減できるという効果が奏される。
 また、発酵器13において生成した二酸化炭素の少なくとも一部は、メタン発酵器15においてメタン発酵し、メタンとなる。このため、二酸化炭素の排出量をさらに低減することができる。
 また、生成したメタンの少なくとも一部は、合成ガス生成炉11において部分酸化され合成ガスとなる。従って、投入する炭素源の量に対する、製造される有機物質の量の比((製造される有機物質の量)/(投入する炭素源の量))を高くすることができる。
 なお、第1及び第3の実施形態では、第1の発酵器13aで培養されている微生物と第2の発酵器13bで培養されている微生物とが相互に異なる。このため、第1及び第2の発酵器13a、13bのそれぞれに対して、それぞれの発酵に好適な培養液成分、好適なpHを実現するための調整器を接続しておくことが好ましい。
 (第4の実施形態)
 第2及び第3の実施形態では、発酵器13において生じた二酸化炭素をメタン発酵させることによりメタンを得る例について説明した。本発明においては、メタン発酵の原料として、発酵器13において生じた二酸化炭素に加えて、精製機14において生じた残渣をメタン発酵の原料としてもよい。すなわち、精製機14の残渣をメタン発酵器15に供給し、メタン発酵器15において残渣をメタン発酵させてもよい。そうすることにより、メタンの生成量を増大させることができる。このため、例えば、メタンから合成ガスを得る場合、投入する炭素源の量に対する、製造される有機物質の量の比((製造される有機物質の量)/(投入する炭素源の量))をより高くすることができる。
1,1a,1b 製造装置
11 合成ガス生成炉
13 発酵器
13a 第1の発酵器
13b 第2の発酵器
14 精製機
15 メタン発酵器

Claims (9)

  1.  廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成炉と、
     前記合成ガスから有機物質を生成させる微生物を含む発酵器と、
     を備え、
     前記発酵器は、
     前記合成ガス生成炉に接続されており、前記微生物としてクロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む第1の発酵器と、
     前記第1の発酵器に接続されており、前記微生物としてクロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む第2の発酵器と、
     を有する、有機物質の製造装置。
  2.  前記発酵器において生じた二酸化炭素をメタン発酵させることによりメタンを得るメタン発酵器をさらに備える、請求項1に記載の有機物質の製造装置。
  3.  合成ガスを微生物発酵させることにより二酸化炭素と、有機物質とを得る発酵器と、
     前記発酵器において生じた二酸化炭素をメタン発酵させることによりメタンを得るメタン発酵器と、
    を備える、有機物質の製造装置。
  4.  前記メタン発酵器からのメタンから前記合成ガスを生成させる合成ガス生成炉をさらに備える、請求項2又は3に記載の有機物質の製造装置。
  5.  合成ガス生成炉において廃棄物を部分酸化させることにより合成ガスを生成させる工程と、
     クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)を含む第1の発酵器に、前記合成ガスを供給し、発酵させる第1の発酵工程と、
     クロストリジウム・リュングダリイ(Clostridium ljungdahlii)を含む第2の発酵器に、前記第1の発酵器からの排出ガスを供給し、発酵させる第2の発酵工程と、
     を備える、有機物質の製造方法。
  6.  前記排出ガスが、水素を含むように前記第1の発酵工程を行う、請求項5に記載の有機物質の製造方法。
  7.  前記第1及び第2の発酵工程の少なくとも一方において生じた二酸化炭素をメタン発酵させることによりメタンを得る工程をさらに備える、請求項5又は6に記載の有機物質の製造方法。
  8.  発酵器において合成ガスを微生物発酵させることにより二酸化炭素と、有機物質とを得る発酵工程と、
     前記発酵工程において生じた二酸化炭素をメタン発酵させることによりメタンを得る工程と、
    を備える、有機物質の製造方法。
  9.  前記メタンから前記合成ガスを得る工程をさらに備える、請求項7又は8に記載の有機物質の製造方法。
PCT/JP2015/071224 2014-07-30 2015-07-27 有機物質を製造する装置及び有機物質を製造する方法 WO2016017572A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/324,346 US10550408B2 (en) 2014-07-30 2015-07-27 Apparatus for producing organic substance and method for producing organic substance
EP15828254.1A EP3176250A4 (en) 2014-07-30 2015-07-27 Apparatus for producing organic substance and method for producing organic substance
JP2016538335A JP6632978B2 (ja) 2014-07-30 2015-07-27 有機物質を製造する装置及び有機物質を製造する方法
CN201580037707.2A CN106488978A (zh) 2014-07-30 2015-07-27 制造有机物质的装置及制造有机物质的方法
CA2954614A CA2954614A1 (en) 2014-07-30 2015-07-27 Apparatus for producing organic substance and method for producing organic substance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014154675 2014-07-30
JP2014-154675 2014-07-30
JP2014-187448 2014-09-16
JP2014187448 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016017572A1 true WO2016017572A1 (ja) 2016-02-04

Family

ID=55217473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071224 WO2016017572A1 (ja) 2014-07-30 2015-07-27 有機物質を製造する装置及び有機物質を製造する方法

Country Status (6)

Country Link
US (1) US10550408B2 (ja)
EP (1) EP3176250A4 (ja)
JP (1) JP6632978B2 (ja)
CN (1) CN106488978A (ja)
CA (1) CA2954614A1 (ja)
WO (1) WO2016017572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029939A (ja) * 2014-07-30 2016-03-07 積水化学工業株式会社 有機物質を製造する装置及び有機物質を製造する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117887774B (zh) * 2024-03-13 2024-05-28 山西牧禾农牧开发有限公司 含碳固废生物法发酵产乙醇联产蛋白工艺及无氧裂解炉

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135089A (ja) * 2001-11-06 2003-05-13 Takuma Co Ltd 微生物を用いた水素及びメタンの製造方法ならびに装置
JP2009136202A (ja) * 2007-12-05 2009-06-25 Research Institute Of Tsukuba Bio-Tech Corp バイオマスからの燃料アルコール製造方法及びその製造装置
WO2010126382A1 (en) * 2009-04-29 2010-11-04 Lanzatech New Zealand Limited Improved carbon capture in fermentation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821111A (en) 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
ITBO20050217A1 (it) * 2005-04-08 2006-10-09 Enrico Petazzoni Cattura della co2 da gas esausti e suo uso nella digestione anaerobica di materiale organico
US7923227B2 (en) * 2007-06-08 2011-04-12 Coskata, Inc. Method of conversion of syngas using microorganism on hydrophilic membrane
NZ560757A (en) * 2007-10-28 2010-07-30 Lanzatech New Zealand Ltd Improved carbon capture in microbial fermentation of industrial gases to ethanol
CN105755058B (zh) 2010-01-14 2021-01-15 朗泽科技新西兰有限公司 醇的制备方法
EP2609206A4 (en) * 2010-08-26 2014-07-09 Lanzatech New Zealand Ltd PROCESS FOR THE PRODUCTION OF ETHANOL AND ETHYLENE BY FERMENTATION
US20130112576A1 (en) * 2010-10-22 2013-05-09 Brita Gmbh Container and device comprising such a container
US8895274B2 (en) 2011-11-28 2014-11-25 Coskata, Inc. Processes for the conversion of biomass to oxygenated organic compound, apparatus therefor and compositions produced thereby
US9157100B2 (en) 2012-06-15 2015-10-13 Coskata, Inc. Integrated processes for bioconverting syngas to oxygenated organic compound with sulfur supply
EP2920316B1 (en) 2012-11-19 2023-06-21 LanzaTech NZ, Inc. A fermentation process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135089A (ja) * 2001-11-06 2003-05-13 Takuma Co Ltd 微生物を用いた水素及びメタンの製造方法ならびに装置
JP2009136202A (ja) * 2007-12-05 2009-06-25 Research Institute Of Tsukuba Bio-Tech Corp バイオマスからの燃料アルコール製造方法及びその製造装置
WO2010126382A1 (en) * 2009-04-29 2010-11-04 Lanzatech New Zealand Limited Improved carbon capture in fermentation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABRINI JAMAL ET AL.: "Clostridium autoethanogenum,sp.nov.,an anaerobic bacterium that produces ethanol from carbon monoxide", ARCH MICROBIOL, vol. 161, no. 4, 1994, pages 345 - 351, XP008024869 *
See also references of EP3176250A4 *
THOMAS KLASSON K. ET AL.: "Bioconversion of synthesis gas into liquid or gaseous fuels", ENZYME MICROB., vol. 14, 1992, pages 602 - 608, XP023617746 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029939A (ja) * 2014-07-30 2016-03-07 積水化学工業株式会社 有機物質を製造する装置及び有機物質を製造する方法

Also Published As

Publication number Publication date
US20170198309A1 (en) 2017-07-13
EP3176250A4 (en) 2018-06-13
US10550408B2 (en) 2020-02-04
JP6632978B2 (ja) 2020-01-22
CN106488978A (zh) 2017-03-08
CA2954614A1 (en) 2016-02-04
JPWO2016017572A1 (ja) 2017-04-27
EP3176250A1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
FI3411489T3 (fi) Integroitu fermentointi- ja elektrolyysiprosessi
Zhang et al. Production of n-caproate using food waste through thermophilic fermentation without addition of external electron donors
Zhang et al. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion
Szymanowska-Powalowska 1, 3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch
TW200946679A (en) Process for the production of ethanol
Sarkar et al. Ethanol addition promotes elongation of short-chain fatty acids to medium-chain fatty acids using brewery spent grains as substrate
JP2012205530A (ja) エタノール製造装置およびエタノール製造方法
WO2016017573A1 (ja) 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
WO2016017572A1 (ja) 有機物質を製造する装置及び有機物質を製造する方法
Liang et al. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review
JP6491413B2 (ja) 有機物質の製造方法及び有機物質の製造装置
Khalid et al. Syngas conversion to biofuels and biochemicals: a review of process engineering and mechanisms
Iragavarapu et al. Bioprocessing of waste for renewable chemicals and fuels to promote bioeconomy
ATE430809T1 (de) Verfahren zur herstellung von vanillinsäure und vanillin vom reiskleieölabfallrest durch fermentation und bioumwandlung
US20200325497A1 (en) Apparatus for producing organic substance from waste and method for producing organic substance from waste
WO2016017551A1 (ja) 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
JP6412360B2 (ja) 有機物質を製造する装置及び有機物質を製造する方法
Patil et al. Bioconversion of lignocellulosic residues into hydrogen
JP2015053922A (ja) 有機物質を製造する方法
JP2018057391A (ja) 有機物質の製造方法
JPWO2019131502A1 (ja) 脂質の生産方法
Liu et al. Harnessing filamentous fungi and fungal-bacterial co-culture for biological treatment and valorization of hydrothermal liquefaction aqueous phase from corn stover
Cristiano Linking biohydrogen and biodiesel production:“a promising route to achieve economic viability in the biofuel industry”
Scarborough Simulating chain elongation with constraint-based metabolic modelling
Rathankumar et al. A perspective on the biorefinery approaches for bioenergy production in a circular bioeconomy process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324346

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2954614

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015828254

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016538335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE