Nothing Special   »   [go: up one dir, main page]

WO2016017245A1 - 情報処理装置及び情報処理方法、並びに画像表示システム - Google Patents

情報処理装置及び情報処理方法、並びに画像表示システム Download PDF

Info

Publication number
WO2016017245A1
WO2016017245A1 PCT/JP2015/064229 JP2015064229W WO2016017245A1 WO 2016017245 A1 WO2016017245 A1 WO 2016017245A1 JP 2015064229 W JP2015064229 W JP 2015064229W WO 2016017245 A1 WO2016017245 A1 WO 2016017245A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
camera
user
posture
head
Prior art date
Application number
PCT/JP2015/064229
Other languages
English (en)
French (fr)
Inventor
河本 献太
寛和 辰田
裕一郎 小山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP15826680.9A priority Critical patent/EP3177010B1/en
Priority to CN201580041249.XA priority patent/CN106664393A/zh
Priority to US15/324,376 priority patent/US10269132B2/en
Priority to JP2016538181A priority patent/JP6642432B2/ja
Publication of WO2016017245A1 publication Critical patent/WO2016017245A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0183Adaptation to parameters characterising the motion of the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders

Definitions

  • the technology disclosed in this specification relates to an information processing apparatus, an information processing method, and an image display system for processing an image captured by a mobile device or a camera mounted on a user.
  • the head-mounted display has an image display unit for each of the left and right eyes, for example, and is configured to be used in combination with headphones to control vision and hearing.
  • the head-mounted display can also project different images to the left and right eyes, and can display a 3D image by displaying an image with parallax for the left and right eyes.
  • This type of head-mounted display forms a virtual image on the retina of the eye and allows the user to observe it.
  • the virtual image is formed on the object side when the object is closer to the lens than the focal length.
  • a virtual image optical system with a wide viewing angle is arranged in front of the pupil by 25 millimeters, and a display panel having an effective pixel range of about 0.7 inches is further in front of the wide viewing angle optical system.
  • a head-mounted display that arranges and forms an enlarged virtual image of a display image on a user's pupil has been proposed (see, for example, Patent Document 1).
  • the user can observe an image obtained by cutting out a part of a wide-angle image using this type of head-mounted display.
  • a head-mounted display that has a head motion tracking device consisting of a gyro sensor, etc. attached to the head so that the user can feel 360 degree images of the entire space following the movement of the user's head has been proposed.
  • a head motion tracking device consisting of a gyro sensor, etc. attached to the head so that the user can feel 360 degree images of the entire space following the movement of the user's head.
  • Patent Document 2 and Patent Document 3 By moving the display area in the wide-angle image so as to cancel the head movement detected by the gyro sensor, the image following the head movement can be reproduced, and the user looks over the entire space. Have an experience.
  • FPV First Person Viewing
  • a mobile object control device including a mobile object equipped with an imaging device and a wearable PC that is operated by an operator to remotely control the mobile object has been proposed (for example, see Patent Document 4).
  • a signal for controlling the operation of the moving body is received to control its own operation, and a signal for controlling the mounted photographing apparatus is received to control the photographing operation and output from the photographing apparatus.
  • the video signal and the audio signal are transmitted to the wearable PC.
  • a signal for controlling the operation of the moving body is generated according to the operation of the operator, and a signal for controlling the operation of the photographing apparatus is generated according to the voice of the operator.
  • the output signal of the photographing apparatus is wirelessly received to reproduce the video signal, which is displayed on the monitor screen.
  • a radio control car that has a 3D stereo camera for medium and long distances and a 3D stereo camera for short distances sends a 3D composite image and displays it on the controller side.
  • a network system that receives an image captured by the model apparatus and the position and orientation information on the controller side and generates and displays a virtual image corresponding to the position and orientation has been proposed (for example, (See Patent Document 6).
  • An object of the technology disclosed in this specification is to provide an excellent information processing apparatus, information processing method, and image display system capable of suitably processing an image captured by a mobile device or a camera mounted on a user. There is to do.
  • an image captured by a camera can be processed so as to be suitable for display on an image display device fixed to a user's head or face.
  • An information processing apparatus, an information processing method, and an image display system are provided.
  • a head posture acquisition unit that acquires information on the user's head posture
  • a camera posture acquisition unit for acquiring camera posture information
  • a drawing processing unit that generates an image to be displayed on a display device fixed to the user's head or face from the captured image of the camera, based on the user's head posture and the posture of the camera; Is an information processing apparatus.
  • the camera is mounted on a mobile device.
  • the camera of the information processing apparatus captures an omnidirectional image or a wide-angle image
  • the drawing processing unit includes: The user's head posture is corrected by the posture at the time of shooting of the camera, and an image obtained by cutting out the angle of view according to the user's head posture after correction from the captured image of the camera is generated. Has been.
  • the camera is mounted fixedly on the head or face of the user.
  • the drawing processing unit of the information processing device performs a first conversion that converts the posture of the camera into the head posture of the user. An image obtained by cutting out the angle of view according to the parameter from the photographed image of the camera is generated.
  • the drawing processing unit of the information processing device includes: the head posture of the user at the shooting time of the camera; and the display device. An image is generated using the user's head posture predicted after a delay time until the image is displayed.
  • the drawing processing unit of the information processing device includes a three-dimensional model of an ambient environment based on time-series image data captured by the camera. , The current camera position in the three-dimensional model is estimated, and the camera is photographed using the second transformation parameter that transforms the camera position and posture into the user eyeball position and posture. And predicting the user's eyeball position and posture after a delay time until display on the display device, and generating an image captured at the predicted eyeball position and posture from the three-dimensional model. It is configured.
  • an information processing apparatus constrains and constrains a controller that remotely operates the mobile device and a trajectory of the mobile device.
  • a filter that cuts input from the controller other than orbit, Is further provided. And it is comprised so that the input from the said controller may be converted into the position command, speed command, or acceleration command of the direction along the said restricted orbit, and it may transmit to the said mobile body apparatus.
  • the information processing apparatus is configured so that the filter moves in the front-rear direction from the controller when the trajectory of the moving body device is restricted to go straight. It is configured to transmit a command to cut the other input and maintain the straight traveling path to the mobile device.
  • an information processing apparatus includes a straight line in which the mobile device passes a current location and faces a current traveling direction, or the mobile device.
  • a straight line connecting the current location and the target point is set as a trajectory.
  • the filter moves in the left-right direction from the controller.
  • the information processing apparatus intersects with the circumference passing through the current location of the mobile device centering on the target point, or the target point.
  • a circumference in a horizontal plane passing through the present location of the mobile device is set as a trajectory with the vertical axis as a center.
  • the thirteenth aspect of the technology disclosed in this specification is: A head posture acquisition step for acquiring information on the user's head posture; A camera posture acquisition step for acquiring camera posture information; A drawing processing step for generating an image to be displayed on a display device fixed to the user's head or face from the photographed image of the camera based on the user's head posture and the posture of the camera; Is an information processing method.
  • the fourteenth aspect of the technology disclosed in this specification is: A camera, A display device used fixed to the user's head or face; An image processing device that generates an image to be displayed on the display device from a captured image of the camera, based on the user's head posture and the posture of the camera; Is an image display system.
  • system here refers to a logical collection of a plurality of devices (or functional modules that realize specific functions), and each device or functional module is in a single housing. It does not matter whether or not.
  • an image captured by a remote camera installed in a moving body or a user is adapted to be displayed on an image display device fixed to the user's head or face.
  • An excellent information processing apparatus, information processing method, and image display system that can be suitably processed can be provided.
  • FIG. 1 is a diagram schematically illustrating a configuration of an image display system 100 according to an embodiment of the technology disclosed in this specification.
  • FIG. 2 is a diagram illustrating a state in which a user wearing the head-mounted display 110 applied to the image display system illustrated in FIG. 1 is viewed from the front.
  • FIG. 3 is a view showing a user wearing the head mounted display 110 shown in FIG. 2 as viewed from above.
  • FIG. 4 is a diagram illustrating a configuration example of the omnidirectional camera 400.
  • FIG. 5 is a diagram illustrating a configuration example of the omnidirectional camera 400.
  • FIG. 6 is a diagram illustrating a configuration example of the omnidirectional camera 400.
  • FIG. 1 is a diagram schematically illustrating a configuration of an image display system 100 according to an embodiment of the technology disclosed in this specification.
  • FIG. 2 is a diagram illustrating a state in which a user wearing the head-mounted display 110 applied to the image display system illustrated in FIG. 1 is viewed from the front.
  • FIG. 7 is a diagram for explaining a mechanism in which a user wearing the head mounted display 110 views a free viewpoint image.
  • FIG. 8 is a diagram illustrating a functional configuration example of the image display system 100.
  • FIG. 9 is a diagram illustrating a quaternion.
  • FIG. 10 is a diagram illustrating another functional configuration example of the image display system 100.
  • FIG. 11 is a diagram illustrating a state in which a display angle of view corresponding to the user's head posture is cut out from the omnidirectional image.
  • FIG. 12 is a diagram illustrating a state in which a display angle of view that does not match the user's head posture is cut out due to a change in posture of the omnidirectional camera.
  • FIG. 13 is a diagram illustrating a state in which a display angle of view obtained by correcting the user's head posture in accordance with the change in the posture of the omnidirectional camera is cut out.
  • FIG. 14 is a diagram illustrating a processing procedure for cutting out a free viewpoint image from an omnidirectional image at a display angle of view obtained by correcting the user's head posture according to the change in the omnidirectional camera posture.
  • FIG. 15 is a diagram showing a configuration example of a video see-through image display system 100.
  • FIG. 16 is a diagram illustrating a processing procedure for aligning the captured image of the camera with the reference coordinate system of the display optical system and displaying an image that matches the viewing angle of the user.
  • FIG. 17 shows a processing procedure for aligning the captured image of the camera with the reference coordinate system of the display optical system and displaying an image that matches the viewing angle of the user in consideration of the delay time from shooting to display.
  • FIG. FIG. 18 is a diagram showing a processing procedure for displaying an image that matches the viewing angle of the user in consideration of a delay time from shooting to display by combining three-dimensional reconstruction technology and head motion tracking prediction. It is.
  • FIG. 19 is a diagram illustrating a state in which the degree of freedom of control of the mobile device 120 is limited to straight travel and remote control is performed using the controller 130.
  • FIG. 20 is a diagram illustrating a processing procedure for controlling the remote operation by limiting the degree of freedom of control of the mobile device 120 to straight travel.
  • FIG. 21 is a diagram illustrating a state in which the degree of freedom of control of the mobile device 120 is limited to circulation and remote control is performed using the controller 130.
  • FIG. 22 is a diagram illustrating a processing procedure for controlling the remote operation by limiting the degree of freedom of control of the mobile device 120 to the circulation.
  • an omnidirectional image or an omnidirectional camera is used as an example.
  • an omnidirectional image in which an area other than the shooting angle of view is painted black, for example, or a camera that outputs it it is common to the case of an omnidirectional image.
  • the techniques disclosed herein can be handled without loss of generality.
  • FIG. 1 schematically shows a configuration of an image display system 100 according to an embodiment of the technology disclosed in this specification.
  • the illustrated image display system 100 includes an image display device (head mounted display) 110 that is used by the user wearing on the head or face, and movement of an airplane (or a helicopter or other flying object), an automobile, a ship, or the like.
  • Some mobile devices 120 may be radio controlled remotely by radio, and the user can control the radio with the controller 130.
  • Each of the mobile devices 120-1, 120-2, 120-3,... Is equipped with an omnidirectional camera and photographs a landscape while moving.
  • the controller 130 may be a multifunctional information terminal such as a smartphone or a tablet, for example, and activates a steering application for the mobile device 120.
  • the head-mounted display 110 and the mobile device 120, and the controller 130 and the mobile device 120 are wirelessly connected by, for example, a wireless network or infrared communication.
  • the captured image of the omnidirectional camera can be transmitted to other devices such as the head mounted display 110 using the wireless communication function of the mobile device 120, for example.
  • the omnidirectional camera itself is equipped with a wireless communication function in order to simplify the description.
  • FIG. 2 shows a state in which the user wearing the head-mounted display 110 applied to the image display system shown in FIG. 1 is viewed from the front.
  • the head-mounted display 110 can directly cover the user's eyes when the user wears the head or face, and can give an immersive feeling to the user who is viewing the image. Further, since the display image cannot be seen from the outside (that is, another person), it is easy to protect privacy when displaying information. Unlike the see-through type, the user wearing the head mounted display 110 cannot directly view the real world scenery. If an external camera (not shown) that captures a landscape in the direction of the user's line of sight is installed, the captured image is displayed on the head-mounted display 110, so that the user indirectly views the real world landscape ( That is, it is possible to display a landscape with video see-through).
  • the head mounted display 110 shown in FIG. 2 is a structure similar to a hat shape, and is configured to directly cover the left and right eyes of the wearing user.
  • a display panel (not shown in FIG. 2) to be observed by the user is disposed at a position facing the left and right eyes inside the head mounted display 110 main body.
  • the display panel includes, for example, a micro display such as an organic EL (Electro-Luminescence) element or a liquid crystal display, or a laser scanning display such as a direct retina display.
  • Microphones are installed near the left and right ends of the head mounted display 110 main body. By having the microphones symmetrically on the left and right, it can be separated from the surrounding noise and other people's voice by recognizing only the voice localized at the center (user's voice). Malfunctions can be prevented.
  • a touch panel on which a user can perform touch input using a fingertip or the like is disposed outside the head mounted display 110 main body.
  • a pair of left and right touch panels are provided, but a single or three or more touch panels may be provided.
  • FIG. 3 shows a state in which the user wearing the head mounted display 110 shown in FIG. 2 is viewed from above.
  • the illustrated head mounted display 110 has display panels for left and right eyes on the side facing the user's face.
  • the display panel is configured by a laser scanning type display such as a micro display such as an organic EL element or a liquid crystal display or a retina direct drawing display.
  • the display image on the display panel is observed by the left and right eyes of the user as an enlarged virtual image by passing through the virtual image optical unit.
  • an eye width adjustment mechanism is provided between the display panel for the right eye and the display panel for the left eye.
  • the omnidirectional camera mounted on the mobile device 120 can be constituted by a combination of a plurality of video cameras, for example. 4 to 6 show a configuration example of an omnidirectional camera 400 including six video cameras.
  • the six video cameras 401, 402,..., 406 fixed at predetermined positions respectively output captured images in synchronization with the image processing unit 410.
  • Each of the video cameras 401, 402,... 406 uses, for example, a complementary metal oxide semiconductor (CMOS) image sensor as an image sensor.
  • CMOS complementary metal oxide semiconductor
  • the image processing unit 410 joins the captured images of the video cameras 401, 402,..., 406 according to the arranged positional relationship to generate one omnidirectional image (or wide-angle image) frame.
  • a part or all of the generated omnidirectional image is wirelessly transmitted to the head mounted display 110 to provide a free viewpoint image in which the viewpoint moves in accordance with the posture (gaze direction) of the wearer's head.
  • FIG. 5 and 6 schematically show an arrangement example of six video cameras 401, 402, ..., 406.
  • FIG. 5 is a diagram seen from above
  • FIG. 6 is a diagram seen from the side.
  • the six video cameras 401, 402,..., 406 are radially arranged with their respective camera main axis directions facing each other.
  • each video camera 401, 402,..., 406 is a vertical reference axis 501 (see FIGS. 5 and 6) that passes a predetermined reference point (described later). They are arranged at predetermined angular intervals on a horizontal concentric circle as a center. In this embodiment, six video cameras 401, 402, ..., 406 are arranged at intervals of 60 degrees. In addition, between the adjacent video cameras 401, 402,..., 406, the left and right end portions of the imaging angle of view overlap each other so that the entire periphery can be photographed without interruption in the horizontal direction.
  • an omnidirectional camera applicable to the image display system 100 according to the present embodiment, see, for example, the specification of Japanese Patent Application No. 2014-128020 already assigned to the present applicant.
  • the technology disclosed in the present specification is not limited to the configuration of a specific omnidirectional camera.
  • FIG. 7 shows a mechanism in which the user wearing the head-mounted display 110 views a free viewpoint image in the image display system 100 according to the present embodiment (that is, an image following the movement of the user's head is displayed. Illustrates the mechanism).
  • the depth direction of the user's gaze z w-axis, the horizontal direction y w axis, a vertical direction x w-axis, the origin position of the user of the reference axis x w y w z w is the user's viewpoint position. Therefore, the roll ⁇ z is the movement of the user's head around the z w axis, the tilt ⁇ y is the movement of the user's head around the y w axis, and the pan ⁇ z is the movement of the user's head around the x w axis. Equivalent to.
  • posture information including the movement ( ⁇ z , ⁇ y , ⁇ z ) of the user's head in the roll, tilt, and pan directions and the translation of the head is detected. Then, the center of the area 702 cut out from the original omnidirectional image 701 captured by the omnidirectional camera is moved so as to follow the posture of the user's head, and the area 702 cut out at a predetermined angle of view at the center position. Render the image.
  • the area 702-1 is rotated according to the roll component of the user's head movement, the area 702-2 is moved according to the tilt component of the user's head movement, the user's head movement
  • the display area is moved so as to cancel the movement of the user's head by moving the area 702-3 according to the pan component. In this way, on the head mounted display 110 side, a free viewpoint image that follows the movement of the user's head can be presented.
  • the processing for rendering the free viewpoint image corresponding to the user's head posture from the omnidirectional image captured by the omnidirectional camera is performed by a method performed by the omnidirectional camera or by transmitting the omnidirectional image to the head mount display 110. And a method of uploading an omnidirectional image to a cloud computer and performing it on the cloud.
  • the omnidirectional camera when the omnidirectional camera is mounted on the mobile device 120, it is assumed that the mobile device 120 changes the course. Since the posture of the omnidirectional camera changes as the mobile device 120 changes the course, the user who wears the head-mounted display 110 himself / herself does not move his / her head, but the visible image is displayed. There is a problem of changing. If an unexpected image that does not match the user's movement is viewed, the user may suffer a health hazard such as VR (Virtual Reality) sickness.
  • VR Virtual Reality
  • the head posture of the user wearing the head mounted display 110 is corrected according to the change in the posture of the omnidirectional camera, and the display image is cut out from the omnidirectional image. Yes.
  • the user does not move, a free viewpoint image at the same place can be seen continuously, and VR sickness can be prevented.
  • FIG. 8 shows a functional configuration example of the image display system 100 that can realize such an image cut-out process.
  • the illustrated image display system 100 includes three devices, a head motion tracking device 810, a display device 820, and an imaging device 830.
  • the head movement tracking device 810 is used by being mounted on the head of a user who observes an image displayed on the display device 820, and outputs posture information of the user's head to the display device 820 at a predetermined transmission cycle.
  • the head movement tracking device 810 includes a sensor unit 811, a posture angle calculation unit 812, and a communication unit 813.
  • the sensor unit 811 is configured by combining a plurality of sensor elements such as a gyro sensor, an acceleration sensor, and a geomagnetic sensor, and detects the posture angle of the user's head.
  • a sensor capable of detecting a total of nine axes including a three-axis gyro sensor, a three-axis acceleration sensor, and a three-axis geomagnetic sensor.
  • the posture angle calculation unit 812 calculates posture information of the user's head based on the nine-axis detection result by the sensor unit 811.
  • the posture angle is expressed as a quaternion.
  • a three-dimensional vector representing a position is p
  • a quaternion representing a posture is q.
  • the quaternion q is a quaternion composed of a rotation axis (vector) and a rotation angle (scalar) as shown in the following equation (1) and FIG. Quaternions are suitable for calculations because there are no singularities. In the field of computer graphics, it is common to represent poses of objects in quaternions.
  • the head movement tracking device 810 and the display device 820 are interconnected by wireless communication such as Bluetooth (registered trademark) communication.
  • the head movement tracking device 810 and the display device 820 may be connected via a high-speed wired interface such as USB (Universal Serial Bus) instead of wireless communication.
  • the posture information of the user's head obtained by the posture angle calculation unit 812 is transmitted to the display device 820 via the communication unit 813.
  • the photographing apparatus 830 includes an omnidirectional camera 831, a sensor unit 832, an attitude angle calculation unit 833, and a communication unit 834.
  • the imaging device 830 is used by being mounted on the mobile device 120.
  • the omnidirectional camera 831 is configured as shown in FIGS. 4 to 6 and captures omnidirectional images. Detailed description is omitted here.
  • the sensor unit 832 is configured by combining a plurality of sensor elements such as a gyro sensor, an acceleration sensor, and a geomagnetic sensor, for example.
  • a sensor capable of detecting a total of nine axes including a three-axis gyro sensor, a three-axis acceleration sensor, and a three-axis geomagnetic sensor.
  • the attitude angle calculation unit 833 calculates the attitude information of the omnidirectional camera 831 based on the nine-axis detection result by the sensor unit 832.
  • the posture angle is expressed as a quaternion (same as above).
  • the photographing device 830 and the display device 820 are interconnected by wireless communication such as Wi-Fi (Wireless Fidelity).
  • Image information captured by the omnidirectional camera 831 and attitude information of the omnidirectional camera 831 obtained by the attitude angle calculation unit 833 are transmitted to the display device 820 via the communication unit 834.
  • the display device 820 corresponds to the head mounted display 110 in the image display system 100 shown in FIG.
  • the head motion tracking device 810 is configured as a device independent of the display device 820 (for example, the head motion tracking device 810 is manufactured and sold as an optional product of the head mounted display 110).
  • one head-mounted display 110 can be configured by integrating the head movement tracking device 810 and the display device 820.
  • the display device 820 includes a first communication unit 821, a second communication unit 824, a drawing processing unit 822, and a display unit 823.
  • the display unit 823 When the display device 820 is configured as a head-mounted display, for example, the display unit 823 includes left and right screens respectively fixed to the left and right eyes of the user, and displays a left-eye image and a right-eye image. .
  • the screen of the display unit 823 is configured by a display panel such as a micro display such as an organic EL element or a liquid crystal display, or a laser scanning display such as a direct retina display.
  • a virtual image optical unit (not shown) is provided that magnifies and projects the display image of the display unit 823 and forms a magnified virtual image having a predetermined angle of view on the user's pupil.
  • the first communication unit 821 receives the posture information of the user's head from the head movement tracking device 810 via the communication unit 813. Also, the image information captured by the omnidirectional camera 831 and the orientation information of the omnidirectional camera 831 obtained by the orientation angle calculation unit 833 are obtained from the second communication unit 824 and the imaging device 830 via the communication unit 834. Receive.
  • the posture angle calculation unit 812 is mounted on the head movement tracking device 810, and the posture angle calculation unit 833 is mounted on the imaging device.
  • the communication unit 813 and the communication unit 834 each include posture information.
  • the devices 810 and 830 do not perform the attitude angle calculation, wirelessly transmit the sensor detection results of the sensor unit 811 and the sensor unit 832 as they are, and the first communication unit 821 and the first communication unit 821 on the display device 820 side.
  • Each of the attitude angles can be calculated using the sensor information received by the second communication unit 824.
  • the rendering processing unit 822 renders an image obtained by cutting out the display angle of view corresponding to the posture information of the user's head from the omnidirectional image.
  • the display unit 823 can display an image following the movement of the head. Therefore, the user can experience looking over the large screen.
  • the drawing processing unit 822 converts the head posture of a user who observes the display image of the display device 820 (a user wearing the head mounted display 110) into the change in the posture of the omnidirectional camera 831.
  • the omnidirectional image is cut out by correcting it accordingly. With such correction processing, even if the posture of the camera 831 changes, a free viewpoint image at the same location can be continuously viewed unless the user moves.
  • FIG. 10 shows another functional configuration example of the image display system 100.
  • the illustrated image display system 100 includes four devices, a head movement tracking device 1010, a display device 1020, an imaging device 1030, and an image processing device 1040.
  • the head movement tracking device 1010 is used by being mounted on the head of the user who observes the image displayed on the display device 1020, and outputs posture information of the user's head to the image processing device 1040 at a predetermined transmission cycle.
  • the head movement tracking device 1010 includes a sensor unit 1011, a posture angle calculation unit 1012, and a communication unit 1013.
  • the sensor unit 1011 is a sensor that can detect nine axes (same as above), and detects the posture angle of the user's head.
  • the posture angle calculation unit 1012 calculates a quaternion q h representing the posture angle of the user's head based on the nine-axis detection result by the sensor unit 1011. Then, the calculated quaternion q h is transmitted to the image processing apparatus 1040 via the communication unit 1013.
  • the photographing apparatus 1030 includes an omnidirectional camera 1031, a sensor unit 1032, an attitude angle calculation unit 1033, and a communication unit 1034.
  • the imaging device 1030 is used by being mounted on the mobile device 120 (same as above).
  • the omnidirectional camera 1031 is configured as shown in FIGS. 4 to 6 and captures omnidirectional images.
  • the sensor unit 1032 is a sensor that can detect nine axes (same as above), and detects the attitude angle of the omnidirectional camera 1031.
  • the attitude angle calculation unit 1033 calculates a quaternion q c representing the attitude angle of the omnidirectional camera 1031 based on the nine-axis detection result by the sensor unit 1032. Then, the calculated quaternion q c is transmitted to the image processing apparatus 1040 via the communication unit 1034.
  • the image processing apparatus 1040 is configured by a cloud computer, for example.
  • the image processing apparatus 1040 receives the quaternion q h representing the posture angle of the user's head from the head movement tracking apparatus 1010 via the communication unit 1041, and also captures image information captured by the omnidirectional camera 1031 from the imaging apparatus 1030. And a quaternion q c representing the attitude angle of the omnidirectional camera 1031 is received.
  • the rendering processing unit 1042 renders an image obtained by cutting out a display angle of view corresponding to the posture information of the user's head from the omnidirectional image, and transmits the rendered image to the display device 1020 via the communication unit 1041. Similar to the configuration described above, the posture angle calculation is not performed by the head motion tracking device 1010 or the imaging device 1030, but sensor information is transmitted, and the posture angle calculation is performed by the image processing device 1040. You can also.
  • the display device 1020 displays the image information received from the image processing device 1040 via the communication unit 1021 on the display unit 1023.
  • the display device 1020 can display an image following the movement of the head on the display unit 1023 by moving the display angle of view in the original image so as to cancel the posture angle of the user's head. Therefore, the user can experience looking over the large screen.
  • the image processing apparatus 1040 is configured by, for example, a cloud computer and is connected to the display apparatus 1020 via a communication unit, there is a case where transmission delay in the communication unit becomes a problem.
  • the display device 1020 includes a second drawing processing unit (not shown), and the image processing device 1040 includes not only the extracted image information but also the user's head used for the extraction. At the same time, and the display device 1020 adjusts the image display position using the posture information received from the image processing device 1040 and the latest posture information received from the head motion tracking device 1010, thereby transmitting delay. Can alleviate the problem.
  • FIG. 11 shows a state in which the display angle of view 1101 corresponding to the head posture of the user wearing the head mounted display 110 is cut out from the omnidirectional image 1100 taken by the omnidirectional camera mounted on the mobile device 120. Show.
  • FIG. 12 shows a display in which the posture of the mobile device 120, that is, the omnidirectional camera is changed to the left even though the user does not move the head posture, and as a result, the display is cut out from the omnidirectional image 1200.
  • the view angle 1201 is moving to the right.
  • the user who wears the head-mounted display 110 himself / herself does not move his / her head, so that a visible image changes. If an unexpected image that does not match the user's movement is viewed, the user may suffer a health hazard such as VR sickness.
  • the mobile device 120 when the user remotely controls the mobile device 120 with the controller 130 while viewing the captured image of the camera mounted on the mobile device 120, the mobile device 120 performs a motion different from the user's intention or an unexpected motion. If this happens, the user may experience VR sickness. Of course, even if the mobile device 120 moves according to the user's remote control, VR motion sickness is likely to occur if the displayed image moves vigorously.
  • the control performance of the mobile device 120 by the controller 130 is improved so that a motion different from the user's intention does not occur.
  • the mobile device 120 performs only a slow motion.
  • a solution is also conceived, such as cutting by a low-pass filter so that the fast movement of the camera is not displayed on the head mounted display 110.
  • the image captured by the camera mounted on the mobile device 120 is not displayed as it is, but is adapted to the direction in which the user wearing the head mounted display 110 is looking.
  • the part to be cut out is displayed from the omnidirectional image.
  • the user's head posture measured by the head motion tracking device 810 or 1010 is corrected according to the change in the posture of the omnidirectional camera 830 or 1030.
  • a display angle of view 1301 obtained by correcting the user's head posture in accordance with the change in the orientation of the omnidirectional camera is cut out from the omnidirectional image 1300 captured by the omnidirectional camera whose orientation has changed to the left. Is shown.
  • FIG. 14 shows a processing procedure for cutting out a free viewpoint image from an omnidirectional image with a display angle of view in which the head posture of the user wearing the head-mounted display 110 is corrected according to the change in the posture of the omnidirectional camera. Show.
  • This processing procedure is performed by, for example, the drawing processing unit 822 in the display device 820 in the image display system 100 illustrated in FIG. 8, or is performed by the image processing device 1040 in the image display system 100 illustrated in FIG.
  • FIG. 10 for the sake of convenience, description will be made assuming that processing is performed by the image display system 100 illustrated in FIG. 10.
  • the omnidirectional camera 1031 of the imaging device 1030 mounted on the mobile device 120 is capturing an omnidirectional image (F1401).
  • the sensor unit 1032 detects the attitude angle of the omnidirectional camera 1031, and the attitude angle calculation unit 1033 calculates a quaternion q c that represents the attitude angle of the omnidirectional camera 1031 based on the nine-axis detection result by the sensor unit 1032. (F1402). Then, the captured image and the camera posture angle q c are transmitted to the image processing apparatus 1040 via the communication unit 1034.
  • the sensor unit 1011 detects the posture angle of the user's head, and the posture angle calculation unit 1012 represents the posture angle of the user's head based on the detection result by the sensor unit 1011. computing the quaternion q h (F1411). Then, the head posture angle q h is transmitted to the image processing apparatus 1040 via the communication unit 1013.
  • the communication unit 1041 receives the captured image and the camera attitude angle q c from the imaging apparatus 1030 and also receives the user's head attitude angle q h from the head motion tracking apparatus 1010.
  • the drawing processing unit 1042 may cut out a display angle of view corresponding to the user's head posture angle q h from the captured image and render a free viewpoint image.
  • the camera posture angle q c changes as shown in FIG.
  • the drawing processing unit 1042 first corrects the user's head posture angle q h with the camera posture angle q c (F1421), and displays a display field angle corresponding to the corrected user's head posture angle q h *.
  • the free viewpoint image is rendered by cutting out from the captured image (F1422).
  • the image processing device 1040 transmits the free viewpoint image rendered by the drawing processing unit 1042 to the display device 1020 via the communication unit 1041, and the display device 1020 displays the image (F1430).
  • the correction process of the user's head posture angle q h in the process F1422 is performed according to the following expression (2). That is, the original user's head posture angle q h is multiplied by the inverse of the camera posture angle q c from the left side to obtain the corrected user's head posture angle q h * .
  • the posture angles q h and q c are both pieces of posture information of the head and the camera measured with reference to the third coordinate system described above.
  • the image display system 100 in which an imaging device equipped with an omnidirectional camera is mounted on a mobile device 120 such as an airplane (or a helicopter or other flying object), an automobile, or a ship has been described.
  • a video see-through type image in which the user who wears the head-mounted display 110 is equipped with an omnidirectional camera and the user views the captured image on the head-mounted display 110.
  • a display system 100 is also conceivable. In this case, a display angle of view corresponding to the user's head posture is cut out from the omnidirectional image photographed by the omnidirectional camera and displayed on the head mounted display 110.
  • the problem that the user's head posture does not match the display angle of view is that the camera posture is changed in addition to the camera posture change as shown in FIG. This also occurs due to the delay time from display to display. If the orientation of the head and the display angle of view do not match, the user views an unexpected image, and VR sickness is likely to occur.
  • the present inventors believe that the delay in the video see-through image display system 100 and the problem of mismatch in posture / viewing angle can be reduced by a combination of display correction considering the camera posture and head motion tracking prediction. Yes.
  • FIG. 16 shows a processing procedure for aligning the captured image of the camera with the reference coordinate system of the display optical system and displaying an image that matches the viewing angle of the user (provided that there is no delay time from the shooting to the display). ).
  • the omnidirectional camera 1031 of the photographing apparatus 1030 mounted on the user is photographing an omnidirectional image (F1601).
  • the position of the omnidirectional camera 1031 with respect to the user is fixed.
  • FIG. 17 shows a processing procedure for aligning the captured image of the camera with the reference coordinate system of the display optical system and displaying an image that matches the viewing angle of the user in consideration of the delay time from shooting to display. Is shown.
  • the omnidirectional camera 1031 of the photographing apparatus 1030 mounted on the user is photographing an omnidirectional image (F1701).
  • the relative positional relationship of the omnidirectional camera 1031 with respect to the user (or the display device 1020 worn by the user) is fixed, and a fixed parameter q t for converting the camera posture into the user head posture is held. (F1702).
  • the fixed parameter q t is determined by the mechanical arrangement of the display optical system and the camera photographing system.
  • the sensor unit 1011 detects the posture angle of the user's head
  • the posture angle calculation unit 1012 represents the posture angle of the user's head based on the detection result by the sensor unit 1011.
  • quaternion q h a by calculating (F1703), in association with the time information when the sensor information acquisition, logging (F1704). Then, based on the estimated value q h of head posture that logged in photographing time and F1704 in F1701, estimates the head posture q hc at the time of shooting (i.e., performing an interpolation or prediction of shooting time) (F1705).
  • the estimated delay time ⁇ until the image display optical system from the current time is displayed (F1706), based on an estimate q h logging the head posture at the current time (F1707) and F1704, then displays Predicts the head posture q h ′ at the time (current time + delay time ⁇ ) (F1708).
  • the delay time ⁇ is mainly determined by the drive frequency of the display panel and the configuration of the panel drive circuit.
  • the head posture can be predicted in consideration of the delay time ⁇ using, for example, a prediction algorithm disclosed in Japanese Patent Application No. 2013-268014 already assigned to the present applicant.
  • the correction parameter q t * Calculate (F1709). Specifically, as shown in the following equation (3), a correction term q hc ⁇ 1 obtained by multiplying the inverse of the head posture q hc at the time of imaging from the left side of the predicted value q h ′ of the head posture. Multiply q h ′ from the right side of the fixed parameter q t to calculate the correction parameter q t *
  • the display angle of view corresponding to the correction parameter q t * is cut out from the captured image, and the free viewpoint image is rendered (F1710).
  • the free viewpoint image rendered in this way is transmitted from the image processing apparatus 1040 to the display apparatus 1020 and displayed on the display apparatus 1020 (F1711).
  • Visual SLAM is a technology that can simultaneously perform camera self-position estimation and map creation in an unknown environment.
  • An example of Visual SLAM is an integrated augmented reality technology SmartAR (trademark of Sony Corporation).
  • the omnidirectional camera 1031 installed on the user's head can continuously perform imaging to obtain time-series image data.
  • the image processing apparatus 1040 uses the Visual SLAM technology to construct a three-dimensional model of the surrounding environment from this time-series image data and grasps the current camera position in the three-dimensional model. Then, when the image processing device 1040 predicts the current eyeball position and posture of the user in consideration of the delay time ⁇ from shooting to display on the display device 1020, the image processing device 1040 shot from the virtual camera at the predicted position. The image is rendered and displayed on the display device 1020.
  • FIG. 18 shows a processing procedure for displaying an image that matches the viewing angle of the user in consideration of the delay time from shooting to display by combining the three-dimensional reconstruction technique and head motion tracking prediction. Yes.
  • the omnidirectional camera 1031 of the photographing apparatus 1030 mounted on the user is photographing an omnidirectional image (F1801).
  • the image processing apparatus 1040 using a Visual SLAM technology, as well as constructing a three-dimensional model M of the surrounding environment from the time-series image data (F 1802), the camera position p c and the time of photographing in the three-dimensional model
  • the camera posture q c is estimated (F1803), and logging is performed in association with each shooting time information (F1804).
  • the delay time ⁇ from the current time until the image is displayed on the display optical system is estimated (F1805), and the current time (F1806) and the estimated values p c and q c of the camera position and orientation logged at F1804 are calculated .
  • the camera position p ′ c and the camera posture q ′ c at the next display time are predicted (F1807).
  • conversion parameters p t and q t of the position and orientation of the omnidirectional camera 1031 and the user's eyeball position and orientation are acquired (F1808).
  • the conversion parameters p t and q t are fixed parameters determined by the mechanical arrangement of the display optical system and the camera photographing system.
  • the conversion parameter p t is a three-dimensional vector that gives an offset of the coordinate position
  • q t is a quaternion that represents a change in posture.
  • the image processing apparatus 1040 uses a three-dimensional model M of the surrounding environment built in F 1802, it renders the picture at the predicted eye positions p'h and orientation q'h (F1810).
  • the free viewpoint image rendered in this way is transmitted from the image processing apparatus 1040 to the display apparatus 1020 and displayed on the display apparatus 1020 (F1811).
  • the delay in the video see-through type image display system 100 and the problem of the mismatch in posture and viewing angle can be solved.
  • mismatch such as optical axis mismatch can be suppressed and VR sickness can be prevented.
  • the degree of freedom in selecting and arranging the cameras is improved, the following effects (1) to (4) can be obtained.
  • the optical axes of the camera and eyeball need not be aligned.
  • the posture of the camera and the eyeball need not be matched.
  • the viewing angle of the camera and the eyeball need not be matched.
  • Arbitrary number of cameras can be arranged.
  • the image display system 100 shown in FIG. 1 includes a camera mounted on a mobile device 120 and a head-mounted display 110 that a user wears on the head and views a captured image of the camera. Can also be used as a remote control camera system for the mobile device 120 using the controller 130.
  • any movement that the mobile device 120 can perform can be operated using the controller 130.
  • remote control is performed while viewing a captured image of a camera mounted on the mobile device 120, if the mobile device 120 performs an exercise different from the user's intention or an unexpected exercise, the user may experience VR sickness. There is a risk of it happening.
  • VR sickness is prevented by limiting the degree of freedom of control of the mobile device 120 by the user.
  • the trajectory of the mobile device 120 in the space is designated, and only the position on the trajectory, only the speed, or only the acceleration is remotely operated.
  • the image display system 100 is operated as a remote operation camera system capable of limiting the degree of freedom of control.
  • a flying-type mobile device 120 such as a helicopter or a multi-copter having three or more rotors is set as a remote operation target, and the degree of control is limited to only going straight or turning. Then, the user remotely controls only the speed or acceleration on the orbit of going straight or turning using the controller 130 with an input device that is relatively easy to operate, such as a joystick.
  • FIG. 20 shows a processing procedure for controlling the mobile device 120 in this case.
  • the trajectory of the mobile device 120 is set (F2002).
  • a straight trajectory as shown in (1) or (2) below is set.
  • control input from the controller 130 such as a joystick (F2003)
  • the control input is filtered and the control input other than the front-rear direction is cut (F2004).
  • control input is converted into a position command, speed command, or acceleration command along the straight track set in F2002 (F2005), and a command for maintaining the track is transmitted to the automatic control system of the mobile device 120 (F2006). ).
  • FIG. 22 shows a processing procedure for controlling the mobile device 120 in this case.
  • the trajectory of the mobile device 120 is set (F2202).
  • a circular trajectory as shown in the following (1) or (2) is set.
  • control input from the controller 130 such as a joystick (F2203)
  • the control input is filtered and the control inputs other than the left and right directions are cut (F2204).
  • control input is converted into a position command, speed command, or acceleration command along the circumferential trajectory set in F2202 (F2205), and the command to maintain the trajectory is transmitted to the automatic control system of the mobile device 120.
  • the posture of the mobile device 120 is controlled so as to face the target point (F2206).
  • the technology disclosed in this specification can be suitably applied when viewing an image captured by a remote camera mounted on a mobile device or the like with an immersive head-mounted display. It can also be applied to head mounted displays.
  • the technology disclosed in the present specification can be similarly applied to video see-through of an image taken by a camera mounted on a head mounted display main body instead of a remote camera.
  • the technology disclosed in this specification is not limited to a head-mounted display, and the same applies to a case where a camera image is viewed by fixing the screen of an information terminal such as a smartphone or tablet to the head or face. Can be applied to.
  • a head posture acquisition unit that acquires information on a user's head posture
  • a camera posture acquisition unit for acquiring camera posture information
  • a drawing processing unit that generates an image to be displayed on a display device fixed to the user's head or face from the captured image of the camera, based on the user's head posture and the posture of the camera
  • An information processing apparatus comprising: (2) The camera is mounted on a mobile device. The information processing apparatus according to (1) above.
  • the camera captures an omnidirectional image or a wide-angle image
  • the drawing processing unit corrects the user's head posture with the posture at the time of shooting of the camera, and an image obtained by cutting out the angle of view according to the user's head posture after correction from the photographed image of the camera.
  • Generate The information processing apparatus according to any one of (1) or (2) above.
  • the camera is fixedly mounted on the user's head or face.
  • the drawing processing unit generates an image obtained by cutting out an angle of view according to a first conversion parameter for converting the posture of the camera into the head posture of the user from the captured image of the camera.
  • the drawing processing unit uses the user's head posture at the photographing time of the camera and the user's head posture predicted after a delay time until an image is displayed on the display device, Generate images, The information processing apparatus according to (5) above.
  • the drawing processing unit constructs a three-dimensional model of the surrounding environment based on time-series image data captured by the camera, estimates a current camera position in the three-dimensional model, and The user's eyeball position and posture after a delay time from when the image is captured by the camera using the second conversion parameter for converting the position and posture into the position and posture of the user's eyeball until the display is displayed on the display device And generating an image photographed at the predicted eyeball position and posture from the three-dimensional model, The information processing apparatus according to (4) above.
  • a controller for remotely operating the mobile device A filter that constrains the trajectory of the mobile device and cuts input from the controller other than the constrained trajectory; Further comprising The input from the controller is converted into a position command in a direction along the restricted trajectory, a speed command, or an acceleration command, and transmitted to the mobile device.
  • the information processing apparatus according to (1) above.
  • the filter cuts inputs other than the front-rear direction from the controller, Sending a command to maintain a straight path to the mobile device;
  • the information processing apparatus according to (8) above.
  • the mobile device passes through the current location, and a straight line that faces the current traveling direction or a straight line that connects the current location of the mobile device and the target point is set as the trajectory
  • the information processing apparatus according to (9) above.
  • the filter cuts inputs other than the left and right directions from the controller, A command to maintain a circular trajectory is transmitted to the mobile device, and control is performed so that the posture of the mobile device faces a target point.
  • the information processing apparatus according to (8) above.
  • An information processing method comprising: (14) a camera; A display device used fixed to the user's head or face; An image processing device that generates an image to be displayed on the display device from a captured image of the camera, based on the user's head posture and the posture of the camera;
  • An image display system comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 移動体装置やユーザーに搭載されたカメラの撮影画像を、ユーザーの頭部又は顔部に固定された画像表示装置での表示に適合するように処理する。 描画処理部1042は、まず、カメラ姿勢角qcでユーザーの頭部姿勢角qhを補正し(F1421)、補正後のユーザーの頭部姿勢角qh *に応じた表示画角を撮影画像から切り出して、自由視点画像をレンダリングする(F1422)。そして、画像処理装置1040は、描画処理部1042がレンダリングした自由視点画像を、通信部1041を介して表示装置1020に送信し、表示装置1020で表示が行なわれる(F1430)。

Description

情報処理装置及び情報処理方法、並びに画像表示システム
 本明細書で開示する技術は、移動体装置やユーザーに搭載されたカメラで撮影した画像を処理する情報処理装置及び情報処理方法、並びに画像表示システムに関する。
 画像を観察するユーザーの頭部又は顔部に固定される画像表示装置、すなわち、ヘッド・マウント・ディスプレイが知られている。ヘッド・マウント・ディスプレイは、例えば左右の眼毎の画像表示部を持ち、また、ヘッドフォンと併用し、視覚及び聴覚を制御できるように構成されている。頭部に装着した際に外界を完全に遮るように構成すれば、視聴時の仮想現実感が増す。また、ヘッド・マウント・ディスプレイは、左右の眼に違う映像を映し出すことも可能であり、左右の眼に対して視差のある画像を表示すれば3D画像を提示することができる。
 この種のヘッド・マウント・ディスプレイは、虚像を眼の網膜上に結像させて、ユーザーに観察させる。ここで、虚像は、物体が焦点距離よりレンズに近い位置にある場合に、その物体側に形成される。例えば、瞳孔の前方に25ミリメートルだけ離間して広視野角の虚像光学系を配置し、この広視野角光学系のさらに前方に約0.7インチの有効画素範囲の大きさを持つ表示パネルを配置して、表示画像の拡大虚像をユーザーの瞳に結像するヘッド・マウント・ディスプレイについて提案がなされている(例えば、特許文献1を参照のこと)。
 また、ユーザーは、この種のヘッド・マウント・ディスプレイを用いて、広角画像の一部を切り出した画像を観察することができる。例えば、頭部にジャイロ・センサーなどからなる頭部動作追跡装置を取り付け、ユーザーの頭部の動きに追従させた全空間の360度の映像を実感できるようにしたヘッド・マウント・ディスプレイについて提案がなされている(例えば、特許文献2、特許文献3を参照のこと)。ジャイロ・センサーが検出した頭部の動きを打ち消すように、広角画像中で表示領域を移動させることで、頭部の動きに追従した画像を再現することができ、ユーザーは全空間を見渡すような体験をする。
 また、ヘリコプターなどのラジコンに搭載した無線カメラで撮影した一人称視点(パイロット視点)画像を見ながら操縦する、FPV(First Person Viewing)技術も知られている。例えば、撮影装置を搭載した移動体と、操作者が操作して移動体を遠隔制御するウェアラブルPCからなる移動体制御装置について提案がなされている(例えば、特許文献4を参照のこと)。移動体側では、移動体の動作を制御する信号を受信して自己の動作を制御するとともに、搭載している撮影装置を制御する信号を受信して撮影動作を制御して、撮影装置の出力する映像信号と音声信号をウェアラブルPCに送信する。一方、ウェアラブルPC側では、操作者の操作に応じて、移動体の動作を制御する信号を生成し、また、操作者の音声に応じて撮影装置の動作を制御する信号を生成して、移動体に無線送信するとともに、撮影装置の出力信号を無線受信して映像信号を再生し、これをモニタ画面に表示する。
 また、中長距離用の3次元ステレオ・カメラと近距離用の3次元ステレオ・カメラを有するラジコン・カーが3次元合成画像を送信して、コントローラー側で表示するネットワーク・システムについて提案がなされている(例えば、特許文献5を参照のこと)。また、模型装置が前方を撮影した画像と位置と向き情報を、コントローラー側で受信して、位置と向きに応じたバーチャル画像を生成して表示するネットワーク・システムについて提案がなされている(例えば、特許文献6を参照のこと)。
特開2012-141461号公報 特開平9-106322号公報 特開2010-256534号公報 特開2001-209426号公報 特開2012-151800号公報 特開2012-143447号公報
 本明細書で開示する技術の目的は、移動体装置やユーザーに搭載されたカメラで撮影した画像を好適に処理することができる、優れた情報処理装置及び情報処理方法、並びに画像表示システムを提供することにある。
 また、本明細書で開示する技術のさらなる目的は、カメラの撮影画像を、ユーザーの頭部又は顔部に固定された画像表示装置での表示に適合するように処理することができる、優れた情報処理装置及び情報処理方法、並びに画像表示システムを提供することにある。
 本明細書で開示する技術は、上記課題を参酌してなされたものであり、その第1の側面は、
 ユーザーの頭部姿勢の情報を取得する頭部姿勢取得部と、
 カメラの姿勢の情報を取得するカメラ姿勢取得部と、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理部と、
を具備する情報処理装置である。
 本明細書で開示する技術の第2の側面によれば、第1の側面に係る情報処理装置において、前記カメラは、移動体装置に搭載されている。
 本明細書で開示する技術の第3の側面によれば、第1又は2のいずれかの側面に係る報処理装置の前記カメラは、全方位画像又は広角画像を撮影し、前記描画処理部は、前記ユーザーの頭部姿勢を前記カメラの撮影時の姿勢で補正し、補正した後の前記ユーザーの頭部姿勢に応じた画角を前記カメラの撮影画像から切り出した画像を生成するように構成されている。
 本明細書で開示する技術の第4の側面によれば、第1の側面に係る情報処理装置において、前記カメラは、前記ユーザーの頭部又は顔部に固定して搭載されている。
 本明細書で開示する技術の第5の側面によれば、第4の側面に係る情報処理装置の前記描画処理部は、前記カメラの姿勢を前記ユーザーの頭部姿勢に変換する第1の変換パラメーターに応じた画角を前記カメラの撮影画像から切り出した画像を生成するように構成されている。
 本明細書で開示する技術の第6の側面によれば、第5の側面に係る情報処理装置の前記描画処理部は、前記カメラの撮影時刻における前記ユーザーの頭部姿勢と、前記表示装置に画像を表示するまでの遅延時間だけ後に予測される前記ユーザーの頭部姿勢を用いて、画像の生成を行なうように構成されている。
 本明細書で開示する技術の第7の側面によれば、第1の側面に係る情報処理装置の前記描画処理部は、前記カメラが撮影する時系列画像データに基づいて周囲環境の3次元モデルを構築するとともに、前記3次元モデル内での現在のカメラ位置を推定し、前記カメラの位置及び姿勢を前記ユーザーの眼球の位置及び姿勢に変換する第2の変換パラメーターを用いて前記カメラで撮影してから前記表示装置で表示するまでの遅延時間だけ後の前記ユーザーの眼球位置及び姿勢を予測して、予測される眼球位置及び姿勢において撮影された画像を前記3次元モデルから生成するように構成されている。
 本明細書で開示する技術の第8の側面によれば、第1の側面に係る情報処理装置は、前記移動体装置を遠隔操作するコントローラーと、前記移動体装置の軌道を制約し、制約した軌道以外の前記コントローラーからの入力をカットするフィルターと、
をさらに備えている。そして、前記コントローラーからの入力を前記の制約した軌道に沿う方向の位置指令、速度指令、又は加速度指令に変換して、前記移動体装置に送信するように構成されている。
 本明細書で開示する技術の第9の側面によれば、第8の側面に係る情報処理装置は、前記移動体装置の軌道を直進に制約したときに、前記フィルターが前記コントローラーからの前後方向以外の入力をカットし、直進の軌道を維持する指令を前記移動体装置に送信するように構成されている。
 本明細書で開示する技術の第10の側面によれば、第9の側面に係る情報処理装置は、前記移動体装置が現在地を通り、現在の進行方向を向く直線、又は、前記移動体装置の現在地と目標地点を結ぶ直線を軌道に設定するように構成されている。
 本明細書で開示する技術の第11の側面によれば、第8の側面に係る情報処理装置は、前記移動体装置の軌道を周回に制約したときに、前記フィルターが前記コントローラーからの左右方向以外の入力をカットし、周回の軌道を維持する指令を前記移動体装置に送信するとともに、前記移動体装置の姿勢が目標地点を向くように制御するように構成されている。
 本明細書で開示する技術の第12の側面によれば、第11の側面に係る情報処理装置は、目標地点を中心として前記移動体装置の現在地を通過する円周、又は、目標地点と交わる鉛直軸を中心として前記移動体装置の現在地を通る水平面内の円周を軌道に設定するように構成されている。
 また、本明細書で開示する技術の第13の側面は、
 ユーザーの頭部姿勢の情報を取得する頭部姿勢取得ステップと、
 カメラの姿勢の情報を取得するカメラ姿勢取得ステップと、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理ステップと、
を有する情報処理方法である。
 また、本明細書で開示する技術の第14の側面は、
 カメラと、
 ユーザーの頭部又は顔部に固定して用いられる表示装置と、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記表示装置で表示する画像を生成する画像処理装置と、
を具備する画像表示システムである。
 但し、ここで言う「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。
 本明細書で開示する技術によれば、移動体やユーザーなどに設置された遠隔カメラで撮影した画像を、ユーザーの頭部又は顔部に固定された画像表示装置での表示に適合するように好適に処理することができる、優れた情報処理装置及び情報処理方法、並びに画像表示システムを提供することができる。
 なお、本明細書に記載された効果は、あくまでも例示であり、本発明の効果はこれに限定されるものではない。また、本発明が、上記の効果以外に、さらに付加的な効果を奏する場合もある。
 本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。
図1は、本明細書で開示する技術の一実施形態に係る画像表示システム100の構成を模式的に示した図である。 図2は、図1に示した画像表示システムに適用されるヘッド・マウント・ディスプレイ110を頭部に装着しているユーザーを正面から眺めた様子を示した図である。 図3は、図2に示したヘッド・マウント・ディスプレイ110を着用したユーザーを上方から眺めた様子を示した図である。 図4は、全方位カメラ400の構成例を示した図である。 図5は、全方位カメラ400の構成例を示した図である。 図6は、全方位カメラ400の構成例を示した図である。 図7は、ヘッド・マウント・ディスプレイ110を着用したユーザーが自由視点画像を視聴する仕組みを説明するための図である 図8は、画像表示システム100の機能的構成例を示した図である。 図9は、クォータニオンを例示した図である。 図10は、画像表示システム100の他の機能的構成例を示した図である。 図11は、全方位画像からユーザーの頭部姿勢に応じた表示画角を切り出した様子を示した図である。 図12は、全方位カメラの姿勢変化のためにユーザーの頭部姿勢と一致しない表示画角を切り出した様子を示した図である。 図13は、ユーザーの頭部姿勢を全方位カメラの姿勢の変化分に応じて補正した表示画角を切り出す様子を示した図である。 図14は、ユーザーの頭部姿勢を全方位カメラの姿勢の変化分に応じて補正した表示画角で、全方位画像から自由視点画像を切り出す処理手順を示した図である。 図15は、ビデオ・シースルー方式の画像表示システム100の構成例を示した図である。 図16は、カメラの撮影画像を表示光学系の基準座標系に揃え、ユーザーの視野角に一致した画像を表示する処理手順を示した図である。 図17は、撮影してから表示するまでの遅延時間を考慮して、カメラの撮影画像を表示光学系の基準座標系に揃え、ユーザーの視野角に一致した画像を表示する処理手順を示した図である。 図18は、3次元再構成技術と頭部動作追跡予測を組み合わせて、撮影してから表示するまでの遅延時間を考慮した、ユーザーの視野角に一致した画像を表示する処理手順を示した図である。 図19は、移動体装置120の制御自由度を直進に制限して、コントローラー130を用いて遠隔操作する様子を示した図である。 図20は、移動体装置120の制御自由度を直進に制限して、遠隔操作を制御する処理手順を示した図である。 図21は、移動体装置120の制御自由度を周回に制限して、コントローラー130を用いて遠隔操作する様子を示した図である。 図22は、移動体装置120の制御自由度を周回に制限して、遠隔操作を制御する処理手順を示した図である。
 以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。なお、これ以降の説明では、原則として全方位画像や全方位カメラを例示に用いる。但し、広角画像や広角カメラを用いる場合であっても、撮影画角以外の領域を例えば黒一色に塗り潰した全方位画像やそれを出力するカメラを考えることによって、全方位画像の場合と共通に扱うことができ、本明細書で開示する技術は一般性を失わない。
 図1には、本明細書で開示する技術の一実施形態に係る画像表示システム100の構成を模式的に示している。図示の画像表示システム100は、ユーザーが頭部又は顔部に装着して用いる画像表示装置(ヘッド・マウント・ディスプレイ)110と、飛行機(若しくはヘリコプター、その他の飛翔体)、自動車、船舶などの移動体装置120-1、120-2…で構成される。一部の移動体装置120は、無線で遠隔操作されるラジコンでもよく、ユーザーはコントローラー130でラジコンを操縦することができる。移動体装置120-1、120-2、120-3…は、それぞれ全方位カメラを搭載し、移動中に風景を撮影している。コントローラー130は、例えばスマートフォンやタブレットなどの多機能情報端末でもよく、移動体装置120の操縦用アプリケーションを起動している。
 ヘッド・マウント・ディスプレイ110と移動体装置120、並びにコントローラー130と移動体装置120間は、例えばワイヤレス・ネットワークや赤外線通信などにより無線接続される。全方位カメラの撮影画像は、例えば移動体装置120の無線通信機能を利用して、ヘッド・マウント・ディスプレイ110を始め他の装置に送信することができる。但し、本明細書では、説明の簡素化のため、全方位カメラ自体が無線通信機能を装備しているものとする。
 図2には、図1に示した画像表示システムに適用されるヘッド・マウント・ディスプレイ110を頭部に装着しているユーザーを正面から眺めた様子を示している。
 ヘッド・マウント・ディスプレイ110は、ユーザーが頭部又は顔部に装着した際にユーザーの眼を直接覆い、画像視聴中のユーザーに没入感を与えることができる。また、表示画像は、外側(すなわち他人)からは見えないので、情報表示に際してプライバシーが守られ易い。シースルーのタイプとは相違し、ヘッド・マウント・ディスプレイ110を着用したユーザーは現実世界の風景を直接眺めることはできない。ユーザーの視線方向の風景を撮影する外側カメラ(図示しない)を装備していれば、その撮像画像をヘッド・マウント・ディスプレイ110で表示することにより、ユーザーは間接的に現実世界の風景を眺める(すなわち、ビデオ・シースルーで風景を表示する)ことができる。
 図2に示すヘッド・マウント・ディスプレイ110は、帽子形状に類似した構造体であり、着用したユーザーの左右の眼を直接覆うように構成されている。ヘッド・マウント・ディスプレイ110本体の内側の左右の眼に対向する位置には、ユーザーが観察する表示パネル(図2では図示しない)が配設されている。表示パネルは、例えば有機EL(Electro-Luminescence)素子や液晶ディスプレイなどのマイクロ・ディスプレイや、網膜直描ディスプレイなどのレーザー走査方式ディスプレイで構成される。
 ヘッド・マウント・ディスプレイ110本体の左右の両端付近にそれぞれマイクロフォンが設置されている。左右ほぼ対称的にマイクロフォンを持つことで、中央に定位した音声(ユーザーの声)だけを認識することで、周囲の雑音や他人の話声と分離することができ、例えば音声入力による操作時の誤動作を防止することができる。
 また、ヘッド・マウント・ディスプレイ110本体の外側には、ユーザーが指先などを使ってタッチ入力することができるタッチパネルが配設されている。図示の例では、左右一対のタッチパネルを備えているが、単一又は3以上のタッチパネルを備えていてもよい。
 図3には、図2に示したヘッド・マウント・ディスプレイ110を着用したユーザーを上方から眺めた様子を示している。図示のヘッド・マウント・ディスプレイ110は、ユーザーの顔面と対向する側面に、左眼用及び右眼用の表示パネルを持つ。表示パネルは、例えば有機EL素子や液晶ディスプレイなどのマイクロ・ディスプレイや網膜直描ディスプレイなどのレーザー走査方式ディスプレイで構成される。表示パネルの表示画像は、虚像光学部を通過するにより拡大虚像としてユーザーの左右の目でそれぞれ観察される。また、眼の高さや眼幅にはユーザー毎に個人差があるため、着用したユーザーの眼と左右の各表示系とを位置合わせする必要がある。図3に示す例では、右眼用の表示パネルと左眼用の表示パネルの間に眼幅調整機構を装備している。
 移動体装置120に搭載する全方位カメラは、例えば複数台のビデオカメラの組み合わせで構成することができる。図4乃至図6には、6台のビデオカメラで構成される全方位カメラ400の構成例を示している。
 それぞれ所定の位置に固定された6台のビデオカメラ401、402、…、406は、撮像画像を、画像処理部410に同期して出力する。各ビデオカメラ401、402、…、406は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージ・センサーを撮像素子に用いている。
 画像処理部410は、各ビデオカメラ401、402、…、406の撮像画像を、それぞれ配置された位置関係に応じてつなぎ合わせて1枚の全方位画像(若しくは、広角画像)フレームを生成する。生成された全方位画像の一部又は全部は、ヘッド・マウント・ディスプレイ110に無線送信され、着用したユーザーの頭部の姿勢(視線方向)に応じて視点が移動する自由視点画像を提供する。
 図5並びに図6には、6台のビデオカメラ401、402、…、406の配置例を模式的に示している。但し、図5は上方から俯瞰した図であり、図6は側面から斜視した図である。図示のように、6台のビデオカメラ401、402、…、406は、各々のカメラ主軸方向を互いに背を向けて放射状に配置されている。
 より好ましくは、各ビデオカメラ401、402、…、406の視点位置(カメラ位置)は、所定の基準点(後述)を通過する鉛直な基準軸501(図5、図6を参照のこと)を中心とする水平な同心円上に所定角度間隔で配列されている。本実施形態では、6台のビデオカメラ401、402、…、406が、60度間隔で配置される。また、隣接するビデオカメラ401、402、…、406間では、互いの撮像画角の左右の端部分が重なり合うように設置され、水平方向に途切れることなく全周囲を撮影できるものとする。
 なお、本実施形態に係る画像表示システム100に適用可能な全方位カメラの具体的な構成例については、例えば本出願人に既に譲渡されている特願2014-128020号明細書を参照されたい。但し、本明細書で開示する技術は、特定の全方位カメラの構成に限定されない。
 図7には、本実施形態に係る画像表示システム100において、ヘッド・マウント・ディスプレイ110を着用したユーザーが自由視点画像を視聴する仕組み(すなわち、ユーザーの頭部の動きに追従した画像を表示する仕組み)を図解している。
 ユーザーの視線の奥行き方向がzw軸、水平方向がyw軸、垂直方向がxw軸であり、ユーザーの基準軸xwwwの原点位置はユーザーの視点位置とする。したがって、ロールθzはユーザーの頭部のzw軸回りの運動、チルトθyはユーザーの頭部のyw軸回りの運動、パンθzはユーザーの頭部のxw軸回りの運動に相当する。
 まず、ユーザーの頭部のロール、チルト、パンの各方向の動き(θz,θy,θz)や頭部の平行移動からなる姿勢情報を検出する。そして、ユーザーの頭部の姿勢に追従するように、全方位カメラで撮影した元の全方位画像701から切り出す領域702の中心を移動させ、その中心位置で所定の画角で切り出した領域702の画像をレンダリングする。具体的には、ユーザーの頭部運動のロール成分に応じて領域702-1を回転させたり、ユーザーの頭部運動のチルト成分に応じて領域702-2を移動させたり、ユーザーの頭部運動のパン成分に応じて領域702-3を移動させたりして、ユーザーの頭部の動きを打ち消すように表示領域を移動させる。このようにして、ヘッド・マウント・ディスプレイ110側では、ユーザーの頭部の動きに追従する自由視点画像を提示することができる。
 なお、全方位カメラで撮影した全方位画像からユーザーの頭部姿勢に応じた自由視点画像をレンダリングする処理は、全方位カメラで行なう方法や、全方位画像をヘッド・マウント・ディスプレイ110に送信してヘッド・マウント・ディスプレイ110で行なう方法、全方位画像をクラウド・コンピューターにアップロードしてクラウド上で行なう方法などが挙げられる。
 ここで、図1に示したように、全方位カメラが移動体装置120上に搭載されている場合、移動体装置120が進路を変更することが想定される。移動体装置120が進路を変更することに伴って、全方位カメラの姿勢が変化するため、ヘッド・マウント・ディスプレイ110を着用したユーザー自体は頭部を動かしていないにも拘らず、見える画像が変化するという問題がある。ユーザーの動きとは一致しない、予期しない画像を視聴すると、ユーザーはVR(Virtual Reality)酔いなどの、健康被害を受けるおそれがある。
 そこで、本実施形態では、ヘッド・マウント・ディスプレイ110を着用したユーザーの頭部姿勢を全方位カメラの姿勢の変化分に応じて補正して、全方位画像から表示画像の切り出しを行なうようにしている。このような処理により、ユーザーが動かなければ同じ場所の自由視点画像が見え続けるようになり、VR酔いを防止することができる。
 図8には、このような画像切り出し処理を実現することができる、画像表示システム100の機能的構成例を示している。図示の画像表示システム100は、頭部動作追跡装置810、表示装置820、撮影装置830という3台の装置で構成される。
 頭部動作追跡装置810は、表示装置820が表示する画像を観察するユーザーの頭部に装着して用いられ、所定の送信周期でユーザーの頭部の姿勢情報を表示装置820に出力する。図示の例では、頭部動作追跡装置810は、センサー部811と、姿勢角演算部812と、通信部813を備えている。
 センサー部811は、例えば、ジャイロ・センサーと加速度センサーと地磁気センサーなど複数のセンサー素子を組み合わせて構成され、ユーザーの頭部の姿勢角を検出する。ここでは、3軸ジャイロ・センサー、3軸加速度センサー、3軸地磁気センサーの合計9軸を検出可能なセンサーとする。
 姿勢角演算部812は、センサー部811による9軸の検出結果に基づいて、ユーザーの頭部の姿勢情報を演算する。本実施形態では、姿勢角はクォータニオンとして表現されるものとする。また、以下の説明では、位置を表す3次元ベクトルをp、姿勢を表すクォータニオンをqとする。クォータニオンqは、下式(1)並びに図9に示すように、回転軸(ベクトル)と回転角(スカラー)からなる4元数である。クォータニオンは、特異点がないことから計算に適している。コンピューター・グラフィックスの分野では、物体の姿勢をクォータニオンで表現するのが一般的である。
Figure JPOXMLDOC01-appb-M000001
 頭部動作追跡装置810と表示装置820間はBluetooth(登録商標)通信などの無線通信により相互接続されているものとする。あるいは、無線通信ではなく、USB(Universal Serial Bus)のような高速な有線インターフェース経由で頭部動作追跡装置810と表示装置820間を接続するようにしてもよい。姿勢角演算部812で求められたユーザーの頭部の姿勢情報は、通信部813を介して表示装置820に送信される。
 撮影装置830は、全方位カメラ831と、センサー部832と、姿勢角演算部833と、通信部834を備えている。本実施形態では、撮影装置830は、移動体装置120に搭載して用いられる。
 全方位カメラ831は、図4乃至図6に示したように構成され、全方位画像を撮影する。ここでは詳細な説明を省略する。
 センサー部832は、例えば、ジャイロ・センサーと加速度センサーと地磁気センサーなど複数のセンサー素子を組み合わせて構成されている。ここでは、3軸ジャイロ・センサー、3軸加速度センサー、3軸地磁気センサーの合計9軸を検出可能なセンサーとする。姿勢角演算部833は、センサー部832による9軸の検出結果に基づいて、全方位カメラ831の姿勢情報を演算する。本実施形態では、姿勢角はクォータニオンとして表現されるものとする(同上)。
 撮影装置830と表示装置820間はWi-Fi(Wireless Fidelity)などの無線通信により相互接続されているものとする。全方位カメラ831で撮影した画像情報と、姿勢角演算部833で求められた全方位カメラ831の姿勢情報は、通信部834を介して表示装置820に送信される。
 表示装置820は、図1に示した画像表示システム100中のヘッド・マウント・ディスプレイ110に相当する。図8に示す例では、頭部動作追跡装置810は表示装置820とは独立した装置として構成されている(例えば、頭部動作追跡装置810は、ヘッド・マウント・ディスプレイ110のオプション製品として製造販売される)。但し、頭部動作追跡装置810と表示装置820を一体として、1台のヘッド・マウント・ディスプレイ110を構成することもできる。
 表示装置820は、第1の通信部821と、第2の通信部824と、描画処理部822と、表示部823を備えている。
 表示装置820がヘッド・マウント・ディスプレイとして構成される場合、例えば、表示部823は、ユーザーの左右の眼にそれぞれ固定された左右の画面を備え、左眼用画像及び右眼用画像を表示する。表示部823の画面は、例えば有機EL素子や液晶ディスプレイなどのマイクロ・ディスプレイなどの表示パネル、あるいは、網膜直描ディスプレイなどのレーザー走査方式ディスプレイで構成される。また、表示部823の表示画像を拡大投影して、ユーザーの瞳に所定の画角からなる拡大虚像を結像する虚像光学部(図示しない)を備えている。
 第1の通信部821は、頭部動作追跡装置810から、通信部813を介してユーザーの頭部の姿勢情報を受信する。また、第2の通信部824と、撮影装置830から、通信部834を介して、全方位カメラ831で撮影した画像情報と、姿勢角演算部833で求められた全方位カメラ831の姿勢情報を受信する。なお、本実施形態では姿勢角演算部812は頭部動作追跡装置810に、また姿勢角演算部833は撮影装置に搭載されるものとしたが、通信部813、通信部834が各々の姿勢情報を送信する代わりに、各装置810及び830では姿勢角演算を行なわず、センサー部811、センサー部832のセンサー検出結果をそれぞれそのまま無線送信し、表示装置820側で第1の通信部821や第2の通信部824で受信したセンサー情報を用いてそれぞれの姿勢角演算を行なうように構成することもできる。
 描画処理部822は、全方位画像からユーザーの頭部の姿勢情報に対応した表示画角を切り出した画像をレンダリングする。ユーザーの頭部の姿勢角を打ち消すように原画像中から切り出す表示画角を移動させることによって、表示部823では、頭部の動きに追従した画像を表示することができる。したがって、ユーザーは大画面を見渡す体験をすることができる。
 また、本実施形態では、描画処理部822は、表示装置820の表示画像を観察するユーザー(ヘッド・マウント・ディスプレイ110を着用したユーザー)の頭部姿勢を全方位カメラ831の姿勢の変化分に応じて補正して、全方位画像の切り出しを行なうことようにしている。このような補正処理により、カメラ831の姿勢が変化しても、ユーザーが動かなければ同じ場所の自由視点画像が見え続けるようにしている。
 図10には、画像表示システム100の他の機能的構成例を示している。図示の画像表示システム100は、頭部動作追跡装置1010、表示装置1020、撮影装置1030、画像処理装置1040という4台の装置で構成される。
 頭部動作追跡装置1010は、表示装置1020が表示する画像を観察するユーザーの頭部に装着して用いられ、所定の送信周期でユーザーの頭部の姿勢情報を画像処理装置1040に出力する。図示の例では、頭部動作追跡装置1010は、センサー部1011と、姿勢角演算部1012と、通信部1013を備えている。
 センサー部1011は、9軸を検出可能なセンサーであり(同上)、ユーザーの頭部の姿勢角を検出する。姿勢角演算部1012は、センサー部1011による9軸の検出結果に基づいて、ユーザーの頭部の姿勢角を表すクォータニオンqhを演算する。そして、算出したクォータニオンqhを、通信部1013を介して画像処理装置1040に送信する。
 撮影装置1030は、全方位カメラ1031と、センサー部1032と、姿勢角演算部1033と、通信部1034を備えている。撮影装置1030は、移動体装置120に搭載して用いられる(同上)。
 全方位カメラ1031は、図4乃至図6に示したように構成され、全方位画像を撮影する。センサー部1032は、9軸を検出可能なセンサーであり(同上)、全方位カメラ1031の姿勢角を検出する。姿勢角演算部1033は、センサー部1032による9軸の検出結果に基づいて、全方位カメラ1031の姿勢角を表すクォータニオンqcを演算する。そして、算出したクォータニオンqcを、通信部1034を介して画像処理装置1040に送信する。
 画像処理装置1040は、例えばクラウド・コンピューターで構成される。画像処理装置1040は、通信部1041を介して、頭部動作追跡装置1010からユーザーの頭部の姿勢角を表すクォータニオンqhを受信するとともに、撮影装置1030から全方位カメラ1031で撮影した画像情報と全方位カメラ1031の姿勢角を表すクォータニオンqcを受信する。そして、描画処理部1042は、全方位画像からユーザーの頭部の姿勢情報に対応した表示画角を切り出した画像をレンダリングして、通信部1041を介して表示装置1020に送信する。なお、先に述べた構成と同様に、姿勢角演算を頭部動作追跡装置1010や撮影装置1030で行なうのでなくセンサー情報を送信して、画像処理装置1040で姿勢角演算を行なうように構成することもできる。
 表示装置1020は、通信部1021を介して画像処理装置1040から受信した画像情報を、表示部1023で表示する。表示装置1020は、ユーザーの頭部の姿勢角を打ち消すように原画像中の表示画角を移動させることによって、表示部1023では頭部の動きに追従した画像を表示することができる。したがって、ユーザーは大画面を見渡す体験をすることができる。画像処理装置1040が、例えばクラウド・コンピューターで構成され、通信部を介して表示装置1020と接続される構成の場合、通信部での伝送遅延が問題になるケースがある。図10に示したシステム構成の変形例として、表示装置1020が第2の描画処理部(図示しない)を備え、画像処理装置1040は切り出した画像情報だけでなく、切り出しに用いたユーザーの頭部の姿勢情報も同時に送信し、表示装置1020では画像処理装置1040から受信した姿勢情報と、頭部動作追跡装置1010から受信した最新の姿勢情報を用いて画像表示位置を調整することによって、伝送遅延の問題を軽減することができる。
 図11には、移動体装置120に搭載した全方位カメラで撮影した全方位画像1100から、ヘッド・マウント・ディスプレイ110を着用したユーザーの頭部姿勢に対応した表示画角1101を切り出した様子を示している。
 また、図12には、ユーザーは頭部姿勢を動かしていないにも拘らず、移動体装置120すなわち全方位カメラの姿勢が左方へ変化し、その結果として、全方位画像1200から切り出される表示画角1201が逆に右方へ移動している様子を示している。この場合、ヘッド・マウント・ディスプレイ110を着用したユーザー自体は頭部を動かしていないにも拘らず、見える画像が変化するという現象が生じる。ユーザーの動きとは一致しない、予期しない画像を視聴すると、ユーザーはVR酔いなどの、健康被害を受ける恐れがある。
 例えば、ユーザーが移動体装置120に搭載したカメラの撮影画像を視聴しながらコントローラー130で移動体装置120を遠隔操作する場合、移動体装置120がユーザーの意図と異なる運動や予期せぬ運動を行なった場合には、ユーザーはVR酔いを起こすおそれがある。勿論、移動体装置120がユーザーの遠隔操作通りに運動したとしても、表示画像の動きが激しいと、VR酔いを起こし易い。
 上記のようなVR酔いを防ぐために、コントローラー130による移動体装置120の制御性能を向上させて、ユーザーの意図と異なる運動が発生しないようにする、移動体装置120がゆっくりとした運動のみを行なうようにする、あるいは、カメラの速い動きがヘッド・マウント・ディスプレイ110で表示されないように、ローパス・フィルターでカットする、といった解決方法も想起される。
 これに対し、本明細書で開示する技術では、移動体装置120に搭載したカメラで撮影した画像をそのまま表示するのではなく、ヘッド・マウント・ディスプレイ110を着用したユーザーが見ている方向に適合する部分を全方位画像から切り出して表示するようにしている。
 例えば図8並びに図10に示した実施形態では、頭部動作追跡装置810又は1010で計測したユーザーの頭部姿勢を、全方位カメラ830又は1030の姿勢の変化分に応じて補正するようする。図13には、左方へ姿勢が変化した全方位カメラで撮影した全方位画像1300から、ユーザーの頭部姿勢を全方位カメラの姿勢の変化分に応じて補正した表示画角1301を切り出す様子を示している。このような処理により、全方位カメラの姿勢が変化しても、ユーザーが動かなければ、同じ自由視点画像が見え続けるようになり、VR酔いを防止することができる。
 なお、全方位画像(若しくは、広角画像)からユーザーが見ている方向に適合する表示画角を切り出す際には、カメラに固定した座標系でも、ユーザーの身体に固定した座標系でもない、第3の座標系を用いる。すなわち、カメラ側とヘッド・マウント・ディスプレイ側でそれぞれ独立に位置及び姿勢変動の推定を行ない、両者の結果に基づいて表示画像の領域を決定する。
 図14には、ヘッド・マウント・ディスプレイ110を着用したユーザーの頭部姿勢を全方位カメラの姿勢の変化分に応じて補正した表示画角で、全方位画像から自由視点画像を切り出す処理手順を示している。この処理手順は、例えば図8に示した画像表示システム100において表示装置820内の描画処理部822が行ない、又は、図10に示した画像表示システム100において、画像処理装置1040が行なう。以下では、便宜上、図10に示した画像表示システム100で処理を実施するものとして説明する。
 移動体装置120に搭載された撮影装置1030の全方位カメラ1031は、全方位画像を撮影している(F1401)。また、センサー部1032は全方位カメラ1031の姿勢角を検出し、姿勢角演算部1033は、センサー部1032による9軸の検出結果に基づいて全方位カメラ1031の姿勢角を表すクォータニオンqcを演算する(F1402)。そして、撮影画像とカメラ姿勢角qcを、通信部1034を介して画像処理装置1040に送信する。
 一方、頭部動作追跡装置1010内では、センサー部1011がユーザーの頭部の姿勢角を検出し、姿勢角演算部1012がセンサー部1011による検出結果に基づいてユーザーの頭部の姿勢角を表すクォータニオンqhを演算する(F1411)。そして、頭部姿勢角qhを、通信部1013を介して画像処理装置1040に送信する。
 画像処理装置1040側では、通信部1041で、撮影装置1030から撮影画像とカメラ姿勢角qcを受信するとともに、頭部動作追跡装置1010からユーザーの頭部姿勢角qhを受信する。カメラ姿勢角qcが変化しない場合は、描画処理部1042は、ユーザーの頭部姿勢角qhに応じた表示画角を撮影画像から切り出して、自由視点画像をレンダリングすればよい。但し、本実施形態では、図13で示したように、カメラ姿勢角qcが変化することを想定している。したがって、描画処理部1042は、まず、カメラ姿勢角qcでユーザーの頭部姿勢角qhを補正し(F1421)、補正後のユーザーの頭部姿勢角qh *に応じた表示画角を撮影画像から切り出して、自由視点画像をレンダリングする(F1422)。そして、画像処理装置1040は、描画処理部1042がレンダリングした自由視点画像を、通信部1041を介して表示装置1020に送信し、表示装置1020で表示が行なわれる(F1430)。
 なお、上記の処理F1422でのユーザーの頭部姿勢角qhの補正処理は、下式(2)に従って行なわれる。すなわち、元のユーザーの頭部姿勢角qhに、左側からカメラ姿勢角qcのインバースを乗算して、補正後のユーザーの頭部姿勢角qh *を求める。なお、姿勢角qh、qcはいずれも、上述した第3の座標系を基準として測定した頭部及びカメラそれぞれの姿勢各情報である。
Figure JPOXMLDOC01-appb-M000002
 これまでは、全方位カメラを備えた撮影装置が飛行機(若しくはヘリコプター、その他の飛翔体)、自動車、船舶などの移動体装置120に搭載された画像表示システム100について説明してきた。これ対し、図15に示す、ヘッド・マウント・ディスプレイ110を着用したユーザー本人に全方位カメラを搭載し、撮影した画像をユーザーがヘッド・マウント・ディスプレイ110で視聴するという、ビデオ・シースルー方式の画像表示システム100も考えられる。この場合、全方位カメラで撮影した全方位画像から、ユーザーの頭部姿勢に応じた表示画角を切り出して、ヘッド・マウント・ディスプレイ110に表示する。
 このようなビデオ・シースルー方式の画像表示システム100において、ユーザーの頭部姿勢と表示画角が一致しないという問題は、図12に示したようにカメラの姿勢が変化する以外に、カメラで撮影してから表示するまでの遅延時間にも起因して発生する。頭部の向きと表示画角が一致しないと、ユーザーは、予期しない画像を視聴することになり、VR酔いを起こし易い。
 また、図15に示したようなビデオ・シースルー方式のヘッド・マウント・ディスプレイにおいては、カメラの取り付け位置及び姿勢とユーザーが撮影画像を視聴する位置(眼球位置)及び姿勢の不一致により、以下の(1)~(3)に挙げるようなさまざまな問題が生じる。
(1)手が短く見えるなど、距離感が掴み難い。
(2)光軸方向を揃えないと、酔い易い。
(3)撮像視野角と表示視野角が一致しないと、酔い易い。
 本発明者らは、ビデオ・シースルー方式の画像表示システム100における遅延や、姿勢・視野角の不一致の問題は、カメラ姿勢を考慮した表示補正と頭部動作追跡予測の組み合わせにより軽減できると考えている。
 説明の簡素化のため、まずカメラで撮影してから表示するまでの遅延時間がない場合について考察する。この場合、カメラの基準座標系と、表示光学系(表示部の画面)の基準座標系を揃え、ユーザーに提示する視野角を一致させるだけでよい。
 図16には、カメラの撮影画像を表示光学系の基準座標系に揃え、ユーザーの視野角に一致した画像を表示する処理手順(但し、撮影してから表示するまでの遅延時間がないと仮定する)を示している。
 ユーザーに搭載された撮影装置1030の全方位カメラ1031は、全方位画像を撮影している(F1601)。
 ユーザー(若しくは、ユーザーが着用する表示装置1020)に対する全方位カメラ1031の位置は固定であるとする。この場合、カメラの姿勢を基準にして、ユーザーの頭部姿勢を固定パラメーターqtで表現することができる。そこで、この固定に応じた表示画角をカメラの撮影画像から切り出して(F1602、F1603)、表示するだけでよい(F1604)。カメラと頭部が一体となって運動するため、上式(2)における補正後の頭部姿勢角qh´*=qc -1hが、(各姿勢角qc、qhの値に依らず)常に一定値となるので、それを固定パラメーターqtと呼ぶことにする。
 また、図17には、撮影してから表示するまでの遅延時間を考慮して、カメラの撮影画像を表示光学系の基準座標系に揃え、ユーザーの視野角に一致した画像を表示する処理手順を示している。
 ユーザーに搭載された撮影装置1030の全方位カメラ1031は、全方位画像を撮影している(F1701)。
 また、ユーザー(若しくは、ユーザーが着用する表示装置1020)に対する全方位カメラ1031の相対的な位置関係は固定であり、カメラの姿勢をユーザーの頭部姿勢に変換する固定パラメーターqtが保持されている(F1702)。固定パラメーターqtは、表示光学系とカメラ撮影系の機械的な配置によって決まる。
 また、頭部動作追跡装置1010内では、センサー部1011がユーザーの頭部の姿勢角を検出し、姿勢角演算部1012がセンサー部1011による検出結果に基づいてユーザーの頭部の姿勢角を表すクォータニオンqhを演算して(F1703)、センサー情報取得時の時刻情報と関連付けて、ロギングする(F1704)。そして、F1701における撮影時刻とF1704でロギングした頭部姿勢の推定値qhに基づいて、撮影時における頭部姿勢qhcを推定する(すなわち、撮影時刻に対する補間又は予測を行なう)(F1705)。また、現在時刻から表示光学系に画像が表示されるまでの遅延時間δを見積り(F1706)、現在時刻(F1707)とF1704でロギングした頭部姿勢の推定値qhに基づいて、次に表示が行なわれる時刻(現在時刻+遅延時間δ)における頭部姿勢qh´を予測する(F1708)。なお、遅延時間δは、主に表示パネルの駆動周波数や、パネル駆動回路の構成によって決まる。遅延時間δを考慮した頭部の姿勢の予測は、例えば本出願人に既に譲渡されている特願2013-268014号明細書に開示されている予測アルゴリズムを用いて行なうことができる。
 画像処理装置1040では、F1702で取得した固定パラメーターqtと、F1705で推定した頭部姿勢qhcと、F1708で予測した頭部姿勢の予測値qh´に基づいて、補正パラメーターqt *を計算する(F1709)。具体的には、下式(3)に示すように、頭部姿勢の予測値qh´の左側から、撮影時における頭部姿勢qhcのインバースを乗算して得られる補正項qhc -1h´を固定パラメーターqtの右側から乗算して、補正パラメーターqt *を計算する
Figure JPOXMLDOC01-appb-M000003
 そして、補正パラメーターqt *に応じた表示画角を撮影画像から切り出して、自由視点画像をレンダリングする(F1710)。このようにしてレンダリングした自由視点画像を、画像処理装置1040から表示装置1020に送信し、表示装置1020で表示が行なわれる(F1711)。
 また、本発明者らは、ビデオ・シースルー方式の画像表示システム100における遅延や、姿勢・視野角の不一致の問題は、Visual SLAMに代表される3次元再構成技術と頭部動作追跡予測の組み合わせによっても解決できると考えている。Visual SLAMは、未知環境下でカメラの自己位置推定と地図作成を同時に行なうことができる技術である。Visual SLAMの一例として、統合型拡張現実感技術SmartAR(ソニー株式会社の商標)を挙げることができる。
 撮像装置1040では、ユーザーの頭部(又は、その他のユーザーの身体の部位)に設置された全方位カメラ1031が撮影を継続して行ない、時系列画像データを得ることができる。画像処理装置1040では、Visual SLAM技術を利用して、この時系列画像データから周囲環境の3次元モデルを構築するとともに、この3次元モデル内での現在のカメラ位置を把握する。そして、画像処理装置1040は、撮影してから表示装置1020で表示するまでの遅延時間δを考慮してユーザーの現在の眼球位置と姿勢を予測すると、予測された位置での仮想カメラから撮影した画像をレンダリングして、これを表示装置1020で表示する。
 図18には、3次元再構成技術と頭部動作追跡予測を組み合わせて、撮影してから表示するまでの遅延時間を考慮した、ユーザーの視野角に一致した画像を表示する処理手順を示している。
 ユーザーに搭載された撮影装置1030の全方位カメラ1031は、全方位画像を撮影している(F1801)。
 画像処理装置1040では、Visual SLAM技術を利用して、この時系列画像データから周囲環境の3次元モデルMを構築するとともに(F1802)、この3次元モデル内での撮影時のカメラ位置pc及びカメラ姿勢qcを推定し(F1803)、各撮影時刻情報と関連付けてロギングする(F1804)。
 次に、現在時刻から表示光学系に画像が表示されるまでの遅延時間δを見積り(F1805)、現在時刻(F1806)とF1804でロギングしたカメラ位置並びに姿勢の各推定値pc、qcに基づいて、次に表示が行なわれる時刻におけるカメラ位置p´c並びにカメラ姿勢q´cを予測する(F1807)。また、全方位カメラ1031の位置及び姿勢とユーザーの眼球位置及び姿勢の変換パラメーターpt、qtを取得する(F1808)。変換パラメーターpt、qtは、表示光学系とカメラ撮影系の機械的な配置によって決まる固定パラメーターである。なお、変換パラメーターptは座標位置のオフセットを与える3次元ベクトル、qtは姿勢の変化を表すクォータニオンである。そして、下式(4)に示すように、変換パラメーターpt、qtを用いて、次に表示が行なわれる時刻におけるカメラ位置の予測値p´c並びにカメラ姿勢の予測値q´cから、その時刻におけるユーザーの眼球位置p´h及びユーザーの眼球の姿勢q´hを予測する(F1809)。
Figure JPOXMLDOC01-appb-M000004
 そして、画像処理装置1040では、F1802で構築された周囲環境の3次元モデルMを用いて、予測された眼球位置p´h及び姿勢q´hでの撮影データをレンダリングする(F1810)。このようにしてレンダリングした自由視点画像を、画像処理装置1040から表示装置1020に送信し、表示装置1020で表示が行なわれる(F1811)。
 上述したように、図17並びに図18に示した処理手順によれば、ビデオ・シースルー方式の画像表示システム100における遅延や、姿勢・視野角の不一致の問題を解決することができる。この結果、ビデオ・シースルー画像において、光軸不一致などの不整合を抑制して、VR酔いを防止することができる。また、カメラの選択や配置の自由度が向上することから、以下の(1)~(4)のような効果が得られる。
(1)カメラと眼球の光軸を合わせなくてよい。
(2)カメラと眼球の姿勢を一致させなくてよい。
(3)カメラと眼球の視野角を合わせなくてよい。
(4)任意の台数のカメラを配置することができる。
 図1に示した画像表示システム100は、移動体装置120に搭載されたカメラと、ユーザーが頭部に装着してカメラの撮影画像を視聴するヘッド・マウント・ディスプレイ110で構成されるが、ユーザーがコントローラー130を用いた移動体装置120の遠隔操作カメラ・システムとして利用することもできる。
 一般的な遠隔操作システムでは、移動体装置120が可能なあらゆる動きを、コントローラー130を用いて操作することができる。ところが、移動体装置120に搭載したカメラの撮影画像を視聴しながら遠隔操作する場合、移動体装置120がユーザーの意図と異なる運動や予期せぬ運動を行なった場合には、ユーザーはVR酔いを起こすおそれがある。
 これに対し、本明細書で開示する技術では、ユーザーによる移動体装置120の制御自由度を制限することにより、VR酔いを防止するようにしている。例えば、空間内における移動体装置120の軌道を指定して、その軌道上の位置のみ、速度のみ、あるいは加速度のみを遠隔操作する。
 以下では、画像表示システム100を、制御自由度を制限できる遠隔操作カメラ・システムとして運用する実施例について紹介する。例えば、ヘリコプターや3枚以上のローターを備えたマルチコプターのような飛行型の移動体装置120を遠隔操作の対象とし、直進のみ、あるいは周回のみに制御自由度を制限する。そして、ユーザーは、ジョイスティックのような操作が比較的容易な入力装置をコントローラー130に用いて、直進又は周回するという軌道上での速度又は加速度のみを遠隔操作する。
 まず、図19に示すように、移動体装置120の制御自由度を直進に制限した場合のコントローラー130を用いた遠隔操作について説明する。図20には、この場合の移動体装置120を制御する処理手順を示している。
 直進に制限された軌道制約モードに入ると(F2001)、移動体装置120の軌道をセットする(F2002)。移動体装置120の軌道が直進に制約される場合、例えば以下の(1)又は(2)に示すような直線の軌道をセットする。
(1)現在地を通り、現在の進行方向を向く直線
(2)現在地と目標地点を結ぶ直線
 ジョイスティックなどのコントローラー130から制御入力があると(F2003)、制御入力のフィルタリングを行ない、前後方向以外の制御入力をカットする(F2004)。
 次いで、制御入力を、F2002でセットした直線軌道に沿う位置指令、速度指令、又は加速度指令に変換して(F2005)、軌道を維持する指令を移動体装置120の自動制御系へ伝達する(F2006)。
 次に、図21に示すように、移動体装置120の制御自由度を周回に制限した場合のコントローラー130を用いた遠隔操作について説明する。図22には、この場合の移動体装置120を制御する処理手順を示している。
 周回に制限された軌道制約モードに入ると(F2201)、移動体装置120の軌道をセットする(F2202)。移動体装置120の軌道が周回に制約される場合、例えば以下の(1)又は(2)に示すような円周の軌道をセットする。
(1)目標地点を中心として現在地を通る円周
(2)目標地点と交わる鉛直軸を中心として、現在地を通る水平面内の円周
 ジョイスティックなどのコントローラー130から制御入力があると(F2203)、制御入力のフィルタリングを行ない、左右方向以外の制御入力をカットする(F2204)。
 次いで、制御入力を、F2202でセットした円周の軌道に沿う位置指令、速度指令、又は加速度指令に変換して(F2205)、軌道を維持する指令を移動体装置120の自動制御系へ伝達し、移動体装置120の姿勢は目標地点を向くように制御する(F2206)。
 以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。
 本明細書で開示する技術は、移動体装置などに搭載した遠隔カメラで撮影した画像を没入型のヘッド・マウント・ディスプレイで視聴する際に好適に適用することができるが、勿論、透過型のヘッド・マウント・ディスプレイにも適用することができる。
 また、本明細書で開示する技術は、遠隔カメラではなく、ヘッド・マウント・ディスプレイ本体に搭載したカメラで撮影した画像をビデオ・シースルーする場合にも、同様に適用することができる。
 さらに、本明細書で開示する技術は、ヘッド・マウント・ディスプレイではなく、スマートフォンやタブレットなどの情報端末の画面を頭部や顔部に固定してカメラの撮影画像を視聴する場合にも、同様に適用することができる。
 また、本明細書で開示する技術は、両眼式及び単眼式の双方のヘッド・マウント・ディスプレイに好適に適用することができる。
 要するに、例示という形態により本明細書で開示する技術について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。
 なお、本明細書の開示の技術は、以下のような構成をとることも可能である。
(1)ユーザーの頭部姿勢の情報を取得する頭部姿勢取得部と、
 カメラの姿勢の情報を取得するカメラ姿勢取得部と、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理部と、
を具備する情報処理装置。
(2)前記カメラは、移動体装置に搭載されている、
上記(1)に記載の情報処理装置。
(3)前記カメラは、全方位画像又は広角画像を撮影し、
 前記描画処理部は、前記ユーザーの頭部姿勢を前記カメラの撮影時の姿勢で補正し、補正した後の前記ユーザーの頭部姿勢に応じた画角を前記カメラの撮影画像から切り出した画像を生成する、
上記(1)又は(2)のいずれかに記載の情報処理装置。
(4)前記カメラは、前記ユーザーの頭部又は顔部に固定して搭載されている、
上記(1)に記載の情報処理装置。
(5)前記描画処理部は、前記カメラの姿勢を前記ユーザーの頭部姿勢に変換する第1の変換パラメーターに応じた画角を前記カメラの撮影画像から切り出した画像を生成する、
上記(4)に記載の情報処理装置。
(6)前記描画処理部は、前記カメラの撮影時刻における前記ユーザーの頭部姿勢と、前記表示装置に画像を表示するまでの遅延時間だけ後に予測される前記ユーザーの頭部姿勢を用いて、画像の生成を行なう、
上記(5)に記載の情報処理装置。
(7)前記描画処理部は、前記カメラが撮影する時系列画像データに基づいて周囲環境の3次元モデルを構築するとともに、前記3次元モデル内での現在のカメラ位置を推定し、前記カメラの位置及び姿勢を前記ユーザーの眼球の位置及び姿勢に変換する第2の変換パラメーターを用いて前記カメラで撮影してから前記表示装置で表示するまでの遅延時間だけ後の前記ユーザーの眼球位置及び姿勢を予測して、予測される眼球位置及び姿勢において撮影された画像を前記3次元モデルから生成する、
上記(4)に記載の情報処理装置。
(8)前記移動体装置を遠隔操作するコントローラーと、
 前記移動体装置の軌道を制約し、制約した軌道以外の前記コントローラーからの入力をカットするフィルターと、
をさらに備え、
 前記コントローラーからの入力を前記の制約した軌道に沿う方向の位置指令、速度指令、又は加速度指令に変換して、前記移動体装置に送信する、
上記(1)に記載の情報処理装置。
(9)前記移動体装置の軌道を直進に制約したときに、
 前記フィルターは、前記コントローラーからの前後方向以外の入力をカットし、
 直進の軌道を維持する指令を前記移動体装置に送信する、
上記(8)に記載の情報処理装置。
(10)前記移動体装置が現在地を通り、現在の進行方向を向く直線、又は、前記移動体装置の現在地と目標地点を結ぶ直線を軌道に設定する、
上記(9)に記載の情報処理装置。
(11)前記移動体装置の軌道を周回に制約したときに、
 前記フィルターは、前記コントローラーからの左右方向以外の入力をカットし、
 周回の軌道を維持する指令を前記移動体装置に送信するとともに、前記移動体装置の姿勢が目標地点を向くように制御する、
上記(8)に記載の情報処理装置。
(12)目標地点を中心として前記移動体装置の現在地を通過する円周、又は、目標地点と交わる鉛直軸を中心として前記移動体装置の現在地を通る水平面内の円周を軌道に設定する、
上記(11)に記載の情報処理装置。
(13)ユーザーの頭部姿勢の情報を取得する頭部姿勢取得ステップと、
 カメラの姿勢の情報を取得するカメラ姿勢取得ステップと、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理ステップと、
を有する情報処理方法。
(14)カメラと、
 ユーザーの頭部又は顔部に固定して用いられる表示装置と、
 前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記表示装置で表示する画像を生成する画像処理装置と、
を具備する画像表示システム。
 100…画像表示システム
 110…ヘッド・マウント・ディスプレイ
 120…移動体装置、130…コントローラー
 400…全方位カメラ、401~406…ビデオカメラ
 410…画像処理部
 810…頭部動作追跡装置、811…センサー部
 812…姿勢角演算部、813…通信部、820…表示装置
 821…第1の通信部、822…描画処理部、823…表示部
 824…第2の通信部、830…撮影装置
 831…全方位カメラ、832…センサー部
 833…姿勢角演算部、834…通信部
 1010…頭部動作追跡装置、1011…センサー部
 1012…姿勢角演算部、1013…通信部
 1020…表示装置、1021…通信部、1023…表示部
 1030…撮影装置、1031…全方位カメラ
 1032…センサー部、1033…姿勢角演算部
 1034…通信部、1040画像処理装置、1041…通信部
 1042…描画処理部

Claims (14)

  1.  ユーザーの頭部姿勢の情報を取得する頭部姿勢取得部と、
     カメラの姿勢の情報を取得するカメラ姿勢取得部と、
     前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理部と、
    を具備する情報処理装置。
  2.  前記カメラは、移動体装置に搭載されている、
    請求項1に記載の情報処理装置。
  3.  前記カメラは、全方位画像又は広角画像を撮影し、
     前記描画処理部は、前記ユーザーの頭部姿勢を前記カメラの撮影時の姿勢で補正し、補正した後の前記ユーザーの頭部姿勢に応じた画角を前記カメラの撮影画像から切り出した画像を生成する、
    請求項1又は2のいずれかに記載の情報処理装置。
  4.  前記カメラは、前記ユーザーの頭部又は顔部に固定して搭載されている、
    請求項1に記載の情報処理装置。
  5.  前記描画処理部は、前記カメラの姿勢を前記ユーザーの頭部姿勢に変換する第1の変換パラメーターに応じた画角を前記カメラの撮影画像から切り出した画像を生成する、
    請求項4に記載の情報処理装置。
  6.  前記描画処理部は、前記カメラの撮影時刻における前記ユーザーの頭部姿勢と、前記表示装置に画像を表示するまでの遅延時間だけ後に予測される前記ユーザーの頭部姿勢を用いて、画像の生成を行なう、
    請求項5に記載の情報処理装置。
  7.  前記描画処理部は、前記カメラが撮影する時系列画像データに基づいて周囲環境の3次元モデルを構築するとともに、前記3次元モデル内での現在のカメラ位置を推定し、前記カメラの位置及び姿勢を前記ユーザーの眼球の位置及び姿勢に変換する第2の変換パラメーターを用いて前記カメラで撮影してから前記表示装置で表示するまでの遅延時間だけ後の前記ユーザーの眼球位置及び姿勢を予測して、予測される眼球位置及び姿勢において撮影された画像を前記3次元モデルから生成する、
    請求項4に記載の情報処理装置。
  8.  前記移動体装置を遠隔操作するコントローラーと、
     前記移動体装置の軌道を制約し、制約した軌道以外の前記コントローラーからの入力をカットするフィルターと、
    をさらに備え、
     前記コントローラーからの入力を前記の制約した軌道に沿う方向の位置指令、速度指令、又は加速度指令に変換して、前記移動体装置に送信する、
    請求項1に記載の情報処理装置。
  9.  前記移動体装置の軌道を直進に制約したときに、
     前記フィルターは、前記コントローラーからの前後方向以外の入力をカットし、
     直進の軌道を維持する指令を前記移動体装置に送信する、
    請求項8に記載の情報処理装置。
  10.  前記移動体装置が現在地を通り、現在の進行方向を向く直線、又は、前記移動体装置の現在地と目標地点を結ぶ直線を軌道に設定する、
    請求項9に記載の情報処理装置。
  11.  前記移動体装置の軌道を周回に制約したときに、
     前記フィルターは、前記コントローラーからの左右方向以外の入力をカットし、
     周回の軌道を維持する指令を前記移動体装置に送信するとともに、前記移動体装置の姿勢が目標地点を向くように制御する、
    請求項8に記載の情報処理装置。
  12.  目標地点を中心として前記移動体装置の現在地を通過する円周、又は、目標地点と交わる鉛直軸を中心として前記移動体装置の現在地を通る水平面内の円周を軌道に設定する、
    請求項11に記載の情報処理装置。
  13.  ユーザーの頭部姿勢の情報を取得する頭部姿勢取得ステップと、
     カメラの姿勢の情報を取得するカメラ姿勢取得ステップと、
     前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記ユーザーの頭部又は顔部に固定された表示装置で表示する画像を生成する描画処理ステップと、
    を有する情報処理方法。
  14.  カメラと、
     ユーザーの頭部又は顔部に固定して用いられる表示装置と、
     前記ユーザーの頭部姿勢を計測する頭部動作追跡装置と、
     前記ユーザーの頭部姿勢と前記カメラの姿勢に基づいて、前記カメラの撮影画像から前記表示装置で表示する画像を生成する画像処理装置と、
    を具備する画像表示システム。
PCT/JP2015/064229 2014-07-31 2015-05-18 情報処理装置及び情報処理方法、並びに画像表示システム WO2016017245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15826680.9A EP3177010B1 (en) 2014-07-31 2015-05-18 Information processing device, information processing method, and image display system
CN201580041249.XA CN106664393A (zh) 2014-07-31 2015-05-18 信息处理装置、信息处理方法以及图像显示系统
US15/324,376 US10269132B2 (en) 2014-07-31 2015-05-18 Displaying images according to head posture and camera posture
JP2016538181A JP6642432B2 (ja) 2014-07-31 2015-05-18 情報処理装置及び情報処理方法、並びに画像表示システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-155882 2014-07-31
JP2014155882 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017245A1 true WO2016017245A1 (ja) 2016-02-04

Family

ID=55217150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064229 WO2016017245A1 (ja) 2014-07-31 2015-05-18 情報処理装置及び情報処理方法、並びに画像表示システム

Country Status (5)

Country Link
US (1) US10269132B2 (ja)
EP (1) EP3177010B1 (ja)
JP (1) JP6642432B2 (ja)
CN (1) CN106664393A (ja)
WO (1) WO2016017245A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158083A (ja) * 2016-03-03 2017-09-07 ソニー株式会社 情報処理装置、制御方法、およびプログラム
JP2017163265A (ja) * 2016-03-08 2017-09-14 株式会社リコー 操縦支援システム、情報処理装置およびプログラム
WO2018092545A1 (ja) * 2016-11-21 2018-05-24 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
JP2018112809A (ja) * 2017-01-10 2018-07-19 セイコーエプソン株式会社 頭部装着型表示装置およびその制御方法、並びにコンピュータープログラム
CN108734736A (zh) * 2018-05-22 2018-11-02 腾讯科技(深圳)有限公司 相机姿态追踪方法、装置、设备及存储介质
WO2018225187A1 (ja) * 2017-06-07 2018-12-13 株式会社ソニー・インタラクティブエンタテインメント 情報処理システム、情報処理装置、サーバ装置、画像提供方法および画像生成方法
WO2019087623A1 (ja) * 2017-11-02 2019-05-09 キヤノン株式会社 表示装置、表示装置の制御方法
EP3622487A4 (en) * 2017-05-18 2020-06-24 Samsung Electronics Co., Ltd. METHOD FOR PROVIDING 360 DEGREE VIDEOS AND DEVICE FOR SUPPORTING THEM
JP2020177066A (ja) * 2019-04-16 2020-10-29 凸版印刷株式会社 観察状態表示システム、観察状態表示方法及びプログラム
WO2021002116A1 (ja) * 2019-07-03 2021-01-07 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP2021189841A (ja) * 2020-06-01 2021-12-13 独立行政法人国立高等専門学校機構 システム、情報処理装置、及びプログラム

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198865B2 (en) 2014-07-10 2019-02-05 Seiko Epson Corporation HMD calibration with direct geometric modeling
CN104407709B (zh) * 2014-12-09 2015-12-02 北京银河润泰科技有限公司 可穿戴设备的穿戴状态的处理方法及装置
US10192133B2 (en) 2015-06-22 2019-01-29 Seiko Epson Corporation Marker, method of detecting position and pose of marker, and computer program
US10192361B2 (en) 2015-07-06 2019-01-29 Seiko Epson Corporation Head-mounted display device and computer program
US10347048B2 (en) * 2015-12-02 2019-07-09 Seiko Epson Corporation Controlling a display of a head-mounted display device
JP6532393B2 (ja) * 2015-12-02 2019-06-19 株式会社ソニー・インタラクティブエンタテインメント 表示制御装置及び表示制御方法
EP3232368A1 (en) * 2016-04-14 2017-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Determining facial parameters
WO2018000304A1 (zh) * 2016-06-30 2018-01-04 深圳市柔宇科技有限公司 拍摄模组元件的角度调节方法及头戴式显示设备
US10999602B2 (en) 2016-12-23 2021-05-04 Apple Inc. Sphere projected motion estimation/compensation and mode decision
US11259046B2 (en) 2017-02-15 2022-02-22 Apple Inc. Processing of equirectangular object data to compensate for distortion by spherical projections
US10924747B2 (en) 2017-02-27 2021-02-16 Apple Inc. Video coding techniques for multi-view video
US11093752B2 (en) * 2017-06-02 2021-08-17 Apple Inc. Object tracking in multi-view video
US10754242B2 (en) 2017-06-30 2020-08-25 Apple Inc. Adaptive resolution and projection format in multi-direction video
US20190007536A1 (en) * 2017-07-03 2019-01-03 Essential Products, Inc. Handheld writing implement form factor mobile device
US10462345B2 (en) 2017-08-11 2019-10-29 Essential Products, Inc. Deformable structure that compensates for displacement of a camera module of a camera accessory
US10587856B1 (en) * 2017-08-24 2020-03-10 Gopro, Inc. Spherical visual content transitions
CN107566685B (zh) * 2017-09-26 2020-10-27 联想(北京)有限公司 一种图像数据处理方法及电子设备
JP2019080223A (ja) * 2017-10-26 2019-05-23 株式会社ソニー・インタラクティブエンタテインメント カメラシステム
DE102017219790A1 (de) * 2017-11-07 2019-05-09 Volkswagen Aktiengesellschaft System und Verfahren zum Bestimmen einer Pose einer Augmented-Reality-Brille, System und Verfahren zum Einmessen einer Augmented-Reality-Brille, Verfahren zum Unterstützen einer Posenbestimmung einer Augmented-Reality-Brille und für das Verfahren geeignetes Kraftfahrzeug
US10582181B2 (en) * 2018-03-27 2020-03-03 Honeywell International Inc. Panoramic vision system with parallax mitigation
CN110611763A (zh) * 2018-06-16 2019-12-24 仁明(杭州)智能科技有限公司 用于调整头戴式摄像机上图像的方向的系统和方法
US11127214B2 (en) * 2018-09-17 2021-09-21 Qualcomm Incorporated Cross layer traffic optimization for split XR
CN111258520B (zh) * 2018-12-03 2021-09-14 广东虚拟现实科技有限公司 显示方法、装置、终端设备及存储介质
WO2020114395A1 (zh) * 2018-12-03 2020-06-11 广东虚拟现实科技有限公司 虚拟画面的控制方法、终端设备及存储介质
GB201819896D0 (en) * 2018-12-06 2019-01-23 Bae Systems Plc Tracking system
WO2020166582A1 (ja) * 2019-02-15 2020-08-20 株式会社Jvcケンウッド 画像調整システム、画像調整装置、及び画像調整方法
WO2020210918A1 (en) * 2019-04-18 2020-10-22 Poseidon Ocean Systems Ltd. Underwater vehicle with an omnidirectional camera, and method of controlling movement of the same
JP6655751B1 (ja) * 2019-07-25 2020-02-26 エヌ・ティ・ティ・コミュニケーションズ株式会社 映像表示制御装置、方法およびプログラム
US11315326B2 (en) * 2019-10-15 2022-04-26 At&T Intellectual Property I, L.P. Extended reality anchor caching based on viewport prediction
WO2022061468A1 (en) * 2020-09-25 2022-03-31 Hashemian Seyedebrahim Head joystick interface system and methods thereof
CN112380989B (zh) * 2020-11-13 2023-01-24 歌尔科技有限公司 一种头戴显示设备及其数据获取方法、装置和主机
KR102586624B1 (ko) * 2020-12-07 2023-10-10 주식회사 테크인모션 개인 맞춤 및 영상 보정을 통한 디지털 멀미 감소 장치 및 그 방법
JP2022175287A (ja) * 2021-05-13 2022-11-25 キヤノン株式会社 撮像装置、その制御方法及びプログラム
DE102021117904A1 (de) * 2021-07-12 2023-01-12 Valeo Comfort And Driving Assistance Videostreamen von einem Fahrzeug zu einem entfernten Virtuelle-Realität-System
CN113791495B (zh) * 2021-08-27 2024-09-20 优奈柯恩(北京)科技有限公司 用于显示信息的方法、装置、设备及计算机可读介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937137A (ja) * 1995-07-25 1997-02-07 Minolta Co Ltd 移動型立体カメラ装置
JPH10337145A (ja) * 1997-06-09 1998-12-22 Yamaha Motor Co Ltd 薬剤散布システム
JP2001209426A (ja) * 2000-01-26 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> 移動体制御装置
JP2004064639A (ja) * 2002-07-31 2004-02-26 Canon Inc 画像通信システムおよび情報処理方法
JP2007232621A (ja) * 2006-03-02 2007-09-13 Kyoto Univ 電磁的地下探査方法およびそのためのシステム
JP2010256534A (ja) * 2009-04-23 2010-11-11 Fujifilm Corp 全方位画像表示用ヘッドマウントディスプレイ装置
JP2011128220A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 情報提示装置、情報提示方法及びプログラム
JP2011183824A (ja) * 2010-03-04 2011-09-22 Chugoku Electric Power Co Inc:The 空中撮影システム
JP2014063411A (ja) * 2012-09-24 2014-04-10 Casio Comput Co Ltd 遠隔制御システム、制御方法、及び、プログラム
WO2014077046A1 (ja) * 2012-11-13 2014-05-22 ソニー株式会社 画像表示装置及び画像表示方法、移動体装置、画像表示システム、並びにコンピューター・プログラム
JP2014104797A (ja) * 2012-11-26 2014-06-09 Hitachi-Ge Nuclear Energy Ltd 建屋内調査システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841409A (en) 1995-04-18 1998-11-24 Minolta Co., Ltd. Image display apparatus
US5905525A (en) 1995-07-13 1999-05-18 Minolta Co., Ltd. Image display apparatus having a display controlled by user's head movement
JPH09106322A (ja) 1995-10-09 1997-04-22 Data Tec:Kk ヘッドマウントディスプレイにおける姿勢角検出装置
SE0203908D0 (sv) * 2002-12-30 2002-12-30 Abb Research Ltd An augmented reality system and method
SE527257C2 (sv) 2004-06-21 2006-01-31 Totalfoersvarets Forskningsins Anordning och metod för att presentera en omvärldsbild
JP2012141461A (ja) 2010-12-29 2012-07-26 Sony Corp ヘッド・マウント・ディスプレイ
JP2012143447A (ja) 2011-01-13 2012-08-02 Sharp Corp ネットワークシステム、コントロール方法、コントローラ、およびコントロールプログラム
JP2012151800A (ja) 2011-01-21 2012-08-09 Sharp Corp 撮影装置およびネットワークシステム
US10627860B2 (en) * 2011-05-10 2020-04-21 Kopin Corporation Headset computer that uses motion and voice commands to control information display and remote devices
JP5993127B2 (ja) * 2011-10-25 2016-09-14 オリンパス株式会社 頭部装着型表示装置、情報端末、プログラム、情報記憶媒体、画像処理システム、頭部装着型表示装置の制御方法及び情報端末の制御方法
CN103532374B (zh) * 2012-07-05 2016-12-21 意法半导体研发(上海)有限公司 稳压电荷泵电路
JP6058963B2 (ja) * 2012-10-02 2017-01-11 株式会社トプコン 全周カメラ
SG2013056700A (en) * 2013-07-23 2015-02-27 Akenori Pte Ltd Digital video recorder
CN103941750B (zh) * 2014-04-30 2016-08-31 东北大学 基于小型四旋翼无人机的构图装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937137A (ja) * 1995-07-25 1997-02-07 Minolta Co Ltd 移動型立体カメラ装置
JPH10337145A (ja) * 1997-06-09 1998-12-22 Yamaha Motor Co Ltd 薬剤散布システム
JP2001209426A (ja) * 2000-01-26 2001-08-03 Nippon Telegr & Teleph Corp <Ntt> 移動体制御装置
JP2004064639A (ja) * 2002-07-31 2004-02-26 Canon Inc 画像通信システムおよび情報処理方法
JP2007232621A (ja) * 2006-03-02 2007-09-13 Kyoto Univ 電磁的地下探査方法およびそのためのシステム
JP2010256534A (ja) * 2009-04-23 2010-11-11 Fujifilm Corp 全方位画像表示用ヘッドマウントディスプレイ装置
JP2011128220A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 情報提示装置、情報提示方法及びプログラム
JP2011183824A (ja) * 2010-03-04 2011-09-22 Chugoku Electric Power Co Inc:The 空中撮影システム
JP2014063411A (ja) * 2012-09-24 2014-04-10 Casio Comput Co Ltd 遠隔制御システム、制御方法、及び、プログラム
WO2014077046A1 (ja) * 2012-11-13 2014-05-22 ソニー株式会社 画像表示装置及び画像表示方法、移動体装置、画像表示システム、並びにコンピューター・プログラム
JP2014104797A (ja) * 2012-11-26 2014-06-09 Hitachi-Ge Nuclear Energy Ltd 建屋内調査システム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158083A (ja) * 2016-03-03 2017-09-07 ソニー株式会社 情報処理装置、制御方法、およびプログラム
JP2017163265A (ja) * 2016-03-08 2017-09-14 株式会社リコー 操縦支援システム、情報処理装置およびプログラム
WO2018092545A1 (ja) * 2016-11-21 2018-05-24 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US11212515B2 (en) 2016-11-21 2021-12-28 Sony Corporation Information processing device and information processing method
JP2018112809A (ja) * 2017-01-10 2018-07-19 セイコーエプソン株式会社 頭部装着型表示装置およびその制御方法、並びにコンピュータープログラム
US11258999B2 (en) 2017-05-18 2022-02-22 Samsung Electronics Co., Ltd. Method and device for reducing motion sickness when providing 360-degree video
EP3622487A4 (en) * 2017-05-18 2020-06-24 Samsung Electronics Co., Ltd. METHOD FOR PROVIDING 360 DEGREE VIDEOS AND DEVICE FOR SUPPORTING THEM
US11158101B2 (en) 2017-06-07 2021-10-26 Sony Interactive Entertainment Inc. Information processing system, information processing device, server device, image providing method and image generation method
WO2018225187A1 (ja) * 2017-06-07 2018-12-13 株式会社ソニー・インタラクティブエンタテインメント 情報処理システム、情報処理装置、サーバ装置、画像提供方法および画像生成方法
GB2582106A (en) * 2017-11-02 2020-09-09 Canon Kk Display device and display device control method
WO2019087623A1 (ja) * 2017-11-02 2019-05-09 キヤノン株式会社 表示装置、表示装置の制御方法
US11474595B2 (en) 2017-11-02 2022-10-18 Canon Kabushiki Kaisha Display device and display device control method
GB2582106B (en) * 2017-11-02 2022-12-14 Canon Kk Display device and display device control method
CN108734736B (zh) * 2018-05-22 2021-10-26 腾讯科技(深圳)有限公司 相机姿态追踪方法、装置、设备及存储介质
CN108734736A (zh) * 2018-05-22 2018-11-02 腾讯科技(深圳)有限公司 相机姿态追踪方法、装置、设备及存储介质
JP2020177066A (ja) * 2019-04-16 2020-10-29 凸版印刷株式会社 観察状態表示システム、観察状態表示方法及びプログラム
JP7342409B2 (ja) 2019-04-16 2023-09-12 凸版印刷株式会社 観察状態表示システム、観察状態表示方法及びプログラム
WO2021002116A1 (ja) * 2019-07-03 2021-01-07 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP2021189841A (ja) * 2020-06-01 2021-12-13 独立行政法人国立高等専門学校機構 システム、情報処理装置、及びプログラム

Also Published As

Publication number Publication date
EP3177010A1 (en) 2017-06-07
EP3177010A4 (en) 2018-04-25
EP3177010B1 (en) 2021-08-18
US10269132B2 (en) 2019-04-23
CN106664393A (zh) 2017-05-10
US20170278262A1 (en) 2017-09-28
JP6642432B2 (ja) 2020-02-05
JPWO2016017245A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016017245A1 (ja) 情報処理装置及び情報処理方法、並びに画像表示システム
EP3379525B1 (en) Image processing device and image generation method
US9747725B2 (en) Video system for piloting a drone in immersive mode
WO2016017062A1 (en) Information processing for motion sickness prevention in an image display system
WO2014077046A1 (ja) 画像表示装置及び画像表示方法、移動体装置、画像表示システム、並びにコンピューター・プログラム
JP6378781B2 (ja) 頭部装着型表示装置、及び映像表示システム
WO2016113951A1 (ja) 頭部装着型表示装置、及び映像表示システム
US11184597B2 (en) Information processing device, image generation method, and head-mounted display
JP6899875B2 (ja) 情報処理装置、映像表示システム、情報処理装置の制御方法、及びプログラム
WO2016013272A1 (ja) 情報処理装置及び情報処理方法、並びに画像表示システム
KR20160147735A (ko) 헤드부 위치 검출 장치 및 헤드부 위치 검출 방법, 화상 처리 장치 및 화상 처리 방법, 표시 장치, 및 컴퓨터 프로그램
JP2017183852A (ja) 表示装置および表示制御方法
US20210400234A1 (en) Information processing apparatus, information processing method, and program
JP6649010B2 (ja) 情報処理装置
CN105828021A (zh) 基于增强现实技术的特种机器人图像采集控制方法及系统
JP6467039B2 (ja) 情報処理装置
JPWO2019176035A1 (ja) 画像生成装置、画像生成システム、および画像生成方法
WO2021220407A1 (ja) ヘッドマウントディスプレイ装置および表示制御方法
JP2018056845A (ja) 作業支援装置、システム、方法及びプログラム
JP6867566B2 (ja) 画像表示装置及び画像表示システム
US20240196045A1 (en) Video display system, observation device, information processing method, and recording medium
JP2018160761A (ja) 環境画像表示システム及び環境画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538181

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826680

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15324376

Country of ref document: US