Nothing Special   »   [go: up one dir, main page]

WO2016013364A1 - 非水電解液及びリチウムイオン二次電池 - Google Patents

非水電解液及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2016013364A1
WO2016013364A1 PCT/JP2015/069033 JP2015069033W WO2016013364A1 WO 2016013364 A1 WO2016013364 A1 WO 2016013364A1 JP 2015069033 W JP2015069033 W JP 2015069033W WO 2016013364 A1 WO2016013364 A1 WO 2016013364A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
negative electrode
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2015/069033
Other languages
English (en)
French (fr)
Inventor
前田 勝美
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/328,693 priority Critical patent/US10050309B2/en
Priority to JP2016535858A priority patent/JP6520947B2/ja
Publication of WO2016013364A1 publication Critical patent/WO2016013364A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a lithium ion secondary battery.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries
  • the use to the storage battery for electric vehicles, the storage battery for households, and the storage battery for electric power storage is advancing.
  • a lithium ion secondary battery mainly includes a positive electrode including a positive electrode active material, a negative electrode mainly composed of a material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte.
  • a positive electrode active material for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiFePO 4 , LiMn 2 O 4 are used.
  • the negative electrode active material used for the negative electrode metallic lithium, silicon capable of occluding and releasing lithium ions, oxides such as silicon oxide, or carbonaceous materials are used.
  • lithium ion secondary batteries using carbonaceous materials such as graphite (artificial graphite, natural graphite) and coke capable of occluding and releasing lithium ions have already been put into practical use.
  • non-aqueous electrolyte for example, a mixed solvent of a cyclic carbonate solvent such as ethylene carbonate and propylene carbonate and a chain carbonate solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , Lithium bis (oxalate) borate (LiB (C 2 O 4 ) 2 ) and other lithium salt additions are used. Yes.
  • a mixed solvent of a cyclic carbonate solvent such as ethylene carbonate and propylene carbonate
  • a chain carbonate solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate
  • a compound having a protective film generating function is added to the nonaqueous electrolytic solution.
  • a protective film that intentionally promotes the decomposition of a compound added to the electrolyte solution on the surface of the electrode active material during initial charging, and the decomposition product has a protective function for preventing the decomposition of a new solvent. That is, it is known to form SEI (Solid Electrolyte Interface). And by forming this protective film on the electrode surface, the chemical reaction or decomposition of the solvent on the electrode surface is appropriately suppressed, and as a result, there is an effect of maintaining the characteristics of the battery characteristics of the secondary battery. It has been reported (Non-Patent Document 1). As an additive for forming such a protective coating, for example, attempts have been made to improve battery characteristics by adding vinylene carbonate, fluoroethylene carbonate or maleic anhydride to the electrolyte (Non-patent Document 1). .
  • Patent Document 1 describes using a fluorinated boron compound selected from the group consisting of BF 3 , BF 3 complex, HBF 4 and HBF 4 complex as an electrolyte additive in a non-aqueous lithium battery.
  • a fluorinated boron compound selected from the group consisting of BF 3 , BF 3 complex, HBF 4 and HBF 4 complex as an electrolyte additive in a non-aqueous lithium battery.
  • BF 3 complex BF 3 diethyl carbonate complex
  • BF 3 ethyl methyl carbonate complexes are described
  • HBF 4 complexes BF 4 diethyl carbonate complex is described.
  • Patent Document 2 describes that in an electrolytic solution in which a first lithium salt is dissolved in a nonaqueous solvent, a boron compound is blended together with a lithium salt of an organic acid as the second lithium salt.
  • Boron trifluoride and boron halide complexes are described as the boron compound, and boron trifluoride diethyl ether complex, boron trifluoride di-n-butyl ether complex, and boron trifluoride tetrahydrofuran complex are described as the boron halide complex.
  • Non-Patent Document 1 and Patent Documents 1 and 2 are not sufficient in terms of suppressing deterioration of battery characteristics in a high-temperature environment, and further improvement effects
  • non-aqueous electrolytes containing additives that provide
  • the objective of this invention is the non-aqueous electrolyte which can suppress the fall of the battery characteristic in a high temperature environment, and the outstanding using this non-aqueous electrolyte.
  • Another object of the present invention is to provide a lithium ion secondary battery having battery characteristics.
  • the nonaqueous electrolytic solution according to one embodiment of the present invention includes a nonaqueous solvent, an electrolyte salt composed of a lithium salt, and a difluoroboron complex compound represented by the following general formula (1).
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, substituted or unsubstituted R 3 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • a lithium ion secondary battery includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and the non-aqueous electrolyte described above. including.
  • the embodiment of the present invention it is possible to provide a non-aqueous electrolyte capable of suppressing deterioration of battery characteristics under a high temperature environment, and a lithium ion secondary battery having excellent battery characteristics.
  • the present inventors have added a difluoroboron complex compound having a specific structure to the non-aqueous electrolyte, thereby enabling cycle characteristics under a high temperature environment.
  • the present inventors have found that battery characteristics such as the above can be improved and completed the present invention.
  • the nonaqueous electrolytic solution according to the embodiment of the present invention includes a nonaqueous solvent, a lithium salt as an electrolyte salt, and the difluoroboron complex compound represented by the general formula (1).
  • This non-aqueous electrolyte can contain one or more of the above difluoroboron complex compounds. Further, the addition amount (content) of the difluoroboron complex compound is preferably in the range of 0.01 to 10% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • the non-aqueous electrolyte according to the embodiment of the present invention further includes vinylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, maleic anhydride, and 1,5,2,4-dioxadithian-2,2,4,4.
  • -It may contain at least one additive compound selected from the group consisting of tetraoxides.
  • the additive amount (content) of the additive compound is preferably in the range of 0.01 to 10% by mass with respect to the total mass of the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution according to the embodiment of the present invention preferably contains carbonates as a nonaqueous solvent, and more preferably contains cyclic carbonates and chain carbonates.
  • the concentration of the electrolyte salt of the nonaqueous electrolytic solution according to the embodiment of the present invention is preferably in the range of 0.1 to 3 mol / L.
  • a lithium ion secondary battery includes a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, Contains water electrolyte.
  • the negative electrode active material preferably contains at least one selected from the group consisting of simple silicon, silicon oxide, and carbonaceous material.
  • the difluoroboron complex compound represented by the general formula (1) undergoes a chemical reaction on the surface of the electrode active material during the initial charge of the battery, and the product has a protective function for preventing decomposition of a new electrolyte. It is presumed to form a protective coating on the electrode surface, that is, SEI (Solid Electrolyte Interface).
  • SEI Solid Electrolyte Interface
  • the addition of the difluoroboron complex compound represented by the general formula (1) forms a protective film on the electrode surface, thereby appropriately suppressing the chemical reaction and decomposition of the electrolyte solution on the electrode surface. Long-term reliability and longevity can be maintained. As a result, a secondary battery having a large capacity, high energy density, excellent charge / discharge cycle stability, and suppressed deterioration of battery characteristics even in a high temperature environment can be provided.
  • non-aqueous electrolyte according to an embodiment of the present invention and a lithium ion secondary battery using the non-aqueous electrolyte will be described in detail.
  • the nonaqueous electrolytic solution according to the embodiment of the present invention contains at least one difluoroboron complex compound represented by the following general formula (1).
  • R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, substituted or unsubstituted R 3 represents an unsubstituted alkoxy group, and R 3 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • the difluoroboron complex according to the embodiment of the present invention has isomers, and it is considered that isomers represented by the formulas (1A) and (1B) exist.
  • the structural formula of the formula (1A) is described as the structure of the difluoroboron complex
  • the structural formula of the formula (1B) which is an isomer is also included unless otherwise specified. .
  • the substituted or unsubstituted alkyl group having 1 to 6 carbon atoms includes methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group , An unsubstituted alkyl group such as a pentyl group and an n-hexyl group, and an alkyl group in which one or more hydrogen atoms of the alkyl group are substituted with a substituent.
  • substituents examples include a fluorine atom, a cyano group, an ester group having 1 to 5 carbon atoms (—COOZ, Z is an alkyl group), an alkoxy group having 1 to 5 carbon atoms, an aryl group, a heteroaryl group (thienyl group, furanyl). Group). Two or more hydrogen atoms of the alkyl group may be independently substituted with different substituents.
  • Examples of the substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a trifluoroethyl group, a heptafluoropropyl group, a cyanomethyl group, a benzyl group, and a 2-thienylmethyl group.
  • the substituted or unsubstituted aryl group is an unsubstituted aryl group such as a phenyl group or a naphthyl group, and one or more hydrogen atoms of the aryl group are substituted with a substituent.
  • An aryl group is mentioned. Examples of the substituent include an alkyl group having 1 to 5 carbon atoms, a fluorine atom, a cyano group, and an alkoxy group having 1 to 5 carbon atoms. Two or more hydrogen atoms of the aryl group may be independently substituted with different substituents.
  • substituted aryl groups include tolyl, 4-cyanophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,3-difluorophenyl, 2,4-difluoro.
  • Examples include a fluorophenyl group, a pentafluorophenyl group, and a 4-methoxyphenyl group.
  • the substituted or unsubstituted heteroaryl group includes an unsubstituted heteroaryl group such as thienyl group (2-thienyl group, 3-thienyl group), furanyl group (for example, 2-furanyl group), etc.
  • examples include an aryl group and a heteroaryl group in which one or more hydrogen atoms of the heteroaryl group are substituted with a substituent.
  • the substituent include an alkyl group having 1 to 5 carbon atoms, a fluorine atom, a cyano group, and an alkoxy group having 1 to 5 carbon atoms.
  • Two or more hydrogen atoms of the heteroaryl group may be independently substituted with different substituents.
  • Examples of the substituted heteroaryl group include 4-methyl-2-thienyl group and 3-fluoro-2-thienyl group.
  • the substituted or unsubstituted alkoxy group includes an unsubstituted alkoxy group having 1 to 5 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, and an alkoxy group having 1 to 5 carbon atoms.
  • a substituted alkoxy group such as a benzyloxy group in which one or more hydrogen atoms are substituted with a substituent.
  • the substituent include a fluorine atom, a cyano group, an aryl group, and a heteroaryl group (thienyl group, furanyl group, etc.).
  • R 1 and R 2 are each independently a methyl group, trifluoromethyl group, pentafluoroethyl group, phenyl group, 2-thienyl group, 2-furanyl group, 2-fluorophenyl group, pentafluorophenyl.
  • R 3 include a hydrogen atom, phenyl group, 2-thienyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, pentafluorophenyl group and the like.
  • the difluoroboron complex compound represented by the general formula (1) can be obtained, for example, by the production method described in Tetrahedron, 63, 9357-9358 (2007).
  • a diketone represented by the following formula (Aa) and a boron trifluoride / diethyl ether complex are appropriately used.
  • the method of making it react using a solvent is mentioned.
  • R 1, R 2, R 3 are the same as R 1, R 2, R 3 in the general formula (1).
  • Examples of the solvent that can be used in this production method include halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, and chloroform; 1,2-dimethoxyethane, acetonitrile, and the like. Of these, methylene chloride, 1,2-dichloroethane, 1,2-dimethoxyethane and the like are preferable.
  • the difluoroboron complex compound represented by the general formula (1) is added.
  • the content (addition amount) of the difluoroboron complex compound in the non-aqueous electrolyte is preferably in the range of 0.01 to 10% by mass with respect to the total mass of the non-aqueous electrolyte, and is 0.02 to 5% by mass. % Is more preferable, and 0.03 to 3% by mass is even more preferable.
  • the content (addition amount) of the difluoroboron complex compound is 0.01% by mass or more, a sufficient addition effect can be obtained.
  • the content (addition amount) of the difluoroboron complex compound is 10% by mass or less, the cost can be suppressed while obtaining a sufficient addition effect.
  • only one difluoroboron complex compound represented by the general formula (1) may be added, or two or more kinds may be added.
  • the nonaqueous electrolytic solution according to the embodiment of the present invention is a known additive compound for a nonaqueous electrolytic solution as another additive component.
  • a known additive compound for a nonaqueous electrolytic solution can optionally be included.
  • vinylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, maleic anhydride, and 1,5,2,4-dioxadithian-2,2,4,4-tetraoxide are preferable.
  • These other additive compounds may be used alone or in combination of two or more.
  • Nonaqueous solvent used in the nonaqueous electrolytic solution according to the embodiment of the present invention is not particularly limited, but can be appropriately selected from those usually used.
  • a nonaqueous solvent containing at least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, chain esters, lactones, ethers, sulfones, nitriles, and phosphate esters is used. be able to.
  • cyclic carbonates include propylene carbonate, ethylene carbonate, fluoroethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate, and the like.
  • chain carbonates include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate and the like.
  • chain esters include carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate, ethyl propionate, methyl pivalate, and ethyl pivalate.
  • lactones include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -butyrolactone, and the like.
  • ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, Examples include 2-dibutoxyethane.
  • sulfones include sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and the like.
  • nitriles include acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile and the like.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate and the like.
  • the above non-aqueous solvents can be used alone or in combination of two or more.
  • the combination is, for example, a combination of cyclic carbonates and chain carbonates, cyclic carbonates and chain carbonates, as a third solvent, chain esters, lactones, ethers, nitriles, sulfones, The combination which adds phosphate ester is mentioned.
  • a combination including at least a cyclic carbonate and a chain carbonate is more preferable for realizing excellent battery characteristics.
  • the non-aqueous solvent preferably contains cyclic carbonates. Since cyclic carbonates have a large relative dielectric constant, the ion conductivity of the non-aqueous electrolyte can be increased by adding cyclic carbonates.
  • the content of the cyclic carbonates contained in the nonaqueous electrolytic solution is not particularly limited, but is preferably 5% by volume or more in the nonaqueous solvent from the viewpoint of ion conductivity, viscosity, etc. of the nonaqueous electrolytic solution. 10 volume% or more is more preferable, 20 volume% or more is more preferable, 70 volume% or less is preferable, 60 volume% or less is more preferable, and 50 volume% or less is further more preferable.
  • the electrolyte salt contained in the non-aqueous electrolyte according to the embodiment of the present invention is not limited to the following examples, but LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, LiAsF 6, LiAlCl 4, LiSbF 6, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 Li, lithium bisoxalatoborate (Lithium bis ( oxalate) and lithium oxalatodifluoroborate, etc.
  • Lithium salts LiPF 6 , LiBF 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 are preferable. These electrolyte salts can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the electrolyte salt dissolved in the non-aqueous solvent is preferably in the range of 0.1 to 3 mol / L, and more preferably in the range of 0.5 to 2 mol / L. .
  • concentration of the electrolyte salt is 0.1 mol / L or more, more sufficient ionic conductivity can be obtained, and when the concentration of the electrolyte salt is 3 mol / L or less, an increase in the viscosity of the electrolyte solution is suppressed, which is more sufficient. Ion mobility and impregnation are obtained.
  • the lithium ion secondary battery according to the embodiment of the present invention mainly includes a positive electrode, a negative electrode, a non-aqueous electrolyte (a difluoroboron complex compound represented by the general formula (1) and an electrolyte salt are dissolved in a non-aqueous solvent.
  • Non-aqueous electrolyte a difluoroboron complex compound represented by the general formula (1) and an electrolyte salt are dissolved in a non-aqueous solvent.
  • Non-aqueous electrolyte a separator disposed between the positive electrode and the negative electrode.
  • the non-aqueous electrolyte the above-described non-aqueous electrolyte can be preferably used.
  • Constituent members such as a positive electrode, a negative electrode, and a separator other than the non-aqueous electrolyte are not particularly limited, and those commonly used in general lithium ion secondary batteries can be applied.
  • components other than the non-aqueous electrolyte suitable for the lithium ion secondary battery according to the embodiment of the present invention will be described.
  • a positive electrode active material layer including a positive electrode active material and a binder formed on the positive electrode current collector can be used as the positive electrode of the lithium ion secondary battery according to the embodiment of the present invention.
  • the binder By the binder, the positive electrode active material and the current collector, and the positive electrode active materials are bound to each other.
  • a lithium composite metal oxide containing a transition metal such as cobalt, manganese, nickel, and lithium can be used as the positive electrode active material.
  • these lithium composite metal oxides include those in which Li is more excessive than the stoichiometric composition.
  • a part of the lithium composite metal oxide may be substituted with another element.
  • a part of cobalt, manganese, nickel is replaced with at least one element such as Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc.
  • a part of oxygen can be replaced with S or F, or the surface of the positive electrode can be coated with a compound containing these elements.
  • lithium-containing olivine-type phosphate (LiMPO 4 ; M is Fe, Mn, Ni, Mg, Co, etc.) can also be used as the positive electrode active material.
  • LiMPO 4 lithium-containing olivine-type phosphate
  • Specific examples include LiFePO 4 , LiMnPO 4 , LiNiPO 4 and the like.
  • the positive electrode active materials can be used singly or in combination of two or more.
  • a conductive additive may be added for the purpose of reducing impedance.
  • the conductive auxiliary include graphites such as natural graphite and artificial graphite, and carbon blacks such as acetylene black, ketjen black, furnace black, channel black, and thermal black. These conductive auxiliary agents may be used by appropriately mixing two or more kinds.
  • the addition amount of the conductive auxiliary agent is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the average particle diameter of the positive electrode active material for example, a positive electrode active material having an average particle diameter in the range of 0.1 to 50 ⁇ m can be used from the viewpoint of reactivity with the electrolytic solution and rate characteristics, A positive electrode active material having a particle diameter in the range of 1 to 30 ⁇ m, more preferably an average particle diameter in the range of 2 to 25 ⁇ m can be used.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the binder for the positive electrode is not particularly limited.
  • polyvinylidene fluoride PVDF
  • vinylidene fluoride-hexafluoropropylene copolymer vinylidene fluoride-tetrafluoroethylene copolymer
  • styrene- Butadiene copolymer rubber polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • the positive electrode current collector is not particularly limited, and those normally used in general lithium ion secondary batteries can be arbitrarily used.
  • a material of the positive electrode current collector for example, aluminum or stainless steel can be used.
  • the shape of the positive electrode current collector include a foil shape, a flat plate shape, and a mesh shape.
  • an aluminum foil, a stainless lath plate, or the like can be used.
  • the positive electrode active material, the conductive auxiliary agent, and the binder described above are mixed, and a slurry such as N-methylpyrrolidone is added and kneaded to prepare a slurry. It can be produced by applying on the body by a doctor blade method, a die coater method or the like, then drying and pressing as necessary.
  • a negative electrode active material layer including a negative electrode active material and a binder formed on the negative electrode current collector can be used as the negative electrode of the lithium ion secondary battery according to the embodiment of the present invention.
  • the binder By the binder, the negative electrode active material and the current collector, and the negative electrode active materials are bound to each other.
  • Examples of the negative electrode active material include lithium metal, a metal or alloy that can be alloyed with lithium, an oxide that can occlude and release lithium ions, and a carbonaceous material that can occlude and release lithium ions. .
  • metals or alloys that can be alloyed with lithium examples include simple silicon, lithium-silicon alloys, and lithium-tin alloys.
  • Examples of the oxide capable of inserting and extracting lithium ions include silicon oxide, niobium pentoxide (Nb 2 O 5 ), lithium titanium composite oxide (Li 4/3 Ti 5/3 O 4 ), Examples include titanium dioxide (TiO 2 ).
  • carbonaceous materials capable of inserting and extracting lithium ions include graphite materials (artificial graphite, natural graphite), carbon black (acetylene black, furnace black), coke, mesocarbon microbeads, hard carbon, graphite. And carbonaceous materials such as
  • the negative electrode active material may be used alone or in combination of two or more in any combination and ratio.
  • a carbonaceous material is preferable in terms of excellent cycle characteristics and stability and excellent continuous charge characteristics.
  • a negative electrode active material containing silicon is preferable.
  • the negative electrode active material containing silicon include silicon and silicon compounds.
  • silicon include simple silicon.
  • the silicon compound include silicon oxide, silicate, a compound of transition metal such as nickel silicide and cobalt silicide, and silicon.
  • the silicon compound has a function of relaxing expansion and contraction due to repeated charge and discharge of the negative electrode active material itself, and a silicon compound is more preferable from the viewpoint of charge / discharge cycle characteristics.
  • a silicon compound is more preferable from the viewpoint of charge / discharge cycle characteristics.
  • it also has a function of ensuring conduction between silicon. From such a viewpoint, silicon oxide is preferable as the silicon compound.
  • the silicon oxide is not particularly limited, and for example, a silicon oxide represented by SiO x (0 ⁇ x ⁇ 2) can be used.
  • the silicon oxide may contain Li, and as the silicon oxide containing Li, for example, a material represented by SiLi y O z (y> 0, 2>z> 0) can be used. Further, the silicon oxide may contain a trace amount of a metal element or a nonmetal element.
  • the silicon oxide can contain, for example, 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur. By containing a trace amount of a metal element or a nonmetal element, the electrical conductivity of the silicon oxide can be improved. Further, the silicon oxide may be crystalline or amorphous.
  • More preferable negative electrode active materials include a negative electrode active material containing silicon (preferably silicon or silicon oxide) and a carbonaceous material capable of occluding and releasing lithium ions.
  • the carbonaceous material can also be contained in a state of being compounded with a negative electrode active material containing silicon (preferably silicon or silicon oxide). Similar to silicon oxide, the carbonaceous material has a function of relaxing expansion and contraction due to repeated charge and discharge of the negative electrode active material itself and ensuring conduction between silicon as the negative electrode active material. Therefore, better cycle characteristics can be obtained by the coexistence of the negative electrode active material containing silicon (preferably silicon or silicon oxide) and the carbonaceous material.
  • the carbonaceous material graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be suitably used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the content of the carbonaceous material in the negative electrode active material is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less.
  • Examples of a method for producing a negative electrode active material containing silicon and a silicon compound include the following methods.
  • silicon oxide is used as the silicon compound, for example, a method of mixing simple silicon and silicon oxide and sintering under high temperature and reduced pressure can be mentioned.
  • a compound of transition metal and silicon is used as the silicon compound, for example, a method of mixing and melting single silicon and transition metal, and a method of coating the surface of single silicon by vapor deposition or the like are listed. It is done.
  • a method of forming a coating layer made of carbon by introducing a mixed sintered product of simple silicon and a silicon compound into a gas atmosphere of an organic compound in a high-temperature non-oxygen atmosphere and carbonizing the organic compound, or a high-temperature non-oxygen
  • a method of forming a coating layer made of carbon by mixing a mixed sintered product of simple silicon and a silicon compound and a carbon precursor resin in an atmosphere and carbonizing the precursor resin.
  • a coating layer made of carbon can be formed around a nucleus made of simple silicon and a silicon compound (for example, silicon oxide).
  • a negative electrode active material containing silicon is used as the negative electrode active material
  • a composite containing silicon, silicon oxide and a carbonaceous material (hereinafter also referred to as Si / SiO / C composite) is preferable.
  • all or part of the silicon oxide has an amorphous structure.
  • Silicon oxide having an amorphous structure can suppress volume expansion of carbonaceous material and silicon which are other negative electrode active materials. Although this mechanism is not clear, it is presumed that the silicon oxide has an amorphous structure, which has some influence on the film formation at the interface between the carbonaceous material and the electrolytic solution.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the Si / SiO / C composite it is preferable that all or part of silicon is dispersed in silicon oxide.
  • silicon oxide By dispersing at least a part of silicon in silicon oxide, volume expansion as a whole of the negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of silicon is dispersed in the silicon oxide because transmission electron microscope observation (general TEM observation) and energy dispersive X-ray spectroscopy measurement (general EDX measurement). It can confirm by using together. Specifically, the cross section of the sample can be observed, and the oxygen concentration of the portion corresponding to silicon dispersed in the silicon oxide can be measured to confirm that it is not an oxide.
  • the Si / SiO / C composite for example, all or part of silicon oxide has an amorphous structure, and all or part of silicon is dispersed in silicon oxide.
  • a Si / SiO / C composite can be produced, for example, by a method disclosed in Japanese Patent Application Laid-Open No. 2004-47404. That is, the Si / SiO / C composite can be obtained, for example, by performing a CVD process on silicon oxide in an atmosphere containing an organic gas such as methane gas.
  • the Si / SiO / C composite obtained by such a method has a form in which the surface of particles made of silicon oxide containing silicon is coated with carbon. Silicon is nanoclustered in silicon oxide.
  • the ratio of silicon, silicon oxide and carbonaceous material is not particularly limited.
  • Silicon is preferably 5% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 50% by mass or less with respect to the Si / SiO / C composite.
  • the silicon oxide is preferably 5% by mass or more and 90% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to the Si / SiO / C composite.
  • the carbonaceous material is preferably 2% by mass or more and 50% by mass or less, and more preferably 2% by mass or more and 30% by mass or less with respect to the Si / SiO / C composite.
  • the Si / SiO / C composite may be a mixture of simple silicon, silicon oxide, and carbonaceous material, or may be produced by mixing simple silicon, silicon oxide, and carbonaceous material by mechanical milling. be able to.
  • the Si / SiO / C composite can be obtained by mixing particulate silicon, silicon oxide, and carbonaceous material.
  • the average particle diameter of simple silicon can be made smaller than the average particle diameter of the carbonaceous material and the average particle diameter of the silicon oxide. In this way, single silicon having a large volume change during charge / discharge has a relatively small particle size, and carbonaceous material and silicon oxide having a small volume change have a relatively large particle size. Micronization is more effectively suppressed.
  • the average particle size of the single silicon can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less. It is preferable that the average particle diameter of the silicon oxide is 1 ⁇ 2 or less of the average particle diameter of the carbonaceous material. It is preferable that the average particle diameter of single-piece silicon is 1/2 or less of the average particle diameter of silicon oxide. Further, the average particle diameter of silicon oxide is 1 ⁇ 2 or less of the average particle diameter of carbonaceous material, and the average particle diameter of simple silicon is 1 ⁇ 2 or less of the average particle diameter of silicon oxide. preferable.
  • the average particle diameter of silicon oxide is 1 ⁇ 2 or less of the average particle diameter of graphite
  • the average particle diameter of simple silicon is 1 ⁇ 2 or less of the average particle diameter of silicon oxide.
  • the average particle diameter of the single silicon can be, for example, 20 ⁇ m or less, and is preferably 15 ⁇ m or less.
  • the average particle size of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 5 ⁇ m or more, from the viewpoint of input / output characteristics, from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency. And from the viewpoint of electrode production (smoothness of the electrode surface, etc.), it is preferably 80 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the negative electrode active material a material obtained by treating the surface of the above-mentioned Si / SiO / C composite with a silane coupling agent or the like may be used.
  • the negative electrode active material layer preferably contains the negative electrode active material capable of occluding and releasing lithium ions as a main component.
  • the negative electrode active material content includes a negative electrode active material, a negative electrode binder, It is preferable that it is 55 mass% or more with respect to the whole negative electrode active material layer containing various adjuvants as needed, and it is more preferable that it is 65 mass% or more.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber (SBR), polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
  • the amount of the binder for negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • the negative electrode current collector is not particularly limited, and a negative electrode current collector usually used in a general lithium ion secondary battery can be arbitrarily used.
  • a material of the negative electrode current collector for example, a metal material such as copper, nickel, or SUS can be used. Among these, copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the negative electrode current collector is preferably previously roughened. Examples of the shape of the negative electrode current collector include a foil shape, a flat plate shape, and a mesh shape. Also, a perforated current collector such as expanded metal or punching metal can be used.
  • a mixture of the above-described negative electrode active material, a binder, various auxiliary agents as necessary, and a solvent is kneaded. It can be produced by preparing a slurry, applying this onto a current collector, then drying, and pressing as necessary.
  • stacked porous film and nonwoven fabric which consist of resin materials, such as polyolefin, such as a polypropylene and polyethylene, can be used.
  • a film in which a different material is coated or laminated on a resin layer such as polyolefin can also be used. Examples of such a film include a polyolefin base material coated with a fluorine compound and inorganic fine particles, and a polyolefin base material and an aramid layer laminated.
  • the thickness of the separator is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, from the viewpoint of battery energy density and separator mechanical strength.
  • the form of the lithium ion secondary battery is not particularly limited, and examples thereof include a coin-type battery, a button-type battery, a cylindrical battery, a square battery, and a laminate-type battery.
  • a laminate-type battery forms a laminated body in which positive electrodes, separators, and negative electrodes are alternately laminated, and a metal terminal called a tab is connected to each electrode, and is placed in a container composed of a laminated film as an outer package. It can be produced by injecting an electrolyte and sealing.
  • the laminate film can be appropriately selected as long as it is stable to the electrolyte and has a sufficient water vapor barrier property.
  • a laminate film for example, a laminate film made of polyolefin (for example, polypropylene or polyethylene) coated with an inorganic material such as aluminum, silica, or alumina can be used.
  • an aluminum laminate film made of polyolefin coated with aluminum is preferable from the viewpoint of suppressing volume expansion.
  • a structure in which a metal thin film layer and a heat-fusible resin layer are laminated can be mentioned.
  • a resin film (protective layer) made of a polyester such as polyethylene terephthalate or a polyamide such as nylon is provided on the surface of the metal thin film layer opposite to the heat-fusible resin layer side.
  • the heat-fusible resin layers of the laminate film are opposed to each other so that the heat-fusible resin layers can be fused at the sealing portion. To form a container.
  • the metal thin film layer of the laminate film for example, a foil made of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 to 100 ⁇ m is used.
  • the resin used for the heat-sealable resin layer is not particularly limited as long as it is a resin that can be heat-sealable.
  • the thickness of the heat-fusible resin layer is preferably 10 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • FIG. 1 shows an example of the structure of a lithium ion secondary battery according to an embodiment of the present invention.
  • the positive electrode is formed by forming the positive electrode active material layer 1 containing the positive electrode active material on the positive electrode current collector 1A.
  • a positive electrode there are a single-sided electrode in which the positive electrode active material layer 1 is formed on one side of the positive electrode current collector 1A, and a double-sided electrode in which the positive electrode current collector 1A is formed on both sides of the positive electrode current collector 1A. It is used.
  • the negative electrode is formed by forming the negative electrode active material layer 2 containing the negative electrode active material on the negative electrode current collector 2A.
  • a negative electrode a single-sided electrode in which the negative electrode active material layer 2 is formed on one side of the negative electrode current collector 2A, and a double-sided electrode in which the negative electrode active material layer 2 is formed on both sides of the negative electrode current collector 2A are provided. It is used.
  • the positive electrode and negative electrode are arranged opposite to each other with a separator 3 interposed therebetween as shown in FIG.
  • the two positive electrode current collectors 1A are connected to each other on one end side, and the positive electrode tab 1B is connected to this connection part.
  • the two negative electrode current collectors 2A are connected to each other on the other end side, and the negative electrode tab 2B is connected to this connection part.
  • the laminate (power generation element) including the positive electrode and the negative electrode is accommodated in a container made of the outer package 4 and is in an impregnated state with the electrolytic solution.
  • the positive electrode tab 1 ⁇ / b> B and the negative electrode tab 2 ⁇ / b> B are exposed to the outside of the exterior body 4.
  • the exterior body 4 is formed by using two rectangular laminate sheets, overlapping so as to wrap the power generation element, and fusing and sealing the four side edges.
  • a mass of 94: 3: 3 of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as the positive electrode active material, carbon black as the conductive auxiliary agent, and polyvinylidene fluoride as the binder for the positive electrode Weighed ratios and mixed them with N-methylpyrrolidone to prepare a positive electrode slurry.
  • the positive electrode slurry is applied on one surface of a positive electrode current collector 1A made of an aluminum foil having a thickness of 20 ⁇ m, dried and further pressed to form the positive electrode active material layer 1, and the positive electrode current collector A single-sided electrode having a positive electrode active material layer formed on one side was obtained.
  • a positive electrode active material layer 1 was formed on both sides of the positive electrode current collector 1A, and a double-sided electrode in which a positive electrode active material layer was formed on both surfaces of the positive electrode current collector was obtained.
  • a negative electrode current collector 2A made of copper foil (thickness 10 ⁇ m) is obtained by mixing graphite powder (94% by mass), which is a negative electrode active material, and PVDF (6% by mass) and adding N-methylpyrrolidone into a slurry.
  • the negative electrode active material layer 2 was formed by coating on one surface of the negative electrode active material layer, and a single-sided negative electrode having a negative electrode active material layer formed on one side of the negative electrode current collector was obtained.
  • a negative electrode active material layer 2 was formed on both sides of the negative electrode current collector 2A, and a double-sided electrode in which a negative electrode active material layer was formed on both sides of the negative electrode current collector was obtained.
  • a slurry containing 85% by mass of SiO having an average particle size of 15 ⁇ m and 15% by mass of polyamic acid was applied on one surface of the negative electrode current collector 2A made of copper foil (thickness: 10 ⁇ m), dried, and a thickness of 46 ⁇ m
  • the negative electrode active material layer 2 was formed, and a single-sided negative electrode having a negative electrode active material layer formed on one side of the negative electrode current collector was obtained.
  • a negative electrode active material layer 2 was formed on both sides of the negative electrode current collector 2A, and a double-sided electrode in which a negative electrode active material layer was formed on both sides of the negative electrode current collector was obtained.
  • the obtained negative electrode was annealed at 350 ° C. for 3 hours in a nitrogen atmosphere to cure the binder component.
  • Example 1 Preparation of non-aqueous electrolyte> Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio (EC / DEC) of 30/70, and LiPF 6 was dissolved therein at 1.0 mol / L, and further synthesized in Synthesis Example 1.
  • a non-aqueous electrolyte was prepared by dissolving the difluoroboron complex compound FB1 at 0.1% by mass.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that a silicon negative electrode was used as the negative electrode instead of the graphite negative electrode.
  • Example 3 In the same manner as in Example 1, except that 0.1% by mass of compound FB1 obtained in Synthesis Example 1 was added to the nonaqueous electrolytic solution instead of 0.1% by mass of Compound FB1 obtained in Synthesis Example 1. An ion secondary battery was produced.
  • Example 4 In the same manner as in Example 1, except that 0.1% by mass of the compound FB2 obtained in Synthesis Example 2 was added to the nonaqueous electrolytic solution in place of 0.1% by mass of the compound FB1 obtained in Synthesis Example 1. An ion secondary battery was produced.
  • Example 5 In the same manner as in Example 1, except that 0.1% by mass of the compound FB3 obtained in Synthesis Example 3 was added to the nonaqueous electrolytic solution in place of 0.1% by mass of the compound FB1 obtained in Synthesis Example 1. An ion secondary battery was produced.
  • Example 6 In the same manner as in Example 1, except that 0.1% by mass of the compound FB4 obtained in Synthesis Example 4 was added in place of 0.1% by mass of the compound FB1 obtained in Synthesis Example 1 to the non-aqueous electrolyte. An ion secondary battery was produced.
  • Example 7 In the same manner as in Example 1, except that 0.1% by mass of the compound FB7 obtained in Synthesis Example 5 was added to the nonaqueous electrolytic solution instead of 0.1% by mass of the compound FB1 obtained in Synthesis Example 1. An ion secondary battery was produced.
  • Example 8 In the same manner as in Example 1, except that 0.1% by mass of the compound FB13 obtained in Synthesis Example 6 was added in place of 0.1% by mass of the compound FB1 obtained in Synthesis Example 1 to the non-aqueous electrolyte. An ion secondary battery was produced.
  • Example 9 Instead of adding 0.1% by mass of compound FB1 obtained in Synthesis Example 1 to the non-aqueous electrolyte, 0.05% by mass of Compound FB1 obtained in Synthesis Example 1 and 1.0% by mass of vinylene carbonate were added. A lithium ion secondary battery was produced in the same manner as in Example 1.
  • Example 10 Instead of adding 0.1% by mass of the compound FB1 obtained in Synthesis Example 1 to the non-aqueous electrolyte, 0.05% by mass of the compound FB1 obtained in Synthesis Example 1 and 1.0% by mass of fluoroethylene carbonate were added. Produced a lithium ion secondary battery in the same manner as in Example 1.
  • Example 11 Instead of adding 0.1% by mass of the compound FB1 obtained in Synthesis Example 1 to the non-aqueous electrolyte, 0.05% by mass of the compound FB1 obtained in Synthesis Example 1 and 1,5,2,4-dioxadithian-2, A lithium ion secondary battery was produced in the same manner as in Example 1 except that 0.2% by mass of 2,4,4-tetraoxide was added.
  • Capacity maintenance ratio (%) (discharge capacity at 50th cycle / discharge capacity at 1st cycle) ⁇ 100
  • Table 2 summarizes the composition of the electrolytic solution, the negative electrode material, the additive, the added amount, and the evaluation result (capacity maintenance ratio) in each example and comparative example.
  • the nonaqueous electrolytic solution according to the embodiment of the present invention containing a specific difluoroboron complex compound is effective in improving the characteristics (especially cycle characteristics in a high temperature environment) of the lithium ion secondary battery. I understood that.
  • the lithium ion secondary battery using the non-aqueous electrolyte according to the embodiment of the present invention exhibits excellent characteristics even at a high temperature. It can utilize suitably in the industrial field regarding supply. Specifically, power supplies for mobile devices such as mobile phones, laptop computers, tablet terminals, and portable game consoles; power supplies for transportation and transportation media such as electric cars, hybrid cars, electric bikes, and power-assisted bicycles; It can be used for a power storage system; a backup power source such as a UPS; a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
  • Positive electrode active material layer 1A Positive electrode current collector 1B: Positive electrode tab 2: Negative electrode active material layer 2A: Negative electrode current collector 2B: Negative electrode tab 3: Separator 4: Exterior body

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 非水溶媒と、リチウム塩からなる電解質塩と、下記一般式(1)で表されるジフルオロほう素錯体化合物を含む非水電解液。(式中、R、Rは、それぞれ独立に、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のアルコキシ基を表し、Rは、水素原子、置換または無置換のアリール基、置換または無置換のヘテロアリール基を表す。)

Description

非水電解液及びリチウムイオン二次電池
 本発明は、非水電解液及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池などの非水電解質二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話等の小型電子機器などの電池としてすでに実用化されている。また、近年では電気自動車用蓄電池、家庭用蓄電池及び電力貯蔵用蓄電池への利用が進んでいる。
 リチウムイオン二次電池は、主に正極活物質を含む正極と、リチウムイオンを吸蔵放出可能な材料を主成分とする負極と、非水電解液から構成されている。正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePO、LiMnのようなリチウム金属酸化物が用いられている。
 また、負極に用いられる負極活物質としては、金属リチウム、リチウムイオンを吸蔵放出可能なケイ素、シリコン酸化物等の酸化物、又は炭素質材料が用いられている。特に、リチウムイオンを吸蔵放出可能な黒鉛(人造黒鉛、天然黒鉛)、コークス等の炭素質材料を用いたリチウムイオン二次電池は、既に実用化されている。
 一方、非水電解液としては、例えば、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート系溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート系溶媒との混合溶媒に、LiPF、LiBF、LiN(SOCF、LiN(SO、Lithium bis(oxalate)borate(LiB(C)等のリチウム塩を添加したものが用いられている。
 このような非水電解液を用いた二次電池においては、例えば負極の電極表面では、特に高温環境下で、電解液中の溶媒が還元分解を起こし、分解生成物が負極表面に堆積して抵抗を増大させたり、溶媒の分解により発生したガスにより電池を膨れさせたりする。また正極における電極表面においては、溶媒が酸化分解を起こし、分解生成物が正極表面に堆積して抵抗を増大させたり、溶媒の分解により発生したガスにより電池を膨れさせたりする。その結果、高温環境下での電池の保存特性の低下や、二次電池のサイクル特性の低下が起こり、電池特性が低下する問題があった。
 これらの問題の発生を防止するために、非水電解液中に、保護被膜生成機能を有する化合物を添加することが行なわれている。具体的には、初期充電時に電極活物質表面において電解液中に添加された化合物の分解を意図的に促し、その分解物が、新たな溶媒の分解を防止するための保護機能を有する保護被膜、すなわちSEI(Solid Electrolyte Interface)を形成することが知られている。そして、この保護被膜が電極表面に形成されることにより、電極表面での溶媒の化学反応や分解が適切に抑制され、その結果、二次電池の電池特性の特性を維持させる効果があることが報告されている(非特許文献1)。このような保護被膜を形成するための添加剤として、例えば、ビニレンカーボネート、フルオロエチレンカーボネート又はマレイン酸無水物を電解液に添加して電池特性を改善する試みがなされている(非特許文献1)。
 他方、充放電の繰り返しによる容量劣化を抑制するために、ホウ素化合物を電解液に添加することが知られている。
 例えば、特許文献1には、非水系リチウム電池において、電解質の添加剤として、BF、BF錯体、HBF及びHBF錯体からなる群から選ばれるフッ素化ホウ素化合物を用いることが記載されている。また、BF錯体として、BFジエチルカーボネート錯体、BFエチルメチルカーボネート錯体等が記載され、HBF錯体として、BFジエチルカーボネート錯体が記載されている。
 また、特許文献2には、第一のリチウム塩を非水溶媒に溶解させた電解液において、第二のリチウム塩として有機酸のリチウム塩ととともに、ホウ素化合物を配合することが記載されている。このホウ素化合物として、三フッ化ホウ素、ハロゲン化ホウ素錯体が記載され、ハロゲン化ホウ素錯体として、三フッ化ホウ素ジエチルエーテル錯体、三フッ化ホウ素ジn-ブチルエーテル錯体、三フッ化ホウ素テトラヒドロフラン錯体が記載されている。
特開平11-149943号公報 特開2012-248519号公報
Journal.Power Sources,162巻,p.1379-1394(2006)
 しかしながら、非特許文献1や特許文献1、2に記載の添加剤を含む非水電解液用いても、高温環境下での電池特性の低下を抑制する点では十分とはいえず、さらなる改善効果が得られる添加剤を含む非水電解液が求められている。
 本発明は、上記課題に鑑みてなされたものであり、本発明の目的は、高温環境下における電池特性の低下を抑制することができる非水電解液、及びこの非水電解液を用いた優れた電池特性を有するリチウムイオン二次電池を提供することにある。
 本発明の一態様による非水電解液は、非水溶媒と、リチウム塩からなる電解質塩と、下記一般式(1)で表されるジフルオロほう素錯体化合物を含む。
Figure JPOXMLDOC01-appb-C000002
(式中、R、Rは、それぞれ独立に、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のアルコキシ基を表し、Rは、水素原子、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基を表す。)
 本発明の他の態様によるリチウムイオン二次電池は、リチウムイオンを吸蔵放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、上記の非水電解液を含む。
 本発明の実施形態によれば、高温環境下における電池特性の低下を抑制することができる非水電解液、及び優れた電池特性を有するリチウムイオン二次電池を提供することができる。
本発明の実施形態によるリチウムイオン二次電池の構成を説明するための概略断面図である。
 本発明者らは、上述の課題を解決するために鋭意研究を重ねた結果、非水電解液に、特定の構造を有するジフルオロほう素錯体化合物を添加することで、高温環境下でのサイクル特性等の電池特性を改善できることを見出し、本発明を完成した。
 即ち、本発明の実施形態による非水電解液は、非水溶媒と、電解質塩としてのリチウム塩と、上記一般式(1)で表されるジフルオロほう素錯体化合物とを含む。
 この非水電解液は、上記ジフルオロほう素錯体化合物の一種又は二種以上を含むことができる。また、前記ジフルオロほう素錯体化合物の添加量(含有量)は、非水電解液の総質量に対して0.01~10質量%の範囲にあることが好ましい。
 本発明の実施形態による非水電解液は、さらにビニレンカーボネート、フルオロエチレンカーボネート、1,3-プロパンスルトン、マレイン酸無水物、及び1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドからなる群から選ばれる少なくとも1種の添加剤化合物を含んでいてもよい。この添加剤化合物の添加量(含有量)は、非水電解液の総質量に対して0.01~10質量%の範囲にあることが好ましい。
 本発明の実施形態による非水電解液は、非水溶媒としてカーボネート類を含むことが好ましく、環状カーボネート類と鎖状カーボネート類を含むことがより好ましい。
 本発明の実施形態による非水電解液の電解質塩の濃度は0.1~3mol/Lの範囲にあることが好ましい。
 また、本発明の他の実施形態によるリチウムイオン二次電池は、リチウムイオンを吸蔵放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、上記の非水電解液を含む。この負極活物質は、単体ケイ素、シリコン酸化物、及び炭素質材料からなる群から選ばれる少なくとも1種を含むことが好ましい。
 一般式(1)で表されるジフルオロほう素錯体化合物は、電池の初期充電時に電極活物質表面において化学反応を起こし、その生成物が、新たな電解液の分解を防止するための保護機能を有する電極表面の保護被膜、すなわちSEI(Solid Electrolyte Interface)を形成するものと推測される。一般式(1)で表されるジフルオロほう素錯体化合物の添加により電極表面に保護被膜が形成されることで、電極表面での電解液の化学反応や分解が適切に抑制され、二次電池の長期信頼性、寿命を維持させる効果が得られる。これにより、容量が大きく、エネルギー密度が高く、充放電サイクルの安定性に優れ、高温環境下においても電池特性の低下が抑制される二次電池を提供できる。
 以下に、本発明の実施形態による非水電解液、及びそれを用いたリチウムイオン二次電池について詳細に説明する。
 [非水電解液の添加剤成分]
 本発明の実施形態による非水電解液は、下記一般式(1)で表されるジフルオロほう素錯体化合物を少なくとも1種含む。
Figure JPOXMLDOC01-appb-C000003
 式(1)において、R、Rは、それぞれ独立に、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のアルコキシ基を表し、Rは、水素原子、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基を表す。
 なお、RとRが互いに異なる場合、本発明の実施形態によるジフルオロほう素錯体は、異性体を有し、式(1A)と式(1B)で表される異性体が存在すると考えられる。本明細書では、ジフルオロほう素錯体の構造として、式(1A)の構造式のみを記載している場合でも、特に断りがないときは、異性体である式(1B)の構造式も含むものとする。
Figure JPOXMLDOC01-appb-C000004
 R、R、Rにおいて、置換または無置換の炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、n-ヘキシル基等の無置換のアルキル基、及びアルキル基の水素原子の一つ以上が置換基により置換されたアルキル基が挙げられる。この置換基としては、フッ素原子、シアノ基、炭素数1~5のエステル基(-COOZ、Zはアルキル基)、炭素数1~5のアルコキシ基、アリール基、ヘテロアリール基(チエニル基、フラニル基等)が挙げられる。アルキル基の水素原子の二つ以上がそれぞれ独立に異なる置換基で置換されていてもよい。置換されたアルキル基の例としては、トリフルオロメチル基、ペンタフルオロエチル基、トリフルオロエチル基、ヘプタフルオロプロピル基、シアノメチル基、ベンジル基、2-チエニルメチル基等が挙げられる。
 R、R、Rにおいて、置換または無置換のアリール基としては、フェニル基、ナフチル基等の無置換のアリール基、及びアリール基の水素原子の一つ以上が置換基により置換されたアリール基が挙げられる。この置換基としては、炭素数1~5のアルキル基、フッ素原子、シアノ基、炭素数1~5のアルコキシ基が挙げられる。アリール基の水素原子の二つ以上がそれぞれ独立に異なる置換基で置換されていてもよい。置換されたアリール基の例としては、トリル基、4-シアノフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、3,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、ペンタフルオロフェニル基、4-メトキシフェニル基等が挙げられる。
 R、R、Rにおいて、置換または無置換のヘテロアリール基としては、チエニル基(2-チエニル基、3-チエニル基)、フラニル基(例えば2-フラニル基)等の無置換のヘテロアリール基、及びヘテロアリール基の水素原子の一つ以上が置換基により置換されたヘテロアリール基が挙げられる。この置換基としては、炭素数1~5のアルキル基、フッ素原子、シアノ基、炭素数1~5のアルコキシ基が挙げられる。ヘテロアリール基の水素原子の二つ以上がそれぞれ独立に異なる置換基で置換されていてもよい。置換されたヘテロアリール基の例としては、4-メチル-2-チエニル基、3-フルオロ-2-チエニル基等が挙げられる。
 R、Rにおいて、置換または無置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の無置換の炭素数1~5のアルコキシ基、炭素数1~5のアルコキシ基の水素原子の一つ以上が置換基により置換された、ベンジルオキシ基等の置換アルコキシ基が挙げられる。この置換基としては、フッ素原子、シアノ基、アリール基、ヘテロアリール基(チエニル基、フラニル基等)が挙げられる。
 R、Rの好ましい例としては、それぞれ独立に、メチル基、トリフルオロメチル基、ペンタフルオロエチル基、フェニル基、2-チエニル基、2-フラニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、4-シアノフェニル基、エトキシ基、メトキシ基等が挙げられる。
 Rの好ましい例としては、水素原子、フェニル基、2-チエニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、ペンタフルオロフェニル基等が挙げられる。
 上記一般式(1)で表される化合物の具体的な例を表1に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000005
 一般式(1)で表されるジフルオロほう素錯体化合物は、例えば、Tetrahedron、63巻、9357-9358頁(2007年)に記載の製造方法で得ることができる。
 一般式(1)で表されるジフルオロほう素錯体化合物の製造方法の一例としては、下記式(A-a)で表されるジケトンと、三フッ化ほう素・ジエチルエーテル錯体とを、適当な溶媒を用いて反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、Rは、一般式(1)のR、R、Rと同じ。)
 この製造方法において用いることのできる溶媒としては、塩化メチレン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素;1,2-ジメトキシエタン、アセトニトリル等が挙げられる。中でも、塩化メチレン、1,2-ジクロロエタン、1,2-ジメトキエタン等が好ましい。
 本発明の実施形態による非水電解液は、上記一般式(1)で示されるジフルオロほう素錯体化合物が添加されている。ジフルオロほう素錯体化合物の非水電解液中の含有量(添加量)は、非水電解液全質量に対して0.01~10質量%の範囲にあることが好ましく、0.02~5質量%の範囲にあることがより好ましく、0.03~3質量%の範囲にあることがさらに好ましい。このジフルオロほう素錯体化合物の含有量(添加量)が0.01質量%以上であると、十分な添加効果を得ることができる。このジフルオロほう素錯体化合物の含有量(添加量)が10質量%以下であると、十分な添加効果を得ながらコストを抑えることができる。
 本発明の実施形態による非水電解液は、上記一般式(1)で表されるジフルオロほう素錯体化合物が1種のみ添加されていても、2種以上添加されていてもよい。
 また、本発明の実施形態による非水電解液は、一般式(1)で表されるジフルオロほう素錯体化合物以外にも、その他の添加剤成分として、非水電解液用の公知の添加剤化合物を任意に含むことができる。例えば、ビニレンカーボネート、フルオロエチレンカーボネート、マレイン酸無水物、エチレンサルファイト、ボロン酸エステル、1,3-プロパンスルトン、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド等が挙げられる。これらの中でも、ビニレンカーボネート、フルオロエチレンカーボネート、1,3-プロパンスルトン、マレイン酸無水物、1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドが好ましい。これらの他の添加剤化合物は1種を単独で用いてもよいし、2種以上を併用してもよい。
 [非水溶媒]
 本発明の実施形態による非水電解液に使用される非水溶媒(非水系有機溶媒)としては、特に制限されるものではないが、通常使用されているものの中から適宜選択できる。例えば、環状カーボネート類、鎖状カーボネート類、鎖状エステル類、ラクトン類、エーテル類、スルホン類、ニトリル類、及びリン酸エステル類からなる群から選ばれる少なくとも一種の溶媒を含む非水溶媒を用いることができる。
 環状カーボネート類の具体例としては、プロピレンカーボネート、エチレンカーボネート、フルオロエチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。
 鎖状カーボネート類の具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート等が挙げられる。
 鎖状エステル類の具体例としては、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチル、ピバリン酸メチル、ピバリン酸エチル等のカルボン酸エステルが挙げられる。
 ラクトン類の具体例としては、γ-ブチロラクトン、δ-バレロラクトン、α-メチル-γ-ブチロラクトン等が挙げられる。
 エーテル類の具体例としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等が挙げられる。
 スルホン類の具体例としては、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。
 ニトリル類の具体例としては、アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル等が挙げられる。
 リン酸エステル類の具体例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル等が挙げられる。
 上記非水溶媒は、一種を単独で、または二種以上を混合して使用することができる。その組合せは、例えば、環状カーボネート類と鎖状カーボネート類の組合せ、環状カーボネート類と鎖状カーボネート類に、第3溶媒として、鎖状エステル類や、ラクトン類、エーテル類、ニトリル類、スルホン類、リン酸エステル類を加える組合せが挙げられる。これらの中でも、少なくとも環状カーボネート類と鎖状カーボネート類を含む組合せが、優れた電池特性を実現する上でより好ましい。
 非水溶媒は、環状カーボネート類を含有することが好ましい。環状カーボネート類は比誘電率が大きいため、環状カーボネート類を添加することにより、非水電解液のイオン伝導性を高めることができる。非水電解液に含まれる環状カーボネート類の含有量は、特に制限されるものではないが、非水電解液のイオン伝導性や粘度等の観点から、非水溶媒中、5体積%以上が好ましく、10体積%以上がより好ましく、20体積%以上がより好ましく、また70体積%以下が好ましく、60体積%以下がより好ましく、50体積%以下がさらに好ましい。
 [電解質塩]
 本発明の実施形態による非水電解液中に含まれる電解質塩としては、以下の例に限定されるものではないが、LiPF、LiBF、LiClO、LiN(SOF)、LiN(SOCF、LiN(SO、CFSOLi、CSOLi、LiAsF、LiAlCl、LiSbF、LiPF(CF、LiPF(C、LiPF(CF、(CF(SONLi、(CF(SOLi、リチウムビスオキサラトボレート(Lithium bis(oxalate)borate)、リチウムオキサラトジフルオロボレート(Lithium oxaltodifluoroborate)等のリチウム塩が挙げられる。これらの中でも、LiPF、LiBF、LiN(SOF)、LiN(SOCF、LiN(SOが好ましい。これら電解質塩は、一種を単独で、または二種以上を組み合わせて使用することができる。
 非水溶媒に溶解している電解質塩の非水電解液中の濃度は、0.1~3mol/Lの範囲にあることが好ましく、0.5~2mol/Lの範囲にあることがより好ましい。電解質塩の濃度が0.1mol/L以上であると、より十分なイオン導電率が得られ、電解質塩の濃度が3mol/L以下であると、電解液の粘度の上昇が抑えられ、より十分なイオン移動度や含浸性が得られる。
 [リチウムイオン二次電池]
 本発明の実施形態によるリチウムイオン二次電池は、主に、正極、負極、非水電解液(非水溶媒に一般式(1)で表されるジフルオロほう素錯体化合物及び電解質塩が溶解されている非水電解液)、及び正極と負極間に配置されたセパレータからなる。非水電解液としては、上述の非水電解液を好適に用いることができる。非水電解液以外の正極、負極、セパレータ等の構成部材は特に制限されるものではなく、一般的なリチウムイオン二次電池に通常使用されているものを適用できる。以下に、本発明の実施形態によるリチウムイオン二次電池に好適な、非水電解液以外の構成部材について説明する。
 (正極)
 本発明の実施形態によるリチウムイオン二次電池の正極は、例えば、正極活物質と結着剤を含む正極活物質層が正極集電体上に覆うように形成されたものを用いることができる。結着剤によって、正極活物質と集電体間、正極活物質同士が結着される。
 正極活物質としては、コバルト、マンガン、ニッケル等の遷移金属とリチウムを含むリチウム複合金属酸化物を使用できる。このようなリチウム複合金属酸化物としては、具体的には、LiMnO、LiMn(0<x<2)、LiMnO-LiMO系固溶体(M=Co、Ni等)、LiCoO、LiNiO、LiCo1-xNi(0.01<x<1)、LiNi1/2Mn3/2、LiNi1/3Co1/3Mn1/3等が挙げられる。また、これらのリチウム複合金属酸化物において化学量論組成よりもLiを過剰にしたもの等も挙げられる。
 さらに、サイクル特性や安全性の向上、また高い充電電位での使用を可能にするため、リチウム複合金属酸化物の一部を他の元素で置換してもよい。例えば、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、酸素の一部をSやFで置換したり、またはこれらの元素を含有する化合物で正極表面を被覆することもできる。
 また、正極活物質として、リチウム含有オリビン型リン酸塩(LiMPO;MはFe、Mn、Ni、Mg、Co等)を用いることもできる。具体的な例としては、LiFePO、LiMnPO、LiNiPO等が挙げられる。
 正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助剤を添加してもよい。導電補助剤としては、具体的には、天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等のカーボンブラック類が挙げられる。これらの導電補助剤は、2種以上を適宜混合して用いてもよい。導電補助剤の添加量は正極活物質100質量部に対して、1~10質量部が好ましい。
 正極活物質の平均粒径については、電解液との反応性やレート特性等の観点から、例えば平均粒径が0.1~50μmの範囲にある正極活物質を用いることができ、好ましくは平均粒径が1~30μmの範囲にある正極活物質、より好ましくは平均粒径が2~25μmの範囲にあるものを用いることができる。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。
 正極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極集電体としては、特に制限されるものではなく、一般的なリチウムイオン二次電池に通常使用されているものを任意に用いることができる。正極集電体の材料としては、例えば、アルミニウムや、ステンレス鋼を用いることができる。正極集電体の形状としては、箔状、平板状、メッシュ状等が挙げられる。好適な正極集電体として、アルミニウム箔やステンレス製のラス板等を用いることができる。
 正極の作製方法としては、例えば、上記の正極活物質、導電補助剤、結着剤を混合し、これにN-メチルピロリドン等の溶媒を加えて混練してスラリーを調製し、これを集電体上にドクターブレード法、ダイコーター法等で塗布し、次いで乾燥し、必要に応じて加圧することで作製できる。
 (負極)
 本発明の実施形態によるリチウムイオン二次電池の負極は、例えば、負極活物質と結着剤を含む負極活物質層が負極集電体上に覆うように形成されたものを用いることができる。結着剤によって、負極活物質と集電体間、負極極活物質同士が結着される。
 負極活物質としては、リチウム金属や、リチウムとの合金化が可能な金属または合金、リチウムイオンの吸蔵及び放出が可能な酸化物、リチウムイオンの吸蔵及び放出が可能な炭素質材料等が挙げられる。
 リチウムとの合金化が可能な金属または合金としては、例えば、単体ケイ素、リチウム-シリコン合金、リチウム-スズ合金等が挙げられる。
 また、リチウムイオンの吸蔵及び放出が可能な酸化物としては、例えば、シリコン酸化物、五酸化ニオブ(Nb)、リチウムチタン複合酸化物(Li4/3Ti5/3)、二酸化チタン(TiO)等が挙げられる。
 また、リチウムイオンの吸蔵及び放出が可能な炭素質材料としては、例えば、黒鉛材料(人造黒鉛、天然黒鉛)、カーボンブラック(アセチレンブラック、ファーネスブラック)、コークス、メソカーボンマイクロビーズ、ハードカーボン、グラファイト等の炭素質材料が挙げられる。
 負極活物質は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 これらの中でもサイクル特性及び安定性が良好でさらに連続充電特性も優れている点で、炭素質材料が好ましい。
 また、容量の点からは、ケイ素を含む負極活物質が好ましい。ケイ素を含む負極活物質としては、例えば、シリコンやシリコン化合物等が挙げられる。シリコンとしては、例えば、単体ケイ素が挙げられる。シリコン化合物としては、例えば、シリコン酸化物、ケイ酸塩、ニッケルシリサイドやコバルトシリサイドなどの遷移金属とケイ素との化合物などが挙げられる。
 シリコン化合物には、負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和する機能があり、充放電サイクル特性の観点からシリコン化合物がより好ましい。また、シリコン化合物の種類によってはシリコン間の導通を確保する機能も有する。このような観点から、シリコン化合物としてシリコン酸化物が好ましい。
 シリコン酸化物は、特に限定されるものではないが、例えば、SiO(0<x≦2)で表されるものを用いることができる。シリコン酸化物は、Liを含んでもよく、Liを含むシリコン酸化物としては、例えばSiLi(y>0、2>z>0)で表されるものを用いることができる。また、シリコン酸化物は微量の金属元素や非金属元素を含んでも良い。シリコン酸化物は、例えば、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%含有することができる。微量の金属元素や非金属元素を含有することで、シリコン酸化物の電気伝導性を向上させることができる。また、シリコン酸化物は結晶であってもよく、非晶質であってもよい。
 より好適な負極活物質としては、ケイ素を含む負極活物質(好ましくはシリコン又はシリコン酸化物)と、リチウムイオンを吸蔵放出し得る炭素質材料を含むものがより好ましい。炭素質材料は、ケイ素を含む負極活物質(好ましくはシリコンやシリコン酸化物)と複合化させた状態で含有させることもできる。炭素質材料は、シリコン酸化物と同様に、負極活物質自体の繰り返し充放電に対する膨脹収縮を緩和し、負極活物質であるシリコン間の導通を確保する機能を有する。したがって、ケイ素を含む負極活物質(好ましくはシリコン又はシリコン酸化物)と炭素質材料が共存することにより、より良好なサイクル特性が得られる。
 炭素質材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物を好適に用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。負極活物質中の炭素質材料の含有率は、2質量%以上50質量%以下とすることが好ましく、2質量%以上30質量%以下とすることがより好ましい。
 シリコンとシリコン化合物を含有する負極活物質の作製方法としては、次の方法が挙げられる。シリコン化合物としてシリコン酸化物を用いる場合には、例えば、単体ケイ素とシリコン酸化物を混合し、高温減圧下にて焼結させる方法が挙げられる。また、シリコン化合物として遷移金属とケイ素との化合物を用いる場合には、例えば、単体ケイ素と遷移金属を混合し、溶融させる方法や、単体ケイ素の表面に遷移金属を蒸着等により被覆する方法が挙げられる。
 上記で述べた作製方法において、さらに炭素との複合化を組み合わせることもできる。例えば、高温非酸素雰囲気下で有機化合物の気体雰囲気中に単体ケイ素とシリコン化合物の混合焼結物を導入し、有機化合物を炭化して、炭素からなる被覆層を形成する方法や、高温非酸素雰囲気下で単体ケイ素とシリコン化合物の混合焼結物と炭素の前駆体樹脂を混合し、前駆体樹脂を炭化して、炭素からなる被覆層を形成する方法が挙げられる。このようにして、単体ケイ素とシリコン化合物(例えばシリコン酸化物)からなる核の周囲に炭素からなる被覆層を形成することができる。これにより充放電に対する体積膨張の抑制及びサイクル特性のさらなる改善効果が得られる。
 負極活物質としてケイ素を含む負極活物質を用いる場合、シリコン、シリコン酸化物及び炭素質材料を含む複合体(以下、Si/SiO/C複合体とも称す)が好ましい。さらに、シリコン酸化物は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造を有するシリコン酸化物は、他の負極活物質である炭素質材料やシリコンの体積膨張を抑制することができる。このメカニズムは明確ではないが、シリコン酸化物がアモルファス構造であることにより、炭素質材料と電解液の界面への皮膜形成に何らかの影響があるものと推則される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、シリコン酸化物の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、シリコン酸化物がアモルファス構造を有しない場合には、シリコン酸化物に固有のピークが観測されるが、シリコン酸化物の全部または一部がアモルファス構造を有する場合、シリコン酸化物に固有のピークがブロードとなって観測される。
 Si/SiO/C複合体において、シリコンは、その全部または一部がシリコン酸化物中に分散していることが好ましい。シリコンの少なくとも一部をシリコン酸化物中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、シリコンの全部または一部がシリコン酸化物中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、サンプルの断面を観察し、シリコン酸化物中に分散しているシリコンに相当する部分の酸素濃度を測定し、酸化物となっていないことを確認することができる。
 Si/SiO/C複合体において、例えば、シリコン酸化物の全部または一部がアモルファス構造であり、シリコンはその全部または一部がシリコン酸化物中に分散している。このようなSi/SiO/C複合体は、例えば、特開2004-47404号公報で開示されているような方法で作製することができる。すなわち、Si/SiO/C複合体は、例えば、シリコン酸化物をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで得ることができる。このような方法で得られるSi/SiO/C複合体は、シリコンを含むシリコン酸化物からなる粒子の表面がカーボンで被覆された形態となる。また、シリコンはシリコン酸化物中にナノクラスター化している。
 Si/SiO/C複合体において、シリコン、シリコン酸化物および炭素質材料の割合は、特に制限されるものではない。シリコンは、Si/SiO/C複合体に対し、5質量%以上90質量%以下とすることが好ましく、20質量%以上50質量%以下とすることがより好ましい。シリコン酸化物は、Si/SiO/C複合体に対し、5質量%以上90質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。炭素質材料は、Si/SiO/C複合体に対し、2質量%以上50質量%以下とすることが好ましく、より好ましくは2質量%以上30質量%以下である。
 また、Si/SiO/C複合体は、単体ケイ素、シリコン酸化物及び炭素質材料の混合物であってもよく、単体ケイ素とシリコン酸化物と炭素質材料とをメカニカルミリングで混合することでも作製することができる。例えば、Si/SiO/C複合体は、単体ケイ素、シリコン酸化物および炭素質材料がそれぞれ粒子状のものを混合して得ることができる。例えば、単体ケイ素の平均粒子径を、炭素質材料の平均粒子径およびシリコン酸化物の平均粒子径よりも小さい構成とすることができる。このようにすれば、充放電時に伴う体積変化の大きい単体ケイ素が相対的に小粒径となり、体積変化の小さい炭素質材料やシリコン酸化物が相対的に大粒径となるため、デンドライト生成や微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子と小粒径の粒子が交互にリチウムイオンを吸蔵放出し、これにより、残留応力および残留歪みの発生を抑制できる。単体ケイ素の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。シリコン酸化物の平均粒子径が炭素質材料の平均粒子径の1/2以下であることが好ましい。単体ケイ素の平均粒子径がシリコン酸化物の平均粒子径の1/2以下であることが好ましい。また、シリコン酸化物の平均粒子径が炭素質材料の平均粒子径の1/2以下であり、かつ単体ケイ素の平均粒子径がシリコン酸化物の平均粒子径の1/2以下であることがより好ましい。平均粒子径をこのような範囲に制御すれば、体積膨脹の緩和効果をより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物の平均粒子径を黒鉛の平均粒子径の1/2以下とし、単体ケイ素の平均粒子径をシリコン酸化物の平均粒子径の1/2以下とすることが好ましい。またより具体的には、単体ケイ素の平均粒子径は、例えば20μm以下とすることができ、15μm以下とすることが好ましい。
 負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 また、負極活物質として、上述のSi/SiO/C複合体の表面をシランカップリング剤等によって処理したものを用いてもよい。
 負極活物質層は、上記のリチウムイオンを吸蔵放出可能な負極活物質を主成分として含むことが好ましく、具体的には、負極活物質の含有量は、負極活物質、負極用結着剤及び必要に応じて各種の助剤等を含む負極活物質層の全体に対して55質量%以上であることが好ましく、65質量%以上であることがより好ましい。
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。これらの中でも、結着性が強いことから、ポリイミド、ポリアミドイミド、SBR、ポリアクリル酸(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)、カルボキシメチルセルロース(アルカリで中和されたリチウム塩、ナトリウム塩、カリウム塩を含む)が好ましい。使用する負極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質100質量部に対して、5~25質量部が好ましい。
 負極集電体としては、特に制限されるものではなく、一般的なリチウムイオン二次電池に通常使用されているものを任意に用いることができる。負極集電体の材料としては、例えば、銅、ニッケル、SUS等の金属材料を用いることができる。中でも加工し易さとコストの点から特に銅が好ましい。負極集電体は、予め粗面化処理しておくことが好ましい。負極集電体の形状としては、箔状、平板状、メッシュ状等が挙げられる。また、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。
 負極の作製方法としては、例えば、前述の正極の作製方法と同様に、上述の負極活物質と、結着剤と、必要に応じて各種の助剤等と、溶媒との混合物を混練してスラリーを調製し、これを集電体上に塗布し、次いで乾燥し、必要に応じて加圧することで製造することができる。
 (セパレータ)
 セパレータとしては、特に制限されるものではないが、ポリプロピレン、ポリエチレン等のポリオレフィン等の樹脂材料からなる単層または積層の多孔性フィルムや不織布を用いることができる。また、ポリオレフィン等の樹脂層へ異種素材をコーティング又は積層したフィルムも用いることができる。このようなフィルムとしては、例えば、ポリオレフィン基材にフッ素化合物や無機微粒子をコーティングしたもの、ポリオレフィン基材とアラミド層を積層したもの等が挙げられる。
 セパレータの厚みは、電池のエネルギー密度とセパレータの機械的強度の面から5~50μmが好ましく、10~40μmがより好ましい。
 (リチウムイオン二次電池の構造)
 リチウムイオン二次電池の形態としては、特に限定されないが、コイン型電池、ボタン型電池、円筒型電池、角型電池、ラミネート型電池等が挙げられる。
 例えば、ラミネート型電池は、正極、セパレータ、負極を交互に積層した積層体を形成し、それぞれの電極にタブといわれる金属端子を接続し、外装体であるラミネートフィルムで構成した容器の中に入れ、電解液を注入して封止することにより作製できる。
 ラミネートフィルムとしては、電解液に安定でかつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。このようなラミネートフィルムとしては、例えば、アルミニウム、シリカ、アルミナ等の無機材料をコーティングしたポリオレフィン(例えばポリプロピレン、ポリエチレン)からなるラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムをコーティングしたポリオレフィンからなるアルミニウムラミネートフィルムが好ましい。
 ラミネートフィルムの代表的な層構成としては、金属薄膜層と熱融着性樹脂層とが積層された構成が挙げられる。また、ラミネートフィルムのその他の層構成としては、金属薄膜層の、熱融着性樹脂層側と反対側の面に、さらにポリエチレンテレフタレート等のポリエステルやナイロン等のポリアミドからなる樹脂フィルム(保護層)が積層された構成が挙げられる。正極及び負極を含む積層体を収容したラミネートフィルムからなる容器を封止する場合、ラミネートフィルムの熱融着性樹脂層を対向させ、封止用部分において熱融着性樹脂層間が融着できるように容器を形成する。ラミネートフィルムの金属薄膜層としては、例えば、厚さ10~100μmの、Al、Ti、Ti合金、Fe、ステンレス、Mg合金などの箔が用いられる。熱融着性樹脂層に用いられる樹脂は、熱融着が可能な樹脂であれば特に制限はないが、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体やエチレン-アクリル酸共重合体を金属イオンで分子間結合させたアイオノマー樹脂などが挙げられる。熱融着性樹脂層の厚さは10~200μmが好ましく、より好ましくは30~100μmである。
 図1に、本発明の実施形態によるリチウムイオン二次電池の構造の一例を示す。
 正極集電体1A上に正極活物質を含む正極活物質層1が形成されることにより、正極が構成されている。このような正極として、正極集電体1Aの片方の面に正極活物質層1が形成された片面電極と、正極集電体1Aの両面にそれぞれ正極活物質層1が形成された両面電極が用いられている。
 負極集電体2A上に負極活物質を含む負極活物質層2が形成されることにより、負極が構成されている。このような負極として、負極集電体2Aの片方の面に負極活物質層2が形成された片面電極と、負極集電体2Aの両面にそれぞれ負極活物質層2が形成された両面電極が用いられている。
 これらの正極と負極とは、図1に示すように、セパレータ3を介して対向配置され、積層されている。二つの正極集電体1Aは一方の端部側で互いに接続し、この接続部に正極タブ1Bが接続されている。二つの負極集電体2Aは他方の端部側で互いに接続し、この接続部に負極タブ2Bが接続されている。正極および負極を含む積層体(発電要素)は、外装体4からなる容器内に収容され、電解液が含浸した状態にある。正極タブ1Bおよび負極タブ2Bは外装体4の外部に露出している。外装体4としては、2枚の矩形のラミネートシートを用い、発電要素を包むように重ね合わせ、四方の端辺部を融着して封止することにより形成されている。
 以下、合成例、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。
 (合成例1)
 一般式(1)において、Rが2-チエニル基、Rがトリフルオロメチル基、Rが水素原子であるジフルオロほう素錯体化合物FB1の合成
Figure JPOXMLDOC01-appb-C000007
 4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオン3gを乾燥塩化メチレン50mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体2.34gを加え、室温で一晩撹拌した。溶媒を減圧下留去し、析出した結晶にヘキサンを加え撹拌洗浄することで目的のジフルオロほう素錯体FB1を1.896g得た(収率52%)。
 (合成例2)
 一般式(1)において、Rがフェニル基、Rがトリフルオロメチル基、Rが水素原子であるジフルオロほう素錯体化合物FB2の合成
Figure JPOXMLDOC01-appb-C000008
 4,4,4-トリフルオロ-1-フェニル-1,3-ブタンジオン2gを乾燥塩化メチレン40mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体1.602gを加え、室温で一晩撹拌した。溶媒を減圧下留去し、析出した結晶にヘキサンを加え撹拌洗浄した。さらに、この結晶をクロロホルムに溶解し、ヘキサン中に再沈させることで目的のジフルオロほう素錯体FB2を0.91g得た(収率37%)。
 (合成例3)
 一般式(1)において、R、Rがフェニル基、Rが水素原子であるジフルオロほう素錯体化合物FB3の合成
Figure JPOXMLDOC01-appb-C000009
 1,3-ジフェニル-1,3-プロパンジオン1gを乾燥塩化メチレン20mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体0.772gを加え、室温で一晩撹拌した。溶媒を減圧下留去し、析出した結晶にヘキサンを加え撹拌洗浄することで目的のジフルオロほう素錯体FB3を0.849g得た(収率70%)。
 (合成例4)
 一般式(1)において、R、Rが4-フルオロフェニル基、Rが水素原子であるジフルオロほう素錯体化合物FB4の合成
Figure JPOXMLDOC01-appb-C000010
 乾燥テトラヒドロフラン(THF)40mlに水素化ナトリム1.76gを加え、アルゴン雰囲気下、0℃で4’-フルオロアセトフェノン2gを滴下した。次に4-フルオロ安息香酸メチル2.678gを加え、さらに30時間撹拌し、その後2時間加熱還流させた。放冷後、反応溶液に希塩酸を加え、溶液を酸性にした。有機層をジエチルエーテルで抽出し、水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラム(溶離液:クロロホルム/ヘキサン=5/1(体積比))で精製することで中間体A1を1.0g得た。
 次に、中間体A1の1.0gを1,2-ジメトキシエタン20mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体0.82gを加え、60℃で2時間反応させた。放冷後、溶媒を減圧下留去し、析出した結晶にヘキサン50mlを加え、60℃で撹拌洗浄することで目的のジフルオロほう素錯体FB4を0.769g得た(収率65%)。
 (合成例5)
 一般式(1)において、Rが2-フラニル基、Rがトリフルオロメチル基、Rが水素原子であるジフルオロほう素錯体化合物FB7の合成
Figure JPOXMLDOC01-appb-C000011
 4,4,4-トリフルオロ-1-(2-フラニル)-1,3-ブタンジオン5gを乾燥塩化メチレン30mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体4.2gを加え、室温で一晩撹拌した。溶媒を減圧下留去し、析出した結晶にヘキサンを加え撹拌洗浄することで目的のジフルオロほう素錯体FB7を4.95g得た(収率80%)。
 (合成例6)
 一般式(1)において、Rがフェニル基、Rがエトキシ基、Rが水素原子であるジフルオロほう素錯体化合物FB13の合成
Figure JPOXMLDOC01-appb-C000012
 ベンゾイル酢酸エチル3gを乾燥塩化メチレン30mlに溶解し、そこに三フッ化ほう素ジエチルエーテル錯体2.7gを加え、室温で一晩撹拌した。溶媒を減圧下留去し、析出した結晶にヘキサンを加え撹拌洗浄することで目的のジフルオロほう素錯体FB13を2.71g得た(収率72%)。
 (正極の製造例)
 正極活物質としてのLiCo1/3Ni1/3Mn1/3と、導電補助剤としてのカーボンブラックと、正極用結着剤としてのポリフッ化ビニリデンとを、94:3:3の質量比で計量し、それらをN-メチルピロリドンと混合して、正極スラリーを調製した。この正極スラリーを厚さ20μmのアルミ箔からなる正極集電体1Aの一方の面上に塗布し、これを乾燥し、さらにプレスすることで、正極活物質層1を形成し、正極集電体の片面に正極活物質層が形成された片面電極を得た。同様にして、正極集電体1Aの両側にそれぞれ正極活物質層1を形成し、正極集電体の両面に正極活物質層が形成された両面電極を得た。
 (グラファイト負極の製造例)
 負極活物質であるグラファイト粉末(94質量%)とPVDF(6質量%)とを混合し、N-メチルピロリドンを加えスラリー状にしたものを、銅箔(厚み10μm)からなる負極集電体2Aの一方の面上に塗布し、これを乾燥し、負極活物質層2を形成し、負極集電体の片面に負極活物質層が形成された片面負極を得た。同様にして、負極集電体2Aの両側にそれぞれ負極活物質層2を形成し、負極集電体の両面に負極活物質層が形成された両面電極を得た。
 (シリコン負極の製造例)
 平均粒径15μmのSiOを85質量%、ポリアミック酸を15質量%含むスラリーを、銅箔(厚み10μm)からなる負極集電体2Aの一方の面上に塗布し、これを乾燥し、厚み46μmの負極活物質層2を形成し、負極集電体の片面に負極活物質層が形成された片面負極を得た。同様にして、負極集電体2Aの両側にそれぞれ負極活物質層2を形成し、負極集電体の両面に負極活物質層が形成された両面電極を得た。得られた負極は窒素雰囲気下350℃で3時間アニールし、バインダ成分を硬化させた。
 (実施例1)
 <非水電解液の調製>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比(EC/DEC)30/70で混合し、そこにLiPFを1.0mol/Lとなるように溶解させ、さらに合成例1で合成したジフルオロほう素錯体化合物FB1を0.1質量%となるように溶解させて非水電解液を調製した。
 <リチウムイオン二次電池の作製>
 上記方法で作製した正極およびグラファイト負極を所定の形状に成形した後、多孔質のフィルムセパレータ3を挟んで積層し、それぞれに正極タブ1Bおよび負極タブ2Bを溶接することで発電要素を得た。この発電要素をアルミニウムラミネートフィルム4からなる外装体で包み、3方の端辺部を熱融着した後、上記非水電解液を注入し適度な真空度にて含浸させた。その後、減圧下にて残りの1方の端辺部を熱融着により封止し、図1に示す構造を有する活性化処理前のリチウムイオン二次電池を得た。
 <活性化処理工程>
 作製した活性化処理前のリチウムイオン二次電池について、正極活物質あたり20mA/gの電流で4.1Vまで充電し、同じく正極活物質あたり20mA/g電流で1.5Vまで放電するサイクルを2回繰り返した。
 (実施例2)
 負極としてグラファイト負極の代わりにシリコン負極を用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例3)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例1で得た化合物FB1を1.0質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例4)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例2で得た化合物FB2を0.1質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例5)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例3で得た化合物FB3を0.1質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例6)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例4で得た化合物FB4を0.1質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例7)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例5で得た化合物FB7を0.1質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例8)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例6で得た化合物FB13を0.1質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例9)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例1で得た化合物FB1を0.05質量%とビニレンカーボネートを1.0質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例10)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例1で得た化合物FB1を0.05質量%とフルオロエチレンカーボネートを1.0質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (実施例11)
 非水電解液に合成例1で得た化合物FB1を0.1質量%加える代わりに、合成例1で得た化合物FB1を0.05質量%と1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシド0.2質量%加えた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (比較例1)
 ECとDECを体積比(EC/DEC)30/70で混合し、そこに電解質塩としてLiPFを1mol/Lとなるように溶解させた液を電解液(添加剤なし)として用いたこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
 (比較例2)
 ECとDECを体積比(EC/DEC)30/70で混合し、そこに電解質塩としてLiPFを1mol/Lとなるように溶解させた液を電解液(添加剤なし)として用いたこと以外は、実施例2と同様にしてリチウムイオン二次電池を作製した。
 <リチウムイオン二次電池の評価方法>
 実施例1~11並びに比較例1及び2で作製したリチウムイオン二次電池について、高温環境下におけるサイクル特性を評価した。
 具体的には、作製した二次電池に対し、60℃に保った恒温槽中で2.5Vから4.1Vの電圧範囲で50回充放電を繰り返す試験を行った。そして、以下の式よりサイクル後の容量維持率を算出した。
容量維持率(%)=(50サイクル目の放電容量/1サイクル目の放電容量)×100
 <リチウムイオン二次電池の評価結果>
 各実施例および比較例における電解液の組成、負極材料、添加剤、添加量、評価結果(容量維持率)を表2にまとめて示す。
 実施例1~11と比較例1、2の比較から、電解液に一般式(1)で表されるジフルオロほう素錯体化合物を添加することによって、高い容量が安定して得られることが分かった。
 以上の結果から、特定のジフルオロほう素錯体化合物を含有する、本発明の実施形態による非水電解液がリチウムイオン二次電池の特性(特に高温環境下でのサイクル特性)の向上に効果があることが分かった。
Figure JPOXMLDOC01-appb-T000013
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 本発明の実施形態による非水電解液を用いたリチウムイオン二次電池は、高温でも優れた特性を示すことから、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において好適に利用することができる。具体的には、携帯電話、ノートパソコン、タブレット型端末、携帯用ゲーム機などのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの移動・輸送用媒体の電源;家庭用蓄電システム;UPSなどのバックアップ用電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備、などに利用することができる。
 
 この出願は、2014年7月25日に出願された日本出願特願2014-152070を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1:正極活物質層
 1A:正極集電体
 1B:正極タブ
 2:負極活物質層
 2A:負極集電体
 2B:負極タブ
 3:セパレータ
 4:外装体

Claims (10)

  1.  非水溶媒と、リチウム塩からなる電解質塩と、下記一般式(1)で表されるジフルオロほう素錯体化合物を含む非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、Rは、それぞれ独立に、置換または無置換の炭素数1~6のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のアルコキシ基を表し、Rは、水素原子、置換または無置換のアリール基、置換または無置換のヘテロアリール基を表す。)
  2.  前記ジフルオロほう素錯体化合物の含有量が、前記非水電解液の総質量に対して0.01~10質量%の範囲にある、請求項1記載の非水電解液。
  3.  式(1)において、置換または無置換の炭素数1~6のアルキル基は、無置換の炭素数1~6のアルキル基、又は炭素数1~6のアルキル基の水素原子の一つ以上が置換基により置換されたものであり、この置換基は、フッ素原子、シアノ基、炭素数1~5のエステル基、炭素数1~5のアルコキシ基、アリール基、及びヘテロアリール基からなる群から選ばれる基であり、
     置換または無置換のアリール基は、無置換のアリール基、又はアリール基の水素原子の一つ以上が置換基により置換されたものであり、この置換基は、炭素数1~5のアルキル基、フッ素原子、シアノ基、及び炭素数1~5のアルコキシ基からなる群から選ばれる基であり、
     置換または無置換のヘテロアリール基は、無置換のヘテロアリール基、又はヘテロアリール基の水素原子の一つ以上が置換基により置換されたものであり、この置換基は、炭素数1~5のアルキル基、フッ素原子、シアノ基、及び炭素数1~5のアルコキシ基からなる群から選ばれる基であり、
     置換または無置換のアルコキシ基は、無置換の炭素数1~5のアルコキシ基、又は炭素数1~5のアルコキシ基の水素原子の一つ以上が置換基により置換されたものであり、この置換基は、フッ素原子、シアノ基、アリール基、及びヘテロアリール基からなる群から選ばれる基である、請求項1又は2記載の非水電解液。
  4.  式(1)において、R、Rは、それぞれ独立に、メチル基、トリフルオロメチル基、ペンタフルオロエチル基、フェニル基、2-チエニル基、2-フラニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、及び4-シアノフェニル基、エトキシ基、メトキシ基からなる群から選ばれる基であり、
     Rは、水素原子、フェニル基、2-チエニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、及びペンタフルオロフェニル基からなる群から選ばれる原子又は基である、請求項1又は2に記載の非水電解液。
  5.  さらにビニレンカーボネート、フルオロエチレンカーボネート、1,3-プロパンスルトン、マレイン酸無水物、及び1,5,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドからなる群から選ばれる少なくとも1種の添加剤化合物を含む、請求項1から4のいずれか一項に記載の非水電解液。
  6.  前記添加剤化合物の含有量が、前記非水電解液の総質量に対して0.01~10質量%の範囲にある、請求項5に記載の非水電解液。
  7.  前記非水溶媒として、カーボネート類を含む、請求項1から6のいずれか一項に記載の非水電解液。
  8.  前記電解質塩の濃度が0.1~3mol/Lの範囲にある、請求項1から7のいずれか一項に記載の非水電解液。
  9.  リチウムイオンを吸蔵放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、請求項1から8のいずれか一項に記載の非水電解液とを含む、リチウムイオン二次電池。
  10.  前記負極活物質が、単体ケイ素、シリコン酸化物、及び炭素質材料からなる群から選ばれる少なくとも1種を含む、請求項9に記載のリチウムイオン二次電池。
PCT/JP2015/069033 2014-07-25 2015-07-01 非水電解液及びリチウムイオン二次電池 WO2016013364A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/328,693 US10050309B2 (en) 2014-07-25 2015-07-01 Nonaqueous electrolytic solution and lithium ion secondary battery
JP2016535858A JP6520947B2 (ja) 2014-07-25 2015-07-01 非水電解液及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152070 2014-07-25
JP2014-152070 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013364A1 true WO2016013364A1 (ja) 2016-01-28

Family

ID=55162896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069033 WO2016013364A1 (ja) 2014-07-25 2015-07-01 非水電解液及びリチウムイオン二次電池

Country Status (3)

Country Link
US (1) US10050309B2 (ja)
JP (1) JP6520947B2 (ja)
WO (1) WO2016013364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025621A1 (ja) * 2016-08-03 2018-02-08 日本電気株式会社 非水電解液及びリチウムイオン二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133498B2 (en) * 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
CN110233289B (zh) * 2019-04-04 2023-06-20 李秀艳 一种高电压添加剂和含有该添加剂的电解液及电池
US20210036327A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Interfacial bonding layer for an anode-free solid-state-battery
US12125975B2 (en) 2019-07-29 2024-10-22 TeraWatt Technology Inc. Phase-change electrolyte separator for a solid-state battery
CN111342130A (zh) * 2020-03-04 2020-06-26 多氟多新能源科技有限公司 一种匹配硅碳负极且耐高电压的锂离子电池电解液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159777A (ja) * 1998-09-25 2000-06-13 Fuji Photo Film Co Ltd 新規ジオキソボラン化合物、発光素子材料およびそれを使用した発光素子
JP2005285491A (ja) * 2004-03-29 2005-10-13 Central Glass Co Ltd 非水電解液およびそれを用いたリチウム二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2215756C (en) 1997-09-18 2006-04-04 Moli Energy (1990) Limited Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JP5739728B2 (ja) 2011-05-31 2015-06-24 積水化学工業株式会社 電解液及びリチウムイオン二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159777A (ja) * 1998-09-25 2000-06-13 Fuji Photo Film Co Ltd 新規ジオキソボラン化合物、発光素子材料およびそれを使用した発光素子
JP2005285491A (ja) * 2004-03-29 2005-10-13 Central Glass Co Ltd 非水電解液およびそれを用いたリチウム二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANIEL M. SEO ET AL., THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 118, no. 32, 21 July 2014 (2014-07-21), pages 18377 - 18386 *
DEVARAJ SHANMUKARAJ ET AL., J. AM. CHEM. SOC., vol. 132, no. 9, 2010, pages 3055 - 3062 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025621A1 (ja) * 2016-08-03 2018-02-08 日本電気株式会社 非水電解液及びリチウムイオン二次電池
JPWO2018025621A1 (ja) * 2016-08-03 2019-05-30 日本電気株式会社 非水電解液及びリチウムイオン二次電池
US20190181494A1 (en) * 2016-08-03 2019-06-13 Nec Corporation Nonaqueous electrolytic solution and lithium ion secondary battery

Also Published As

Publication number Publication date
US10050309B2 (en) 2018-08-14
JPWO2016013364A1 (ja) 2017-04-27
US20170214090A1 (en) 2017-07-27
JP6520947B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6933216B2 (ja) 非水電解液及びリチウムイオン二次電池
JP6191454B2 (ja) 二次電池および電解液
JP6203497B2 (ja) リチウム2次電池用正極活物質及びこれを含むリチウム2次電池
US10833369B2 (en) Positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and methods for producing these
JP6680293B2 (ja) ハイドロフルオロエーテル化合物、非水電解液およびリチウムイオン二次電池
JP6807010B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
JP6504170B2 (ja) シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
WO2017047280A1 (ja) リチウム二次電池及びその製造方法
JP6520947B2 (ja) 非水電解液及びリチウムイオン二次電池
JP6540516B2 (ja) 環状スルホン酸エステル化合物、非水電解液、これを用いたリチウムイオン二次電池
JP6720974B2 (ja) リチウムイオン二次電池
JP7006614B2 (ja) リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
JP5725000B2 (ja) 電池用活物質および電池
JP6903900B2 (ja) リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP2024503160A (ja) リチウム遷移金属酸化物、リチウム二次電池用正極添加剤およびそれを含むリチウム二次電池
WO2016056374A1 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びにリチウムイオン二次電池
JP2012028264A (ja) 負極活物質、その製造方法および前記負極活物質を用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15328693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824758

Country of ref document: EP

Kind code of ref document: A1