Nothing Special   »   [go: up one dir, main page]

WO2016006024A1 - Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern - Google Patents

Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern Download PDF

Info

Publication number
WO2016006024A1
WO2016006024A1 PCT/JP2014/068049 JP2014068049W WO2016006024A1 WO 2016006024 A1 WO2016006024 A1 WO 2016006024A1 JP 2014068049 W JP2014068049 W JP 2014068049W WO 2016006024 A1 WO2016006024 A1 WO 2016006024A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
conductive
photosensitive
layer
photosensitive resin
Prior art date
Application number
PCT/JP2014/068049
Other languages
French (fr)
Japanese (ja)
Inventor
奏美 中村
山崎 宏
田仲 裕之
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2014/068049 priority Critical patent/WO2016006024A1/en
Publication of WO2016006024A1 publication Critical patent/WO2016006024A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a photosensitive conductive film, a conductive film set, and a method for producing a surface protective film and a substrate film with a conductive pattern using the same, a surface protective film having a two-layer stack-up structure, and a method for producing a substrate film with a conductive pattern
  • the present invention relates to a method for producing a base film with a conductive pattern having a two-layer stack-up structure.
  • Liquid crystal display elements and touch screens are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA and FA devices.
  • display devices such as OA and FA devices.
  • liquid crystal display elements, touch screens, solar cells and lighting a transparent conductive film is used as part of transparent wiring, pixel electrodes or terminals.
  • the capacitive touch panel is formed with a two-layer structure of a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes in order to express two-dimensional coordinates by the X axis and the Y axis. .
  • ITO Indium-Tin-Oxide
  • indium oxide Indium oxide
  • tin oxide Tin oxide
  • an electrode such as a substrate for a liquid crystal display element
  • a pattern obtained by patterning a transparent conductive film made of the above-described material has become mainstream.
  • a method for patterning a transparent conductive film As a method for patterning a transparent conductive film, a method is generally employed in which after forming a transparent conductive film, a resist pattern is formed by a photolithography method, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern.
  • a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is often used as the etching liquid (see, for example, Patent Document 1).
  • An ITO film or tin oxide film is generally formed by sputtering, but the film quality of the transparent conductive film is likely to change depending on the sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to variations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects. In addition, since the transparent conductive pattern forming method has undergone a sputtering process, a resist forming process, and an etching process, the process is long and has a large cost.
  • Patent Document 2 discloses a transfer type photosensitivity provided with a support film, a conductive layer containing conductive fibers provided on the support film, and a photosensitive resin layer provided on the conductive layer. Laminate the conductive film on the substrate so that the photosensitive resin layer is in close contact, and then expose and develop the conductive film. A conductive pattern with sufficient adhesion to the substrate and low surface resistivity is sufficient. It is possible to form at a high resolution.
  • Patent Document 3 when exposing a photosensitive resin layer having a conductive layer on the surface, the first exposure is performed through a support film on which a mask is placed, and the second exposure is performed on the support film.
  • a two-stage exposure method is disclosed, which is performed under the removed oxygen. As a result, it is possible to cure the resin to such an extent that only the conductive layer on the surface is removed in the development process at the first exposure process.
  • Patent Document 4 By the way, as a surface protection film for a transparent conductive film, in Patent Document 4, even when placed in a heating environment in the pattern formation of transparent electrodes and wiring, the surface protection film that can perform subsequent peeling work well. Is disclosed. However, in the film configuration described in Patent Document 4, an adhesive for bonding the first and second conductive pattern base materials is required in a capacitive touch panel in which two layers of XY electrodes are formed. There was still room for improvement in making the pattern substrate thinner.
  • This invention is made
  • a photosensitive conductive film including a support film, a conductive layer containing conductive fibers, a photosensitive resin layer, a base film, and a surface protective film in this order.
  • ⁇ 4> The photosensitive conductive layer according to any one of ⁇ 1> to ⁇ 3>, wherein the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator. the film.
  • ⁇ 5> The photosensitive conductive film according to any one of ⁇ 1> to ⁇ 4>, wherein the surface protective film is an acrylic adhesive.
  • ⁇ 6> a first exposure step of irradiating the conductive layer and the photosensitive resin layer of the photosensitive conductive film according to any one of ⁇ 1> to ⁇ 5> with actinic rays in a pattern form from the support film side; , A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step of the conductive layer and the photosensitive resin layer with actinic rays in the presence of oxygen after peeling the support film;
  • the manufacturing method of the surface protection film provided with the image development process which forms a conductive pattern by developing the said conductive layer and the said photosensitive resin layer after a said 2nd exposure process, and a base film with a conductive pattern.
  • a surface protective film obtained by the production method according to ⁇ 6> and a base film with a conductive pattern, a support film, a conductive layer containing conductive fibers provided on the support film, and the conductive layer Laminating a transfer type photosensitive conductive film having a photosensitive resin layer provided on the conductive pattern side of the surface protective film and the substrate film with a conductive pattern from the photosensitive resin layer side; A first exposure step of irradiating the conductive layer and the photosensitive resin layer with actinic rays in a pattern from the support film side; and after peeling the support film, in the presence of oxygen, the conductive layer and the photosensitive resin.
  • a conductive film set comprising a transfer type photosensitive conductive film having a conductive layer containing conductive fibers provided on the support film and a photosensitive resin layer provided on the conductive layer.
  • the substrate film with a conductive pattern can be thinned to about 30 to 100 ⁇ m while protecting the substrate film with a conductive pattern from scratches and dirt.
  • (meth) acrylate means “acrylate” or “methacrylate” corresponding thereto.
  • a or B only needs to include one of A and B, or may include both.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • FIG. 1 is a schematic cross-sectional view of the photosensitive conductive film of the present invention.
  • the photosensitive conductive film shown in FIG. 1 includes a support film 1, a conductive layer 2 containing conductive fibers, a photosensitive resin layer 3, a base film 4, and a surface protective film 5 in this order.
  • the boundary of each layer does not need to be separated clearly.
  • the support film 1 examples include a polyethylene terephthalate film, a polyethylene film, a polypropylene film, and a polycarbonate film.
  • a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
  • the support film may be subjected to surface treatment within a range that can be removed from the photosensitive resin layer later.
  • the thickness of the support film 1 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, still more preferably 15 to 100 ⁇ m, and particularly preferably 15 to 50 ⁇ m.
  • the thickness of the support film is 5 ⁇ m or more, the mechanical strength is improved, and the step of applying the conductive fiber dispersion to form the conductive layer 2 and the photosensitive resin for forming the photosensitive resin layer 3 are performed.
  • the step of applying the composition the step of peeling the support film before developing the exposed photosensitive resin layer 3, and the like, it is possible to prevent the support film from being damaged.
  • the thickness of the support film 1 is 300 ⁇ m or less, the resolution of the pattern can be improved when the photosensitive resin layer is irradiated with actinic rays through the support film 1.
  • the haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is more preferably from 2.0% to 2.0%, particularly preferably from 0.01% to 1.1%.
  • the haze value can be measured according to JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-5000 (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • Examples of the conductive fibers contained in the conductive layer 2 include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes. From the viewpoint of conductivity, it is preferable to use gold fibers, silver fibers, or copper fibers, and it is more preferable to use silver fibers or copper fibers. Furthermore, silver fiber is preferable from the viewpoint of easily adjusting the conductivity of the formed conductive film.
  • the metal fiber can be prepared by, for example, a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method.
  • a reducing agent such as NaBH 4 or a polyol method.
  • the carbon nanotubes commercially available products such as HiPco single-walled carbon nanotubes from Unidym Corporation can be used.
  • the fiber diameter of the conductive fiber is preferably 1 to 50 nm, more preferably 2 to 20 nm, and further preferably 3 to 10 nm.
  • the fiber length of the metal fiber is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 40 ⁇ m, and particularly preferably 5 to 35 ⁇ m.
  • the fiber diameter and fiber length can be measured with a scanning electron microscope.
  • the thickness of the conductive layer 2 varies depending on the conductive film to be formed, the use of the conductive pattern and the required conductivity, but is preferably 1 ⁇ m or less, more preferably 1 nm to 0.5 ⁇ m, and more preferably 5 nm to 0 nm. More preferably, it is 1 ⁇ m.
  • the thickness of the conductive layer 2 is 1 ⁇ m or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern formability is excellent, and it is suitable for the production of a transparent electrode.
  • the conductive layer 2 can have a network structure in which conductive fibers are in contact with each other.
  • the conductive layer 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film side, but conductivity is obtained in the surface direction on the surface exposed when the support film is peeled off. If it is, it may be formed in the form included in the support film side surface layer of the photosensitive resin layer 3.
  • the thickness of the conductive layer 2 having a network structure refers to a value measured by a scanning electron microscope.
  • the conductive layer 2 containing conductive fibers is coated on the support film 1 with a conductive fiber dispersion obtained by adding the above-described conductive fibers to water or a dispersion stabilizer such as an organic solvent or a surfactant. After processing, it can be formed by drying. After drying, the conductive layer 2 formed on the support film 1 may be laminated as necessary.
  • Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method, but the film thickness distribution is good. In view of the fact that there is little foreign matter mixed into the coating liquid in a closed system, the die coating method is preferred.
  • the drying temperature is 65 ° C. or less from the viewpoint of preventing convection from forming and forming a Benard cell and becoming difficult to form a low-resistance conductive layer. Moreover, it is preferable that it is 20 degreeC or more from a viewpoint which prevents a solvent volatilizing and it takes time and becomes a problem on a process.
  • the drying temperature is more preferably 25 ° C. or more and less than 65 ° C., more preferably 35 ° C. or more and less than 65 ° C., and particularly preferably 40 to 60 ° C. Drying can be performed with a hot air convection dryer or the like.
  • the conductive fibers may coexist with a surfactant or a dispersion stabilizer.
  • the photosensitive resin layer 3 may be formed from a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator.
  • a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator.
  • Conventionally known ones can be used without particular limitation, but the photosensitive resin composition described in International Publication No. 2013/084886 is preferable.
  • the binder polymer of component (a) preferably has a carboxyl group.
  • the acid value of component (a) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and 75 to 130 mgKOH / g from the viewpoint of excellent patternability. Further preferred.
  • the photopolymerizable compound having an ethylenically unsaturated bond as the component (b) is derived from a (meth) acrylate compound having a skeleton derived from pentaerythritol, a (meth) acrylate compound having a skeleton derived from dipentaerythritol, or derived from trimethylolpropane.
  • a (meth) acrylate compound having a skeleton of more preferably a (meth) acrylate compound having a skeleton derived from dipentaerythritol or a (meth) acrylate compound having a skeleton derived from trimethylolpropane, More preferably, erythritol triacrylate, dipentaerythritol hexaacrylate, or trimethylolpropane triacrylate is included.
  • PET-30, DPHA, and TMPTA all manufactured by Nippon Kayaku Co., Ltd., trade names).
  • the (C) component photopolymerization initiator preferably contains an oxime ester compound or a phosphine oxide compound.
  • oxime ester compounds IRGACURE OXE 01 (1,2-octanedione, 1-[(4-phenylthio) -phenyl, 2- (o-benzoyloxime)], BASF Corporation, trade name) and the like are commercially available. It is available.
  • phosphine oxide compound Lucirin® TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, trade name, manufactured by BASF Corporation) is commercially available.
  • the photosensitive resin layer 3 can be formed by applying and drying a photosensitive resin composition having a solid content of about 10 to 60% by mass on the conductive layer 2 formed on the support film 1.
  • the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
  • the solvent include methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether and the like.
  • the coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
  • the photosensitive resin layer 3 is formed by applying and drying the above-described photosensitive resin composition on a base film 4 described later, and the photosensitive resin layer 3 is formed on the conductive layer 2 formed on the support film 1. It can also be formed by laminating so as to be in contact with each other.
  • the thickness of the photosensitive resin layer 3 varies depending on the use, but it is preferably 1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 1 to 15 ⁇ m after drying. A thickness of 10 ⁇ m is particularly preferable. From the viewpoint of coating on the support film, a thickness of 1 ⁇ m or more is preferable, and from the viewpoint of photocurability, 50 ⁇ m or less is preferable.
  • the base film 4 and the surface protective film 5 are laminated so that the photosensitive conductive film of the present invention is in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
  • polyethylene terephthalate PET
  • polyethylene naphthalate PEN
  • polyphenylene sulfide PPS
  • polycarbonate polymethyl methacrylate
  • polystyrene polyvinyl chloride
  • polyethylene polypropylene
  • polyethylene / polypropylene blend film polyamide
  • polyamide examples thereof include polyimide, cellulose acetate, polysulfone, and polyethersulfone.
  • polyethylene terephthalate, polyethylene naphthalate, or polyphenylene sulfide is preferable from the viewpoints of transparency and heat resistance.
  • the thickness of the base film 4 is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, and further preferably 20 to 70 ⁇ m. 10 ⁇ m or more is preferable from the viewpoint of strength at the time of peeling the surface protective film 5 and the surface protection function, and 200 ⁇ m or less is preferable from the viewpoint of handleability and cost.
  • the surface of the base film may be subjected to treatment such as corona discharge, electron beam irradiation, sputtering, and easy adhesion treatment.
  • the surface protective film 5 has an adhesive formed on the film surface, and an adhesive (adhesive) that can be adhered (adhered) to the base film 4 and peeled off can be used without particular limitation.
  • an adhesive adhered (adhered) to the base film 4 and peeled off
  • Specific examples include acrylic adhesives, rubber adhesives, and synthetic rubber adhesives. Among them, an acrylic adhesive that can easily control the adhesive force depending on the composition is preferable.
  • the surface protective film is commercially available as HITALEX (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • the thickness of the surface protective film 5 is preferably 10 to 200 ⁇ m, more preferably 50 to 150 ⁇ m, and even more preferably 100 to 150 ⁇ m. 10 ⁇ m or more is preferable from the viewpoint of preventing bending during handling, and 200 ⁇ m or less is preferable from the viewpoint of reducing peel strength and improving handleability.
  • the minimum light transmittance in the wavelength region of 450 to 650 nm of the photosensitive conductive film of the present invention is preferably 80% or more, and more preferably 85% or more.
  • the minimum light transmittance in this case is 80% or more in the laminate of the support film excluding the surface protective film of the photosensitive conductive film, the conductive layer containing conductive fibers, the photosensitive resin layer, and the base film.
  • the surface protective film is for protecting the photosensitive conductive film from scratches and dirt, and for increasing the strength of the film during various treatments, and may be colored because it is not incorporated into the final product.
  • the total thickness of the photosensitive conductive film of the present invention is preferably 100 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, still more preferably 120 to 250 ⁇ m, and particularly preferably 120 to 220 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view of a transfer type photosensitive conductive film.
  • the transfer type photosensitive conductive film shown in FIG. 2 includes a support film 6, a conductive layer 7 containing conductive fibers provided on the support film 6, and a photosensitive resin layer 8 provided on the conductive layer 7.
  • a protective film 9 is preferably provided on the photosensitive resin layer 8.
  • Each of the support film 6 constituting the transfer type photosensitive conductive film, the conductive layer 7 containing conductive fibers, and the photosensitive resin layer 8 is the same as the details of the photosensitive conductive film described above.
  • a polyethylene terephthalate film, a polypropylene film, a polyethylene film, or the like can be used. Moreover, you may use the same film as the above-mentioned support body film as a protective film.
  • the number of fish eyes with a diameter of 80 micrometers or more contained in a protective film is 5 pieces / m ⁇ 2 > or less.
  • “Fish eye” means that when a material is melted by heat, kneaded, extruded, biaxially stretched, casting method, etc., foreign materials, undissolved materials, oxidized degradation products, etc. It is taken in.
  • the thickness of the protective film 9 is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m, and particularly preferably 15 to 30 ⁇ m. From the viewpoint of preventing the protective film from being broken during lamination, the thickness is preferably 1 ⁇ m or more.
  • the photosensitive conductive film or the transfer-type photosensitive conductive film may be stored as it is in the form of a flat plate, or may be wound around a cylindrical core or the like and stored in the form of a roll.
  • the conductivity of the photosensitive conductive film including the support film 1, the conductive layer 2 containing conductive fibers, the photosensitive resin layer 3, the base film 4, and the surface protective film 5 in this order.
  • FIGS. 3A to 3D are developed to form a surface protection film and a substrate film with a conductive pattern by a developing step for forming a conductive pattern (see FIGS. 3A to 3D).
  • a mask may be used to expose a part of the unexposed portion.
  • the second exposure step is performed in the presence of oxygen, for example, preferably in the air. Further, the condition of increasing the oxygen concentration may be used. In the presence of oxygen, the surface portion of the photosensitive resin layer is not cured by the influence of oxygen even when irradiated with actinic rays, and the photosensitive resin layer excluding the surface portion is exposed and cured. Therefore, the unexposed portion in the first exposure step is cured except for the surface layer in the second exposure step, and only the surface layer is developed during development. Thereby, the resin cured layer which does not have a conductive film with a conductive pattern is provided on the base film 4, and the level
  • the transfer type photosensitive conductive film shown in FIG. 2 is peeled off from the produced surface protective film and the base film with a conductive pattern, and the protective film 9 is peeled off. Lamination is performed on the pattern forming surface from the photosensitive resin layer 8 side (see FIG. 3E).
  • a first exposure step of irradiating actinic light L in a pattern from the support film 6 side of the transfer type photosensitive conductive film (see FIG. 3 (f)), after the support film 6 is peeled off, oxygen is present
  • the second exposure step of irradiating a part or all of the unexposed portion in at least the first exposure step of the conductive layer and the photosensitive resin layer with an actinic ray L (see (g) of FIG. 3) )
  • the conductive layer and the photosensitive resin layer are developed to form a conductive layer and a two-layer stack (see FIG. 3H).
  • An up-structured surface protective film and a substrate film with a conductive pattern can be produced.
  • a base film with a conductive pattern having a two-layer stack-up structure can be produced by peeling the surface protective film 5 from the surface protective film having a two-layer stack-up structure and the base film with a conductive pattern (see (i) in FIG. 3). ).
  • the thickness of the substrate film with a conductive pattern ((i) in FIG. 3) having a two-layer stack-up structure of the present invention is preferably 30 to 100 ⁇ m, more preferably 30 to 90 ⁇ m, further preferably 40 to 90 ⁇ m, and 50 to 80 ⁇ m. Is particularly preferred.
  • the substrate film with a conductive pattern of the present invention can be used as a substrate with a transparent conductive pattern, such as a plasma display panel, an electroluminescence panel, an electrochromic element, a liquid crystal panel, and a touch panel.
  • a transparent conductive pattern such as a plasma display panel, an electroluminescence panel, an electrochromic element, a liquid crystal panel, and a touch panel.
  • FIG. 4A is a schematic top view illustrating an example of a capacitive touch panel sensor.
  • the touch panel sensor shown in FIG. 4A has a touch screen 102 for detecting a touch position on one side of a transparent base material 101. This area detects a change in capacitance and is transparent as an X position coordinate.
  • An electrode 103 and a transparent electrode 104 having Y position coordinates are provided.
  • FIG. 4B is a schematic cross-sectional view taken along the line II of FIG.
  • Each of the transparent electrodes 103 and 104 having the X and Y position coordinates includes a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and the lead wire 105 and the transparent electrodes 103 and 104.
  • a connection electrode 106 for connecting the two is disposed.
  • a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead-out wiring 105 opposite to the connection electrode 106.
  • the reaction solution was allowed to stand at 30 ° C. or lower, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted.
  • Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber.
  • the fiber diameter (diameter) was about 5 nm
  • the fiber length was about 5 ⁇ m.
  • Silver fiber dispersion 1 was obtained by dispersing 0.2% by mass of the silver fiber obtained above and 0.1% by mass of dodecyl-pentaethylene glycol in pure water.
  • PET-30 Pentaerythritol triacrylate (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • IRGACURE OXE 01 1,2-octanedione, 1-[(4-phenylthio) -phenyl, 2- (o-benzoyloxime)] (trade name, manufactured by BASF Corporation)
  • SH-30 Octamethylcyclotetrasiloxane (trade name, manufactured by Toray Dow Corning Co., Ltd.)
  • Example 1 ⁇ Preparation of photosensitive conductive film>
  • the conductive fiber dispersion 1 was uniformly applied at 25 g / m 2 onto a 16 ⁇ m-thick polyethylene terephthalate film (trade name “A-1517”, manufactured by Toyobo Co., Ltd.) as a support film 1, and hot air convection at 100 ° C.
  • the conductive layer 2 was formed on the support film 1 (1st film) by drying with a type dryer for 10 minutes, and pressurizing with the linear pressure of 10 kg / cm at room temperature (25 degreeC). The thickness of the conductive layer after drying was about 0.01 ⁇ m.
  • a surface protective film (made by Hitachi Chemical Co., Ltd., trade name “Hitarex”, 175 ⁇ m thickness) 5 is a base film of a 50 ⁇ m thick polyethylene terephthalate film (made by Toray Film Processing Co., Ltd., trade name “Tough Top”). 4 was laminated at room temperature (25 ° C.) and 0.4 MPa. Then, the prepared photosensitive resin composition is uniformly applied to the surface of the base film 4 opposite to the surface to which the surface protective film 5 is laminated, and dried for 10 minutes in a hot air convection dryer at 100 ° C. Layer 3 was formed. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
  • the conductive film 2 and the photosensitive resin layer 3 of the two films obtained as described above are arranged so as to face each other, laminated under the conditions of 120 ° C. and 0.4 MPa, support film 1 ⁇ conductive layer 2 ⁇ photosensitive resin layer A photosensitive conductive film constituted in the order of 3-substrate film 4-surface protective film 5 was produced (see FIG. 1).
  • the conductive fiber dispersion 1 was uniformly applied at 25 g / m 2 onto a 16 ⁇ m-thick polyethylene terephthalate film (trade name “A-1517” manufactured by Toyobo Co., Ltd.) as the support film 6, and hot air at 100 ° C.
  • the conductive layer 7 was formed on the support film 6 by drying with a convection dryer for 10 minutes and pressurizing at a linear pressure of 10 kg / cm at room temperature. The thickness of the conductive layer after drying was about 0.01 ⁇ m.
  • the photosensitive resin composition is uniformly coated on a 16 ⁇ m-thick polyethylene terephthalate film on which the conductive layer 7 is formed, and dried for 10 minutes with a hot air convection dryer at 100 ° C. to be photosensitive resin layer 8. Formed.
  • the film thickness after drying of the photosensitive resin layer was 5 micrometers.
  • a 30 ⁇ m-thick polyethylene terephthalate film (trade name “ES-201”, manufactured by Oji Film Co., Ltd.) is laminated as a protective film on the above-obtained film under the conditions of room temperature and 0.4 MPa, and the support film 6-
  • ES-201 polyethylene terephthalate film
  • a photomask having a wiring pattern with a line width / space width of 1/1 mm and a length of 120 mm was adhered to the support film 1 of the photosensitive conductive film obtained above.
  • the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 50 mJ / cm 2 using an exposure machine having a high-pressure mercury lamp lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.).
  • the support film 1 was peeled off, and the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 100 mJ / cm 2 in an oxygen atmosphere without using a photomask.
  • the film was allowed to stand at room temperature for 15 minutes, and developed by spraying a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds. After the development, a conductive pattern having a line width / space width of about 1/1 mm was formed. It was confirmed that the conductive pattern was formed satisfactorily.
  • the surface protection film formed using the photosensitive conductive film and the base film with a conductive pattern are heated at 80 ° C. for 10 minutes to deactivate the polymerization reaction of the photosensitive resin layer 3, and then the transfer form produced above.
  • the protective film 9 of the photosensitive conductive film was peeled off, and the photosensitive resin layer 8 was laminated on a conductive pattern formed using the photosensitive conductive film at 110 ° C. and 0.4 MPa.
  • a photomask having a wiring pattern with a line width / space width of 1/1 mm and a length of 120 mm was adhered to the support film 6 of the transfer type photosensitive conductive film.
  • the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 50 mJ / cm 2 using an exposure machine (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.) having a high-pressure mercury lamp.
  • the support film 6 was peeled off, and the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 100 mJ / cm 2 in an oxygen atmosphere without using a photomask.
  • the film was allowed to stand at room temperature (25 ° C.) for 15 minutes and developed by spraying at 30 ° C. with a 1 mass% sodium carbonate aqueous solution for 30 seconds. After the development, a conductive pattern having a line width / space width of about 1/1 mm was formed. It was confirmed that the conductive pattern was formed satisfactorily. From this, it was confirmed that a two-layer electrode could be formed by the photosensitive conductive film and the transfer-type photosensitive conductive film, and a surface protective film having a two-layer stack-up structure and a base film with a conductive pattern were obtained.
  • the location where both the conductive layer 2 and the conductive layer 7 are formed was measured with a Nikon Digi Microhead (MH-15M, manufactured by Nikon Corporation), and the thickness was 60 ⁇ m.
  • the total light transmittance measured with a haze meter (NDH-5000, Nippon Denshoku Industries Co., Ltd.) was 88%.
  • the conductive pattern forming method of the present invention it is possible to protect the substrate film from scratches and dirt in the pattern forming step. Further, the touch panel can be made thin by using the photosensitive conductive film and the transfer type photosensitive conductive film in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)

Abstract

This photosensitive conductive film includes, in order: a support film; a conductive layer containing conductive fibers; a photosensitive resin layer; a base film; and a surface protection film. This method of manufacturing a surface protection film/base film having a conductive pattern includes: a first exposure step for applying activation light in a patterned manner to the photosensitive conductive film from the support film side; a second exposure step for applying, after the separation of the support film and in the presence of oxygen, activation light to at least part or all of the portions of the photosensitive conductive film which were not exposed in the first exposure step; and a development step for forming a conductive pattern by developing the conductive layer and the photosensitive resin layer after the second exposure step.

Description

感光性導電フィルム、導電フィルムセット及びそれを用いた表面保護フィルム及び導電パターン付き基材フィルムの製造方法、導電パターン付き基材フィルムの製造方法Photosensitive conductive film, conductive film set, surface protection film using the same, and method for producing substrate film with conductive pattern, method for producing substrate film with conductive pattern
 本発明は、感光性導電フィルム、導電フィルムセット及びそれを用いた表面保護フィルム及び導電パターン付き基材フィルムの製造方法、2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法、2層スタックアップ構造の導電パターン付き基材フィルムの製造方法に関する。特に、液晶表示素子等のフラットパネルディスプレイ、タッチスクリーン、太陽電池などに用いられる透明導電パターン付き基材フィルムに関する。 The present invention relates to a photosensitive conductive film, a conductive film set, and a method for producing a surface protective film and a substrate film with a conductive pattern using the same, a surface protective film having a two-layer stack-up structure, and a method for producing a substrate film with a conductive pattern The present invention relates to a method for producing a base film with a conductive pattern having a two-layer stack-up structure. In particular, it is related with the base film with a transparent conductive pattern used for flat panel displays, such as a liquid crystal display element, a touch screen, a solar cell.
 パソコンやテレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA、FA機器等の表示機器では、液晶表示素子やタッチスクリーンが使用されている。これら液晶表示素子やタッチスクリーン、太陽電池や照明等のデバイスでは、透明配線、画素電極又は端子の一部に透明導電膜が使用されている。 Liquid crystal display elements and touch screens are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA and FA devices. In these devices such as liquid crystal display elements, touch screens, solar cells and lighting, a transparent conductive film is used as part of transparent wiring, pixel electrodes or terminals.
 タッチパネルはすでに各種の方式が実用化されているが、近年、静電容量方式のタッチパネルの利用が進んでいる。静電容量方式のタッチパネルは、X軸とY軸とによる2次元座標を表現するために、複数のX電極と、当該X電極に直交する複数のY電極との2層構造で形成されている。 Various types of touch panels have already been put to practical use, but in recent years, the use of capacitive touch panels has progressed. The capacitive touch panel is formed with a two-layer structure of a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes in order to express two-dimensional coordinates by the X axis and the Y axis. .
 従来、透明導電膜の材料には、可視光に対して高い透過率を示すことから、ITO(Indium-Tin-Oxide)、酸化インジウム、酸化スズ等が用いられている。液晶表示素子用基材等の電極では、前記の材料からなる透明導電膜をパターニングしたものが主流になっている。 Conventionally, ITO (Indium-Tin-Oxide), indium oxide, tin oxide, and the like have been used as the material for the transparent conductive film because it exhibits high transmittance to visible light. In an electrode such as a substrate for a liquid crystal display element, a pattern obtained by patterning a transparent conductive film made of the above-described material has become mainstream.
 透明導電膜のパターニング方法としては、透明導電膜を形成後、フォトリソグラフィー法によりレジストパターンを形成し、ウエットエッチングにより導電膜の所定部分を除去して導電パターンを形成する方法が一般的である。ITO膜及び酸化インジウム膜の場合、エッチング液は塩酸と塩化第二鉄の2液よりなる混合液がよく用いられている(例えば特許文献1参照)。 As a method for patterning a transparent conductive film, a method is generally employed in which after forming a transparent conductive film, a resist pattern is formed by a photolithography method, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern. In the case of an ITO film and an indium oxide film, a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is often used as the etching liquid (see, for example, Patent Document 1).
 ITO膜や酸化スズ膜は一般にスパッタ法により形成されるが、スパッタ方式の違い、スパッタパワーやガス圧、基材温度、雰囲気ガスの種類等によって透明導電膜の膜質が変わりやすい。スパッタ条件の変動による透明導電膜の膜質の違いは、透明導電膜をウエットエッチングする際のエッチング速度のばらつきの原因となり、パターンニング不良による製品の歩留り低下を招きやすい。また、前記の透明導電パターンの形成方法は、スパッタ工程、レジスト形成工程及びエッチング工程を経ていることから、工程が長く、コスト面でも大きな負担となっている。 An ITO film or tin oxide film is generally formed by sputtering, but the film quality of the transparent conductive film is likely to change depending on the sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to variations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects. In addition, since the transparent conductive pattern forming method has undergone a sputtering process, a resist forming process, and an etching process, the process is long and has a large cost.
 最近、前記の問題を解消するために、ITO、酸化インジウム、酸化スズ等に替わる材料を用いて透明導電パターンを形成する試みがなされている。
 例えば下記特許文献2には、支持フィルムと、該支持フィルム上に設けられた導電性繊維を含有する導電層と、該導電層上に設けられた感光性樹脂層とを備えた転写形感光性導電フィルムを基材上に感光性樹脂層が密着するようにラミネートし、これを露光、現像する簡便な工程で、基材との接着性が充分であり且つ表面抵抗率が小さい導電パターンを充分な解像度で形成することを可能としている。
Recently, in order to solve the above problems, attempts have been made to form a transparent conductive pattern using a material in place of ITO, indium oxide, tin oxide or the like.
For example, the following Patent Document 2 discloses a transfer type photosensitivity provided with a support film, a conductive layer containing conductive fibers provided on the support film, and a photosensitive resin layer provided on the conductive layer. Laminate the conductive film on the substrate so that the photosensitive resin layer is in close contact, and then expose and develop the conductive film. A conductive pattern with sufficient adhesion to the substrate and low surface resistivity is sufficient. It is possible to form at a high resolution.
 また、下記特許文献3には、表面に導電層を有する感光性樹脂層を露光する際に、1回目の露光をマスクを載置した支持フィルムを介して行い、2回目の露光を支持フィルムを除去した酸素下で行うという2段階の露光方法が開示されている。これにより1回目の露光工程においてマスクで遮光した部分を表面の導電層のみ現像工程で除去される程度に樹脂硬化させることが可能となる。 Moreover, in the following Patent Document 3, when exposing a photosensitive resin layer having a conductive layer on the surface, the first exposure is performed through a support film on which a mask is placed, and the second exposure is performed on the support film. A two-stage exposure method is disclosed, which is performed under the removed oxygen. As a result, it is possible to cure the resin to such an extent that only the conductive layer on the surface is removed in the development process at the first exposure process.
特開2007-257963号公報JP 2007-257963 A 国際公開第2010/021224号International Publication No. 2010/021224 国際公開第2013/051516号International Publication No. 2013/051516 特開2003-205567号JP 2003-205567 A
 しかしながら、前記特許文献3の手法で基材に転写形感光性導電フィルムを転写し、露光、現像により導電パターン付き基材を製造する場合、転写先の基材がある程度の厚みを有していないと、加熱や搬送の過程で導電パターン付き基材が折れてしまったり、感光性樹脂層及び導電層を積層した基材フィルムの裏面が傷ついたり、汚れたりするという問題があり、2層スタックアップ構成タッチパネルを薄膜化する上では改善の余地があった。 However, when a transfer type photosensitive conductive film is transferred to a substrate by the method of Patent Document 3 and a substrate with a conductive pattern is produced by exposure and development, the transfer destination substrate does not have a certain thickness. There is a problem that the base material with the conductive pattern breaks during the heating and transport process, and the back surface of the base film on which the photosensitive resin layer and the conductive layer are laminated is damaged or dirty. There was room for improvement in reducing the thickness of the touch panel.
 ところで、透明導電性フィルム用の表面保護フィルムとして、特許文献4では透明電極及び配線のパターン形成において加熱環境下におかれた場合にも、その後の剥離作業を良好に行うことができる表面保護フィルムを開示している。しかしながら、特許文献4に記載のフィルム構成では、XY電極2層形成の静電容量方式のタッチパネルにおいて、1層目と2層目の導電パターン基材を貼り合わせるための接着剤が必要となり、導電パターン基材を薄膜化する上ではやはり改善の余地があった。
 本発明は、前記従来技術が有する問題に鑑みてなされたものであり、導電パターン付き基材フィルムを傷や汚れから保護しながら、導電パターン付き基材フィルムを薄膜化する手法を提供する。
By the way, as a surface protection film for a transparent conductive film, in Patent Document 4, even when placed in a heating environment in the pattern formation of transparent electrodes and wiring, the surface protection film that can perform subsequent peeling work well. Is disclosed. However, in the film configuration described in Patent Document 4, an adhesive for bonding the first and second conductive pattern base materials is required in a capacitive touch panel in which two layers of XY electrodes are formed. There was still room for improvement in making the pattern substrate thinner.
This invention is made | formed in view of the problem which the said prior art has, and provides the method of thinning a base film with a conductive pattern, protecting a base film with a conductive pattern from a damage | wound and dirt.
 本発明は、前記課題を解決するものである。具体的態様を以下に示す。
<1>支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂層と、基材フィルムと、表面保護フィルムとをこの順に含む感光性導電フィルム。
<2>450~650nmの波長域における最小光透過率が80%以上である<1>に記載の感光性導電フィルム。
<3>前記導電性繊維が銀繊維である<1>又は<2>に記載の感光性導電フィルム。
<4>前記感光性樹脂層が、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物及び光重合開始剤を含有する<1>~<3>のいずれか一項に記載の感光性導電フィルム。
<5>前記表面保護フィルムが、アクリル系接着剤である、<1>~<4>のいずれか一項に記載の感光性導電フィルム。
<6>前記<1>~<5>のいずれか一項に記載の感光性導電フィルムの導電層及び感光性樹脂層に支持フィルム側からパターン状に活性光線を照射する第一の露光工程と、
 前記支持フィルムを剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、前記第二の露光工程の後に、前記導電層及び前記感光性樹脂層を現像することにより、導電パターンを形成する現像工程とを備える表面保護フィルム及び導電パターン付き基材フィルムの製造方法。
<7><6>に記載の製造方法で得られる表面保護フィルム及び導電パターン付き基材フィルムに、支持フィルム、該支持フィルム上に設けられた導電性繊維を含有する導電層及び該導電層上に設けられた感光性樹脂層を有する転写形感光性導電フィルムを、前記表面保護フィルム及び導電パターン付き基材フィルムの導電パターン側に前記感光性樹脂層側からラミネートする工程と、
 前記支持フィルム側から前記導電層及び前記感光性樹脂層にパターン状に活性光線を照射する第一の露光工程と、前記支持フィルムを剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、前記第二の露光工程の後に、前記導電層及び前記感光性樹脂層を現像することにより、導電パターンを形成する現像工程とを備える2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法。
<8><7>に記載の2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法において、さらに、得られた表面保護フィルム及び導電パターン付き基材フィルムから表面保護フィルムを除去する工程を備える2層スタックアップ構造の導電パターン付き基材フィルムの製造方法。
<9>前記<7>又は<8>に記載の導電パターン付き基材フィルムの製造方法に用いられる、<1>~<5>のいずれか一項に記載の感光性導電フィルムと、支持フィルム、該支持フィルム上に設けられた導電性繊維を含有する導電層及び該導電層上に設けられた感光性樹脂層を有する転写形感光性導電フィルムとの導電フィルムセット。
The present invention solves the above problems. Specific embodiments are shown below.
<1> A photosensitive conductive film including a support film, a conductive layer containing conductive fibers, a photosensitive resin layer, a base film, and a surface protective film in this order.
<2> The photosensitive conductive film according to <1>, wherein the minimum light transmittance in a wavelength region of 450 to 650 nm is 80% or more.
<3> The photosensitive conductive film according to <1> or <2>, wherein the conductive fiber is a silver fiber.
<4> The photosensitive conductive layer according to any one of <1> to <3>, wherein the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator. the film.
<5> The photosensitive conductive film according to any one of <1> to <4>, wherein the surface protective film is an acrylic adhesive.
<6> a first exposure step of irradiating the conductive layer and the photosensitive resin layer of the photosensitive conductive film according to any one of <1> to <5> with actinic rays in a pattern form from the support film side; ,
A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step of the conductive layer and the photosensitive resin layer with actinic rays in the presence of oxygen after peeling the support film; The manufacturing method of the surface protection film provided with the image development process which forms a conductive pattern by developing the said conductive layer and the said photosensitive resin layer after a said 2nd exposure process, and a base film with a conductive pattern.
<7> A surface protective film obtained by the production method according to <6> and a base film with a conductive pattern, a support film, a conductive layer containing conductive fibers provided on the support film, and the conductive layer Laminating a transfer type photosensitive conductive film having a photosensitive resin layer provided on the conductive pattern side of the surface protective film and the substrate film with a conductive pattern from the photosensitive resin layer side;
A first exposure step of irradiating the conductive layer and the photosensitive resin layer with actinic rays in a pattern from the support film side; and after peeling the support film, in the presence of oxygen, the conductive layer and the photosensitive resin. A second exposure step of irradiating a part or all of the unexposed portion in at least the first exposure step of the layer with actinic rays, and the conductive layer and the photosensitive resin layer after the second exposure step. The manufacturing method of the surface protection film of a 2 layer stack-up structure provided with the image development process which forms a conductive pattern by developing, and a base film with a conductive pattern.
<8> In the method for producing a surface protective film having a two-layer stack-up structure and a base film with a conductive pattern according to <7>, a surface protective film is further obtained from the obtained surface protective film and the base film with a conductive pattern. The manufacturing method of the base film with a conductive pattern of a two-layer stackup structure provided with the process to remove.
<9> The photosensitive conductive film according to any one of <1> to <5>, which is used in the method for producing a substrate film with a conductive pattern according to <7> or <8>, and a support film A conductive film set comprising a transfer type photosensitive conductive film having a conductive layer containing conductive fibers provided on the support film and a photosensitive resin layer provided on the conductive layer.
 本発明によれば、導電パターン付き基材フィルムを傷や汚れから保護しながら、導電パターン付き基材フィルムを30~100μm程度に薄膜化できる。 According to the present invention, the substrate film with a conductive pattern can be thinned to about 30 to 100 μm while protecting the substrate film with a conductive pattern from scratches and dirt.
本発明の感光性導電フィルムの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the photosensitive conductive film of this invention. 本発明の転写形感光性導電フィルムの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the transfer type photosensitive conductive film of this invention. 感光性導電フィルムと転写形感光性導電フィルムとの導電フィルムセットを用いた2層の導電パターン付き基材フィルムの製造方法(2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法(h)、2層スタックアップ構造の導電パターン付き基材フィルムの製造方法(i))を示す模式断面図である。Manufacturing method of base film with two layers of conductive pattern using conductive film set of photosensitive conductive film and transfer type photosensitive conductive film (manufacturing of surface protective film of two-layer stack-up structure and base film with conductive pattern) It is a schematic cross section which shows the manufacturing method (i) of the method (h) and the base film with a conductive pattern of a two-layer stackup structure. 静電容量式のタッチパネルセンサの一例を示す模式上面図(a)と模式断面図(b)である。They are a schematic top view (a) and a schematic sectional view (b) showing an example of a capacitive touch panel sensor.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書における「(メタ)アクリレート」とは、「アクリレート」又はそれに対応する「メタクリレート」を意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, “(meth) acrylate” means “acrylate” or “methacrylate” corresponding thereto. “A or B” only needs to include one of A and B, or may include both.
 また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In addition, in this specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included. The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 さらに、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Furthermore, in the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity. In addition, the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
 図1は、本発明の感光性導電フィルムの模式断面図である。図1に示す感光性導電フィルムは、支持フィルム1と、導電性繊維を含有する導電層2と、感光性樹脂層3と、基材フィルム4と、表面保護フィルム5とをこの順に備える。なお、各層の境界は明確に分離されていなくてもよい。 FIG. 1 is a schematic cross-sectional view of the photosensitive conductive film of the present invention. The photosensitive conductive film shown in FIG. 1 includes a support film 1, a conductive layer 2 containing conductive fibers, a photosensitive resin layer 3, a base film 4, and a surface protective film 5 in this order. In addition, the boundary of each layer does not need to be separated clearly.
 支持フィルム1としては、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等が挙げられる。これらのうち、透明性や耐熱性の観点からは、ポリエチレンテレフタレートフィルムが好ましい。なお、支持フィルムは、後に感光性樹脂層から除去可能な範囲で表面処理が施されたものであってもよい。 Examples of the support film 1 include a polyethylene terephthalate film, a polyethylene film, a polypropylene film, and a polycarbonate film. Among these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance. In addition, the support film may be subjected to surface treatment within a range that can be removed from the photosensitive resin layer later.
 また、支持フィルム1の厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることがさらに好ましく、15~50μmであることが特に好ましい。支持フィルムの厚みが5μm以上であると、機械的強度が向上し、導電層2を形成するために導電性繊維分散液を塗工する工程や感光性樹脂層3を形成するために感光性樹脂組成物を塗工する工程、露光した感光性樹脂層3を現像する前に支持フィルムを剥離する工程等において、支持フィルムが破損することを防ぐことが可能となる。一方、支持フィルム1の厚みが300μm以下であると、支持フィルム1を介して活性光線を感光性樹脂層に照射する場合にパターンの解像度を向上させることができる。 The thickness of the support film 1 is preferably 5 to 300 μm, more preferably 10 to 200 μm, still more preferably 15 to 100 μm, and particularly preferably 15 to 50 μm. When the thickness of the support film is 5 μm or more, the mechanical strength is improved, and the step of applying the conductive fiber dispersion to form the conductive layer 2 and the photosensitive resin for forming the photosensitive resin layer 3 are performed. In the step of applying the composition, the step of peeling the support film before developing the exposed photosensitive resin layer 3, and the like, it is possible to prevent the support film from being damaged. On the other hand, when the thickness of the support film 1 is 300 μm or less, the resolution of the pattern can be improved when the photosensitive resin layer is irradiated with actinic rays through the support film 1.
 支持フィルム1のヘーズ値は、感度及び解像度を良好にする観点から、0.01~5.0%であることが好ましく、0.01~3.0%であることがより好ましく、0.01~2.0%であることがさらに好ましく、0.01~1.1%であることが特に好ましい。なお、ヘーズ値はJIS K 7105に準拠して測定することができ、例えば、NDH-5000(日本電色工業株式会社製、商品名)等の市販の濁度計で測定が可能である。 The haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is more preferably from 2.0% to 2.0%, particularly preferably from 0.01% to 1.1%. The haze value can be measured according to JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-5000 (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
 導電層2に含有される導電性繊維としては、金、銀、銅、白金等の金属繊維、カーボンナノチューブ等の炭素繊維が挙げられる。導電性の観点からは、金繊維、銀繊維又は銅繊維を用いることが好ましく、銀繊維又は銅繊維を用いることがより好ましい。さらに、形成される導電膜の導電性を容易に調整できる観点からは、銀繊維が好ましい。 Examples of the conductive fibers contained in the conductive layer 2 include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes. From the viewpoint of conductivity, it is preferable to use gold fibers, silver fibers, or copper fibers, and it is more preferable to use silver fibers or copper fibers. Furthermore, silver fiber is preferable from the viewpoint of easily adjusting the conductivity of the formed conductive film.
 前記の金属繊維は、例えば、金属イオンをNaBH等の還元剤で還元する方法、又は、ポリオール法により調製することができる。また、カーボンナノチューブは、ユニダイム(Unidym)株式会社のHiPco単層カーボンナノチューブ等の市販品を用いることができる。 The metal fiber can be prepared by, for example, a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. As the carbon nanotubes, commercially available products such as HiPco single-walled carbon nanotubes from Unidym Corporation can be used.
 導電性繊維の繊維径は、1~50nmであることが好ましく、2~20nmであることがより好ましく、3~10nmであることがさらに好ましい。また、金属繊維の繊維長は、1~100μmであることが好ましく、2~50μmであることがより好ましく、3~40μmであることがさらに好ましく、5~35μmであることが特に好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。 The fiber diameter of the conductive fiber is preferably 1 to 50 nm, more preferably 2 to 20 nm, and further preferably 3 to 10 nm. The fiber length of the metal fiber is preferably 1 to 100 μm, more preferably 2 to 50 μm, still more preferably 3 to 40 μm, and particularly preferably 5 to 35 μm. The fiber diameter and fiber length can be measured with a scanning electron microscope.
 導電層2の厚みは、形成される導電膜、導電パターンの用途や求められる導電性によっても異なるが、1μm以下であることが好ましく、1nm~0.5μmであることがより好ましく、5nm~0.1μmであることがさらに好ましい。導電層2の厚みが1μm以下であると、450~650nmの波長域での光透過率が高く、パターン形成性にも優れ、透明電極の作製に好適なものとなる。 The thickness of the conductive layer 2 varies depending on the conductive film to be formed, the use of the conductive pattern and the required conductivity, but is preferably 1 μm or less, more preferably 1 nm to 0.5 μm, and more preferably 5 nm to 0 nm. More preferably, it is 1 μm. When the thickness of the conductive layer 2 is 1 μm or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern formability is excellent, and it is suitable for the production of a transparent electrode.
 導電層2は、導電性繊維同士が接触してなる網目構造を有することができる。このような網目構造を有する導電層2は、感光性樹脂層3の支持フィルム側表面に形成されていてもよいが、支持フィルムを剥離したときに露出する表面においてその面方向に導電性が得られるのであれば、感光性樹脂層3の支持フィルム側表層に含まれる形態で形成されていていてもよい。なお、網目構造を有する導電層2の厚みは、走査型電子顕微鏡によって測定される値を指す。 The conductive layer 2 can have a network structure in which conductive fibers are in contact with each other. The conductive layer 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film side, but conductivity is obtained in the surface direction on the surface exposed when the support film is peeled off. If it is, it may be formed in the form included in the support film side surface layer of the photosensitive resin layer 3. The thickness of the conductive layer 2 having a network structure refers to a value measured by a scanning electron microscope.
 導電性繊維を含有する導電層2は、例えば、支持フィルム1上に、上述した導電性繊維を水、又は有機溶剤、界面活性剤等の分散安定剤などを加えた導電性繊維分散液を塗工した後、乾燥することにより形成することができる。乾燥後、支持フィルム1上に形成した導電層2は、必要に応じてラミネートされてもよい。 For example, the conductive layer 2 containing conductive fibers is coated on the support film 1 with a conductive fiber dispersion obtained by adding the above-described conductive fibers to water or a dispersion stabilizer such as an organic solvent or a surfactant. After processing, it can be formed by drying. After drying, the conductive layer 2 formed on the support film 1 may be laminated as necessary.
 塗工は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができるが、膜厚分布が良好であることや密閉系で塗液への異物混入が少ないという観点からダイコート法が好ましい。 Coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method, but the film thickness distribution is good. In view of the fact that there is little foreign matter mixed into the coating liquid in a closed system, the die coating method is preferred.
 また、乾燥工程では、対流が生じてベナールセルを形成することでムラとなり低抵抗な導電層が形成し難くなることを防ぐ観点から、乾燥温度が65℃以下であることが好ましい。また、溶剤が揮発するために時間がかかり工程上問題となることを防ぐ観点から、20℃以上であることが好ましい。乾燥温度は、25℃以上、65℃未満がより好ましく、35℃以上、65℃未満がさらに好ましく、40~60℃が特に好ましい。乾燥は熱風対流式乾燥機等で行うことができる。導電層2において、導電性繊維は界面活性剤や分散安定剤と共存していてもよい。 In the drying step, it is preferable that the drying temperature is 65 ° C. or less from the viewpoint of preventing convection from forming and forming a Benard cell and becoming difficult to form a low-resistance conductive layer. Moreover, it is preferable that it is 20 degreeC or more from a viewpoint which prevents a solvent volatilizing and it takes time and becomes a problem on a process. The drying temperature is more preferably 25 ° C. or more and less than 65 ° C., more preferably 35 ° C. or more and less than 65 ° C., and particularly preferably 40 to 60 ° C. Drying can be performed with a hot air convection dryer or the like. In the conductive layer 2, the conductive fibers may coexist with a surfactant or a dispersion stabilizer.
 感光性樹脂層3としては、(a)バインダーポリマー、(b)エチレン性不飽和結合を有する光重合性化合物及び(c)光重合開始剤を含有する感光性樹脂組成物から形成されることが好ましい。これらは従来公知のものを特に制限なく用いることができるが、国際公開第2013/084886号に記載の感光性樹脂組成物が好ましい。 The photosensitive resin layer 3 may be formed from a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator. preferable. Conventionally known ones can be used without particular limitation, but the photosensitive resin composition described in International Publication No. 2013/084886 is preferable.
 具体的には、(a)成分のバインダーポリマーはカルボキシル基を有することが好ましい。また、(a)成分の酸価は、パターン性に優れる観点から、75~200mgKOH/gであることが好ましく、75~150mgKOH/gであることがより好ましく、75~130mgKOH/gであることがさらに好ましい。 Specifically, the binder polymer of component (a) preferably has a carboxyl group. The acid value of component (a) is preferably 75 to 200 mgKOH / g, more preferably 75 to 150 mgKOH / g, and 75 to 130 mgKOH / g from the viewpoint of excellent patternability. Further preferred.
 (b)成分のエチレン性不飽和結合を有する光重合性化合物は、ペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物、又はトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物を含むことが好ましく、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物又はトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物を含むことがより好ましく、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、又はトリメチロールプロパントリアクリレートを含むことがさらに好ましい。これらはそれぞれ、PET-30、DPHA、TMPTA(いずれも日本化薬株式会社製、商品名)として商業的に入手可能である。 The photopolymerizable compound having an ethylenically unsaturated bond as the component (b) is derived from a (meth) acrylate compound having a skeleton derived from pentaerythritol, a (meth) acrylate compound having a skeleton derived from dipentaerythritol, or derived from trimethylolpropane. It is preferable to include a (meth) acrylate compound having a skeleton of, more preferably a (meth) acrylate compound having a skeleton derived from dipentaerythritol or a (meth) acrylate compound having a skeleton derived from trimethylolpropane, More preferably, erythritol triacrylate, dipentaerythritol hexaacrylate, or trimethylolpropane triacrylate is included. These are commercially available as PET-30, DPHA, and TMPTA (all manufactured by Nippon Kayaku Co., Ltd., trade names).
 (C)成分の光重合開始剤は、オキシムエステル化合物又はホスフィンオキサイド化合物を含むことが好ましい。オキシムエステル化合物としては、IRGACURE OXE 01(1,2-オクタンジオン,1-[(4-フェニルチオ)-フェニル,2-(o-ベンゾイルオキシム)]、BASF株式会社、商品名)等が商業的に入手可能である。また、ホスフィンオキサイド化合物としては、Lucirin TPO(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、BASF株式会社製、商品名)等が商業的に入手可能である。 The (C) component photopolymerization initiator preferably contains an oxime ester compound or a phosphine oxide compound. As oxime ester compounds, IRGACURE OXE 01 (1,2-octanedione, 1-[(4-phenylthio) -phenyl, 2- (o-benzoyloxime)], BASF Corporation, trade name) and the like are commercially available. It is available. As the phosphine oxide compound, Lucirin® TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, trade name, manufactured by BASF Corporation) is commercially available.
 感光性樹脂層3は、支持フィルム1上に形成した導電層2上に固形分10~60質量%程度の感光性樹脂組成物を塗布、乾燥することにより形成できる。但し、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。前記溶剤としては、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等が挙げられる。 The photosensitive resin layer 3 can be formed by applying and drying a photosensitive resin composition having a solid content of about 10 to 60% by mass on the conductive layer 2 formed on the support film 1. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step. Examples of the solvent include methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether and the like.
 塗工は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶剤等を除去するための乾燥は、70~150℃で5~30分間程度、熱風対流式乾燥機等で行うことができる。
 感光性樹脂層3は、後述の基材フィルム4に前記の感光性樹脂組成物を塗布、乾燥することにより形成し、これを支持フィルム1上に形成した導電層2上に、感光性樹脂層が接するようにラミネートして形成することもできる。
The coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
The photosensitive resin layer 3 is formed by applying and drying the above-described photosensitive resin composition on a base film 4 described later, and the photosensitive resin layer 3 is formed on the conductive layer 2 formed on the support film 1. It can also be formed by laminating so as to be in contact with each other.
 感光性樹脂層3の厚みは、用途により異なるが、乾燥後の厚みで1~50μmであることが好ましく、1~30μmであることがより好ましく、1~15μmであることがさらに好ましく、1~10μmであることが特に好ましい。支持フィルム上に塗工する観点から、1μm以上の厚みが好ましく、光硬化性の観点からは、50μm以下が好ましい。 The thickness of the photosensitive resin layer 3 varies depending on the use, but it is preferably 1 to 50 μm, more preferably 1 to 30 μm, and further preferably 1 to 15 μm after drying. A thickness of 10 μm is particularly preferable. From the viewpoint of coating on the support film, a thickness of 1 μm or more is preferable, and from the viewpoint of photocurability, 50 μm or less is preferable.
 本発明の感光性導電フィルムは、感光性樹脂層3の支持フィルム1側と反対側の面に接するように基材フィルム4と表面保護フィルム5が積層されている。 The base film 4 and the surface protective film 5 are laminated so that the photosensitive conductive film of the present invention is in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
 基材フィルム4としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエチレン/ポリプロピレンブレンドフィルム、ポリアミド、ポリイミド、セルロースアセテート、ポリスルホン、ポリエーテルスルホン等があげられる。これらの中でも、透明性や耐熱性の観点からは、ポリエチレンテレフタレート、ポリエチレンナフタレート、又はポリフェニレンサルファイドが好ましい。 As the base film 4, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), polycarbonate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polyethylene, polypropylene, polyethylene / polypropylene blend film, polyamide, Examples thereof include polyimide, cellulose acetate, polysulfone, and polyethersulfone. Among these, polyethylene terephthalate, polyethylene naphthalate, or polyphenylene sulfide is preferable from the viewpoints of transparency and heat resistance.
 基材フィルム4の厚みは、10~200μmが好ましく、15~100μmがより好ましく、20~70μmがさらに好ましい。表面保護フィルム5を剥離する際の強度や、表面保護機能の観点からは、10μm以上が好ましく、取り扱い性やコストの観点からは、200μm以下が好ましい。基材フィルムの表面は、コロナ放電、電子線照射、スパッタリング等の処理や易接着処理などが施されていてもよい。 The thickness of the base film 4 is preferably 10 to 200 μm, more preferably 15 to 100 μm, and further preferably 20 to 70 μm. 10 μm or more is preferable from the viewpoint of strength at the time of peeling the surface protective film 5 and the surface protection function, and 200 μm or less is preferable from the viewpoint of handleability and cost. The surface of the base film may be subjected to treatment such as corona discharge, electron beam irradiation, sputtering, and easy adhesion treatment.
 表面保護フィルム5は、フィルム面に粘着剤が形成されたもので、基材フィルム4に接着(粘着)し、剥離できる接着剤(粘着剤)を特に制限なく用いることができる。具体的には、アクリル系接着剤、ゴム系接着剤、合成ゴム系接着剤が挙げられる。なかでも組成により粘着力をコントロールし易いアクリル系接着剤が好ましい。
 表面保護フィルムは、ヒタレックス(日立化成株式会社製、商品名)として商業的に入手可能である。
The surface protective film 5 has an adhesive formed on the film surface, and an adhesive (adhesive) that can be adhered (adhered) to the base film 4 and peeled off can be used without particular limitation. Specific examples include acrylic adhesives, rubber adhesives, and synthetic rubber adhesives. Among them, an acrylic adhesive that can easily control the adhesive force depending on the composition is preferable.
The surface protective film is commercially available as HITALEX (trade name, manufactured by Hitachi Chemical Co., Ltd.).
 表面保護フィルム5の厚みは、10~200μmが好ましく、50~150μmがより好ましく、100~150μmがさらに好ましい。取り扱い時に屈曲することを防ぐ観点からは、10μm以上が好ましく、剥離強度が低くなり、取り扱い性が向上する観点からは200μm以下が好ましい。 The thickness of the surface protective film 5 is preferably 10 to 200 μm, more preferably 50 to 150 μm, and even more preferably 100 to 150 μm. 10 μm or more is preferable from the viewpoint of preventing bending during handling, and 200 μm or less is preferable from the viewpoint of reducing peel strength and improving handleability.
 本発明の感光性導電フィルムの450~650nmの波長域における最小光透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。この場合の最小光透過率は、感光性導電フィルムの表面保護フィルムを除いた支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂層と、基材フィルムの積層体で80%以上であることが好ましい。表面保護フィルムは感光性導電フィルムの傷、汚れ防止等の保護用、各種処理時にフィルムの強度を高めるためであり、最終製品には組み込まれないため着色されていてもよい。 The minimum light transmittance in the wavelength region of 450 to 650 nm of the photosensitive conductive film of the present invention is preferably 80% or more, and more preferably 85% or more. The minimum light transmittance in this case is 80% or more in the laminate of the support film excluding the surface protective film of the photosensitive conductive film, the conductive layer containing conductive fibers, the photosensitive resin layer, and the base film. It is preferable that The surface protective film is for protecting the photosensitive conductive film from scratches and dirt, and for increasing the strength of the film during various treatments, and may be colored because it is not incorporated into the final product.
 本発明の感光性導電フィルムの全体の厚みは、100~300μmが好ましく、100~250μmがより好ましく、120~250μmがさらに好ましく、120~220μmが特に好ましい。 The total thickness of the photosensitive conductive film of the present invention is preferably 100 to 300 μm, more preferably 100 to 250 μm, still more preferably 120 to 250 μm, and particularly preferably 120 to 220 μm.
 図2は、転写形感光性導電フィルムの模式断面図である。図2に示す転写形感光性導電フィルムは、支持フィルム6と、支持フィルム6上に設けられた導電性繊維を含有する導電層7と、導電層7上に設けられた感光性樹脂層8とを有する。感光性樹脂層8を保護するため感光性樹脂層8上に保護フィルム9を備えることが好ましい。 FIG. 2 is a schematic cross-sectional view of a transfer type photosensitive conductive film. The transfer type photosensitive conductive film shown in FIG. 2 includes a support film 6, a conductive layer 7 containing conductive fibers provided on the support film 6, and a photosensitive resin layer 8 provided on the conductive layer 7. Have In order to protect the photosensitive resin layer 8, a protective film 9 is preferably provided on the photosensitive resin layer 8.
 転写形感光性導電フィルムを構成する支持フィルム6、導電性繊維を含有する導電層7及び感光性樹脂層8のそれぞれについては、前述の感光性導電フィルムの詳細と同様である。 Each of the support film 6 constituting the transfer type photosensitive conductive film, the conductive layer 7 containing conductive fibers, and the photosensitive resin layer 8 is the same as the details of the photosensitive conductive film described above.
 保護フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム等を用いることができる。また、保護フィルムとして上述の支持体フィルムと同様のフィルムを用いてもよい。 As the protective film, a polyethylene terephthalate film, a polypropylene film, a polyethylene film, or the like can be used. Moreover, you may use the same film as the above-mentioned support body film as a protective film.
 保護フィルム9は、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が5個/m以下であることが好ましい。なお、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸、キャスティング法等によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。 As for the protective film 9, it is preferable that the number of fish eyes with a diameter of 80 micrometers or more contained in a protective film is 5 pieces / m < 2 > or less. "Fish eye" means that when a material is melted by heat, kneaded, extruded, biaxially stretched, casting method, etc., foreign materials, undissolved materials, oxidized degradation products, etc. It is taken in.
 保護フィルム9の厚みは、1~100μmであることが好ましく、5~50μmであることがより好ましく、5~30μmであることがさらに好ましく、15~30μmであることが特に好ましい。ラミネートの際に保護フィルムが破れることを防ぐ観点からは、厚みが1μm以上であることが好ましい。 The thickness of the protective film 9 is preferably 1 to 100 μm, more preferably 5 to 50 μm, still more preferably 5 to 30 μm, and particularly preferably 15 to 30 μm. From the viewpoint of preventing the protective film from being broken during lamination, the thickness is preferably 1 μm or more.
 感光性導電フィルム又は転写形感光性導電フィルムは、そのままの平板状の形態で貯蔵してもよいし、円筒状等の巻芯に巻きとりロール状の形態で貯蔵してもよい。 The photosensitive conductive film or the transfer-type photosensitive conductive film may be stored as it is in the form of a flat plate, or may be wound around a cylindrical core or the like and stored in the form of a roll.
<表面保護フィルム及び導電パターン付き基材フィルムの製造方法>
 次に、図3を参照しつつ、本発明の表面保護フィルム及び導電パターン付き基材フィルムの製造方法について説明する。なお、露光条件、現像条件は前記特許文献2又は3に記載の範囲で調整することができる。
<Method for producing surface protective film and substrate film with conductive pattern>
Next, the manufacturing method of the surface protection film of this invention and the base film with a conductive pattern of this invention is demonstrated, referring FIG. The exposure conditions and development conditions can be adjusted within the range described in Patent Document 2 or 3.
 具体的には、支持フィルム1と、導電性繊維を含有する導電層2と、感光性樹脂層3と、基材フィルム4と、表面保護フィルム5とをこの順に含む感光性導電フィルムの前記導電層及び前記感光性樹脂層に支持フィルム側からパターン状に活性光線Lを照射する第一の露光工程と、前記支持フィルム1を剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線Lを照射する第二の露光工程と、前記第二の露光工程の後に、前記導電層2及び前記感光性樹脂層3を現像することにより、導電パターンを形成する現像工程とにより、表面保護フィルム及び導電パターン付き基材フィルムを形成する(図3の(a)~(d)参照)。第二の露光工程では、未露光部の一部を露光するためマスクを用いる場合がある。 Specifically, the conductivity of the photosensitive conductive film including the support film 1, the conductive layer 2 containing conductive fibers, the photosensitive resin layer 3, the base film 4, and the surface protective film 5 in this order. A first exposure step of irradiating the layer and the photosensitive resin layer with an actinic ray L in a pattern from the support film side; and after peeling the support film 1, the conductive layer and the photosensitive resin layer in the presence of oxygen A second exposure step of irradiating a part or all of the unexposed portion in at least the first exposure step with actinic rays L, and the conductive layer 2 and the photosensitive resin layer after the second exposure step. 3 is developed to form a surface protection film and a substrate film with a conductive pattern by a developing step for forming a conductive pattern (see FIGS. 3A to 3D). In the second exposure step, a mask may be used to expose a part of the unexposed portion.
 第二の露光工程は、酸素存在下で行われ、例えば、空気中で行うことが好ましい。また、酸素濃度を増やした条件でもかまわない。酸素存在下では、活性光線を照射しても感光性樹脂層の表面部分は酸素の影響で硬化されず、表面部分を除く感光性樹脂層は、露光され硬化される。そのため第一の露光工程での未露光部は、第二の露光工程で表面層を除き硬化し、現像の際には、表面層のみ現像される。これにより、基材フィルム4上に導電パターンとともに導電膜を有していない樹脂硬化層が設けられ、導電パターンと基材フィルムとの段差を小さくすることができる。 The second exposure step is performed in the presence of oxygen, for example, preferably in the air. Further, the condition of increasing the oxygen concentration may be used. In the presence of oxygen, the surface portion of the photosensitive resin layer is not cured by the influence of oxygen even when irradiated with actinic rays, and the photosensitive resin layer excluding the surface portion is exposed and cured. Therefore, the unexposed portion in the first exposure step is cured except for the surface layer in the second exposure step, and only the surface layer is developed during development. Thereby, the resin cured layer which does not have a conductive film with a conductive pattern is provided on the base film 4, and the level | step difference between a conductive pattern and a base film can be made small.
 続いて、作製した表面保護フィルム及び導電パターン付き基材フィルムに、図2に示した転写形感光性導電フィルムを、保護フィルム9を剥離し、前記表面保護フィルム・導電パターン付き基材フィルムの導電パターン形成面に感光性樹脂層8側からラミネートする(図3の(e)参照)。 Subsequently, the transfer type photosensitive conductive film shown in FIG. 2 is peeled off from the produced surface protective film and the base film with a conductive pattern, and the protective film 9 is peeled off. Lamination is performed on the pattern forming surface from the photosensitive resin layer 8 side (see FIG. 3E).
 さらに、前記転写形感光性導電フィルムの支持フィルム6側からパターン状に活性光線Lを照射する第一の露光工程と(図3の(f)参照)、前記支持フィルム6を剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線Lを照射する第二の露光工程と(図3の(g)参照)、前記第二の露光工程の後に、前記導電層及び前記感光性樹脂層を現像することにより、導電パターンを形成する現像工程と(図3の(h)参照)を行うことで2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムが作製できる。 Further, a first exposure step of irradiating actinic light L in a pattern from the support film 6 side of the transfer type photosensitive conductive film (see FIG. 3 (f)), after the support film 6 is peeled off, oxygen is present Under the second exposure step of irradiating a part or all of the unexposed portion in at least the first exposure step of the conductive layer and the photosensitive resin layer with an actinic ray L (see (g) of FIG. 3) ), After the second exposure step, the conductive layer and the photosensitive resin layer are developed to form a conductive layer and a two-layer stack (see FIG. 3H). An up-structured surface protective film and a substrate film with a conductive pattern can be produced.
<導電パターン付き基材フィルムの製造方法>
 前記2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムから表面保護フィルム5を剥離することで2層スタックアップ構造の導電パターン付き基材フィルムが作製できる(図3の(i)参照)。
<Method for producing base film with conductive pattern>
A base film with a conductive pattern having a two-layer stack-up structure can be produced by peeling the surface protective film 5 from the surface protective film having a two-layer stack-up structure and the base film with a conductive pattern (see (i) in FIG. 3). ).
 本発明の2層スタックアップ構造の導電パターン付基材フィルム(図3の(i))の厚みは、30~100μmが好ましく、30~90μmがより好ましく、40~90μmがさらに好ましく、50~80μmが特に好ましい。 The thickness of the substrate film with a conductive pattern ((i) in FIG. 3) having a two-layer stack-up structure of the present invention is preferably 30 to 100 μm, more preferably 30 to 90 μm, further preferably 40 to 90 μm, and 50 to 80 μm. Is particularly preferred.
 本発明の導電パターン付き基材フィルムは、プラズマディスプレイパネル、エレクトロルミネッセンスパネル、エレクトロクロミック素子、液晶パネル、タッチパネル等の透明導電パターン付き基材として用いることができる。 The substrate film with a conductive pattern of the present invention can be used as a substrate with a transparent conductive pattern, such as a plasma display panel, an electroluminescence panel, an electrochromic element, a liquid crystal panel, and a touch panel.
 次に、本発明の導電パターン付き基材フィルムの用途の一例を説明する。図4(a)は、静電容量式のタッチパネルセンサの一例を示す模式上面図である。図4(a)に示されるタッチパネルセンサは、透明基材101の片面にタッチ位置を検出するためのタッチ画面102があり、この領域に静電容量変化を検出して、X位置座標とする透明電極103と、Y位置座標とする透明電極104を備えている。図4(b)は、図4(a)のI-I断面模式図である。これらのX、Y位置座標とするそれぞれの透明電極103、104には、タッチパネルとしての電気信号を制御するドライバー素子回路と接続するための引き出し配線105と、その引き出し配線105と透明電極103、104とを接続するための接続電極106が配置されている。さらに、引き出し配線105の接続電極106と反対側の端部には、ドライバー素子回路と接続する接続端子107が配置されている。 Next, an example of the use of the base film with a conductive pattern of the present invention will be described. FIG. 4A is a schematic top view illustrating an example of a capacitive touch panel sensor. The touch panel sensor shown in FIG. 4A has a touch screen 102 for detecting a touch position on one side of a transparent base material 101. This area detects a change in capacitance and is transparent as an X position coordinate. An electrode 103 and a transparent electrode 104 having Y position coordinates are provided. FIG. 4B is a schematic cross-sectional view taken along the line II of FIG. Each of the transparent electrodes 103 and 104 having the X and Y position coordinates includes a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and the lead wire 105 and the transparent electrodes 103 and 104. A connection electrode 106 for connecting the two is disposed. Further, a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead-out wiring 105 opposite to the connection electrode 106.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
(導電性繊維分散液1(銀繊維分散液のポリオール法による調製)
 2000mlの3口フラスコに、エチレングリコール500mlを入れ、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意したPtCl2mgを50mlのエチレングリコールに溶解した溶液を滴下した。5分後、AgNO5gをエチレングリコール300mlに溶解した溶液と、重量平均分子量が4万のポリビニルピロリドン(和光純薬工業株式会社製)5gをエチレングリコール150mlに溶解した溶液とを、それぞれの滴下漏斗から1分間で滴下し、その後160℃で60分間攪拌した。
(Conductive fiber dispersion 1 (Preparation of silver fiber dispersion by polyol method)
In a 2000 ml three-necked flask, 500 ml of ethylene glycol was placed and heated to 160 ° C. with an oil bath while stirring with a magnetic stirrer under a nitrogen atmosphere. A solution prepared by dissolving 2 mg of PtCl 2 separately prepared in 50 ml of ethylene glycol was added dropwise thereto. After 5 minutes, a solution in which 5 g of AgNO 3 was dissolved in 300 ml of ethylene glycol and a solution in which 5 g of polyvinylpyrrolidone having a weight average molecular weight of 40,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 150 ml of ethylene glycol were added dropwise. The solution was dropped from the funnel in 1 minute, and then stirred at 160 ° C. for 60 minutes.
 前記反応溶液が30℃以下になるまで放置してから、アセトンで10倍に希釈し、遠心分離機により2000回転/分で20分間遠心分離し、上澄み液をデカンテーションした。沈殿物にアセトンを加え攪拌後に前記と同様の条件で遠心分離し、アセトンをデカンテーションした。その後、蒸留水を用いて同様に2回遠心分離して、銀繊維を得た。得られた銀繊維を電子顕微鏡で観察したところ、繊維径(直径)は約5nmで、繊維長は約5μmであった。 The reaction solution was allowed to stand at 30 ° C. or lower, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted. Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber. When the obtained silver fiber was observed with an electron microscope, the fiber diameter (diameter) was about 5 nm, and the fiber length was about 5 μm.
[銀繊維分散液の調製]
 純水に、前記で得られた銀繊維を0.2質量%、及びドデシル-ペンタエチレングリコールを0.1質量%の濃度となるように分散し、銀繊維分散液1を得た。
[Preparation of silver fiber dispersion]
Silver fiber dispersion 1 was obtained by dispersing 0.2% by mass of the silver fiber obtained above and 0.1% by mass of dodecyl-pentaethylene glycol in pure water.
 表1に示す材料を同表に示す配合量(単位:質量部)で配合し、感光性樹脂組成物を調製した。 The materials shown in Table 1 were blended in the blending amounts (unit: parts by mass) shown in the table to prepare a photosensitive resin composition.
Figure JPOXMLDOC01-appb-T000001
表1中の各成分を下記に示す。
アクリル樹脂A:メタクリル酸/メタクリル酸メチル/アクリル酸エチル/スチレン=20/50/20/10質量%、重量平均分子量80,000、酸価130(日立化成株式会社製)
PET-30:ペンタエリスリトールトリアクリレート(新中村化学工業株式会社製、商品名)
IRGACURE OXE 01:1,2-オクタンジオン,1-[(4-フェニルチオ)-フェニル,2-(o-ベンゾイルオキシム)](BASF株式会社製、商品名)
SH-30:オクタメチルシクロテトラシロキサン(東レ・ダウコーニング株式会社製、商品名)
Figure JPOXMLDOC01-appb-T000001
Each component in Table 1 is shown below.
Acrylic resin A: methacrylic acid / methyl methacrylate / ethyl acrylate / styrene = 20/50/20/10 mass%, weight average molecular weight 80,000, acid value 130 (manufactured by Hitachi Chemical Co., Ltd.)
PET-30: Pentaerythritol triacrylate (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.)
IRGACURE OXE 01: 1,2-octanedione, 1-[(4-phenylthio) -phenyl, 2- (o-benzoyloxime)] (trade name, manufactured by BASF Corporation)
SH-30: Octamethylcyclotetrasiloxane (trade name, manufactured by Toray Dow Corning Co., Ltd.)
<アクリル樹脂Aの重量平均分子量/GPC測定条件>
機種:日立L6000(ポンプ、株式会社日立製作所製)
検出:L3300RI(検出器、株式会社日立製作所製)
カラム:Gelpack GL-R440 + GL-R450 + GL-R400M(日立化成株式会社製)
カラム仕様:直径10.7mm × 300mm
溶媒:THF(テトラヒドロフラン)
試料濃度:NV(不揮発分濃度)40質量%の樹脂溶液を120mg採取、5mLのTHFに溶解
注入量:200μL
圧力:4.9MPa
流量:2.05mL/min
<Weight average molecular weight of acrylic resin A / GPC measurement conditions>
Model: Hitachi L6000 (pump, manufactured by Hitachi, Ltd.)
Detection: L3300RI (detector, manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R440 + GL-R450 + GL-R400M (manufactured by Hitachi Chemical Co., Ltd.)
Column specifications: Diameter 10.7mm x 300mm
Solvent: THF (tetrahydrofuran)
Sample concentration: 120 mg of a resin solution of NV (non-volatile content concentration) 40% by mass was collected and dissolved in 5 mL of THF. Injection amount: 200 μL
Pressure: 4.9 MPa
Flow rate: 2.05 mL / min
(実施例1)
<感光性導電フィルムの作製>
 前記導電性繊維分散液1を、支持フィルム1として16μm厚のポリエチレンテレフタレートフィルム(東洋紡株式会社製、商品名「A-1517」)上に25g/mで均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥し、室温(25℃)において10kg/cmの線圧で加圧することにより、支持フィルム1(第一のフィルム)上に導電層2を形成した。なお、導電層の乾燥後の膜厚は、約0.01μmであった。
(Example 1)
<Preparation of photosensitive conductive film>
The conductive fiber dispersion 1 was uniformly applied at 25 g / m 2 onto a 16 μm-thick polyethylene terephthalate film (trade name “A-1517”, manufactured by Toyobo Co., Ltd.) as a support film 1, and hot air convection at 100 ° C. The conductive layer 2 was formed on the support film 1 (1st film) by drying with a type dryer for 10 minutes, and pressurizing with the linear pressure of 10 kg / cm at room temperature (25 degreeC). The thickness of the conductive layer after drying was about 0.01 μm.
 次に、表面保護フィルム(日立化成株式会社製、商品名「ヒタレックス」、175μm厚)5を基材フィルムである50μm厚のポリエチレンテレフタレートフィルム(東レフィルム加工株式会社製、商品名「タフトップ」)4に常温(25℃)、0.4MPaの条件でラミネートした。そして基材フィルム4の表面保護フィルム5を張り合わせた面の反対面に、前記調製した感光性樹脂組成物を均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層3を形成した。なお、感光性樹脂層の乾燥後の膜厚は5μmであった。
 前記で得られた2枚のフィルムの導電層2と感光性樹脂層3を向かい合うように配置し、120℃、0.4MPaの条件でラミネートし、支持フィルム1-導電層2-感光性樹脂層3-基材フィルム4-表面保護フィルム5の順で構成された感光性導電フィルムを作製した(図1参照)。
Next, a surface protective film (made by Hitachi Chemical Co., Ltd., trade name “Hitarex”, 175 μm thickness) 5 is a base film of a 50 μm thick polyethylene terephthalate film (made by Toray Film Processing Co., Ltd., trade name “Tough Top”). 4 was laminated at room temperature (25 ° C.) and 0.4 MPa. Then, the prepared photosensitive resin composition is uniformly applied to the surface of the base film 4 opposite to the surface to which the surface protective film 5 is laminated, and dried for 10 minutes in a hot air convection dryer at 100 ° C. Layer 3 was formed. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
The conductive film 2 and the photosensitive resin layer 3 of the two films obtained as described above are arranged so as to face each other, laminated under the conditions of 120 ° C. and 0.4 MPa, support film 1−conductive layer 2−photosensitive resin layer A photosensitive conductive film constituted in the order of 3-substrate film 4-surface protective film 5 was produced (see FIG. 1).
<転写形感光性導電フィルムの作製>
 前記導電性繊維分散液1を、支持フィルム6である16μm厚のポリエチレンテレフタレートフィルム(東洋紡株式会社製、商品名「A-1517」)上に25g/mで均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥し、室温において10kg/cmの線圧で加圧することにより、支持フィルム6上に導電層7を形成した。なお、導電層の乾燥後の膜厚は、約0.01μmであった。
<Preparation of transfer type photosensitive conductive film>
The conductive fiber dispersion 1 was uniformly applied at 25 g / m 2 onto a 16 μm-thick polyethylene terephthalate film (trade name “A-1517” manufactured by Toyobo Co., Ltd.) as the support film 6, and hot air at 100 ° C. The conductive layer 7 was formed on the support film 6 by drying with a convection dryer for 10 minutes and pressurizing at a linear pressure of 10 kg / cm at room temperature. The thickness of the conductive layer after drying was about 0.01 μm.
 次に、前記感光性樹脂組成物を、導電層7が形成された16μm厚のポリエチレンテレフタレートフィルム上に均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層8を形成した。なお、感光性樹脂層の乾燥後の膜厚は5μmであった。
 次に、前記で得られたフィルムに保護フィルムとして30μm厚のポリエチレンテレフタレートフィルム(王子フィルム株式会社製、商品名「ES-201」)を常温、0.4MPaの条件でラミネートし、支持フィルム6-導電層7-感光性樹脂層8-(感光性樹脂層の保護フィルム9)の順で形成された転写形感光性導電フィルムを作製した。
Next, the photosensitive resin composition is uniformly coated on a 16 μm-thick polyethylene terephthalate film on which the conductive layer 7 is formed, and dried for 10 minutes with a hot air convection dryer at 100 ° C. to be photosensitive resin layer 8. Formed. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
Next, a 30 μm-thick polyethylene terephthalate film (trade name “ES-201”, manufactured by Oji Film Co., Ltd.) is laminated as a protective film on the above-obtained film under the conditions of room temperature and 0.4 MPa, and the support film 6- A transfer type photosensitive conductive film formed in the order of conductive layer 7 -photosensitive resin layer 8-(photosensitive resin layer protective film 9) was produced.
<感光性導電フィルムを用いた表面保護フィルム及び導電パターン付き基材フィルムの形成>
 前記で得られた感光性導電フィルムの支持フィルム1上にライン幅/スペース幅が1/1mmで長さが120mmの配線パターンを有するフォトマスクを密着させた。そして、高圧水銀灯ランプを有する露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、50mJ/cmの露光量で導電層及び感光性樹脂層に光照射した。続いて、支持フィルム1を剥離し、フォトマスクを用いずに酸素雰囲気下で、100mJ/cmの露光量で導電層及び感光性樹脂層に光照射した。
<Formation of surface protective film using photosensitive conductive film and base film with conductive pattern>
A photomask having a wiring pattern with a line width / space width of 1/1 mm and a length of 120 mm was adhered to the support film 1 of the photosensitive conductive film obtained above. The conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 50 mJ / cm 2 using an exposure machine having a high-pressure mercury lamp lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.). Subsequently, the support film 1 was peeled off, and the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 100 mJ / cm 2 in an oxygen atmosphere without using a photomask.
 露光後、室温で15分間放置し、30℃で1質量%炭酸ナトリウム水溶液を30秒間スプレーすることにより現像した。現像後、銀繊維を含んでなる導電パターンのライン幅/スペース幅が約1/1mmの導電パターンを形成した。導電パターンは良好に形成されていることが確認された。 After exposure, the film was allowed to stand at room temperature for 15 minutes, and developed by spraying a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 30 seconds. After the development, a conductive pattern having a line width / space width of about 1/1 mm was formed. It was confirmed that the conductive pattern was formed satisfactorily.
<転写形感光性導電フィルムを用いた2層スタックアップ構造の導電パターン付き基材フィルムの形成>
 前記感光性導電フィルムを用いて形成した表面保護フィルム及び導電パターン付き基材フィルムを80℃、10分間加熱し、感光性樹脂層3の重合反応を失活させたあと、前記で作製した転写形感光性導電フィルムの保護フィルム9を剥離し、感光性樹脂層8を前記の感光性導電フィルムを用いて形成した導電パターン上に、110℃、0.4MPaの条件でラミネートした。次に、転写形感光性導電フィルムの支持フィルム6で上にライン幅/スペース幅が1/1mmで長さが120mmの配線パターンを有するフォトマスクを密着させた。そして、高圧水銀灯ランプを有する露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、50mJ/cmの露光量で導電層及び感光性樹脂層に光照射した。続いて、支持フィルム6を剥離し、フォトマスクを用いずに酸素雰囲気下で、100mJ/cmの露光量で導電層及び感光性樹脂層に光照射した。
<Formation of a base film with a conductive pattern having a two-layer stackup structure using a transfer type photosensitive conductive film>
The surface protection film formed using the photosensitive conductive film and the base film with a conductive pattern are heated at 80 ° C. for 10 minutes to deactivate the polymerization reaction of the photosensitive resin layer 3, and then the transfer form produced above. The protective film 9 of the photosensitive conductive film was peeled off, and the photosensitive resin layer 8 was laminated on a conductive pattern formed using the photosensitive conductive film at 110 ° C. and 0.4 MPa. Next, a photomask having a wiring pattern with a line width / space width of 1/1 mm and a length of 120 mm was adhered to the support film 6 of the transfer type photosensitive conductive film. The conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 50 mJ / cm 2 using an exposure machine (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.) having a high-pressure mercury lamp. Subsequently, the support film 6 was peeled off, and the conductive layer and the photosensitive resin layer were irradiated with light at an exposure amount of 100 mJ / cm 2 in an oxygen atmosphere without using a photomask.
 露光後、室温(25℃)で15分間放置し、30℃で1質量%炭酸ナトリウム水溶液を30秒間スプレーすることにより現像した。現像後、銀繊維を含んでなる導電パターンのライン幅/スペース幅が約1/1mmの導電パターンを形成した。導電パターンは良好に形成されていることが確認された。これより、感光性導電フィルム及び転写形感光性導電フィルムにより二層の電極を形成できることが確認され、2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムを得た。
 また、この2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの導電パターン積層基材において表面保護フィルム5を剥離した後、導電層2及び導電層7の両方が形成されている箇所をニコンデジマイクロヘッド(MH-15M、株式会社ニコン製)により測定した結果、厚みは60μmであった。また、ヘーズメーター(NDH-5000、日本電色工業株式会社)により測定した全光線透過率は88%であった。
After exposure, the film was allowed to stand at room temperature (25 ° C.) for 15 minutes and developed by spraying at 30 ° C. with a 1 mass% sodium carbonate aqueous solution for 30 seconds. After the development, a conductive pattern having a line width / space width of about 1/1 mm was formed. It was confirmed that the conductive pattern was formed satisfactorily. From this, it was confirmed that a two-layer electrode could be formed by the photosensitive conductive film and the transfer-type photosensitive conductive film, and a surface protective film having a two-layer stack-up structure and a base film with a conductive pattern were obtained.
Moreover, after peeling off the surface protective film 5 in the conductive pattern laminated base material of the surface protective film of this two-layer stack-up structure and the base film with a conductive pattern, the location where both the conductive layer 2 and the conductive layer 7 are formed Was measured with a Nikon Digi Microhead (MH-15M, manufactured by Nikon Corporation), and the thickness was 60 μm. The total light transmittance measured with a haze meter (NDH-5000, Nippon Denshoku Industries Co., Ltd.) was 88%.
(比較例1)<ITO-PETによる二層導電パターン基材の作製>
 ITO-PET(東洋紡株式会社製、商品名「300R」)に透明接着剤(日立化成株式会社製、商品名「DA-5050」)を常温、0.4MPaでラミネートし、さらにその上に同様のITO-PETを常温、0.4MPaでラミネートした。この積層体をニコンデジマイクロヘッド(MH-15M、株式会社ニコン製)により測定した結果、厚みは302μmであった。また、ヘーズメーター(NDH-5000、日本電色工業株式会社)により測定した全光線透過率は85%であった。実施例では厚みが60μmであったことから、本発明により2層スタックアップ構造(2層構成)の導電パターン付き基材の薄膜化の効果があることが示された。
(Comparative Example 1) <Production of double-layer conductive pattern base material by ITO-PET>
A transparent adhesive (trade name “DA-5050” manufactured by Hitachi Chemical Co., Ltd., trade name “DA-5050”) is laminated on ITO-PET (trade name “300R” manufactured by Toyobo Co., Ltd.) at room temperature and 0.4 MPa, and the same is applied thereon. ITO-PET was laminated at room temperature at 0.4 MPa. As a result of measuring this laminate with a Nikon Digi Microhead (MH-15M, manufactured by Nikon Corporation), the thickness was 302 μm. The total light transmittance measured with a haze meter (NDH-5000, Nippon Denshoku Industries Co., Ltd.) was 85%. In the examples, since the thickness was 60 μm, it was shown that the present invention has an effect of thinning a substrate with a conductive pattern having a two-layer stack-up structure (two-layer structure).
 本発明の導電パターンの形成方法によれば、パターン形成工程において基材フィルムを傷や汚れから保護することが可能である。また、感光性導電フィルムと転写型感光性導電フィルムとの併用によってタッチパネルの薄膜化が可能である。 According to the conductive pattern forming method of the present invention, it is possible to protect the substrate film from scratches and dirt in the pattern forming step. Further, the touch panel can be made thin by using the photosensitive conductive film and the transfer type photosensitive conductive film in combination.
 1…感光性導電フィルムの支持フィルム、2…感光性導電フィルムの導電層、2a…感光性導電フィルムから作製した導電パターン、3…感光性導電フィルムの感光性樹脂層、3a…感光性導電フィルムの樹脂硬化層、4…基材フィルム、5…表面保護フィルム、6…転写形感光性導電フィルムの支持フィルム、7…転写形感光性導電フィルムの導電層、8…転写形感光性導電フィルムの感光性樹脂層、7a…転写形感光性導電フィルムから形成した導電パターン、8a…転写形感光性導電フィルムの樹脂硬化層、9…保護フィルム、L…活性光線、101…透明基材、102…タッチ画面、103…透明電極(X位置座標)、104…透明電極(Y位置座標)、105…引き出し配線、106…接続電極、107…接続端子。 DESCRIPTION OF SYMBOLS 1 ... Photosensitive conductive film support film, 2 ... Photoconductive conductive film layer, 2a ... Conductive pattern made from photosensitive conductive film, 3 ... Photoconductive resin layer of photosensitive conductive film, 3a ... Photoconductive conductive film 4 ... substrate film, 5 ... surface protective film, 6 ... support film for transfer-type photosensitive conductive film, 7 ... conductive layer for transfer-type photosensitive conductive film, 8 ... transfer-type photosensitive conductive film Photosensitive resin layer, 7a ... conductive pattern formed from transfer-type photosensitive conductive film, 8a ... cured resin layer of transfer-type photosensitive conductive film, 9 ... protective film, L ... actinic ray, 101 ... transparent substrate, 102 ... Touch screen, 103 ... Transparent electrode (X position coordinate), 104 ... Transparent electrode (Y position coordinate), 105 ... Lead-out wiring, 106 ... Connection electrode, 107 ... Connection terminal.

Claims (9)

  1.  支持フィルムと、導電性繊維を含有する導電層と、感光性樹脂層と、基材フィルムと、表面保護フィルムとをこの順に含む感光性導電フィルム。 A photosensitive conductive film comprising a support film, a conductive layer containing conductive fibers, a photosensitive resin layer, a base film, and a surface protective film in this order.
  2.  450~650nmの波長域における最小光透過率が80%以上である請求項1に記載の感光性導電フィルム。 The photosensitive conductive film according to claim 1, wherein the minimum light transmittance in a wavelength region of 450 to 650 nm is 80% or more.
  3.  前記導電性繊維が銀繊維である請求項1又は請求項2に記載の感光性導電フィルム。 The photosensitive conductive film according to claim 1, wherein the conductive fiber is a silver fiber.
  4.  前記感光性樹脂層が、バインダーポリマー、エチレン性不飽和結合を有する光重合性化合物及び光重合開始剤を含有する請求項1~3のいずれか一項に記載の感光性導電フィルム。 The photosensitive conductive film according to any one of claims 1 to 3, wherein the photosensitive resin layer contains a binder polymer, a photopolymerizable compound having an ethylenically unsaturated bond, and a photopolymerization initiator.
  5.  前記表面保護フィルムが、アクリル系接着剤である請求項1~4のいずれか一項に記載の感光性導電フィルム。 The photosensitive conductive film according to any one of claims 1 to 4, wherein the surface protective film is an acrylic adhesive.
  6.  請求項1~5のいずれか一項に記載の感光性導電フィルムの導電層及び感光性樹脂層に支持フィルム側からパターン状に活性光線を照射する第一の露光工程と、
     前記支持フィルムを剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
     前記第二の露光工程の後に、前記導電層及び前記感光性樹脂層を現像することにより、導電パターンを形成する現像工程とを備える表面保護フィルム及び導電パターン付き基材フィルムの製造方法。
    A first exposure step of irradiating the conductive layer and the photosensitive resin layer of the photosensitive conductive film according to any one of claims 1 to 5 with actinic rays in a pattern form from the support film side;
    A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step of the conductive layer and the photosensitive resin layer with actinic rays in the presence of oxygen after peeling the support film; ,
    The manufacturing method of the surface protection film provided with the image development process which forms a conductive pattern by developing the said conductive layer and the said photosensitive resin layer after said 2nd exposure process, and a base film with a conductive pattern.
  7.  請求項6に記載の製造方法で得られる表面保護フィルム及び導電パターン付き基材フィルムに、支持フィルム、該支持フィルム上に設けられた導電性繊維を含有する導電層及び該導電層上に設けられた感光性樹脂層を有する転写形感光性導電フィルムを、前記表面保護フィルム及び導電パターン付き基材フィルムの導電パターン側に前記感光性樹脂層側からラミネートする工程と、
     前記支持フィルム側から前記導電層及び前記感光性樹脂層にパターン状に活性光線を照射する第一の露光工程と、
     前記支持フィルムを剥離後、酸素存在下で、前記導電層及び前記感光性樹脂層の少なくとも第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
     前記第二の露光工程の後に、前記導電層及び前記感光性樹脂層を現像することにより、導電パターンを形成する現像工程とを備える2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法。
    A surface protective film and a substrate film with a conductive pattern obtained by the production method according to claim 6 are provided on a support film, a conductive layer containing conductive fibers provided on the support film, and the conductive layer. Laminating the transfer type photosensitive conductive film having the photosensitive resin layer from the photosensitive resin layer side to the conductive pattern side of the surface protective film and the substrate film with a conductive pattern;
    A first exposure step of irradiating the conductive layer and the photosensitive resin layer with actinic rays in a pattern from the support film side;
    A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step of the conductive layer and the photosensitive resin layer with actinic rays in the presence of oxygen after peeling the support film; ,
    A surface protective film having a two-layer stack-up structure and a base film with a conductive pattern comprising a developing step of forming a conductive pattern by developing the conductive layer and the photosensitive resin layer after the second exposure step Manufacturing method.
  8.  請求項7に記載の2層スタックアップ構造の表面保護フィルム及び導電パターン付き基材フィルムの製造方法において、さらに、得られた表面保護フィルム及び導電パターン付き基材フィルムから表面保護フィルムを除去する工程を備える2層スタックアップ構造の導電パターン付き基材フィルムの製造方法。 The method for producing a surface protective film having a two-layer stack-up structure and a base film with a conductive pattern according to claim 7, further comprising removing the surface protective film from the obtained surface protective film and the base film with a conductive pattern. A method for producing a base film with a conductive pattern having a two-layer stack-up structure.
  9.  請求項7又は8に記載の導電パターン付き基材フィルムの製造方法に用いられる、請求項1~5のいずれか一項に記載の感光性導電フィルムと、支持フィルム、該支持フィルム上に設けられた導電性繊維を含有する導電層及び該導電層上に設けられた感光性樹脂層を有する転写形感光性導電フィルムとの導電フィルムセット。 The photosensitive conductive film according to any one of claims 1 to 5, which is used in the method for producing a substrate film with a conductive pattern according to claim 7 or 8, a support film, and provided on the support film. A conductive film set with a transfer type photosensitive conductive film having a conductive layer containing conductive fibers and a photosensitive resin layer provided on the conductive layer.
PCT/JP2014/068049 2014-07-07 2014-07-07 Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern WO2016006024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068049 WO2016006024A1 (en) 2014-07-07 2014-07-07 Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068049 WO2016006024A1 (en) 2014-07-07 2014-07-07 Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern

Publications (1)

Publication Number Publication Date
WO2016006024A1 true WO2016006024A1 (en) 2016-01-14

Family

ID=55063701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068049 WO2016006024A1 (en) 2014-07-07 2014-07-07 Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern

Country Status (1)

Country Link
WO (1) WO2016006024A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782771A (en) * 2016-12-02 2017-05-31 天津宝兴威科技股份有限公司 A kind of novel nanometer silver composite conductive thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP2013073828A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Conductive composition, method for producing the same, conductive member, touch panel, and solar cell
JP2013224397A (en) * 2012-02-28 2013-10-31 Fujifilm Corp Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2013073828A (en) * 2011-09-28 2013-04-22 Fujifilm Corp Conductive composition, method for producing the same, conductive member, touch panel, and solar cell
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP2013224397A (en) * 2012-02-28 2013-10-31 Fujifilm Corp Composition for forming silver-ion-diffusion inhibition layer, film for silver-ion diffusion inhibition layer, wiring board, electronic device, conductive film laminate, and touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782771A (en) * 2016-12-02 2017-05-31 天津宝兴威科技股份有限公司 A kind of novel nanometer silver composite conductive thin film

Similar Documents

Publication Publication Date Title
US10336043B2 (en) Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device
TWI592994B (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
TWI604273B (en) Photosensitive element, photosensitive element roll, method for producing resist pattern and electronic component
JP6176295B2 (en) Method for forming conductive pattern
CN108351716B (en) Transfer film, method for manufacturing film sensor, front-panel integrated sensor, and image display device
CN108025533B (en) Transfer film, electrostatic capacitance type input device, electrode protection film for electrostatic capacitance type input device, laminate, and method for manufacturing laminate
WO2016167228A1 (en) Photosensitive conductive film, method for forming conductive pattern, substrate having conductive pattern, and touch panel sensor
JP6205925B2 (en) Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
JP2016031503A (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
WO2017051826A1 (en) Laminate, production method therefor, film set, and photosensitive conductive film
JP2015052774A (en) Method for manufacturing resist pattern or conductive pattern on decorative substrate, and transfer type photosensitive conductive film
WO2016006024A1 (en) Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern
JP2016070973A (en) Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate
TW201502704A (en) Photosensitive conductive film, fabricating method of conductive pattern using the same and conductive pattern substrate
JP2017068734A (en) Photosensitive conductive film, forming method for conductive pattern using the same
JP2017072679A (en) Photosensitive conductive film, and method of forming conductive pattern
WO2018138879A1 (en) Photosensitive conductive film, conductive pattern formation method, conductive pattern substrate production method, conductive pattern substrate, and touch panel sensor
JP2017201344A (en) Photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate and touch panel sensor
JP2018097576A (en) Wiring for connection and forming method of wiring for connection
WO2016181496A1 (en) Elctroconductive-film-forming liquid set, method for forming electroconductive pattern, and touch panel
JP2019054125A (en) Photosensitive conductive film, and method of forming conductive pattern using the same
JP2019191492A (en) Photosensitive film roll and photosensitive film roll for forming protective film of electrode for touch panel using the same
JP2017228312A (en) Photosensitive conductive film, and method of forming conductive pattern using the same, and conductive pattern substrate including the same
JP2018004810A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate and touch panel sensor
JP2017049331A (en) Photosensitive conductive film and method for forming conductive film/conductive pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP