Nothing Special   »   [go: up one dir, main page]

WO2016003140A1 - 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치 - Google Patents

애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치 Download PDF

Info

Publication number
WO2016003140A1
WO2016003140A1 PCT/KR2015/006654 KR2015006654W WO2016003140A1 WO 2016003140 A1 WO2016003140 A1 WO 2016003140A1 KR 2015006654 W KR2015006654 W KR 2015006654W WO 2016003140 A1 WO2016003140 A1 WO 2016003140A1
Authority
WO
WIPO (PCT)
Prior art keywords
acdc
application
information
category
layer
Prior art date
Application number
PCT/KR2015/006654
Other languages
English (en)
French (fr)
Inventor
김재현
이영대
김래영
이기동
김현숙
김태훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201580002099.1A priority Critical patent/CN105612788B/zh
Priority to US14/915,979 priority patent/US10080181B2/en
Priority to JP2016538876A priority patent/JP6318253B2/ja
Priority to EP15814775.1A priority patent/EP3163947B1/en
Publication of WO2016003140A1 publication Critical patent/WO2016003140A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • H04L47/2433Allocation of priorities to traffic types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2475Traffic characterised by specific attributes, e.g. priority or QoS for supporting traffic characterised by the type of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits

Definitions

  • the present invention relates to a technique for blocking access for congestion control in a mobile communication system.
  • the 3GPP which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
  • 3GPP SAE centered on 3GPP SA WG2
  • 3GPP SA WG2 is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN.
  • Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
  • the Evolved Packet System (EPS) high-level reference model defined by 3GPP SA WG2, includes non-roaming cases and roaming cases in various scenarios. Reference may be made to documents TS 23.401 and TS 23.402.
  • the network structure diagram of FIG. 1 is a simple reconfiguration.
  • 1 is a structural diagram of an evolved mobile communication network.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW) 53, and a Mobility Management Entity (MME). 51, a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG).
  • S-GW Serving Gateway
  • GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the S-GW 52 acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 22 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • S-GW 52 and the PDN GW 53 are configured as separate gateways in the example of the network structure of FIG. 1, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • the SGSN handles all packet data, such as user's mobility management and authentication to other connecting 3GPP networks (e.g., GPRS networks, UTRAN / GERAN).
  • 3GPP networks e.g., GPRS networks, UTRAN / GERAN.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an IP service network eg, IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover) (It enables user and bearer information exchange for inter 3GPP access network mobility in Idle and / or active state
  • This reference point can be used intra-PLMN or inter-PLMN (eg, in the case of Inter-PLMN HO).
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW. It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDNGW.
  • Figure 2 is an exemplary view showing the functions of the main nodes of the E-UTRAN and the general EPC in general.
  • the eNodeB 20 may route to a gateway, schedule and transmit paging signals, schedule and transmit broadcaster channels (BCHs), uplink and downlink while an RRC (Radio Resource Control) connection is active.
  • BCHs broadcaster channels
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user planes can perform encryption, EPS bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB
  • FIG. 4 is a structure of a radio interface protocol in a user plane between a terminal and a base station. Another example is shown.
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol consists of a physical layer (Physical layer), a data link layer (Data Link layer) and a network layer (Network layer) horizontally, vertically the user plane (User Plane) and control for data information transmission It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the Medium Access Control (MAC) layer is responsible for mapping various logical channels to various transport channels, and also for logical channel multiplexing to map multiple logical channels to one transport channel. Play a role.
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • TM Transparent mode, transparent mode
  • UM Un-acknowledged mode, no response mode
  • AM Acknowledged mode, Response mode
  • the AM RLC performs a retransmission function through an Automatic Repeat and Request (ARQ) function for reliable data transmission.
  • ARQ Automatic Repeat and Request
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a low bandwidth wireless section when transmitting IP packets such as IPv4 or IPv6. Performs Header Compression, which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the settings (setting) and reset (Re) of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels, and physical channels in connection with setup and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the radio network, the terminal is in the RRC connected state (Connected mode), otherwise it is in the RRC idle state (Idle mode).
  • RRC connection If there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the radio network, the terminal is in the RRC connected state (Connected mode), otherwise it is in the RRC idle state (Idle mode).
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects a cell (re) as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state needs to establish an RRC connection
  • the UE establishes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED There are several cases in which the UE in RRC_IDLE state needs to establish an RRC connection. For example, when uplink data transmission is necessary due to a user's call attempt, or when a paging signal is received from E-UTRAN, Send a response message.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • Evolved Session Management belonging to the NAS layer performs functions such as Default Bearer management and Dedicated Bearer management, and is responsible for controlling the terminal to use the PS service from the network.
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • a bearer having a QoS characteristic of GBR or non-GBR may be allocated.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID This is called EPS Bearer ID.
  • MLR maximum bit rate
  • GRR guaranteed bit rate
  • AMBR aggregated maximum bit rate
  • an RRC layer, an RLC layer, a MAC layer, and a PHY layer located under the NAS layer are collectively referred to as an access stratum (AS).
  • AS access stratum
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
  • the UE 10 receives a root index and a physical random access channel (PRACH) configuration index (configuration index) from the eNodeB 20.
  • PRACH physical random access channel
  • configuration index configuration index
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • UE 10 transmits a randomly selected random access preamble to eNodeB 20.
  • the UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index.
  • UE 10 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 20 Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC radio resource control
  • an RRC state is shown depending on whether RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10.
  • the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell.
  • the tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
  • the UE 10 When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 5B.
  • the UE 10 When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
  • the eNB 10 When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
  • RRC connection a response message
  • the UE 10 When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
  • the UE 10 when the UE 10 requests an RRC connection for the purpose of data transmission in the user plane, if the network, for example, the base station (ie, the eNodeB) is congested, it may refuse it.
  • the base station ie, the eNodeB
  • one disclosure of the present specification provides a method for attempting network access at a user equipment (UE).
  • the method comprises the steps of: acquiring, from an upper layer, relevant information of an application attempting to access a network when an application specific congestion control for data communication (ACDC) is set; Determining an ACDC category based on the relevant information of the obtained application; Based on the determined ACDC category, the method may include performing an ACDC test.
  • network access attempts may be blocked or allowed for each application according to the ACDC check.
  • the application related information may include one or more of a group, a category, a priority, information, and an ID of the application.
  • the ACDC check may be performed based on ACDC configuration information defined for each specific application unit.
  • the ACDC configuration information may include a blocking ratio, a blocking factor, a blocking time, roaming information, and an ACB skip setting defined for each specific application unit.
  • the specific application unit may be: a group, category, priority, or information / ID unit of the application.
  • the ACDC category when there are a plurality of pieces of related information of applications obtained from the upper layer, the ACDC category may be determined based on the highest level of application-related information or the lowest level of application-related information. .
  • the determining of the ACDC category may include: determining a plurality of ACDC categories when a plurality of pieces of related information of an application obtained from the higher layer are present.
  • the ACDC check may be performed based on the highest level of application-related information or the lowest level of application-related information among the determined plurality of ACDC categories.
  • the user device includes a transceiver; It includes a processor for controlling the transceiver.
  • the processor may include: acquiring relevant information of an application attempting to access a network when an application specific congestion control for data communication (ACDC) is set; Determining an ACDC category based on the related information of the obtained application; Based on the determined ACDC category, an ACDC inspection process may be performed.
  • the processor may block or allow network access attempts for each application according to the ACDC check.
  • 1 is a structural diagram of an evolved mobile communication network.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB.
  • FIG. 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • RRC radio resource control
  • FIG. 7 is an exemplary flowchart illustrating an access blocking operation in a network congestion state.
  • FIG. 9 is a signal flow diagram illustrating a proposal 1a of the present specification.
  • FIG. 10 is a signal flow diagram illustrating a proposal 1b of the present specification.
  • 11 is a signal flow diagram illustrating a proposal 1c of the present specification.
  • FIG. 13 is a flowchart according to a proposal 3b of the present specification.
  • 22 is a block diagram illustrating a configuration of a UE 100 and a base station 200 according to an embodiment of the present invention.
  • the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
  • UMTS Universal Mobile Telecommunication System
  • EPC Evolved Packet Core
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a component When a component is said to be connected or connected to another component, it may be directly connected to or connected to the other component, but other components may be present in between. On the other hand, when a component is mentioned as being directly connected or directly connected to another component, it should be understood that no other component exists in the middle.
  • a user equipment UE
  • the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
  • UMTS Abbreviation for Universal Mobile Telecommunication System, which means the third generation mobile communication network.
  • UE / MS means User Equipment / Mobile Station, terminal equipment.
  • EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • PDN connection Connection from the terminal to the PDN, that is, association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • PDN-GW Packet Data Network Gateway
  • Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
  • Serving GW Network node of EPS network that performs mobility anchor, packet routing, idle mode packet buffering, Triggering MME to page UE function
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name
  • the name of the access point managed by the network which is provided to the UE. That is, a string that refers to or distinguishes a PDN.
  • PDN the name of the access point managed by the network. That is, a string that refers to or distinguishes a PDN.
  • PDN the name of the access point managed by the network. That is, a string that refers to or distinguishes a PDN.
  • PDN Access Point Name
  • the P-GW passes through the P-GW.
  • the name (string) predefined within the network to find this P-GW (example) internet.mnc012.mcc345.gprs
  • Tunnel Endpoint Identifier End point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • NodeB A base station of a UMTS network, which is installed outdoors, and a cell coverage scale corresponds to a macro cell.
  • eNodeB A base station of an evolved packet system (EPS), which is installed outdoors, and a cell coverage size corresponds to a macro cell.
  • EPS evolved packet system
  • NodeB A term referring to NodeB and eNodeB.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • UE Context Context information of UE used to manage UE in the network, ie Context Information composed of UE id, mobility (current location, etc.), session attributes (QoS, priority, etc.)
  • OMA DM Open Mobile Alliance Device Management
  • OMA DM Open Mobile Alliance Device Management
  • OAM Operaation Administration and Maintenance
  • OAM is a group of network management functions that provides network fault indication, performance information, and data and diagnostic functions.
  • NAS Configuration MO (Management Object): A MO (Management Object) used to set (set) parameters related to NAS functions to the UE.
  • NAS Non-Access-Stratum: Upper stratum of the control plane (control plane) between the UE and the MME. Supports mobility management, session management, and IP address management between UE and network
  • MM (Mobility Management) operation / procedure An operation or procedure for mobility control / management / control of a UE.
  • the MM operation / procedure may be interpreted as including one or more of the MM operation / procedure in the CS network, the GMM operation / procedure in the GPRS network, and the EMM operation / procedure in the EPS network.
  • the UE and the network nodes (MME, SGSN, MSC) send and receive MM messages to perform MM operation / procedure.
  • SM (Session Management) operation / procedure An operation or procedure for controlling / managing / processing / handling a user plane and / or bearer context / PDP context of a UE.
  • SM operation / procedure may be interpreted as including one or more of SM operation / procedure in GPRS network and ESM operation / procedure in EPS network.
  • the UE and the network nodes (MME, SGSN) exchange SM messages to perform SM operations / procedures.
  • Low priority terminal A terminal set to NAS signal low priority. For details, refer to standard documents 3GPP TS 24.301 and TS 24.008.
  • Normal priority terminal General terminal not set to low priority
  • Dual priority terminal A terminal set to a dual priority, which is set to NAS signal low priority and is configured to override the described NAS signal low priority (ie, UE which provides dual priority support is set for NAS signaling low priority and also set to override the NAS signaling low priority indicator).
  • UE which provides dual priority support is set for NAS signaling low priority and also set to override the NAS signaling low priority indicator.
  • a large number of UEs 100a, 100b, 300c, and 300d exist in the coverage of the eNodeB 200, and attempt to transmit and receive data.
  • traffic is overloaded or congested on the interface between the eNodeB 200 and the S-GW 520, downlink data to the UE 100 or from the UE 100.
  • the uplink data of the is not transmitted correctly and fails.
  • an interface between the S-GW 520 and the PDN-GW 530 or an interface between the PDN-GW 530 and an IP (Internet Protocol) service network of a mobile communication operator may be overloaded or congested. Even in the case of congestion, downlink data to the UEs 100a, 100b, 300c and 300d or uplink data from the UEs 100a, 100b, 300c and 300d may fail to be transmitted correctly.
  • IP Internet Protocol
  • the node e.g., MME
  • the node performs congestion control (NAS level congestion control) at the NAS level to avoid or control signaling congestion and APN congestion.
  • Congestion control at the NAS level is composed of APN based congestion control and General NAS level mobility management control at the NAS level.
  • the APN based congestion control refers to EMM, GMM and (E) SM signal congestion control associated with a UE and a specific APN (APN associated with a congestion state), and is based on APN based session management congestion control. And APN based Mobility Management congestion control.
  • the mobility management control of the general NAS phase is a node in the core network (MME, SGSN) to request the mobility management signaling request from the UE / MS in a general network congestion or overload situation Means to avoid congestion and overload by refusing.
  • MME core network
  • SGSN core network
  • a back-off timer value is assigned to UEs in idle mode (idle mode) or connected mode (connected mode). It is sent in a NAS reject message, and the UE does not request the EMM / GMM / (E) SM signal from the network until the back-off timer expires. Will not.
  • the NAS reject message may include an attach rejection (ATTACH REJECT), a tracking area updating (TAU) rejection, a routing area updating (RAU) rejection, a service rejection, an extended service (EXTENDED SERVICE) rejection, a PDN connectivity rejection, and bearer resource allocation. (bearer resource allocation) rejection, bearer resource modification (bearer resource modification) rejection, the message of the rejection for the deactivate EPS bearer context request (deactivate EPS bearer context request).
  • the back-off timer may be divided into a mobility management (MM) back-off timer and a session management (SM) back-off timer.
  • MM mobility management
  • SM session management
  • the MM back-off timer operates independently for each UE, and the SM back-off timer operates independently for each APN and for each UE.
  • the MM back-off timer is for controlling an EMM / GMM signal (eg, Attach, TAU / RAU request, etc.).
  • the SM back-off timer (E) is for controlling SM signals (eg, PDN connectivity, Bearer Resource Allocation, Bearer Modification, PDP Context Activation, PDP Context Modification request, etc.).
  • the MM back-off timer is a mobility-related back-off timer used to control when congestion occurs in the network.
  • the UE may perform a back-off timer while the timer is running. It is a timer that disables attach, location information update (TAU, RAU), and service request procedure (service request procedure).
  • TAU location information update
  • RAU location information update
  • service request procedure service request procedure
  • MPS multimedia priority service
  • the UE may be provided with an MM back-off timer value from a core network network node (eg, MME, SGSN, etc.) or may be delivered from a lower layer (Access Stratum). It may also be set randomly within the range of 15 to 30 minutes by the UE.
  • a core network network node eg, MME, SGSN, etc.
  • a lower layer Access Stratum
  • the SM back-off timer is a session management related back-off timer used to control when congestion occurs in the network, while the timer is running.
  • the UE is a timer that prevents the establishment or modification of an associated APN based session.
  • MPS multimedia priority service
  • the UE 100 may be able to request even if the timer is operating.
  • the UE receives this SM back-off timer value from a core network network node (eg, MME, SGSN, etc.) and is randomly set within a maximum of 72 hours. It may also be set randomly within the range of 15 to 30 minutes by the UE 100.
  • a core network network node eg, MME, SGSN, etc.
  • the eNodeB 200 may also perform congestion control. That is, when the UE requests RRC connection establishment for data transmission in the user plane, if the eNodeB 200 is congested, the UE may transmit a rejection response to the UE together with an extended wait timer. have. In this case, the RRC connection establishment request cannot be retried until the extended wait timer expires. On the other hand, when the UE requests an RRC connection for the purpose of transmitting a signal of a control plane for receiving a call based on a CS (circuit switch), even if the eNodeB 200 is congested, it cannot be rejected.
  • CS circuit switch
  • FIG. 7 is an exemplary flowchart illustrating an access blocking operation in a network congestion state.
  • the eNodeB 200 may broadcast access class barring (ACB) related information through system information.
  • the system information may be a System Information Block (SIB) Type 2.
  • SIB System Information Block
  • the SIB (System Information Block) Type 2 may include ACB related information as shown in the following table.
  • CS fallback converts a VoLTE call to a previous 3G call.
  • ac-BarringForSpecialAC ACB for a special access class, 11-15.
  • ac-BarringTime Indicates the time for which access is prohibited.
  • ssac-BarringForMMTEL-Video A service-specific ACB for the origination of MMTEL video.
  • ssac-BarringForMMTEL-Voice Service-specific ACB for outgoing MMTEL voice.
  • the UE1 100a determines the origination of a call by an IMS service, for example, VoLTE, and generates a service request message.
  • UE2 100b determines the origination of general data and generates a service request message.
  • the UE1 100a generates an RRC connection request message.
  • UE2 100b generates an RRC Connection Request message.
  • the UE1 100a performs an access blocking check (ie, whether to apply ACB).
  • UE2 100b performs an access blocking check (ie, whether to apply ACB).
  • the UE1 100a and the UE2 100b may respectively transmit a service request (or extended service request) message and an RRC connection request message. However, if the ACB is to be applied, both the UE1 100a and the UE2 100b cannot transmit an RRC connection request message.
  • the access blocking check will now be described in detail.
  • the UE is generally randomly assigned at least one of ten access classes (e.g., AC0, AC1, ..., AC9).
  • AC10 is assigned for emergency emergency access.
  • the value of the randomly assigned access class may be stored in each USIM of the UE1 100 and the UE2 100b.
  • the UE1 (100a) and the UE2 (100b) based on the stored access class, using the blocking factor (barring factor) field included in the received ACB-related information, it is confirmed whether the access blocking is applied do.
  • This access blocking check is performed at each access stratum (AS) layer, that is, an RRC layer, of the UE1 100a and the UE2 100b.
  • AS access stratum
  • the access blocking check will be described in more detail as follows.
  • the SIB type 2 received by the UE1 100a and the UE2 100b includes an ac-BarringPerPLMN-List, and the ac-BarringPerPLMN-List includes an AC matching the plmn-identityIndex corresponding to the PLMN selected in the upper layer. If a BarringPerPLMN entry is included, the AC-BarringPerPLMN entry that matches the plmn-identityIndex corresponding to the PLMN selected by the upper layer is selected.
  • T303 is used as a Tbarring and ac-BarringForMO-Data is used as a blocking parameter to perform an access blocking check.
  • each AS (RRC) layer of the UE1 100a and the UE2 100b When determined to be blocked, each AS (RRC) layer of the UE1 100a and the UE2 100b notifies the upper layer of the failure of RRC connection establishment.
  • each AS (RRC) layer determines whether the T302 timer or the Tbarring timer is running. If not running, the T302 timer or Tbarring timer is driven.
  • the AS (RRC) layer considers that all accesses to the corresponding cell are blocked.
  • the eNB / RNC provides the ACB (Access Class Barring) related information to the UE in network overload and congestion. Then, the UE checks the access barring using a barring factor included in the received ACB information based on its access class stored in the USIM. This access blocking check prevents the final attempted access. That is, when access to the cell is blocked through the access blocking check, the UE does not attempt to access the terminal. If the access to the cell is not blocked, the UE attempts to access the cell. This access blocking check is performed at the access stratum (AS) layer of the UE.
  • the access attempt means transmitting an RRC connection request message from the AS (RRC) layer of the UE to the eNB / RNC.
  • the access blocking check is a general Mobile Originating (MO) service of the UE, such as originating call, originating data, originating IMS voice, originating IMS video Is performed for. That is, the ACB applies to all application programs' access (but not in response to emergency services or paging).
  • MO Mobile Originating
  • MO Mobile Originating
  • ACDC application specific congestion control for data communication
  • a network (MME / SGSN / S-GW / P-GW, etc.) provides / submits application-specific information to the UE, i.e., application group / category / priority information / ID. Suggest to inform.
  • application related information i.e., application group / category / priority information / ID
  • the network may provide / inform the UE through the ATTACH accept message, the TAU accept message, and the RAU accept message.
  • application-related information i.e., application group / category / priority information / ID
  • application-related information is defined / set in a NAS configuration management object (MO) or a new application management object (MO) (e.g., application-specific access control MO). It may be.
  • the application related information that is, application group / category / priority information / IDs, may be provided to the UE through an OMA DM-based NAS configuration management object (MO) or a new application management object (MO).
  • the application related information i.e., application group / category / priority information / ID
  • the application related information may be preset in the UE such as USIM.
  • Such application-related information may have a value in an ascending order order according to their priority.
  • it means highest / primary priority.
  • the ACB should be able to pass through the ACB first (that is, the blocking rate is low).
  • n (or Z, binary and / or string) may mean the lowest priority. In the case of the service of the application with the lowest priority, this may mean that the ACB must be able to pass through to the last priority (that is, the blocking rate is high).
  • the network e.g., the base station
  • the ACDC configuration information i.e. application group / category / priority information / ID barring rate (barring rate), barring factor (mean barring time), roaming information Information such as ACB skipping setting
  • the roaming information is information on whether to apply (ACDC check) whether to apply a function (ACDC check) to differentiate whether to block by application group / category / priority information / ID in the roaming state of the UE It may mean.
  • ACDC configuration information (eg, application group / category / priority information / blocking ratio by ID, blocking factor, average blocking time, roaming information, ACB skipping setting, etc.) provided by the SIB from the network eNB is periodically Can be provided / updated.
  • the ACDC configuration information provided from the network (that is, barring rates, barring factors, mean barring time) by application group / category / priority information / ID.
  • Information such as roaming information and ACB skipping setting) may be received by the AS layer (RRC) of the UE.
  • the AS (RRC) layer of the UE may perform an access blocking check (ie, ACDC check).
  • ACDC check ie, ACDC check
  • the AS (RRC) layer of the UE performs an ACDC check by application group / category / priority information / ID based on the ACDC configuration information provided from a network (for example, a base station).
  • performing the ACDC check means that ACDC configuration information (ie, blocking rate, blocking factor, average blocking time, roaming information, etc. provided by application group / category / priority information / ID) when the application service is started. Means to decide whether to allow or disallow service access attempts of the application.
  • the application's service will start at the application layer and proceed with the service session connection to the network. If the application does not allow the service attempt, the application's service will no longer go to the network of the application's service. No session connection will be attempted.
  • the access blocking check is skipped by application group / category / priority information / ID based on ACB skipping setting information provided from a network (for example, a base station) ( That is, the ACDC check can be skipped).
  • the ACDC configuration information of the present proposal e.g., blocking rate, blocking factor, average blocking time, roaming information, etc.
  • the ACDC configuration information of the present proposal e.g., blocking rate, blocking factor, average blocking time, roaming information, etc.
  • the ACB applying the ACB information may not be performed.
  • the ACDC configuration information and general ACB information of the present proposal may be selected and applied according to indication / configuration from a network (MME / SGSN / base station, etc.). That is, the ACB test may be performed or the ACDC test may be performed.
  • the proposal 1 can be applied to both IDLE mode and CONNECTED mode of the UE.
  • the proposal 1 may perform ACDC check by applying ACDC configuration information differently according to whether the UE is in IDLE mode or CONNECTED mode (eg, EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode). It may be.
  • IDLE mode e.g, EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode. It may be.
  • the proposal 1 described above is divided into a proposal 1a, a proposal 1b, and a proposal 1c. This will be described in detail with reference to the drawings.
  • FIG. 9 is a signal flow diagram illustrating a proposal 1a of the present specification.
  • the network e.g., the base station
  • the ACDC configuration information i.e. application group / category / priority information / ID barring rate (barring rate), blocking factor (mean barring time), Information such as roaming information and ACB skipping setting
  • SIB SIB
  • Step 2 On the other hand, if a specific application is executed in the UE and a data communication service is requested by the specific application, the application layer that manages the execution of the specific application is the application-related information, that is, the group / category / priority of the application. Provide information / ID to the NAS layer. In this case, such application-related information may be preset / defined in advance of the UE. Alternatively, such application-related information may be provided from the network, and the AS (RRC) layer may be provided to the application layer, and when the application layer starts a data communication service, a request for providing information to the AS (RRC) layer may be provided. May be.)
  • indication information such as Start / Stop or Set / Reset may be provided to the NAS or RRC layer indicating the start and end of service of the application.
  • the ACDC test may be performed from the time when Start / Set is received to the time when Stop / Reset is received.
  • the NAS layer determines an application category for the ACDC based on the application related information received from the application layer, that is, the application group / category / priority information / ID. For example, when the ID of the application is received from the application layer, the NAS layer determines which application category of the ACDC the application ID corresponds to.
  • the NAS layer sends a service request procedure (EXPENDED SERVICE REQUEST or SERVICE REQUEST message) to connect the application-related information or application-related information received from the application layer to the application-related information such as start / stop or set / reset.
  • a service request procedure EXPENDED SERVICE REQUEST or SERVICE REQUEST message
  • the application-related information is sent to the AS (RRC) layer together.
  • Start / Set indication information is received from the application layer, the application-related information is sent to the AS (RRC) layer when initiating a service request procedure (transmission of a SERVICE REQUEST message or EXTENDED SERVICE REQUEST message) for the service connection of the application. Can be passed.
  • the service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • the TAU / RAU request procedure for the service connection of the application is sent to the AS (RRC) layer. Do not pass application-specific information.
  • the application-related information or application-related information received from the application layer + indication information such as Start / Stop or Set / Reset is multiple, or the application-related information is changed during the NAS recovery process,
  • All of the application-related information can be provided to the AS (RRC) layer.
  • the NAS recovery is when the retransmission of the service connection of the application due to radio link failure (RLF) or failure / error of the lower layer, the AS layer (for example, the RRC layer) is the failure of the lower layer to the NAS layer / Error notifies, and the NAS layer performs NAS recovery procedure for reestablishing NAS signaling connection.
  • RLF radio link failure
  • the AS layer for example, the RRC layer
  • the NAS layer performs NAS recovery procedure for reestablishing NAS signaling connection.
  • a service request procedure or a TAU request procedure may be performed for NAS recovery.
  • the service request procedure may be performed when there is uplink data
  • the TAU request procedure may be performed when there is no uplink data.
  • the i), ii) and iii) methods determine whether the NAS layer is determined, and at this time, one of the i), ii) and iii) methods may be implemented and operated by network configuration / policy or UE function.
  • step 5 When the AS (RRC) layer receives application related information or application related information + indication information such as Start / Stop or Set / Reset from the NAS layer, a service request procedure for service connection of an application of the NAS layer ( Sending a SERVICE REQUEST message or sending an EXTENDED SERVICE REQUEST message) or ACDC configuration information received from the network at the beginning of a TAU / RAU request procedure (i.e. blocking rate, blocking factor, provided by application group / category / priority / ID), Information such as average blocking time, roaming information, etc.) is used to determine whether or not to allow the service connection (service request procedure or TAU / RAU request procedure) access attempt of the application.
  • a service request procedure for service connection of an application of the NAS layer Sending a SERVICE REQUEST message or sending an EXTENDED SERVICE REQUEST message
  • ACDC configuration information received from the network at the beginning of a TAU / RAU request procedure i.e. blocking rate, blocking factor, provided by application group
  • ACDC configuration information received from the network based on the highest application-related information i.e. blocking rate, blocking factor, average blocking time, roaming information, etc. provided by application group / category / priority information / ID
  • ACDC configuration information Determine whether to allow or disable the service connection (service request procedure or TAU / RAU request procedure) access attempt of the application;
  • ACDC configuration information received from the network based on the lowest application-related information i.e. blocking rate, blocking factor, average blocking time, roaming information, etc. provided by application group / category / priority information / ID
  • ACDC configuration information Determine whether to allow or disable the service connection (service request procedure or TAU / RAU request procedure) access attempt of the application;
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE function, or the like.
  • FIG. 10 is a signal flow diagram illustrating a proposal 1b of the present specification.
  • the proposal 1b shown in FIG. 10 differs from the proposal 1a shown in FIG. 9 only in a few points. The differences will be mainly described below.
  • the NAS layer establishes a new RRC when the service request procedure (transmission of the SERVICE REQUEST message or the EXTENDED SERVICE REQUEST message) or the TAU / RAU request procedure is started (by application group / category / priority information / ID).
  • Cause values, new call types, or service types can be defined and passed to the AS (RRC) layer.
  • a new RRC establishment cause value, a new call type, or a service type may be used independently of each other (only one), or may be defined and used in combination.
  • the service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • the service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • New RRC establishment cause value, new call type or service type are defined and delivered to AS (RRC) layer.
  • a conventional general service request procedure transmission of a SERVICE REQUEST message or transmission of an EXTENDED SERVICE REQUEST message
  • a TAU / RAU request procedure for a service connection of an application is performed. That is, a conventional service request procedure or a TAU / RAU request procedure that does not define a new RRC establishment cause value, a new call type, or a service type for an application group / category / priority information / ID is performed.
  • Service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • start of TAU / RAU request procedure based on highest application related information (by application group / category / priority information / ID).
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination); or
  • Service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • start of TAU / RAU request procedure based on lowest application related information (by application group / category / priority information / ID).
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination); or
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated according to network configuration / policy and UE performance / function.
  • the AS (RRC) layer establishes an RRC establishment cause value, a new call type, or a service type (in this case, a new RRC establishment) for each application-related information (ie, application group / category / priority information / ID) from the NAS layer.
  • Sending a SERVICE REQUEST message for service connection of an application in the NAS layer based on the cause value, the new call type, or the service type can be used independently of each other (only one) or defined in combination.
  • the ACDC setting information received from the network ie application group / category / priority information / I.
  • Information such as blocking rate, blocking factor, average blocking time, roaming information, etc., to allow or disallow access attempts to the service connection (service request procedure or TAU / RAU request procedure) of the application. Decide not to.
  • the AS (RRC) layer may recognize the application group / category / priority from the NAS layer based on the RRC establishment cause value, new call type, or service type for each application group / category / priority information / ID. . Therefore, the service connection (service of the application) using ACDC configuration information received from the network (that is, information such as blocking rate, blocking factor, average blocking time, and roaming information provided by application group / category / priority information / ID). Request procedure or TAU / RAU request procedure) It is possible to decide whether or not to allow access attempt.
  • 11 is a signal flow diagram illustrating a proposal 1c of the present specification.
  • the proposal 1c shown in FIG. 11 differs from the proposals 1a and 1b in only a few points. The differences will be mainly described below.
  • an application layer that manages execution of the specific application may include the application related information (ie, group / category / priority information of the application). / ID) to the AS layer.
  • the AS (RRC) layer determines an application category for ACDC based on the application related information received from the application layer. For example, when the ID of the application is received from the application layer, the NAS layer determines which application category of the ACDC the application ID corresponds to.
  • step 5 When the AS (RRC) layer receives application related information or application related information + indication information such as Start / Stop or Set / Reset from the application layer, a service request procedure for service connection of an application of the NAS layer ( Sending a SERVICE REQUEST message or sending an EXTENDED SERVICE REQUEST message) or ACDC configuration information received from the network at the beginning of a TAU / RAU request procedure (i.e. blocking rate, blocking factor, provided by application group / category / priority / ID), Information such as average blocking time, roaming information, etc.), to determine whether or not to allow the service connection (service request procedure or TAU / RAU request procedure) access attempt of the application.
  • a service request procedure for service connection of an application of the NAS layer Sending a SERVICE REQUEST message or sending an EXTENDED SERVICE REQUEST message
  • ACDC configuration information received from the network at the beginning of a TAU / RAU request procedure (i.e. blocking rate, blocking factor, provided by application group / category
  • Proposal 2 (proposal 3 described in the provisional application) is similar to that shown in FIGS. 9, 10 and 11. Accordingly, the present invention will be described with reference to FIGS. 9, 10, and 11 as they are without referring to the drawings.
  • the network provides (or sets) application related information (group / category / priority information / ID of the application) to the UE.
  • application-related information application group / category / priority information / ID
  • application MO application-specific (access control) MO
  • OMA DM OMA DM
  • pre-set application-specific (access control) MO
  • An application control layer or an AS (RRC) layer including a NAS layer or an application layer or an operating system (OS) of the UE may obtain these application group / category / priority information / IDs through an AT-command or the like.
  • the application-related information is provided to the UE in advance from the network (operator) so that the NAS layer or the application layer or the application control layer including the operating system (OS) of the UE can be recognized.
  • Such application-related information may be provided to the UE periodically or from a point of view from the network (operator).
  • Network e.g., base station
  • ACDC configuration information i.e., blocking rate, blocking factor, average blocking time, ACB skip setting, etc. by application group / category / priority information / ID
  • the ACDC configuration information may be provided when the UE is in EMM-IDLE or EMM-CONNECTED mode (RRC-IDLE or RRC-CONNECTED mode).
  • the ACDC configuration information may be received from the network by the AS (RRC) layer of the UE. have.
  • step 2 When the application layer attempts to connect a service for providing a service of an application (that is, outgoing (MO) data or outgoing (MO) signaling), the obtained application-related information (application group / category / priority information) / ID) and application ID / information / indication to the NAS layer.
  • (service connection session) setting / start indication / information can be provided to the NAS layer together.
  • step 4 When the NAS layer is requested to start the service of the application from the application layer, the NAS layer performs a service request procedure (transmission of a SERVICE REQUEST message or EXTENDED SERVICE REQUEST message) or a TAU procedure (transmission of a TAU request message). At this time, the application related information + application ID / information / indication to the AS (RRC) layer.
  • a service request procedure transmission of a SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • TAU procedure transmission of a TAU request message
  • a plurality of application-related information + application ID / information / indication can all be provided to the AS (RRC) layer.
  • the i), ii) and iii) schemes determine whether the NAS layer is determined, and at this time, one of the i), ii) and iii) schemes may be implemented and operated by network configuration / policy, UE capability, and the like. .
  • ACB skip indication eg, ACB skip-ON, SET or TRUE for group / category / priority “X”
  • the NAS layer when the NAS layer is requested to start the service of the application from the application layer, it performs a service request procedure (transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message) or TAU procedure (transmission of TAU request message) for this purpose.
  • a service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • TAU procedure transmission of TAU request message
  • a new RRC establishment cause value, a new call type, or a service type is defined and delivered to the AS (RRC) layer.
  • a new RRC establishment cause value, a new call type, or a service type may be used independently of each other (only one), or may be defined and used in combination.
  • Service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • start of TAU / RAU request procedure based on highest application related information (by application group / category / priority information / ID).
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination);
  • Service request procedure transmission of SERVICE REQUEST message or EXTENDED SERVICE REQUEST message
  • start of TAU / RAU request procedure based on lowest application related information (by application group / category / priority information / ID).
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination); or
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, or the like.
  • the NAS layer ignores this blocking state and requests for service to the service connection of the application. Or start / perform the TAU procedure.
  • a new RRC establishment cause value, a new call type, or a service type is defined and delivered to the AS (RRC) layer.
  • the conventional general service request procedure or TAU / RAU request procedure for service connection of the application is performed. That is, a conventional service request procedure or TAU / RAU request procedure that does not define a new RRC establishment cause value, a new call type, or a service type for application group / category / priority information / IDs is performed.
  • step 5 When the AS (RRC) layer starts the service request procedure or TAU procedure for the service connection of the application of the NAS layer, if the application-related information + application ID / information / indication is provided from the NAS layer, Application group / category / priority information based on the ACDC configuration information (ie, application group / category / priority information / information of blocking rate, blocking factor, average blocking time, ACB skipping setting, etc.) provided from the base station). ACDC check is performed by / ID.
  • ACDC configuration information ie, application group / category / priority information / information of blocking rate, blocking factor, average blocking time, ACB skipping setting, etc.
  • ACDC passes by application group / category / priority information / ID, the RRC connection request procedure for application service connection is performed. However, if the application group / category / priority information / ID does not pass the ACDC (barring), the RRC connection request procedure for service connection of the application is not performed.
  • the application-related information + application ID / information / indication received from the NAS layer is (at the same time) or changed during the NAS recovery process, i) use the highest one as described above, or ii) the most. Using the lowest, determines whether to allow or disallow service connection (service request procedure or TAU / RAU request procedure) access attempt of the application;
  • ACDC configuration information provided from a network (e.g., base station) (i.e., information such as blocking rate, blocking factor, average blocking time, ACB skipping setting, etc. by application group / category / priority information / ID) ACDC is performed by application group / category / priority information / ID.
  • ACDC passes by application group / category / priority information / ID, the RRC connection request procedure for application service connection is performed. However, if the application group / category / priority information / ID does not pass the ACDC (barring), the RRC connection request procedure for the service connection of the application is not performed.
  • ACB skip indication information is ACB skip-ON, SET or TRUE for group / category / priority “X”)
  • the current ACB status ie, service request procedure or TAU procedure. Carry out the establishment.
  • the change / change of the ACB skip information state for each application group / category / priority / ID from the network eNB (for example, from ACB skipping set / true to ACB skipping reset / false (from ACB skipping to No ACB skipping)). Or from ACB skipping reset / false to ACB skipping set / true (from No ACB skipping to ACB skipping), as soon as it occurs, the AS (RRC) layer is either the application layer or NAS layer (or application layer and NAS). Hierarchical layer) may inform ACB skip configuration information change / change.
  • the application layer performs step1 to step3 according to the change / change of the ACB skip information state for each application group / category / priority information / ID.
  • ACDC configuration information ie, information such as blocking rate, blocking factor, average blocking time, roaming information, ACB skipping setting, etc.
  • the application group / category / priority information / ID from the network (e.g., base station)
  • the UE provides the ACDC configuration information (ie, blocking rate, blocking factor, average blocking time, roaming information, ACB skip setting, etc.) by the application group / category / priority information / ID. Information only)
  • the ACB check can skip (only ACDC check)
  • the ACDC setting information of this proposal ie blocking rate, blocking factor, average blocking time, roaming information by application group / category / priority information / ID) , ACB skip setting, etc.
  • general ACB information may be selected and applied to perform ACB check skip.
  • the UE first performs ACDC check at the application layer by applying only the ACDC configuration information, If the ACDC check passes, the AS (RRC) layer may perform the ACB applying the conventional general ACB information again (that is, the ACDC check and the ACB check are repeatedly performed).
  • the AS (RRC) layer may perform the ACB applying the conventional general ACB information again (that is, the ACDC check and the ACB check are repeatedly performed).
  • the service of an IMS-based application is also one of the general application groups / categories.
  • the present proposal may be applied to both the IDLE mode and the CONNECTED mode of the UE.
  • the present proposal may also be applied to the EMM-IDLE / RRC-IDLE mode or the EMM-CONNECTED / RRC-CONNECTED mode.
  • the present proposal performs ACDC check by applying ACDC configuration information differently according to whether the UE is in IDLE mode or CONNECTED mode (eg, EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode). You may.
  • IDLE mode e.g, EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode.
  • Step 0) of the present proposal may be applied to a combination of proposals 1, 2, 4, 5a, 5b, 5c, and 5d.
  • Steps 1 to 3) of the present proposal may be applied to a combination of proposals 1, 2, 4, 5a, 5b, 5c, and 5d.
  • the NAS layer determines which ACDC category to apply to the request based on the application ID received from the higher layer.
  • the EMM sublayer may inform the lower layer of the ACDC category for the purpose of access control when one ACDC category is applied, or the highest level of ACDC category to the lower layer for the purpose of access control when a plurality of ACDC categories are applied. Can be. However, the following cases are excluded.
  • the base station transmits SIB type 2 including radio resource configuration information common to all UEs.
  • the SIB type 2 may include the following information.
  • ACDC-BarringConfig :: SEQUENCE ⁇ acdc-BarringFactor ENUMERATED ⁇ p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95 ⁇ , acdc-BarringTime ENUMERATED ⁇ s4, s8, s16, s32, s64, s128, s256, s512 ⁇ , acdc-BarringForSpecialAC BIT STRING (SIZE (5)) ⁇ ACDC-Barring
  • the first / leftmost bit is for AC11 and the second bit is for AC12 acdc-BarringForSpecialAC ACDC check for AC 11-15.
  • the first / leftmost bit is for AC11 and the second bit is for AC12 ac-BarringTime Average access blocking time in seconds acdc-BarringTime Average access blocking time in seconds
  • the UE performs an RRC connection procedure at the request of a higher layer.
  • the UE performs an RRC connection procedure at the request of a higher layer.
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the UE performs the ACDC blocking check as follows.
  • SIB type 2 contains an ACDC blocking parameter
  • the EMM sublayer When the EMM sublayer requests establishment of the NAS signaling connection, the RRC establishment cause used by the UE is selected according to the NAS procedure.
  • the EMM sublayer informs the lower layer of the call type associated with the cause of the RRC connection establishment for the purpose of access control. If the UE is configured for Extended AccessBarring (EAB), the EMM sublayer informs the lower layer that the next EAB is applied for this request for the purpose of access control. However, the following cases may be excluded.
  • EAB Extended AccessBarring
  • the UE is configured to override NAS signaling low priority and if it is configured to ignore the EAB, and if the UE already ignores the EAB and has a PDN connection established
  • RRC establishment cause Call type Tracking Area Update If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "emergency", and triggers for MO ACDC category l, the RRC establishment cause is MO Set to signaling "originating ACDC Cat I" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "Emergency”, and triggers for MO ACDC category lI, the RRC establishment cause is MO Set to signaling "originating ACDC Cat II" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "Emergency", and triggers for MO ACDC category lII, the cause of RRC establishment is MO Set to signaling "originating ACDC Cat III" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate
  • originating calls If the service request procedure is to request a radio resource of the user plane and is triggered for MO ACDC category I, the cause of RRC establishment is set to MO data "originating ACDC Cat I" If the service request procedure is for requesting radio resources of the user plane and is triggered for MO ACDC category II, the cause of RRC establishment is set to MO data. "originating ACDC Cat II” If the service request procedure is for requesting radio resources of the user plane and is triggered for MO ACDC category III, the cause of RRC establishment is set to MO data. "originating ACDC Cat III” If the service request procedure is to request radio resources of the user plane and is triggered for MO ACDC category IV, the RRC establishment cause is set to MO data. "originating ACDC Cat IV” If the service request procedure is to request a radio resource of the user plane and is triggered for MO ACDC category V, the cause of RRC establishment is set to MO data "originating ACDC Cat V"
  • the base station transmits SIB type 2 including radio resource configuration information common to all UEs.
  • the SIB type 2 may include the following information.
  • ACDC-BarringConfig :: SEQUENCE ⁇ acdc-BarringFactor ENUMERATED ⁇ p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95 ⁇ , acdc-BarringTime ENUMERATED ⁇ s4, s8, s16, s32 , s64, s128, s256, s512 ⁇ , acdc-BarringForSpecialAC BIT STRING (SIZE (5)) ⁇ ACDC-BarringPerPLMN-r
  • the first / leftmost bit is for AC11 and the second bit is for AC12 acdc-BarringForSpecialAC ACDC check for AC 11-15.
  • the first / leftmost bit is for AC11 and the second bit is for AC12 ac-BarringTime Average access blocking time in seconds acdc-BarringTime Average access blocking time in seconds
  • the UE performs an RRC connection procedure at the request of a higher layer.
  • the UE performs an RRC connection procedure at the request of a higher layer.
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the UE performs the ACDC blocking check as follows.
  • SIB type 2 contains an ACDC blocking parameter
  • the UE When the UE performs the RRC connection procedure at the request of the higher layer, the UE
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the application layer of the UE may perform ACDC checking.
  • the proposal 3 is divided into proposal 3a, proposal 3b, proposal 3c, and proposal 3d. This will be described in detail with reference to the drawings.
  • the network provides (or sets) application related information (ie, application group / category / priority information / ID) to the UE.
  • This application related information is provided to the UE via an Application Management Object (MO) according to the OMA DM (eg, per application (access control) MO) or (pre-set) in the USIM and provided to the UE.
  • MO Application Management Object
  • the NAS layer or application layer of the UE or an application control layer including an operating system (OS) or an AS (RRC) layer can obtain these application groups / categories / priority information / IDs through AT-command or the like.
  • Such application-related information may be provided to the UE periodically from a network (operator) or at a point in time.
  • the network e.g., the base station receives the ACDC configuration information (ie, application group / category / priority information / blocking ratio by ID, blocking factor, blocking time, roaming information, ACB skip setting, etc.) through the SIB. It may provide the AS (RRC) layer of the UE.
  • ACDC configuration information ie, application group / category / priority information / blocking ratio by ID, blocking factor, blocking time, roaming information, ACB skip setting, etc.
  • AS RRC
  • the AS (RRC) layer provides this to the application layer. That is, the application layer is provided with the information from the AS (RRC) layer. For example, when an application data service (IP based data service; for example, Internet, GoogleMap, KaTalk, etc.) is started, the application layer may be provided by requesting the AS (RRC) layer to provide the information.
  • IP based data service for example, Internet, GoogleMap, KaTalk, etc.
  • the application layer determines an application category for ACDC based on the obtained application related information (ie, application group / category / priority information / ID).
  • Step 1-2 When the application data service is started, the ACDC provided from the AS (RRC) layer based on the application related information (ie, application group / category / priority information / ID) obtained in step 0).
  • the service access attempt of the IP-based application may be performed using configuration information (ie, information such as related blocking rate, blocking factor, average blocking time, and roaming information provided by application group / category / priority information / ID). Decide whether to allow or disallow it.
  • the service of the application will be started at the application layer as it is, and a service session connection will proceed to the network. No session connection will be attempted to the network.
  • ACDC configuration information i.e. information such as blocking rate, blocking factor, average blocking time, roaming information, ACB skipping setting, etc.
  • network e.g., base station
  • ACDC configuration information i.e. information such as blocking rate, blocking factor, average blocking time, roaming information, ACB skipping setting, etc.
  • step 2 If the access attempt is allowed without being blocked, indication / information for ACB skipping is additionally provided / delivered to the NAS layer (or RRC layer).
  • step 4 If the access attempt is allowed, the NAS layer performs a service request procedure or TAU procedure for service connection of the IP-based application.
  • the NAS layer may display an ACB skip indie at the start of a service request procedure or a TAU / RAU procedure.
  • Applications / information may be provided / delivered to the AS (RRC) layer.
  • the AS (RRC) layer may additionally perform an ACB check.
  • performing the ACB check determines whether or not to allow the service request procedure or the TAU / RAU request procedure based on the ACB information received from the network (for example, the base station). If the ACB check passes, the AS (RRC) layer performs the RRC connection request procedure.
  • the AS (RRC) layer does not perform an ACB check.
  • the AS (RRC) layer performs the RRC connection establishment procedure immediately, if the ACDC check has passed, without ignoring / performing the normal ACB check.
  • FIG. 13 is a flowchart according to a proposal 3b of the present specification.
  • the proposal 3b shown in FIG. 13 differs from the proposal 3a shown in FIG. 12 only in a few points. The differences will be mainly described below.
  • step 1 When the IMS layer starts a data communication service, application related information (ie, application group / category / priority information / ID) is provided from the AS (RRC) layer.
  • application related information ie, application group / category / priority information / ID
  • the IMS service eg, MMTEL voice, MMTEL video, SMS over IP service
  • the IMS layer may be provided by requesting the information provision from the AS (RRC) layer, or may be provided without requesting information provision. have.
  • Step 1-2 When the service of the IMS-based application starts, based on the obtained application-related information, ACDC configuration information provided from the AS (RRC) layer (ie, for each application group / category / priority information / ID) Information provided, such as blocking rate, blocking factor, average blocking time, roaming information, etc., to determine whether to allow or disallow service access attempts of the IMS-based application. If the IMS-based application allows service access attempts, the service of the application will be started at the application layer as it is, and a service session connection will proceed to the network. No session connection will be attempted to the network.
  • ACDC configuration information provided from the AS (RRC) layer (ie, for each application group / category / priority information / ID) Information provided, such as blocking rate, blocking factor, average blocking time, roaming information, etc.
  • ACDC configuration information ie, information such as blocking rate, blocking factor, average blocking time, roaming information, ACB skipping setting, etc.
  • the application group / category / priority information / ID from the network (e.g., base station)
  • the UE may perform only ACDC check and skip ACB check based on ACDC configuration information.
  • the IMS layer may additionally provide / deliver indication / information for ACB skipping to the NAS layer (or RRC layer).
  • the AS (RRC) layer may additionally perform an ACB check after the ACDC check is performed.
  • the ACB check may be performed based on the ACB information received from the network (for example, the base station).
  • the AS (RRC) layer If the ACB skip indication / information is additionally provided / delivered at the start of the service request procedure or the TAU / RAU procedure of the NAS layer, the AS (RRC) layer does not perform the ACB check. Thereafter, the AS (RRC) layer performs an RRC connection request procedure.
  • the AS (RRC) layer performs the RRC connection establishment procedure directly, without ignoring / performing the ACB check, if the ACDC check has passed.
  • the proposal 3c shown in FIG. 14 differs only in several points from the proposals 3a and 3b. The differences will be mainly described below.
  • the AS (RRC) layer does not receive (informed) the indication / information for ACB skipping (even if not provided). Can be passed.
  • the proposal 3d shown in FIG. 15 differs only in several points from the proposals 3a, 3b, and 3c. The differences will be mainly described below.
  • the AS (RRC) layer does not receive (indicated) the indication / information for ACB skipping (even if not provided). Can be passed.
  • the proposal 4 is similar to that shown in FIGS. 12 to 15. Therefore, the description will be made with reference to FIGS. 12 to 15 as it is without referring to the separate drawings.
  • Step 1 The network (e.g., base station) sends ACDC configuration information (ie, information such as blocking rate, blocking factor, average blocking time, ACB skipping setting, etc. by application group / category / priority information / ID) to the UE through SIB. to provide.
  • ACDC configuration information ie, information such as blocking rate, blocking factor, average blocking time, ACB skipping setting, etc. by application group / category / priority information / ID
  • This information can be received from the network by the AS (RRC) layer of the UE.
  • the AS (RRC) layer may then provide this information to the application layer (or NAS layer). For example, when the application layer starts a data communication service, it may be provided by making a request for providing the information to an AS (RRC) layer.
  • step 1-2 When the application layer receives the ACDC configuration information from the AS (RRC) layer, the application layer based on this information, starts a service request procedure or TAU procedure for service connection of an application of the NAS layer ( decide whether to allow or deny access attempts. That is, the application layer determines whether to allow or disallow the service connection attempt to provide an application service by performing ACDC check based on the ACDC configuration information provided from the AS (RRC) layer.
  • the NAS layer does not request the application to start the service (outgoing (MO) data or outgoing (MO) signaling). As a result, the application's service connection is blocked.
  • step 2 If the connection attempt is allowed, the application layer requests a service start (outgoing (MO) data or outgoing (MO) signaling) of an application.
  • ACB skip indication information eg, ACB skip indication information is received from the AS (RRC) layer, ACB skip-ON, SET or TRUE for group / category / priority “X)
  • the application layer skips the ACB. Deliver indications to the NAS layer.
  • Step 4 When the NAS layer receives a request for service start (outgoing (MO) data or outgoing (MO) signaling) of an application from the application layer, the NAS layer performs a service request procedure or a TAU procedure for this.
  • a request for service start (outgoing (MO) data or outgoing (MO) signaling) of an application from the application layer the NAS layer performs a service request procedure or a TAU procedure for this.
  • the NAS layer provides application related information (ie, application group / Only category / priority information / ID may be delivered to the AS (RRC) layer, and ACB skip indication based on application-related information (ie, application group / category / priority information / ID) may not be delivered.
  • application related information ie, application group / Only category / priority information / ID
  • AS RRC
  • ACB skip indications (eg, ACB skip-OFF, RESET or FALSE for group / category / based on application related information (ie application group / category / priority information / ID) + application related information from the application layer).
  • priority “Y”) may be delivered to the AS (RRC) layer.
  • the NAS layer ignores this blocking state and performs a service request procedure or a TAU procedure for the service connection of the application. Start / Perform At the beginning of such a service request procedure or TAU procedure, the AS (RRC) layer sends an application related information (ie, application group / category / priority information / ID) + ACB skip indication based on application related information (eg, ACB skip-ON, SET or TRUE for group / category / priority “X”).
  • an application related information ie, application group / category / priority information / ID
  • ACB skip indication based on application related information (eg, ACB skip-ON, SET or TRUE for group / category / priority “X”).
  • the AS (RRC) layer performs an RRC connection request procedure when a service request procedure or a TAU procedure starts for service connection of an application of a NAS layer.
  • the AS (RRC) layer performs an ACB check at the start of a service request procedure or a TAU procedure for service connection of an application of the received NAS layer, and finally the service connection (service) of the application.
  • Request procedure or TAU procedure It may be decided whether or not to allow access attempt.
  • the RRC connection request procedure may be performed without performing the ACB check.
  • the AS (RRC) layer is currently in the ACB state. Regardless of this, the ACB is skipped to allow the access attempt. In other words, the RRC connection can be established by ignoring the current blocking state and starting / performing the service request procedure or the TAU procedure.
  • the state change / change (eg, from ACB skipping set / true to ACB skipping reset / false) of ACB skipping information for each application-related information (ie, application group / category / priority information / ID) provided from the network eNB.
  • the AS (RRC) layer is the application layer.
  • the NAS layer (or the application layer and the NAS layer) may be notified of the ACB skip configuration information change / change.
  • the application layer performs the above-described steps again according to the change / change of the ACB skip information state for each application-related information (ie, application group / category / priority information / ID).
  • the UE may perform only the ACDC inspection based on the ACDC configuration information and skip the ACB inspection.
  • the UE may perform only one of the ACDC configuration information and the ACB information according to indication / configuration from a network (MME / SGSN / base station, etc.) to perform only ACDC inspection or only ACB inspection.
  • the UE performs an ACDC check based on the ACDC configuration information, if the ACDC check passes the AS (RRC) In the layer, the ACB check may be performed based on the ACB information.
  • the operation of the application layer described in the proposal 4 may also be applied to the IMS layer.
  • the proposal 4 may apply to both the IDLE mode and the CONNECTED mode of the UE.
  • proposal 4 may be applied to EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode.
  • ACDC configuration information may be applied differently depending on whether the UE is in IDLE mode or in CONNECTED mode (eg, EMM-IDLE / RRC-IDLE mode or EMM-CONNECTED / RRC-CONNECTED mode).
  • Proposal 5 proposes a method for handling a case where there are multiple groups / categories / priority information / IDs of an application. Proposal 5 may be divided into proposals 5a, 5b, 5c, and 5d. Each will be described below.
  • ii) provide only the lowest application-related information (ie, application group / category / priority information / ID) to the AS (RRC) layer;
  • a plurality of application related information ie, application group / category / priority information / ID
  • application related information before and after the change can be provided to the AS (RRC) layer.
  • the i), ii) and ii) methods are determined by the NAS layer. At this time, one of the i), ii) and ii) methods may be implemented and operated according to network configuration / policy and UE performance / function.
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, or the like.
  • Blocking provided by ACDC configuration information ie application group / category / priority information / ID
  • ACDC configuration information ie application group / category / priority information / ID
  • Information such as rate, blocking factor, average blocking time, roaming information, etc. is used to determine whether or not to allow access attempts to the service connection (service request procedure or TAU / RAU request procedure) of the application. ; or
  • ACDC configuration information ie application group / category / priority information / ID
  • ACDC configuration information ie application group / category / priority information / ID
  • Information such as rate, blocking factor, average blocking time, roaming information, etc. is used to determine whether or not to allow access attempts to the service connection (service request procedure or TAU / RAU request procedure) of the application.
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, and the like.
  • Blocking provided by ACDC configuration information ie application group / category / priority information / ID
  • ACDC configuration information ie application group / category / priority information / ID
  • Information such as rate, blocking factor, average blocking time, roaming information, etc. is used to determine whether or not to allow access attempts to the service connection (service request procedure or TAU / RAU request procedure) of the application. ; or
  • ACDC configuration information ie, application group / category / priority information / ID
  • application-related information ie application group / category / priority information / ID
  • Information such as rate, blocking factor, average blocking time, roaming information, etc. is used to determine whether or not to allow access attempts to the service connection (service request procedure or TAU / RAU request procedure) of the application.
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, and the like.
  • application-related information i.e., application group / category / priority information / ID
  • application ID / information / indication information received from the application layer is changed at the same time or changed during the NAS recovery process
  • ii) provide only the lowest application-related information (ie, application group / category / priority information / ID) + application ID / information / indication) to the AS (RRC) layer;
  • a plurality of application-related information (ie, application group / category / priority information / ID) + application ID / information / indication) (previous information and changed information) may be provided to the AS (RRC) layer.
  • the i), ii) and iii) methods are determined by the NAS layer. At this time, one of the i), ii) and iii) methods may be implemented and operated according to network configuration / policy and UE performance / function.
  • application-related information ie, application group / category / priority information / ID
  • application ID / information / indication information received from the application layer is changed at the same time or changed during the NAS recovery process
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination); or
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, or the like.
  • application-related information i.e., application group / category / priority information / ID
  • application ID / information / indication received from the NAS layer is changed at the same time or changed during the NAS recovery process
  • Service connection of the application (service request procedure or TAU / RAU) using ACDC configuration information received from the network based on the highest application related information (i.e. application group / category / priority information / ID). Request procedure) decide whether to allow or deny access attempts;
  • service connection of the application (service request procedure or TAU / RAU) using ACDC configuration information received from the network based on the lowest application related information (ie application group / category / priority information / ID); Request procedure) decide whether to allow or deny access attempts;
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i and ii) methods may be implemented and operated by network configuration / policy and UE performance / function.
  • ii) provide the lowest application-related information (ie, application group / category / priority information / ID) + application ID / information / indication to the AS (RRC) layer; or
  • a plurality of application-related information ie, application group / category / priority information / ID
  • application ID / information / indication previously information and changed information
  • the i), ii) and iii) methods determine whether the NAS layer is determined, and at this time, one of the i), ii) and iii) methods may be implemented and operated by network configuration / policy and UE performance / function.
  • application-related information i.e., application group / category / priority information / ID
  • application ID / information / indications at the same time
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination); or
  • a new RRC establishment cause value, a new call type, or a service type is defined and passed to the AS (RRC) layer. (At this time, the new RRC establishment cause value, the new call type, or the service type are independent of each other (only one). May be used or defined in combination);
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, or the like.
  • Service connection of the application (service request procedure or TAU / RAU request) using ACDC configuration information received from the network based on the highest application related information (ie application group / category / priority information / ID). Procedure) decide whether to allow or deny access attempts;
  • service connection of the application (service request procedure or TAU / RAU) using ACDC configuration information received from the network based on the lowest application related information (ie application group / category / priority information / ID); Request procedure) decide whether to allow or deny access attempts;
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy and UE performance / function.
  • the NAS layer of the UE selects the highest or lowest category among ACDC categories based on application related information, and requests the start of a service request procedure or a TAU / RAU procedure accordingly.
  • the AS (RRC) layer of the UE then performs an ACDC check based on the selected highest or lowest category.
  • the NAS layer of the UE selects the highest or lowest category among ACDC categories based on application related information, and initiates a service request procedure or TAU / RAU procedure having a call type according to the selected category. Ask.
  • the AS (RRC) layer of the UE then performs an ACDC check based on the (selected) call type.
  • the NAS layer of the UE selects a plurality of categories based on application related information, and requests a start of a service request procedure or a TAU / RAU procedure accordingly.
  • the AS (RRC) layer of the UE selects / determines the highest or lowest category of the plurality of categories provided above and performs an ACDC check based thereon.
  • the AS (RRC) layer of the UE selects the highest or lowest category among ACDC categories based on application related information.
  • the AS (RRC) layer of the UE then performs an ACDC check based on the selected highest or lowest category.
  • the NAS layer determines which ACDC category (s) to apply to the request based on the application ID received from the higher layer.
  • the EMM sublayer may inform the lower layer of the ACDC category for the purpose of access control when one ACDC category is applied, and the highest level (or the lowest class) to the lower layer for the purpose of access control when multiple ACDC categories are applied. ) Can indicate the ACDC category. However, the following cases are excluded.
  • the base station transmits SIB type 2 including radio resource configuration information common to all UEs.
  • the SIB type 2 may include the following information.
  • ACDC-BarringConfig :: SEQUENCE ⁇ acdc-BarringFactor ENUMERATED ⁇ p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95 ⁇ , acdc-BarringTime ENUMERATED ⁇ s4, s8, s16, s32 , s64, s128, s256, s512 ⁇ , acdc-BarringForSpecialAC BIT STRING (SIZE (5)) ⁇ ACDC-BarringPerPLMN-r
  • ac-BarringForSpecialAC ACB check for AC 11-15 The first / most bit is for AC11, the second bit is for AC12 acdc-BarringForSpecialAC ACDC check for AC 11-15. The first / most bit is for AC11, the second bit is for AC12 ac-BarringTime Average access blocking time in seconds acdc-BarringTime Average access blocking time in seconds
  • Proposals 5a and 5b illustrated in FIG. 16 are described according to the expression of section 5.3.3.2 of the 3GPP standard document TS 36.331 as follows.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the UE performs the ACDC blocking check as follows.
  • SIB type 2 contains an ACDC blocking parameter
  • the EMM sublayer When the EMM sublayer requests establishment of the NAS signaling connection, the RRC establishment cause used by the UE is selected according to the NAS procedure.
  • the EMM sublayer informs the lower layer of the call type associated with the cause of the RRC connection establishment for the purpose of access control. If the UE is configured for Extended AccessBarring (EAB), the EMM sublayer informs the lower layer that the next EAB is applied for this request for the purpose of access control.
  • EAB Extended AccessBarring
  • RRC establishment cause Call type Tracking Area Update If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "emergency", and triggers for MO ACDC category l, the RRC establishment cause is MO Set to signaling "originating ACDC Cat I" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "Emergency”, and triggers for MO ACDC category lI, the RRC establishment cause is MO Set to signaling "originating ACDC Cat II" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate a PDN connection request with a request type set to "Emergency", and triggers for MO ACDC category lII, the cause of RRC establishment is MO Set to signaling "originating ACDC Cat III" If the UE does not have a PDN connection established for the emergency bearer service, does not initiate
  • originating calls If the service request procedure is to request a radio resource of the user plane and is triggered for MO ACDC category I, the cause of RRC establishment is set to MO data "originating ACDC Cat I" If the service request procedure is for requesting radio resources of the user plane and is triggered for MO ACDC category II, the cause of RRC establishment is set to MO data. "originating ACDC Cat II” If the service request procedure is for requesting radio resources of the user plane and is triggered for MO ACDC category III, the cause of RRC establishment is set to MO data. "originating ACDC Cat III” If the service request procedure is to request radio resources of the user plane and is triggered for MO ACDC category IV, the RRC establishment cause is set to MO data. "originating ACDC Cat IV” If the service request procedure is to request a radio resource of the user plane and is triggered for MO ACDC category V, the cause of RRC establishment is set to MO data "originating ACDC Cat V"
  • the base station transmits SIB type 2 including radio resource configuration information common to all UEs.
  • the SIB type 2 may include the following information.
  • ACDC-BarringConfig :: SEQUENCE ⁇ acdc-BarringFactor ENUMERATED ⁇ p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95 ⁇ , acdc-BarringTime ENUMERATED ⁇ s4, s8, s16, s32 , s64, s128, s256, s512 ⁇ , acdc-BarringForSpecialAC BIT STRING (SIZE (5)) ⁇ ACDC-BarringPerPLMN-r
  • ac-BarringForSpecialAC ACB check for AC 11-15 The first / most bit is for AC11, the second bit is for AC12 acdc-BarringForSpecialAC ACDC check for AC 11-15. The first / most bit is for AC11, the second bit is for AC12 ac-BarringTime Average access blocking time in seconds acdc-BarringTime Average access blocking time in seconds
  • Proposals 5a and 5b illustrated in FIG. 17 are described according to the expression of section 5.3.3.2 of 3GPP standard document TS 36.331 as follows.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the UE performs the ACDC blocking check as follows.
  • SIB type 2 contains an ACDC blocking parameter
  • the NAS layer determines which ACDC category to apply to the request based on the application ID received from the higher layer.
  • the EMM sublayer may inform the lower layer of the ACDC category for the purpose of access control when one ACDC category is applied, and may inform all the ACDC categories to the lower layer for the purpose of access control when a plurality of ACDC categories are applied. However, the following cases are excluded.
  • the base station transmits SIB type 2 including radio resource configuration information common to all UEs.
  • the SIB type 2 may include the following information.
  • ACDC-BarringConfig :: SEQUENCE ⁇ acdc-BarringFactor ENUMERATED ⁇ p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95 ⁇ , acdc-BarringTime ENUMERATED ⁇ s4, s8, s16, s32 , s64, s128, s256, s512 ⁇ , acdc-BarringForSpecialAC BIT STRING (SIZE (5)) ⁇ ACDC-BarringPerPLMN-r
  • ac-BarringForSpecialAC ACB check for AC 11-15 The first / most bit is for AC11, the second bit is for AC12 acdc-BarringForSpecialAC ACDC check for AC 11-15. The first / most bit is for AC11, the second bit is for AC12 ac-BarringTime Average access blocking time in seconds acdc-BarringTime Average access blocking time in seconds
  • Proposals 5a and 5b illustrated in FIG. 18 will be described according to the expression of section 5.3.3.2 of the 3GPP standard document TS 36.331.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • the UE performs the RRC connection procedure at the request of the higher layer.
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the UE performs the ACDC blocking check as follows.
  • SIB type 2 contains an ACDC blocking parameter
  • the upper layer indicates that the RRC connection request is subject to ACDC inspection, providing application-specific information (ie application group / category / priority / ID / information), and the UE establishes an RRC connection for outgoing calls. If you want to
  • Txxx As Tbarring and acdc-BarringForMO-Data as ACDC barring parameter, ACDC blocking test is performed for each ACDC category.
  • the upper layer indicates that the RRC connection request is subject to ACDC inspection, it provides application-related information (ie, application group / category / priority / ID / information), and the UE provides RRC connection for outgoing signaling. If you want to establish
  • application-related information ie application group / category / priority information / ID
  • application ID / information / indications at the same time
  • ii) determine the application group / category / priority for the application ID / information / indication provided from the application layer based on the obtained application-related information (ie, application group / category / priority information / ID). . In this case, the lowest application related information (ie, application group / category / priority information / ID) is selected. Then, based on the ACDC setting information provided from the AS (RRC) layer (ie, information such as blocking rate, blocking factor, average blocking time, ACB skipping setting, etc. by application group / category / priority information / ID), Perform an ACDC check on the service start request of the application from the application layer based on the low application related information (ie, application group / category / priority information / ID). If it passes the ACDC check, the service request procedure or TAU procedure is performed. If the ACDC check does not pass, no service request procedure or TAU procedure is performed to do this;
  • the i) and ii) methods are determined by the NAS layer. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, and the like.
  • the multiple application IDs / information / indications are both AS ( RRC) layer can be provided.
  • ii) determine the application group / category / priority for the application ID / information / indication provided from the NAS layer based on the obtained application-related information (ie, application group / category / priority information / ID). . After that, the RRC connection request procedure for the service connection of the application is performed (ACDC check). At this time, the lowest application-related information (ie, application group / category / priority information / ID) is selected and an RRC connection request procedure for service connection of an application is performed based on this (ACDC check).
  • the i) and ii) methods determine whether the AS (RRC) layer is determined. At this time, one of the i) and ii) methods may be implemented and operated by network configuration / policy, UE performance / function, and the like.
  • the NAS layer is the highest or highest when there are multiple application-related information (ie, application group / category / priority information / ID) + application ID / information / indications (at the same time) received from the application layer. Determine the low ACDC category. The NAS layer then performs an ACDC check based on the determined highest or lowest ACDC category. If an ACDC check passes, the NAS layer forwards an ACB skip indication to the AS (RRC) layer. The AS (RRC) layer skips (does not perform) the normal ACB after it is provided with an ACB skip indication, or the AS (RRC) layer skips (does not perform) the normal ACB even if it does not receive an ACB skip indication.
  • application-related information ie, application group / category / priority information / ID
  • the NAS layer then performs an ACDC check based on the determined highest or lowest ACDC category. If an ACDC check passes, the NAS layer forwards an ACB skip indication to the AS (RRC) layer.
  • the NAS layer is the highest or highest number of application-related information received from the application layer (ie, application group / category / priority information / ID) + application ID / information / indication (multiple). Determine the low ACDC category.
  • the proposed Application Group / Category / Priority Information / Connection Differentiation Scheme by ID is a service request procedure performed by the UE as a response to paging and an emergency call (CSFB emergency call, 1xCSFB emergency call, IMS) performed by the UE. Emergency services) does not apply. However, ACB may be applied (or SSAC (Service Specific Access Control) and ACB may be applied).
  • the UE's NAS layer recognizes the start of a service request procedure and emergency call, which are performed in response to paging, application-related information (that is, application group / category / priority information / ID) is assigned to AS ( By not informing the RRC) layer, the AS (RRC) layer may perform normal ACB without performing ACDC check.
  • application-related information that is, application group / category / priority information / ID
  • AS RRC
  • the proposals 5a, 5b, 5c, and 5d of the present specification may be applied to all of the proposals 1, 2, 3, and 4 of the present specification (combined with each other).
  • 22 is a block diagram illustrating a configuration of a UE 100 and a base station 200 according to an embodiment of the present invention.
  • the UE 100 includes a storage means 101, a controller 102, and a transceiver 103.
  • the base station 200 includes a storage means 201, a controller 202, and a transceiver 203.
  • the storage means 101, 201 store the method described above.
  • the controllers 102 and 202 control the storage means 101 and 201 and the transceivers 103 and 203. Specifically, the controllers 102 and 202 execute the methods stored in the storage means 101 and 201, respectively. The controllers 102 and 202 transmit the aforementioned signals through the transceivers 103 and 203.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Telephone Function (AREA)

Abstract

본 명세서의 일 개시는 사용자 장치(user equipment: UE)에서 네트워크 액세스를 시도하는 방법을 제공한다. 상기 방법은 ACDC(Application specific Congestion control for Data Communication)가 설정되어있는 경우, 네트워크 액세스를 시도하는 애플리케이션의 관련 정보를 상위 계층으로부터 획득하는 단계와; 상기 획득된 애플리케이션의 관련 정보에 기초하여, ACDC 카테고리를 결정하는 단계와; 상기 결정된 ACDC 카테고리에 기초하여, ACDC 검사를 수행하는 단계를 포함할 수 있다. 여기서, 상기 ACDC 검사에 따라 애플리케이션 별로 네트워크 액세스 시도가 차단(barred)되거나 허용될 수 있다.

Description

애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
본 발명은 이동통신 시스템에서 혼잡 제어를 위해 액세스를 차단하는 기술에 관한 것이다.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE(Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.
3GPP SA WG2에서 정의한 EPS(Evolved Packet System) 상위 수준 참조 모델(reference 모드l)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway)(53), MME(Mobility Management Entity)(51), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment : UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN(3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)(53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(정책 enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크(예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway 설정 Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 접속 3GPP 네트워크(예를 들어, GPRS 네트워크, UTRAN/GERAN)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 평면 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 평면 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(Idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음)(It enables user and bearer information exchange for inter 3GPP access network mobility in Idle 및/또는 active state. This reference point can be used intra-PLMN 또는 inter-PLMN(예컨대, in the case of Inter-PLMN HO).)
S4 GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 평면 터널링을 제공함(It provIdes related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. UE 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public 또는 private packet data network 또는 an intra operator packet data network, 예컨대, for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDNGW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 주요 노드의 기능을 나타낸 예시도이다.
도시된 바와 같이, eNodeB(20)는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 신호의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 상향링크 및 하향링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, EPS 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical 계층), 데이터링크계층(Data Link 계층) 및 네트워크계층(Network 계층)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼(Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 다운링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어(Medium Access Control; MAC) 계층은 다양한 논리채널(Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화(Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널(Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2계층의 무선링크제어(Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할(Segmentation) 및 연결(Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM(Transparent 모드, 투명모드), UM(Un-acknowledged 모드, 무응답모드), 및 AM(Acknowledged 모드, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청(Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.
제2계층의 패킷데이터수렴(Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축(Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안(Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화(Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호(Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선베어러(Radio Bearer; RB라 약칭함)들의 설정(설정), 재설정(Re-설정) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected 모드)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle 모드)에 있게 된다.
이하 단말의 RRC 상태(RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을(재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 신호를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM(Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 와 GBR(guaranteed bit rate) 또는 AMBR(Aggregated maximum bit rate) 의 QoS 특성을 가진다.
한편, 도 3에서 NAS 계층 아래에 위치하는 RRC 계층, RLC 계층, MAC 계층, PHY 계층을 묶어서 액세스 계층(Access Stratum: AS)이라고 부르기도 한다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(설정 index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 5b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청(RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정(RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 5b 를 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
한편, UE(10)가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 요청을 하는 경우, 상기 네트워크, 예컨대 기지국(즉, eNodeB)가 혼잡 상태라면, 이를 거절할 수 있다.
네트워크 과부하 및 혼잡 상황에서 UE의 특정 애플리케이션 별로 서비스 차등화하기 위한 방안이 필요하다. 그러나, 종래 기술에서는 이를 구현할 수 있는 방안이 없다.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 사용자 장치(user equipment: UE)에서 네트워크 액세스를 시도하는 방법을 제공한다. 상기 방법은 ACDC(Application specific Congestion control for Data Communication)가 설정되어있는 경우, 네트워크 액세스를 시도하는 애플리케이션의 관련 정보를 상위 계층으로부터 획득하는 단계와; 상기 획득된 애플리케이션의 관련 정보에 기초하여, ACDC 카테고리를 결정하는 단계와; 상기 결정된 ACDC 카테고리에 기초하여, ACDC 검사를 수행하는 단계를 포함할 수 있다. 여기서, 상기 ACDC 검사에 따라 애플리케이션 별로 네트워크 액세스 시도가 차단(barred)되거나 허용될 수 있다.
상기 애플리케이션 관련 정보는: 상기 애플리케이션의 그룹, 카테고리, 우선순위, 정보 및 ID 중 하나 이상을 포함할 수 있다.
상기 ACDC 검사는: 특정한 애플리케이션 단위 별로 정의되는 ACDC 설정 정보에 기초하여 수행될 수 있다.
상기 ACDC 설정 정보는: 특정한 애플리케이션 단위 별로 정의되는 차단 비율, 차단 펙터, 차단 시간, 로밍 정보, ACB 스킵 설정을 포함할 수 있다.
상기 특정한 애플리케이션 단위는: 애플리케이션의 그룹, 카테고리, 우선순위, 혹은 정보/ID 단위일 수 있다.
상기 ACDC 카테고리를 결정하는 단계에서는: 상기 상위 계층으로부터 획득되는 애플리케이션의 관련 정보가 복수 개수인 경우, 가장 높은 등급의 애플리케이션 관련 정보 혹은 가장 낮은 등급의 애플리케이션 관련 정보에 기초하여, ACDC 카테고리를 결정할 수 있다.
상기 ACDC 카테고리를 결정하는 단계에서는: 상기 상위 계층으로부터 획득되는 애플리케이션의 관련 정보가 복수 개수인 경우, 복수의 ACDC 카테고리를 결정할 수 있다.
상기 ACDC 검사를 수행하는 단계에서는, 상기 결정된 복수의 ACDC 카테고리들 중에서 가장 높은 등급의 애플리케이션 관련 정보 혹은 가장 낮은 등급의 애플리케이션 관련 정보에 기초하여, ACDC 검사가 수행될 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 네트워크 액세스를 시도하는 사용자 장치(user equipment: UE)를 또한 제공한다. 상기 사용자 장치는 송수신부와; 상기 송수신부를 제어하는 프로세서를 포함한다. 상기 프로세서는: ACDC(Application specific Congestion control for Data Communication)가 설정되어있는 경우, 네트워크 액세스를 시도하는 애플리케이션의 관련 정보를 획득하는 과정과; 상기 획득된 애플리케이션의 관련 정보에 기초하여, ACDC 카테고리를 결정하는 과정과; 상기 결정된 ACDC 카테고리에 기초하여, ACDC 검사하는 과정을 수행할 수 있다. 여기서, 프로세서는 상기 ACDC 검사에 따라 애플리케이션 별로 네트워크 액세스 시도가 차단(barred)하거나, 허용할 수 있다.
본 명세서의 개시에 의하면, 전술한 종래 기술의 문제점이 해결된다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도 3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6는 네트워크 과부하 상태를 나타낸다.
도 7은 네트워크 혼잡 상태에서 액세스 차단 동작을 나타낸 예시적인 흐름도이다.
도 8은 ACB가 적용될 경우, 모든 애플리케이션에 의한 액세스가 전부 차단되는 예를 나타낸다.
도 9는 본 명세서의 제안 1a를 나타낸 신호 흐름도이다.
도 10는 본 명세서의 제안 1b를 나타낸 신호 흐름도이다.
도 11는 본 명세서의 제안 1c를 나타낸 신호 흐름도이다.
도 12는 본 명세서의 제안 3a에 따른 흐름도이다.
도 13는 본 명세서의 제안 3b에 따른 흐름도이다.
도 14는 본 명세서의 제안 3c에 따른 흐름도이다.
도 15는 본 명세서의 제안 3d에 따른 흐름도이다.
도 16 내지 도 19는 제안 5a 및 제안 5b에 따른 신호 흐름을 나타낸 예시도들이다.
도 20 및 도 21는 제안 5C에 따른 신호 흐름을 나타낸 예시도들이다.
도 22는 본 발명의 실시예에 따른 UE(100) 및 기지국(200) 의 구성 블록도이다.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, 구성된다 또는 가지다 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 연결되어 있다거나 접속되어 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 직접 연결되어 있다거나 직접 접속되어 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
UMTS: Universal Mobile Telecommunication System의 약자로서 3세대 이동통신 네트워크를 의미한다.
UE/MS : User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN(Public Data Network) : 서비스를 제공하는 서버가 위치한 독립적인망
PDN connection : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
PDN-GW(Packet Data Network Gateway) : UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway) : 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle 모드 packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(정책 and Charging Rule Function) : 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(정책 decision)을 수행하는 EPS망의 노드
APN(Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망(PDN)에 접속하기 위해서는 해당 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열)(예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier) : 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB: UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB: EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB: NodeB와 eNodeB를 지칭하는 용어이다.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 연결(connection) : 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context : 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
OMA DM(Open Mobile Alliance Device Management) : 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(설정), 펌웨어 업그레이드(firmware upgrade), 에러 보고(Error Report)등의 기능을 수행함
OAM(Operation Administration and Maintenance) : OAM이란 네트워크 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트워크 관리 기능군을 말함
NAS 설정 MO(Management Object) : NAS 기능(Functionality)와 연관된 파라미터들(parameters)을 UE에게 설정(설정)하는 데 사용하는 MO(Management object)를 말함
NAS(Non-Access-Stratum) : UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리(Session management), IP 주소 관리(IP address maintenance) 등을 지원
MM(Mobility Management) 동작/절차 : UE의 이동성(mobility) 제어/관리/control을 위한 동작 또는 절차. MM 동작/절차는 CS 망에서의 MM 동작/절차, GPRS 망에서의 GMM 동작/절차, EPS 망에서의 EMM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN, MSC)는 MM 동작/절차를 수행하기 위해 MM 메시지를 주고 받는다.
SM(Session Management) 동작/절차 : UE의 user plane 및/또는 bearer context/PDP context를 제어/관리/처리/handling 하기 위한 동작 또는 절차. SM 동작/절차는 GPRS 망에서의 SM 동작/절차, EPS 망에서의 ESM 동작/절차 중 하나 이상을 포함하는 것으로 해석될 수 있다. UE와 네트워크 노드(MME, SGSN)는 SM 동작/절차를 수행하기 위해 SM 메시지를 주고 받는다.
저 순위(Low priority) 단말 : NAS 신호 저 순위로 설정된 단말. 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
정상 순위(Normal priority) 단말: 저 순위(Low priority)로 설정되지 않은 일반적인 단말
이중 순위(Dual priority) 단말 : 이중 순위(Dual priority)로 설정된 단말, 이는 NAS 신호 저순위로 설정됨과 동시에 상기 설저된 NAS 신호 저 순위를 무시(override) 할 수 있게 설정된 단말(즉, UE which provides dual priority support is 설정 for NAS signalling low priority and also 설정 to override the NAS signalling low priority indicator). 자세한 사항은 표준문서 3GPP TS 24.301 및 TS 24.008을 참고할 수 있다.
이하, 도면을 참조하여 본 명세서의 개시에 대해서 설명하기로 한다.
도 6는 네트워크 과부하 상태를 나타낸다.
도 6에 도시된 바와 같이, eNodeB(200)의 커버리지에는 수 많은 UE들(100a, 100b, 300c, 300d)가 존재하고, 데이터 송수신을 시도한다. 이로 인해, 상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 트래픽이 과부하(overload) 또는 혼잡(congestion)하게 된 경우, 상기 UE(100)로의 다운링크 데이터 혹은 상기 UE(100)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
혹은 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스, 혹은 상기 PDN-GW(530)와 이동통신 사업자의 IP(Internet Protocol) 서비스 네트워크 사이의 인터페이스가 과부하(overload) 또는 혼잡(congestion)할 경우에도, 상기 UE들(100a, 100b, 300c, 300d)로의 다운링크 데이터 혹은 UE들(100a, 100b, 300c, 300d)로부터의 업링크 데이터는 올바르게 전송되지 못하고 실패하게 된다.
상기 eNodeB(200)와 상기 S-GW(520)간의 인터페이스에 과부하 또는 혼잡이 있거나, 상기 S-GW(520)와 상기 PDN-GW(530) 간의 인터페이스에 과부하 또는 혼잡이 있는 경우, 상기 핵심 네트워크의 노드(예컨대 MME)는 NAS 단계에서의 혼잡 제어(NAS level congestion control)을 수행하여 신호 혼잡(signaling congestion) 및 APN 혼잡을 회피하거나 제어하게 된다.
이러한 NAS 단계에서의 혼잡 제어는 APN 기반의 혼잡 제어(APN based congestion control)와 일반 NAS 단계에서 이동 관리 제어(General NAS level mobility management control)로 구성된다.
상기 APN 기반의 혼잡 제어는 UE 그리고 특정 APN(혼잡 상태와 연관된 APN)와 관련된 EMM, GMM과(E)SM 신호 혼잡 제어를 의미하며, APN 기반의 세션 관리 혼잡 제어(APN based Session Management congestion control)와 APN 기반의 이동 관리 혼잡 제어(APN based Mobility Management congestion control)를 포함한다.
반면, 상기 일반 NAS 단계의 이동 관리 제어는 일반적인 네트워크 혼잡(congestion)이나, 과부하(overload)상황에서 UE/MS가 요청하는 이동 관리신호(Mobility Management signaling) 요청을 핵심 네트워크 내의 노드(MME, SGSN)가 거절하여 혼잡 및 과부하를 회피하는 것을 의미한다.
일반적으로 핵심 네트워크가 NAS 단계의 혼잡 제어를 수행하는 경우, 유휴 모드(idle 모드)로 있는 혹은 연결 모드(connected 모드)로 있는 UE에게 지연시간 타이머(백오프 타이머)(back-off timer) 값을 NAS 거절 메시지(reject message)에 실어 전송하게 되는데, UE는 지연시간 타이머(백오프 타이머)(back-off timer)가 만료(expire) 되기 전까지 네트워크에 EMM/GMM/(E)SM 신호를 요청하지 않게 된다. 상기 NAS 거절 메시지는 어태치 거절(ATTACH REJECT), TAU(Tracking Area Updating) 거절, RAU(Routing Area Updating) 거절, 서비스 거절, 확장 서비스(EXTENDED SERVICE) 거절, PDN 연결(connectivity) 거절, 베어러 리소스 할당(bearer resource allocation) 거절, 베어러 리소스 수정(bearer resource modification) 거절, EPS 베어러 컨텍스트 비활성화 요청(deactivate EPS bearer context request)에 대한 거절의 메시지 중 하나에 해당한다.
이러한 지연시간 타이머(back-off timer)은 이동 관리(Mobility Management: MM) 지연시간(back-off) 타이머와 세션 관리(Session Management: SM) 지연시간(back-off) 타이머로 나눌 수 있다.
상기 MM 지연시간(back-off) 타이머는 UE 마다 그리고 SM 지연시간(back-off) 타이머는 APN 마다 그리고 UE 마다 각각 독립적으로 동작한다.
간략하게는, 상기 MM 지연시간(back-off) 타이머는 EMM/GMM 신호(예컨대, Attach, TAU/RAU 요청 등) 제어를 위한 것이다. 상기 SM 지연시간(back-off) 타이머는(E)SM 신호(예컨대, PDN connectivity, Bearer Resource Allocation, Bearer Modification, PDP Context Activation, PDP Context Modification 요청 등) 제어를 위한 것이다.
구체적으로는, MM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 이동성 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 어태치(attach), 위치정보 갱신(TAU, RAU), 서비스 요청 절차(서비스 요청 절차)를 할 수 없도록 하는 타이머이다. 단, 긴급 베어러 서비스(emergency bearer service), MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(가 요청 가능할 수 있다.
전술한 바와 같이 UE가 MM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드(예컨대 MME, SGSN 등)로부터 제공받거나, 하위 계층(lower 계층; Access Stratum)으로부터 전달받을 수 있다. 또한, UE에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
상기 SM 지연시간(back-off) 타이머는 네트워크에 혼잡(congestion)이 발생한 경우, 이를 제어하기 위해 사용하는 세션 관리(Session Management) 관련 지연시간(back-off) 타이머로써, 타이머가 동작하고 있는 동안 UE는 관련된(associated) APN 기반의 세션을 설정 또는 변경할 수 없도록 하는 타이머이다. 단, 마찬가지로 긴급 베어러 서비스, MPS(Multimedia Priority Service) 인 경우에는 예외로 타이머가 동작하고 있더라도 UE(100) 가 요청 가능할 수 있다.
UE는 이러한 SM 지연시간(back-off) 타이머 값을 핵심 망 네트워크 노드(예컨대, MME, SGSN 등)로부터 제공받으며, 최대 72시간 이내에서 랜덤하게 설정되어진다. 또한, UE(100)에 의해 15분에서 30분 사이의 범위 내에서 랜덤하게 설정되어질 수도 있다.
다른 한편, 상기 eNodeB(200)에서 혼잡이 발생한 경우, 상기 eNodeB(200)도 혼잡 제어를 수행할 수 있다. 즉, UE가 사용자 평면의 데이터 전송을 목적으로 RRC 연결 수립(connection establishment)을 요청하는 경우, eNodeB(200)가 혼잡 상태라면, 연장 대기 타이머(extended wait timer)와 함께 거절 응답을 UE로 전송할 수 있다. 이러한 경우 RRC 연결 수립 요청을 상기 연장 대기 타이머(extended wait timer)가 만료하기 전까지 재시도할 수 없다. 반면, UE가 CS(circuit switch) 기반의 호(call) 수신을 위한 제어 평면의 신호를 전송할 목적으로 RRC 연결 요청을 하는 경우, 상기 eNodeB(200)가 혼잡 상태일 지라도, 이를 거절할 수 없다.
도 7은 네트워크 혼잡 상태에서 액세스 차단 동작을 나타낸 예시적인 흐름도이다.
도 7에 도시된 바와 같이, 네트워크 혹은 eNodeB(200)의 과부하 또는 혼잡 상태에서, eNodeB(200)는 시스템 정보를 통해 ACB(Access Class Barring) 관련 정보를 브로드캐스팅할 수 있다. 상기 시스템 정보는 SIB(System Information Block) 타입 2일 수 있다.
상기 SIB(System Information Block) 타입 2는 아래의 표와 같은 ACB 관련 정보를 포함할 수 있다.
표 2
필드 설명
ac-BarringFactor UE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
ac-BarringForCSFB CS(circuit switch) 폴백(fallback)에 대한 ACB이다. CS 폴백은 VoLTE 호를 이전 3G 호로 전환시키는 것이다.
ac-BarringForEmergency 긴급 서비스에 대한 ACB이다.
ac-BarringForMO-Data 발신(Mobile Orienting) 데이터에 대한 ACB이다.
ac-BarringForMO-Signalling 발신 제어 신호에 대한 ACB이다.
ac-BarringForSpecialAC 특수한 액세스 클래스, 즉 11-15에 대한 ACB이다.
ac-BarringTime 액세스가 금지되는 시간을 나타낸다.
ssac-BarringForMMTEL-Video MMTEL 비디오(video)의 발신에 대한 서비스 별 ACB이다.
ssac-BarringForMMTEL-Voice MMTEL 음성(voice)의 발신에 대한 서비스 별 ACB이다.
한편, 상기 UE1(100a)은 IMS 서비스, 예컨대 VoLTE에 의한 호(call)의 발신을 결정하고, 서비스 요청 메시지를 생성한다. 마찬가지로, UE2(100b)는 일반 데이터의 발신을 결정하고, 서비스 요청 메시지를 생성한다.
이어서, 상기 UE1(100a)은 RRC 연결 요청 메시지를 생성한다. 마찬가지로, UE2(100b)는 RRC 연결 요청 메시지를 생성한다.
한편, 상기 UE1(100a)은 액세스 차단 검사(즉, ACB 적용 여부)를 수행한다. 마찬가지로, UE2(100b)는 액세스 차단 검사(즉, ACB 적용 여부)를 수행한다.
만약, 상기 ACB의 적용 대상이 아니라면, 상기 UE1(100a)와 상기 UE2(100b)는 각기 서비스 요청(혹은 확장 서비스 요청) 메시지와 RRC 연결 요청 메시지를 전송할 수 있다. 그러나, 상기 ACB의 적용 대상이라면, 상기 UE1(100a)와 상기 UE2(100b) 모두는 각기 RRC 연결 요청 메시지를 전송할 수 없다.
상기 액세스 차단 검사에 대해서 구체적으로 설명하면 다음과 같다. UE는 일반적으로 10개 액세스 클래스(예컨대, AC0, AC1, …, AC9) 중의 적어도 하나가 랜덤하게 할당되어 있다. 예외적으로, 긴급 비상 액세스를 위해서는 AC10이 할당된다. 이와 같이 랜덤하게 할당된 액세스 클래스의 값은 상기 UE1(100) 및 UE2(100b)의 각 USIM에는 저장될 수 있다. 그러면, 상기 UE1(100a)와 상기 UE2(100b)는 상기 저장된 액세스 클래스에 기반하여, 상기 수신한 ACB 관련 정보에 포함되어 있는 차단 펙터(barring factor) 필드를 이용하여, 액세스 차단이 적용되는지를 확인한다. 이런 액세스 차단 검사는 상기 UE1(100a)와 상기 UE2(100b)의 각 AS(Access Stratum) 계층, 즉 RRC 계층에서 수행된다.
상기 액세스 차단 검사에 대해서 더 구체적으로 설명하면 다음과 같다.
상기 UE1(100a) 및 UE2(100b)가 각기 수신한 SIB 타입 2에 ac-BarringPerPLMN-List가 포함되어 있고, 상기 ac-BarringPerPLMN-List에는 상위 계층에 선택된 PLMN에 대응하는 plmn-identityIndex와 매칭되는 AC-BarringPerPLMN 엔트리가 포함되어 있는 경우, 상기 상위 계층에 의해서 선택된 PLMN과 대응하는 plmn-identityIndex와 매칭되는 AC-BarringPerPLMN 엔트리를 선택한다.
다음으로, 상기 UE1(100a) 및 UE2(100b)가 RRC 연결 요청을 하려는 경우, Tbarring으로서 T303을 사용하고, 차단 파라미터로서 ac-BarringForMO-Data를 사용하여, 액세스 차단 검사를 수행한다.
차단되는 것으로 결정되는 경우, 상기 UE1(100a) 및 UE2(100b)의 각 AS(RRC) 계층은 RRC 연결 수립의 실패를 상위 계층에게 알린다.
이어서, 이와 같이 액세스가 차단될 때, 각 AS(RRC) 계층은 T302 타이머 또는 Tbarring 타이머가 구동중인지 판단한다. 만약 구동중이 아니라면, 상기 T302 타이머 또는 Tbarring 타이머를 구동한다.
한편, 상기 T302 타이머 또는 Tbarring 타이머가 구동중인 동안에는 상기 AS(RRC) 계층은 해당 셀에 대한 모든 액세스는 차단되는 것으로 간주한다.
이상에서 설명한 바와 같이, 네트워크 과부하 및 혼잡 상황에서 eNB/RNC가 ACB(Access Class Barring) 관련 정보를 UE에게 제공한다. 그러면, UE는 USIM에 저장되어 있는 자신의 액세스 클래스(access class)에 기반하여, 수신한 ACB 정보에 포함되어 있는 차단 펙터(Barring factor)를 이용하여 액세스 차단(Access Barring)을 체크하게 된다. 이런 액세스 차단 검사를 통해 최종적으로 액세스 시도를 하지 못하게 하는 것이다. 즉, 액세스 차단 검사를 통해 해당 셀에 대한 액세스가 차단되는 경우에는 UE는 액세스를 시도하지 못하고, 해당 셀에 대한 액세스가 차단되지 않는 경우에는 UE는 액세스를 시도하게 된다. 이런 액세스 차단 검사는 UE의 AS(Access Stratum) 계층에서 수행한다. 여기서 액세스 시도는 UE의 AS(RRC) 계층에서 eNB/RNC로의 RRC 연결 요청 메시지를 전송하는 것을 의미한다.
한편, 액세스 차단 검사는 UE의 일반적인 발신(MO: Mobile Originating) 서비스, 예컨대 통화 발신(originating call), 데이터 발신(originating data), IMS 음성 발신(originating IMS voice), IMS 영상 발신(originating IMS video)에 대해서 수행된다. 즉, ACB는 모든 애플리케이션 프로그램의 액세스(다만, 응급 서비스 또는 페이징에 대한 응답은 제외)에 대해서 적용된다.
도 8은 ACB가 적용될 경우, 모든 애플리케이션에 의한 액세스가 전부 차단되는 예를 나타낸다.
도 8을 참조하여 알 수 있는 바와 같이, 일단 ACB가 적용되는 것으로 결정되면, UE의 모든 애플리케이션에 의한 액세스(다만, 응급 서비스 또는 페이징에 대한 응답은 제외)는 전부 차단된다.
이와 같이, 모든 애플리케이션에 의한 액세스가 차단됨으로써, 차별화된 서비스가 블가능하게 된다. 이러한 문제는 결국 네트워크 자원 낭비 및 사용자의 경험을 저하 시킨다.
따라서, 네트워크 과부하 및 혼잡 상황에서 특정 애플리케이션 그룹/카테고리(application group/category)별로 MO(Mobile Originating) 서비스(예컨대, 통화 발신 또는 데이터 발신)를 차등화하기 위한 방안이 필요하다. 그러나, 종래 기술에서는 이를 구현할 수 있는 방안이 없다.
<본 명세서의 개시들>
본 명세서의 개시들은 일반적인 발신(MO: Mobile Originating) 서비스, 예컨대, 예컨대 통화 발신(originating call), 데이터 발신(originating data), IMS 음성 발신(originating IMS voice), IMS 영상 발신(originating IMS video)를 차등화하는 방안을 제공한다. 이러한 방안을 애플리케이션 별 혼잡 제어 데이터 통신(Application specific Congestion control for Data Communication: ACDC)라고 한다.
특정 애플리케이션의 서비스를 차등화를 위하여, 본 명세서의 개시들은 네트워크(MME/SGSN/S-GW/P-GW 등)가 UE에게 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID를 제공/알려주는 것을 제안한다. 이러한 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID는 네트워크가 어태치 절차/TAU 절차/RAU 절차를 통해 UE에게 알려줄 수 있다. 즉, 상기 애플리케이션 관련 정보를 네트워크는 ATTACH 수락 메시지, TAU 수락 메시지, RAU 수락 메시지)를 통해 UE에게 제공/알려 줄 수 있다. 또한, 이러한 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID는 NAS 설정 관리 객체(Management Object: MO) 혹은 새로운 애플리케이션 관리 객체(MO)(예컨대, 애플리케이션 별 액세스 제어 MO)에 정의/설정되어 있을 수 있다. 이러한 경우, OMA DM기반의 NAS 설정 관리 객체(MO) 혹은 새로운 애플리케이션 관리 객체(MO)를 통해, 상기 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID들이 UE에게 제공될 수 있다.
아니면, 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID는 UE에 USIM등에 미리 설정되어 있을 수 있다.
이러한 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID는 그 중요도(priority)에 따라서 올림차순(ascending order) 순서의 값을 가질 수 있다. 구체적으로, 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID = 1(또는 A, binary 및/또는 string)인 경우 highest/primary priority를 의미한다. highest/primary priority를 갖는 애플리케이션의 서비스의 경우는 ACB를 가장 우선적으로 통과할 수 있어야 함을 의미하는 것일 수 있다(즉, 차단율이 낮음). 만약, 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID = 2(또는 B, 기타 binary 및/또는 string)인 경우, 차순위 우선순위를 의미한다. 차순위 우선순위를 갖는 애플리케이션의 서비스의 경우는 ACB를 두 번째 우선 순위로 통과할 수 있어야 함을 의미하는 것일 수 있다. 만약 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID = n(또는 Z, binary 및/또는 string)인 경우 최하위 우선순위를 의미할 수 있다. 최하위 우선순위를 갖는 애플리케이션의 서비스의 경우는 ACB를 마지막 우선 순위로 통과할 수 있어야 함을 의미하는 것일 수 있다(즉, 차단율이 높음).
반대로 이러한 애플리케이션 관련 정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID는 그 중요도(priority)에 따라서 내림 차순(descending order)의 값을 가질 수 있다. 즉 애플리케이션 그룹/카테고리(group/category/priority) 정보/ID = 1(또는 A, binary 및/또는 string) 인 경우 최하위 우선순위를 의미할 수 있다. 이와 같이 최하위 우선순위를 갖는 애플리케이션의 서비스의 경우는 ACB를 마지막 우선 순위로 통과할 수 있어야 함을 의미하는 것일 수 있다(즉, 차단율이 높음). 만약 애플리케이션 그룹/카테고리/우선순위 정보/ID = n(또는 Z, binary 및/또는 string) 인 경우 highest/primary priority를 의미하며, 이러한 애플리케이션의 서비스의 경우는 ACB를 가장 우선적으로 통과할 수 있어야 함을 의미하는 것일 수 있다(즉, 차단율이 낮음).
다른 한편, 네트워크(예컨대 기지국)는, ACDC 설정 정보(즉 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율(barring rates), 차단 펙터(barring factor), 차단 시간(mean barring time), 로밍 정보, ACB 스킵 설정 등의 정보)를 SIB을 통해 UE에게 제공할 수 있다. 여기서 ACB 스킵 설정은 ACB 스킵=On/True 또는 ACB 스킵=Off/False으로 표현될 수 있다. 여기서, 상기 로밍 정보는 UE가 로밍한 상황에서 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 여부를 차별화하는 기능(ACDC 검사)을 적용할 것인지 여부(적용할지 또는 적용하지 않을 지)에 대한 정보를 의미할 수 있다.
상기 네트워크(eNB)로부터 SIB에 의해 제공되는 ACDC 설정 정보(예컨대, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)는 주기적으로 제공/갱신될 수 있다.
I. 본 명세서의 제안 1
본 명세서의 제안 1에 따르면, 네트워크로부터 제공되는 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율(barring rates), 차단 펙터(barring factor), 차단 시간(mean barring time), 로밍 정보, ACB 스킵 설정 등의 정보)를 UE의 AS 계층(RRC)이 수신할 수 있다.
따라서, 본 명세서의 제안 1에 따르면, UE의 AS(RRC) 계층은 액세스 차단 검사(즉, ACDC 검사)를 수행할 수 있다. 이와 같이, UE의 AS(RRC) 계층은 액세스 차단 검사를 수행할 때, 네트워크(예컨대 기지국)로부터 제공된 상기 ACDC 설정 정보를 기반으로 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 ACDC 검사를 수행한다. 여기서, 상기 ACDC 검사를 수행한다 함은 애플리케이션의 서비스가 시작될 때, ACDC 설정 정보(즉 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다는 것을 의미하는 것이다. 상기 애플리케이션의 서비스 연결 시도(access attempt)를 허용한다면 그대로 애플리케이션의 서비스가 애플리케이션 계층에서 시작되어 네트워크로 서비스 세션 연결이 진행될 것이고, 상기 애플리케이션의 서비스 시도를 허용하지 않는다면, 더 이상 애플리케이션의 서비스의 네트워크로 세션 연결이 시도되지 않을 것이다.
또한, UE의 AS(RRC)계층에서 액세스 차단 검사를 수행할 때, 네트워크(예컨대 기지국)에서 제공되는 ACB 스킵 설정 정보를 기반으로 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 액세스 차단 검사를 스킵(즉, ACDC 검사의 스킵)할 수도 있다.
만약 네트워크(예컨대 기지국)로부터 상기 본 제안의 ACDC 설정 정보(즉 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)와 ACB 정보가 동시에 SIB을 통해 UE에게 제공되는 경우 UE은 상기 ACDC 설정 정보만을 적용하여 ACDC 검사만을 수행할 수 있다. 즉, ACB 정보를 적용하는 ACB는 수행하지 않을 수 있다.
아니면, 네트워크(MME/SGSN/기지국 등)로부터 인디케이션/설정에 따라서 본 제안의 ACDC 설정 정보와 일반적인 ACB 정보 둘 중 선택하여 적용할 수 있다. 즉, ACB 검사를 수행하거나, ACDC 검사를 수행할 수 있다.
상기 제안 1은 UE의 IDLE 모드 및 CONNECTED 모드에 모두 적용할 수 있다.
아니면, 상기 제안 1은 UE가 IDLE 모드인지 아니면 CONNECTED 모드(예컨대, EMM-IDLE/RRC-IDLE 모드 또는 EMM-CONNECTED/RRC-CONNECTED 모드)인지에 따라 ACDC 설정 정보를 다르게 적용하여 ACDC 검사를 수행할 수도 있다.
이상에서 설명한 상기 제안 1은 제안 1a, 제안 1b, 제안 1c으로 구분된다. 이를 도면을 참조하여 상세하게 설명하기로 한다.
도 9는 본 명세서의 제안 1a를 나타낸 신호 흐름도이다.
도 9를 참조하여 설명하면 다음과 같다.
(Step 1) 네트워크(예컨대 기지국)는 ACDC 설정 정보(즉 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 ACDC의 차단 비율(barring rates), 차단 펙터(barring factor), 차단 시간(mean barring time), 로밍 정보, ACB 스킵 설정 등의 정보)를 SIB을 통해 UE에게 제공할 수 있다
(Step 2) 한편, UE에서 특정 어플리케이션이 실행되고 상기 특정 어플리케이션에 의해서 데이터 통신 서비스가 요구되면, 상기 특정 어플리케이션의 실행을 관장하는 애플리케이션 계층은 상기 애플리케이션 관련 정보, 즉 애플리케이션의 그룹/카테고리/우선순위 정보/ID를 NAS 계층에게 제공한다. 이때 이러한 애플리케이션 관련 정보는 사전에 UE의 미리 설정/정의 되어 있을 수 있다. 대안적으로, 이러한 애플리케이션 관련 정보는 네트워크로부터 제공받아 AS(RRC)계층이 애플리케이션 계층에 제공될 수도 있으며, 애플리케이션 계층이 데이터 통신 서비스를 시작할 때, AS(RRC)계층에 정보 제공 요청을 하여 제공 받을 수도 있다.)
이러한 애플리케이션 관련 정보와 함께/또는 별도로, 애플리케이션의 서비스 시작과 끝을 알리는 Start/Stop 또는 Set/Reset 같은 인디케이션 정보가 NAS 혹은 RRC 계층에게 제공될 수 있다. 이 경우 Start/Set을 받은 시점부터 Stop/Reset을 받은 시점까지 ACDC 검사가 수행될 수 있다.
(step 3) NAS 계층은 애플리케이션 계층으로부터 받은 애플리케이션 관련정보, 즉 애플리케이션 그룹/카테고리/우선순위 정보/ID에 기초하여, ACDC를 위한 애플리케이션 카테고리를 결정한다. 예를 들어, 애플리케이션 계층으로부터 해당 애플리케이션의 ID를 전달받은 경우, NAS 계층은 상기 해당 애플리케이션의 ID가 ACDC의 어느 애플리케이션 카테고리에 해당하는지를 결정한다.
(step 4) NAS 계층은 애플리케이션 계층으로부터 받은 애플리케이션 관련정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보를 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송)를 시작할 때, 함께 AS(RRC) 계층에게 전달한다. 만약 애플리케이션 계층으로부터 Start/Set 인디케이션 정보를 받은 경우, 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송)를 시작할 때, AS(RRC) 계층에게 애플리케이션 관련 정보를 전달할 수 있다. 애플리케이션 계층으로부터 Stop/Reset 인디케이션 정보를 받은 경우, 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시 AS(RRC) 계층에게 애플리케이션 관련 정보를 전달하지 않는다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가 여러 개인 경우 혹은 NAS 복구(recovery) 과정 중 애플리케이션 관련 정보가 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보만을 AS(RRC)계층에게 제공하거나;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보 만을 AS(RRC)계층에게 제공하거나; 또는
iii) 여러 개의 애플리케이션 관련 정보 모두 AS(RRC)계층에게 제공할 수 있다.
상기 NAS 복구(recovery)는 RLF(radio link failure) 또는 하위 계층의 실패/에러 등으로 인하여 애플리케이션의 서비스 연결에 대한 재전송이 발생한 경우, AS 계층(예컨대, RRC 계층)은 NAS 계층에게 하위 계층의 실패/에러를 알려주고, NAS 계층은 NAS 시그널링 연결 (재)설정을 위한 NAS 복구 절차를 수행한다. NAS 복구를 위해 서비스 요청 절차 또는 TAU 요청 절차가 수행될 수 있는데 서비스 요청 절차는 상향링크 데이터가 있는 경우에 수행될 수 있고, 상기 TAU 요청 절차는 상향링크 데이터가 없는 경우에 수행될 수 있다 .
상기 i), ii), iii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 기능 등에 의해서 i), ii), iii) 방식 중 하나가 구현되어 동작 될 수 있다.
(step 5) AS(RRC) 계층은 상기 NAS 계층으로부터 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보를 받은 경우, NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시, 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가(동시에) 여러 개인 경우 혹은 NAS 복구 과정 중에 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보에 기반하여 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보에 기반하여 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
도 10는 본 명세서의 제안 1b를 나타낸 신호 흐름도이다.
도 10에 도시된 제안 1b는 도 9에 도시된 제안 1a와 몇 가지점만 다르다. 이하 차이있는 부분을 위주로 설명하기로 한다.
(step 4) NAS 계층은 상기 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차를 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입(new call types), 혹은 서비스 타입(service types)를 정의하여 AS(RRC) 계층에게 전달할 수 있다. 이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입(call type), 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다. 만약 애플리케이션 계층으로부터 Start/Set 인디케이션 정보를 받은 경우, 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다. 애플리케이션 계층으로부터 Stop/Reset 인디케이션 정보를 받은 경우, 이후에는 애플리케이션의 서비스 연결을 위한 종래 일반적인 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차를 수행한다. 즉, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입 for 애플리케이션 그룹/카테고리/우선순위 정보/ID를 정의하지 않은 종래의 서비스 요청 절차 혹은 TAU/RAU 요청 절차를 수행한다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보+ Start/Stop 또는 Set/Reset 같은 인디케이션 정보가 (동시에) 여러 개인 경우 혹은 NAS 복구 과정 중에 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보에 기반하여 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.); or
ii) 가장 낮은(lowest) 애플리케이션 관련 정보에 기반하여 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.); or
상기 i), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
(step 5) AS(RRC) 계층은 NAS 계층으로부터 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) 별로의 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있음)에 기반하여 NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로), 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작시), 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다.
여기서 AS(RRC) 계층은 NAS 계층으로부터 애플리케이션 그룹/카테고리/우선순위 정보/ID별로의 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입에 기반하여 애플리케이션 그룹/카레고리/우선순위를 인지할 수 있다. 따라서, 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정할 수 있다.
도 11는 본 명세서의 제안 1c를 나타낸 신호 흐름도이다.
도 11에 도시된 제안 1c는 제안 1a 및 제안 1b와 몇 가지점만 다르다. 이하 차이있는 부분을 위주로 설명하기로 한다.
(Step 2) UE에서 특정 어플리케이션이 실행되고 상기 특정 어플리케이션에 의해서 데이터 통신 서비스가 요구되면, 상기 특정 어플리케이션의 실행을 관장하는 애플리케이션 계층은 상기 애플리케이션 관련 정보(즉, 애플리케이션의 그룹/카테고리/우선순위 정보/ID)를 AS 계층에게 제공한다.
(Step 3) AS(RRC) 계층은 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 에 기초하여, ACDC를 위한 애플리케이션 카테고리를 결정한다. 예를 들어, 애플리케이션 계층으로부터 해당 애플리케이션의 ID를 전달받은 경우, NAS 계층은 상기 해당 애플리케이션의 ID가 ACDC의 어느 애플리케이션 카테고리에 해당하는지를 결정한다.
(step 5) AS(RRC) 계층은 상기 애플리케이션 계층으로부터 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보를 받은 경우, NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시, 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여, 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다.
II. 본 명세서의 제안 2(가출원에 기재된 제안 3)
제안 2(가출원에 기재된 제안 3)은 도 9, 도 10 및 도 11에 도시된 것과 유사하다. 따라서, 별도의 도면을 참조하지 않고, 도 9, 도 10 및 도 11를 그대로 참조하여 설명하기로 한다.
(step 0) 네트워크(사업자)는 애플리케이션 관련 정보(애플리케이션의 그룹/카테고리/우선순위 정보/ID)를 UE에게 제공(또는 설정)한다. 예를 들어, OMA DM를 이용한 애플리케이션 MO(예컨대, 애플리케이션 별 (액세스 제어) MO)를 통하여 애플리케이션 관련 정보(애플리케이션 그룹/카테고리/우선순위 정보/ID)가 UE에게 제공되거나, USIM에 (미리)설정되어 UE에게 제공된다. UE의 NAS 계층 또는 애플리케이션 계층 혹은 운영체제(OS)를 포함하는 애플리케이션 제어 계층 또는 AS(RRC) 계층은 AT-command 등을 통하여 이러한 애플리케이션 그룹/카테고리/우선순위 정보/ID들을 얻을 수 있게 된다.
따라서, 상기 애플리케이션 관련 정보는 네트워크(사업자)로부터 UE에게 미리 제공되어 UE의 NAS 계층 또는 애플리케이션 계층 혹은 운영체제(OS)를 포함하는 애플리케이션 제어 계층)은 인지할 수 있다. 이러한 애플리케이션 관련 정보 는 네트워크(사업자)로부터 주기적으로 혹은 특점 시점 등에 UE에게 제공될 수 있다.
(step 1) 네트워크(예컨대 기지국)가 ACDC 설정 정보(즉 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)를 SIB을 통해 UE에게 제공한다. 이러한 ACDC 설정 정보는 UE가 EMM-IDLE 혹은 EMM-CONNECTED 모드(RRC-IDLE 혹은 RRC-CONNECTED 모드일 때 모두 제공될 수 있다. 이러한 ACDC 설정 정보는 UE의 AS(RRC)계층이 네트워크로부터 수신할 수 있다.
(step 2) 애플리케이션 계층은 애플리케이션의 서비스 제공을 위한 서비스 연결 시도를 하는 경우(즉, 발신(MO) 데이터 또는 발신(MO) 시그널링), 상기 획득한 애플리케이션 관련 정보(애플리케이션 그룹/카테고리/우선순위 정보/ID)와 애플리케이션 ID/정보/인디케이션를 NAS 계층에게 제공한다. 또한, (서비스 연결 세션) 세팅/시작 인디케이션/정보를 함께 NAS 계층에게 제공할 수 있다.
(step 4) NAS 계층은 애플리케이션 계층으로부터 애플리케이션의 서비스 시작을 요청 받으면, 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU 절차(TAU 요청 메시지의 전송)을 수행하게 된다. 이때, AS(RRC) 계층에게 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션을 전달하게 된다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션이 여러 개인 경우 혹은 NAS 복구 과정 중 애플리케이션 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션만을 AS(RRC)계층에게 제공하거나;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션)만을 AS(RRC)계층에게 제공하거나; 또는
iii) 여러 개의 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션을 모두 AS(RRC)계층에게 제공할 수 있다.
상기 i), ii) 및 iii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 기능(capability) 등에 의해서 i), ii) 및 iii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약 애플리케이션 계층으로부터 추가적으로(혹은 별도로) 세팅/시작 인디케이션/정보를 받은 경우, 현재 (UE에 ) ACB가 적용되어있다면, NAS 계층은 이 차단 상태를 무시하고 애플리케이션의 서비스 연결을 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU 절차(TAU 요청 메시지의 전송)을 시작/수행한다. 이러한 서비스 요청 절차 혹은 TAU 절차시작 시 AS(RRC) 계층에게 애플리케이션 관련 정보 + ACB 스킵 인디케이션(예컨대, ACB skip-ON, SET 또는 TRUE for group/category/priority “X”)를 전달하게 된다.
또는, NAS 계층은 애플리케이션 계층으로부터 애플리케이션의 서비스 시작을 요청 받으면, 이를 위한 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU 절차(TAU 요청 메시지의 전송)을 수행하게 된다. 이때, 서비스 요청 절차 혹은 TAU 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다. 이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.)
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션 정보가 (동시에) 여러 개인 경우 혹은 NAS 복구 과정중에 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보에 기반하여 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.);
ii) 가장 낮은(lowest) 애플리케이션 관련 정보에 기반하여 서비스 요청 절차(SERVICE REQUEST 메시지의 전송 또는 EXTENDED SERVICE REQUEST 메시지의 전송) 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.); or
상기 i), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약 애플리케이션 계층으로부터 추가적으로(혹은 별도로) 세팅/시작 인디케이션/정보를 받은 경우, 현재(UE이) ACB가 적용되어 있다면, NAS 계층은 이 차단 상태를 무시하고, 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차를 시작/수행한다. 이러한 서비스 요청 절차 혹은 TAU 절차시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다. 애플리케이션 계층으로부터 ACB 스킵 Stop/Reset 인디케이션 정보를 받은 경우, 이후에는 애플리케이션의 서비스 연결을 위한 종래 일반적인 서비스 요청 절차 혹은 TAU/RAU 요청 절차를 수행한다. 즉, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입for 애플리케이션 그룹/카테고리/우선순위 정보/ID들을 정의하지 않은 종래의 서비스 요청 절차 혹은 TAU/RAU 요청 절차를 수행한다.
(step 5) AS(RRC) 계층은 NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작 시, 만약 NAS 계층으로부터 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션를 제공 받은 경우, 네트워크(예컨대 기지국)로부터 제공 받은 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)에 기반하여 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC 검사를 수행하게 된다.
만약 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC를 통과 하게 되면 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다. 그러나, 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC를 통과하지 못하게 되면(barring 되면) 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하지 않는다.
만약, NAS 계층으로부터 받은 애플리케이션 관련 정보 + 애플리케이션 ID/정보/인디케이션이 (동시에) 여러 개인 경우 혹은 NAS 복구 과정중 변경된 경우, 앞서 설명한 바와 같이 i) 가장 높은(highest) 것을 이용하거나, ii) 가장 낮은(lowest) 것을 이용하여, 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
만약, NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작 시,(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의 되어 NAS 계층으로부터 함께 제공되어지면, 네트워크(예컨대 기지국)로부터 제공 받은 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)에 기반하여 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC를 수행하게 된다.
만약 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC를 통과 하게 되면 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다. 그러나 애플리케이션 그룹/카테고리/우선순위 정보/ID별로 ACDC를 통과하지 못하게 되면(barring 되면) 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하지 않는다.
만약 NAS 계층으로부터 추가적으로(혹은 별도로) ACB 스킵 인디케이션 정보를 받은 경우에는(ACB 스킵 인디케이션 정보가 ACB skip-ON, SET 또는 TRUE for group/category/priority “X” 인 경우), 현재 ACB상태와 상관없이 ACB를 스킵 하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 또는 TAU 절차) 시도(access attempt)를 허용한다.(즉, 현재 차단 상태이더라도 무시하고 서비스 요청 절차 혹은 TAU 절차를 시작/수행하여 RRC 연결 수립을 수행한다.)
본 명세서에서는 네트워크(eNB)로부터 애플리케이션 그룹/카테고리/우선순위/ID 별 ACB 스킵 정보 상태의 변화/변동(예컨대, from ACB skipping set/true to ACB skipping reset/false(from ACB skipping to No ACB skipping) 또는 from ACB skipping reset/false to ACB skipping set/true(from No ACB skipping to ACB skipping))가 발생하면(발생을 감지하면) 바로 AS(RRC) 계층은 애플리케이션 계층 혹은 NAS 계층 (또는 애플리케이션 계층 및 NAS 계층)에게 ACB 스킵 설정 정보 변화/변동을 알려줄 수 있다.
이후, 애플리케이션 계층은 애플리케이션 그룹/카테고리/우선순위 정보/ID 별 ACB 스킵 정보 상태의 변화/변동에 따라 step1 ~ step3을 수행한다.
만약 네트워크(예컨대 기지국)로부터 ACDC 설정 정보(즉, 상기 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)와 일반적인 ACB정보가 동시에 SIB을 통해 UE에게 제공되는 경우 UE은 상기 본 제안의 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)만을 적용하여, ACB 검사는 스킵을 수행할 수 있다(ACDC 검사만 수행)
아니면, 네트워크(MME/SGSN/기지국 등)로부터 인디케이션/설정에 따라서 본 제안의 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)와 일반적인 ACB 정보 둘 중 선택하여 적용하여 ACB 검사 스킵을 수행할 수도 있다.
또는, 만약 네트워크(예컨대 기지국)로부터 상기 ACDC 설정 정보와 (종래의) 일반적인 ACB정보가 동시에 SIB을 통해 UE에게 제공되는 경우 UE은 상기 ACDC 설정 정보만을 적용하여 ACDC 검사를 애플리케이션 계층에서 먼저 수행하고, 상기 ACDC 검사를 통과 되면, AS(RRC) 계층에서 다시 종래의 일반적인 ACB정보를 적용하는 ACB 를 수행할 수도 있다.(즉, ACDC 검사와 ACB 검사를 중복 수행한다.)
지금까지 설명한 내용은 IMS 기반 애플리케이션의 서비스인 경우에도 적용될 수 있다. 즉, IMS 기반 애플리케이션의 서비스인 경우도 일반적인 애플리케이션 그룹/카테고리 중의 하나 임을 의미하는 것이다.)
상기 본 제안은 UE의 IDLE 모드 또는 CONNECTED 모드 모두 적용할 수 있다.예컨대, EMM-IDLE/RRC-IDLE 모드 또는 EMM-CONNECTED/RRC-CONNECTED 모드에도 적용될 수 있다.
아니면, 상기 본 제안은 UE가 IDLE 모드인지 혹은 CONNECTED 모드(예컨대, EMM-IDLE/RRC-IDLE 모드 또는 EMM-CONNECTED/RRC-CONNECTED 모드)인지에 따라 ACDC 설정 정보를 각각 다르게 적용하여 ACDC 검사를 수행할 수도 있다.
상기 본 제안의 step 0)는 본 명세서의 제안 1안, 2안, 4안, 5a안, 5b안, 5c안, 5d안을 상호 조합하여 적용할 수 있다. 상기 본 제안의 step 1 ~ 3)은 본 명세서의 제안 1안, 2안, 4안, 5a안, 5b안, 5c안, 5d안을 상호 조합하여 적용할 수 있다.
한편, 제안 1a 및 제안 2를 3GPP 표준 TS 24.301 문서의 D.1절 표현에 맞춰 설명하면 다음과 같다.
만약 UE가 ACDC에 대해서 설정되어 있는 경우 NAS 계층은 요청에 대해서 어느 ACDC 카테고리를 적용해야 할지를 상위 계층으로부터 전달받은 애플리케이션 ID에 기초하여 결정한다. EMM 부계층은 하나의 ACDC 카테고리가 적용될 경우 액세스 제어의 목적으로 하위 계층에게 상기 ACDC 카테고리를 알려줄 수도 있고 복수의 ACDC 카테고리가 적용될 경우, 액세스 제어의 목적으로 하위 계층에게 가장 높은 등급의 ACDC 카테고리를 알려줄 수 있다. 다만, 다음의 경우는 제외된다.
- 선택된 PLMN에서 상기 UE가 AC11 내지 AC15를 사용하는 경우
- 상기 요청이 페이징에 응답하기 위한 경우
한편, 제안 1a 및 제안 2를 3GPP 표준 TS 36.331 문서의 6.3절 표현에 맞춰 설명하면 다음과 같다.
기지국은 모든 UE에게 공통되는 무선 자원 설정 정보를 포함하는 SIB 타입 2를 전송한다. 상기 SIB 타입2는 아래와 같은 정보를 포함할 수 있다.
표 3
-- ASN1START [[ acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP ]]}ACDC-BarringConfig ::= SEQUENCE { acdc-BarringFactor ENUMERATED { p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95}, acdc-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512}, acdc-BarringForSpecialAC BIT STRING(SIZE(5))}ACDC-BarringPerPLMN-r13 ::= SEQUENCE { plmn-IdentityIndex-r13 INTEGER(1..maxPLMN-r11), acdc-BarringInfo-r13 SEQUENCE { acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP } OPTIONAL, -- Need OP}
위 표의 각 필드를 설명하면 다음과 같다.
표 4
SIB 타입2 필드 설명
ac-BarringFactorUE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringFactorUE에 의해서 생성되는 랜덤값이 acdc-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringForMO-Data per ACDC categoryACDC 카테고리 별 발신(MO) 통화에 대한 ACDC 검사
acdc-BarringForMO-Signalling per ACDC categoryACDC 카테고리 별 발신(MO) 시그널링에 대한 ACDC 검사
ACDC categoryACDC 카테고리(예컨대, ACDC Cat I, ACDC Cat II, ACDC Cat 128).
ac-BarringForSpecialACAC 11-15에 대한 ACB 검사. 첫 번째/가장 좌측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
acdc-BarringForSpecialACAC 11-15에 대한 ACDC 검사. 첫 번째/가장 좌측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
ac-BarringTime평균 액세스 차단 시간(초)
acdc-BarringTime평균 액세스 차단 시간(초)
한편, UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행한다. 이 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 발신 통화를 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 발신 시그널링을 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
한편, UE는 상기 ACDC 차단 검사를 다음과 같이 수행한다.
1> 타이머 T3xx 또는 Tbarring가 구동중인 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그러나, SIB 타입 2가 ACDC 차단 파라미터를 포함하는 경우
2> UE가 USIM에 하나 이상의 액세스 클래스(11~15)를 저장하고 있는 경우,
2> 유효한 액세스 클래스들 중 적어도 하나에 대해서, ACDC barring parameter 내에 포함된 acdc-BarringForSpecialAC의 대응 비트를 0으로 설정한다.
3> 해당 셀에 대한 액세스는 차단되지 않는 것으로 간주한다.
2> 그렇지 않은 경우,
3> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
3> 상기 rand가 ACDC barring parameter 내에 포함된 acdc-BarringFactor에 의해 지시되는 값보다 작은 경우
4> 해당 셀로의 액세스는 차단되지 않는 다고 간주한다.
3> 그렇지 않은 경우
4> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그렇지 않은 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다;
1> 해당 셀로의 액세스가 차단되고, 타이머 Txxx 및 Tbarring이 구동중이 아닌 경우
2> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
2> ACDC barring parameter 내의 acdc-BarringTime 를 이용하여 다음과 같이 산출된 타이머 값으로 설정된 타이머 Tbarring를 구동한다.
"Tbarring" = (0.7+ 0.6 * rand) * acdc-BarringTime.
한편, 제안 1b 및 제안 2를 3GPP 표준 TS 24.301 문서의 D.1절 표현에 맞춰 설명하면 다음과 같다.
EMM 부계층이 NAS 시그널링 연결의 수립을 요청하는 경우, UE에 의해서 사용되는 RRC 수립 원인은 NAS 절차에 따라 선택된다. 상기 EMM 부계층은 하위 계층에게 액세스 제어의 목적으로 RRC 연결 수립 원인과 관련된 콜 타입을 알려준다. 만약 UE가 EAB(ExtendedAccessBarring)에 대해 설정되어 있는 경우, EMM 부계층은 액세스 제어의 목적으로 하위 계층에게 다음의 EAB가 이 요청에 대해 적용된다고 알려준다. 다만, 다음의 경우는 제외될 수 있다.
- 선택된 PLMN에서 상기 UE가 AC11 내지 AC15를 사용하는 경우
- 상기 요청이 페이징에 응답하기 위한 경우
- RRC 수립원인이 “응급 전화”로 설정된 경우
- UE가 NAS 시그널링 저 순위(low priority)를 무시(override) 하도록 설정된 경우 그리고 EAB를 무시하도록 설정된 경우,
- UE가 NAS 시그널링 저 순위(low priority)를 무시(override) 하도록 설정된 경우 그리고 EAB를 무시하도록 설정된 경우, 그리고 UE가 이미 EAB를 무시하고 수립된 PDN 연결을 가지고 있는 경우
표 5
NAS 절차 RRC 수립 원인 콜 타입
Tracking Area Update UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 l을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat I"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lI을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat II"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lII을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat III"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lV을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat IV"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 V을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat V"
Service Request 서비스 요청이 사용자 평면의 무선 자원을 요청하기 위한 것이고, MO MMTEL 음성 통화가 개시되지 않았고, MO MMTEL 영상 통화가 개시되지 않았고, MO SMSoIP가 개시되지 않은 경우, RRC 수립은원은 MO data로 설정됨 "originating calls"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 I을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat I"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 II을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat II"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 III을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat III"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 IV을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat IV"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 V을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat V"
한편, 제안 1b 및 제안 2를 3GPP 표준 문서 TS 36.331의 6.3절 표현에 맞춰 설명하면 다음과 같다.
기지국은 모든 UE에게 공통되는 무선 자원 설정 정보를 포함하는 SIB 타입 2를 전송한다. 상기 SIB 타입2는 아래와 같은 정보를 포함할 수 있다.
표 6
[[ acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP ]]}ACDC-BarringConfig ::= SEQUENCE { acdc-BarringFactor ENUMERATED { p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95}, acdc-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512}, acdc-BarringForSpecialAC BIT STRING(SIZE(5))}ACDC-BarringPerPLMN-r13 ::= SEQUENCE { plmn-IdentityIndex-r13 INTEGER(1..maxPLMN-r11), acdc-BarringInfo-r13 SEQUENCE { acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP } OPTIONAL, -- Need OP}
위 표의 각 필드를 설명하면 다음과 같다.
표 7
SIB 타입2 필드 설명
ac-BarringFactorUE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringFactorUE에 의해서 생성되는 랜덤값이 acdc-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringForMO-Data per ACDC categoryACDC 카테고리 별 발신(MO) 통화에 대한 ACDC 검사
acdc-BarringForMO-Signalling per ACDC categoryACDC 카테고리 별 발신(MO) 시그널링에 대한 ACDC 검사
ACDC categoryACDC 카테고리(예컨대, ACDC Cat I, ACDC Cat II, ACDC Cat 128).
ac-BarringForSpecialACAC 11-15에 대한 ACB 검사. 첫 번째/가장 좌측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
acdc-BarringForSpecialACAC 11-15에 대한 ACDC 검사. 첫 번째/가장 좌측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
ac-BarringTime평균 액세스 차단 시간(초)
acdc-BarringTime평균 액세스 차단 시간(초)
한편, UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행한다. 이 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 ACDC 카테고리 I(카테고리 II, III, …)에 대한 발신을 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 ACDC 카테고리 I(카테고리 II, III, …)에 대한 발신을 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
한편, UE는 상기 ACDC 차단 검사를 다음과 같이 수행한다.
1> 타이머 T3xx 또는 Tbarring가 구동중인 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그러나, SIB 타입 2가 ACDC 차단 파라미터를 포함하는 경우
2> UE가 USIM에 하나 이상의 액세스 클래스(11~15)를 저장하고 있는 경우,
2> 유효한 액세스 클래스들 중 적어도 하나에 대해서, ACDC barring parameter 내에 포함된 acdc-BarringForSpecialAC의 대응 비트를 0으로 설정한다.
3> 해당 셀에 대한 액세스는 차단되지 않는 것으로 간주한다.
2> 그렇지 않은 경우,
3> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
3> 상기 rand가 ACDC barring parameter 내에 포함된 acdc-BarringFactor에 의해 지시되는 값보다 작은 경우
4> 해당 셀로의 액세스는 차단되지 않는 다고 간주한다.
3> 그렇지 않은 경우
4> 해당 셀로의 액세스는 차단된다고 간주한다.
11> 그렇지 않은 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다;
1> 해당 셀로의 액세스가 차단되고, 타이머 Txxx 및 Tbarring이 구동중이 아닌 경우
2> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
2> ACDC barring parameter 내의 acdc-BarringTime 를 이용하여 다음과 같이 산출된 타이머 값으로 설정된 타이머 Tbarring를 구동한다.
"Tbarring" =(0.7+ 0.6 * rand) * acdc-BarringTime.
한편, 제안 1c 및 제안 2를 3GPP 표준 문서 TS 36.331의 5.3.3.2절 표현에 맞춰 설명하면 다음과 같다.
UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 애플리케이션 그룹/카테고리/우선순위/ID/정보를 제공하고, 아울러 UE는 발신 통화를 위한 RRC 연결을 수립하려는 경우,
2> ACDC 설정 정보에 기초하여, 가장 높은(highest) 혹은 가장 낮은(lowest) ACDC 카테고리를 결정한다.
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 애플리케이션 그룹/카테고리/우선순위/ID/정보를 제공하고, 아울러 UE는 발신 시그널링을 위한 RRC 연결을 수립하려는 경우,
2> ACDC 설정 정보에 기초하여, 가장 높은(highest) 혹은 가장 낮은(lowest) ACDC 카테고리를 결정한다.
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대한 ACDC가 적용되었음을 알린다.
III. 본 명세서의 제안 3(가출원에 기재된 제안 2)
본 명세서의 제안 3에 따르면, 상기 UE의 애플리케이션 계층이 ACDC 검사를 수행할 수 있다. 상기 제안 3은 제안 3a, 제안 3b, 제안 3c, 제안 3d 으로 구분된다. 이를 도면을 참조하여 상세하게 설명하기로 한다.
도 12는 본 명세서의 제안 3a에 따른 흐름도이다.
(step 0) 네트워크(사업자)는 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 UE에게 제공(또는 설정)한다. 이러한 애플리케이션 관련 정보는 OMA DM에 따른 애플리케이션 관리 객체(MO)(예컨대, 애플리케이션 별 (액세스 제어) MO)를 통해 UE에게 제공되거나, USIM에 (미리)설정되어 UE에게 제공된다. UE의 NAS 계층 또는 애플리케이션 계층 혹은 운영체제(OS)를 포함하는 애플리케이션 제어 계층) 또는 AS(RRC) 계층은 AT-command 등을 통하여 이러한 애플리케이션 그룹/카테고리/우선순위 정보/ID들을 얻을 수 있게 된다.
이러한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)는 네트워크(사업자)로부터 주기적으로 혹은 특점 시점 등에 UE에게 제공될 수 있다.
(Step 1) 네트워크(예컨대 기지국)는 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별 차단 비율, 차단 펙터, 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)를 SIB을 통해 UE의 AS(RRC) 계층에게 제공할 수 있다.
상기 AS(RRC) 계층은 이를 상기 애플리케이션 계층에게 제공한다. 즉, 애플리케이션 계층은 상기 정보를 AS(RRC) 계층으로부터 제공 받는다. 예를 들어, 애플리케이션 데이터 서비스(IP 기반 데이터 서비스; 예컨대, Internet, GoogleMap, KaTalk, etc)가 시작될 때, 애플리케이션 계층이 상기 정보 제공을 AS(RRC) 계층에게 요청하여 제공 받을 수도 있다.
(Step 1-1) 애플리케이션 계층은 상기 획득한 애플리케이션 관련 정보(즉,애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기초하여, ACDC를 위한 애플리케이션 카테고리를 결정한다.
(Step 1-2) 애플리케이션 데이터 서비스가 시작될 때, 상기 step 0)에서 획득한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여, AS(RRC)계층으로부터 제공받은 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 관련 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 IP 기반 애플리케이션의 서비스 연결 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다.
상기 IP 기반 애플리케이션의 서비스 연결 시도(access attempt)를 허용한다면 그대로 애플리케이션의 서비스가 애플리케이션 계층에서 시작되어 네트워크로 서비스 세션 연결이 진행될 것이고, 상기 애플리케이션의 서비스 시도를 허용하지 않는다면, 더 이상 애플리케이션의 서비스의 네트워크로 세션 연결이 시도되지 않을 것이다.
만약 네트워크(예컨대 기지국)로부터 ACDC 설정 정보(즉, 상기 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)와 (종래의) 일반적인 ACB정보가 동시에 SIB을 통해 UE에게 제공되는 경우 UE은 ACDC 설정 정보와, ACB 스킵 설정 등의 정보만을 적용하여 ACB 검사 스킵을 수행할 수 있다
(step 2) 만약, 상기 연결 시도(access attempt)가 차단되지 않고 허용된다면, ACB 스킵을 위한 인디케이션/정보가 NAS 계층(혹은 RRC 계층)에게 추가적으로 제공/전달된다.
(step 4) 만약 상기 연결 시도(access attempt)가 허용된다면, NAS 계층은 IP 기반 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 또는 TAU 절차를 수행한다.
한편, 상기 연결 시도(access attempt)가 허용 되어, 일반적인 ACB 스킵을 위한 인디케이션/정보가 애플리케이션 계층으로부터 추가적으로 함께 제공되는 경우, 상기 NAS 계층은 서비스 요청 절차 또는 TAU/RAU 절차 시작 시, ACB 스킵 인디케이션/정보를 AS(RRC) 계층에게 제공/전달할 수도 있다.
(step 5) 한편, 상기 AS(RRC) 계층은 추가적으로 ACB 검사를 수행할 수도 있다. 이때 ACB 검사 수행은 네트워크(예컨대 기지국) 로부터 수신한 ACB정보에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차를 허용할 지 아니면 허용하지 않을 지를 결정한다. ACB 검사를 통과하면 AS(RRC) 계층은 RRC 연결 요청 절차를 수행한다.
한편, NAS 계층의 서비스 요청 절차 또는 TAU/RAU 절차 시작 시, 스킵 인디케이션/정보가 추가적으로 함께 제공/전달 된 경우, AS(RRC) 계층은 ACB 검사를 수행하지 않는다.
대안적으로, AS(RRC) 계층은 ACDC 검사가 통과되었다면, 일반적인 ACB 검사는 무시하고/수행하지 않고 바로 RRC 연결 수립 절차를 수행한다.
도 13는 본 명세서의 제안 3b에 따른 흐름도이다.
도 13에 도시된 제안 3b는 도 12에 도시된 제안 3a와 몇 가지점만 다르다. 이하 차이있는 부분을 위주로 설명하기로 한다.
(step 1) IMS 계층은 데이터 통신 서비스를 시작할 때, 애플리케이션 관련정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 AS(RRC) 계층으로부터 제공 받는다. 이때 IMS 서비스(예컨대, MMTEL voice, MMTEL video, SMS over IP service)가 시작될 때, IMS 계층이 상기 정보 제공을 AS(RRC) 계층에게 요청하여 제공 받을 수도 있고, 아니면, 정보 제공 요청 없이 제공받을 수도 있다.
(step 1-2) IMS 기반 애플리케이션의 서비스가 시작될 때, 상기 획득한 애플리케이션 관련 정보에 기반하여, AS(RRC)계층으로부터 제공받은 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 IMS 기반 애플리케이션의 서비스 연결 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다. 상기 IMS 기반 애플리케이션의 서비스 연결 시도(access attempt)를 허용한다면 그대로 애플리케이션의 서비스가 애플리케이션 계층에서 시작되어 네트워크로 서비스 세션 연결이 진행될 것이고, 상기 애플리케이션의 서비스 시도를 허용하지 않는다면, 더 이상 애플리케이션의 서비스의 네트워크로 세션 연결이 시도되지 않을 것이다.
만약 네트워크(예컨대 기지국)로부터 ACDC 설정 정보(즉, 상기 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보, ACB 스킵 설정 등의 정보)와 일반적인 ACB 정보가 동시에 SIB을 통해 UE에게 제공되는 경우, UE은 ACDC 설정 정보에 기초한 ACDC 검사만을 수행하고 ACB 검사 스킵을 수행할 수 있다.
이를 위해, 상기 IMS 기반 애플리케이션의 서비스 연결 시도(access attempt)가 허용된다면(차단 안됨), IMS 계층은 ACB 스킵을 위한 인디케이션/정보를 NAS 계층(혹은 RRC 계층)에게 추가적으로 제공/전달할 수도 있다.
(step 5) AS(RRC) 계층은 상기 ACDC 검사가 진행된 이후에, 추가적으로 ACB 검사를 수행할 수도 있다. 이때 ACB 검사는 네트워크(예컨대 기지국) 로부터 수신한 ACB정보에 기반하여 수행될 수 있다.
만약, NAS 계층의 서비스 요청 절차 또는 TAU/RAU 절차 시작 시, ACB 스킵 인디케이션/정보가 추가적으로 함께 제공/전달 된 경우, 상기 AS(RRC) 계층은 ACB 검사를 수행하지 않는다. 이후, AS(RRC) 계층은 RRC 연결 요청 절차를 수행한다.
대안적으로, AS(RRC) 계층은 ACDC 검사가 통과되었다면, ACB 검사를 무시하고/수행하지 않고 바로 RRC 연결 수립 절차를 수행한다.
도 14는 본 명세서의 제안 3c에 따른 흐름도이다.
도 14에 도시된 제안 3c는 제안 3a 및 제안 3b와 몇 가지점만 다르다. 이하 차이있는 부분을 위주로 설명하기로 한다.
애플리케이션 계층이 ACDC 검사를 수행한 결과 연결 시도(access attempt)가 허용된다면(차단 안됨), AS(RRC) 계층은 ACB 스킵을 위한 인디케이션/정보를 전달받지 못했더라도(제공받지 못했더라도) ACB 검사를 통과시킬 수 있다.
도 15는 본 명세서의 제안 3d에 따른 흐름도이다.
도 15에 도시된 제안 3d는 제안 3a, 제안 3b 및 제안 3c와 몇 가지점만 다르다. 이하 차이있는 부분을 위주로 설명하기로 한다.
IMS 계층이 ACDC 검사를 수행한 결과 연결 시도(access attempt)가 허용된다면(차단 안됨), AS(RRC) 계층은 ACB 스킵을 위한 인디케이션/정보를 전달받지 못했더라도(제공받지 못했더라도) ACB 검사를 통과시킬 수 있다.
IV. 본 명세서의 제안 4
제안 4은 도 12 내지 도 15에 도시된 것과 유사하다. 따라서, 별도의 도면을 참조하지 않고, 도 12 내지 도 15를 그대로 참조하여 설명하기로 한다.
(step 1) 네트워크(예컨대 기지국)는 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)를 SIB을 통해 UE에게 제공한다. 이러한 정보는 UE의 AS(RRC)계층이 네트워크로부터 받을 수 있다. 그러면, 상기 AS(RRC) 계층은 이러한 정보를 애플리케이션 계층(혹은 NAS 계층)에게 제공할 수도 있다. 예를 들어, 애플리케이션 계층이 데이터 통신 서비스를 시작할 때, AS(RRC)계층에 상기 정보의 제공 요청을 하여 제공 받을 수도 있다.
(step 1-2) 애플리케이션 계층이 상기 ACDC 설정 정보를 AS(RRC)계층으로부터 제공받은 경우, 애플리케이션 계층은 이 정보에 기반하여, NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작(access attempt)을 허용할 지 아니면 허용하지 않을 지를 결정한다. 즉, 애플리케이션 계층은 AS(RRC)계층으로부터 제공받은 ACDC 설정 정보에 기반하여 ACDC 검사를 수행함으로써, 애플리케이션의 서비스 제공을 위한 서비스 연결 시도를 허용할 지 아니면 허용하지 않을 지를 결정한다
만약 애플리케이션 계층에서 연결 시도를 허용하지 않는 경우, NAS 계층에게 애플리케이션의 서비스 시작(발신(MO) 데이터 또는 발신(MO) 시그널링)을 요청을 하지 않는다. 결국 애플리케이션의 서비스 연결이 차단된다.
(step 2) 상기 연결 시도가 허용되는 경우, 상기 애플리케이션 계층은 애플리케이션의 서비스 시작(발신(MO) 데이터 또는 발신(MO) 시그널링)을 요청한다. 이때, AS(RRC) 계층으로부터 ACB 스킵 인디케이션 정보(예컨대, ACB 스킵 인디케이션 정보가 ACB skip-ON, SET 또는 TRUE for group/category/priority “X)를 받은 경우, 상기 애플리케이션 계층은 상기 ACB 스킵 인디케이션을 NAS 계층으로 전달한다.
(Step 4) NAS 계층은 애플리케이션 계층으로부터 애플리케이션의 서비스 시작(발신(MO) 데이터 또는 발신(MO) 시그널링)을 요청 받으면 이를 위한 서비스 요청 절차 혹은 TAU 절차 을 수행하게 된다.
만약, 상기 애플리케이션 계층으로부터 ACB 스킵 인디케이션, 예컨대 스킵 Stop/Reset 인디케이션 정보를 받은 경우, 상기 NAS 계층은 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작 시 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)만을 AS(RRC) 계층에게 전달하고 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반한 ACB 스킵 인디케이션은 전달하지 않을 수 도 있다.
대안적으로, 애플리케이션 계층으로부터 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 관련 정보에 기반한 ACB 스킵 인디케이션(예컨대, ACB skip-OFF, RESET 또는 FALSE for group/category/priority “Y”)를 AS(RRC) 계층에게 전달할 수도 있다.
만약 애플리케이션 계층으로부터 추가적으로 ACB 스킵 Start/Set 인디케이션 정보를 받은 상황에서, 현재 ACB가 적용되어 있다면, NAS 계층은 이 차단 상태를 무시하고(ignore) 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차를 시작/수행한다. 이러한 서비스 요청 절차 혹은 TAU 절차 시작 시 AS(RRC) 계층에게 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 관련 정보에기반한 ACB 스킵 인디케이션(예컨대, ACB skip-ON, SET 또는 TRUE for group/category/priority “X”)를 전달하게 된다.
(step 5) AS(RRC) 계층은 NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작 시, RRC 연결 요청 절차를 수행하게 된다.
만약, 네트워크로부터 ACB 정보를 함께 제공 받은 경우, AS(RRC) 계층은 수신한 NAS 계층의 애플리케이션의 서비스 연결을 위한 서비스 요청 절차 혹은 TAU 절차 시작 시 ACB 검사를 수행하여 최종 상기 애플리케이션의 서비스 연결(서비스 요청 절차 또는 TAU 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정할 수도 있다.
혹은, ACDC 검사가 통과된 경우, ACB 검사를 수행하지 않고 RRC 연결 요청 절차를 수행할 수도 있다.
만약 NAS 계층으로부터 ACB 스킵 인디케이션 정보(ACB 스킵 인디케이션 정보가 ACB skip-ON, SET 또는 TRUE for group/category/priority “X” 인 경우)를 받은 경우, 상기 AS(RRC) 계층은 현재 ACB상태와 상관없이 ACB를 스킵하여 상기 연결 시도(access attempt)를 허용한다. 즉, 현재 차단 상태이더라도 무시하고 서비스 요청 절차 혹은 TAU 절차를 시작/수행하여 RRC 연결을 수립할 수 있다.
한편, 네트워크(eNB)로부터 제공되는 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) 별 ACB 스킵 정보의 상태 변화/변동(예컨대, from ACB skipping set/true to ACB skipping reset/false(from ACB skipping to No ACB skipping) 또는 from ACB skipping reset/false to ACB skipping set/true(from No ACB skipping to ACB skipping))가 발생하면(발생을 감지하면), AS(RRC) 계층은 애플리케이션 계층 혹은 NAS 계층(또는 애플리케이션 계층 및 NAS 계층)에게 ACB 스킵 설정 정보 변화/변동을 알려줄 수 있다.
이후, 애플리케이션 계층은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) 별 ACB 스킵 정보 상태의 변화/변동에 따라 전술한 step들을 다시 수행한다.
다른 한편, 만약 네트워크(예컨대 기지국)로부터 ACDC 설정 정보와 ACB 정보가 동시에 SIB을 통해 수신되는 경우, UE은 상기 ACDC 설정 정보에 기초하여 ACDC 검사만을 수행하고, ACB 검사는 스킵할 수도 있다. 아니면, 네트워크(MME/SGSN/기지국 등)로부터 인디케이션/설정에 따라서 상기 ACDC 설정 정보와 상기 ACB정보 둘 중 어느 하나를 선택하여 적용하여 ACDC 검사만을 수행하거나, ACB 검사만을 수행할 수도 있다.
또는, 만약 네트워크(예컨대 기지국)로부터 상기 ACDC 설정 정보와 ACB정보가 동시에 SIB을 통해 수신하는 경우, UE은 상기 ACDC 설정 정보에 기초하여 ACDC 검사를 수행하고, 상기 ACDC 검사가 통과 되면 AS(RRC) 계층에서 ACB 정보에 기초하여 ACB 검사를 수행할 수 있다.
상기 제안 4에서 설명되는 애플리케이션 계층의 동작은 IMS 계층에도 적용될 수 있다.
상기 제안 4는 UE의 IDLE 모드 또는 CONNECTED 모드 모두 적용할 수 있다. 예를 들어, 제안 4는 EMM-IDLE/RRC-IDLE 모드 또는 EMM-CONNECTED/RRC-CONNECTED 모드에 적용될 수 있다.
혹은 UE가 IDLE 모드인지 혹은 CONNECTED 모드(예컨대, EMM-IDLE/RRC-IDLE 모드 또는 EMM-CONNECTED/RRC-CONNECTED 모드)인지에 따라 ACDC 설정 정보를 각각 다르게 적용할 수 있다.
V. 본 명세서의 제안 5
제안 5는 애플리케이션의 그룹/카테고리/우선순위 정보/ID가 복수개인 경우에 대한 처리 방안을 제시한다. 제안 5는 제안 5a, 제안 5b, 제안 5c, 제안 5d로 구분될 수 있다. 이하 각각에 대해서 설명하기로 한다.
V-1. 제안 5a
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가 여러 개인 경우 혹은 NAS 복구 과정 중에 애플리케이션 그룹/카테고리/우선순위 정보/ID가(이전과 다르게) 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)만을 AS(RRC)계층에게 제공하거나;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)만을 AS(RRC)계층에게 제공하거나;
iii) 여러 개의 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) 혹은 변경 전후의 애플리케이션 관련 정보 모두를 AS(RRC)계층에게 제공할 수 있다.
상기 i), ii), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가 (동시에) 여러 개인 경우 혹은 NAS 복구 과정중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.);
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다); 또는
상기 i), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가(동시에) 여러 개인 경우 혹은 NAS 복구 과정중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다; 또는
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보 (즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, NAS 계층으로부터 받은 애플리케이션 관련 정보 혹은 애플리케이션 관련 정보 + Start/Stop 또는 Set/Reset 같은 인디케이션 정보가(동시에) 여러 개인 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다; 또는
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 제공된 차단 비율, 차단 펙터, 평균 차단 시간, 로밍 정보 등의 정보)를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
V-2. 제안 5b
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션 정보가(동시에) 여러 개인 경우 혹은 NAS 복구 과정 중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션)만을 AS(RRC)계층에게 제공하거나;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션)만을 AS(RRC)계층에게 제공하거나;
iii) 여러 개의 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션)(이전 정보와 변경된 정보) 모두 AS(RRC)계층에게 제공할 수 있다.
상기 i), ii), iii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능등에 의해서 i), ii), iii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션 정보가(동시에) 여러 개인 경우 혹은 NAS 복구 과정중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.); or
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.);
상기 i), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, NAS 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션이 (동시에) 여러 개인 경우 혹은 NAS 복구 과정 중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능등에 의해서 i, ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)가 여러 개인 경우 혹은 NAS 복구 과정중 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션만을 AS(RRC)계층에게 제공하거나; or
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션을 AS(RRC)계층에게 제공하거나; or
iii) 여러 개의 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션(이전 정보와 변경된 정보) 모두 AS(RRC)계층에게 제공할 수 있다.
상기 i), ii), iii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii), iii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션이(동시에) 여러 개인 경우 혹은 NAS 복구 과정중 이전과 다르게 변경된 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.); or
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 서비스 요청 절차 혹은 TAU/RAU 요청 절차 시작 시(애플리케이션 그룹/카테고리/우선순위 정보/ID별로) 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입을 정의하여 AS(RRC) 계층에게 전달한다.(이때, 새로운 RRC 수립 원인 값, 새로운 콜 타입, 혹은 서비스 타입은 서로 독립적으로(한가지만) 사용되거나, 조합으로 정의되어 사용될 수 있다.);
상기 i), ii) 방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, NAS 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션가(동시에) 여러 개인 경우,
i) 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)기반하여 네트워크로부터 수신한 ACDC 설정 정보를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
ii) 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여 네트워크로부터 수신한 ACDC 설정 정보를 이용하여 상기 애플리케이션의 서비스 연결(서비스 요청 절차 혹은 TAU/RAU 요청 절차) 시도(access attempt)를 허용할 지 아니면 허용하지 않을 지를 결정한다;
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
도 16 내지 도 19는 제안 5a 및 제안 5b에 따른 신호 흐름을 나타낸 예시도들이다.
도 16를 참조하면, UE의 NAS 계층은 애플리케이션 관련 정보에 기초하여, ACDC 카테고리 중에서 가장 높은 혹은 가장 낮은 카테고리를 선택하고, 그에 따라 서비스 요청 절차 혹은 TAU/RAU 절차의 개시를 요청한다. 그러면, UE의 AS(RRC) 계층은 상기 선택된 가장 높은 혹은 가장 낮은 카테고리에 기초하여 ACDC 검사를 수행한다.
도 17를 참조하면, UE의 NAS 계층은 애플리케이션 관련 정보에 기초하여, ACDC 카테고리 중에서 가장 높은 혹은 가장 낮은 카테고리를 선택하고, 상기 선택된 카테고리에 따른 콜 타입을 갖는 서비스 요청 절차 혹은 TAU/RAU 절차의 개시를 요청한다. 그러면, UE의 AS(RRC) 계층은 상기(선택된) 콜 타입에 기초하여 ACDC 검사를 수행한다.
도 18를 참조하면, UE의 NAS 계층은 애플리케이션 관련 정보에 기초하여, 복수의 카테고리를 선택하고, 그에 따라 서비스 요청 절차 혹은 TAU/RAU 절차의 개시를 요청한다. 그러면, UE의 AS(RRC) 계층은 상기 제공된 복수의 카테고리 중 가장 높은 혹은 가장 낮은 카테고리를 선택/결정하고, 이에 기초하여 ACDC 검사를 수행한다.
도 19를 참조하면, UE의 AS(RRC) 계층은 애플리케이션 관련 정보에 기초하여, ACDC 카테고리 중에서 가장 높은 혹은 가장 낮은 카테고리를 선택한다. 그러면, UE의 AS(RRC) 계층은 상기 선택된 가장 높은 혹은 가장 낮은 카테고리에 기초하여 ACDC 검사를 수행한다.
한편, 도 16에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 24.301의 D.1절의 표현에 맞춰 설명하면 다음과 같다.
만약 UE가 ACDC에 대해서 설정되어 있는 경우 NAS 계층은 요청에 대해서 어느 ACDC 카테고리(들)을 적용해야 할지를 상위 계층으로부터 전달받은 애플리케이션 ID에 기초하여 결정한다. EMM 부계층은 하나의 ACDC 카테고리가 적용될 경우 액세스 제어의 목적으로 하위 계층에게 상기 ACDC 카테고리를 알려줄 수도 있고 복수의 ACDC 카테고리가 적용될 경우, 액세스 제어의 목적으로 하위 계층에게 가장 높은 등급(혹은 가장 낮은 등급)의 ACDC 카테고리를 알려줄 수 있다. 다만, 다음의 경우는 제외된다.
- 선택된 PLMN에서 상기 UE가 AC11 내지 AC15를 사용하는 경우
- 상기 요청이 페이징에 응답하기 위한 경우
한편, 도 16에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 6.3절 표현에 맞춰 설명하면 다음과 같다.
기지국은 모든 UE에게 공통되는 무선 자원 설정 정보를 포함하는 SIB 타입 2를 전송한다. 상기 SIB 타입2는 아래와 같은 정보를 포함할 수 있다.
표 8
[[ acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP ]]}ACDC-BarringConfig ::= SEQUENCE { acdc-BarringFactor ENUMERATED { p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95}, acdc-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512}, acdc-BarringForSpecialAC BIT STRING(SIZE(5))}ACDC-BarringPerPLMN-r13 ::= SEQUENCE { plmn-IdentityIndex-r13 INTEGER(1..maxPLMN-r11), acdc-BarringInfo-r13 SEQUENCE { acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP } OPTIONAL, -- Need OP}
위 표의 각 필드를 설명하면 다음과 같다.
표 9
SIB 타입2 필드 설명
ac-BarringFactorUE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringFactorUE에 의해서 생성되는 랜덤값이 acdc-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringForMO-Data per ACDC categoryACDC 카테고리 별 발신(MO) 통화에 대한 ACDC 검사
acdc-BarringForMO-Signalling per ACDC categoryACDC 카테고리 별 발신(MO) 시그널링에 대한 ACDC 검사
ACDC category ACDC 카테고리(예컨대, ACDC Cat I, ACDC Cat II, ACDC Cat 128).
ac-BarringForSpecialACAC 11-15에 대한 ACB 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
acdc-BarringForSpecialACAC 11-15에 대한 ACDC 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
ac-BarringTime평균 액세스 차단 시간(초)
acdc-BarringTime평균 액세스 차단 시간(초)
도 16에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 5.3.3.2절 표현에 맞춰 설명하면 다음과 같다.
UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행한다. 이 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 발신 통화를 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 발신 시그널링을 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
한편, UE는 상기 ACDC 차단 검사를 다음과 같이 수행한다.
1> 타이머 T3xx 또는 Tbarring가 구동중인 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그러나, SIB 타입 2가 ACDC 차단 파라미터를 포함하는 경우
2> UE가 USIM에 하나 이상의 액세스 클래스(11~15)를 저장하고 있는 경우,
2> 유효한 액세스 클래스들 중 적어도 하나에 대해서, ACDC barring parameter 내에 포함된 acdc-BarringForSpecialAC의 대응 비트를 0으로 설정한다.
3> 해당 셀로의 액세스는 차단된다고 간주한다;
2> 그렇지 않은 경우,
3> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
3> 상기 rand가 ACDC barring parameter 내에 포함된 acdc-BarringFactor에 의해 지시되는 값보다 작은 경우
4> 해당 셀로의 액세스는 차단되지 않는 다고 간주한다.
3> 그렇지 않은 경우
4> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그렇지 않은 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다;
1> 해당 셀로의 액세스가 차단되고, 타이머 Txxx 및 Tbarring이 구동중이 아닌 경우
2> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
2> ACDC barring parameter 내의 acdc-BarringTime 를 이용하여 다음과 같이 산출된 타이머 값으로 설정된 타이머 Tbarring를 구동한다.
"Tbarring" =(0.7+ 0.6 * rand) * acdc-BarringTime.
한편, 도 17에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 24.301의 D.1절 표현에 맞춰 설명하면 다음과 같다.
EMM 부계층이 NAS 시그널링 연결의 수립을 요청하는 경우, UE에 의해서 사용되는 RRC 수립 원인은 NAS 절차에 따라 선택된다. 상기 EMM 부계층은 하위 계층에게 액세스 제어의 목적으로 RRC 연결 수립 원인과 관련된 콜 타입을 알려준다. 만약 UE가 EAB(ExtendedAccessBarring)에 대해 설정되어 있는 경우, EMM 부계층은 액세스 제어의 목적으로 하위 계층에게 다음의 EAB가 이 요청에 대해 적용된다고 알려준다.
표 10
NAS 절차 RRC 수립 원인 콜 타입
Tracking Area Update UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 l을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat I"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lI을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat II"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lII을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat III"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 lV을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat IV"
UE가 응급 베어러 서비스를 위해 수립된 PDN 연결을 가지고 있지 않고, "응급"으로 설정된 요청 타입을 갖는 PDN 연결 요청을 개시하지 않은 경우, 그리고 MO ACDC 카테고리 V을 위해 트리거링한 경우, RRC 수립 원인은 MO 시그널링으로 설정됨 "originating ACDC Cat V"
Service Request 서비스 요청이 사용자 평면의 무선 자원을 요청하기 위한 것이고, MO MMTEL 음성 통화가 개시되지 않았고, MO MMTEL 영상 통화가 개시되지 않았고, MO SMSoIP가 개시되지 않은 경우, RRC 수립은원은 MO data로 설정됨 "originating calls"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 I을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat I"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 II을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat II"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 III을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat III"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 IV을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat IV"
서비스 요청 절차가 사용자 평면의 무선 자원을 요청하기 위함이고, MO ACDC 카테고리 V을 위해 트리거링된 경우, RRC 수립 원인은 MO data로 설정됨 "originating ACDC Cat V"
한편, 도 17에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 6.3절 표현에 맞춰 설명하면 다음과 같다.
기지국은 모든 UE에게 공통되는 무선 자원 설정 정보를 포함하는 SIB 타입 2를 전송한다. 상기 SIB 타입2는 아래와 같은 정보를 포함할 수 있다.
표 11
[[ acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP ]]}ACDC-BarringConfig ::= SEQUENCE { acdc-BarringFactor ENUMERATED { p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95}, acdc-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512}, acdc-BarringForSpecialAC BIT STRING(SIZE(5))}ACDC-BarringPerPLMN-r13 ::= SEQUENCE { plmn-IdentityIndex-r13 INTEGER(1..maxPLMN-r11), acdc-BarringInfo-r13 SEQUENCE { acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP } OPTIONAL, -- Need OP}
위 표의 각 필드를 설명하면 다음과 같다.
표 12
SIB 타입2 필드 설명
ac-BarringFactorUE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringFactorUE에 의해서 생성되는 랜덤값이 acdc-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringForMO-Data per ACDC categoryACDC 카테고리 별 발신(MO) 통화에 대한 ACDC 검사
acdc-BarringForMO-Signalling per ACDC categoryACDC 카테고리 별 발신(MO) 시그널링에 대한 ACDC 검사
ACDC categoryACDC 카테고리(예컨대, ACDC Cat I, ACDC Cat II, ACDC Cat 128).
ac-BarringForSpecialACAC 11-15에 대한 ACB 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
acdc-BarringForSpecialACAC 11-15에 대한 ACDC 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
ac-BarringTime평균 액세스 차단 시간(초)
acdc-BarringTime평균 액세스 차단 시간(초)
도 17에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 5.3.3.2절 표현에 맞춰 설명하면 다음과 같다.
UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행한다. 이 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 ACDC 카테고리 I를 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, ACDC 카테고리를 제공하고, 아울러 UE는 ACDC 카테고리 I을 위한 RRC 연결을 수립하려는 경우,
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
한편, UE는 상기 ACDC 차단 검사를 다음과 같이 수행한다.
1> 타이머 T3xx 또는 Tbarring가 구동중인 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그러나, SIB 타입 2가 ACDC 차단 파라미터를 포함하는 경우
2> UE가 USIM에 하나 이상의 액세스 클래스(11~15)를 저장하고 있는 경우,
2> 유효한 액세스 클래스들 중 적어도 하나에 대해서, ACDC barring parameter 내에 포함된 acdc-BarringForSpecialAC의 대응 비트를 0으로 설정한다.
3> 해당 셀에 대한 액세스는 차단되지 않는 것으로 간주한다.
2> 그렇지 않은 경우,
3> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
3> 상기 rand가 ACDC barring parameter 내에 포함된 acdc-BarringFactor에 의해 지시되는 값보다 작은 경우
4> 해당 셀로의 액세스는 차단되지 않는 다고 간주한다.
3> 그렇지 않은 경우
4> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그렇지 않은 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다;
1> 해당 셀로의 액세스가 차단되고, 타이머 Txxx 및 Tbarring이 구동중이 아닌 경우
2> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
2> ACDC barring parameter 내의 acdc-BarringTime 를 이용하여 다음과 같이 산출된 타이머 값으로 설정된 타이머 Tbarring를 구동한다.
"Tbarring" =(0.7+ 0.6 * rand) * acdc-BarringTime.
한편, 도 18에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 24.301의 D.1절 표현에 맞춰 설명하면 다음과 같다.
UE가 ACDC에 대해서 설정되어 있는 경우 NAS 계층은 요청에 대해서 어느 ACDC 카테고리를 적용해야 할지를 상위 계층으로부터 전달받은 애플리케이션 ID에 기초하여 결정한다. EMM 부계층은 하나의 ACDC 카테고리가 적용될 경우 액세스 제어의 목적으로 하위 계층에게 상기 ACDC 카테고리를 알려줄 수도 있고 복수의 ACDC 카테고리가 적용될 경우, 액세스 제어의 목적으로 하위 계층에게 모든 ACDC 카테고리를 알려줄 수 있다. 다만, 다음의 경우는 제외된다.
- 선택된 PLMN에서 상기 UE가 AC11 내지 AC15를 사용하는 경우
- 상기 요청이 페이징에 응답하기 위한 경우
한편, 도 18에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 6.3절 표현에 맞춰 설명하면 다음과 같다.
기지국은 모든 UE에게 공통되는 무선 자원 설정 정보를 포함하는 SIB 타입 2를 전송한다. 상기 SIB 타입2는 아래와 같은 정보를 포함할 수 있다.
표 13
[[ acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP ]]}ACDC-BarringConfig ::= SEQUENCE { acdc-BarringFactor ENUMERATED { p00, p05, p10, p15, p20, p25, p30, p40, p50, p60, p70, p75, p80, p85, p90, p95}, acdc-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512}, acdc-BarringForSpecialAC BIT STRING(SIZE(5))}ACDC-BarringPerPLMN-r13 ::= SEQUENCE { plmn-IdentityIndex-r13 INTEGER(1..maxPLMN-r11), acdc-BarringInfo-r13 SEQUENCE { acdc-BarringForMO-Signalling-r13 per ACDC category AC-BarringConfig OPTIONAL, -- Need OP acdc-BarringForMO-Data-r13 per ACDC category AC-BarringConfig OPTIONAL -- Need OP } OPTIONAL, -- Need OP}
위 표의 각 필드를 설명하면 다음과 같다.
표 14
SIB 타입2 필드 설명
ac-BarringFactorUE에 의해서 생성되는 랜덤값이 ac-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringFactorUE에 의해서 생성되는 랜덤값이 acdc-BarringFactor에 의한 값보다 작을 경우, 액세스가 허용된다. 그렇지 않을 경우, 액세스는 금지된다.
acdc-BarringForMO-Data per ACDC categoryACDC 카테고리 별 발신(MO) 통화에 대한 ACDC 검사
acdc-BarringForMO-Signalling per ACDC categoryACDC 카테고리 별 발신(MO) 시그널링에 대한 ACDC 검사
ACDC categoryACDC 카테고리(예컨대, ACDC Cat I, ACDC Cat II, ACDC Cat 128).
ac-BarringForSpecialACAC 11-15에 대한 ACB 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
acdc-BarringForSpecialACAC 11-15에 대한 ACDC 검사. 첫 번째/가장 죄측의 비트는 AC11을 위한 것이고, 두번째 비트는 AC 12를 위한 것임
ac-BarringTime평균 액세스 차단 시간(초)
acdc-BarringTime평균 액세스 차단 시간(초)
도 18에 도시된 제안 5a 및 제안 5b를 3GPP 표준 문서 TS 36.331의 5.3.3.2절 표현에 맞춰 설명하면 다음과 같다.
UE는 상위 계층의 요청에 따라 RRC 연결 절차를 수행한다. 이 절차를 수행할 때, UE는
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 복수의 ACDC 카테고리 ID/정보를 제공하고, 아울러 UE는 발신 통화를 위한 RRC 연결을 수립하려는 경우,
2> 상기 상위 계층으로부터 제공된 다수의 ACDC 카테고리 중에서 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다.
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 다수의 ACDC 카테고리를 제공하고, 아울러 UE는 발신 시그널링을 위한 RRC 연결을 수립하려는 경우,
2> 상기 상위 계층으로부터 제공된 다수의 ACDC 카테고리 중에서 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다.
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
한편, UE는 상기 ACDC 차단 검사를 다음과 같이 수행한다.
1> 타이머 T3xx 또는 Tbarring가 구동중인 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그러나, SIB 타입 2가 ACDC 차단 파라미터를 포함하는 경우
2> UE가 USIM에 하나 이상의 액세스 클래스(11~15)를 저장하고 있는 경우,
2> 유효한 액세스 클래스들 중 적어도 하나에 대해서, ACDC barring parameter 내에 포함된 acdc-BarringForSpecialAC의 대응 비트를 0으로 설정한다.
3> 해당 셀에 대한 액세스는 차단되지 않는 것으로 간주한다.
2> 그렇지 않은 경우,
3> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
3> 상기 rand가 ACDC barring parameter 내에 포함된 acdc-BarringFactor에 의해 지시되는 값보다 작은 경우
4> 해당 셀로의 액세스는 차단되지 않는 다고 간주한다.
3> 그렇지 않은 경우
4> 해당 셀로의 액세스는 차단된다고 간주한다.
1> 그렇지 않은 경우
2> 해당 셀로의 액세스는 차단된다고 간주한다;
1> 해당 셀로의 액세스가 차단되고, 타이머 Txxx 및 Tbarring이 구동중이 아닌 경우
2> 범위 0 ≤ rand < 1를 충족하도록 균등하게 분산된 랜덤 값 rand를 생성한다.
2> ACDC barring parameter 내의 acdc-BarringTime 를 이용하여 다음과 같이 산출된 타이머 값으로 설정된 타이머 Tbarring를 구동한다.
"Tbarring" =(0.7+ 0.6 * rand) * acdc-BarringTime.
한편, 도 19에 도시된 제안 5a 및 제안 5b를 3GPP 표준 TS 36.331 문서의5.3.3.2절 표현에 맞춰 설명하면 다음과 같다.
1> 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위/ID/정보)를 제공하고, 아울러 UE는 발신 통화를 위한 RRC 연결을 수립하려는 경우,
2> ACDC 설정 정보에 기초하여 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다.
2> Tbarring로서 Txxx를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Data를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 통화에 대한 ACDC가 적용되었음을 알린다.
1> 한편, 상위 계층이 RRC 연결 요청은 ACDC 검사의 대상이라고 지시하면서, 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위/ID/정보)를 제공하고, 아울러 UE는 발신 시그널링을 위한 RRC 연결을 수립하려는 경우,
2> ACDC 설정 정보에 기초하여 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다.
2> Tbarring로서 Tyyy를 이용하고, ACDC barring parameter로서 acdc-BarringForMO-Signalling를 이용함으로써, ACDC 카테고리 별로 ACDC 차단 검사를 수행한다.
2> 액세스가 차단되는 경우,
3> 상위 계층에게 상기 RRC 연결 수립의 실패를 알리고, 발신 시그널링에 대해 ACDC가 적용되었음을 알린다.
V-3. 제안 5c
만약, 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션이(동시에) 여러 개인 경우 혹은 NAS 복구 과정 중 이전과 다르게 변경된 경우,
i) 상기 획득한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여, 애플리케이션 계층으로부터 제공 받은 애플리케이션 ID/정보/인디케이션에 대한 애플리케이션 그룹/카테고리/우선순위를 결정한다. 이때, 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 선택한다. 이후 AS(RRC) 계층으로부터 제공 받은 ACDC 설정 정보(애플리케이션 그룹/카테고리/우선순위 정보/ID 별 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)에 기반하여, (이때, 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여) 애플리케이션 계층으로부터의 애플리케이션의 서비스 시작 요청에 대한 ACDC 검사를 수행한다. 만약 ACDC 검사를 통과하면, 이를 위한 서비스 요청 절차 혹은 TAU 절차 을 수행하게 된다. 만약 ACDC 검사가 통과되지 못하면이를 위한 서비스 요청 절차 혹은 TAU 절차 을 수행하지 않는다;
ii) 상기 획득한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여, 애플리케이션 계층으로부터 제공 받은 애플리케이션 ID/정보/인디케이션에 대한 애플리케이션 그룹/카테고리/우선순위를 결정한다. 이때, 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 선택한다. 이후 AS(RRC) 계층으로부터 제공 받은 ACDC 설정 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID 별로 차단 비율, 차단 펙터, 평균 차단 시간, ACB 스킵 설정 등의 정보)에 기반하여 (이때, 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여) 애플리케이션 계층으로부터의 애플리케이션의 서비스 시작 요청에 대한 ACDC 검사를 수행한다. 만약 ACDC 검사를 통과하면, 이를 위한 서비스 요청 절차 혹은 TAU 절차 을 수행하게 된다. 만약 ACDC 검사가 통과되지 못하면이를 위한 서비스 요청 절차 혹은 TAU 절차 을 수행하지 않는다;
상기 i), ii)방식은 NAS 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
만약, 애플리케이션 계층으로부터 받은 애플리케이션 ID/정보/인디케이션 가 (동시에) 여러 개인 경우 혹은 NAS 복구 과정 중 이전과 다르게 변경된 경우, 여러 개의 애플리케이션 ID/정보/인디케이션(이전 정보와 변경된 정보) 모두 AS(RRC)계층에게 제공할 수 있다.
만약, NAS 계층으로부터 받은 애플리케이션 ID/정보/인디케이션이 (동시에) 여러 개인 경우,
i) 상기 획득한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여, NAS 계층으로부터 제공 받은 애플리케이션 ID/정보/인디케이션에 대한 애플리케이션 그룹/카테고리/우선순위를 결정한다. 이후, 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다(ACDC 검사). 이때, 가장 높은(highest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 선택하여 이를 기반으로 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다(ACDC 검사). 또는,
ii) 상기 획득한 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)에 기반하여, NAS 계층으로부터 제공 받은 애플리케이션 ID/정보/인디케이션에 대한 애플리케이션 그룹/카테고리/우선순위를 결정한다. 이후, 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다(ACDC 검사). 이때, 가장 낮은(lowest) 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 선택하여 이를 기반으로 애플리케이션의 서비스 연결을 위한 RRC 연결 요청 절차를 수행하게 된다(ACDC 검사).
상기 i), ii) 방식은 AS(RRC) 계층이 인지 결정하게 되며, 이때 네트워크 설정/정책, UE 성능/기능 등에 의해서 i), ii) 방식 중 하나가 구현되어 동작 될 수 있다.
도 20 및 도 21는 제안 5C에 따른 신호 흐름을 나타낸 예시도들이다.
도 20을 참조하면, NAS 계층은 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션이 (동시에) 여러 개인 경우, 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다. 이어서, 상기 NAS 계층은 상기 결정된 가장 높은 혹은 가장 낮은 ACDC 카테고리에 기초하여, ACDC 검사를 수행한다. ACDC 검사가 통과되는 경우, 상기 NAS 계층은 ACB 스킵 인디케이션을 상기 AS(RRC) 계층으로 전달한다. AS(RRC) 계층은 ACB 스킵 인디케이션을 제공 받은 후 일반적인 ACB를 스킵한다(수행하지 않는다) 또는 AS(RRC) 계층은 ACB 스킵 인디케이션을 제공 받지 않더라도 일반적인 ACB를 스킵한다(수행하지 않는다 ).
도 21를 참조하면, NAS 계층은 애플리케이션 계층으로부터 받은 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID) + 애플리케이션 ID/정보/인디케이션이(동시에) 여러 개인 경우, 가장 높은 혹은 가장 낮은 ACDC 카테고리를 결정한다.
V-4. 제안 5d
제안되는 애플리케이션 그룹/카테고리/우선순위 정보/ID 별 연결 차등화 방안(ACDC 검사)은 UE가 페이징에 대한 응답으로서 수행하는 서비스 요청 절차와 UE가 수행하는 응급 전화(CSFB 응급전화, 1xCSFB 응급 전화, IMS 응급 서비스)에 대해서는 적용하지 않는다. 다만, ACB가 적용될 수 있다(또는 SSAC(Service Specific Access Control ) 및 ACB가 적용될 수 있음). 이 경우, UE의 NAS 계층이 페이징에 대한 응답으로서 수행하는 서비스 요청 절차의 시작과 응급 전화의 시작을 인지하게 되면, 애플리케이션 관련 정보(즉, 애플리케이션 그룹/카테고리/우선순위 정보/ID)를 AS(RRC) 계층에게 알려 주지 않음으로써, 상기 AS(RRC) 계층은 ACDC 검사를 수행하지 않고 일반 ACB를 수행할 수 있다.
본 명세서의 제안 5a, 5b, 5c, 5d는 본 명세서의 제안 1, 제안 2, 제안 3, 제안 4과 모두(상호 조합하여) 적용할 수 있다.
한편, 위에서 설명한 제안들은 조합될 수 있다.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도면을 참조하여 설명하기로 한다.
도 22는 본 발명의 실시예에 따른 UE(100) 및 기지국(200) 의 구성 블록도이다.
도 22에 도시된 바와 같이 상기 UE(100)은 저장 수단(101)와 컨트롤러(102)와 송수신부(103)를 포함한다. 그리고 상기 기지국(200)는 저장 수단(201)와 컨트롤러(202)와 송수신부(203)를 포함한다.
상기 저장 수단들(101, 201)은 전술한 방법을 저장한다.
상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201) 및 상기 송수신부들(103, 203)을 제어한다. 구체적으로 상기 컨트롤러들(102, 202)은 상기 저장 수단들(101, 201)에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 컨트롤러들(102, 202)은 상기 송수신부들(103, 203)을 통해 상기 전술한 신호들을 전송한다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.

Claims (13)

  1. 사용자 장치(user equipment: UE)에서 네트워크 액세스를 시도하는 방법으로서,
    ACDC(Application specific Congestion control for Data Communication)가 설정되어있는 경우, 네트워크 액세스를 시도하는 애플리케이션의 관련 정보를 상위 계층으로부터 획득하는 단계와;
    상기 획득된 애플리케이션의 관련 정보에 기초하여, ACDC 카테고리를 결정하는 단계와;
    상기 결정된 ACDC 카테고리에 기초하여, ACDC 검사를 수행하는 단계를 포함하고,
    상기 ACDC 검사에 따라 애플리케이션 별로 네트워크 액세스 시도가 차단(barred)되거나 허용되는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  2. 제1항에 있어서, 상기 애플리케이션 관련 정보는
    상기 애플리케이션의 그룹, 카테고리, 우선순위, 정보 및 ID 중 하나 이상을 포함하는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  3. 제1항에 있어서, 상기 ACDC 검사는
    특정한 애플리케이션 단위 별로 정의되는 ACDC 설정 정보에 기초하여 수행되는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  4. 제3항에 있어서, 상기 ACDC 설정 정보는
    특정한 애플리케이션 단위 별로 정의되는 차단 비율, 차단 펙터, 차단 시간, 로밍 정보, ACB 스킵 설정을 포함하는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  5. 제3항에 있어서, 상기 특정한 애플리케이션 단위는
    애플리케이션의 그룹, 카테고리, 우선순위, 혹은 정보/ID 단위인 것을 특징으로 하는 네트워크 액세스 차단 방법.
  6. 제1항에 있어서, 상기 ACDC 카테고리를 결정하는 단계에서는
    상기 상위 계층으로부터 획득되는 애플리케이션의 관련 정보가 복수 개수인 경우,
    가장 높은 등급의 애플리케이션 관련 정보 혹은 가장 낮은 등급의 애플리케이션 관련 정보에 기초하여, ACDC 카테고리를 결정하는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  7. 제1항에 있어서, 상기 ACDC 카테고리를 결정하는 단계에서는
    상기 상위 계층으로부터 획득되는 애플리케이션의 관련 정보가 복수 개수인 경우, 복수의 ACDC 카테고리를 결정하는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  8. 제7항에 있어서, 상기 ACDC 검사를 수행하는 단계에서는,
    상기 결정된 복수의 ACDC 카테고리들 중에서 가장 높은 등급의 애플리케이션 관련 정보 혹은 가장 낮은 등급의 애플리케이션 관련 정보에 기초하여, ACDC 검사가 수행되는 것을 특징으로 하는 네트워크 액세스 차단 방법.
  9. 네트워크 액세스를 시도하는 사용자 장치(user equipment: UE)로서,
    송수신부와;
    상기 송수신부를 제어하는 프로세서로서, 상기 프로세서는:
    ACDC(Application specific Congestion control for Data Communication)가 설정되어있는 경우, 네트워크 액세스를 시도하는 애플리케이션의 관련 정보를 획득하는 과정과;
    상기 획득된 애플리케이션의 관련 정보에 기초하여, ACDC 카테고리를 결정하는 과정과;
    상기 결정된 ACDC 카테고리에 기초하여, ACDC 검사하는 과정을 수행하고,
    여기서, 프로세서는 상기 ACDC 검사에 따라 애플리케이션 별로 네트워크 액세스 시도가 차단(barred)하거나, 허용하는 것을 특징으로 하는 사용자 장치.
  10. 제9항에 있어서, 상기 애플리케이션 관련 정보는
    상기 애플리케이션의 그룹, 카테고리, 우선순위, 정보 및 ID 중 하나 이상을 포함하는 것을 특징으로 하는 사용자 장치.
  11. 제9항에 있어서, 상기 ACDC 검사는
    특정한 애플리케이션 단위 별로 정의되는 ACDC 설정 정보에 기초하여 수행되는 것을 특징으로 하는 사용자 장치.
  12. 제11항에 있어서, 상기 ACDC 설정 정보는
    특정한 애플리케이션 단위 별로 정의되는 차단 비율, 차단 펙터, 차단 시간, 로밍 정보, ACB 스킵 설정을 포함하는 것을 특징으로 하는 사용자 장치.
  13. 제11항에 있어서, 상기 특정한 애플리케이션 단위는
    애플리케이션의 그룹, 카테고리, 우선순위, 혹은 정보/ID 단위인 것을 특징으로 하는 사용자 장치.
PCT/KR2015/006654 2014-06-30 2015-06-29 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치 WO2016003140A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580002099.1A CN105612788B (zh) 2014-06-30 2015-06-29 对每个应用限制网络接入的方法和用户设备
US14/915,979 US10080181B2 (en) 2014-06-30 2015-06-29 Method for barring network access for each application, and user equipment
JP2016538876A JP6318253B2 (ja) 2014-06-30 2015-06-29 アプリケーション別ネットワークアクセス遮断方法及びユーザ装置
EP15814775.1A EP3163947B1 (en) 2014-06-30 2015-06-29 Method for barring network access for each application, and user equipment

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201462018677P 2014-06-30 2014-06-30
US62/018,677 2014-06-30
US201462077290P 2014-11-09 2014-11-09
US62/077,290 2014-11-09
US201562105725P 2015-01-20 2015-01-20
US62/105,725 2015-01-20
US201562153497P 2015-04-27 2015-04-27
US62/153,497 2015-04-27
US201562159992P 2015-05-12 2015-05-12
US62/159,992 2015-05-12

Publications (1)

Publication Number Publication Date
WO2016003140A1 true WO2016003140A1 (ko) 2016-01-07

Family

ID=55019604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006654 WO2016003140A1 (ko) 2014-06-30 2015-06-29 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치

Country Status (5)

Country Link
US (1) US10080181B2 (ko)
EP (1) EP3163947B1 (ko)
JP (2) JP6318253B2 (ko)
CN (1) CN105612788B (ko)
WO (1) WO2016003140A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084669A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and user equipment for provisioning minimum system information in wireless communication system
WO2018128459A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 접속 제어 메커니즘을 위하여 시그널링 카테고리를 구성하는 방법 및 장치
WO2018079948A3 (ko) * 2016-10-26 2018-08-02 에스케이텔레콤 주식회사 단말장치 및 기지국장치와, qos 제어방법
CN108605266A (zh) * 2016-03-31 2018-09-28 华为技术有限公司 无线接入控制方法、装置及系统
JPWO2017122752A1 (ja) * 2016-01-15 2018-11-01 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR20190008980A (ko) * 2016-07-05 2019-01-25 엘지전자 주식회사 차세대 이동통신 네트워크에서 액세스 제어를 수행하는 방법 및 사용자 장치
WO2019027291A1 (en) * 2017-08-03 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONTROLLING ACCESS TO A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
CN109792790A (zh) * 2016-06-27 2019-05-21 黑莓有限公司 提高volte/vilte通话的可靠性
JP2019532594A (ja) * 2016-11-03 2019-11-07 ソニー株式会社 無線電気通信装置及び方法
AU2015411026B2 (en) * 2015-09-30 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service bearing congestion control method and apparatus
US10873880B2 (en) 2018-01-10 2020-12-22 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication in wireless communication system
US11057881B2 (en) 2016-02-05 2021-07-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service transmission method and apparatus
EP3437392B1 (en) * 2016-03-28 2022-03-02 Apple Inc. Tau on ims call request in radio access networks

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003140A1 (ko) * 2014-06-30 2016-01-07 엘지전자 주식회사 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
CN106664596B (zh) * 2014-07-30 2020-04-14 Lg 电子株式会社 在无线通信系统中执行用于wlan互通的接入控制的方法和装置
CN106454999B (zh) * 2015-08-13 2019-10-08 中国移动通信集团公司 一种接入控制方法及装置
KR102112203B1 (ko) * 2015-08-14 2020-05-19 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 데이터 통신에 대한 애플리케이션-특정 혼잡 제어를 위한 제어 정보를 제공하는 시스템 및 방법
US11044776B2 (en) * 2016-03-27 2021-06-22 Lg Electronics Inc. Method for attempting network access from NB-IoT RAT
CN107889186B (zh) 2016-09-30 2021-01-12 华为技术有限公司 接入控制方法、终端设备和无线接入网设备
WO2018086059A1 (en) * 2016-11-11 2018-05-17 Qualcomm Incorporated Access control in connected mode, idle mode, and inactive state
US10652702B2 (en) * 2016-11-11 2020-05-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods, user equipment and application managing function node for managing transfer of message over radio interface
US10798640B2 (en) * 2017-01-06 2020-10-06 Mediatek Inc. Enhancement of unified access control
RU2731336C1 (ru) * 2017-01-23 2020-09-01 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ доступа и оконечное устройство
EP3577954B1 (en) * 2017-02-03 2022-06-22 Telefonaktiebolaget LM Ericsson (PUBL) Access to a communication system employing network slicing based on pre-configured access category
KR102208120B1 (ko) * 2017-02-03 2021-01-26 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 통신 시스템을 위한 액세스 카테고리 처리
KR102375019B1 (ko) * 2017-08-03 2022-03-16 삼성전자 주식회사 차세대 이동통신 시스템에서 엑세스 제어를 위한 방법 및 장치
KR20240068060A (ko) 2017-08-09 2024-05-17 인터디지탈 패튼 홀딩스, 인크 5g 엔알에서의 액세스 제어
CN116193537A (zh) * 2017-08-11 2023-05-30 诺基亚技术有限公司 无线网络的特定于网络切片的接入限制
CN109587755B (zh) * 2017-09-28 2021-01-22 电信科学技术研究院 一种接入控制方法、装置及移动终端
CN111201813B (zh) * 2017-12-28 2022-03-25 Lg电子株式会社 用于在无线通信系统中接入网络的方法及其设备
US11665618B2 (en) 2018-01-18 2023-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods of determining access categories and/or establishment causes and related devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130045706A1 (en) * 2011-08-16 2013-02-21 Mediatek, Inc. Enhanced Acess Control in LTE Advanced Systems
US20130051325A1 (en) * 2011-08-30 2013-02-28 Ki Seon Ryu Method and apparatus for performing random access with extended access barring
US20130170479A1 (en) * 2011-11-11 2013-07-04 Mo-Han Fong Random backoff for extended access barring
US20140128029A1 (en) * 2011-08-11 2014-05-08 Mo-Han Fong Extended access barring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925151A (zh) * 2009-06-12 2010-12-22 华为技术有限公司 接入控制方法、设备及系统
US9661525B2 (en) * 2012-03-21 2017-05-23 Samsung Electronics Co., Ltd. Granular network access control and methods thereof
JP5936435B2 (ja) * 2012-05-07 2016-06-22 株式会社Nttドコモ 移動局
WO2014007592A1 (en) * 2012-07-06 2014-01-09 Lg Electronics Inc. Method and apparatus for service access barring
CN103857005A (zh) * 2012-12-03 2014-06-11 电信科学技术研究院 接入控制方法和设备
HUE038867T2 (hu) 2013-03-29 2018-12-28 Intel Ip Corp WLAN kiválasztási irányelv vezérlés barangolási (roaming) szcenáriókban
EP3039887A1 (en) * 2013-08-30 2016-07-06 Interdigital Patent Holdings, Inc. Methods for application specific access control
US10075902B2 (en) * 2014-04-08 2018-09-11 Qualcomm Incorporated Method of unified control of random access and traffic ingress in a congested radio access network
WO2016003140A1 (ko) * 2014-06-30 2016-01-07 엘지전자 주식회사 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
KR101823815B1 (ko) * 2014-11-10 2018-01-31 엘지전자 주식회사 Acdc에 의한 네트워크 액세스 차단 방법 및 사용자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140128029A1 (en) * 2011-08-11 2014-05-08 Mo-Han Fong Extended access barring
US20130045706A1 (en) * 2011-08-16 2013-02-21 Mediatek, Inc. Enhanced Acess Control in LTE Advanced Systems
US20130051325A1 (en) * 2011-08-30 2013-02-28 Ki Seon Ryu Method and apparatus for performing random access with extended access barring
US20130170479A1 (en) * 2011-11-11 2013-07-04 Mo-Han Fong Random backoff for extended access barring

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166187B2 (en) 2015-09-30 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service bearer congestion control method and device
AU2015411026B2 (en) * 2015-09-30 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service bearing congestion control method and apparatus
JPWO2017122752A1 (ja) * 2016-01-15 2018-11-01 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US11540320B2 (en) 2016-01-15 2022-12-27 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
TWI748983B (zh) * 2016-02-05 2021-12-11 大陸商Oppo廣東移動通信有限公司 業務傳輸的方法和裝置
US11457444B2 (en) 2016-02-05 2022-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service transmission method and apparatus
US11272501B2 (en) 2016-02-05 2022-03-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service transmission method and apparatus
US11057881B2 (en) 2016-02-05 2021-07-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Service transmission method and apparatus
EP3437392B1 (en) * 2016-03-28 2022-03-02 Apple Inc. Tau on ims call request in radio access networks
CN108605266A (zh) * 2016-03-31 2018-09-28 华为技术有限公司 无线接入控制方法、装置及系统
US11751121B2 (en) 2016-03-31 2023-09-05 Huawei Technologies Co., Ltd. Radio access control method, apparatus, and system
US11064421B2 (en) 2016-03-31 2021-07-13 Huawei Technologies Co., Ltd. Radio access control method, apparatus, and system
CN108605266B (zh) * 2016-03-31 2020-09-11 华为技术有限公司 无线接入控制方法、装置及系统
CN109792790A (zh) * 2016-06-27 2019-05-21 黑莓有限公司 提高volte/vilte通话的可靠性
US10813159B2 (en) 2016-07-05 2020-10-20 Lg Electronics Inc. Method for performing access control in next-generation mobile communication network, and user equipment
KR20190008980A (ko) * 2016-07-05 2019-01-25 엘지전자 주식회사 차세대 이동통신 네트워크에서 액세스 제어를 수행하는 방법 및 사용자 장치
KR102160007B1 (ko) * 2016-07-05 2020-09-25 엘지전자 주식회사 차세대 이동통신 네트워크에서 액세스 제어를 수행하는 방법 및 사용자 장치
EP3481109A4 (en) * 2016-07-05 2020-01-01 LG Electronics Inc. -1- METHOD FOR PERFORMING ACCESS CONTROL IN A NEXT GENERATION MOBILE COMMUNICATION NETWORK, AND USER EQUIPMENT
WO2018079948A3 (ko) * 2016-10-26 2018-08-02 에스케이텔레콤 주식회사 단말장치 및 기지국장치와, qos 제어방법
US10827379B2 (en) 2016-10-26 2020-11-03 Sk Telecom Co., Ltd. Terminal device, base station device, and method for controlling QoS
JP7056654B2 (ja) 2016-11-03 2022-04-19 ソニーグループ株式会社 無線電気通信装置及び方法
US12058606B2 (en) 2016-11-03 2024-08-06 Sony Group Corporation Wireless telecommunications apparatuses and methods
JP2019532594A (ja) * 2016-11-03 2019-11-07 ソニー株式会社 無線電気通信装置及び方法
US10499325B2 (en) 2016-11-04 2019-12-03 Samsung Electronics Co., Ltd. Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
US10506505B2 (en) 2016-11-04 2019-12-10 Samsung Electronics Co., Ltd. Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
US10356702B2 (en) 2016-11-04 2019-07-16 Samsung Electronics Co., Ltd. Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
US10856214B2 (en) 2016-11-04 2020-12-01 Samsung Electronics Co., Ltd. Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
US11382029B2 (en) 2016-11-04 2022-07-05 Samsung Electronics Co., Ltd. Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
WO2018084669A1 (en) * 2016-11-04 2018-05-11 Samsung Electronics Co., Ltd. Method and user equipment for provisioning minimum system information in wireless communication system
US10952125B2 (en) 2017-01-06 2021-03-16 Lg Electronics Inc. Method and device for configuring signaling category for access control mechanism in wireless communication system
WO2018128459A1 (ko) * 2017-01-06 2018-07-12 엘지전자 주식회사 무선 통신 시스템에서 접속 제어 메커니즘을 위하여 시그널링 카테고리를 구성하는 방법 및 장치
US11246183B2 (en) 2017-08-03 2022-02-08 Samsung Electronics Co., Ltd. Method and apparatus for controlling access in next generation mobile communication system
WO2019027291A1 (en) * 2017-08-03 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CONTROLLING ACCESS TO A NEXT GENERATION MOBILE COMMUNICATION SYSTEM
US11445404B2 (en) 2018-01-10 2022-09-13 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication in wireless communication system
US10873880B2 (en) 2018-01-10 2020-12-22 Samsung Electronics Co., Ltd. Method and apparatus for wireless communication in wireless communication system

Also Published As

Publication number Publication date
EP3163947B1 (en) 2019-09-04
US10080181B2 (en) 2018-09-18
JP6505274B2 (ja) 2019-04-24
US20160219493A1 (en) 2016-07-28
CN105612788A (zh) 2016-05-25
JP2018121338A (ja) 2018-08-02
JP6318253B2 (ja) 2018-04-25
EP3163947A1 (en) 2017-05-03
CN105612788B (zh) 2019-05-28
EP3163947A4 (en) 2017-12-20
JP2016537907A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2016003140A1 (ko) 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
WO2015142048A1 (ko) 서비스 요청 절차 수행 방법 및 사용자 장치
WO2016024832A1 (ko) 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
WO2018128458A1 (ko) 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
WO2016076606A1 (ko) Acdc에 의한 네트워크 액세스 차단 방법 및 사용자 장치
WO2018147567A1 (ko) 네트워크 혼잡으로 인해 액세스 제어가 적용되는 상황에서 리모트 단말이 중계 단말을 선택하는 방법 및 그 방법을 수행하는 리모트 단말
WO2019190166A1 (ko) Ladn을 위한 pdu 세션 수립 절차를 수행하는 방법, 사용자 장치 및 네트워크 노드
WO2016159521A1 (ko) 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
WO2018088756A1 (ko) Rrc 메시지를 전송하는 방법 및 무선 기기
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2017171184A1 (ko) Nb-iot rat에서 네트워크 액세스를 시도하는 방법
WO2018231028A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2017142171A1 (ko) 차세대 이동통신에서 세션을 생성, 수정, 해제하는 방법 및 단말
WO2018110939A1 (ko) 무선 통신 시스템에서의 트래킹 영역 할당 방법 및 이를 위한 장치
WO2019054783A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
WO2018093168A1 (ko) 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치
WO2018097601A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2018008980A1 (ko) 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치
WO2015160215A2 (ko) 라우팅 규칙을 전달하는 방법
WO2018088630A1 (ko) Rrc 메시지를 전송하는 방법 및 무선 기기
WO2018026185A1 (ko) 접속 시도 방법 및 사용자기기와, 접속 제어 방법 및 기지국
WO2017078468A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2019031865A1 (ko) 무선 통신 시스템에서 rrc 연결 절차 수행 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14915979

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015814775

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814775

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE