Nothing Special   »   [go: up one dir, main page]

WO2016002804A1 - 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置 - Google Patents

接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置 Download PDF

Info

Publication number
WO2016002804A1
WO2016002804A1 PCT/JP2015/068885 JP2015068885W WO2016002804A1 WO 2016002804 A1 WO2016002804 A1 WO 2016002804A1 JP 2015068885 W JP2015068885 W JP 2015068885W WO 2016002804 A1 WO2016002804 A1 WO 2016002804A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary fixing
manufacturing
fixing material
power module
heat sink
Prior art date
Application number
PCT/JP2015/068885
Other languages
English (en)
French (fr)
Inventor
智哉 大開
宗太郎 大井
仁人 西川
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US15/320,441 priority Critical patent/US10607915B2/en
Priority to KR1020177002020A priority patent/KR102300970B1/ko
Priority to CN201580033623.1A priority patent/CN106471616B/zh
Priority to EP15815025.0A priority patent/EP3196927B1/en
Priority claimed from JP2015130973A external-priority patent/JP6550971B2/ja
Publication of WO2016002804A1 publication Critical patent/WO2016002804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a laminate comprising a plurality of members used for manufacturing a power module substrate for a semiconductor device that controls a large current and a high voltage, a method for manufacturing a power module substrate, and a laminate manufacturing apparatus. About.
  • a circuit board is bonded to one surface of a ceramic substrate in a laminated state, and a heat sink is bonded to the other surface in a stacked state.
  • This power module substrate is provided as a power module by soldering an electronic component such as a semiconductor chip (power element) on a circuit board and bonding a heat sink to the heat sink.
  • Patent Document 1 discloses a method for manufacturing a power module substrate including an insulating layer and a circuit layer formed on one surface of the insulating layer.
  • the power module substrate manufacturing method includes a circuit layer forming step of forming a circuit layer by laminating a copper layer on the aluminum layer after disposing an aluminum layer on one surface of the insulating layer, Solid phase diffusion bonding is performed by heating and holding an aluminum layer and a copper layer under a load.
  • a brazing material foil is pasted on one surface of a metal flat plate via a resin coating layer (containing octanediol as an organic resin), and a superposition of these metal flat plate and the brazing material foil is a circuit layer.
  • the circuit layer and the ceramic flat plate are laminated and bonded via the brazing material foil by punching and molding the outer shape of the brazing material foil onto the ceramic flat plate.
  • An object of the present invention is to provide a method for manufacturing a bonded body that can be efficiently manufactured, and to provide a method for manufacturing a power module substrate in which the method is applied to a power module substrate.
  • a temporary fixing material mainly composed of a saturated fatty acid is applied to any one of the first member made of a metal plate and the second member including one or more metal plates or ceramic plates, The first member stacked by stacking and aligning the first member and the second member via the temporary fixing material in a state where the temporary fixing material is melted, and cooling the temporary fixing material.
  • the first member and the second member are temporarily fixed by the temporary fixing material mainly composed of saturated fatty acid, the first member and the second member are not displaced in the subsequent joining process. It is held in a positioned state. Therefore, the subsequent handling is facilitated, the productivity is improved, and the respective members can be joined in a precisely positioned state.
  • Temporary fixing material using saturated fatty acid that is solid at room temperature is melted and liquefied by heating. For this reason, after stacking the first member and the second member, the temporary fixing material is solidified by cooling to room temperature, and the first member and the second member can be easily bonded. Further, in the joining step, saturated fatty acids are quickly decomposed at a temperature sufficiently lower than the joining temperature, so that the joining surface between the first member and the second member is not affected.
  • saturated fatty acids have high fluidity in the liquefied molten state, and the first member and the second member are superposed on each other to quickly spread and maintain good bondability when in close contact with each other. it can.
  • the saturated fatty acid of the temporary fixing material may have 10 to 30 carbon atoms.
  • a saturated fatty acid having 10 to 30 carbon atoms has a melting point of about 32 ° C. to 94 ° C. and is solidified at room temperature, but it can be liquefied at a relatively low heating temperature, so that it is easy to handle. Excellent.
  • saturated fatty acids having 10 to 30 carbon atoms include capric acid having 10 carbon atoms, lauric acid having 12 carbon atoms, myristic acid having 14 carbon atoms, palmitic acid having 16 carbon atoms, and stearic acid having 18 carbon atoms. And melicic acid having 30 carbon atoms. Note that these saturated fatty acids are inexpensive and easily available.
  • a bonding material layer is formed on the surface of either the first member or the second member, and the bonding step and the temporary fixing material are interposed in the laminating step.
  • the first member and the second member may be laminated.
  • the third member made of a metal plate is temporarily fixed to the stacked body formed by the stacking process before the bonding process.
  • a second stacking step wherein in the second stacking step, a second temporary fixing material mainly composed of a saturated fatty acid having a melting point lower than that of the temporary fixing material is provided in either the laminate or the third member.
  • the laminated body and the third member Are aligned and laminated, and then the second temporary fixing material is cooled to form a second laminated body in which the laminated body and the third member are temporarily fixed.
  • the second laminated layer is formed.
  • the saturated fatty acid of the temporary fixing material may have 10 to 30 carbon atoms.
  • a bonding material layer is formed on a surface of either the first member or the second member, and the first member and the second member are interposed via the bonding material layer and the temporary fixing material in the stacking step. You may laminate
  • a second bonding material layer is formed on the surface of either the second laminated body or the third member, and the second temporary fixing material and the second bonding material layer are interposed in the second lamination step.
  • the laminated body and the third member may be laminated.
  • a method for manufacturing a power module substrate with a heat sink according to the present invention is a method for manufacturing a power module substrate with a heat sink to which the above-described multilayer assembly manufacturing method is applied, wherein the first member is made of copper or aluminum. And the second member is a ceramic substrate formed by laminating aluminum metal layers on both surfaces of a ceramic plate, the third member is a heat sink made of copper or aluminum, and in the joining step, While joining one side of the said aluminum metal layer of the said 2nd member, joining the other side of the said 2nd member said aluminum metal layer, and the said 3rd member, the board
  • the method for manufacturing a power module substrate according to the present invention is a method for manufacturing a power module substrate to which the above-described method for manufacturing a joined body is applied, wherein the first member is a copper circuit board, and the second member is a ceramic.
  • a method for manufacturing a power module substrate with a heat sink according to the present invention is a method for manufacturing a power module substrate with a heat sink to which the manufacturing method for a joined body described above is applied, wherein the first member is a heat sink made of copper or aluminum,
  • the second member is a power module substrate in which metal layers are laminated on both surfaces of a ceramic plate, and in the joining step, one of the metal layers of the second member and the first member are joined,
  • a power module substrate with a heat sink is formed as a bonded body.
  • the bonding material layer is temporarily fixed to the surface of either the first member or the second member by a bonding material layer temporary fixing material.
  • the temporary fixing material may be applied to either the first member or the second member where the bonding material layer is not formed.
  • the laminate manufacturing apparatus of the present invention includes a first member made of a metal plate and a second member including at least one metal plate or ceramic plate on either one of the first member and the second member.
  • An apparatus for manufacturing a laminate wherein the first member and the second member are temporarily bonded to each other by the formed temporary fixing material containing a saturated fatty acid as a main component, the first member or the first member Laminating means for conveying one of the two members on which the temporary fixing material is formed onto the other and laminating the first member and the second member; and the first member and the second member Heating means for melting the temporary fixing material when laminating.
  • the temporary fixing material using saturated fatty acid solid at normal temperature is melted by heating, it is necessary to put it in a heated state when laminating the first member and the second member. For this reason, the first member and the second member can be efficiently fixed by providing a heating means for heating the temporary fixing material when the first member and the second member are laminated.
  • the laminate manufacturing apparatus of the present invention includes a first member made of a metal plate and a second member including at least one metal plate or ceramic plate, and one of the first member and the second member.
  • An apparatus for manufacturing a laminate wherein the first member and the second member are temporarily bonded to each other by a temporary fixing material mainly composed of a saturated fatty acid formed thereon, the first member or Laminating means for transporting the other of the second members onto one of the temporary members, and laminating the first member and the second member; and the first member and the second member And heating means for melting the temporary fixing material.
  • the saturated fatty acid which is the main component of the temporary fixing material
  • the molten temporary fixing material is bonded to
  • it is desirable that the temporary fixing material is in a solidified state until just before the two members are laminated. Therefore, in the joined body manufacturing apparatus of the present invention, one plate on which the temporary fixing material is formed can be brought into a stationary state by conveying the other plate instead of the one plate on which the temporary fixing material is formed. Since it can do, it can prevent that a temporary fix
  • a cooling means for cooling the temporary fixing material after the first member and the second member are laminated it is preferable to include a cooling means for cooling the temporary fixing material after the first member and the second member are laminated.
  • the first member and the second member can be brought into an adhesive state by solidifying the temporary fixing material in a molten state by natural cooling, but the first member and the second member can be positively cooled by the cooling means.
  • the state in which the member is aligned can be determined immediately.
  • FIG. 1 shows a power module substrate 10 manufactured in the first embodiment of the present invention.
  • This power module substrate (the joined body of the present invention) 10 includes a copper circuit board (first member of the present invention) 30 and a ceramic substrate (invented in the present invention) in which aluminum metal layers 22 and 23 are laminated on both surfaces of the ceramic plate 21.
  • a second member 20, and one aluminum metal layer 22 of the ceramic substrate 20 and the copper circuit board 30 are bonded to each other.
  • the ceramic plate 21, the aluminum metal layers 22 and 23, and the copper circuit board 30 of the ceramic substrate 20 are formed in a rectangular planar shape.
  • the power module substrate 10 is soldered with an electronic component 60 such as a semiconductor chip on the surface of the copper circuit board 30, and a heat sink 50 is joined to the aluminum metal layer 23 disposed on the opposite side of the copper circuit board 30.
  • an electronic component 60 such as a semiconductor chip on the surface of the copper circuit board 30, and a heat sink 50 is joined to the aluminum metal layer 23 disposed on the opposite side of the copper circuit board 30.
  • the ceramic plate 21 is formed in a rectangular shape using, for example, a nitride ceramic such as AlN (aluminum nitride), Si 3 N 4 (silicon nitride), or an oxide ceramic such as Al 2 O 3 (alumina) as a base material. ing.
  • the thickness of the ceramic plate 21 is 0.125 mm to 1.0 mm.
  • the aluminum metal layers 22 and 23 are made of pure aluminum or aluminum alloy (simply referred to as aluminum) having a purity of 99.90% or more, have a thickness of 0.1 mm to 3.0 mm, and are generally smaller than the ceramic plate 21. It is formed in a flat plate shape.
  • the aluminum metal layers 22 and 23 are joined to the ceramic plate 21 by using a brazing material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn as a joining material.
  • the copper circuit board 30 is made of pure copper such as oxygen-free copper or tough pitch copper, or a copper alloy (simply referred to as copper in the present invention).
  • the thickness of the copper circuit board 30 is 0.1 mm to 5.0 mm.
  • the copper circuit board 30 is bonded to the aluminum metal layer 22 of the ceramic substrate 20 by solid phase diffusion bonding.
  • the laminated body manufacturing apparatus 90 uses the copper circuit board (first member of the present invention) 30 on which the temporary fixing material 40 mainly composed of saturated fatty acid is formed as the aluminum of the ceramic substrate (second member of the present invention) 20.
  • the laminated body 80 temporarily fixed to the metal layer 22 is manufactured.
  • the laminate manufacturing apparatus 90 places a base 91 on which the ceramic substrate 20 is placed and a copper circuit board 30 on which the temporary fixing material 40 is formed on the base 91.
  • the laminating means 95 for laminating the copper circuit board 30 and the ceramic substrate 20 while being transported onto the placed ceramic substrate 20 and aligned with the ceramic substrate 20 Heating means 96 for melting the temporary fixing material 40.
  • a plurality of guide pins 92 are erected on the base 91 on the mounting surface of the ceramic substrate 20 so as to surround the side surface of the ceramic substrate 20.
  • the ceramic substrate 20 is positioned on the base 91 by placing the ceramic substrate 20 in a region surrounded by the guide pins 92.
  • the stacking means 95 can be configured by a stacking pickup cylinder provided so as to be movable in the xyz axis direction, for example.
  • the laminating means 95 conveys the copper circuit board 30 with the adhesion surface 30a facing downward to the base 91 on which the ceramic substrate 20 is placed, and the adhesion surface 30a of the copper circuit board 30 is placed on the base 91.
  • the copper circuit board 30 and the ceramic substrate 20 are laminated by overlapping the ceramic substrate 20.
  • the upper surface of the copper circuit board 30 opposite to the attachment surface 30a is air adsorbed by the laminating means 95, thereby conveying the copper circuit board 30.
  • the heating means 96 can be composed of, for example, a rubber heater as shown in FIG. 3A. By disposing the rubber heater (heating means) 96 with the adhesion surface 30a of the copper circuit board 30 facing each other, the temporary fixing material 40 of the adhesion surface 30a can be heated and melted.
  • the laminating means 95 is provided with a temperature measuring means 97 for observing the molten state of the temporary fixing material 40 when the copper circuit board 30 is conveyed.
  • a temperature measuring means 97 for observing the molten state of the temporary fixing material 40 when the copper circuit board 30 is conveyed.
  • the temperature measuring means 97 for example, an infrared radiation thermometer can be used. In this embodiment, the temperature of the copper circuit board 30 held by the stacking means 95 is measured.
  • the laminate manufacturing apparatus 90 is provided with cooling means 98 for cooling the copper circuit board 30 and the ceramic substrate 20 after the lamination.
  • the cooling means 98 can be constituted by a cooling nozzle that blows air, for example, and is provided in the stacking means 95.
  • a temporary fixing material 40 containing a saturated fatty acid as a main component is applied to one side of a copper circuit board (first member) 30.
  • the temporary fixing material 40 is preferably a saturated fatty acid having 10 to 30 carbon atoms, solid at room temperature (25 ° C.), and having a relatively low melting point and undergoing phase transformation into a liquid. This is because when the number of carbon atoms is less than 10, it becomes liquid at room temperature, so the handling property is poor, and when it exceeds 30, the melting point becomes high, so that the workability of application to the copper circuit board 30 is deteriorated.
  • saturated fatty acids having 10 to 30 carbon atoms have a melting point of about 32 ° C. to 94 ° C. and are solidified at room temperature, but can be liquefied at a relatively low heating temperature. Therefore, it is excellent in handleability.
  • saturated fatty acids having 10 to 30 carbon atoms include capric acid having 10 carbon atoms, lauric acid having 12 carbon atoms, myristic acid having 14 carbon atoms, palmitic acid having 16 carbon atoms, and stearic acid having 18 carbon atoms. And melicic acid having 30 carbon atoms. Note that these saturated fatty acids are inexpensive and easily available.
  • the application of the temporary fixing material 40 to the copper circuit board 30 is performed using, for example, a hot cylinder, although illustration is omitted.
  • the temporary fixing material 40 is heated to a molten state, and the molten temporary fixing material 40 is dropped onto a plurality of locations such as corners on the surface of the copper circuit board 30. Then, the temporary fixing material 40 dripped onto the copper circuit board 30 is once cooled to room temperature and solidified to form the copper circuit board 30 to which the temporary fixing material 40 is adhered.
  • the copper circuit board 30 is conveyed on the base 91 by the laminating means 95 (FIGS. 3A and 3B), and is superposed on the aluminum metal layer 22 of the ceramic substrate 20 placed in a positioning state on the base 91 (FIG. 3C). .
  • the applied temporary fixing material 40 is solidified.
  • the temporary fixing material 40 can be melted by heating the adhesion surface 30a of the copper circuit board 30 against the rubber heater 96 in the middle of the transport path of the copper circuit board 30 by the laminating means 95.
  • the copper circuit board 30 is laminated on the ceramic substrate 20 as shown in FIGS. 2B and 3C.
  • the temporary fixing material 40 adhering to the copper circuit board 30 is laminated with the ceramic substrate 20 so as to be thinly extended between the copper circuit board 30 and the aluminum metal layer 22 so as to be in close contact with each other.
  • stop material 40 is cooled and solidifies by contacting the aluminum metal layer 22 which is not heated.
  • the temporary fixing material 40 can be solidified by natural cooling as described above, but can also be actively cooled and solidified by cooling means 98 as shown in FIG. 3C. In this case, the state in which the copper circuit board 30 and the ceramic substrate 20 are aligned can be determined immediately, and workability can be further improved.
  • the laminate 80 in which the copper circuit board 30 and the ceramic substrate 20 are temporarily fixed is pressed in the laminating direction and heated below the eutectic temperature of copper and aluminum, thereby producing a copper circuit.
  • the power module substrate 10 can be manufactured by bonding the plate 30 and the aluminum metal layer 22 of the ceramic substrate 20 by solid-phase diffusion bonding by diffusing copper and aluminum mutually. Specifically, the aluminum metal layer 22 of the copper circuit board 30 and the ceramic substrate 20 is held in a vacuum atmosphere at a load of 0.3 MPa to 10 MPa and a heating temperature of 400 ° C. to less than 548 ° C. for 5 minutes to 240 minutes. Can be joined.
  • the temporary fixing material 40 is decomposed and disappears in the initial stage of the heating.
  • the copper circuit board (first member) 30 and the ceramic substrate 20 are temporarily fixed by the temporary fixing material 40 in the laminating step before the bonding step. Since the laminated body 80 is formed, it is possible to prevent the positional displacement between the copper circuit board 30 and the ceramic substrate 20 in the subsequent joining process, and the copper circuit board 30 is accurately positioned at a predetermined position on the ceramic substrate 20. Can be joined in a state.
  • the power module substrate 10 can be efficiently manufactured, and productivity can be improved.
  • the temporary fixing material 40 is applied to the copper circuit board 30 and the copper circuit board 40 is transported and superimposed on the aluminum metal layer 22 of the ceramic substrate 20.
  • the temporary fixing material 40 may be applied to the aluminum metal layer 22 of the substrate 20 and the copper circuit board 30 may be overlaid.
  • the temporary fixing material 40 is melted by the heat of the copper circuit board 30, and the copper circuit board 30 and The aluminum metal layer 22 can be brought into a close contact state. Thereafter, the temporary fixing member 40 is cooled and solidified by the aluminum metal layer 22, and the copper circuit board 30 and the aluminum metal layer 22 can be fixed.
  • the ceramic substrate 20 on which the temporary fixing material 40 is formed can be brought into a stationary state by conveying the copper circuit board 30 instead of the ceramic substrate 20 on which the temporary fixing material 40 is formed.
  • the ceramic substrate 20 coated with the temporary fixing material 40 is adsorbed by the laminating means 95 and conveyed onto the base 91 on which the copper circuit board 30 is placed, and the ceramic substrate 20 is superimposed on the copper circuit board 30. You can also.
  • the temporary fixing material 40 dropped on the copper circuit board 30 is once cooled to room temperature and solidified, and then heated and temporarily fixed when the copper circuit board 30 is laminated on the ceramic substrate 20.
  • the copper circuit board 30 and the ceramic substrate 20 were temporarily fixed by remelting the material 40, the temporary fixing material 40 dropped on the copper circuit board 30 was overlapped with the ceramic substrate 20 before being cooled. It is also possible to bond.
  • FIG. 4 shows a second embodiment of the present invention
  • FIG. 4C shows a power module substrate (a joined body of the present invention) 11 manufactured according to the present invention.
  • the power module substrate 11 includes an aluminum metal layer (first member of the present invention) 32 and a ceramic plate (second member of the present invention) 25 bonded to the aluminum metal layer 32.
  • the aluminum metal layer 32 and the ceramic plate 25 are formed in a rectangular planar shape.
  • a brazing material foil is attached to one surface of the aluminum metal layer 32 by ultrasonic bonding or the like as shown in FIG.
  • a bonding material layer 33 is formed in advance using a brazing material foil.
  • the temporary fixing material 41 which contains a saturated fatty acid as a main component is apply
  • the aluminum metal layer 32 and the ceramic plate 25 are overlapped with each other through the bonding material layer 33 in a state where the temporary fixing material 41 is melted, so that the molten temporary fixing material 41 is bonded to the ceramic plate 2 and the aluminum metal layer 32.
  • the ceramic plate 25 and the aluminum metal layer 32 are in close contact with each other, being thinly extended between the bonding material layer 33 and forming a layer.
  • the temporary fixing material 41 is cooled in a state where the ceramic plate 25 and the aluminum metal layer 32 are positioned, thereby forming a laminated body 83 in which the ceramic plate 25 and the aluminum metal layer 32 are temporarily fixed (lamination step). .
  • the ceramic plate 25 and the aluminum metal layer 32 are interposed between the ceramic plate 25 and the aluminum metal layer 32 by pressing the laminate in the stacking direction and heating in a vacuum.
  • the power module substrate 11 can be manufactured by brazing with the bonding material layer 33 thus formed (bonding step).
  • the temporary fixing material 41 is attached to the surface of the bonding material layer 33 of the aluminum metal layer 32.
  • the temporary fixing material 41 may be attached to the surface of the ceramic plate 25.
  • FIG. 5 shows a third embodiment of the present invention
  • FIG. 5C shows a power module substrate with heat sink (joint of the present invention) 12 manufactured according to the present invention
  • the power module substrate 12 with a heat sink includes a heat module (first member of the present invention) 51 and a power module substrate in which aluminum metal layers 37 and 38 are brazed to both surfaces of the ceramic plate 36 (second member of the present invention). 35, and is manufactured by joining one aluminum metal layer 38 of the power module substrate 35 and the heat sink 51.
  • the heat sink 51 is formed in a rectangular flat plate shape using pure aluminum or aluminum alloy (simply referred to as aluminum) having a purity of 99.90% or more.
  • the bonding material layer 55 is formed in advance on either the aluminum metal layer 38 or the heat sink 51 of the power module substrate 35.
  • the bonding material layer 55 for example, a clad material formed in three layers by laminating an Al—Si—Mg brazing material on both surfaces of a 3003 series aluminum alloy plate can be adopted.
  • a bonding material layer temporary fixing material 44 containing a saturated fatty acid as a main component is applied to the surface of the aluminum metal layer 38, and the bonding material layer temporary fixing material 44 is melted. Then, the aluminum metal layer 38 and the bonding material layer 55 are brought into close contact with each other via the bonding material layer temporary fixing material 44 by overlapping the bonding material layer 55. Then, the aluminum material layer 38 and the bonding material layer 55 are cooled, and the bonding material layer temporary fixing material 44 is cooled, whereby the aluminum metal layer 38 and the bonding material layer 55 are bonded (temporarily fixed).
  • the same temporary fixing material 42 as the bonding material layer temporary fixing material 44 is applied to the surface of the heat sink 51, and the bonding material layer 55 is bonded onto the heat sink 51 in a state where the temporary fixing material 42 is melted.
  • the power module substrate 35 and the heat sink 51 are brought into close contact with each other by superimposing the power module substrates 35 thus formed.
  • the laminated body 84 which temporarily fixed the power module substrate 35 and the heat sink 51 is formed by cooling the temporary fixing material 42 in a state where the power module substrate 35 and the heat sink 51 are positioned (stacking step). .
  • the laminated body 84 (the power module substrate 35 and the heat sink 51) is heated in a nitrogen atmosphere under atmospheric pressure while being pressed in the lamination direction, whereby the power module substrate 35 and the heat sink 51 are interposed therebetween. Then, the power module substrate 12 with a heat sink is manufactured by brazing with the bonding material layer 55 (bonding step).
  • FIG. 6 shows a fourth embodiment of the present invention
  • FIG. 6C shows a power module substrate with heat sink (joint of the present invention) 13 manufactured according to the present invention.
  • the power module substrate 13 with a heat sink includes a heat module (first member of the present invention) 52 and a power module substrate (a second member of the present invention) in which aluminum metal layers 47 and 48 are brazed to both surfaces of the ceramic plate 46. 45, and is manufactured by bonding one aluminum metal layer 48 of the power module substrate 45 and the heat sink 52.
  • the heat sink 52 is formed in a rectangular flat plate shape from pure copper or a copper alloy (simply referred to as copper).
  • a temporary fixing material 43 containing a saturated fatty acid as a main component is applied to the power module substrate 45.
  • the power module substrate 45 and the heat sink 52 are brought into close contact with each other through the temporary fixing material 43 by overlapping the heat sink 52 with the temporary fixing material 43 being melted.
  • the temporary fixing material 43 is formed (stacking step).
  • the power source substrate 45 and the heat sink 52 are temporarily fixed, and the laminate 85 is pressurized in the laminating direction and heated below the eutectic temperature of copper and aluminum.
  • the aluminum metal layer 48 of the module substrate 45 and the heat sink 52 are bonded to each other by solid phase diffusion bonding by diffusing copper and aluminum to each other to manufacture the power module substrate 13 with a heat sink (bonding step).
  • FIG. 7 shows a fifth embodiment of the present invention
  • FIG. 7D shows a power module substrate with heat sink (multilayer joined body of the present invention) 14 manufactured according to the present invention
  • the power module substrate 14 with a heat sink includes a copper circuit board (first member of the present invention) 70 and a ceramic substrate (second member of the present invention) 75 in which aluminum metal layers 72 and 73 are laminated on both surfaces of the ceramic plate 71.
  • a heat sink (third member of the present invention) 53 and joins one aluminum metal layer 72 and the copper circuit board 70 of the ceramic substrate 75, and joins the other aluminum metal layer 73 and the heat sink 53. It is manufactured by.
  • the heat sink 53 is formed in a rectangular flat plate shape from pure copper or a copper alloy (simply referred to as copper).
  • a temporary fixing material 81 containing a saturated fatty acid as a main component is applied to the copper circuit board 70.
  • the ceramic substrate 75 and the copper circuit board 70 are brought into close contact with each other through the temporary fixing material 81 by overlapping the ceramic substrate 75 with the temporary fixing material 81 being melted.
  • the temporary fixing material 81 is formed (stacking step).
  • the temporary fixing material 81 can be attached to the surface of the ceramic substrate 75 (aluminum metal layer 72) instead of the copper circuit board 70.
  • an unsaturated fatty acid having a melting point lower than that of the temporary fixing material 81 is applied to the laminated body 76 in which the ceramic substrate 75 and the copper circuit board 70 formed in the lamination step are temporarily fixed.
  • the second temporary fixing material 82 has a sufficiently lower melting point than stearic acid. What has lauric acid (C12, melting
  • the second temporary fixing material 82 is applied to the aluminum metal layer 73 of the laminated body 76, and the second temporary fixing material 82 is melted by the temporary fixing material 81.
  • the laminated body 76 and the heat sink 53 are brought into intimate contact with each other through the second temporary fixing material 82 by setting the laminated body 76 and the heat sink 53 to be in a state of being melted at a temperature lower than the temperature.
  • the laminated body 76 and the heat sink 53 are fixed by the second temporary fixing material 82, and the second laminated body 77 in which the laminated body 76 and the heat sink 53 are temporarily fixed is obtained.
  • the second temporary fixing material 82 can be attached to the surface of the heat sink 53 instead of the aluminum metal layer 73 of the stacked body 76.
  • the temporary fixing material 81 is used.
  • the heat sink 53 can be temporarily fixed in a state where the copper circuit board 70 and the ceramic substrate 75 are fixed without melting. That is, the temporary stacking of the stacked body 76 and the heat sink 53 can be performed without causing a positional shift between the copper circuit board 70 and the ceramic substrate 75 in the second stacking step. Therefore, the three members of the copper circuit board 70, the ceramic substrate 75, and the heat sink 53 can be accurately positioned and fixed.
  • the 2nd laminated body to which the copper circuit board 70, the ceramic substrate 75, and the heat sink 53 which were formed in this way were temporarily fixed was pressurized to the lamination direction similarly to 1st Embodiment, and copper and aluminum By heating below the eutectic temperature, copper and aluminum can be diffused to each other and bonded by solid phase diffusion bonding (bonding step).
  • the copper circuit board 70, the ceramic substrate 75, and the heat sink 53 can be bonded at the same time. Can be manufactured automatically.
  • the bonding material layer is formed in advance on either the aluminum metal layer 72 and the circuit board of the ceramic substrate 75, or on either the aluminum metal layer 73 or the heat sink, and each bonding material layer is formed between these members.
  • the bonding material layer for example, a clad material formed in three layers by laminating Al—Si—Mg brazing material on both surfaces of a 3003 series aluminum alloy plate can be adopted.
  • Test 1 As a conventional example and an example of the present invention, a temporary fixing material shown in Table 1 is dropped on a 30 mm ⁇ 30 mm rectangular, 1.0 mm thick copper plate, and a 25 mm ⁇ 25 mm rectangular, 0.6 mm thick aluminum plate is laminated. A temporarily bonded laminate was formed. Each laminate in the temporarily fixed state is confirmed by visually observing the lateral displacement generated in the aluminum plate by simulating the transport state of the laminate and shaking the copper plate of each laminate laterally at a speed of about 30 mm / s. Body bondability was evaluated.
  • Test 2 Each laminate was pressurized at 1.0 MPa in the lamination direction in a vacuum atmosphere and heated at 540 ° C. for 60 minutes to form a joined body. Then, to simulate the usage state of the joined body, an ultrasonic image was obtained for each joined body in the initial state after joining and after being subjected to a cooling cycle between ⁇ 40 ° C. and 100 ° C. 3000 times. With a measuring instrument, the presence or absence of an unjoined portion on the joint surface between the copper plate and the aluminum plate was observed. “Excellent” means that 2% or more unbonded part is not observed on the joint surface, and “bad” means that 5% or more unjoined part or void of 2 mm or more in diameter is recognized. , “Good” is a case where a slight unjoined portion that does not correspond to any of the above is recognized. These results are shown in Table 1.
  • the power module substrate having other configurations also includes a metal plate.
  • the present invention can be applied when the first member and the second member made of a metal plate or a ceramic plate are joined.
  • the present invention can be applied to manufacturing a joined body of a first member and a second member used for applications other than the power module, and pressurizes these laminates. This includes the case of joining without heating and heating.
  • the 1st member and the 2nd member were made into the one-to-one relationship, and the joined body was manufactured, but it is not limited to this,
  • One 2nd member has two or more things.
  • the present invention can be applied to manufacturing various laminated bodies and bonded bodies, such as when the first member is bonded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】金属板同士及び金属板とセラミックス板とを接合する際に、各部材の接合面同士の位置ずれを防止し、これらの接合体を効率的に製造することができる接合体の製造方法及び、これをパワーモジュール用基板に応用したパワーモジュール用基板の製造方法を提供する。 【解決手段】銅回路板(第1部材)(30)又はセラミックス基板(第2部材)(20)のいずれか一方に飽和脂肪酸を主成分とする仮止め材(40)を塗布しておき、溶融させた仮止め材(40)を介して銅回路板(30)とセラミックス基板(20)とを積層して位置合わせし、仮止め材(40)を冷却することにより積層された銅回路板(30)とセラミックス基板(20)とを仮止めした積層体(80)を形成する積層工程と、積層体(80)を積層方向に加圧して加熱することにより銅回路板(30)とセラミックス基板(20)とを接合した接合体を形成する接合工程とを有する。

Description

接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置
 本発明は、大電流、高電圧を制御する半導体装置用のパワーモジュール用基板を製造するために用いられる複数部材からなる積層体の製造方法、パワーモジュール用基板の製造方法及び積層体の製造装置に関する。
 本願は、日本国に2014年7月2日に出願された特願2014-136646号、2014年11月20日に出願された特願2014-235949号、および2015年6月30日に出願された特願2015-130973号に基づき優先権を主張し、その内容をここに援用する。
 従来、パワーモジュール用基板として、セラミックス基板の一方の面に回路板が積層状態に接合されるとともに、他方の面に放熱板が積層状態に接合されたものが知られている。このパワーモジュール用基板は、回路板の上に半導体チップ(パワー素子)等の電子部品がはんだ付けされ、放熱板にヒートシンクが接合されることにより、パワーモジュールとして供される。
 このようなパワーモジュール用基板において、セラミックス基板に回路板や放熱板となる金属板を積層状態に接合する方法として、たとえば特許文献1又は2に記載の技術がある。
 特許文献1には、絶縁層と、この絶縁層の一方の面に形成された回路層とを備えたパワーモジュール用基板の製造方法が開示されている。このパワーモジュール用基板の製造方法においては、絶縁層の一方の面にアルミニウム層を配設した後に、そのアルミニウム層に銅層を積層して回路層を形成する回路層形成工程を備えており、アルミニウム層と銅層とを、荷重を負荷した状態で加熱保持することにより固相拡散接合している。
 特許文献2では、金属平板の片面に樹脂コーティング層(有機物樹脂としてオクタンジオールを含有)を介してろう材箔を貼り付けておき、これら金属平板とろう材箔とを重ね合わせたものを回路層の外形に打ち抜き成形して、回路層に貼り付けられたろう材箔をセラミックス平板に重ね合わせることにより、ろう材箔を介して回路層とセラミックス平板とを積層して接合している。
特開2013‐229545号公報 特開2010‐10561号公報
 特許文献1に記載のパワーモジュール用基板の製造方法では、絶縁層にアルミニウム層を接合した後に銅層を積層しているが、アルミニウム層と銅層とを直接積層するだけでは、加圧治具への組込や加圧の際に、これら金属同士が横方向に滑り、位置ずれが発生しやすい(横ずれ)。また、特許文献2に記載の方法のようにオクタンジオールを使用する場合では、オクタンジオールが常温では液体であることから、密着性を十分に確保できずに横ずれを生じるおそれがある。さらに、部材間における横ずれの問題は、パワーモジュール用基板とヒートシンクとを積層する際(金属同士の積層)や、セラミックス基板等の絶縁層と金属との積層時にも起こりうる。
 そして、この部材間で生じる横ずれによる積層位置精度の悪化は、放熱性能の低下(熱抵抗の増加)につながることから、位置ずれ防止の技術が望まれる。
 本発明は、このような事情に鑑みてなされたもので、金属板同士及び金属板とセラミックス板とを接合する際に、各部材の接合面同士の位置ずれを防止し、これらの接合体を効率的に製造できる接合体の製造方法を提供するとともに、これをパワーモジュール用基板に応用したパワーモジュール用基板の製造方法の提供を目的とする。
 本発明は、金属板からなる第1部材と、1つ以上の金属板又はセラミックス板を含む第2部材とのいずれかに、飽和脂肪酸を主成分とする仮止め材を塗布しておき、前記仮止め材を溶融させた状態で前記仮止め材を介して前記第1部材と前記第2部材とを積層して位置合わせし、前記仮止め材を冷却することにより、積層された前記第1部材と前記第2部材とを仮止めした積層体を形成する積層工程と、前記積層体を積層方向に加圧して加熱することにより、前記第1部材と前記第2部材とを接合した接合体を形成する接合工程とを有する。
 この製造方法においては、飽和脂肪酸を主成分とする仮止め材により第1部材と第2部材とを仮止めするので、その後の接合工程においても、第1部材と第2部材とがずれることなく位置決めされた状態に保持される。したがって、その後の取り扱いを容易にして生産性が向上するとともに、各部材を正確に位置決めした状態で接合できる。
 常温で固体の飽和脂肪酸を用いた仮止め材は、加熱により溶融して液化する。このため、第1部材と第2部材との積層後に、常温に冷却することにより仮止め材を固化させ、第1部材と第2部材とを容易に接着できる。また、接合工程においては、飽和脂肪酸は接合温度より十分低い温度にて速やかに分解されるので、第1部材と第2部材との接合面に影響を及ぼすこともない。
 さらに、飽和脂肪酸は、液化された溶融状態では流動性が高く、第1部材と第2部材とを重ね合せることでこれらの間で速やかに濡れ広がり、密着させた状態で良好な接合性を維持できる。
 したがって、金属板同士及び金属板とセラミックス板等により構成される第1部材と第2部材とを接合する際に、各部材の接合面同士の位置ずれを防止でき、これらの接合体を効率的に製造できる。
 本発明の接合体の製造方法において、前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であるとよい。
 炭素数10未満では常温で液体となるため取り扱い性が悪く、30を超えると融点が高くなるため、第1部材や第2部材への塗布作業性が悪くなる。炭素数が10以上30以下の飽和脂肪酸は、融点が32℃~94℃程度であり、常温で固化した状態であるが、比較的低い加熱温度で液化させることが可能であるため、取り扱い性に優れる。
 炭素数が10以上30以下とされる飽和脂肪酸としては、例えば炭素数10のカプリン酸、炭素数12のラウリン酸、炭素数14のミリスチン酸、炭素数16のパルミチン酸、炭素数18のステアリン酸、炭素数30のメリシン酸等が挙げられる。なお、これらの飽和脂肪酸は安価であり、入手も容易であるという利点もある。
 本発明の接合体の製造方法において、前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層するとよい。
 前述した接合体の製造方法を適用した本発明に係る多層接合体の製造方法は、前記接合工程前に、前記積層工程により形成された前記積層体に金属板からなる第3部材を仮止めする第2積層工程を有し、前記第2積層工程において、前記積層体又は前記第3部材のいずれかに、前記仮止め材よりも低融点の飽和脂肪酸を主成分とする第2仮止め材を塗布しておき、前記積層体と前記第3部材とを積層する際に前記仮止め材の溶融温度よりも低い温度で前記第2仮止め材を溶融させ、前記積層体と前記第3部材とを位置合わせして積層した後に前記第2仮止め材を冷却することにより、前記積層体と前記第3部材とを仮止めした第2積層体を形成し、前記接合工程において、前記第2積層体をその積層方向に加圧して加熱することにより、前記第1部材と前記第2部材とを接合した前記接合体に対してさらに前記第3部材を接合した多層接合体を形成する。
 本発明の多層接合体の製造方法においても、前記仮止め材の飽和脂肪酸は、炭素数が10以上30以下であるとよい。また、前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層してもよい。さらに、前記第2積層体又は前記第3部材のいずれかの表面に第2接合材層が形成されており、前記第2積層工程において前記第2仮止め材および前記第2接合材層を介して前記積層体と前記第3部材とを積層するとよい。
 本発明のヒートシンク付パワーモジュール用基板の製造方法は、前述の多層接合体の製造方法を適用したヒートシンク付パワーモジュール用基板の製造方法であって、前記第1部材を銅又はアルミニウムからなる回路板とし、前記第2部材を、セラミックス板の両面にアルミニウム金属層を積層してなるセラミックス基板とし、前記第3部材を銅又はアルミニウムからなるヒートシンクとし、前記接合工程において、前記第1部材と一方の前記第2部材の前記アルミニウム金属層の一方とを接合するとともに、前記第2部材前記アルミニウム金属層の他方と前記第3部材とを接合して、前記多層接合体としてヒートシンク付パワーモジュール用基板を形成する。
 本発明のパワーモジュール用基板の製造方法は、前述の接合体の製造方法を適用したパワーモジュール用基板の製造方法であって、前記第1部材を銅回路板とし、前記第2部材を、セラミックス板の両面にアルミニウム金属層を積層してなるセラミックス基板とし、前記接合工程において前記第2部材の前記アルミニウム金属層の一方と前記第1部材とを接合して、前記接合体としてパワーモジュール用基板を形成する。
 本発明のヒートシンク付パワーモジュール用基板の製造方法は、前述の接合体の製造方法を適用したヒートシンク付パワーモジュール用基板の製造方法であって、前記第1部材を銅又はアルミニウムからなるヒートシンクとし、前記第2部材を、セラミックス板の両面に金属層を積層してなるパワーモジュール用基板とし、前記接合工程において前記第2部材の前記金属層の一方と前記第1部材とを接合して、前記接合体としてヒートシンク付パワーモジュール用基板を形成する。
 このヒートシンク付パワーモジュール用基板の製造方法において、前記積層工程の前に、前記接合材層を、前記第1部材または前記第2部材のいずれかの表面に接合材層用仮止め材によって仮止めし、前記積層工程において、前記仮止め材は、前記接合材層が形成されていない前記第1部材または前記第2部材のいずれかに塗布してもよい。
 本発明の積層体の製造装置は、金属板からなる第1部材と、少なくとも1つの金属板又はセラミックス板を含む第2部材とを、これら第1部材および第2部材のいずれか一方の上に形成された飽和脂肪酸を主成分とする仮止め材により、前記第1部材と前記第2部材とを重ね合せた状態に仮止めする積層体の製造装置であって、前記第1部材又は前記第2部材のうち前記仮止め材が形成された一方を他方の上に搬送して、前記第1部材と前記第2部材とを積層する積層手段と、前記第1部材と前記第2部材とを積層する際の前記仮止め材を溶融する加熱手段とを備える。
 常温で固体の飽和脂肪酸を用いた仮止め材は、加熱により溶融するので、第1部材と第2部材とを積層する際に加熱状態とすることが必要である。このため、第1部材と第2部材とを積層する際に仮止め材を加熱する加熱手段を設けることで、効率的に第1部材と第2部材とを固定できる。
 また、本発明の積層体の製造装置は、金属板からなる第1部材と、少なくとも1つの金属板又はセラミックス板を含む第2部材とを、これら第1部材および第2部材のいずれか一方の上に形成された飽和脂肪酸を主成分とする仮止め材により、前記第1部材と前記第2部材とを重ね合せた状態に仮止めする積層体の製造装置であって、前記第1部材または前記第2部材のうち前記仮止め材が形成された一方の上に他方を搬送して、前記第1部材と前記第2部材とを積層する積層手段と、前記第1部材と前記第2部材とを積層する際に前記仮止め材を溶融する加熱手段とを備える。
 仮止め材の主成分である飽和脂肪酸は、液化された溶融状態では流動性が高いことから、仮止め材を形成した一方の板を搬送する場合には、溶融状態の仮止め材が接着箇所以外の不用な位置に付着することを防止するために、両部材を積層する直前まで仮止め材は固化させた状態とすることが望ましい。そこで、本発明の接合体の製造装置では、仮止め材を形成した一方の板ではなく、他方の板を搬送することにより、仮止め材が形成された一方の板を静止状態とすることができるので、仮止め材が不用な位置に付着することを防止できる。したがって、効率的に第1部材と第2部材とを固着できる。
 本発明の積層体の製造装置において、前記第1部材と前記第2部材との積層後に前記仮止め材を冷却する冷却手段を備えるとよい。
 溶融状態の仮止め材を自然冷却によって固化させることで、第1部材と第2部材とを接着状態とすることができるが、冷却手段により積極的に冷却することで、第1部材と第2部材とを位置合わせした状態を即時に確定させることができる。
 本発明によれば、金属板同士及び金属板とセラミックス板とを接合する際に、各部材の接合面同士の位置ずれを防止できるので、これらの接合体を効率的に製造できる。
本発明の第1実施形態において製造されるパワーモジュール用基板の断面図である。 図1のパワーモジュール用基板の製造工程を模式的に示した断面図である。 本発明に係る積層体の製造装置を説明する模式図である。 本発明の第2実施形態の製造方法を説明する模式図である。 本発明の第3実施形態の製造方法を説明する模式図である。 本発明の第4実施形態の製造方法を説明する模式図である。 本発明の第5実施形態の製造方法を説明する模式図である。
 以下、本発明の実施形態について説明する。
 図1は、本発明の第1実施形態において製造されるパワーモジュール用基板10を示している。
 このパワーモジュール用基板(本発明の接合体)10は、銅回路板(本発明の第1部材)30と、セラミックス板21の両面にアルミニウム金属層22,23を積層したセラミックス基板(本発明の第2部材)20とを備え、セラミックス基板20の一方のアルミニウム金属層22と銅回路板30とが接合されている。この場合、セラミックス基板20のセラミックス板21、アルミニウム金属層22,23及び銅回路板30は矩形平面状に形成されている。
 パワーモジュール用基板10には、銅回路板30の表面に半導体チップ等の電子部品60がはんだ付けされ、銅回路板30と反対側に配置されるアルミニウム金属層23にヒートシンク50が接合され、パワーモジュールとされる。
 セラミックス板21は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスを母材として矩形状に形成されている。セラミックス板21の厚さは0.125mm~1.0mmとされる。
 アルミニウム金属層22,23は、純度99.90%以上の純アルミニウム又はアルミニウム合金(単にアルミニウムと称す)により形成され、厚さ0.1mm~3.0mmで、通常はセラミックス板21より小さい矩形の平板状に形成される。このアルミニウム金属層22,23は、セラミックス板21にAl-Si系、Al-Ge系、Al-Cu系、Al-Mg系またはAl-Mn系等のろう材を接合材として接合される。
 銅回路板30は、無酸素銅やタフピッチ銅等の純銅又は銅合金(本発明では単に銅と称す)により形成されている。銅回路板30の厚さは0.1mm~5.0mmとされる。この銅回路板30は、後述するように、固相拡散接合によりセラミックス基板20のアルミニウム金属層22と接合される。
 次に、このように構成されるパワーモジュール用基板10の製造に用いられる積層体の製造装置90(図3参照)について説明する。
 積層体の製造装置90は、飽和脂肪酸を主成分とする仮止め材40が形成された銅回路板(本発明の第1部材)30を、セラミックス基板(本発明の第2部材)20のアルミニウム金属層22に仮止めした積層体80を製造する。
 本実施形態の積層体の製造装置90は、図3に示すように、セラミックス基板20を載置する基台91と、仮止め材40が形成された銅回路板30を基台91上に載置されたセラミックス基板20上に搬送するとともに、セラミックス基板20と位置合わせして銅回路板30とセラミックス基板20とを積層する積層手段95と、銅回路板30とセラミックス基板20とを積層する際の仮止め材40を溶融する加熱手段96とを備える。
 基台91には、図3B及び図3Cに示すように、セラミックス基板20の載置面に、セラミックス基板20の側面を囲むように複数のガイドピン92が間隔をおいて立設されており、これらガイドピン92で囲まれた領域にセラミックス基板20を載置することにより、セラミックス基板20が基台91上で位置決めされるようになっている。
 積層手段95は、図3A及び図3Bに示すように、例えばxyz軸方向に移動可能に設けられた積層用ピックアップシリンダにより構成できる。この積層手段95は、付着面30aを下向きにした状態の銅回路板30を、セラミックス基板20が載置された基台91上まで搬送し、銅回路板30の付着面30aを基台91上のセラミックス基板20に重ねることにより、銅回路板30とセラミックス基板20とを積層する。具体的には、図3A~図3Cに示すように、銅回路板30の付着面30aとは反対側の上面を積層手段95によってエアー吸着することにより、銅回路板30を搬送する。
 加熱手段96は、図3Aに示すように、例えばラバーヒータにより構成できる。このラバーヒータ(加熱手段)96に銅回路板30の付着面30aを対面させて配置することにより、付着面30aの仮止め材40を加熱して溶融させることができる。
 積層手段95には、銅回路板30の搬送時において、仮止め材40の溶融状態を観測するための測温手段97が備えられている。測温手段97によって銅回路板30の温度を測定することにより、加熱手段96による銅回路板30の加熱時、銅回路板30とセラミックス基板20との積層前後の各タイミングにおける仮止め材40の溶融状態を確認できる。測温手段97としては、例えば赤外線放射温度計が用いることができ、本実施形態では、積層手段95に保持された銅回路板30の温度を測定する。
 積層体の製造装置90には、銅回路板30とセラミックス基板20との積層後に、これらを冷却する冷却手段98が設けられている。冷却手段98は、図3Cに示すように、例えばエアーを吹き付ける冷却ノズルにより構成でき、積層手段95に設けられている。
 次に、上述した積層体の製造装置90を用いて積層体80を形成し、パワーモジュール用基板10を製造する方法について説明する。
(仮止め材塗布工程)
 まず、銅回路板(第1部材)30の片面に、図2Aに示すように、飽和脂肪酸を主成分とする仮止め材40を塗布する。この仮止め材40には、炭素数10以上30以下とされ、常温(25℃)で固体であり、比較的低融点で液体へと相変態する飽和脂肪酸が好適に用いられる。炭素数10未満では常温で液体となるため取り扱い性が悪く、30を超えると融点が高くなるため、銅回路板30への塗布作業性が悪くなるためである。一方、炭素数が10以上30以下とされる飽和脂肪酸は、融点が32℃~94℃程度とされ、常温で固化した状態とされるが、比較的低い加熱温度で液化させることが可能であるため、取り扱い性に優れる。
 炭素数が10以上30以下とされる飽和脂肪酸としては、例えば炭素数10のカプリン酸、炭素数12のラウリン酸、炭素数14のミリスチン酸、炭素数16のパルミチン酸、炭素数18のステアリン酸、炭素数30のメリシン酸等が挙げられる。なお、これらの飽和脂肪酸は安価であり、入手も容易であるという利点もある。
 仮止め材40の銅回路板30への塗布作業は、図示は省略するが、例えばホットシリンダを用いて行われる。ホットシリンダにおいて仮止め材40を加温して溶融状態とし、その溶融状態の仮止め材40を銅回路板30の表面における隅部等の複数箇所に滴下する。そして、銅回路板30に滴下した仮止め材40を一旦常温まで冷却して固化させることにより、仮止め材40が付着した銅回路板30を形成する。
 (積層工程)
 次に、図2Bに示すように、予め仮止め材40を塗布した銅回路板30と、セラミックス基板20のアルミニウム金属層22とを重ね合せた状態として、この仮止め材40によって銅回路板30とセラミックス基板20とを仮止めする。
 銅回路板30は、積層手段95により基台91上に搬送され(図3A,3B)、基台91に位置決め状態に載置されたセラミックス基板20のアルミニウム金属層22に重ねられる(図3C)。
 銅回路板30の搬入時には、塗布された仮止め材40は固化している。積層手段95による銅回路板30の搬送経路の途中で、銅回路板30の付着面30aをラバーヒータ96に対面させて加熱することで、仮止め材40を溶融させることができる。
 そして、仮止め材40が溶融した状態で、図2B及び図3Cに示すように、銅回路板30をセラミックス基板20に積層する。この際、銅回路板30に付着した仮止め材40は、セラミックス基板20と積層されることにより、銅回路板30とアルミニウム金属層22との間で薄く延ばされて層状となり密着する。そして、仮止め材40は、加熱されていないアルミニウム金属層22に接触することにより冷却され、固化する。これにより、銅回路板30とセラミックス基板20とを正確に位置決めした状態で固着(仮止め)した積層体80が得られる。
 なお、仮止め材40は、上述したように自然冷却によって固化させることもできるが、図3Cに示すように冷却手段98により積極的に冷却して固化させることもできる。この場合、銅回路板30とセラミックス基板20とを位置合わせした状態を即時に確定させることができ、作業性を一層向上させることができる。
(接合工程)
 そして、図2Cに示すように、銅回路板30とセラミックス基板20とが仮止めされた積層体80をその積層方向に加圧し、銅とアルミニウムの共晶温度未満で加熱することにより、銅回路板30とセラミックス基板20のアルミニウム金属層22とを、銅とアルミニウムとを相互に拡散させて固相拡散接合により接合し、パワーモジュール用基板10を製造できる。具体的には、真空雰囲気中で、荷重0.3MPa~10MPa、加熱温度400℃以上548℃未満で、5分~240分保持することにより、銅回路板30とセラミックス基板20のアルミニウム金属層22とを接合できる。なお、仮止め材40は、この加熱の初期の段階で分解されて消失する。
 このように、本実施形態のパワーモジュール用基板の製造方法においては、接合工程の前に、積層工程において銅回路板(第1部材)30とセラミックス基板20とを仮止め材40により仮止めした積層体80を形成しておくので、その後の接合工程において銅回路板30とセラミックス基板20との位置ずれが生じることが防止され、銅回路板30をセラミックス基板20の所定位置に正確に位置決めした状態で接合できる。
 したがって、パワーモジュール用基板10を効率的に製造でき、生産性を向上させることができる。
 前述の第1実施形態では、銅回路板30に仮止め材40を塗布しておき、その銅回路板40を搬送してセラミックス基板20のアルミニウム金属層22に重ね合せるようにしていたが、セラミックス基板20のアルミニウム金属層22に仮止め材40を塗布しておき、銅回路板30を重ね合せるようにしてもよい。
 この場合において、仮止め材40を塗布したアルミニウム金属層22の上に加熱した銅回路板30を重ねることで、銅回路板30の熱で仮止め材40を溶融させて、銅回路板30とアルミニウム金属層22とを密着させた状態とすることができる。そして、その後にアルミニウム金属層22によって仮止め材40が冷却されて固化し、銅回路板30とアルミニウム金属層22とを固着させることができる。
 この場合、仮止め材40を形成したセラミックス基板20ではなく、銅回路板30を搬送することにより、仮止め材40が形成されたセラミックス基板20を静止状態とすることができる。これにより、溶融状態の仮止め材40が接着箇所以外の不用な位置に付着することを防止できるので、効率的に銅回路板30とセラミックス基板20とを固着できる。
 なお、仮止め材40を塗布したセラミックス基板20を積層手段95によって吸着して、銅回路板30が載置された基台91上まで搬送し、この銅回路板30にセラミックス基板20を重ね合せることもできる。
 また、第1実施形態では、銅回路板30に滴下した仮止め材40を一旦常温まで冷却して固化させておき、銅回路板30をセラミックス基板20に積層する際に加温して仮止め材40を再溶融させることにより、銅回路板30とセラミックス基板20とを仮止めしていたが、銅回路板30に滴下した仮止め材40が冷却される前にセラミックス基板20と重ね合せて、接着することも可能である。
 図4は、本発明の第2実施形態を示しており、図4Cは、本発明により製造されるパワーモジュール用基板(本発明の接合体)11を示している。このパワーモジュール用基板11は、アルミニウム金属層(本発明の第1部材)32と、このアルミニウム金属層32に接合されたセラミックス板(本発明の第2部材)25とを備える。この場合、アルミニウム金属層32及びセラミックス板25は、矩形平面状に形成されている。
 このように構成されるパワーモジュール用基板11を製造するには、アルミニウム金属層32の片面に、図4Aに示すように、超音波接合等により、ろう材箔を貼り付けた状態としておき、このろう材箔により接合材層33を予め形成しておく。また、接合材層33の表面に、第1実施形態における積層工程と同様に、飽和脂肪酸を主成分として含む仮止め材41を塗布しておく。そして、仮止め材41を溶融させた状態でアルミニウム金属層32とセラミックス板25とを接合材層33を介して重ね合せることにより、溶融した仮止め材41がセラミックス板2とアルミニウム金属層32の接合材層33との間で薄く延ばされて層状となり、セラミックス板25とアルミニウム金属層32とが密着する。次いで、セラミックス板25とアルミニウム金属層32とを位置決めした状態で仮止め材41を冷却することにより、セラミックス板25とアルミニウム金属層32とが仮止めされた積層体83を形成する(積層工程)。
 そして、第1実施形態と同様に、セラミックス板25とアルミニウム金属層32との積層体を積層方向に加圧し、真空中で加熱することにより、セラミックス板25とアルミニウム金属層32とをその間に介在させた接合材層33によりろう付けして、パワーモジュール用基板11を製造できる(接合工程)。
 なお、第2実施形態では、アルミニウム金属層32の接合材層33の表面に仮止め材41を付着させていたが、セラミックス板25の表面に仮止め材41を付着させておくこともできる。
 図5は、本発明の第3実施形態を示しており、図5Cは、本発明により製造されるヒートシンク付パワーモジュール用基板(本発明の接合体)12を示している。このヒートシンク付パワーモジュール用基板12は、ヒートシンク(本発明の第1部材)51と、セラミックス板36の両面にアルミニウム金属層37,38をろう付けしたパワーモジュール用基板(本発明の第2部材)35とを備え、パワーモジュール用基板35の一方のアルミニウム金属層38とヒートシンク51とを接合することにより製造される。ヒートシンク51は、純度99.90%以上の純アルミニウム又はアルミニウム合金(単にアルミニウムと称す)により、矩形平板状に形成される。
 このように構成されるヒートシンク付パワーモジュール用基板12を製造するには、パワーモジュール用基板35のアルミニウム金属層38又はヒートシンク51のいずれか一方に接合材層55を予め形成しておく。接合材層55としては、例えば3003系アルミニウム合金板の両面にAl‐Si‐Mg系ろう材を積層することにより三層に形成したクラッド材を採用できる。
 図5Aに示すように、アルミニウム金属層38の表面に、飽和脂肪酸を主成分として含む接合材層用仮止め材44を塗布しておき、その接合材層用仮止め材44を溶融させた状態で接合材層55を重ねることにより、接合材層用仮止め材44を介してアルミニウム金属層38と接合材層55とを密着させる。そして、アルミニウム金属層38と接合材層55とを位置決めした状態で接合材層用仮止め材44を冷却することにより、これらアルミニウム金属層38と接合材層55とを接着(仮止め)する。
 さらに、ヒートシンク51の表面にも接合材層用仮止め材44と同じ仮止め材42を塗布しておき、その仮止め材42を溶融させた状態でヒートシンク51上に、接合材層55が接着されたパワーモジュール用基板35を重ね合せることにより、パワーモジュール用基板35とヒートシンク51と密着させる。そして、これらパワーモジュール用基板35とヒートシンク51とを位置決めした状態で仮止め材42を冷却することにより、パワーモジュール用基板35とヒートシンク51とを仮止めした積層体84を形成する(積層工程)。
 この積層体84(パワーモジュール用基板35およびヒートシンク51)を積層方向に加圧した状態で窒素雰囲気中、大気圧下で加熱することにより、パワーモジュール用基板35とヒートシンク51とをその間に介在させた接合材層55によりろう付けして、ヒートシンク付パワーモジュール用基板12を製造する(接合工程)。
 図6は、本発明の第4実施形態を示しており、図6Cは、本発明により製造されるヒートシンク付パワーモジュール用基板(本発明の接合体)13を示している。このヒートシンク付パワーモジュール用基板13は、ヒートシンク(本発明の第1部材)52と、セラミックス板46の両面にアルミニウム金属層47,48をろう付けしたパワーモジュール用基板(本発明の第2部材)45とを備え、パワーモジュール用基板45の一方のアルミニウム金属層48とヒートシンク52とを接合することにより製造される。また、ヒートシンク52は、純銅又は銅合金(単に銅と称す)により、矩形平板状に形成される。
 このように構成されるヒートシンク付パワーモジュール用基板13を製造するには、図6Aに示すように、パワーモジュール用基板45に、飽和脂肪酸を主成分として含む仮止め材43を塗布しておき、その仮止め材43を溶融させた状態でヒートシンク52を重ねることにより、仮止め材43を介してパワーモジュール用基板45とヒートシンク52とを密着させる。そして、パワーモジュール用基板45とヒートシンク52とを位置決めした状態で仮止め材43を冷却することにより、これらパワーモジュール用基板45とヒートシンク52とを仮止め材43により固着して仮止めした積層体85を形成する(積層工程)。
 第1実施形態と同様に、パワーモジュール用基板45とヒートシンク52とが仮止めされた状態で積層体85をその積層方向に加圧し、銅とアルミニウムの共晶温度未満で加熱することにより、パワーモジュール用基板45のアルミニウム金属層48とヒートシンク52とを、銅とアルミニウムとを相互に拡散させて固相拡散接合により接合し、ヒートシンク付パワーモジュール用基板13を製造する(接合工程)。
 図7は、本発明の第5実施形態を示しており、図7Dは、本発明により製造されるヒートシンク付パワーモジュール用基板(本発明の多層接合体)14を示している。このヒートシンク付パワーモジュール用基板14は、銅回路板(本発明の第1部材)70と、セラミックス板71の両面にアルミニウム金属層72,73を積層したセラミックス基板(本発明の第2部材)75と、ヒートシンク(本発明の第3部材)53とを備え、セラミックス基板75の一方のアルミニウム金属層72と銅回路板70とを接合するとともに、他方のアルミニウム金属層73とヒートシンク53とを接合することにより製造される。ヒートシンク53は、純銅又は銅合金(単に銅と称す。)により、矩形平板状に形成される。
 このように構成されるヒートシンク付パワーモジュール用基板14を製造するには、まず、図7A及び図7Bに示すように、銅回路板70に、飽和脂肪酸を主成分として含む仮止め材81を塗布しておき、その仮止め材81を溶融させた状態でセラミックス基板75を重ねることにより、仮止め材81を介してセラミックス基板75と銅回路板70とを密着させる。そして、セラミックス基板75と銅回路板70とを位置決めした状態で仮止め材81を冷却することにより、これらセラミックス基板75と銅回路板70とを仮止め材81により固着して仮止めした積層体76を形成する(積層工程)。
 なお、仮止め材81は、銅回路板70ではなく、セラミックス基板75(アルミニウム金属層72)の表面に付着させておくこともできる。
 次に、図7B及び図7Cに示すように、積層工程において形成されたセラミックス基板75と銅回路板70とを仮止めした積層体76を、仮止め材81よりも低融点の不飽和脂肪酸を主成分とする第2仮止め材82によりヒートシンク(本発明の第3部材)53に仮止めする(第2積層工程)。例えば、仮止め材81としてステアリン酸(炭素数18、融点約70℃)を主成分とするものを用いた場合には、第2仮止め材82としては、ステアリン酸よりも十分に融点が低いラウリン酸(炭素数12、融点約44℃)を主成分とするものを好適に用いることができる。
 この積層体76とヒートシンク53とを積層する際には、積層体76のアルミニウム金属層73に第2仮止め材82を塗布しておき、その第2仮止め材82を仮止め材81の溶融温度よりも低い温度で溶融させた状態とし、積層体76とヒートシンク53とを位置合わせして重ねることにより、第2仮止め材82を介して積層体76とヒートシンク53とを密着させる。次いで、第2仮止め材82を冷却することにより、積層体76とヒートシンク53とを第2仮止め材82により固着して、積層体76とヒートシンク53とを仮止めした第2積層体77を形成する(第2積層工程)。
 なお、この第2積層工程においても、第2仮止め材82は、積層体76のアルミニウム金属層73ではなく、ヒートシンク53の表面に付着させておくこともできる。
 この第2積層工程においては、銅回路板70とセラミックス基板75とを仮止めした仮止め材81の溶融温度よりも低い溶融温度の第2仮止め材82を用いることから、仮止め材81を溶融させることなく、銅回路板70とセラミックス基板75とが固着された状態で、ヒートシンク53の仮止めを行うことができる。すなわち、第2積層工程において銅回路板70とセラミックス基板75との位置ずれを生じさせることなく、これらを積層した積層体76とヒートシンク53との仮止めを行うことができる。したがって、銅回路板70とセラミックス基板75とヒートシンク53との3つの部材を正確に位置決めして固着することができる。
 そして、このようにして形成された銅回路板70とセラミックス基板75とヒートシンク53とが仮止めされた第2積層体を、第1実施形態と同様に、その積層方向に加圧し、銅とアルミニウムの共晶温度未満で加熱することにより、銅とアルミニウムとを相互に拡散させて固相拡散接合により接合することができる(接合工程)。このように、第5実施形態のヒートシンク付パワーモジュール用基板の製造方法では、銅回路板70とセラミックス基板75とヒートシンク53とを同時に接合することができるので、ヒートシンク付パワーモジュール用基板14を効率的に製造することができる。
 なお、上記の第5実施形態では、セラミックス基板75の一方のアルミニウム金属層72と銅回路板70との間、および他方のアルミニウム金属層73と銅製のヒートシンク53との間を、銅とアルミニウムとの固相拡散接合によりそれぞれ接合して、ヒートシンク付パワーモジュール用基板14を製造したが、セラミックス基板75のアルミニウム金属層72にアルミニウムの回路板を接合し、アルミニウム金属層73にアルミニウム製のヒートシンクを接合してもよい。この場合、セラミックス基板75のアルミニウム金属層72と回路板のいずれかと、アルミニウム金属層73とヒートシンクのいずれかに、それぞれ接合材層を予め形成しておき、これらの部材の間を各接合材層を介して積層して仮止めを行う。なお、接合材層としては、例えば3003系アルミニウム合金板の両面にAl‐Si‐Mg系ろう材を積層することにより三層に形成したクラッド材を採用できる。
 次に、本発明の効果を確認するために行った本発明例及び比較例について説明する。
(テスト1)
 従来例および本発明例として、30mm×30mmの矩形、厚み1.0mmの銅板に、表1に示す仮止め材を滴下し、25mm×25mmの矩形、厚み0.6mmのアルミニウム板を積層して仮止めした積層体を形成した。そして、積層体の搬送状態を模して、各積層体の銅板を横に約30mm/sの速度で振ってアルミニウム板に生じた横ずれを目視により確認することにより、仮止め状態にある各積層体の接合性を評価した。横ずれが1mm以下であったものを「優」(excellent)、1mmを超え10mm未満であったものを「良」(good)、10mm以上横ずれが生じていたものを「不良」(bad)とした。
(テスト2)
 各積層体について、真空雰囲気中で積層方向に1.0MPaで加圧し、540℃で60分間加熱し接合体を形成した。そして、接合体の使用状態を模して、各接合体に対し、接合後の初期状態、及び-40℃と100℃との間の冷熱サイクルを3000回負荷した後の状態で、超音波画像測定器により、銅板とアルミニウム板との接合面における未接合部の有無を観察した。接合面に2%以上の未接合部が認められなかったものを「優」(excellent)、5%以上の未接合部または直径2mm以上のボイドが認められたものを「不良」(bad)とし、いずれにも該当しない軽微な未接合部が認められるものを「良」(good)とした。
 これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、本発明例1~7においては、銅板とアルミニウム板とを仮止め材により接着することにより、積層体における銅板とアルミニウム板との横ずれが小さく、その後の取り扱い作業性が良好であることが確認できた。また、接合材層を剥離するなどの悪影響を及ぼさず、信頼性の高い接合面を得ることができる。
 特に、炭素数10以上の仮止め材を用いた本発明例2~7では、横ずれがほとんどなく、接合材層を剥離するなどの悪影響を及ぼさず、信頼性の高い接合面を得ることができることが確認された。
 なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、銅回路板とアルミニウム金属層、アルミニウム金属層とセラミックス基板を接合したパワーモジュール用基板を製造する場合の実施形態を説明したが、その他の構成のパワーモジュール用基板においても、金属板からなる第1部材と、金属板又はセラミックス板からなる第2部材とを接合する場合に本発明を適用することができる。
 また、パワーモジュール用基板に限らず、パワーモジュール以外の用途に用いられる第1部材と第2部材との接合体を製造する場合に本発明を適用することができ、これらの積層体を加圧と加熱の両方を伴わずに接合する場合も含むものとする。
 さらに、上記実施形態では、第1部材と第2部材とを一対一の関係として、接合体を製造していたが、これに限定されるものではなく、1個の第2部材に複数個の第1部材を接合する場合等、種々の積層体,接合体を製造する場合に本発明を適用することができる。
 金属板同士及び金属板とセラミックス板とを接合する際に、各部材の接合面同士の位置ずれを防止できるので、これらの接合体を効率的に製造できる。
10,11 パワーモジュール用基板(接合体)
12,13 ヒートシンク付パワーモジュール用基板(接合体)
14 ヒートシンク付パワーモジュール用基板(多層接合体)
20,75 セラミックス基板(第2部材)
21,36,46,71 セラミックス板
22,23,37,38,47,48,72,73 アルミニウム金属層
25 セラミックス板(第2部材)
30,70 銅回路板(第1部材)
30a 付着面
32 アルミニウム金属層(第1部材)
33,55 接合材層
35,45 パワーモジュール用基板(第2部材)
40,41,42,43,81 仮止め材
44 接合材層用仮止め材
50 ヒートシンク
51,52 ヒートシンク(第1部材)
53 ヒートシンク(第3部材)
60 電子部品
76,80,83,84,85 積層体
77 第2積層体
82 第2仮止め材
90 製造装置
91 基台
92 ガイドピン
95 積層手段
96 加熱手段(ラバーヒータ)
97 測温手段
98 冷却手段

 

Claims (22)

  1.  金属板からなる第1部材と、1つ以上の金属板又はセラミックス板を含む第2部材とのいずれかに、飽和脂肪酸を主成分とする仮止め材を塗布しておき、前記仮止め材を溶融させた状態で前記仮止め材を介して前記第1部材と前記第2部材とを積層して位置合わせし、前記仮止め材を冷却することにより、積層された前記第1部材と前記第2部材とを仮止めした積層体を形成する積層工程と、
     前記積層体を積層方向に加圧して加熱することにより、前記第1部材と前記第2部材とを接合した接合体を形成する接合工程と
    を有することを特徴とする接合体の製造方法。
  2.  前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であることを特徴とする請求項1記載の接合体の製造方法。
  3.  前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層することを特徴とする請求項1に記載の接合体の製造方法。
  4.  請求項1に記載の接合体の製造方法を適用した多層接合体の製造方法であって、
     前記接合工程前に、前記積層工程により形成された前記積層体に金属板からなる第3部材を仮止めする第2積層工程を有し、
     前記第2積層工程において、前記積層体又は前記第3部材のいずれかに、前記仮止め材よりも低融点の飽和脂肪酸を主成分とする第2仮止め材を塗布しておき、前記積層体と前記第3部材とを積層する際に前記仮止め材の溶融温度よりも低い温度で前記第2仮止め材を溶融させ、前記積層体と前記第3部材とを位置合わせして積層した後に前記第2仮止め材を冷却することにより、前記積層体と前記第3部材とを仮止めした第2積層体を形成し、
     前記接合工程において、前記第2積層体をその積層方向に加圧して加熱することにより、前記第1部材と前記第2部材とを接合した前記接合体に対してさらに前記第3部材を接合した多層接合体を形成することを特徴とする多層接合体の製造方法。
  5.  前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であることを特徴とする請求項4記載の多層接合体の製造方法。
  6.  前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層することを特徴とする請求項4に記載の多層接合体の製造方法。
  7.  前記第2積層体又は前記第3部材のいずれかの表面に第2接合材層が形成されており、前記第2積層工程において前記第2仮止め材および前記第2接合材層を介して前記積層体と前記第3部材とを積層することを特徴とする請求項4に記載の多層接合体の製造方法。
  8.  請求項4に記載される多層接合体の製造方法を適用したヒートシンク付パワーモジュール用基板の製造方法であって、
     前記第1部材を銅又はアルミニウムからなる回路板とし、
     前記第2部材を、セラミックス板の両面にアルミニウム金属層を積層してなるセラミックス基板とし、
     前記第3部材を銅又はアルミニウムからなるヒートシンクとし、
     前記接合工程において、前記第1部材と前記第2部材の前記アルミニウム金属層の一方とを接合するとともに、前記第2部材の前記アルミニウム金属層の他方と前記第3部材とを接合して、前記多層接合体としてヒートシンク付パワーモジュール用基板を形成することを特徴とするヒートシンク付パワーモジュール用基板の製造方法。
  9.  前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であることを特徴とする請求項8記載のヒートシンク付パワーモジュール用基板の製造方法。
  10.  前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層することを特徴とする請求項8に記載のヒートシンク付パワーモジュール用基板の製造方法。
  11.  前記第2積層体又は前記第3部材のいずれかの表面に第2接合材層が形成されており、前記第2積層工程において前記第2仮止め材および前記第2接合材層を介して前記積層体と前記第3部材とを積層することを特徴とする請求項8に記載のヒートシンク付パワーモジュール用基板の製造方法。
  12.  請求項1に記載される接合体の製造方法を適用したパワーモジュール用基板の製造方法であって、
     前記第1部材を銅回路板とし、
     前記第2部材を、セラミックス板の両面にアルミニウム金属層を積層してなるセラミックス基板とし、
     前記接合工程において前記第2部材の前記アルミニウム金属層の一方と前記第1部材とを接合して、前記接合体としてパワーモジュール用基板を形成することを特徴とするパワーモジュール用基板の製造方法。
  13.  前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であることを特徴とする請求項12記載のパワーモジュール用基板の製造方法。
  14.  前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層することを特徴とする請求項12記載のパワーモジュール用基板の製造方法。
  15.  請求項1に記載される接合体の製造方法を適用したヒートシンク付パワーモジュール用基板の製造方法であって、
     前記第1部材を銅又はアルミニウムからなるヒートシンクとし、
     前記第2部材を、セラミックス板の両面に金属層を積層してなるパワーモジュール用基板とし、
     前記接合工程において前記第2部材の前記金属層の一方と前記第1部材とを接合して、前記接合体としてヒートシンク付パワーモジュール用基板を形成することを特徴とするヒートシンク付パワーモジュール用基板の製造方法。
  16.  前記仮止め材の前記飽和脂肪酸は、炭素数が10以上30以下であることを特徴とする請求項15記載のヒートシンク付パワーモジュール用基板の製造方法。
  17.  前記第1部材又は前記第2部材のいずれかの表面に接合材層が形成されており、前記積層工程において前記接合材層および前記仮止め材を介して前記第1部材と前記第2部材とを積層することを特徴とする請求項15記載のヒートシンク付パワーモジュール用基板の製造方法。
  18.  前記積層工程の前に、前記接合材層を、前記第1部材または前記第2部材のいずれかの表面に接合材層用仮止め材によって仮止めし、
     前記積層工程において、前記仮止め材は、前記接合材層が形成されていない前記第1部材または前記第2部材のいずれかに塗布する
    ことを特徴とする請求項17記載のヒートシンク付パワーモジュール用基板の製造方法。
  19.  金属板からなる第1部材と、少なくとも1つの金属板又はセラミックス板を含む第2部材とを、これら第1部材および第2部材のいずれか一方の上に形成された飽和脂肪酸を主成分とする仮止め材により、前記第1部材と前記第2部材とを重ね合せた状態に仮止めする積層体の製造装置であって、
     前記第1部材又は前記第2部材のうち前記仮止め材が形成された一方を他方の上に搬送して、前記第1部材と前記第2部材とを積層する積層手段と、
     前記第1部材と前記第2部材とを積層する際の前記仮止め材を溶融する加熱手段と
    を備えることを特徴とする積層体の製造装置。
  20.  前記第1部材と前記第2部材との積層後に前記仮止め材を冷却する冷却手段を備えることを特徴とする請求項19に記載の積層体の製造装置。
  21.  金属板からなる第1部材と、少なくとも1つの金属板又はセラミックス板を含む第2部材とを、これら第1部材および第2部材のいずれか一方の上に形成された飽和脂肪酸を主成分とする仮止め材により、前記第1部材と前記第2部材とを重ね合せた状態に仮止めする積層体の製造装置であって、
     前記第1部材又は前記第2部材のうち前記仮止め材が形成された一方の上に他方を搬送して、前記第1部材と前記第2部材とを積層する積層手段と、
     前記第1部材と前記第2部材とを積層する際に前記仮止め材を溶融する加熱手段とを備えることを特徴とする積層体の製造装置。
  22.  前記第1部材と前記第2部材との積層後に前記仮止め材を冷却する冷却手段を備えることを特徴とする請求項21に記載の積層体の製造装置。

     
PCT/JP2015/068885 2014-07-02 2015-06-30 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置 WO2016002804A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/320,441 US10607915B2 (en) 2014-07-02 2015-06-30 Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device
KR1020177002020A KR102300970B1 (ko) 2014-07-02 2015-06-30 접합체의 제조 방법, 다층 접합체의 제조 방법, 파워 모듈용 기판의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법 및 적층체의 제조 장치
CN201580033623.1A CN106471616B (zh) 2014-07-02 2015-06-30 接合体和多层接合体制法、功率模块基板和带散热器功率模块基板制法及层叠体制造装置
EP15815025.0A EP3196927B1 (en) 2014-07-02 2015-06-30 Joined body manufacturing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-136646 2014-07-02
JP2014136646 2014-07-02
JP2014-235949 2014-11-20
JP2014235949 2014-11-20
JP2015-130973 2015-06-30
JP2015130973A JP6550971B2 (ja) 2014-07-02 2015-06-30 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2016002804A1 true WO2016002804A1 (ja) 2016-01-07

Family

ID=55019334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068885 WO2016002804A1 (ja) 2014-07-02 2015-06-30 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置

Country Status (1)

Country Link
WO (1) WO2016002804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141011A1 (en) * 2014-07-02 2017-05-18 Mitsubishi Materials Corporation Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224270A (ja) * 1994-02-08 1995-08-22 Nikka Seiko Kk 仮止め用接着剤
JP2004039915A (ja) * 2002-07-04 2004-02-05 Hitachi Industrial Equipment Systems Co Ltd 半導体装置
JP2007194256A (ja) * 2006-01-17 2007-08-02 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
JP2009235218A (ja) * 2008-03-27 2009-10-15 The Inctec Inc 接着剤組成物および洗浄方法
JP2010010561A (ja) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
JP2013229545A (ja) * 2012-03-30 2013-11-07 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224270A (ja) * 1994-02-08 1995-08-22 Nikka Seiko Kk 仮止め用接着剤
JP2004039915A (ja) * 2002-07-04 2004-02-05 Hitachi Industrial Equipment Systems Co Ltd 半導体装置
JP2007194256A (ja) * 2006-01-17 2007-08-02 Mitsubishi Materials Corp パワーモジュール用基板の製造方法
JP2009235218A (ja) * 2008-03-27 2009-10-15 The Inctec Inc 接着剤組成物および洗浄方法
JP2010010561A (ja) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
JP2013229545A (ja) * 2012-03-30 2013-11-07 Mitsubishi Materials Corp パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、及びパワーモジュール用基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141011A1 (en) * 2014-07-02 2017-05-18 Mitsubishi Materials Corporation Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device

Similar Documents

Publication Publication Date Title
JP6550971B2 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
TWI629754B (zh) Manufacturing apparatus and manufacturing method of metal-ceramic plate laminate, manufacturing apparatus of substrate for power module, and manufacturing method
JP6044885B2 (ja) 実装方法
JP5664679B2 (ja) パワーモジュール用基板の製造方法
JP6127540B2 (ja) パワーモジュール用基板の製造方法
KR20150133194A (ko) 접합체의 제조 방법 및 파워 모듈용 기판의 제조 방법
JP2016063145A (ja) 放熱板付パワーモジュール用基板の製造装置及び製造方法
WO2018168476A1 (ja) 接合体の製造方法、絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
WO2016002804A1 (ja) 接合体の製造方法、多層接合体の製造方法、パワーモジュール用基板の製造方法、ヒートシンク付パワーモジュール用基板の製造方法及び積層体の製造装置
WO2014020790A1 (ja) 実装方法
JP2010267663A (ja) パワーモジュール製造方法およびその方法により製造したパワーモジュールおよびパワーモジュール製造装置
WO2023100939A1 (ja) 仮止め材、および、接合体の製造方法
JP2020107671A (ja) 絶縁回路基板の製造方法及びその絶縁回路基板
JP6152681B2 (ja) パワーモジュール用基板およびその製造方法
JP6790915B2 (ja) 絶縁回路基板の製造方法
JP2010114166A (ja) パワーモジュール用基板の製造中間体およびパワーモジュール用基板の製造方法
JP5708733B2 (ja) パワーモジュール用基板の製造方法
JP2023081350A (ja) 仮止め材、および、接合体の製造方法
JP2012164779A (ja) パワーモジュール用基板の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15320441

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177002020

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015815025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815025

Country of ref document: EP