Nothing Special   »   [go: up one dir, main page]

WO2016002072A1 - 換気装置 - Google Patents

換気装置 Download PDF

Info

Publication number
WO2016002072A1
WO2016002072A1 PCT/JP2014/067933 JP2014067933W WO2016002072A1 WO 2016002072 A1 WO2016002072 A1 WO 2016002072A1 JP 2014067933 W JP2014067933 W JP 2014067933W WO 2016002072 A1 WO2016002072 A1 WO 2016002072A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity
indoor
temperature
target
Prior art date
Application number
PCT/JP2014/067933
Other languages
English (en)
French (fr)
Inventor
真海 安田
秀元 荒井
文夫 齋藤
雅洋 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14896450.5A priority Critical patent/EP3165843B1/en
Priority to PCT/JP2014/067933 priority patent/WO2016002072A1/ja
Priority to JP2016530786A priority patent/JP6234574B2/ja
Priority to CN201480080087.6A priority patent/CN106461256B/zh
Priority to US15/312,347 priority patent/US20170097165A1/en
Publication of WO2016002072A1 publication Critical patent/WO2016002072A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a ventilation device.
  • Patent Document 1 when a high humidity operation switch is turned on, a rapid humidification operation that maintains a humidity centered around a predetermined high humidity region is performed for a preset time in a timer, and thereafter a humidification stop threshold value There is a humidifier provided with a control means for performing a high-humidity keep operation in which the humidity moves up and down between the temperature and the rehumidification threshold.
  • Patent Document 2 there is a humidifier that includes a sensor that detects the room temperature and humidity and a steam generator for humidification, and performs humidification according to a set humidification mode.
  • the temperature sensor which measures the temperature of outdoor air the humidity sensor which measures the humidity of outdoor air
  • the air-conditioning coil which heats supply air the measurement result of a temperature sensor and a humidity sensor
  • Patent Document 1 operates for a certain period of time as a rapid humidification operation at the start of operation, and does not reduce the amount of humidification even when the indoor humidity reaches a set value.
  • the humidity moves up and down between the humidification stop threshold and the rehumidification threshold, so the humidity cannot be kept constant, and air with comfortable humidity is supplied stably. Difficult to do.
  • Patent Document 2 determines the humidification amount based only on indoor temperature information and humidity information, and in a system that combines actual ventilation, indoor humidity changes are likely to occur due to humidity changes in the outside air. It is difficult to keep the indoor humidity environment constant and the comfort is impaired.
  • the parameters for controlling the air conditioning coil are limited to the outside air temperature and the outside air humidity. For example, even if the room is low-humidity at the start of operation and the amount of humidification needs to be increased, if the air-conditioning coil capacity is limited due to the outside air temperature and humidity conditions, it will take time for the room to reach a comfortable humidity state. Comfort is lost.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a ventilator that supplies an optimal amount of humidification to the supply air when taking in outside air by ventilation and performs an operation that hardly causes a change in indoor humidity. .
  • the present invention provides a casing having an air supply air passage and an exhaust air passage, and an air supply air passage which sucks outdoor air into the air supply air passage and supplies it to the room.
  • An air supply fan that forms an air flow
  • an exhaust fan that is installed in the exhaust air passage, sucks indoor air into the exhaust air passage, and forms an exhaust air flow that is exhausted to the outside, and between the air supply and exhaust air passages Installed in the casing, and a total heat exchanger that performs total heat exchange between the supply air flow and the exhaust flow
  • an outdoor temperature sensor that measures the temperature of outdoor air, and an outdoor humidity that measures the humidity of outdoor air
  • the sensor, the indoor humidity sensor that measures the humidity of the room air, the heating capacity can be changed in multiple stages, and the temperature control coil that heats the air supply after the total heat exchange by the total heat exchanger, and the temperature control coil Humidification element that humidifies heated air supply
  • a target indoor humidity storage unit that stores a target indoor humidity that is a target value
  • the ventilator according to the present invention provides an effect of supplying an optimal amount of humidification to the supply air when taking in outside air by ventilation, and performing an operation that hardly causes changes in indoor humidity.
  • FIG. 1 is a top perspective view showing the configuration of the first embodiment of the ventilation device according to the present invention.
  • FIG. 2 is a flowchart showing a flow of operation of the ventilator.
  • FIG. 3 is a flowchart showing the flow of the initial determination control.
  • FIG. 4 is a flowchart showing the flow of operation of steady operation control.
  • FIG. 5 is a time chart showing an example of the operation of the ventilator according to the first embodiment.
  • FIG. 6 is a system diagram illustrating the configuration of the ventilation device and the air conditioner according to the second embodiment.
  • FIG. 7 is a diagram illustrating a method of changing the target indoor relative humidity RHm_rei for use in the cooling operation of the ventilation device according to the second embodiment.
  • FIG. 8 is a flowchart showing an operation flow of the ventilation device according to the second embodiment.
  • FIG. 9 is a time chart showing an example of the operation of the ventilator according to the second embodiment.
  • FIG. 1 is a top perspective view showing the configuration of the first embodiment of the ventilation device according to the present invention.
  • the ventilation device 23 includes a main body casing 1, an exhaust fan 2, an air supply fan 3, a total heat exchanger 4, a temperature control coil 5, a humidifying element 6, an exhaust air outlet 7, an air supply air outlet 8, and an air intake port. 9, an exhaust air inlet 10, an outside air temperature sensor 11, an outside air humidity sensor 12, a target indoor humidity storage unit 13, a control unit 14, a remote controller 15, an air path switching damper 16, an indoor temperature sensor 17, and an indoor humidity sensor 18.
  • the ventilator 23 is provided with an air supply outlet 8 and an exhaust air inlet 10 on the indoor side, an exhaust air outlet 7 and an air inlet 9 on the outdoor side, and the air supply inlet 9 on the outdoor side and the air supply on the indoor side. It is a box structure covered with a main body casing 1 that forms an air supply air passage that communicates with the air outlet 8 and an exhaust air passage that communicates the exhaust suction port 10 on the indoor side and the exhaust air outlet 7 on the outdoor side. is there.
  • the air supply blower 3 is incorporated in the air supply air passage and forms an air supply airflow.
  • the exhaust blower 2 is incorporated in the exhaust air passage and forms an exhaust flow.
  • the total heat exchanger 4 is disposed between the supply air flow path and the exhaust air flow path, performs total heat exchange continuously between the supply air flow and the exhaust air flow, uses outdoor air as supply air, and converts indoor air into Use exhaust air.
  • a humidifying element 6 is provided on the windward side of the air supply air outlet 8 in the air supply air passage. Between the air supply blower 3 and the humidifying element 6, the supply air is heated and the amount of humidification is increased.
  • a temperature control coil 5 is provided for adjusting the above.
  • a water supply pipe 19 is connected to the humidifying element 6, and during the humidifying operation, the water supply valve 20 is opened, and water for humidification is supplied through the water supply pipe 19.
  • an air path 26 that sends exhaust air to the total heat exchanger 4 and a bypass air path 27 that sends the exhaust air directly to the exhaust fan 2 without passing through the total heat exchanger 4.
  • An air path switching damper 16 that switches between the two is installed. When the air path switching damper 16 is closed, the indoor air passes through the total heat exchanger 4 and is continuously subjected to total heat exchange with the outdoor air. When the air path switching damper 16 is open, the room air passes through the bypass air path 27 provided on the side of the total heat exchanger 4 to become exhaust air and is exhausted to the outside by the exhaust fan 2.
  • the ventilator 23 opens the air passage switching damper 16 and sends the room air to the bypass air passage 27 to perform the outside air cooling by the bypass ventilation.
  • the air path switching damper 16 is closed and the room air is sent to the total heat exchanger 4 to perform total heat exchange ventilation for the purpose of heat recovery of the room air. To work.
  • the control unit 14 controls the ventilation operation.
  • the remote controller 15 receives an operation mode switching operation and the like.
  • the target indoor humidity storage unit 13 stores a target value of indoor humidity.
  • the outside temperature sensor 11 measures the outside temperature Toa.
  • the outside air humidity sensor 12 measures the outside air humidity RHoa.
  • the outside air temperature sensor 11 and the outside air humidity sensor 12 are provided between the supply air inlet 9 and the total heat exchanger 4.
  • the room temperature sensor 17 measures the measured room temperature Tra, that is, the room temperature.
  • the indoor humidity sensor 18 measures the actually measured indoor humidity RHra, that is, the indoor humidity.
  • the indoor temperature sensor 17 and the indoor humidity sensor 18 are provided between the exhaust air inlet 10 and the total heat exchanger 4.
  • the control unit 14 determines the heating capability of the temperature adjustment coil 5 based on the temperature information that is the measurement result of the outside air temperature Toa by the outside air temperature sensor 11 and the humidity information that is the measurement result of the outside air humidity RHoa by the outside air humidity sensor 12. To do.
  • the air that has passed through the total heat exchanger 4 is heated by the temperature adjustment coil 5.
  • the air heated by the temperature control coil 5 passes through the humidifying element 6 and is supplied into the room from the air supply outlet 8 as humidified air. At that time, the humidification amount and the blowing temperature are adjusted by the heating amount in the temperature control coil 5.
  • FIG. 2 is a flowchart showing the flow of operation of the ventilator.
  • the control unit 14 performs initial determination control for determining the first operation state (step S1). Then, the control part 14 transfers to steady operation control (step S2). If there is no operation end operation (step S3 / No), the steady operation control is continued. If there exists operation completion
  • FIG. 3 is a flowchart showing the flow of initial determination control.
  • the control unit 14 reads the actually measured room relative humidity RHra and the target room relative humidity RHm (step S11).
  • the control unit 14 compares the measured indoor relative humidity RHra with the target indoor relative humidity RHm (step S12).
  • the control unit 14 operates the ventilator 23 in the humidification mode A (Step S13).
  • the control unit 14 controls the temperature adjustment coil 5 so that the humidification capacity becomes 100% in order to quickly increase the humidification amount in the room and ensure comfort.
  • the control unit 14 determines whether the room is in an excessively humidified state (step S14). The determination as to whether or not the vehicle is in an excessively humid state is made based on whether or not the actually measured indoor relative humidity RHra is less than the thermo-off humidity RHoff. If the actually measured indoor relative humidity RHra is less than the thermo-off humidity RHoff, it is determined that the over-humidified state is not present. It is appropriate that the thermo-off humidity RHoff is about 5% higher than the target indoor relative humidity RHm in order to prevent chattering.
  • the control unit 14 operates the ventilator 23 in the humidification mode B (step S15).
  • the control unit 14 determines the ability of the temperature adjustment coil 5 so that the humidity of the supply air from the ventilator 23 becomes the target room relative humidity RHm. Judgment is made automatically based on the humidity RHoa.
  • the capacity value of the temperature control coil 5 is obtained by causing the control unit 14 to store reference data in which the combination of the outside air temperature Toa and the outside air humidity RHoa and the capacity value of the temperature control coil 5 are associated with each other. Make a decision based on the map.
  • the control unit 14 When the room is in an excessively humidified state, that is, when the actually measured room relative humidity RHra is equal to or higher than the thermo-off humidity RHoff (step S14 / No), the control unit 14 operates the ventilator 23 in the humidification mode C (step S16). ). In the humidification mode C, since it is not necessary to promote humidification using the temperature control coil 5 and it is necessary to suppress dew condensation due to indoor overhumidification, the control unit 14 reduces the operating capacity of the temperature control coil 5 to 0%. That is, the humidifying operation of the ventilation device 23 is stopped in the thermo-off state.
  • the heating of the temperature control coil 5 and the water supply to the humidification element 6 are stopped, and it is possible to immediately return to the target indoor relative humidity RHm, which is a comfortable humidity, from the overhumidified state.
  • the operating capacity of the temperature control coil 5 is set to 0%, the water supply to the humidifying element 6 is not stopped, so that a rapid humidity drop due to ventilation during steady operation can be suppressed, and a constant high humidity state can be maintained for a long time. You may carry out the driving
  • FIG. 4 is a flowchart showing a flow of operation of steady operation control.
  • the control part 14 confirms which humidification mode is the present humidification mode (step S21).
  • the control unit 14 determines whether the measured indoor relative humidity RHra remains lower than the target indoor relative humidity RHm (step S22).
  • the control unit 14 continues the operation of the ventilation device 23 in the humidification mode A to increase the indoor humidity. Continue (step S23).
  • step S22 when the measured indoor relative humidity RHra is equal to or higher than the target indoor relative humidity RHm (step S22 / No), the control unit 14 causes the ventilator 23 to shift to the humidification mode B (step S24).
  • the temperature adjustment coil 5 is operated with the optimum coil capacity value while monitoring the outside air temperature Toa and the outside air humidity RHoa, and the humidifying operation of the ventilation device 23 is continued.
  • the control unit 14 determines whether the measured indoor relative humidity RHra is equal to or lower than the target indoor relative humidity RHm (step S25). When the measured indoor relative humidity RHra exceeds the target indoor relative humidity RHm (step S25 / No), the control unit 14 causes the ventilator 23 to continue the operation in the humidifying mode C (step S26). When the measured indoor relative humidity RHra decreases due to ventilation and becomes equal to or lower than the target indoor relative humidity RHm (step S25 / Yes), the control unit 14 shifts the ventilation device 23 to the humidification mode B (step S24).
  • the control unit 14 determines whether the measured indoor relative humidity RHra is equal to or less than the capacity non-restricted return humidity RHon (step S27). When the measured indoor relative humidity RHra is equal to or less than the capacity non-restricted return humidity RHon (step S27 / Yes), the control unit 14 causes the ventilator 23 to shift to the humidification mode A (step S23). In order to prevent chattering, it is appropriate that the non-capacity return humidity RHon is about 5% lower than the target indoor relative humidity RHm.
  • the control unit 14 determines whether the actually measured room relative humidity RHra is less than the thermo-off humidity RHoff (step S28).
  • the control unit 14 causes the ventilator 23 to shift to the humidification mode C (step S26).
  • the control unit 14 maintains the ventilation device 23 in the humidification mode B (step S24).
  • FIG. 5 is a time chart showing an example of the operation of the ventilator according to the first embodiment.
  • the control unit 14 performs initial determination control. Since the measured indoor relative humidity RHra is lower than the target indoor relative humidity RHm, the control unit 14 causes the ventilator 23 to start the humidifying operation in the humidifying mode A.
  • the control unit 14 causes the ventilation device 23 to shift from the humidifying mode A to the humidifying mode B.
  • the control unit 14 causes the ventilation device 23 to shift from the humidification mode B to the humidification mode A.
  • the control unit 14 shifts the ventilation device 23 from the humidifying mode A to the humidifying mode B.
  • the control unit 14 shifts the ventilation device 23 from the humidification mode B to the humidification mode C.
  • the control unit 14 causes the ventilation device 23 to shift from the humidifying mode C to the humidifying mode B.
  • the indoor humidity may increase as the outside air humidity RHoa to be taken in increases. Therefore, in the above control, when the measured indoor relative humidity RHra rises to the thermo-off humidity RHoff, the humidifying mode of the ventilator 23 is switched from the humidifying mode B to the humidifying mode C.
  • the humidification mode of the ventilator 23 is switched from the humidifying mode B to the humidifying mode A. Thereby, the operation which maximizes the humidification amount is performed, and the indoor humidity is increased as quickly as possible.
  • the control unit 14 determines that the indoor humidity is within the target range, and makes the ventilation device 23 enter the humidifying mode B. Continue energy-saving humidification operation.
  • the target indoor relative humidity RHm and the measured indoor relative humidity RHra are measured and determined based on the relative humidity.
  • the relative humidity may decrease unintentionally as a result. is there.
  • the absolute humidity AHra may be calculated from the measured room temperature TRa and the measured room relative humidity RHra and compared with the target absolute humidity.
  • the ability value of the temperature control coil is determined, and the heating ability is suppressed. Humidify.
  • the humidified mode is switched as soon as possible to change the measured indoor relative humidity RHra to the target indoor relative humidity RHm. The comfort can be improved in a short time.
  • FIG. 6 is a system diagram illustrating the configuration of the ventilation device and the air conditioner according to the second embodiment.
  • the air conditioner 22 and the ventilation device 23 constitute an air conditioning system 50 together with the outdoor unit 21, and are connected to each other by a refrigerant pipe 24 and a communication line 25.
  • the outdoor unit 21 includes a pump that sends the refrigerant to the refrigerant pipe 24.
  • the outdoor unit 21 includes fins that radiate heat absorbed by the refrigerant during the cooling operation in the air conditioner 22 and the ventilation device 23.
  • a part of the air conditioner 22 includes a remote controller 28, and operations such as on / off of operation and switching of operation modes can be performed through the remote controller 28.
  • the target indoor relative humidity RHm_rei for use in the cooling operation is set as the target indoor relative humidity when the air conditioner 22 constituting the air conditioning system 50 is in the cooling operation during the heating / humidifying operation. ing.
  • the target indoor relative humidity RHm_rei for use in combination with cooling is set to a value between the normal target indoor relative humidity RHm and the thermo-off humidity RHoff.
  • the target indoor relative humidity RHm_rei for use in combination with cooling may be a fixed value or a value that varies depending on the number of air conditioners that are linked.
  • FIG. 7 is a diagram illustrating a method of changing the target indoor relative humidity RHm_rei for use in the cooling operation of the ventilation device according to the second embodiment.
  • the target indoor relative humidity RHm_rei for the combined use of the cooling operation may be set so as to increase as the number of linked air conditioners 22 increases, or increases as the number increases by two or more. You may set as follows.
  • FIG. 8 is a flowchart showing a flow of operation of the ventilator according to the second embodiment.
  • the operation in the initial determination control (step S1) is as described in the first embodiment.
  • the control unit 14 determines whether the air conditioner 22 constituting the air conditioning system 50 is in a cooling operation during the heating and humidifying operation (step S31).
  • the control unit 14 uses the target indoor relative humidity RHm from the normal value for the cooling combined use in order to prevent a decrease in humidity due to the cooling and dehumidifying operation.
  • RHm_rei To the target room relative humidity RHm_rei (step S32).
  • step S31 When the air conditioner 22 constituting the air conditioning system 50 has stopped operating, or when operating in an operation mode other than the cooling operation (step S31 / No), the humidity reduction due to cooling dehumidification does not occur.
  • the control unit 14 sets the target indoor relative humidity of the ventilator 23 to the target indoor relative humidity RHm, which is a normal value (step S33).
  • step S2 steady operation control
  • step S3 / No the process returns to step S31 to determine whether the air conditioner 22 constituting the air conditioning system 50 is in the cooling operation. If there is an operation for ending operation (step S3 / Yes), the operation is ended.
  • the target room relative humidity is set to the target room relative humidity RHm, which is a normal value, thereby saving the energy of the temperature control coil 5. Perform proper humidification operation.
  • FIG. 9 is a time chart showing an example of the operation of the ventilator according to the second embodiment.
  • the control unit 14 performs initial determination control and causes the ventilator 23 to start operation in the humidification mode A.
  • the actually measured indoor relative humidity RHra is equal to or higher than the normal target indoor relative humidity RHm, but is not equal to or higher than the target indoor relative humidity RHm_rei for combined use with cooling.
  • the operation in the humidification mode A is maintained.
  • the actually measured indoor relative humidity RHra is equal to or higher than the normal target indoor relative humidity RHm, but is not equal to or higher than the target indoor relative humidity RHm_rei for use together with cooling.
  • the operation in the humidification mode A is maintained.
  • the control unit 14 shifts the ventilation device 23 from the humidifying mode A to the humidifying mode B.
  • the control unit 14 shifts the ventilation device 23 from the humidification mode B to the humidification mode C.
  • the control unit 14 shifts the ventilation device 23 from the humidifying mode C to the humidifying mode B.
  • the temperature adjustment coil 5 Based on whether or not the air conditioner 22 is in cooling operation, the temperature adjustment coil 5 has a capability value of 100% by switching between the normal target indoor relative humidity RHm and the target indoor relative humidity RHm_rei for use together with the cooling. Since the area of the humidifying mode A that operates in the above can be expanded, it is possible to suppress a decrease in humidity due to dehumidification of the air conditioner 22.
  • the outdoor unit 21 determines the air conditioner 22 that is operating at the evaporation temperature ETk that is higher than the refrigerant evaporation temperature ET in the normal cooling operation and that processes only sensible heat, and is a target for combined use with cooling.
  • the indoor relative humidity RHm_rei may be changed. If the air conditioner 22 is in the cooling operation at the evaporating temperature ETk or higher for processing only sensible heat, there is no concern that the indoor humidity will decrease. Therefore, the ventilator 23 sets the target indoor relative humidity to the normal target indoor relative humidity RHm. There is no need to change from.
  • the target room relative humidity RHm may be increased only when the number of air conditioners 22 in cooling operation is measured and the dehumidification amount of the air conditioners 22 exceeds the humidification amount of the ventilator 23.
  • the target indoor relative humidity RHm of the ventilation device 23 is changed based on the cooling operation information and the refrigerant evaporation temperature information, thereby preventing the indoor humidity from being lowered. It is possible to improve indoor comfort.
  • the target indoor relative humidity RHm is higher than the actually measured indoor relative humidity RHra measured by the indoor humidity sensor 18, based on the measured values of the outside air temperature sensor 11 and the outside air humidity sensor 12, Since the heating capability of the temperature control coil 5 is determined so that the humidity becomes the target indoor relative humidity RHm, an optimal humidification amount is supplied when taking in outside air by ventilation, and a heating and humidifying operation in which the indoor humidity hardly changes can be realized.
  • the ventilator according to the present invention is useful in that the ventilator that humidifies the outside air and takes air into the room changes the humidification amount with respect to the target indoor humidity and keeps the indoor humidity comfortable. Especially, it is suitable for installing an air conditioner separately in the room and configuring an air conditioning system together with a ventilation device.
  • 1 Body casing 2 exhaust fan, 3 air supply fan, 4 total heat exchanger, 5 temperature control coil, 6 humidifying element, 7 exhaust air outlet, 8 air supply air outlet, 9 air supply air inlet, 10 exhaust air intake Mouth, 11 Outside air temperature sensor, 12 Outside air humidity sensor, 13 Target indoor humidity storage unit, 14 Control unit, 15, 28 Remote controller, 16 Air path switching damper, 17 Indoor temperature sensor, 18 Indoor humidity sensor, 19 Water supply pipe, 20 Water supply valve, 23 ventilator, 24 refrigerant piping, 25 communication lines, 26 air passages, 27 bypass air passages, 50 air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

 換気装置(23)は、加熱能力が多段階に変更可能であり、全熱交換器(4)による全熱交換後の給気流を加熱する温調コイル(5)と、温調コイル(5)によって加熱された給気流を加湿する加湿エレメント(6)と、室内空気の湿度の目標値である目標室内湿度を記憶する目標室内湿度記憶部(13)と、目標室内湿度が室内湿度センサ(18)による室内空気の湿度の実測値よりも高い場合に、温調コイル(5)の能力を外気温度センサ(11)及び外気湿度センサ(12)の測定値に基づいて、給気流の湿度が目標室内湿度となるように温調コイル(5)の加熱能力を決定する制御部(14)とを有する。

Description

換気装置
 本発明は、換気装置に関する。
 従来、例えば特許文献1のように、高湿運転スイッチをオンしたとき、予め定めた高湿域を中心とした湿度に保つ急速加湿運転を予めタイマーに設定した時間だけ行い、その後は加湿停止閾値と再加湿閾値との間で湿度が上下動する高湿キープ運転を行う制御手段を設けた加湿装置がある。
 また、特許文献2のように、室内温度及び室内湿度を検出するセンサと、加湿用の水蒸気発生装置とを備え、設定された加湿量のモードに従って加湿を行う加湿装置がある。
 また、特許文献3のように、室外空気の温度を測定する温度センサと、室外空気の湿度を測定する湿度センサと、給気空気を加熱する空調コイルと、温度センサ及び湿度センサの測定結果に基づいて、給気空気の絶対湿度が予め定められた値となるように空調コイルを制御する制御手段とを有する換気空調装置がある。
特開2005-37104号公報 特開2000-46383号公報 国際公開第2012/077201号
 しかしながら、特許文献1に記載の技術は、運転開始時に急速加湿運転として一定時間動作し、室内湿度が設定値になっても加湿量を減らすことがないため、無駄な加湿運転をしてしまう。また、急速加湿運転後は、加湿停止閾値と再加湿閾値との間で湿度が激しく上下動してしまうため、湿度を一定に維持することができず、快適な湿度の空気を安定して供給することは難しい。
 特許文献2に記載の技術は、室内の温度情報及び湿度情報のみに基づいて加湿量を決定しており、実際の換気を組み合わせたシステムでは、外気の湿度変化により室内湿度変化が生じやすいため、室内湿度環境を一定に保ちにくく、快適性を損ねてしまう。
 特許文献3に記載の技術は、空調コイルを制御するパラメータが外気温度及び外気湿度に限られている。例えば、運転開始時に室内が低湿であって加湿量を大きくする必要がある場合でも、外気温湿度の条件から空調コイルの能力に制限が加えられると、室内が快適な湿度状態となるまでに時間を要し、快適性が損なわれてしまう。
 本発明は、上記に鑑みてなされたものであって、換気による外気取り入れ時に最適な加湿量を給気に供給し、室内湿度の変化が生じにくい運転を行う換気装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、給気風路及び排気風路を備えたケーシングと、給気風路に設置され、室外空気を給気風路に吸い込んで室内に給気流を形成する給気用送風機と、排気風路に設置され、室内空気を排気風路に吸い込んで室外へ排気する排気流を形成する排気用送風機と、給気風路と排気風路との間に配置されてケーシングに収容され、給気流と排気流との間で全熱交換を行う全熱交換器と、室外空気の温度を測定する外気温度センサと、室外空気の湿度を測定する外気湿度センサと、室内空気の湿度を測定する室内湿度センサと、加熱能力が多段階に変更可能であり、全熱交換器による全熱交換後の給気流を加熱する温調コイルと、温調コイルによって加熱された給気流を加湿する加湿エレメントと、室内空気の湿度の目標値である目標室内湿度を記憶する目標室内湿度記憶部と、目標室内湿度が室内湿度センサによる室内空気の湿度の実測値よりも高い場合に、外気温度センサ及び外気湿度センサの測定値に基づいて、給気流の湿度が目標室内湿度となるように温調コイルの加熱能力を決定する制御部とを有することを特徴とする。
 本発明に係る換気装置は、換気による外気取り入れ時に最適な加湿量を給気に供給し、室内湿度の変化が生じにくい運転を行えるという効果を奏する。
図1は、本発明に係る換気装置の実施の形態1の構成を示す上面透視図である。 図2は、換気装置の動作の流れを示すフローチャートである。 図3は、初期判定制御の流れを示すフローチャートである。 図4は、定常運転制御の動作の流れを示すフローチャートである。 図5は、実施の形態1に係る換気装置の動作の一例を示すタイムチャートである。 図6は、実施の形態2に係る換気装置と空気調和機との構成を示すシステム図である。 図7は、実施の形態2に係る換気装置の冷房運転併用時用の目標室内相対湿度RHm_reiの可変方法を示す図である。 図8は、実施の形態2に係る換気装置の動作の流れを示すフローチャートである。 図9は、実施の形態2に係る換気装置の動作の一例を示すタイムチャートである。
 以下に、本発明に係る換気装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明に係る換気装置の実施の形態1の構成を示す上面透視図である。換気装置23は、本体ケーシング1、排気用送風機2、給気用送風機3、全熱交換器4、温調コイル5、加湿エレメント6、排気吹出口7、給気吹出口8、給気吸込口9、排気吸込口10、外気温度センサ11、外気湿度センサ12、目標室内湿度記憶部13、制御部14、リモートコントローラ15、風路切替ダンパ16、室内温度センサ17及び室内湿度センサ18を有する。
 換気装置23は、室内側に給気吹出口8及び排気吸込口10を設け、室外側に排気吹出口7及び給気吸込口9を設け、室外側の給気吸込口9と室内側の給気吹出口8とを連通させる給気風路と、室内側の排気吸込口10と室外側の排気吹出口7とを連通させる排気風路とを形成した本体ケーシング1で覆われた箱体構造である。
 給気用送風機3は、給気風路に組み込まれており、給気流を形成する。排気用送風機2は、排気風路に組み込まれており、排気流を形成する。全熱交換器4は、給気風路と排気風路との間に配置され、給気流と排気流との間で連続的に全熱交換を行い、室外空気を給気空気とし、室内空気を排気空気とする。給気風路内の給気吹出口8よりも風上側には、加湿エレメント6が設けられており、給気用送風機3と加湿エレメント6との間には、給気空気を加熱し、加湿量の調整を行う温調コイル5が設けられている。加湿エレメント6には給水管19が接続されており、加湿運転時には給水弁20が開いて、給水管19を通じて加湿用の水が供給される。
 全熱交換器4においては、排気流を通す一次側風路と給気流を通す二次側風路とは内部において垂直に交差している。これにより、給気流と排気流との間で全熱が交換され、熱交換換気を行うことができる。
 排気風路の全熱交換器4よりも風上側には、排気空気を全熱交換器4へ送る風路26と、全熱交換器4を通さず直接排気用送風機2へ送るバイパス風路27とを切り替える風路切替ダンパ16が設置されている。風路切替ダンパ16が閉じているとき、室内空気は全熱交換器4を通り、室外空気と連続的に全熱交換が行われる。風路切替ダンパ16が開いているとき、室内空気は全熱交換器4の横に設けられたバイパス風路27を通って排気空気となり、排気用送風機2によって室外へ排出される。
 換気装置23は、例えば中間期のように外気温度Toaが室内温度よりも低いときは、風路切替ダンパ16を開いて室内空気をバイパス風路27に送って、バイパス換気による外気冷房を実施し、夏季や冬季の空調負荷が発生するような時期は、風路切替ダンパ16を閉じて室内空気を全熱交換器4へ送り、室内空気の熱回収を目的とした全熱交換換気を実施するように動作する。
 制御部14は、換気動作を制御する。リモートコントローラ15は、動作モードの切替操作などを受け付ける。目標室内湿度記憶部13には、室内湿度の目標値が記憶されている。
 外気温度センサ11は、外気温度Toaを測定する。外気湿度センサ12は外気湿度RHoaを測定する。外気温度センサ11及び外気湿度センサ12は、給気吸込口9と全熱交換器4との間に設けられている。室内温度センサ17は、実測室内温度Tra、すなわち室内の温度を測定する。室内湿度センサ18は、実測室内湿度RHra、すなわち室内の湿度を測定する。室内温度センサ17及び室内湿度センサ18は、排気吸込口10と全熱交換器4との間に設けられている。
 制御部14は、外気温度センサ11による外気温度Toaの測定結果である温度情報と外気湿度センサ12による外気湿度RHoaの測定結果である湿度情報とに基づいて、温調コイル5の加熱能力を決定する。全熱交換器4を通過した空気は、温調コイル5によって加熱される。温調コイル5にて加熱された空気は加湿エレメント6を通過し、加湿された空気となって給気吹出口8から室内へ供給される。その際、温調コイル5での加熱量によって加湿量及び吹出温度が調整される。
 図2は、換気装置の動作の流れを示すフローチャートである。運転開始後、制御部14は、最初の運転状態を決定するための初期判定制御を行う(ステップS1)。その後、制御部14は、定常運転制御に移行する(ステップS2)。運転終了の操作がなければ(ステップS3/No)、定常運転制御を継続する。運転終了の操作があれば(ステップS3/Yes)、制御部14は、換気装置23の運転を終了する。
 図3は、初期判定制御の流れを示すフローチャートである。初めに、制御部14は、実測室内相対湿度RHraと目標室内相対湿度RHmとを読み込む(ステップS11)。次に、制御部14は、実測室内相対湿度RHraと目標室内相対湿度RHmとを比較する(ステップS12)。実測室内相対湿度RHraが目標室内相対湿度RHmよりも低い場合には(ステップS12/Yes)、制御部14は、加湿モードAで換気装置23を運転する(ステップS13)。なお、加湿モードAでは、制御部14は、室内への加湿量を早急に増加させて快適性を確保するために、加湿能力が100%となるように温調コイル5を制御する。
 実測室内相対湿度RHraが目標室内相対湿度RHm以上である場合には(ステップS12/No)、制御部14は、室内が過加湿状態かを判定する(ステップS14)。過加湿状態かの判定は、実測室内相対湿度RHraがサーモオフ湿度RHoff未満であるか否かに基づいて行い、実測室内相対湿度RHraがサーモオフ湿度RHoff未満であれば過加湿状態ではないと判定する。サーモオフ湿度RHoffは、チャタリングを防止するために、目標室内相対湿度RHmから5%程度高い値とすることが妥当である。
 室内が過加湿状態でなければ(ステップS14/Yes)、制御部14は、加湿モードBで換気装置23を運転する(ステップS15)。なお、加湿モードBでは、室内湿度を一定に保つために、制御部14は、換気装置23からの給気の湿度が目標室内相対湿度RHmとなる温調コイル5の能力を外気温度Toa及び外気湿度RHoaに基づいて自動で判断する。温調コイル5の能力値は、外気温度Toa及び外気湿度RHoaの組合せと温調コイル5の能力値とを対応付けた参照データ、いわゆるマップを制御部14に保持させておき、制御部14がマップに基づいて決定する。
 室内が過加湿状態である場合、すなわち、実測室内相対湿度RHraがサーモオフ湿度RHoff以上である場合は(ステップS14/No)、制御部14は、加湿モードCで換気装置23を運転する(ステップS16)。なお、加湿モードCでは、温調コイル5を用いて加湿を促進する必要がなく、室内過加湿による結露を抑制する必要があるため、制御部14は温調コイル5の運転能力を0%、すなわちサーモオフ状態として換気装置23の加湿運転を停止させる。
 加湿モードCにおいて、温調コイル5の加熱と加湿エレメント6への給水とを止め、過加湿状態からすぐに快適湿度である目標室内相対湿度RHmに戻すことが可能となる。また、温調コイル5の運転能力を0%とするものの加湿エレメント6への給水は止めないことで、定常運転時における換気による急激な湿度低下を抑制でき、一定値の高湿度状態を長時間保つ運転を実施しても良い。
 図4は、定常運転制御の動作の流れを示すフローチャートである。まず、制御部14は、現在の加湿モードがどの加湿モードであるかを確認する(ステップS21)。現在の加湿モードが加湿モードAである場合(ステップS21/加湿モードA)、制御部14は、実測室内相対湿度RHraが目標室内相対湿度RHmよりも低いままであるか判断する(ステップS22)。実測室内相対湿度RHraが目標室内相対湿度RHmよりも低い場合には(ステップS22/Yes)、制御部14は、加湿モードAでの換気装置23の運転を継続して室内湿度の高湿化を継続させる(ステップS23)。一方、実測室内相対湿度RHraが目標室内相対湿度RHm以上となった場合は(ステップS22/No)、制御部14は、換気装置23を加湿モードBへ移行させる(ステップS24)。これにより、外気温度Toa及び外気湿度RHoaをモニタリングしながら温調コイル5を最適なコイル能力値で運転し換気装置23の加湿運転を継続させる。
 現在の加湿モードが加湿モードCである場合(ステップS21/加湿モードC)、制御部14は、実測室内相対湿度RHraが目標室内相対湿度RHm以下であるか判断する(ステップS25)。実測室内相対湿度RHraが目標室内相対湿度RHmを超えている場合には(ステップS25/No)、制御部14は、換気装置23に加湿モードCでの運転を継続させる(ステップS26)。換気により、実測室内相対湿度RHraが低下し、目標室内相対湿度RHm以下となった場合は(ステップS25/Yes)、制御部14は、換気装置23を加湿モードBに移行させる(ステップS24)。
 現在の加湿モードが加湿モードBである場合(ステップS21/加湿モードB)、制御部14は、実測室内相対湿度RHraが能力非制限復帰湿度RHon以下であるかを判断する(ステップS27)。実測室内相対湿度RHraが能力非制限復帰湿度RHon以下である場合は(ステップS27/Yes)、制御部14は、換気装置23を加湿モードAに移行させる(ステップS23)。能力非制限復帰湿度RHonは、チャタリングを防止するために、目標室内相対湿度RHmよりも5%程度低い値とすることが妥当である。
 実測室内相対湿度RHraが能力非制限復帰湿度RHonを上回る場合(ステップS27/No)、制御部14は、実測室内相対湿度RHraがサーモオフ湿度RHoff未満であるか判断する(ステップS28)。実測室内相対湿度RHraがサーモオフ湿度RHoff以上である場合には(ステップS28/No)、制御部14は、換気装置23を加湿モードCに移行させる(ステップS26)。実測室内相対湿度RHraがサーモオフ湿度RHoff未満である場合は(ステップS28/Yes)、制御部14は、換気装置23を加湿モードBのまま維持する(ステップS24)。
 図5は、実施の形態1に係る換気装置の動作の一例を示すタイムチャートである。時刻t0において、制御部14は、初期判定制御を行う。実測室内相対湿度RHraが目標室内相対湿度RHmよりも低いため、制御部14は換気装置23に加湿モードAで加湿運転を開始させる。
 時刻t1において、実測室内相対湿度RHraが目標室内相対湿度RHm以上となったため、制御部14は、換気装置23を加湿モードAから加湿モードBに移行させる。
 時刻t2において、実測室内相対湿度RHraが能力非制限復帰湿度RHon以下となったため、制御部14は、換気装置23を加湿モードBから加湿モードAに移行させる。
 時刻t3において、実測室内相対湿度RHraが目標室内相対湿度RHm以上となったため、制御部14は、換気装置23を加湿モードAから加湿モードBに移行させる。
 時刻t4において、実測室内相対湿度RHraがサーモオフ湿度RHoff以上となったため、制御部14は、換気装置23を加湿モードBから加湿モードCに移行させる。
 時刻t5において、実測室内相対湿度RHraが目標室内相対湿度RHm以下となったため、制御部14は、換気装置23を加湿モードCから加湿モードBへ移行させる。
 現在の加湿モードが加湿モードBである場合、取り入れる外気湿度RHoaが高くなると室内湿度も上昇してくる場合がある。したがって、上記の制御では、実測室内相対湿度RHraがサーモオフ湿度RHoffまで上昇したら、換気装置23の加湿モードを加湿モードBから加湿モードCに切り替えている。
 現在の加湿モードが加湿モードBである場合、取り入れる外気湿度RHoaが低くなると、加湿能力が追いつかずに実測室内相対湿度RHraが低下してくる場合がある。したがって、上記の制御では、実測室内相対湿度RHraが能力非制限復帰湿度RHon以下となったら、換気装置23の加湿モードを加湿モードBから加湿モードAに切り替えている。これにより、加湿量が最大限となる運転を行って、室内湿度を可及的速やかに上昇させる。
 実測室内相対湿度RHraが能力非制限復帰湿度RHonとサーモオフ湿度RHoffとの間にある場合には、制御部14は、室内湿度は目標範囲内にあると判断し、換気装置23に加湿モードBでの省エネルギーな加湿運転を継続させる。
 上記の制御では、目標室内相対湿度RHm及び実測室内相対湿度RHraを相対湿度にて計測、判定していたが、計測する場所の温度が高いと、結果相対湿度が意図せず下がってしまう場合がある。その際は、実測室内温度TRaと実測室内相対湿度RHraとから絶対湿度AHraを算出し、目標絶対湿度と比較してもよい。
 このように、実施の形態1によれば、目標室内相対湿度RHm、実測室内相対湿度RHra、外気温度Toa及び外気湿度RHoaに基づいて、温調コイルの能力値を決定し、加熱能力を抑えながら加湿を行う。これにより、室内の湿度を一定に保ちつつ、実測室内相対湿度RHraが目標室内相対湿度RHmから離れた場合に、加湿モードを切り替えて可及的速やかに実測室内相対湿度RHraを目標室内相対湿度RHmに近づけることができ、快適性を短時間で改善できる。
実施の形態2.
 実施の形態2に係る換気装置は、実施の形態1と同様の構成であるが、換気装置が空気調和機と併用された際に、空気調和機の運転に基づき換気装置の目標室内相対湿度RHmを変化させる。図6は、実施の形態2に係る換気装置と空気調和機との構成を示すシステム図である。
 空気調和機22及び換気装置23は、室外機21とともに空調システム50を構成しており、冷媒配管24及び通信線25によって相互に接続されている。室外機21は、冷媒配管24に冷媒を送るポンプを備えている。また、室外機21は、空気調和機22及び換気装置23での冷房運転時に冷媒が吸収した熱を放熱するフィンを備えている。空気調和機22の一部は、リモートコントローラ28を備えており、運転のオンオフや運転モードの切替などの操作はリモートコントローラ28を通じて行える。
 制御部14には、暖房加湿運転時に、空調システム50を構成する空気調和機22が冷房運転している場合用の目標室内相対湿度として、冷房運転併用時用の目標室内相対湿度RHm_reiが設定されている。冷房併用時用の目標室内相対湿度RHm_reiは、通常の目標室内相対湿度RHmとサーモオフ湿度RHoffとの間の値に設定される。冷房併用時用の目標室内相対湿度RHm_reiは、固定値でも良いし、連動する空気調和機の台数に応じて変化する値であってもよい。図7は、実施の形態2に係る換気装置の冷房運転併用時用の目標室内相対湿度RHm_reiの可変方法を示す図である。冷房運転併用時用の目標室内相対湿度RHm_reiは、連動している空気調和機22が1台増えるごとに値が大きくなるように設定しても良いし、2台以上増えるごとに値が大きくなるように設定しても良い。
 図8は、実施の形態2に係る換気装置の動作の流れを示すフローチャートである。初期判定制御(ステップS1)での動作は、実施の形態1で説明した通りである。初期判定制御の後、制御部14は、暖房加湿運転時に、空調システム50を構成する空気調和機22が冷房運転しているかを判定する(ステップS31)。空気調和機22が冷房運転を実施している場合(ステップS31/Yes)、冷房除湿運転による湿度低下を防止するために、制御部14は目標室内相対湿度RHmを通常の値から冷房併用時用の目標室内相対湿度RHm_reiに変更する(ステップS32)。空調システム50を構成する空気調和機22が運転を停止している場合や、冷房運転以外の運転モードで運転している場合は(ステップS31/No)、冷房除湿による湿度低下は生じないため、制御部14は、換気装置23の目標室内相対湿度を通常の値である目標室内相対湿度RHmとする(ステップS33)。
 その後、定常運転制御(ステップS2)を行うが、定常運転制御での動作は実施の形態1で説明した通りである。定常運転制御ののち、運転終了の操作がなければ(ステップS3/No)、ステップS31に戻って空調システム50を構成する空気調和機22が冷房運転しているかを判定する。運転終了の操作があれば(ステップS3/Yes)、運転を終了する。
 上記のように、空気調和機22が冷房運転をしていない場合には、目標室内相対湿度を通常の値である目標室内相対湿度RHmとすることで、温調コイル5の能力を抑えた省エネルギーな加湿運転を実施する。
 図9は、実施の形態2に係る換気装置の動作の一例を示すタイムチャートである。時刻t10において、制御部14は、初期判定制御を行い、換気装置23に加湿モードAによる運転を開始させる。
 時刻t11において、実測室内相対湿度RHraが通常の目標室内相対湿度RHm以上となったが、冷房併用時用の目標室内相対湿度RHm_rei以上とはなっていないため、制御部14は、換気装置23に加湿モードAでの運転を維持させている。
 時刻t12において、実測室内相対湿度RHraが通常の目標室内相対湿度RHm以上となったが、冷房併用時用の目標室内相対湿度RHm_rei以上とはなっていないため、制御部14は、換気装置23に加湿モードAでの運転を維持させている。
 時刻t13において、実測室内相対湿度RHraが冷房併用時用の目標室内相対湿度RHm_rei以上となったため、制御部14は、換気装置23を加湿モードAから加湿モードBに移行させている。
 時刻t14において、実測室内相対湿度RHraがサーモオフ湿度RHoffを超えたため、制御部14は、換気装置23を加湿モードBから加湿モードCに移行させている。
 時刻t15において、実測室内相対湿度RHraが冷房併用時用の目標室内相対湿度RHm_rei以下となったため、制御部14は、換気装置23を加湿モードCから加湿モードBへ移行させている。
 空気調和機22が冷房運転をしているか否かに基づいて、通常の目標室内相対湿度RHmと冷房併用時用の目標室内相対湿度RHm_reiとを切り替えることで、温調コイル5が能力値100%で動作する加湿モードAの領域を拡大できるため、空気調和機22の除湿による湿度低下を抑えることが可能となる。
 空気調和機22の冷媒の蒸発温度が可変である場合、冷媒の蒸発温度が高ければ、空気中の顕熱すなわち温度のみ処理することができ、潜熱すなわち除湿は行わない冷房運転が可能である。そこで、通常の冷房運転での冷媒の蒸発温度ETよりも高温であり、顕熱のみ処理する蒸発温度ETkで運転している空気調和機22を室外機21が判断して冷房併用時用の目標室内相対湿度RHm_reiを変化させてもよい。顕熱のみを処理する蒸発温度ETk以上で空気調和機22が冷房運転していれば、室内湿度が低下する懸念がなくなるため、換気装置23は、目標室内相対湿度を通常の目標室内相対湿度RHmから変化させる必要はない。
 空気調和機22の冷媒の蒸発温度が顕熱のみ処理する蒸発温度ETk未満になった場合、空気調和機22による除湿が増え、冷房運転により室内湿度が低下する懸念が生じるため、目標室内相対湿度を冷房併用時用の目標室内相対湿度RHm_reiとする。目標室内相対湿度を極力通常の値から上げないことで、温調コイル5の能力をセーブした省エネルギーな運転が可能となる。
 また、冷房運転している空気調和機22の台数を計測し、空気調和機22の除湿量が換気装置23の加湿量を上回った場合のみ、目標室内相対湿度RHmを高めてもよい。
 このように、空気調和機22と併用した際に、冷房運転情報と冷媒の蒸発温度の情報とに基づいて、換気装置23の目標室内相対湿度RHmを変化させることで、室内湿度の低下を防止することが可能であり、室内の快適性を向上させることが可能となる。
 本実施の形態においては、目標室内相対湿度RHmが室内湿度センサ18によって測定した実測室内相対湿度RHraよりも高い場合に、外気温度センサ11及び外気湿度センサ12の測定値に基づいて、給気の湿度が目標室内相対湿度RHmとなるように温調コイル5の加熱能力を決定するため、換気による外気取り入れ時に最適な加湿量を供給し、室内湿度の変化が生じにくい暖房加湿運転を実現できる。
 以上のように、本発明に係る換気装置は、外気を加湿させて室内に空気を取り入れる換気装置が、目標室内湿度に対して加湿量を変化させ、室内湿度を快適に保つ点で有用であり、特に、室内に別途空気調和機を設置して、換気装置とともに空調システムを構成するのに適している。
 1 本体ケーシング、2 排気用送風機、3 給気用送風機、4 全熱交換器、5 温調コイル、6 加湿エレメント、7 排気吹出口、8 給気吹出口、9 給気吸込口、10 排気吸込口、11 外気温度センサ、12 外気湿度センサ、13 目標室内湿度記憶部、14 制御部、15,28 リモートコントローラ、16 風路切替ダンパ、17 室内温度センサ、18 室内湿度センサ、19 給水管、20 給水弁、23 換気装置、24 冷媒配管、25 通信線、26 風路、27 バイパス風路、50 空調システム。

Claims (7)

  1.  給気風路及び排気風路を備えたケーシングと、
     前記給気風路に設置され、室外空気を前記給気風路に吸い込んで室内に給気流を形成する給気用送風機と、
     前記排気風路に設置され、室内空気を前記排気風路に吸い込んで室外へ排気する排気流を形成する排気用送風機と、
     前記給気風路と前記排気風路との間に配置されて前記ケーシングに収容され、前記給気流と前記排気流との間で全熱交換を行う全熱交換器と、
     前記室外空気の温度を測定する外気温度センサと、
     前記室外空気の湿度を測定する外気湿度センサと、
     前記室内空気の湿度を測定する室内湿度センサと、
     加熱能力が多段階に変更可能であり、前記全熱交換器による全熱交換後の前記給気流を加熱する温調コイルと、
     前記温調コイルによって加熱された給気流を加湿する加湿エレメントと、
     前記室内空気の湿度の目標値である目標室内湿度を記憶する目標室内湿度記憶部と、
     前記室内湿度センサによる前記室内空気の湿度の実測値が前記目標室内湿度以上である場合に、前記外気温度センサ及び前記外気湿度センサの測定値に基づいて、前記給気流の湿度が前記目標室内湿度となるように前記温調コイルの加熱能力を決定する制御部とを有することを特徴とする換気装置。
  2.  前記制御部は、
     前記外気空気の温度及び湿度の組合せごとに前記加熱能力を定めた参照データを記憶し、外気温湿度センサ測定結果と前記参照データとに基づいて、前記温調コイルの加熱能力を決定することを特徴とする請求項1に記載の換気装置。
  3.  前記制御部は、前記室内空気の湿度の実測値が前記目標室内湿度よりも低い場合に、前記温調コイルの能力値を100%とすることを特徴とする請求項1に記載の換気装置。
  4.  前記制御部は、前記室内空気が過加湿状態である場合には、前記温調コイルによる前記給気空気の加熱を停止させることを特徴とする請求項1に記載の換気装置。
  5.  前記目標室内湿度記憶部は、前記目標室内湿度を絶対湿度で記憶し、
     前記制御部は、前記外気温度センサによる前記室外空気の温度の実測値及び前記外気湿度センサによる前記室外空気の湿度の実測値を基に、前記室外空気の絶対湿度を算出し、前記目標室内湿度が、前記算出した絶対湿度よりも高い場合に、前記外気温度センサ及び前記外気湿度センサの測定値に基づいて、前記給気流の湿度が前記目標室内湿度となるように前記温調コイルの加熱能力を決定することを特徴とする請求項1に記載の換気装置。
  6.  空気調和機とともに空調システムを構成した場合、前記制御部は、冷房運転を行っている前記空調システム中の前記空気調和機の数に基づいて前記目標室内湿度を変更することを特徴とする請求項1から5のいずれか1項に記載の換気装置。
  7.  空気調和機とともに空調システムを構成した場合、前記制御部は、前記空気調和機の冷媒の蒸発温度に基づいて前記目標室内湿度を変化させることを特徴とする請求項1から5のいずれか1項に記載の換気装置。
PCT/JP2014/067933 2014-07-04 2014-07-04 換気装置 WO2016002072A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14896450.5A EP3165843B1 (en) 2014-07-04 2014-07-04 Ventilation device
PCT/JP2014/067933 WO2016002072A1 (ja) 2014-07-04 2014-07-04 換気装置
JP2016530786A JP6234574B2 (ja) 2014-07-04 2014-07-04 換気装置
CN201480080087.6A CN106461256B (zh) 2014-07-04 2014-07-04 换气装置
US15/312,347 US20170097165A1 (en) 2014-07-04 2014-07-04 Ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067933 WO2016002072A1 (ja) 2014-07-04 2014-07-04 換気装置

Publications (1)

Publication Number Publication Date
WO2016002072A1 true WO2016002072A1 (ja) 2016-01-07

Family

ID=55018669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067933 WO2016002072A1 (ja) 2014-07-04 2014-07-04 換気装置

Country Status (5)

Country Link
US (1) US20170097165A1 (ja)
EP (1) EP3165843B1 (ja)
JP (1) JP6234574B2 (ja)
CN (1) CN106461256B (ja)
WO (1) WO2016002072A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600084955A1 (it) * 2016-08-12 2018-02-12 Toone S A S Di Zanatta Marco & C Gruppo di analisi e controllo della ventilazione di un ambiente interno o primo ambiente.
JP2019174021A (ja) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 換気装置
WO2021192657A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 加湿機能付き熱交換形換気装置
WO2021229687A1 (ja) * 2020-05-12 2021-11-18 三菱電機株式会社 加熱制御装置及び加熱制御プログラム
JP7209057B1 (ja) 2021-08-24 2023-01-19 日立ジョンソンコントロールズ空調株式会社 外気処理装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101615168B1 (ko) * 2015-07-07 2016-04-25 한국에너지기술연구원 제습 시스템
KR101723460B1 (ko) * 2015-07-07 2017-04-06 한국에너지기술연구원 제습 시스템
WO2017037816A1 (ja) * 2015-08-31 2017-03-09 三菱電機株式会社 換気装置
JP6567183B2 (ja) * 2016-06-08 2019-08-28 三菱電機株式会社 空気調和システム
CN110418921B (zh) * 2017-03-21 2021-01-19 三菱电机株式会社 除湿机
CN106969419A (zh) * 2017-04-25 2017-07-21 广东芬尼克兹节能设备有限公司 除湿机结构及其使用方法
CN107314508B (zh) * 2017-07-20 2020-04-14 广东美的暖通设备有限公司 空调控制方法、空调及计算机可读存储介质
CN107569872B (zh) * 2017-08-30 2019-12-06 武汉工程大学 一种由筒式固体表面力场差异性构建的液-液分离方法
WO2019077718A1 (ja) * 2017-10-19 2019-04-25 三菱電機株式会社 熱交換換気装置
US10760804B2 (en) 2017-11-21 2020-09-01 Emerson Climate Technologies, Inc. Humidifier control systems and methods
US20190255912A1 (en) * 2018-02-19 2019-08-22 Ford Global Technologies, Llc Cabin heating system with sealed heat transfer loop
US20190255913A1 (en) * 2018-02-19 2019-08-22 Ford Global Technologies, Llc System and method for heating a cabin of a motor vehicle
WO2019204788A1 (en) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Systems and methods for adjusting mitigation thresholds
US11421901B2 (en) 2018-04-20 2022-08-23 Emerson Climate Technologies, Inc. Coordinated control of standalone and building indoor air quality devices and systems
US11486593B2 (en) 2018-04-20 2022-11-01 Emerson Climate Technologies, Inc. Systems and methods with variable mitigation thresholds
US11371726B2 (en) 2018-04-20 2022-06-28 Emerson Climate Technologies, Inc. Particulate-matter-size-based fan control system
WO2019204779A1 (en) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Indoor air quality and occupant monitoring systems and methods
US12018852B2 (en) 2018-04-20 2024-06-25 Copeland Comfort Control Lp HVAC filter usage analysis system
WO2019204789A1 (en) 2018-04-20 2019-10-24 Emerson Climate Technologies, Inc. Indoor air quality sensor calibration systems and methods
EP3781879A4 (en) 2018-04-20 2022-01-19 Emerson Climate Technologies, Inc. SYSTEMS AND METHODS WITH VARIABLE ATTENUATION THRESHOLDS
DK3926244T3 (da) * 2019-04-08 2024-07-15 Gd Midea Heating & Ventilating Equipment Co Ltd Ppvarmningsindretning og klimaanlæg med denne
CN110715353A (zh) * 2019-10-21 2020-01-21 广东美的制冷设备有限公司 用于家用电器的加湿控制方法、装置及家用电器
CN113124553A (zh) * 2019-12-31 2021-07-16 广东松下环境系统有限公司 空气调节系统以及空气调节方法
CN113446686A (zh) * 2020-03-24 2021-09-28 广东美的制冷设备有限公司 加湿设备及加湿控制方法和计算机可读存储介质
CN113446669B (zh) * 2020-03-24 2024-02-20 广东美的制冷设备有限公司 空调器及加湿控制方法和计算机可读存储介质
CN113050438B (zh) * 2021-02-26 2023-02-17 青岛海尔空调器有限总公司 用于家电控制的方法、装置和家电
CN114754469A (zh) * 2022-03-30 2022-07-15 海尔(深圳)研发有限责任公司 用于控制新风机的方法及装置、终端设备、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272086A (ja) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp 空気調和装置、空気調和方法
JP2003130401A (ja) * 2001-10-23 2003-05-08 Sharp Corp 加湿装置
WO2012077201A1 (ja) * 2010-12-08 2012-06-14 三菱電機株式会社 換気空調装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543784B2 (ja) * 2001-04-18 2004-07-21 ダイキン工業株式会社 調湿換気装置
JP4052319B2 (ja) * 2005-05-24 2008-02-27 ダイキン工業株式会社 空調システム
CN2879006Y (zh) * 2006-02-21 2007-03-14 北京环都人工环境科技有限公司 节能式空气处理机
US7987023B2 (en) * 2008-02-20 2011-07-26 Liebert Corporation Humidity control for multiple unit A/C system installations
CN100572951C (zh) * 2008-07-23 2009-12-23 周祖全 一种室内空气质量提升机
WO2011155069A1 (ja) * 2010-06-11 2011-12-15 三菱電機株式会社 換気空調装置及びその制御方法
CN103717976B (zh) * 2011-07-27 2017-04-12 三菱电机株式会社 调湿装置以及空气调节系统
JP5850487B2 (ja) * 2011-08-29 2016-02-03 株式会社長府製作所 デシカント換気扇
US9651282B2 (en) * 2011-10-28 2017-05-16 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus and humidity control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272086A (ja) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp 空気調和装置、空気調和方法
JP2003130401A (ja) * 2001-10-23 2003-05-08 Sharp Corp 加湿装置
WO2012077201A1 (ja) * 2010-12-08 2012-06-14 三菱電機株式会社 換気空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165843A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600084955A1 (it) * 2016-08-12 2018-02-12 Toone S A S Di Zanatta Marco & C Gruppo di analisi e controllo della ventilazione di un ambiente interno o primo ambiente.
EP3285015A1 (en) * 2016-08-12 2018-02-21 TOONE S.a.s. di Zanatta Marco & C. Group for analysis and control of the ventilation of an internal environment or first environment
CN108302686A (zh) * 2016-08-12 2018-07-20 图内迪马可·扎纳塔有限公司 用于对内部环境或第一环境的通风进行分析和控制的组件
JP2019174021A (ja) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 換気装置
JP7012217B2 (ja) 2018-03-28 2022-01-28 パナソニックIpマネジメント株式会社 換気装置
WO2021192657A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 加湿機能付き熱交換形換気装置
JP7526907B2 (ja) 2020-03-27 2024-08-02 パナソニックIpマネジメント株式会社 加湿機能付き熱交換形換気装置
WO2021229687A1 (ja) * 2020-05-12 2021-11-18 三菱電機株式会社 加熱制御装置及び加熱制御プログラム
JPWO2021229687A1 (ja) * 2020-05-12 2021-11-18
JP7305043B2 (ja) 2020-05-12 2023-07-07 三菱電機株式会社 加熱制御装置及び加熱制御プログラム
JP7209057B1 (ja) 2021-08-24 2023-01-19 日立ジョンソンコントロールズ空調株式会社 外気処理装置
JP2023030834A (ja) * 2021-08-24 2023-03-08 日立ジョンソンコントロールズ空調株式会社 外気処理装置

Also Published As

Publication number Publication date
EP3165843A4 (en) 2018-01-24
CN106461256A (zh) 2017-02-22
EP3165843A1 (en) 2017-05-10
JP6234574B2 (ja) 2017-11-22
EP3165843B1 (en) 2021-08-25
JPWO2016002072A1 (ja) 2017-04-27
CN106461256B (zh) 2019-05-28
US20170097165A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6234574B2 (ja) 換気装置
JP6234575B2 (ja) 換気装置
US10203122B2 (en) Air-conditioning and ventilation apparatus
JP5375945B2 (ja) 温度および湿度の調整を行う空調システム
JP6253459B2 (ja) 空調用換気装置
JP5741723B1 (ja) 換気装置
WO2020003446A1 (ja) 空気調和装置
JP5370452B2 (ja) 空調システム
JP5425112B2 (ja) 空気調和装置及び空気調和システム
JP2013047603A (ja) 空調システム
WO2020261794A1 (ja) 外気処理装置及び空調システム
JP2010145012A (ja) 熱交換型換気装置
JP5673524B2 (ja) 温度および湿度の調整を行う空調システム
JP2013139923A (ja) 温度および湿度の調整を行う空調システム
JP7374633B2 (ja) 空気調和機及び空気調和システム
JP5217701B2 (ja) 空調システム
JP7199051B2 (ja) 室内空調システム
JP5543002B2 (ja) 空気調和装置及び空気調和システム
JP2006017369A (ja) 空気調和機の室内機
JP6825875B2 (ja) 空気調和システム
WO2020240923A1 (ja) 空調システム
JP2011141079A (ja) パッケージ型空調機
JP2024017439A (ja) 除湿機能付き熱交換形換気装置
JPH11325551A (ja) 調湿換気装置
JP2019027606A (ja) 熱交換形換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530786

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15312347

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014896450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE