WO2016088408A1 - 架橋性樹脂組成物および電線・ケーブル - Google Patents
架橋性樹脂組成物および電線・ケーブル Download PDFInfo
- Publication number
- WO2016088408A1 WO2016088408A1 PCT/JP2015/072809 JP2015072809W WO2016088408A1 WO 2016088408 A1 WO2016088408 A1 WO 2016088408A1 JP 2015072809 W JP2015072809 W JP 2015072809W WO 2016088408 A1 WO2016088408 A1 WO 2016088408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stabilizer
- resin composition
- crosslinkable resin
- mass
- ethylene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/11—Esters; Ether-esters of acyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
- C08K5/134—Phenols containing ester groups
- C08K5/1345—Carboxylic esters of phenolcarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3435—Piperidines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/372—Sulfides, e.g. R-(S)x-R'
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/06—Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
- C08L2312/02—Crosslinking with dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/66—Substances characterised by their function in the composition
- C08L2666/78—Stabilisers against oxidation, heat, light or ozone
Definitions
- the present invention relates to a crosslinkable resin composition and an electric wire / cable. More specifically, the present invention relates to a crosslinkable resin composition having an excellent electrical insulation containing an ethylene-based resin, and a conductor using the crosslinked product of the resin composition as an insulating coating layer. It relates to electric wires and cables formed above.
- Insulated coated electric wires / cables for electric power are usually produced by coating a crosslinkable resin composition on a conductor by extrusion, followed by crosslinking to form an insulating coating layer.
- the crosslinkable resin composition used for insulation-coated wires and cables is required to have resistance to blooming and discoloration, scorch resistance, processing stability, water tree resistance, heat distortion resistance, heat aging resistance, etc.
- the present applicant has as a stabilizer in a crosslinkable resin composition containing an ethylene-based resin, a stabilizer and an organic peroxide. It has been proposed to use a hindered phenol type stabilizer, a dialkylthiodipropionate type stabilizer, and a hindered amine type stabilizer in combination (see Patent Document 1 below).
- the length (production unit) of the electric wire / cable continuously manufactured by extrusion processing is as long as possible. This is because the length of the electric wire / cable production unit can reduce the number of these connection joints, thereby reducing the probability of destruction of the power system.
- the screen mesh is clogged and clogged by a scorch (partially crosslinked) resin component and a relatively high viscosity stabilizer in an extruder charged with a crosslinkable resin composition to form a cable insulation coating layer.
- a scorch partially crosslinked
- a relatively high viscosity stabilizer in an extruder charged with a crosslinkable resin composition to form a cable insulation coating layer.
- a limit switch is usually activated when the internal pressure reaches a certain value or more in order to prevent the screen mesh from bursting or overloading the motor. Thus, the extrusion operation is stopped. When the extrusion operation stops, the production unit cannot be set to the desired length.
- the present invention has been made based on the above situation.
- the object of the present invention is to prevent pressure rise in the inserted extruder and to continuously extrude the insulating coating layer over a long period of time, thereby increasing the length of the production unit of electric wires and cables.
- An object of the present invention is to provide a crosslinkable resin composition.
- Another object of the present invention is to provide an electric wire / cable capable of making the production unit longer than that produced using a conventionally known crosslinkable resin composition.
- a hindered amine light stabilizer having a melting point or glass transition point of a certain temperature or less is used as a stabilizer constituting the crosslinkable resin composition.
- a hindered amine light stabilizer having a melting point or glass transition point of a certain temperature or less is used as a stabilizer constituting the crosslinkable resin composition.
- the molecular weight of all the compounds constituting the stabilizer below a certain level, it was found that an increase in pressure in the extruder charged with the crosslinkable resin composition was remarkably suppressed.
- the present invention has been completed.
- the crosslinkable resin composition of the present invention comprises 100 parts by mass of an ethylene resin (A) and a hindered amine light stabilizer (B3) having a melting point or glass transition point of 100 ° C. or less.
- the hindered amine light stabilizer (B3) when the melting point or glass transition point of the hindered amine light stabilizer (B3) is 100 ° C. or less, the hindered amine light stabilizer (B3) has an extrusion temperature. It exhibits a liquid state under conditions and does not solidify and adhere on the screen mesh strands.
- the molecular weight of all the compounds constituting the stabilizer (B) is as low as 1,500 or less, the viscosity of the compounds is also low, and it easily passes through the screen mesh in the extruder and causes clogging (clogging). There is nothing.
- the hindered amine light stabilizer (B3) preferably has a molecular weight of 900 or less.
- the reduced viscosity at 110 ° C. measured according to ISO 1628-1 is 0.5 to 3.0 cm. 3 / g
- the reduced viscosity at 40 ° C. is preferably 1.0 to 4.0 cm 3 / g.
- the stabilizer (B) together with the hindered amine type light stabilizer (B3), a hindered phenol type stabilizer (B1) and a dialkylthiodipropionate type stabilizer. It is preferable to contain an agent (B2).
- the electric wire / cable of the present invention is characterized in that a conductor is coated with an insulating coating layer formed by crosslinking the crosslinkable resin composition of the present invention.
- the crosslinkable resin composition of the present invention it is difficult to cause a pressure increase in an extruder into which the crosslinkable resin composition is charged, and an insulating coating layer can be continuously extruded over a long period of time, thereby producing an electric wire / cable.
- the length of the unit can be increased.
- the production unit can be made longer than the electric wire / cable manufactured using a conventionally known crosslinkable resin composition. Therefore, by using the wire / cable (long production unit) of the present invention, the number of connection joints between production units can be reduced, thereby greatly reducing the probability of power system failure. Can do.
- the crosslinkable resin composition of the present invention contains an ethylene resin (A), a stabilizer (B) containing a hindered amine light stabilizer (B3), and an organic peroxide (C).
- the ethylene resin (A) constituting the crosslinkable resin composition of the present invention is not particularly limited, and is a high pressure method low density ethylene homopolymer, a high pressure method low density ethylene copolymer, a high density ethylene copolymer. Examples thereof include a polymer, a medium density ethylene copolymer, a linear low density ethylene copolymer, and a linear ultra low density ethylene copolymer.
- ethylene (co) polymers can be produced by a conventionally known method, and can be used alone or in combination of two or more resins as the ethylene-based resin (A).
- Examples of the polymerization catalyst used in the production of the ethylene-based resin (A) include radical generation catalysts such as organic peroxides, azo compounds, oxygen, etc.
- Examples of legal methods include Ziegler catalysts, Phillips catalysts, metallocene catalysts, and the like.
- the ⁇ -olefin to be copolymerized with ethylene in the production of the ethylene-based resin (A) comprising a copolymer, propylene, butene-1, hexene-1, 4-methylpentene-1, octene-1, decene are used.
- -1 can be exemplified.
- Suitable ethylene-based resin (A) the density of 0.91 ⁇ 0.94g / cm 3, in particular 0.915 ⁇ 0.930g / cm 3, melt mass flow rate of 0.01 ⁇ 10 g / 10 min
- a high pressure method low density ethylene homopolymer, a high pressure method low density ethylene copolymer, and a linear low density ethylene copolymer of 0.5 to 5 g / 10 min can be mentioned.
- the insulation coating layer finally formed has poor wear resistance.
- the insulating coating layer finally formed There is a tendency for flexibility to be inferior.
- an ethylene resin having an excessively low melt mass flow rate is inferior in processability, whereas when an ethylene resin having an excessively high melt mass flow rate is used, the mechanical strength, heat distortion resistance, There is a tendency for the roundness to decrease.
- the stabilizer (B) constituting the crosslinkable resin composition of the present invention contains a hindered amine light stabilizer (B3) having a melting point or glass transition point of 100 ° C. or less as an essential component.
- a stabilizer (B) can be used individually or in combination of 2 or more types.
- Examples of the stabilizer (B) other than the hindered amine type light stabilizer (B3) include light stabilizers other than the hindered amine type light stabilizer (B3), an antioxidant, and a processing stabilizer.
- the hindered amine light stabilizer (B3) which is an essential stabilizer (B), includes a compound represented by the following general formula (1), a dimer to a tetramer of the compound (in this case, R 1 is 2). To be a tetravalent group).
- X —C (O) —, —CH 2 — Y: —O—, —CH 2 —, —NH—, —N (CH 3 ) —, —N (C 2 H 5 ) —, —O—C (O) — R 1 : —H, —C n H 2n + 1 , —C 6 H 5 , —C 6 H 4 —CH 3 , —C 6 H 3 (CH 3 ) 2 , —C 6 H 4 —C 2 H 5, -C 6 H 11, -CR 3 R 4 -, (When R 1 is a divalent group, a group represented by Y is bonded to both ends of this group to form a dimer.)
- R 1 is a trivalent group, a group represented by Y is bonded to the end of this group to form a trimer, and when R 1 is a tetravalent group, the end of this group is A group represented by Y is bonded to form a tetramer.
- R 2 —H, —C n H 2n + 1 , —C 6 H 5 , —C 6 H 4 —CH 3 , —C 6 H 3 (CH 3 ) 2 , —C 6 H 4 —C 2 H 5 , —C 6 H 11 , —CR 3 R 4 —, —O—C n H 2n + 1 , —O—C 6 H 5 , —O—C 6 H 4 —CH 3 , —O—C 6 H 3 (CH 3 ) 2 , —O—C 6 H 4 —C 2 H 5 , —O—C 6 H 11 , —O—C 6 H 10 —CH 3 , —O—C 6 H 9 (CH 3 ) 2 , —O—C 6 H 10 —C 2 H 5 ⁇ R 3: -H, -C n H 2n + 1, -C 6 H 5, -C 6 H a R 5 b (OH) (5-ab) R 4
- the melting point or glass transition point of the hindered amine light stabilizer (B3) is 100 ° C. or lower, preferably 90 ° C. or lower.
- a hindered amine light stabilizer having a melting point or glass transition point exceeding 100 ° C. cannot be completely melted at the processing temperature (for example, 110 to 140 ° C.) at the time of extrusion, and the hindered amine light stabilizer in a solidified state is extruded. There is a risk of adhering to the screen mesh inside the machine.
- the molecular weight of the hindered amine type light stabilizer (B3) is usually required to be 1,500 or less, preferably 1200 or less, More preferably, it is 900 or less.
- a hindered amine type light stabilizer having a molecular weight exceeding 1,500 causes clogging (clogging) of the screen mesh in the extruder, leading to an increase in pressure in the extruder, and cannot be extruded for a long time (comparison described later). See Examples 1 and 2).
- hindered amine light stabilizer (B3) examples include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate (LA from ADEKA). -52), 2,2,6,6-tetramethyl-4-piperidyl methacrylate (LA-87 made by ADEKA), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (made by ADEKA) LA-77 or BASF TINUVIN 770) can be used, and these can be used alone or in combination of two or more as the component (B3).
- the content of the hindered amine light stabilizer (B3) is 0.001 to 0.5 parts by mass, preferably 0.003 to 0.1 parts by mass, with respect to 100 parts by mass of the ethylene resin (A). Is done.
- the hindered amine type light stabilizer (B3) is not contained or the content thereof is too small, water generated by secondary decomposition of the organic peroxide (C) described later increases, resulting in electrical characteristics (insulating properties). ) Is impaired (see Comparative Example 3 described later). On the other hand, if this content is excessive, the effect on storage stability is saturated, and the electrical characteristics and heat aging resistance may be impaired.
- the hindered amine type light stabilizer (B3) In order to achieve long-term extrusion stability in the crosslinkable resin composition of the present invention, not only the hindered amine type light stabilizer (B3) but also all the compounds constituting the stabilizer (B) have a molecular weight of 1,500 or less. It is essential that it is 1,200 or less. When a stabilizer having a molecular weight exceeding 1,500 is contained, such a stabilizer having a high molecular weight causes clogging (clogging) of the screen mesh in the extruder, leading to an increase in pressure in the extruder. Extrusion over time cannot be performed.
- the reduced viscosity at 110 ° C. measured according to ISO 1628-1 is 0.5 to 3.0 cm 3. It is preferable that the reduced viscosity at 40 ° C. is 1.0 to 4.0 cm 3 / g.
- the crosslinkable resin composition of the present invention contains a hindered phenol type stabilizer (B1) and a dialkylthiodipropionate type stabilizer (B2) as an antioxidant constituting the stabilizer (B). Is preferred.
- Examples of the hindered phenol type stabilizer (B1) that is an optional stabilizer (B) include those having a hindered phenol structure and a molecular weight of 1,500 or less.
- hindered phenol type stabilizer (B1) examples include 4,4′-thiobis- (3-methyl-6-tert-butylphenol) (Sinox BCS manufactured by Cypro Kasei Co., Ltd.), 4,4′-thiobis- (6-t-butyl-o-cresol) (Etanox 736 manufactured by Ethyl Corporation), tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane (BASF Irganox 1010), N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine (Irganox 1024 from BASF), 1,3,5- Tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid (Cyanox 1790 made by Cytec) 1,3,5-trimethyl-2,4-6-tris (3,5-tris
- the content of the hindered phenol type stabilizer (B1) is preferably 0.01 to 1.0 part by weight, more preferably 0.02 to 0 part per 100 parts by weight of the ethylene resin (A). .5 parts by mass.
- Examples of the optional stabilizer (B), dialkylthiodipropionate type stabilizer (B2), include those having an alkyl having 10 to 20 carbon atoms and having a molecular weight of 1,500 or less. .
- dialkylthiodipropionate type stabilizer (B2) which is an optional stabilizer (B) include dilauryl thiodipropionate (DLTP “Yoshitomi” manufactured by Yoshitomi Pharmaceutical Co., Ltd.), distearyl thiodipropionate ( Examples include Yoshitomi Pharmaceutical's DSTP “Yoshitomi”) and dimyristyl thiodipropionate (Yoshitomi Pharmaceutical's DMTP "Yoshitomi”). These may be used alone or in combination of two or more thereof as component (B2). Can be used.
- the content of the dialkylthiodipropionate type stabilizer (B2) is preferably 0.005 to 0.6 parts by mass, more preferably 0.01 to 100 parts by mass of the ethylene resin (A). To 0.3 parts by mass.
- Organic peroxide (C) constituting the crosslinkable resin composition of the present invention examples include known compounds used as a crosslinking agent for ethylene resins.
- Specific examples of the organic peroxide (C) include di-t-butyl-peroxide, 1,1-bis-t-butyl-peroxybenzoate, 2,2-bis-t-butyl-peroxybutane, t-butyl-peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butyl-peroxyhexane, t-butyl-cumyl peroxide, 2,5-dimethyl-2,5 -Di-t-butyl-peroxyhexyne-3 can be mentioned, and these can be used alone or in combination of two or more.
- the content of the organic peroxide (C) is usually 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the ethylene resin (A), preferably Is 1.0 to 2.5 parts by mass.
- the content of the organic peroxide (C) is less than 0.5 parts by mass, the heat-resistant deformation property of the finally formed insulating coating layer is inferior. On the other hand, when this content exceeds 3.0 mass parts, the scorch resistance of the crosslinkable resin composition obtained is inferior.
- the crosslinkable resin composition of the present invention includes the ethylene resin (A), the stabilizer (B) containing the hindered amine light stabilizer (B3), and the organic peroxide (C).
- Olefin resins other than the ethylene resin (A), various additives, and auxiliary materials may be contained depending on the purpose of use within a range that does not impair the properties of the resin composition.
- the optional olefin resin examples include ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-maleic acid.
- examples thereof include a copolymer, an ethylene-diene compound copolymer, an ethylene-vinylsilane copolymer, a maleic anhydride grafted ethylene polymer, an acrylic acid grafted ethylene polymer, and a silane grafted ethylene polymer.
- additives and auxiliary materials which are optional components include stabilizers other than the stabilizer (B), processability improver, dispersant, copper damage inhibitor, antistatic agent, lubricant, carbon black, Examples thereof include a crosslinking aid such as allyl cyanurate and a scorch inhibitor such as ⁇ -methylstyrene dimer.
- the crosslinkable resin composition of the present invention contains essential components [ethylene resin (A), stabilizer (B) and organic peroxide (C)] and optional components in a predetermined ratio, kneaded and granulated. Can be prepared.
- the crosslinkable resin composition of the present invention is preferably in the form of pellets having an average particle diameter of about 2 to 7 mm from the viewpoint of easy penetration into the screw of the extruder, handling properties, and the like.
- a method for producing a pellet-like crosslinkable resin composition for example, (I) Ethylene resin (A), stabilizer (B), organic peroxide (C) and optional components are blended, and this blend is mixed with a known kneader (for example, a Banbury mixer, a continuous mixer, a roll, Using a twin screw extruder, etc., and melting and kneading by heating at a temperature not lower than the melting point of the ethylene resin (A) and lower than the decomposition temperature of the organic peroxide (C), and the resulting resin composition is pelletized Granulating into a shape; (Ii) Ethylene resin (A), stabilizer (B) and optional components are blended, and this blend is melt kneaded by heating at a temperature equal to or higher than the melting point of ethylene resin (A) using a known kneader.
- a known kneader for example, a Banbury mixer, a continuous mixer, a roll, Using
- the kneaded product obtained is granulated into pellets, and then the organic peroxide (C) which is heated to the melting point or higher and made liquid is added to the pellet-shaped kneaded product, and if necessary, A method of uniformly dispersing the organic peroxide (C) in the pellet by aging at a temperature lower than the melting point of the ethylene resin (A) can be mentioned.
- the electric wire / cable of the present invention is formed by covering a conductor with an insulating coating layer formed by crosslinking the crosslinkable resin composition of the present invention, that is, an insulating coating layer made of a crosslinked product of the resin composition.
- the electric wire / cable of the present invention is manufactured by coating the crosslinkable resin composition of the present invention on a conductor mainly made of copper or aluminum by extrusion, and forming an insulating coating layer by cross-linking this. be able to.
- the first layer of the internal semiconductive layer resin composition is formed by a three-layer extruder, the crosslinkable resin composition of the present invention.
- a layered product composed of a second layer made of a material and a third layer made of an external semiconductive layer resin composition is coated on the conductor at a temperature not lower than the melting temperature of each resin and lower than the decomposition temperature of the organic peroxide (C). Then, it can be produced by crosslinking the resin composition by heating it above the decomposition temperature of the organic peroxide (C) in an atmosphere of nitrogen, water vapor, silicone oil, molten salt or the like.
- the electric wire / cable of the present invention is excellent in various properties such as mechanical properties, electrical properties (insulation of the coating layer), long-term storage properties, and during the production (extrusion molding process), the pressure in the extruder is increased. Less and can be stably extruded over a long period of time.
- the present invention is not limited to these examples.
- the ethylene-based resin, the stabilizer and the organic peroxide used for producing the resin compositions of Examples and Comparative Examples are as follows.
- the reduced viscosity of each of the stabilizers shown below is determined according to ISO1628-1 or JIS K7367-3 (2002) by using the stabilizer as a dilute solution having a different concentration with xylene and using a capillary viscometer. The dynamic viscosity was measured at 100 ° C. and 110 ° C. and then converted into a reduced viscosity.
- Stabilizer (B2-1): -Dialkylthiodipropionate type stabilizer (B2) with molecular weight 682 ⁇
- Example 1 According to the formulation shown in Table 1 below, 100 parts by mass of the resin (A-1), 0.1 part by mass of the stabilizer (B1-1) as the hindered phenol stabilizer (B1), and 0 of the stabilizer (B1-2) 0.1 part by mass, 0.1 part by mass of a stabilizer (B2-1) as a dialkylthiodipropionate type stabilizer (B2), and 0.1% by mass of a stabilizer (B3-1) as a hindered amine type light stabilizer (B3) After mixing with 02 parts by mass and kneading with a Banbury mixer at a temperature of 180 ° C.
- the obtained kneaded product was granulated into a pellet having a diameter of 3 mm and a length of 2 mm.
- 1.6 parts by mass of organic peroxide (C-1) that was heated to a liquid state was added to the pelletized kneaded product, and the mixture was heated to 60 ° C. with a blender.
- the crosslinkable resin composition of this invention was obtained by cooling to room temperature after time mixing.
- Example 2 A crosslinkable resin composition of the present invention was obtained in the same manner as in Example 1 except that the blending amount of the stabilizer (B3-1) was changed to 0.01 parts by mass according to the formulation shown in Table 1 below.
- Example 3 A crosslinkable resin composition of the present invention was obtained in the same manner as in Example 1 except that the blending amount of the stabilizer (B3-1) was changed to 0.005 parts by mass according to the formulation shown in Table 1 below.
- Example 4 According to the formulation shown in Table 1 below, the crosslinkable resin of the present invention was used in the same manner as in Example 1 except that 0.005 part by mass of the stabilizer (B3-2) was added instead of the stabilizer (B3-1). A composition was obtained.
- Example 1 A comparative crosslinkable resin in the same manner as in Example 1 except that 0.005 part by mass of stabilizer (B3-3) was blended in place of stabilizer (B3-1) according to the formulation shown in Table 1 below. A composition was obtained.
- ⁇ Comparative example 2> A comparative crosslinkable resin in the same manner as in Example 1 except that 0.005 part by mass of the stabilizer (B3-4) was blended in place of the stabilizer (B3-1) according to the formulation shown in Table 1 below. A composition was obtained.
- Example 3 A comparative crosslinkable resin composition was obtained in the same manner as in Example 1 except that the stabilizer (B3-1) was not blended according to the formulation shown in Table 1 below.
- Heat deformability Evaluation was performed with a hot set defined in IEC-60811-2-1. Suspend a load of 20 N / cm 2 on a strip-shaped test piece in a high-temperature atmosphere at 200 ° C., the elongation rate of the marked line distance after standing for 15 minutes is 100% or less, and the marked line distance after removing the load is The case where the permanent elongation was 10% or less was regarded as acceptable.
- the crosslinkable resin compositions obtained in Examples 1 to 4 have a very low rate of increase in pressure in the extruder into which they are charged and are excellent in extrusion stability. Therefore, according to the crosslinkable resin compositions obtained in Examples 1 to 4, the insulating coating layer can be continuously extruded over a long period of time, so that the production unit of the electric wire / cable is lengthened. be able to. In addition, the amount of moisture generation is small, and the water-resistant tree resistance, heat aging resistance, and heat deformability are also excellent. It is suitable as an insulating coating material for electric wires and cables.
- the crosslinkable resin compositions obtained in Comparative Example 1 and Comparative Example 2 have a high pressure increase rate in the extruder into which the crosslinkable resin composition is charged, and are inferior in extrusion stability. Therefore, depending on the crosslinkable resin composition obtained in Comparative Example 1 and Comparative Example 2, the insulating coating layer cannot be continuously extruded over a long period of time, and the production unit of electric wires and cables can be lengthened. It cannot be planned. Moreover, since the crosslinkable resin composition obtained in Comparative Example 3 is inferior in water-resistant tree resistance and heat aging resistance, it is not suitable as an insulating coating material for electric wires and cables.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Abstract
Description
ここに、絶縁被覆電線・ケーブルに使用される架橋性樹脂組成物には、ブルーミングや変色に対する抵抗性、耐スコーチ性、加工安定性、耐水トリー性、耐熱変形性、耐熱老化性などが要求される。
電線・ケーブルの生産単位を長尺化することによれば、これらの接続ジョイントの数を少なくすることができ、これにより、電力系統の破壊確率を減少させることができるからである。
本発明の目的は、投入した押出機内において圧力上昇を起こしにくく、長時間にわたり連続して絶縁被覆層を押出成形することができ、これにより、電線・ケーブルの生産単位の長尺化を図ることのできる架橋性樹脂組成物を提供することにある。
また、安定剤(B)を構成するすべての化合物の分子量が1,500以下と低いために当該化合物の粘度も低くなり、押出機内におけるスクリーンメッシュを容易に通過して目詰まり(閉塞)を起こすこともない。
しにくく、長時間にわたり連続して絶縁被覆層を押出成形することができ、これにより、電線・ケーブルの生産単位の長尺化を図ることができる。
従って、本発明の電線・ケーブル(長尺の生産単位)を使用することにより、生産単位間の接続ジョイントの数を少なくすることができ、これにより、電力系統の破壊確率を大幅に低減することができる。
<架橋性樹脂組成物>
本発明の架橋性樹脂組成物は、エチレン系樹脂(A)と、ヒンダードアミン型光安定剤(B3)を含む安定剤(B)と、有機過酸化物(C)とを含有する。
本発明の架橋性樹脂組成物を構成するエチレン系樹脂(A)としては特に限定されるものではなく、高圧法低密度エチレン単独重合体、高圧法低密度エチレン共重合体、高密度エチレン共重合体、中密度エチレン共重合体、直鎖状低密度エチレン共重合体、直鎖状超低密度エチレン共重合体などを挙げることができる。
また、メルトマスフローレートが過小なエチレン系樹脂は加工性に劣り、一方、メルトマスフローレートが過大なエチレン系樹脂を使用すると、最終的に形成される絶縁被覆層の機械的強度、耐熱変形性、真円度などが低下する傾向がある。
本発明の架橋性樹脂組成物を構成する安定剤(B)には、融点またはガラス転移点が100℃以下であるヒンダードアミン型光安定剤(B3)が必須成分として含まれる。
安定剤(B)は、単独でまたは2種以上を組み合わせて使用することができる。
ヒンダードアミン型光安定剤(B3)以外の安定剤(B)としては、ヒンダードアミン型光安定剤(B3)以外の光安定剤、酸化防止剤、加工安定剤などを挙げることができる。
・X:-C(O)-、-CH2 -
・Y:-O-、-CH2 -、-NH-、-N(CH3 )-、-N(C2 H5 )-、-O-C(O)-
・R1 :-H、-Cn H2n+1、-C6 H5 、-C6 H4 -CH3 、-C6 H3 (CH3 )2 、-C6 H4 -C2 H5 、-C6 H11、-CR3 R4 -、
(R1 が2価の基である場合に、この基の両端にはYで示される基が結合して二量体を形成する。)
・R3 :-H、-Cn H2n+1、-C6 H5 、-C6 Ha R5 b (OH)(5-a-b)
・R4 :-H、-Cn Hn
・R5 :-H、-CH3 、-C2 H5 、-C3 H7 、-C4 H9
(上記において、n=1~8の正整数、aとbは正整数で、a+b=1~4である。)〕
融点またはガラス転移点が100℃を超えるヒンダードアミン型光安定剤は、押出加工時の加工温度(例えば110~140℃)では完全に溶融させることができず、固化状態のヒンダードアミン型光安定剤が押出機内のスクリーンメッシュ上に付着するおそれがある。
分子量が1,500を超えるヒンダードアミン型光安定剤では、押出機内におけるスクリーンメッシュの目詰まり(閉塞)を起こして押出機内の圧力上昇を招き、長時間にわたる押出加工を行うことができない(後述する比較例1および2参照)。
ヒンダードアミン型光安定剤(B3)を含有しない、または、その含有量が過少である場合には、後述する有機過酸化物(C)の二次分解により生成する水が増加し電気特性(絶縁性)が損なわれる(後述する比較例3参照)。
一方、この含有量が過剰である場合には、保存安定性に対する効果が飽和し、電気特性および耐熱老化性が損なわれることがある。
分子量が1,500を超える安定剤が含有されている場合には、そのような高分子量の安定剤が押出機内におけるスクリーンメッシュの目詰まり(閉塞)を起こして押出機内の圧力上昇を招き、長時間にわたる押出加工を行うことができなくなる。
でき、これらは単独でまたは2種以上を組み合わせて(B2)成分として使用することができる。
本発明の架橋性樹脂組成物を構成する有機過酸化物(C)は、エチレン系樹脂の架橋剤として使用される公知の化合物を挙げることができる。
有機過酸化物(C)の具体例としては、ジ-t-ブチル-パーオキサイド、1,1-ビス-t-ブチル-パーオキシベンゾエート、2,2-ビス-t-ブチル-パーオキシブタン、t-ブチル-パーオキシベンゾエート、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチル-パーオキシヘキサン、t-ブチル-クミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチル-パーオキシヘキシン-3などを挙げることができ、これらは単独でまたは2種以上を組み合わせて使用することができる。
一方、この含有量が3.0質量部を超える場合には、得られる架橋性樹脂組成物の耐スコーチ性が劣るものとなる。
本発明の架橋性樹脂組成物には、上記のエチレン系樹脂(A)、ヒンダードアミン型光安定剤(B3)を含む安定剤(B)および有機過酸化物(C)の他に、本発明の樹脂組成物の特性を損なわない範囲で使用目的に応じ、エチレン系樹脂(A)以外のオレフィン系樹脂、各種添加剤および補助資材が含有されていてもよい。
本発明の架橋性樹脂組成物は、押出機のスクリューへのくい込みやすさ、取扱性などの観点から、平均粒径が2~7mm程度のペレット状であることが好ましい。
(i)エチレン系樹脂(A)、安定剤(B)および有機過酸化物(C)並びに任意成分を配合し、この配合物を公知の混練機(例えばバンバリーミキサー、コンティニュアスミキサー、ロール、二軸押出機等)を用い、エチレン系樹脂(A)の融点以上で、かつ有機過酸化物(C)の分解温度未満の温度で加熱して溶融混練し、得られた樹脂組成物をペレット状に造粒する方法;
(ii)エチレン系樹脂(A)および安定剤(B)並びに任意成分を配合し、この配合物を公知の混練機を用い、エチレン系樹脂(A)の融点以上の温度で加熱して溶融混練し、得られた混練物をペレット状に造粒し、次いで、このペレット状の混練物に対して、融点以上に加熱して液状とした有機過酸化物(C)を添加し、必要に応じて、エチレン系樹脂(A)の融点未満の温度で熟成させることによって有機過酸化物(C)を均一にペレット中に分散させる方法を挙げることができる。
本発明の電線・ケーブルは、本発明の架橋性樹脂組成物を架橋して形成される絶縁被覆層、すなわち、当該樹脂組成物の架橋物からなる絶縁被覆層により導体が被覆されてなる。
本発明の電線・ケーブルは、主に銅またはアルミニウムからなる導体上に、本発明の架橋性樹脂組成物を押出加工により被覆し、これを架橋処理して絶縁被覆層を形成することにより製造することができる。
高圧法低密度エチレン単独重合体、メルトマスフローレート(MFR)=2.2g/10分、密度0.922g/cm3 (株式会社NUC製)
・分子量=1,178のヒンダードフェノール型安定剤(B1)
・化合物名:テトラキス[メチレン-3-(3,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン
・商品名 :イルガノックス1010(BASF社製)
・還元粘度(40℃) :3.2cm3 /g
・還元粘度(110℃):1.9cm3 /g
・融点またはガラス転移点:110~125℃
・分子量=359のヒンダードフェノール型安定剤(B1)
・化合物名:4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)
・商品名 :シーノックスBCS(シプロ化成社製)
・還元粘度(40℃) :2.7cm3 /g
・還元粘度(110℃):1.3cm3 /g
・融点またはガラス転移点:160℃
・分子量=682のジアルキルチオジプロピオネート型安定剤(B2)
・化合物名:ジステアリルチオジプロピオネート
・商品名 :DSTP「ヨシトミ」(吉富製薬社製)
・還元粘度(40℃) :3.8cm3 /g
・還元粘度(110℃):2.6cm3 /g
・融点またはガラス転移点:64~67℃
・分子量=481のヒンダードアミン型光安定剤(B3)
・化合物名:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート
・商品名:LA-77(ADEKA社製)
・還元粘度(40℃) :2.7cm3 /g
・還元粘度(110℃):1.6cm3 /g
・融点またはガラス転移点:81~85℃
・分子量=847のヒンダードアミン型光安定剤(B3)
・化合物名:テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート
・商品名:LA-52(ADEKA社製)
・還元粘度(40℃) :3.0cm3 /g
・還元粘度(110℃):2.0cm3 /g
・融点またはガラス転移点:65~68℃
・分子量=2,000~3,100のヒンダードアミン型光安定剤(比較用)
・化合物名:ポリ((6-((1,1,3,3-テトラメチルブチル)アミノ)-1,3,5-トリアジン-2,4-ジイル)(2-(2,2,6,6テトラメチル-4ピペリジル)イミノ))ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ))
・商品名:キマソーブ944(BASF社製)
・還元粘度(40℃) :7.3cm3 /g
・還元粘度(110℃):4.7cm3 /g
・融点またはガラス転移点:100~135℃
分子量=3,100~4,000のヒンダードアミン型光安定剤(比較用)
コハク酸ジメチルと1-(2ヒドロキシエチル)-4-ヒドロキシ- 2,2,6,6-テトラメチル-4-ピペリジン重縮合物
商品名:チヌビン622(BASF社製)
還元粘度(40℃) :20.3cm3 /g
還元粘度(110℃):14.1cm3 /g
融点またはガラス転移点:55~77℃
下記表1に示す処方に従って、樹脂(A-1)100質量部と、ヒンダードフェノール型安定剤(B1)として安定剤(B1-1)0.1質量部および安定剤(B1-2)0.1質量部と、ジアルキルチオジプロピオネート型安定剤(B2)として安定剤(B2-1)0.1質量部と、ヒンダードアミン型光安定剤(B3)として安定剤(B3-1)0.02質量部とを配合し、バンバリーミキサーにより180℃の温度にて10分間混練した後、得られた混練物を直径3mm、長さ2mmのペレット状に造粒した。
次に、得られたペレット状の混練物に対して、加熱して液状とした有機過酸化物(C-1)1.6質量部添加し、ブレンダーにて60℃に加温した状態で3時間混合後室温まで冷却することにより、本発明の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)の配合量を0.01質量部に変更したこと以外は実施例1と同様にして本発明の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)の配合量を0.005質量部に変更したこと以外は実施例1と同様にして本発明の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)に代えて、安定剤(B3-2)0.005質量部を配合したこと以外は実施例1と同様にして本発明の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)に代えて、安定剤(B3-3)0.005質量部を配合したこと以外は実施例1と同様にして比較用の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)に代えて、安定剤(B3-4)0.005質量部を配合したこと以外は実施例1と同様にして比較用の架橋性樹脂組成物を得た。
下記表1に示す処方に従って、安定剤(B3-1)を配合しなかったこと以外は実施例1と同様にして比較用の架橋性樹脂組成物を得た。
有効長(L/D)=25の単軸押出機に80/150/400/80メッシュのスクリーンメッシュを装着し、実施例および比較例で得られた架橋性樹脂組成物の各々を温度115℃、回転数30rpmで押出し、押出開始直後の機内圧力と、押出を開始してから8時間経過後の機内圧力とを測定し、その上昇率を算出した。評価基準としては、上昇率が2%未満を合格とした。
実施例および比較例で得られた架橋性樹脂組成物の各々を圧縮プレス成形機により120℃、0.5MPaで5分間シートの予備成形を行い、続いて180℃、15MPaで20分間架橋させることにより厚さ6mmのシートを作製した。
このシートを空気雰囲気下80℃に28日間保管し、その間24時間ごと6mmシートの厚み方向の中心部から2g切り出し、カールフィッシャー水分計を用い測定温度200℃、測定時間20分の条件にて水分含量を測定した。
実施例および比較例で得られた架橋性樹脂組成物の各々を圧縮プレス成形機により120℃、0.5MPaで5分間シートの予備成形を行い、続いて180℃、15MPaで20分間架橋させることにより厚さ3mmのシートを作製した。
このシートに、水電極を用いて1kV/1000Hzの交流電圧を500時間印加した後、このシートを厚み方向に約0.1mmにスライスして10個のスライス片を作製し、このスライス片をメチレンブルー染色液に浸し染色し、染色したスライス片を光学顕微鏡で観察して水トリーの発生の有無を確認し、水トリーの発生が認められない場合を合格とした。
IEC-60840に準拠して測定した。温度135℃で7日間保存した後の引張強さおよび引張伸びの保持率を測定し、保持率が80%以上である場合を合格とした。
IEC-60811-2-1で規定されるホットセットで評価した。200℃の高温雰囲気下で短冊状の試験片に20N/cm2 の荷重を吊り下げ、15分間放置した後の標線距離の伸び率が100%以下で、かつ荷重除去後の標線距離の永久伸び率が10%以下である場合を合格とした。
従って、実施例1~4で得られた架橋性樹脂組成物によれば、長時間にわたり連続して絶縁被覆層を押出成形することができるので、電線・ケーブルの生産単位の長尺化を図る
ことができる。
また、水分生成量が少なく、耐水トリー性、耐熱老化性および加熱変形性にも優れている。電線・ケーブルの絶縁被覆材料として好適である。
従って、比較例1および比較例2で得られた架橋性樹脂組成物によっては、長時間にわたり連続して絶縁被覆層を押出成形することができず、電線・ケーブルの生産単位の長尺化を図ることはできない。
また、比較例3で得られた架橋性樹脂組成物は、耐水トリー性および耐熱老化性に劣るため、電線・ケーブルの絶縁被覆材料として適当ではない。
Claims (5)
- エチレン系樹脂(A)100質量部と、
融点またはガラス転移点が100℃以下であるヒンダードアミン型光安定剤(B3)0.001~0.5質量部を含む安定剤(B)と、
有機過酸化物(C)0.5~3.0質量部とを含有し、
前記安定剤(B)を構成するすべての化合物の分子量が1,500以下であることを特徴とする架橋性樹脂組成物。 - 前記ヒンダードアミン型光安定剤(B3)の分子量が900以下であることを特徴とする請求項1に記載の架橋性樹脂組成物。
- 前記安定剤(B)を構成するすべての化合物において、ISO1628-1に準拠して測定される110℃における還元粘度が0.5~3.0cm3 /gであり、40℃における還元粘度が1.0~4.0cm3 /gであることを特徴とする請求項1または請求項2に記載の架橋性樹脂組成物。
- 前記安定剤(B)として、前記ヒンダードアミン型光安定剤(B3)とともに、ヒンダードフェノール型安定剤(B1)と、ジアルキルチオジプロピオネート型安定剤(B2)とを含有することを特徴とする請求項1乃至請求項3の何れかに記載の架橋性樹脂組成物。
- 請求項1乃至請求項4の何れかに記載の架橋性樹脂組成物を架橋して形成される絶縁被覆層により導体を被覆してなる電線・ケーブル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15865838.5A EP3228660B9 (en) | 2014-12-02 | 2015-08-11 | Crosslinkable resin composition, and electric wire or cable |
CN201580064948.6A CN107001725B (zh) | 2014-12-02 | 2015-08-11 | 交联性树脂组合物及电线/线缆 |
KR1020177009012A KR101893716B1 (ko) | 2014-12-02 | 2015-08-11 | 가교성 수지 조성물 및 전선·케이블 |
US15/518,451 US20170306133A1 (en) | 2014-12-02 | 2015-08-11 | Crosslinkable resin composition and electric wire/cable |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014244512A JP6497696B2 (ja) | 2014-12-02 | 2014-12-02 | 架橋性樹脂組成物および電線・ケーブル |
JP2014-244512 | 2014-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088408A1 true WO2016088408A1 (ja) | 2016-06-09 |
Family
ID=56091366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072809 WO2016088408A1 (ja) | 2014-12-02 | 2015-08-11 | 架橋性樹脂組成物および電線・ケーブル |
Country Status (7)
Country | Link |
---|---|
US (1) | US20170306133A1 (ja) |
EP (1) | EP3228660B9 (ja) |
JP (1) | JP6497696B2 (ja) |
KR (1) | KR101893716B1 (ja) |
CN (1) | CN107001725B (ja) |
TW (1) | TWI564334B (ja) |
WO (1) | WO2016088408A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3401929A1 (en) * | 2017-05-09 | 2018-11-14 | Borealis AG | Cable insulation |
CN119132697A (zh) * | 2024-11-08 | 2024-12-13 | 北京怀柔实验室 | 用于大长度挤出的电缆绝缘料及其制备方法、应用和电缆 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245670A (ja) * | 1984-05-21 | 1985-12-05 | Sumitomo Chem Co Ltd | 安定化高分子組成物 |
JP2003535206A (ja) * | 2000-05-31 | 2003-11-25 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 安定剤混合物 |
JP2003535172A (ja) * | 2000-05-31 | 2003-11-25 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 安定剤混合物 |
JP2005187595A (ja) * | 2003-12-25 | 2005-07-14 | Kurabe Ind Co Ltd | 耐候性難燃樹脂組成物及び電線 |
JP2011258520A (ja) * | 2010-06-11 | 2011-12-22 | Swcc Showa Cable Systems Co Ltd | 給電用ケーブル |
JP2012204044A (ja) * | 2011-03-24 | 2012-10-22 | Hitachi Cable Ltd | 電線 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1267900A (en) * | 1983-09-05 | 1990-04-17 | Shinichi Yachigo | Piperidine derivatives, their production and stabilized polymer compositions containing same |
JP3959183B2 (ja) | 1998-09-09 | 2007-08-15 | 日本ユニカー株式会社 | 電気絶縁組成物および電線ケーブル |
JP3565773B2 (ja) * | 2000-09-06 | 2004-09-15 | 日本ユニカー株式会社 | 電気絶縁樹脂組成物及びそれを被覆してなる電線・ケーブル |
JP5828842B2 (ja) * | 2010-12-02 | 2015-12-09 | 株式会社カネカ | 光学材料用活性エネルギー線硬化性組成物、硬化物、および製造方法 |
US20140017494A1 (en) | 2012-07-12 | 2014-01-16 | General Cable Technologies Corporation | Insulations containing non-migrating antistatic agent |
CN107245163B (zh) * | 2013-09-13 | 2019-09-24 | 陶氏环球技术有限责任公司 | 过氧化物可交联的组合物及其制造方法 |
-
2014
- 2014-12-02 JP JP2014244512A patent/JP6497696B2/ja active Active
-
2015
- 2015-08-11 CN CN201580064948.6A patent/CN107001725B/zh active Active
- 2015-08-11 US US15/518,451 patent/US20170306133A1/en not_active Abandoned
- 2015-08-11 EP EP15865838.5A patent/EP3228660B9/en active Active
- 2015-08-11 WO PCT/JP2015/072809 patent/WO2016088408A1/ja active Application Filing
- 2015-08-11 KR KR1020177009012A patent/KR101893716B1/ko active IP Right Grant
- 2015-08-19 TW TW104127003A patent/TWI564334B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60245670A (ja) * | 1984-05-21 | 1985-12-05 | Sumitomo Chem Co Ltd | 安定化高分子組成物 |
JP2003535206A (ja) * | 2000-05-31 | 2003-11-25 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 安定剤混合物 |
JP2003535172A (ja) * | 2000-05-31 | 2003-11-25 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 安定剤混合物 |
JP2005187595A (ja) * | 2003-12-25 | 2005-07-14 | Kurabe Ind Co Ltd | 耐候性難燃樹脂組成物及び電線 |
JP2011258520A (ja) * | 2010-06-11 | 2011-12-22 | Swcc Showa Cable Systems Co Ltd | 給電用ケーブル |
JP2012204044A (ja) * | 2011-03-24 | 2012-10-22 | Hitachi Cable Ltd | 電線 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3228660A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3228660A4 (en) | 2017-12-20 |
KR20170051484A (ko) | 2017-05-11 |
KR101893716B1 (ko) | 2018-08-30 |
US20170306133A1 (en) | 2017-10-26 |
EP3228660A1 (en) | 2017-10-11 |
CN107001725B (zh) | 2021-07-16 |
EP3228660B1 (en) | 2021-11-17 |
CN107001725A (zh) | 2017-08-01 |
TW201620972A (zh) | 2016-06-16 |
EP3228660B9 (en) | 2024-03-13 |
JP6497696B2 (ja) | 2019-04-10 |
JP2016110725A (ja) | 2016-06-20 |
TWI564334B (zh) | 2017-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101855637B1 (ko) | 가교성 수지 조성물 및 전선·케이블 | |
JP6287919B2 (ja) | 電線被覆材組成物、絶縁電線及びワイヤーハーネス | |
KR100727207B1 (ko) | 스웨트-아웃 억제 및 전기 절연특성이 우수한 가교 폴리에틸렌 조성물 | |
JP6975718B2 (ja) | 改善された引張特性を有するハロゲンフリー難燃剤組成物 | |
JP6497696B2 (ja) | 架橋性樹脂組成物および電線・ケーブル | |
JP5416046B2 (ja) | 液状添加剤組成物を用いた電力ケーブル若しくは電力ケーブル接続部の製造方法 | |
JP2011001495A (ja) | ノンハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル | |
JP3565773B2 (ja) | 電気絶縁樹脂組成物及びそれを被覆してなる電線・ケーブル | |
JP4998844B2 (ja) | ノンハロゲン絶縁電線 | |
JP7619749B2 (ja) | 架橋性樹脂組成物および電線・ケーブル | |
KR20140126993A (ko) | 전력 케이블 | |
JP6493066B2 (ja) | エラストマ組成物、並びにこれを用いた絶縁電線およびケーブル | |
JP2015193689A (ja) | 難燃性組成物およびこれを用いた絶縁電線 | |
KR101589812B1 (ko) | 전력선용 반도전층 나노컴파운드 블렌드 및 그 조성물 | |
KR20190072194A (ko) | 고유연성 비가교 케이블용 절연층 조성물 및 고유연성 비가교 케이블 | |
JP4754187B2 (ja) | 耐熱性と耐電圧特性に優れた難燃性組成物及び電線 | |
JP4964412B2 (ja) | ノンハロゲン難燃性組成物及び電線 | |
KR20240128811A (ko) | 전력 케이블용 절연성 수지 조성물, 전력 케이블 및 전력 케이블 접속부 | |
JP2020169281A (ja) | 電気絶縁組成物および電力ケーブル | |
JP2020169282A (ja) | 電気絶縁組成物および電力ケーブル | |
JP2006066110A (ja) | 絶縁電力ケーブル | |
JPH0554724A (ja) | 耐熱性・可撓性に優れた電線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15865838 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177009012 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15518451 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015865838 Country of ref document: EP |