Nothing Special   »   [go: up one dir, main page]

WO2016088330A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2016088330A1
WO2016088330A1 PCT/JP2015/005827 JP2015005827W WO2016088330A1 WO 2016088330 A1 WO2016088330 A1 WO 2016088330A1 JP 2015005827 W JP2015005827 W JP 2015005827W WO 2016088330 A1 WO2016088330 A1 WO 2016088330A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cam
gain
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2015/005827
Other languages
French (fr)
Japanese (ja)
Inventor
真一 杉浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015005496.0T priority Critical patent/DE112015005496B4/en
Publication of WO2016088330A1 publication Critical patent/WO2016088330A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a control device that controls a motor, rotates a cam by driving the motor, and displaces a control member that comes into contact with the outer peripheral surface of the cam to switch the operating state of the internal combustion engine.
  • An internal combustion engine mounted on a vehicle that switches intake and exhaust characteristics according to the operating state of the internal combustion engine. Specifically, the maximum lift amount of the intake valve and exhaust valve provided in the cylinder of the internal combustion engine is switched so as to be suitable for the operating state of the internal combustion engine at that time.
  • Patent Document 1 describes a control device that displaces a control member using a motor and a cam and performs the switching by the action of the control member.
  • the cam that rotates as the motor is driven is configured to bring the control member into contact with the outer peripheral surface thereof.
  • the control member abuts the outer peripheral surface of the cam at one end, and the other end extends to the internal combustion engine.
  • the cam is formed such that the distance from the center of rotation to the outer peripheral surface differs depending on the portion of the outer peripheral surface. For this reason, when the contact part of a control member and a cam changes with rotation of a cam, a control member is comprised so that it may displace.
  • a plurality of stationary portions are formed on the outer peripheral surface of the cam.
  • This stationary part is formed so that the inclination of the displacement amount of the control member accompanying the rotation of the cam is different from other parts.
  • the control device disclosed in Patent Document 1 is configured to switch the position of the control member by setting the control member in contact with any one of the plurality of stationary portions.
  • the control member has an action suitable for the operating state of the internal combustion engine at that time by switching the position as appropriate. Thereby, the output improvement of an internal combustion engine, a fuel consumption reduction, etc. can be aimed at.
  • the characteristics of the internal combustion engine have individual differences even if they are of the same type, and the force that the control member receives from the internal combustion engine also differs for each individual internal combustion engine. For this reason, the amount of work performed by the motor before the control member is displaced to the target position while resisting the force also varies from individual to individual. Therefore, there is a problem that it is difficult to quickly displace the control member to the target position and switch the operating state of the internal combustion engine.
  • An object of the present disclosure is to provide a control device that switches the operating state of an internal combustion engine by quickly and accurately displacing a control member to a target position.
  • a control device that controls the motor, rotates the cam by driving the motor, and displaces the control member that contacts the outer peripheral surface of the cam to switch the operating state of the internal combustion engine.
  • Switching operation for switching the rotation angle detection unit that detects the rotation angle and the portion of the outer peripheral surface of the cam that the control member contacts between the first stationary unit and the second stationary unit that do not displace the control member even when the cam rotates.
  • a power supply unit that supplies power to the motor to perform the operation, a work amount calculation unit that calculates the work amount that the motor has performed to perform the switching operation, and a gain that is calculated based on the work amount calculated by the work amount calculation unit
  • a gain calculating unit The power supply unit performs feedback control using the gain calculated by the gain calculation unit to adjust the power supplied to the motor so that the rotation angle detected by the rotation angle detection unit becomes a target value.
  • the work amount calculating unit calculates the amount of work performed by the motor in the switching operation between the first stationary unit and the second stationary unit.
  • the gain calculation unit calculates a gain based on the work amount, and the power supply unit performs feedback control using the gain so that the rotation angle of the cam matches the target value. Therefore, even when the work amount of the motor in the switching operation varies due to variations in the characteristics of the internal combustion engine, the control shaft can be quickly and accurately displaced to the target position by using a gain corresponding thereto. It becomes possible to switch the operating state of the internal combustion engine.
  • FIG. 1 is a schematic configuration diagram of a valve control system to which a control device according to an embodiment is applied. It is a figure which shows schematic structure of a cam and a control shaft. It is a control block diagram for demonstrating a control apparatus. It is a figure which shows the relationship between an axial force and an engine speed. It is a flowchart which shows the control by a control apparatus. It is a figure which shows the relationship between the rotation angle of a cam, and the electric current supplied to the motor. It is a figure which shows the relationship between a gain ratio and the work of a motor. It is a figure which shows the relationship between a gain ratio and an engine speed.
  • the valve control system 11 is a system that controls an intake valve and an exhaust valve of the internal combustion engine 100 mounted on the vehicle.
  • the valve control system 11 includes a control shaft 12 (control member), an actuator unit 13, and a valve opening / closing characteristic changing mechanism 14.
  • control shaft 12 is a rod-like member that is displaced by sliding in the axial direction.
  • One end 12a of the control shaft 12 is provided on the actuator unit 13 side, and the other end 12b is provided on the valve opening / closing characteristic changing mechanism 14 side.
  • the actuator unit 13 is a mechanism that applies an axial force to the control shaft 12 to displace the control shaft 12.
  • the actuator unit 13 includes a motor 15, a speed reducer 16, a cam 17, and a rotation angle sensor 19.
  • the motor 15 is a prime mover that is driven to rotate by receiving power and generates torque.
  • the output shaft of the motor 15 is connected to the speed reducer 16. Torque generated by the motor 15 is transmitted to the cam 17 via the speed reducer 16.
  • the cam 17 is configured to rotate around the rotation center RC when torque is transmitted from the speed reducer 16 as the motor 15 rotates.
  • the outer peripheral surface 17a of the cam 17 is formed as a curved surface.
  • the cams 17 are formed such that the distance from the rotation center RC to the outer peripheral surface 17a is different depending on the portion of the outer peripheral surface 17a.
  • 1st stationary part LP, 2nd stationary part MP, and 3rd stationary part HP are formed in the outer peripheral surface 17a of the cam 17 at intervals.
  • the 1st stationary part LP is a site
  • the third stationary part HP is a part having the longest distance from the rotation center RC. That is, the distance from the rotation center RC is configured to increase in three stages from the first stationary part LP to the third stationary part HP through the second stationary part MP.
  • the first stationary part LP, the second stationary part MP, and the third stationary part HP are indicated by bold lines.
  • One end 12 a of the control shaft 12 is in contact with the outer peripheral surface 17 a of the cam 17.
  • the rotation angle sensor 19 is a sensor that is arranged in the vicinity of the cam 17 and outputs a signal according to the rotation angle from the reference position of the cam 17. A signal output from the rotation angle sensor 19 is input to the control device 21 (see FIG. 1) via a signal line.
  • the valve opening / closing characteristic changing mechanism 14 is attached to the internal combustion engine 100.
  • the valve opening / closing characteristic changing mechanism 14 is a mechanism for switching the intake and exhaust characteristics of the internal combustion engine 100 by changing the opening / closing characteristics of the intake valve and the exhaust valve. Specifically, the valve opening / closing characteristic changing mechanism 14 changes the maximum lift amount and operating angle of the intake valve and the exhaust valve of the internal combustion engine 100.
  • the other end 12 b of the control shaft 12 is connected to the valve opening / closing characteristic changing mechanism 14.
  • the control device 21 controls the valve control system 11 as described above.
  • the control device 21 is electrically connected to the motor 15 and the rotation angle sensor 19, and receives a signal to perform processing or supply power.
  • a part or all of the control device 21 is configured by an analog circuit or a digital processor including a memory.
  • a functional control block is configured in the control device 21 in order to fulfill the function of outputting a control signal based on the received signal.
  • FIG. 3 shows the control device 21 as such a functional control block diagram.
  • the software module incorporated in the analog circuit or digital processor constituting the control device 21 does not necessarily have to be divided like the control block shown in FIG. That is, it may be configured to function as a plurality of control blocks, or may be further subdivided. As long as the control device 21 is configured to execute a processing flow described later, the actual configuration inside the control device 21 can be appropriately changed by those skilled in the art.
  • control device 21 includes a rotation angle detection unit 211, a power supply unit 212, a power amount calculation unit 213 (work amount calculation unit), and a gain calculation unit 214 as functional control blocks. And a storage unit 215.
  • the rotation angle detection unit 211 processes the signal received from the rotation angle sensor 19.
  • the rotation angle detector 211 detects the rotation angle of the cam 17 by this processing.
  • the power supply unit 212 supplies driving power to the motor 15 of the actuator unit 13. Specifically, the power supply unit 212 supplies the electric power stored in a battery (not shown) to the motor 15 while adjusting the supply amount so that the rotation angle of the cam 17 matches the target value.
  • the power amount calculation unit 213 calculates the amount of power supplied from the power supply unit 212 to the motor 15. A method for calculating this electric energy will be described later.
  • the gain calculation unit 214 calculates a gain used for feedback control.
  • the gain calculated here is used in PID control for making the rotation angle of the cam 17 coincide with the target value.
  • the storage unit 215 writes various data used for control processing in the control device 21 and enables reading of the data. Specifically, the gain calculated by the gain calculation unit 214 is written in the storage unit 215, and the gain can be read by the power supply unit 212.
  • each block such as the rotation angle detection unit 211 of the control device 21 will be described as being performed by the control device 21 as a whole.
  • control device 21 determines from the signal received from the rotation angle sensor 19 that there is a difference between the rotation angle of the cam 17 and the target value, the control device 21 supplies electric power to the motor 15 so that the rotation angle matches the target value. Start supplying.
  • the motor 15 is rotationally driven according to the supplied electric energy, and the cam 17 is also rotated accordingly.
  • the part with which the one end 12 a of the control shaft 12 abuts changes as the cam 17 rotates. Furthermore, the distance from the rotation center RC of the cam 17 to the one end 12a changes as the contact portion between the outer peripheral surface 17a and the one end 12a changes. Thereby, the control shaft 12 is displaced so as to reciprocate in the axial direction.
  • the rotation angle of the cam 17 and the displacement of the control shaft 12 are uniquely related. For this reason, the position of the control shaft 12 can be converged to the target position by performing feedback control in which the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 matches the target value.
  • first stationary part LP, the second stationary part MP, and the third stationary part HP of the outer peripheral surface 17a described above are formed so as not to displace the control shaft 12 when the cam 17 rotates. That is, the first stationary part LP, the second stationary part MP, and the third stationary part HP are all formed in an arc shape having a constant radius, and when the one end 12a of the control shaft 12 passes through them, it rotates. The distance from the center RC to the one end 12a is not changed. Therefore, only when the one end 12a is in contact with the first stationary part LP, the second stationary part MP, or the third stationary part HP, the control shaft 12 remains stationary without being displaced even when the cam 17 rotates. It becomes.
  • the internal combustion engine 100 receives different actions depending on the position of the control shaft 12.
  • one end 12a of the control shaft 12 When one end 12a of the control shaft 12 is in contact with the first stationary portion LP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is minimized.
  • the one end 12a of the control shaft 12 is in contact with the third stationary portion HP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is maximized.
  • the one end 12a of the control shaft 12 When the one end 12a of the control shaft 12 is in contact with the second stationary part MP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is the same as that of the first stationary part LP.
  • control device 21 switches the lift amount of the intake valve and the exhaust valve to 3 by switching the position where the control shaft 12 contacts to one of the first stationary part LP, the second stationary part MP, and the third stationary part HP. You can switch to the stage.
  • the control shaft 12 is given a force resulting from vibration of the internal combustion engine 100 and movement of the intake valve and the exhaust valve. Specifically, axial force is applied to the control shaft 12 from the internal combustion engine 100 via the valve opening / closing characteristic changing mechanism 14. Hereinafter, this force is referred to as axial force.
  • the axial force becomes a resistance force when the motor 15 rotates to displace the control shaft 12.
  • This axial force has a correlation with the rotational speed of the internal combustion engine 100.
  • the solid line AB indicating the reference characteristic of the internal combustion engine 100 shows a tendency that the axial force becomes large in the low rotation range and the high rotation range. For this reason, when the control shaft 12 is displaced, the force that the motor 15 needs to apply to the control shaft 12 via the cam 17 varies with the rotational speed of the internal combustion engine 100, and the low rotation range and the high rotation speed are changed. Especially in areas.
  • the axial force tends to be higher than the reference as indicated by a broken line AH, and in another individual, the axial force is lower than the reference as indicated by a broken line AL.
  • the operation state of the internal combustion engine 100 can be switched by quickly and accurately displacing the control shaft 12 to a target position by feedback control. It becomes difficult.
  • control device 21 attempts to solve this problem by adjusting the gain used for this feedback control.
  • control processing of the control device 21 will be described with reference to FIGS.
  • the control device 21 moves from the second stationary part MP to the third stationary part MP while moving the one end 12a of the control shaft 12 from the first stationary part LP to the second stationary part MP in S1.
  • the amount of work performed by the motor 15 is calculated.
  • the work done by the motor 15 can be calculated from the current and voltage supplied to the motor 15.
  • the value of the current supplied to the motor 15 during the driving of the motor 15 so that the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 matches the target value is The change shown in the lower part of FIG. 6 is shown.
  • the area S shown in the lower part of FIG. 6 and the voltage supplied to the motor 15 are calculated in a calculation period, which is a period from when the detected value by the rotation angle sensor 19 starts to change to the target value.
  • the amount of power that is the product is the amount of work performed by the motor 15.
  • control device 21 calculates a gain ratio based on the calculated work amount of the motor 15 in S2.
  • the control device 21 stores the gain ratio-motor work amount map shown in FIG. 7 in the storage unit 215 (see FIG. 3).
  • the control device 21 calculates the gain ratio based on the gain ratio-motor work amount map.
  • the work amount of the motor 15 corresponding to the reference characteristic of the internal combustion engine 100 is set as a “reference value”.
  • the gain ratio corresponding to the “reference value” is “1”. The gain ratio is set to change proportionally as the work amount of the motor 15 deviates from the reference value due to variations in the characteristics of the internal combustion engine 100.
  • the control device 21 calculates the gain ratio by comparing the calculated work amount of the motor 15 with this gain ratio-motor work amount map. That is, the control device 21 calculates a ratio between an appropriate gain corresponding to the characteristics of the internal combustion engine 100 and a gain when the work amount of the motor 15 is the “reference value”. The control device 21 calculates gain ratios corresponding to the different rotational speeds of the internal combustion engine 100.
  • control device 21 stores the calculated gain ratio in S3. Specifically, the control device 21 writes the calculated gain ratio in the storage unit 215 (see FIG. 3) in association with the calculated gain ratio and the rotational speed of the internal combustion engine 100 when the gain ratio is calculated.
  • the gain ratio corresponding to the rotational speed of the internal combustion engine 100 is written into the storage unit 215, whereby a gain ratio-internal combustion engine rotational speed map as shown in FIG.
  • The By dividing the rotational speed of the internal combustion engine 100 finely and calculating the gain ratio at each rotational speed, a continuous gain ratio value as shown in FIG. 8 can be obtained.
  • the control device 21 uses the gain ratio-gain ratio obtained from the internal combustion engine speed map when performing feedback control for matching the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 with the target value. That is, the control device 21 first calculates the gain ratio by comparing the rotational speed of the internal combustion engine 100 with this gain ratio-internal combustion engine speed map. Next, the control device 21 uses, for feedback control, a new gain obtained by multiplying the gain corresponding to the reference characteristic of the internal combustion engine 100 by the calculated gain ratio.
  • the first stationary part LP and the second stationary part MP, the second stationary part MP and the third stationary part HP, and the third stationary part In the switching operation between the part HP and the first stationary part LP, the amount of work done by the motor 15 is calculated. A gain is calculated based on this electric energy, and feedback control is performed using the gain so that the rotation angle of the cam 17 coincides with the target value, so that control is performed according to the individual characteristics of the internal combustion engine 100.
  • the operating state of the internal combustion engine 100 can be switched by quickly and accurately displacing the shaft 12 to a target position.
  • control device 21 calculates the amount of work performed by the motor 15 in the switching operation from the amount of electric power supplied to the motor 15. This is possible because the amount of power supplied to the motor 15 in the switching operation has a proportional correlation with the amount of work performed by the motor 15. Therefore, the control device 21 can easily and accurately calculate the amount of work performed by the motor 15.
  • control device 21 calculates gains corresponding to different rotational speeds of the internal combustion engine 100. As a result, even if the axial force applied to the control shaft 12 from the internal combustion engine 100 changes depending on the rotational speed of the internal combustion engine 100, feedback control can be performed using a gain that changes accordingly. Therefore, the operating state of the internal combustion engine 100 can be switched by quickly and accurately displacing the control shaft 12 to the target position according to the rotational speed of the internal combustion engine 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Transmission Devices (AREA)

Abstract

This control device is provided with: a rotational angle detection unit (211) for detecting the rotational angle of a cam (17); a power supply unit (212) for supplying power to a motor (15) in order to perform a switching operation in which the area of the cam outer peripheral surface (17a) in contact with a control member (12) is switched between a first stationary part and a second stationary part that do not allow the control member to be displaced even if the cam rotates; a work-amount calculation unit (213) for calculating the work amount carried out by the motor in order to perform the switching operation; and a gain calculation unit (214) which calculates the gain on the basis of the work amount calculated by the work amount calculation unit. The power supply unit uses the gain calculated by the gain calculation unit to perform feedback control in which the power supplied to the motor is adjusted such that the rotational angle detected by the rotational angle detection unit becomes a target value.

Description

制御装置Control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年12月3日に出願された日本特許出願2014-244891号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-244891 filed on December 3, 2014, the contents of which are incorporated herein by reference.
 本開示は、モータを制御し、モータの駆動によってカムを回転させ、カムの外周面に当接する制御部材を変位させることで内燃機関の運転状態を切り替える制御装置に関する。 The present disclosure relates to a control device that controls a motor, rotates a cam by driving the motor, and displaces a control member that comes into contact with the outer peripheral surface of the cam to switch the operating state of the internal combustion engine.
 車両に搭載される内燃機関において、吸気及び排気の特性を、内燃機関の運転状態に応じて切り替えるものが知られている。具体的には、内燃機関の気筒に設けられる吸気バルブや排気バルブの最大リフト量等を、その際の内燃機関の運転状態に適したものとなるように切り替えを行う。 2. Description of the Related Art An internal combustion engine mounted on a vehicle is known that switches intake and exhaust characteristics according to the operating state of the internal combustion engine. Specifically, the maximum lift amount of the intake valve and exhaust valve provided in the cylinder of the internal combustion engine is switched so as to be suitable for the operating state of the internal combustion engine at that time.
 下記特許文献1には、モータ及びカムを用いて制御部材を変位させ、この制御部材の作用によって上記切替を行う制御装置が記載されている。モータの駆動に伴って回転するカムは、その外周面に制御部材を当接させるように構成されている。制御部材は、その一端においてカムの外周面に当接するとともに、他端が内燃機関まで延びている。 The following Patent Document 1 describes a control device that displaces a control member using a motor and a cam and performs the switching by the action of the control member. The cam that rotates as the motor is driven is configured to bring the control member into contact with the outer peripheral surface thereof. The control member abuts the outer peripheral surface of the cam at one end, and the other end extends to the internal combustion engine.
 カムは、その回転中心から外周面までの距離が、外周面の部位によって異なるように形成されている。このため、制御部材とカムとの当接部位がカムの回転に伴って変化すると、制御部材が変位するように構成されている。 The cam is formed such that the distance from the center of rotation to the outer peripheral surface differs depending on the portion of the outer peripheral surface. For this reason, when the contact part of a control member and a cam changes with rotation of a cam, a control member is comprised so that it may displace.
 カムの外周面には、複数の静止部(段差部)が形成されている。この静止部では、カムの回転に伴う制御部材の変位量の傾きが、他の部位と異なるように形成されている。下記特許文献1の制御装置は、制御部材が、複数の静止部のいずれかと当接した状態とすることで、制御部材の位置を切替えるように構成されている。 A plurality of stationary portions (step portions) are formed on the outer peripheral surface of the cam. This stationary part is formed so that the inclination of the displacement amount of the control member accompanying the rotation of the cam is different from other parts. The control device disclosed in Patent Document 1 is configured to switch the position of the control member by setting the control member in contact with any one of the plurality of stationary portions.
 制御部材は、位置を適宜切り替えられることにより、その際の内燃機関の運転状態に適した作用をする。これにより、内燃機関の出力向上や燃費削減等を図ることができる。 The control member has an action suitable for the operating state of the internal combustion engine at that time by switching the position as appropriate. Thereby, the output improvement of an internal combustion engine, a fuel consumption reduction, etc. can be aimed at.
特開2014-119087号公報JP 2014-1119087 A
 内燃機関の特性は、同一型式のものであっても個体差があり、制御部材が内燃機関から受ける力も、内燃機関の個体ごとに異なる。このため、当該力に抗しながら制御部材を目標位置まで変位させるまでの間に、モータがする仕事量も、個体ごとのばらつきが生じる。したがって、制御部材を目標となる位置まで迅速に変位させ、内燃機関の運転状態の切り替えを行うことが難しいという課題があった。 The characteristics of the internal combustion engine have individual differences even if they are of the same type, and the force that the control member receives from the internal combustion engine also differs for each individual internal combustion engine. For this reason, the amount of work performed by the motor before the control member is displaced to the target position while resisting the force also varies from individual to individual. Therefore, there is a problem that it is difficult to quickly displace the control member to the target position and switch the operating state of the internal combustion engine.
 本開示の目的は、制御部材を目標となる位置まで迅速かつ正確に変位させて、内燃機関の運転状態の切り替えを行う制御装置を提供することにある。 An object of the present disclosure is to provide a control device that switches the operating state of an internal combustion engine by quickly and accurately displacing a control member to a target position.
 本開示の一態様において、モータを制御し、該モータの駆動によってカムを回転させ、該カムの外周面に当接する制御部材を変位させることで内燃機関の運転状態を切り替える制御装置は、カムの回転角を検出する回転角検出部と、制御部材が当接するカムの外周面の部位を、カムが回転しても制御部材を変位させない第1静止部及び第2静止部の間で切り替える切替動作を行うためにモータに電力を供給する電力供給部と、切替動作を行うためにモータがした仕事量を算出する仕事量算出部と、仕事量算出部が算出した仕事量に基づいてゲインを算出するゲイン算出部と、を備える。電力供給部は、ゲイン算出部で算出したゲインを用いて、回転角検出部で検出した回転角が目標値となるようにモータに供給する電力を調整するフィードバック制御を行う。 In one aspect of the present disclosure, a control device that controls the motor, rotates the cam by driving the motor, and displaces the control member that contacts the outer peripheral surface of the cam to switch the operating state of the internal combustion engine. Switching operation for switching the rotation angle detection unit that detects the rotation angle and the portion of the outer peripheral surface of the cam that the control member contacts between the first stationary unit and the second stationary unit that do not displace the control member even when the cam rotates. A power supply unit that supplies power to the motor to perform the operation, a work amount calculation unit that calculates the work amount that the motor has performed to perform the switching operation, and a gain that is calculated based on the work amount calculated by the work amount calculation unit A gain calculating unit. The power supply unit performs feedback control using the gain calculated by the gain calculation unit to adjust the power supplied to the motor so that the rotation angle detected by the rotation angle detection unit becomes a target value.
 仕事量算出部は、第1静止部と第2静止部との間での切替動作において、モータがした仕事量を算出する。また、ゲイン算出部は、この仕事量に基づいてゲインを算出するとともに、電力供給部は、当該ゲインを用いて、カムの回転角が目標値と一致するようにフィードバック制御を行う。したがって、内燃機関の特性のばらつきにより、切替動作においてモータがする仕事量にばらつきが生じる場合にも、それに応じたゲインを用いることにより、制御軸を目標となる位置まで迅速かつ正確に変位させて、内燃機関の運転状態の切り替えを行うことが可能となる。 The work amount calculating unit calculates the amount of work performed by the motor in the switching operation between the first stationary unit and the second stationary unit. The gain calculation unit calculates a gain based on the work amount, and the power supply unit performs feedback control using the gain so that the rotation angle of the cam matches the target value. Therefore, even when the work amount of the motor in the switching operation varies due to variations in the characteristics of the internal combustion engine, the control shaft can be quickly and accurately displaced to the target position by using a gain corresponding thereto. It becomes possible to switch the operating state of the internal combustion engine.
 これによれば、制御部材を目標となる位置まで迅速かつ正確に変位させて、内燃機関の運転状態の切り替えを行う制御装置を提供することができる。 According to this, it is possible to provide a control device that switches the operating state of the internal combustion engine by quickly and accurately displacing the control member to a target position.
 本開示についての上記およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
実施形態に係る制御装置を適用したバルブ制御システムの概略構成図である。 カム及び制御軸の概略構成を示す図である。 制御装置を説明するための制御ブロック図である。 軸力とエンジン回転数との関係を示す図である。 制御装置による制御を示すフローチャートである。 カムの回転角とモータに供給された電流との関係を示す図である。 ゲイン比率とモータの仕事量との関係を示す図である。 ゲイン比率とエンジン回転数との関係を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is a schematic configuration diagram of a valve control system to which a control device according to an embodiment is applied. It is a figure which shows schematic structure of a cam and a control shaft. It is a control block diagram for demonstrating a control apparatus. It is a figure which shows the relationship between an axial force and an engine speed. It is a flowchart which shows the control by a control apparatus. It is a figure which shows the relationship between the rotation angle of a cam, and the electric current supplied to the motor. It is a figure which shows the relationship between a gain ratio and the work of a motor. It is a figure which shows the relationship between a gain ratio and an engine speed.
 図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Embodiments will be described with reference to the drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 まず、図1乃至図3を参照しながら、実施形態に係る制御装置21と、制御装置21が適用されるバルブ制御システム11と、の概要について説明する。バルブ制御システム11は、車両に搭載される内燃機関100の吸気バルブ及び排気バルブを制御するシステムである。バルブ制御システム11は、制御軸12(制御部材)と、アクチュエータ部13と、バルブ開閉特性変更機構14と、を有している。 First, an overview of the control device 21 according to the embodiment and the valve control system 11 to which the control device 21 is applied will be described with reference to FIGS. 1 to 3. The valve control system 11 is a system that controls an intake valve and an exhaust valve of the internal combustion engine 100 mounted on the vehicle. The valve control system 11 includes a control shaft 12 (control member), an actuator unit 13, and a valve opening / closing characteristic changing mechanism 14.
 図1に示されるように、制御軸12は、その軸方向にスライドすることで変位する棒状の部材である。制御軸12の一端12aはアクチュエータ部13側に設けられ、他端12bはバルブ開閉特性変更機構14側に設けられている。 As shown in FIG. 1, the control shaft 12 is a rod-like member that is displaced by sliding in the axial direction. One end 12a of the control shaft 12 is provided on the actuator unit 13 side, and the other end 12b is provided on the valve opening / closing characteristic changing mechanism 14 side.
 アクチュエータ部13は、制御軸12に軸方向の力を付加して、制御軸12を変位させる機構である。アクチュエータ部13は、モータ15と、減速機16と、カム17と、回転角センサ19と、を有している。 The actuator unit 13 is a mechanism that applies an axial force to the control shaft 12 to displace the control shaft 12. The actuator unit 13 includes a motor 15, a speed reducer 16, a cam 17, and a rotation angle sensor 19.
 モータ15は、電力の供給を受けることで回転駆動し、トルクを発生させる原動機である。モータ15の出力軸は減速機16に接続されている。モータ15が発生させたトルクは、減速機16を介してカム17に伝達される。 The motor 15 is a prime mover that is driven to rotate by receiving power and generates torque. The output shaft of the motor 15 is connected to the speed reducer 16. Torque generated by the motor 15 is transmitted to the cam 17 via the speed reducer 16.
 図2に示されるように、カム17は、モータ15の回転に伴って減速機16からトルクが伝達されることで、回転中心RC周りに回転するように構成されている。また、カム17の外周面17aは曲面として形成されている。また、カム17は、その回転中心RCから外周面17aまでの距離が、外周面17aの部位によって互いに異なるように形成されている。 As shown in FIG. 2, the cam 17 is configured to rotate around the rotation center RC when torque is transmitted from the speed reducer 16 as the motor 15 rotates. The outer peripheral surface 17a of the cam 17 is formed as a curved surface. The cams 17 are formed such that the distance from the rotation center RC to the outer peripheral surface 17a is different depending on the portion of the outer peripheral surface 17a.
 カム17の外周面17aには、第1静止部LP、第2静止部MP及び第3静止部HPが、互いに間隔を空けて形成されている。このうち、第1静止部LPは、回転中心RCからの距離が最も小さい部位である。また、第3静止部HPは、回転中心RCからの距離が最も大きい部位である。すなわち、回転中心RCからの距離は、第1静止部LPから第2静止部MPを経て第3静止部HPまで、3段階で大きくなるように構成されている。尚、図2では、説明の便宜上、第1静止部LP、第2静止部MP及び第3静止部HPを太線で示している。このようなカム17の外周面17aには、制御軸12の一端12aが当接している。 1st stationary part LP, 2nd stationary part MP, and 3rd stationary part HP are formed in the outer peripheral surface 17a of the cam 17 at intervals. Among these, the 1st stationary part LP is a site | part with the shortest distance from the rotation center RC. The third stationary part HP is a part having the longest distance from the rotation center RC. That is, the distance from the rotation center RC is configured to increase in three stages from the first stationary part LP to the third stationary part HP through the second stationary part MP. In FIG. 2, for convenience of explanation, the first stationary part LP, the second stationary part MP, and the third stationary part HP are indicated by bold lines. One end 12 a of the control shaft 12 is in contact with the outer peripheral surface 17 a of the cam 17.
 回転角センサ19は、カム17の近傍に配置され、カム17の基準位置からの回転角に応じて信号を出力するセンサである。回転角センサ19が出力する信号は、信号線を介して制御装置21(図1参照)に入力される。 The rotation angle sensor 19 is a sensor that is arranged in the vicinity of the cam 17 and outputs a signal according to the rotation angle from the reference position of the cam 17. A signal output from the rotation angle sensor 19 is input to the control device 21 (see FIG. 1) via a signal line.
 バルブ開閉特性変更機構14は、内燃機関100に取り付けられる。バルブ開閉特性変更機構14は、吸気バルブ及び排気バルブの開閉特性を変更することで、内燃機関100の吸気及び排気の特性を切り替える機構である。具体的には、バルブ開閉特性変更機構14は、内燃機関100の吸気バルブ及び排気バルブの最大リフト量と作用角を変化させる。バルブ開閉特性変更機構14には、制御軸12の他端12bが接続される。 The valve opening / closing characteristic changing mechanism 14 is attached to the internal combustion engine 100. The valve opening / closing characteristic changing mechanism 14 is a mechanism for switching the intake and exhaust characteristics of the internal combustion engine 100 by changing the opening / closing characteristics of the intake valve and the exhaust valve. Specifically, the valve opening / closing characteristic changing mechanism 14 changes the maximum lift amount and operating angle of the intake valve and the exhaust valve of the internal combustion engine 100. The other end 12 b of the control shaft 12 is connected to the valve opening / closing characteristic changing mechanism 14.
 制御装置21は、以上のようなバルブ制御システム11を制御する。制御装置21は、モータ15及び回転角センサ19と電気的に接続されており、信号を受信して処理を行ったり、電力の供給を行ったりする。 The control device 21 controls the valve control system 11 as described above. The control device 21 is electrically connected to the motor 15 and the rotation angle sensor 19, and receives a signal to perform processing or supply power.
 制御装置21は、その一部又は全部が、アナログ回路で構成されるか、メモリを備えたデジタルプロセッサとして構成される。いずれにしても、受信した信号に基づいて制御信号を出力する機能を果たすため、制御装置21には機能的な制御ブロックが構成される。図3は、制御装置21を、このような機能的な制御ブロック図として示したものである。尚、制御装置21を構成するアナログ回路又はデジタルプロセッサに組み込まれるソフトウェアのモジュールは、必ずしも図3に示す制御ブロックのように分割されている必要はない。すなわち、複数の制御ブロックの働きをするものとして構成されていても構わず、更に細分化されていても構わない。制御装置21として後述する処理フローを実行できるように構成されていれば、制御装置21内部の実際の構成は当業者が適宜変更できる。 A part or all of the control device 21 is configured by an analog circuit or a digital processor including a memory. In any case, a functional control block is configured in the control device 21 in order to fulfill the function of outputting a control signal based on the received signal. FIG. 3 shows the control device 21 as such a functional control block diagram. It should be noted that the software module incorporated in the analog circuit or digital processor constituting the control device 21 does not necessarily have to be divided like the control block shown in FIG. That is, it may be configured to function as a plurality of control blocks, or may be further subdivided. As long as the control device 21 is configured to execute a processing flow described later, the actual configuration inside the control device 21 can be appropriately changed by those skilled in the art.
 図3に示されるように、制御装置21は、機能的な制御ブロックとして、回転角検出部211と、電力供給部212と、電力量算出部213(仕事量算出部)と、ゲイン算出部214と、記憶部215と、を備えている。 As illustrated in FIG. 3, the control device 21 includes a rotation angle detection unit 211, a power supply unit 212, a power amount calculation unit 213 (work amount calculation unit), and a gain calculation unit 214 as functional control blocks. And a storage unit 215.
 回転角検出部211は、回転角センサ19から受信した信号を処理する。回転角検出部211は、当該処理によってカム17の回転角を検出する。 The rotation angle detection unit 211 processes the signal received from the rotation angle sensor 19. The rotation angle detector 211 detects the rotation angle of the cam 17 by this processing.
 電力供給部212は、アクチュエータ部13のモータ15に駆動用の電力を供給する。詳細には、電力供給部212は、図示しないバッテリに蓄えられている電力を、カム17の回転角が目標値と一致するように、供給量を調整しながらモータ15に供給する。 The power supply unit 212 supplies driving power to the motor 15 of the actuator unit 13. Specifically, the power supply unit 212 supplies the electric power stored in a battery (not shown) to the motor 15 while adjusting the supply amount so that the rotation angle of the cam 17 matches the target value.
 電力量算出部213は、電力供給部212がモータ15に供給した電力量を算出する。この電力量の算出方法については後述する。 The power amount calculation unit 213 calculates the amount of power supplied from the power supply unit 212 to the motor 15. A method for calculating this electric energy will be described later.
 ゲイン算出部214は、フィードバック制御に用いられるゲインを算出する。ここで算出されたゲインは、カム17の回転角を目標値に一致させるためのPID制御において用いられる。 The gain calculation unit 214 calculates a gain used for feedback control. The gain calculated here is used in PID control for making the rotation angle of the cam 17 coincide with the target value.
 記憶部215は、制御装置21における制御処理に使用される種々のデータを書き込むとともに、当該データの読み出しを可能とする。具体的には、記憶部215には、ゲイン算出部214において算出されたゲインが書き込まれるとともに、当該ゲインは電力供給部212によって読み出すことができる。 The storage unit 215 writes various data used for control processing in the control device 21 and enables reading of the data. Specifically, the gain calculated by the gain calculation unit 214 is written in the storage unit 215, and the gain can be read by the power supply unit 212.
 尚、以下では簡便のため、制御装置21の回転角検出部211等の各ブロックによって行われている処理も、総括して制御装置21が行うものとして説明する。 In the following, for the sake of simplicity, the processing performed by each block such as the rotation angle detection unit 211 of the control device 21 will be described as being performed by the control device 21 as a whole.
 制御装置21は、回転角センサ19から受信した信号により、カム17の回転角と目標値とに乖離があると判断した場合に、当該回転角を目標値に一致させるべく、モータ15に電力の供給を開始する。モータ15は、供給された電力量に応じて回転駆動し、それに伴ってカム17も回転する。 When the control device 21 determines from the signal received from the rotation angle sensor 19 that there is a difference between the rotation angle of the cam 17 and the target value, the control device 21 supplies electric power to the motor 15 so that the rotation angle matches the target value. Start supplying. The motor 15 is rotationally driven according to the supplied electric energy, and the cam 17 is also rotated accordingly.
 カム17の外周面17aのうち、制御軸12の一端12aが当接する部位は、カム17の回転に伴って変化する。さらに、外周面17aと一端12aとの当接部位が変化することにより、カム17の回転中心RCから一端12aまでの距離が変化する。これにより、制御軸12が軸方向に往復するように変位する。 Of the outer peripheral surface 17 a of the cam 17, the part with which the one end 12 a of the control shaft 12 abuts changes as the cam 17 rotates. Furthermore, the distance from the rotation center RC of the cam 17 to the one end 12a changes as the contact portion between the outer peripheral surface 17a and the one end 12a changes. Thereby, the control shaft 12 is displaced so as to reciprocate in the axial direction.
 ここで、カム17の回転角と制御軸12の変位は一義的な関係にある。このため、回転角センサ19によるカム17の回転角の検出値を、目標値に一致させるフィードバック制御を行うことで、制御軸12の位置も目標位置に収束させることができる。 Here, the rotation angle of the cam 17 and the displacement of the control shaft 12 are uniquely related. For this reason, the position of the control shaft 12 can be converged to the target position by performing feedback control in which the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 matches the target value.
 また、前述した外周面17aの第1静止部LP、第2静止部MP及び第3静止部HPは、カム17の回転時に制御軸12を変位させないように形成されている。つまり、第1静止部LP、第2静止部MP及び第3静止部HPは、いずれも半径が一定の円弧状に形成されており、制御軸12の一端12aがそれらを通過する際は、回転中心RCから一端12aまでの距離が変化しないように構成されている。このため、一端12aが第1静止部LP、第2静止部MP又は第3静止部HPと当接している場合のみ、カム17が回転しても制御軸12は変位することなく、静止した状態となる。 Further, the first stationary part LP, the second stationary part MP, and the third stationary part HP of the outer peripheral surface 17a described above are formed so as not to displace the control shaft 12 when the cam 17 rotates. That is, the first stationary part LP, the second stationary part MP, and the third stationary part HP are all formed in an arc shape having a constant radius, and when the one end 12a of the control shaft 12 passes through them, it rotates. The distance from the center RC to the one end 12a is not changed. Therefore, only when the one end 12a is in contact with the first stationary part LP, the second stationary part MP, or the third stationary part HP, the control shaft 12 remains stationary without being displaced even when the cam 17 rotates. It becomes.
 内燃機関100は、制御軸12の位置に応じて異なる作用を受ける。制御軸12の一端12aがカム17の外周面17aの第1静止部LPと当接している場合、内燃機関100の吸気バルブ及び排気バルブの最大リフト量は最少となる。一方、制御軸12の一端12aがカム17の外周面17aの第3静止部HPと当接している場合は、内燃機関100の吸気バルブ及び排気バルブの最大リフト量は最大となる。また、制御軸12の一端12aがカム17の外周面17aの第2静止部MPと当接している場合は、内燃機関100の吸気バルブ及び排気バルブの最大リフト量は、第1静止部LPと当接している場合よりも大きく、第3静止部HPと当接している場合よりも小さなものとなる。すなわち、制御装置21は、制御軸12が当接する位置を第1静止部LP、第2静止部MP及び第3静止部HPのいずれかに切り替えることにより、吸気バルブ及び排気バルブのリフト量を3段階に切り替えることができる。 The internal combustion engine 100 receives different actions depending on the position of the control shaft 12. When one end 12a of the control shaft 12 is in contact with the first stationary portion LP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is minimized. On the other hand, when the one end 12a of the control shaft 12 is in contact with the third stationary portion HP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is maximized. When the one end 12a of the control shaft 12 is in contact with the second stationary part MP of the outer peripheral surface 17a of the cam 17, the maximum lift amount of the intake valve and the exhaust valve of the internal combustion engine 100 is the same as that of the first stationary part LP. It is larger than the case where it is in contact, and smaller than the case where it is in contact with the third stationary part HP. That is, the control device 21 switches the lift amount of the intake valve and the exhaust valve to 3 by switching the position where the control shaft 12 contacts to one of the first stationary part LP, the second stationary part MP, and the third stationary part HP. You can switch to the stage.
 次に、図4を参照しながら、以上のように構成されたバルブ制御システム11において、制御軸12に付加される力について説明する。 Next, the force applied to the control shaft 12 in the valve control system 11 configured as described above will be described with reference to FIG.
 内燃機関100の運転時、制御軸12には、内燃機関100の振動や、吸気バルブ及び排気バルブの移動に起因した力が付与される。具体的には、制御軸12には、内燃機関100からバルブ開閉特性変更機構14を介して、軸方向の力が付加される。以下、この力を軸力という。軸力は、モータ15が回転して制御軸12を変位させる際の抵抗力となる。 During operation of the internal combustion engine 100, the control shaft 12 is given a force resulting from vibration of the internal combustion engine 100 and movement of the intake valve and the exhaust valve. Specifically, axial force is applied to the control shaft 12 from the internal combustion engine 100 via the valve opening / closing characteristic changing mechanism 14. Hereinafter, this force is referred to as axial force. The axial force becomes a resistance force when the motor 15 rotates to displace the control shaft 12.
 この軸力は、内燃機関100の回転数と相関がある。図4に示されるように、内燃機関100の基準となる特性を示す実線ABでは、低回転域と高回転域とにおいて、軸力が大きくなるような傾向を示す。このため、制御軸12を変位させる際に、モータ15がカム17を介して制御軸12に付加する必要がある力は、内燃機関100の回転数に伴って変化し、低回転域と高回転域とで特に大きくなる。 This axial force has a correlation with the rotational speed of the internal combustion engine 100. As shown in FIG. 4, the solid line AB indicating the reference characteristic of the internal combustion engine 100 shows a tendency that the axial force becomes large in the low rotation range and the high rotation range. For this reason, when the control shaft 12 is displaced, the force that the motor 15 needs to apply to the control shaft 12 via the cam 17 varies with the rotational speed of the internal combustion engine 100, and the low rotation range and the high rotation speed are changed. Especially in areas.
 ところで、バルブ制御システム11が適用される内燃機関100が同一型式のものであっても、その製造工程や使用条件等のばらつきなどから、その特性に個体差が生じる。このため、バルブ制御システム11の制御軸12が内燃機関100から受ける軸力も、内燃機関100の個体ごとに異なる。 Incidentally, even if the internal combustion engine 100 to which the valve control system 11 is applied is of the same type, individual differences occur in its characteristics due to variations in its manufacturing process and use conditions. For this reason, the axial force that the control shaft 12 of the valve control system 11 receives from the internal combustion engine 100 also differs for each individual internal combustion engine 100.
 したがって、図4に示されるように、ある個体では、破線AHのように軸力が基準よりも高くなる傾向を示したり、別の個体では、破線ALのように軸力が基準よりも低くなる傾向を示したりするという、個体ごとの特性のばらつきが生じる。このように、内燃機関100の特性に個体ごとのばらつきがあると、フィードバック制御により制御軸12を目標となる位置まで迅速かつ正確に変位させて、内燃機関100の運転状態の切り替えを行うことが難しくなる。 Therefore, as shown in FIG. 4, in one individual, the axial force tends to be higher than the reference as indicated by a broken line AH, and in another individual, the axial force is lower than the reference as indicated by a broken line AL. Variations in individual characteristics, such as showing trends, occur. As described above, when the characteristics of the internal combustion engine 100 vary from one individual to another, the operation state of the internal combustion engine 100 can be switched by quickly and accurately displacing the control shaft 12 to a target position by feedback control. It becomes difficult.
 そこで、本実施形態に係る制御装置21では、このフィードバック制御に用いられるゲインを調整することで、この課題の解決を図っている。以下、図5乃至図8を参照しながら、制御装置21の制御処理について説明する。 Therefore, the control device 21 according to the present embodiment attempts to solve this problem by adjusting the gain used for this feedback control. Hereinafter, the control processing of the control device 21 will be described with reference to FIGS.
 まず、図5に示されるように、制御装置21は、S1で、制御軸12の一端12aを、第1静止部LPから第2静止部MPまで移動させる間、第2静止部MPから第3静止部HPまで移動させる間、第3静止部HPから第1静止部LPまで移動させる間、のそれぞれにおいて、モータ15がした仕事量を算出する。 First, as shown in FIG. 5, the control device 21 moves from the second stationary part MP to the third stationary part MP while moving the one end 12a of the control shaft 12 from the first stationary part LP to the second stationary part MP in S1. During the movement to the stationary part HP and during the movement from the third stationary part HP to the first stationary part LP, the amount of work performed by the motor 15 is calculated.
 ここで、モータ15がした仕事量は、モータ15に供給された電流及び電圧から算出することができる。図6の上段に示されるように、回転角センサ19によるカム17の回転角の検出値を、目標値に一致させるようにモータ15を駆動させる間に、モータ15に供給される電流の値は図6の下段に示されるような変化を示す。このうち、回転角センサ19による検出値が変化を開始してから、目標値と一致するまで期間である算出期間において、図6の下段に示す面積Sと、モータ15に供給された電圧との積である電力量が、モータ15がした仕事量となる。 Here, the work done by the motor 15 can be calculated from the current and voltage supplied to the motor 15. As shown in the upper part of FIG. 6, the value of the current supplied to the motor 15 during the driving of the motor 15 so that the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 matches the target value is The change shown in the lower part of FIG. 6 is shown. Among these, the area S shown in the lower part of FIG. 6 and the voltage supplied to the motor 15 are calculated in a calculation period, which is a period from when the detected value by the rotation angle sensor 19 starts to change to the target value. The amount of power that is the product is the amount of work performed by the motor 15.
 次に、制御装置21は、S2で、算出したモータ15の仕事量に基づいてゲイン比率を算出する。制御装置21は、その記憶部215(図3参照)に、図7に示されるゲイン比率-モータ仕事量マップを記憶している。制御装置21は、このゲイン比率-モータ仕事量マップに基づいて、ゲイン比率の算出を行う。 Next, the control device 21 calculates a gain ratio based on the calculated work amount of the motor 15 in S2. The control device 21 stores the gain ratio-motor work amount map shown in FIG. 7 in the storage unit 215 (see FIG. 3). The control device 21 calculates the gain ratio based on the gain ratio-motor work amount map.
 このゲイン比率-モータ仕事量マップは、内燃機関100の基準となる特性に対応したモータ15の仕事量を「基準値」としている。また、ゲイン比率-モータ仕事量マップでは、当該「基準値」に対応するゲイン比率を「1」としている。内燃機関100の特性のばらつきにより、モータ15の仕事量が基準値から乖離するのに伴い、ゲイン比率は比例的に変化するように設定されている。 In this gain ratio-motor work amount map, the work amount of the motor 15 corresponding to the reference characteristic of the internal combustion engine 100 is set as a “reference value”. In the gain ratio-motor work amount map, the gain ratio corresponding to the “reference value” is “1”. The gain ratio is set to change proportionally as the work amount of the motor 15 deviates from the reference value due to variations in the characteristics of the internal combustion engine 100.
 制御装置21は、算出したモータ15の仕事量を、このゲイン比率-モータ仕事量マップと対照させることで、ゲイン比率を算出する。すなわち、制御装置21は、内燃機関100の特性に応じた適切なゲインと、モータ15の仕事量が「基準値」の場合のゲインと、の比率を算出する。制御装置21は、内燃機関100の異なる回転数にそれぞれ対応するゲイン比率を算出する。 The control device 21 calculates the gain ratio by comparing the calculated work amount of the motor 15 with this gain ratio-motor work amount map. That is, the control device 21 calculates a ratio between an appropriate gain corresponding to the characteristics of the internal combustion engine 100 and a gain when the work amount of the motor 15 is the “reference value”. The control device 21 calculates gain ratios corresponding to the different rotational speeds of the internal combustion engine 100.
 次に、制御装置21は、S3で、算出したゲイン比率を記憶する。詳細には、制御装置21は、算出したゲイン比率と、当該ゲイン比率が算出された際の内燃機関100の回転数とを対応させて、その記憶部215(図3参照)に書き込みを行う。 Next, the control device 21 stores the calculated gain ratio in S3. Specifically, the control device 21 writes the calculated gain ratio in the storage unit 215 (see FIG. 3) in association with the calculated gain ratio and the rotational speed of the internal combustion engine 100 when the gain ratio is calculated.
 以上のようにして、内燃機関100の回転数に対応するゲイン比率を記憶部215に書き込むことで、記憶部215には、図8に示されるようなゲイン比率-内燃機関回転数マップが作成される。内燃機関100の回転数を細かく区分し、各回転数におけるゲイン比率を算出することで、図8に示されるような連続的なゲイン比率の値を得ることができる。 As described above, the gain ratio corresponding to the rotational speed of the internal combustion engine 100 is written into the storage unit 215, whereby a gain ratio-internal combustion engine rotational speed map as shown in FIG. The By dividing the rotational speed of the internal combustion engine 100 finely and calculating the gain ratio at each rotational speed, a continuous gain ratio value as shown in FIG. 8 can be obtained.
 制御装置21は、回転角センサ19によるカム17の回転角の検出値を、目標値に一致させるフィードバック制御を行う際に、このゲイン比率-内燃機関回転数マップから得たゲイン比率を用いる。つまり、制御装置21は、まず、内燃機関100の回転数を、このゲイン比率-内燃機関回転数マップと対照させることでゲイン比率を算出する。次に、制御装置21は、内燃機関100の基準となる特性に対応したゲインに、算出したゲイン比率を乗じたものを新たなゲインとして、フィードバック制御に用いる。 The control device 21 uses the gain ratio-gain ratio obtained from the internal combustion engine speed map when performing feedback control for matching the detected value of the rotation angle of the cam 17 by the rotation angle sensor 19 with the target value. That is, the control device 21 first calculates the gain ratio by comparing the rotational speed of the internal combustion engine 100 with this gain ratio-internal combustion engine speed map. Next, the control device 21 uses, for feedback control, a new gain obtained by multiplying the gain corresponding to the reference characteristic of the internal combustion engine 100 by the calculated gain ratio.
 以上のように、本実施形態に係る制御装置21では、第1静止部LPと第2静止部MPとの間、第2静止部MPと第3静止部HPとの間、及び、第3静止部HPと第1静止部LPとの間での切替動作において、モータ15がした仕事量を算出する。この電力量に基づいてゲインを算出するとともに、当該ゲインを用いて、カム17の回転角が目標値と一致するようにフィードバック制御を行うことで、内燃機関100の個々の特性に応じて、制御軸12を目標となる位置まで迅速かつ正確に変位させて、内燃機関100の運転状態の切り替えを行うことが可能となる。 As described above, in the control device 21 according to the present embodiment, the first stationary part LP and the second stationary part MP, the second stationary part MP and the third stationary part HP, and the third stationary part. In the switching operation between the part HP and the first stationary part LP, the amount of work done by the motor 15 is calculated. A gain is calculated based on this electric energy, and feedback control is performed using the gain so that the rotation angle of the cam 17 coincides with the target value, so that control is performed according to the individual characteristics of the internal combustion engine 100. The operating state of the internal combustion engine 100 can be switched by quickly and accurately displacing the shaft 12 to a target position.
 また、制御装置21は、切替動作においてモータ15がした仕事量を、モータ15に供給した電力量から算出する。これは、当該切替動作においてモータ15に供給した電力量は、モータ15がした仕事量と比例的な相関があるため、可能となるものである。したがって、制御装置21は、モータ15がした仕事量を簡易かつ正確に算出することが可能となる。 Further, the control device 21 calculates the amount of work performed by the motor 15 in the switching operation from the amount of electric power supplied to the motor 15. This is possible because the amount of power supplied to the motor 15 in the switching operation has a proportional correlation with the amount of work performed by the motor 15. Therefore, the control device 21 can easily and accurately calculate the amount of work performed by the motor 15.
 また、制御装置21は、内燃機関100の異なる回転数のそれぞれ対応するゲインを算出する。これにより、制御軸12が内燃機関100から付加される軸力が内燃機関100の回転数によって変化しても、それに応じて変化するゲインを用いてフィードバック制御を行うことができる。したがって、内燃機関100の回転数に応じて、制御軸12を目標となる位置まで迅速かつ正確に変位させて、内燃機関100の運転状態の切り替えを行うことが可能となる。 Further, the control device 21 calculates gains corresponding to different rotational speeds of the internal combustion engine 100. As a result, even if the axial force applied to the control shaft 12 from the internal combustion engine 100 changes depending on the rotational speed of the internal combustion engine 100, feedback control can be performed using a gain that changes accordingly. Therefore, the operating state of the internal combustion engine 100 can be switched by quickly and accurately displacing the control shaft 12 to the target position according to the rotational speed of the internal combustion engine 100.
 以上、具体例を参照しつつ実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。

 
The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. In other words, those specific modifications made by those skilled in the art as appropriate are included in the scope of the present disclosure. Each element included in each of the specific examples described above and their arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.

Claims (3)

  1.  モータ(15)を制御し、該モータの駆動によってカム(17)を回転させ、該カムの外周面(17a)に当接する制御部材(12)を変位させることで内燃機関(100)の運転状態を切り替える制御装置(21)であって、
     前記カムの回転角を検出する回転角検出部(211)と、
     前記制御部材が当接する前記カムの外周面の部位を、前記カムが回転しても前記制御部材を変位させない第1静止部及び第2静止部の間で切り替える切替動作を行うために前記モータに電力を供給する電力供給部(212)と、
     前記切替動作を行うために前記モータがした仕事量を算出する仕事量算出部(213)と、
     前記仕事量算出部が算出した仕事量に基づいてゲインを算出するゲイン算出部(214)と、を備え、
     前記電力供給部は、前記ゲイン算出部で算出したゲインを用いて、前記回転角検出部で検出した回転角が目標値となるように前記モータに供給する電力を調整するフィードバック制御を行う制御装置。
    The operating state of the internal combustion engine (100) is controlled by controlling the motor (15), rotating the cam (17) by driving the motor, and displacing the control member (12) contacting the outer peripheral surface (17a) of the cam. A control device (21) for switching between
    A rotation angle detector (211) for detecting the rotation angle of the cam;
    In order to perform a switching operation for switching a portion of the outer peripheral surface of the cam with which the control member abuts between a first stationary portion and a second stationary portion that does not displace the control member even when the cam rotates. A power supply unit (212) for supplying power;
    A work amount calculation unit (213) for calculating a work amount performed by the motor to perform the switching operation;
    A gain calculation unit (214) that calculates a gain based on the work amount calculated by the work amount calculation unit;
    The power supply unit uses the gain calculated by the gain calculation unit to perform feedback control for adjusting power supplied to the motor so that the rotation angle detected by the rotation angle detection unit becomes a target value .
  2.  前記仕事量算出部は、前記切替動作を行うために前記電力供給部が前記モータに供給した電力量を算出する請求項1に記載の制御装置。 The control device according to claim 1, wherein the work amount calculation unit calculates the amount of power supplied to the motor by the power supply unit in order to perform the switching operation.
  3.  前記ゲイン算出部は、前記内燃機関の異なる回転数のそれぞれ対応する前記ゲインを算出する請求項1又は2に記載の制御装置。

     
    The control device according to claim 1, wherein the gain calculation unit calculates the gain corresponding to each of different rotational speeds of the internal combustion engine.

PCT/JP2015/005827 2014-12-03 2015-11-24 Control device WO2016088330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005496.0T DE112015005496B4 (en) 2014-12-03 2015-11-24 control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014244891A JP6304003B2 (en) 2014-12-03 2014-12-03 Control device
JP2014-244891 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016088330A1 true WO2016088330A1 (en) 2016-06-09

Family

ID=56091295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005827 WO2016088330A1 (en) 2014-12-03 2015-11-24 Control device

Country Status (3)

Country Link
JP (1) JP6304003B2 (en)
DE (1) DE112015005496B4 (en)
WO (1) WO2016088330A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157634B2 (en) * 2018-11-14 2022-10-20 日立Astemo株式会社 Control device for variable valve timing mechanism and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144593A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Valve opening/closing characteristic control device for internal combustion engine
JP2011094581A (en) * 2009-11-02 2011-05-12 Denso Corp Control device for electric variable valve timing device
JP2014119087A (en) * 2012-12-19 2014-06-30 Denso Corp Control device of cam mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519104B2 (en) 2006-06-01 2010-08-04 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine
DE102010027213A1 (en) 2010-07-15 2012-01-19 Continental Automotive Gmbh Method and control device for controlling an internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144593A (en) * 2004-11-17 2006-06-08 Toyota Motor Corp Valve opening/closing characteristic control device for internal combustion engine
JP2011094581A (en) * 2009-11-02 2011-05-12 Denso Corp Control device for electric variable valve timing device
JP2014119087A (en) * 2012-12-19 2014-06-30 Denso Corp Control device of cam mechanism

Also Published As

Publication number Publication date
DE112015005496T5 (en) 2017-08-17
JP6304003B2 (en) 2018-04-04
DE112015005496B4 (en) 2022-06-15
JP2016108976A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US9656840B2 (en) Work vehicle and control method for work vehicle
KR101832300B1 (en) Vehicle control apparatus and vehicle control method
CN107429616B (en) The control device and control method of driving mechanism for vehicle
WO2016088330A1 (en) Control device
JP2006325313A (en) Driving method of brushless motor, and its drive controller
JP2019088074A5 (en)
JP4888160B2 (en) Variable valve operating device for internal combustion engine
JP6304009B2 (en) Control device
WO2016088331A1 (en) Control device
JP2007330079A (en) Speed control device with acceleration instruction, and method for controlling speed of motor
JP4424372B2 (en) Actuator control device
US10669931B2 (en) Method for determining the compression of an internal combustion engine
JP2566750B2 (en) Hydraulic pump drive engine control method
JP2009127449A (en) Variable valve gear, actuator control device and turning angle sensor
JP4659803B2 (en) Engine electronic governor
JPWO2022176254A5 (en)
JP5900417B2 (en) Electronic control unit
JP2009243455A (en) Valve drive system for internal combustion engine
JP2007162617A (en) Electronic governor
JP2004297853A (en) Motor position controller
JP2003295953A (en) Feedback control driving device of controlled body
JP4045225B2 (en) Motor position control device
JP2004182062A (en) Vehicular steering device
JP2007288947A (en) Driving device and movable valve device of combustion engine provided with the driving device
JP2007162616A (en) Electronic governor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005496

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865347

Country of ref document: EP

Kind code of ref document: A1