Nothing Special   »   [go: up one dir, main page]

WO2016087562A1 - Induktive positionsbestimmung - Google Patents

Induktive positionsbestimmung Download PDF

Info

Publication number
WO2016087562A1
WO2016087562A1 PCT/EP2015/078461 EP2015078461W WO2016087562A1 WO 2016087562 A1 WO2016087562 A1 WO 2016087562A1 EP 2015078461 W EP2015078461 W EP 2015078461W WO 2016087562 A1 WO2016087562 A1 WO 2016087562A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
signal generator
wave signal
square wave
Prior art date
Application number
PCT/EP2015/078461
Other languages
English (en)
French (fr)
Inventor
Thomas Erdmann
Ajoy Palit
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to JP2017529722A priority Critical patent/JP2017538937A/ja
Priority to EP15804761.3A priority patent/EP3227640A1/de
Priority to CN201580065680.8A priority patent/CN107003150A/zh
Priority to US15/532,159 priority patent/US20170310118A1/en
Publication of WO2016087562A1 publication Critical patent/WO2016087562A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/73Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for taking measurements, e.g. using sensing coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/146Inductive couplings in combination with capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication

Definitions

  • the invention relates to an inductive position determination.
  • the invention relates to the determination of a position of a device on board a motor vehicle.
  • a position sensor for detecting such a position may be constructed inductively, wherein a coil is attached to one of the elements and a conductive element is attached to the other.
  • the coil can be acted upon by a sinusoidal voltage of a predetermined frequency, wherein the coil sets a complex voltage, which is dependent on the inductance of the coil.
  • the inductance of the coil is thereby adversely affected, so that the voltage drops across the coil.
  • the position of the elements can be determined to each other on the basis of the coil voltage setting.
  • An apparatus for inductive position determination comprises a signal generator, a coil connected to the signal generator, an element for influencing the inductance of the coil as a function of a distance to the coil and an evaluation device for determining the position of the element relative to the coil on the basis of a voltage on the coil ,
  • the signal generator provides a square wave signal.
  • the signal generator provides the square wave signal to excite the coil.
  • the square wave signal of the signal generator can thus act on the coil directly and / or by means of exclusively passive electrical components, and the production costs of such a device can thus be reduced.
  • the scored coil voltage also does not necessarily have to be amplified.
  • the square-wave signal can be realized for example by means of a digital logic circuit or by means of a programmable microcomputer.
  • the voltage of the square wave signal can correspond to usual logic levels, for example, 0 volts and +5 volts, so that the square wave signal can be strong enough to cause a voltage on the coil, which can be clearly identified and detected by the evaluation.
  • An amplifier for the square wave signal can be dispensed with as well as an amplifier for the voltage of the coil.
  • this settling time is as short as possible.
  • the settling time is dependent, among other things, on the signal processing effort which is carried out between signal generation and signal arrival at the coil and on an ambient temperature.
  • the elimination of a low-pass filter and a signal amplifier can be described as a reduction of the signal processing effort. Therefore, the inventive idea, the settling time is massively reduced, massive in this context, for example, a factor of ten may mean.
  • the settling time is also shortened over the entire operating temperature range of the device by a reduction of the active components.
  • the operating temperature range for electronics which is used in automotive engineering, for example, between -40 degrees Celsius and +1 10 degrees Celsius.
  • the square wave signal may include a number of harmonics to a fundamental frequency, wherein the harmonics may each affect the voltage on the coil in the same way, so that the voltage signal on the coil with improved accuracy can point to the position of the element.
  • the voltage may have a shortened rise or fall time, so that the position of the element can be determined more quickly.
  • a conventional measurement related to a sinusoidal voltage may require a measurement time of about 300 microseconds, while the proposed device may manage with a measurement time in the range of about 10 microseconds.
  • a current limiting resistor is connected downstream of the signal generator in series with the coil.
  • the current flowing through the coil can thus be limited to a predetermined maximum current value, and the life of the device can be increased.
  • the coil is designed as a single-layer planar coil. By eliminating energy losses in the sensed voltage across the coil, it is no longer necessary to make the planar coil multilayer in such a device. Thus, the production costs can be further reduced, because the cost of producing multi-layer coils is considerably greater than the effort in the production of single-layer coils. For example, in the manufacture of multi-layer coils it is necessary to check each coil individually. In particular, it must be ensured that there is an electrical connection between the layers of the multilayer coil. In contrast, the integrity or functionality of a single-layer coil can be checked visually or visually automatically, because the entire coil is visible on a surface.
  • the voltage at the coil preferably comprises an alternating voltage with the frequency of the square wave signal and at least one further alternating voltage (harmonic wave) with an odd multiple frequency of the square wave signal.
  • the further AC voltage usually has a lower amplitude than the first AC voltage.
  • the square wave signal of infinitely many Sinus. Cosine functions with frequencies that are multiples of the fundamental frequency, be composed. This synthesis is also known as Fourier series.
  • the individual signals that make up the square-wave voltage can contribute to an increased voltage, which can be sampled as a measurement signal on the coil. The position of the element can thus be determined with greater sensitivity or greater speed. If an evaluation of the voltage by means of a programmable microcomputer, it may have a lower performance because of the shortened measurement time.
  • an AC voltage applied to the coil is integrated by means of a low-pass filter into a DC voltage.
  • a low-pass filter is integrated by means of a low-pass filter into a DC voltage.
  • the coil is a planar coil.
  • the planar coil may be formed, for example, as a printed circuit on the surface of a circuit board or other suitable carrier material.
  • the planar coil is multi-layered, in particular double-layered.
  • the planar coil usually has only a few turns, for example in the range of about 9 to 30 turns. Accordingly, the basic inductance of the coil is relatively low. Due to the low inductance, the coil can influence voltage components of higher frequencies better, so that more harmonics of the fundamental can be evaluated.
  • the planar coil can be easily handled, in particular in the area of the motor vehicle, due to its small thickness.
  • a controllable switching device for connecting one end of the coil to a predetermined potential.
  • the coil can be easily connected to the predetermined potential to perform a measurement with respect to the coil. Since the switching device leads to the predetermined potential, it does not have to be made suitable for high frequency, so that instead of a costly high-frequency transistor, for example, a low-cost low-cost transistor can be used as a switching device.
  • the predetermined potential may in particular be a ground potential.
  • a control device is provided, which is adapted to always close only one of the switching devices to perform a position determination with respect to the associated coil.
  • the position of the element can thus be carried out successively with respect to a plurality of coils, so that an exact positioning is also possible over an enlarged range of movement of the element.
  • the evaluation device comprises an analog-to-digital converter and a microcomputer, wherein the microcomputer comprises a digital output, which is adapted to provide the square wave signal.
  • the microcomputer may be configured to control one or more controllable switching devices.
  • the element comprises an electrically conductive damping element.
  • the inductance of the coil is reduced when approaching the damping element, as formed by the alternating magnetic field in the damping element eddy currents that reduce the energy of the alternating magnetic field.
  • the element comprises a ferromagnetic and electrically insulating reinforcing element.
  • the reinforcing element when brought close to the coil, can increase the magnetic field strength in the region of the coil and thus increase the inductance of the coil.
  • the device forms part of a switching device for selecting a gear stage of a motor vehicle.
  • Fig. 1 is a schematic representation of a device for inductive position determination
  • Fig. 2 is a schematic representation of an extended device according to the
  • Pattern of Fig. 1 represents.
  • FIG. 1 shows a device 100 for the inductive determination of the position of an element 105.
  • the device can in particular be used on board a motor vehicle used to determine a position or position of a movable element. For example, the position of a selector lever for a gear ratio of a transmission can be scanned with respect to a console. In another embodiment, a steering angle between the motor vehicle and a trailer coupled by means of a trailer hitch can be determined.
  • the magnetic element 105 is generally an element that affects an alternating magnetic field to which it is exposed.
  • the element 105 may in particular be electrically conductive in order to weaken the alternating magnetic field in the region of the coil 15, or ferromagnetically and electrically insulating, in order to reinforce the magnetic alternating field in the region of the coil 15.
  • the element 105 may comprise, for example, copper or aluminum, in the second case, for example, iron, nickel or cobalt.
  • the device 100 comprises in addition to the element 105 a signal generator 1 10 for providing a square wave signal, a coil 15 and an evaluation device 120, and a resistor R for current limiting, which is connected downstream of the signal generator 1 10 in series with the coil 15. The current flowing through the coil 15 can thus be limited to a predetermined maximum current value, and the life of the device can be increased.
  • the signal generator 1 10 provides at its output a square wave voltage with respect to a fixed potential, in the illustration of Figure 1 with respect to ground.
  • the coil 15 is connected at a first end to the output of the signal generator 110 and at the other end to a further fixed potential, which may correspond to the other fixed potential.
  • the evaluation device 120 is connected to the coil 15 and is adapted to sample a voltage which results at the coil 15 as a function of the rectangular signal of the signal generator 110.
  • an integrator or low-pass filter 125 is preferably provided between the coil 15 and the evaluation device 120.
  • a diode 130 in the forward direction of the coil 1 15 lead to the low-pass filter 125.
  • the low-pass filter 125 integrates high-frequency signals on the coil 15 for a predetermined period of time and provides the evaluation device 120 with a corresponding voltage.
  • the position of element 105 with respect to coil 15 affects its inductance. Depending on the material of the element 105, the inductance of the coil 15 can be increased or decreased as the element 105 approaches the coil 15.
  • the coil 15 is preferably designed as a flat coil, wherein it has a limited extent to remain manageable. The inductance of the coil 1 15 is therefore relatively low.
  • the extent of the element 105 is usually in the range of the extent of the flat coil 1 15th
  • the square wave signal of the signal generator 1 10 can be regarded as a superposition of sine or cosine signals of different frequencies and amplitudes.
  • a first sine signal has as a fundamental frequency the frequency of the square wave signal.
  • Other sinusoidal signals have frequencies that correspond to integer multiples of the fundamental frequency. The higher the frequency, the lower is usually the amplitude of the frequency.
  • Odd multiples of the fundamental frequency are mutually reinforcing, so that the coil 1 15 - especially if its inductance is small - can react to several of the sinusoidal signals, so that the voltage dropping across it can be influenced several times by the position of the element 105. A voltage difference on the coil 15 with presence and absence of the element 105 can therefore be maximized.
  • the measurement signal can have an improved signal-to-noise ratio and an amplifier for the measurement signal can be saved.
  • the evaluation device 120 may in particular comprise a digital-to-analog converter. This may provide a numerical value, for example, to a programmable microcomputer. However, another signal processing of the measuring voltage is also possible.
  • FIG. 2 shows a schematic representation of an expanded device 100 according to the pattern of FIG. 1.
  • a plurality of coils 1 15 are provided, one end of which is connected to the signal generator 1 10 via the resistor R.
  • the respective other end can be connected by means of a switching device 205 with the predetermined, constant potential.
  • the switching devices 205 can in particular be formed by transistors. Since the switching devices 205 do not have to transmit high frequencies regardless of the frequency of the rectangular signal of the signal generator 110, cost-effective low-frequency transistors, for example, can be used for this purpose.
  • the switching devices 205 are controlled by a control device 210, which may in particular comprise a programmable microcomputer.
  • the control device 210 is configured to close only one of the switching devices 205 at any one time in order to carry out a measurement of the position of the element 105-or of several elements 105-with respect to the respective associated coil 15.
  • the control device 210 can also carry out a further processing of the voltage determined by the evaluation device 120.
  • the evaluation may include numerical or statistical operations.
  • control device 210 is also designed to provide the square-wave signal and thus also operates as a signal generator 1 10.
  • a serial or parallel interface of the controller 210 can be used, the rectangular signal with a relatively high amplitude, for example between 0 and 3, 3 volts or between 0 and 5 volts.
  • limiters or amplifiers can be used.
  • the controller 210 may comprise a commercially available 8-bit microcomputer in a common application with up to about 20 coils 15. A 32-bit microcomputer, as required for sinusoidal-based measurement methods, can be saved.
  • the element 105 may be designed in its dimensions with respect to the arrangement of coils 1 15 so that it can affect several coils 1 15 simultaneously. Since the inductance of each coil 15 is more or less influenced depending on the spacing of the element 105, the exact position of the element 105 can then be estimated from ratios of the voltages provided by the affected coils 15 to the low-pass filters 125.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Mechanical Control Devices (AREA)

Abstract

Eine Vorrichtung zur induktiven Positionsbestimmung umfasst einen Signalgenerator, eine mit dem Signalgenerator verbundene Spule, ein Element zur Beeinflussung der Induktivität der Spule in Abhängigkeit seines Abstands zur Spule und eine Auswerteeinrichtung zur Bestimmung der Position des Elements bezüglich der Spule auf der Basis einer Spannung an der Spule. Dabei stellt der Signalgenerator ein Rechtecksignal bereit.

Description

Induktive Positionsbestimmung
Die Erfindung betrifft eine induktive Positionsbestimmung. Insbesondere betrifft die Erfindung die Bestimmung einer Position einer Einrichtung an Bord eines Kraftfahrzeugs.
In einem Kraftfahrzeug sind an unterschiedlichen Einrichtungen Positionssensoren verbaut, die die Position eines ersten Elements bezüglich eines zweiten Elements abtasten, um beispielsweise die Stellung eines versenkbaren Fensters, eine Stellung eines Sitzes oder eine Schaltstellung eines Ganghebels abzutasten. Ein Positionssensor zur Erfassung einer solchen Position kann induktiv aufgebaut sein, wobei an einem der Elemente eine Spule und am anderen ein leitfähiges Element angebracht ist. Die Spule kann mit einer Sinusspannung einer vorbestimmten Frequenz beaufschlagt werden, wobei sich an der Spule eine komplexe Spannung einstellt, die von der Induktivität der Spule abhängig ist. Je näher sich das leitfähige Element an der Spule befindet, desto stärker sind Wirbelströme, die im leitfähigen Element induziert werden und die das Magnetfeld im Bereich der Spule schwächen. Die Induktivität der Spule wird dadurch negativ beeinflusst, sodass die Spannung an der Spule abfällt. So kann die Position der Elemente zueinander anhand der sich an der Spule einstellenden Spannung bestimmt werden.
Einen Sinusgenerator aufzubauen erfordert jedoch üblicherweise entweder eine empfindliche Analogschaltung oder eine aufwendige Digitalschaltung. Außerdem muss die Spannung an der Spule üblicherweise mittels eines analogen Messverstärkers entkoppelt werden, um ausgewertet werden zu können. Derartige Verstärker können eine ausgeprägte Temperaturdrift, eine lange Einschwingzeit und eine erhöhte Fehleranfälligkeit mit sich bringen.
Es ist daher Aufgabe der vorliegenden Erfindung, eine verbesserte Vorrichtung zur induktiven Positionsbestimmung anzugeben. Die Erfindung löst diese Aufgabe mittels einer Vorrichtung mit den Merkmalen des unabhängigen Anspruchs. Unteransprüche geben bevorzugte Ausführungsformen wieder. Eine Vorrichtung zur induktiven Positionsbestimmung umfasst einen Signalgenerator, eine mit dem Signalgenerator verbundene Spule, ein Element zur Beeinflussung der Induktivität der Spule in Abhängigkeit eines Abstands zur Spule und eine Auswerteeinrichtung zur Bestimmung der Position des Elements bezüglich der Spule auf der Basis einer Spannung an der Spule. Dabei stellt der Signalgenerator ein Rechtecksignal bereit. Der Signalgenerator stellt das Rechtecksignal zur Anregung der Spule bereit. Somit entfallen sämtliche aktive elektrische Bauelemente, die herkömmlich nötig waren, um eine Auswertung der Spannung an der Spule zu ermöglichen. Es ist beispielsweise nicht mehr nötig ein Signal des Signalgenerators zu filtern mit einem Tiefpassfilter, denn ein sinusförmiges Signal ist nicht mehr gewünscht. Weiterhin entfällt der Zwang das Signal des Signalgenerators zu verstärken, denn die herkömmlichen Energieverluste, die durch das Filtern bedingt waren, sind somit eliminiert. Das Rechtecksignal des Signalgenerators kann also die Spule unmittelbar und/oder vermittels ausschließlich passiver elektrischer Bauelemente beaufschlagen, und die Herstellungskosten einer solchen Vorrichtung können somit gesenkt werden. Weiterhin muss die abgestastete Spulenspannung ebenfalls nicht mehr zwangsläufig verstärkt werden. Das Rechtecksignal kann beispielsweise mittels einer digitalen Logikschaltung oder mittels eines programmierbaren Mikrocomputers realisiert sein. Die Spannung des Rechtecksignals kann dabei üblichen Logikpegeln entsprechen, beispielsweise 0 Volt und +5 Volt, sodass das Rechtecksignal ausreichend stark sein kann, um eine Spannung an der Spule hervorzurufen, die eindeutig von der Auswerteeinrichtung identifiziert und erfasst werden kann. Ein Verstärker für das Rechtecksignal kann ebenso entbehrlich sein wie ein Verstärker für die Spannung der Spule.
Dadurch, dass die Anzahl der elektrischen aktiven Bauelemente auf dieser Weise reduziert wird, reduziert sich die Anlaufzeit bzw. Einschwingzeit bis ein stabiler Messwert der Spannung der Spule erreicht wird. In anderen Worten, wenn ein Rechteckpuls als Teil des Rechtecksignals von dem Signalgenerator erzeugt wird, dauert es eine bestimmt Zeit bis die Spannung an der Spule sich stabilisiert.
Dadurch, dass eine Abtastung dieser Spannung ein fehlerhafter Abtastwert ergeben kann, wenn die Spannung abgestastet wird vor die Spannung stabil ist, ist es vorteilhaft wenn diese Einschwingzeit so kurz wie möglich ist. Die Einschwingzeit ist ab- hängig u.A. von dem Signalverarbeitungsaufwand, welcher zwischen Signalerzeugung und Signalankunft an der Spule betrieben wird, sowie von einer Umgebungstemperatur. Das Eliminieren von einem Tiefpassfilter und einem Signalverstärker lässt sich als Reduzierung des Signalverarbeitungsaufwandes bezeichnen. Daher wird durch die erfinderische Idee die Einschwingzeit massiv gekürzt, wobei massiv in diesem Kontext beispielsweise ein Faktor Zehn bedeuten kann. Dadurch, dass die Temperaturabhängigkeit der Einschwingzeit im Wesentlichen von der Temperaturempfindlichkeit der aktiven Bauelemente, wie der Verstärker, beispielsweise, abhängt, ist die Einschwingzeit durch eine Reduktion der aktiven Bauelemente ebenfalls über dem ganzen Betriebstemperaturbereich der Vorrichtung gekürzt. Der Betriebstemperaturbereich für Elektronik, die in der Kraftfahrzeugtechnik eingesetzt wird kann beispielsweise zwischen -40 Grad Celsius und +1 10 Grad Celsius sein.
Das Rechtecksignal kann eine Anzahl Oberwellen zu einer Grundfrequenz umfassen, wobei die Oberwellen jeweils die Spannung an der Spule in gleicher Weise beeinflussen können, sodass das Spannungssignal an der Spule mit verbesserter Genauigkeit auf die Position des Elements hinweisen kann. Die Spannung kann eine verkürzte Anstieg- oder Abfallzeit haben, sodass die Position des Elements schneller bestimmt werden kann. Beispielsweise kann eine übliche, auf eine Sinusspannung bezogene Messung eine Messzeit von ca. 300 Mikrosekunden erfordern, während die vorgeschlagene Vorrichtung mit einer Messzeit im Bereich von ca. 10 Mikrosekunden auskommen kann.
Weiterhin ermöglicht die Eliminierung von elektrischen Bauelementen einen Kompakteren Aufbau der Vorrichtung. Die Zuverlässigkeit, sowie die zu erwartende Lebensdauer werden hierdurch ebenfalls erhöht.
In einer Ausführungsform ist ein Widerstand zur Strombegrenzung dem Signalgenerator in Reihe mit der Spule nachgeschaltet. Der Strom, der durch die Spule durchströmt kann somit auf einen vorgegebenen maximalen Stromwert begrenzt werden, und die Lebensdauer der Vorrichtung kann erhöht werden. In einer bevorzugten Ausführungsform ist die Spule als einlagige Planarspule ausgestaltet. Durch das Eliminieren von Energieverlusten in der abgestasteten Spannung an der Spule, ist es nicht mehr erforderlich, die Planarspule in so einer Vorrichtung mehrlagig zu gestalten. Somit können die Herstellungskosten weiterhin gesenkt werden, denn der Aufwand bei der Herstellung von mehrlagigen Spulen ist erheblich größer als der Aufwand bei der Herstellung von einlagigen Spulen. Bei der Herstellung von mehrlagigen Spulen ist es beispielsweise notwendig jede Spule einzeln zu überprüfen. Es muss insbesondere sichergestellt werden, dass eine elektrische Verbindung zwischen den Schichten der mehrlagigen Spule gegeben ist. Im Gegensatz dazu, kann die Ganzheit bzw. Funktionstüchtigkeit einer einlagigen Spule automatisch visuell bzw. optisch geprüft werden, denn die ganze Spule ist auf einer Fläche sichtbar.
Die Spannung an der Spule umfasst bevorzugterweise eine Wechselspannung mit der Frequenz des Rechtecksignals und wenigstens eine weitere Wechselspannung (Oberwelle) mit einer ungeradzahlig vielfachen Frequenz des Rechtecksignals. Die weitere Wechselspannung hat üblicherweise eine geringere Amplitude als die erste Wechselspannung. Allgemein kann das Rechtecksignal aus unendlich vielen Sinusbzw. Kosinusfunktionen mit Frequenzen, die Vielfache der Grundfrequenz sind, zusammengesetzt sein. Diese Synthetisierung ist auch als Fourierreihe bekannt. Die einzelnen Signale, aus denen die Rechteckspannung zusammengesetzt ist, können zu einer vergrößerten Spannung beitragen, die als Messsignal an der Spule abgetastet werden kann. Die Position des Elements kann so mit größerer Empfindlichkeit oder größerer Geschwindigkeit bestimmt werden. Erfolgt eine Auswertung der Spannung mittels eines programmierbaren Mikrocomputers, so kann dieser wegen der verkürzten Messzeit eine geringere Leistungsfähigkeit aufweisen.
Bevorzugterweise wird eine an der Spule anliegende Wechselspannung mittels eines Tiefpassfilters in eine Gleichspannung integriert. Das kann insbesondere für die verschiedenen Wechselspannungen gelten, aus denen das Rechtecksignal zusammengesetzt ist. So können die Einzelspannungen einfach und effizient zu einer Gesamtspannung zusammengeführt werden, deren Größe verbessert auf die Position des Elements hinweisen kann. Es ist weiterhin bevorzugt, dass die Spule eine Planarspule ist. Die Planarspule kann beispielsweise als gedruckte Schaltung auf der Oberfläche einer Platine oder eines anderen geeigneten Trägermaterials ausgebildet sein. In einer Ausführungsform ist die Planarspule mehrlagig, insbesondere zweilagig ausgeführt. Die Planarspule hat üblicherweise nur wenige Windungen, beispielsweise im Bereich von ca. 9 bis 30 Windungen. Dementsprechend ist die Grundinduktivität der Spule relativ gering. Durch die geringe Induktivität kann die Spule verbessert Spannungskomponenten höherer Frequenzen beeinflussen, sodass mehr Oberwellen der Grundschwingung ausgewertet werden können. Außerdem kann die Planarspule insbesondere im Bereich des Kraftfahrzeugs aufgrund ihrer geringen Dicke leicht handhabbar sein.
In einer weiteren Ausführungsform ist eine steuerbare Schalteinrichtung zur Verbindung eines Endes der Spule mit einem vorbestimmten Potential vorgesehen. Die Spule kann auf einfache Weise mit dem vorbestimmten Potential verbunden werden, um eine Messung bezüglich der Spule durchzuführen. Da die Schalteinrichtung zum vorbestimmten Potential führt, muss es nicht hochfrequenztauglich ausgeführt sein, sodass anstelle eines kostspieligen Hochfrequenztransistors beispielsweise ein kostengünstiger Niederfrequenztransistor als Schalteinrichtung verwendet werden kann. Das vorbestimmte Potential kann insbesondere ein Massepotential sein.
Es können auch mehrere Spulen mit jeweils zugeordneten Schalteinrichtungen vorgesehen sein. Dadurch können der Signalgenerator, die Auswerteeinrichtung und ggf. der Tiefpassfilter ökonomisch mehrfach genutzt werden.
Bevorzugterweise ist auch eine Steuereinrichtung vorgesehen, die dazu eingerichtet ist, immer nur eine der Schalteinrichtungen zu schließen, um eine Positionsbestimmung bezüglich der zugeordneten Spule durchzuführen. Die Position des Elements kann so nacheinander bezüglich mehrerer Spulen durchgeführt werden, sodass eine genaue Positionierung auch über einen vergrößerten Bewegungsbereich des Elements möglich ist. Es ist weiterhin bevorzugt, dass die Auswerteeinrichtung einen Analog-Digital- Wandler und einen Mikrocomputer umfasst, wobei der Mikrocomputer einen digitalen Ausgang umfasst, der zur Bereitstellung des Rechtecksignals eingerichtet ist. Außerdem kann der Mikrocomputer dazu eingerichtet sein, eine oder mehrere steuerbare Schalteinrichtungen anzusteuern. So kann eine einfache und hochintegrierte Baugruppe bereitgestellt werden, die separat handhabbar sein kann und zur einfachen und zuverlässigen Positionsbestimmung des Elements eingerichtet ist.
In einer Ausführungsform umfasst das Element ein elektrisch leitfähiges Dämpfungselement. Die Induktivität der Spule wird bei Annäherung des Dämpfungselements verringert, da sich durch das magnetische Wechselfeld im Dämpfungselement Wirbelströme bilden, die die Energie des magnetischen Wechselfelds verringern.
In einer anderen Ausführungsform umfasst das Element ein ferromagnetisches und elektrisch isolierendes Verstärkungselement. Das Verstärkungselement kann, wenn es nahe an die Spule herangebracht wird, die magnetische Feldstärke im Bereich der Spule verstärken und so die Induktivität der Spule vergrößern.
In einer Ausführungsform bildet die Vorrichtung einen Teil einer Schaltvorrichtung zum Selektieren einer Gangstufe eines Kraftfahrzeugs.
Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen:
Fig. 1 eine schematische Darstellung einer Vorrichtung zur induktiven Positionsbestimmung; und
Fig. 2 eine schematische Darstellung einer erweiterten Vorrichtung nach dem
Muster von Fig. 1 darstellt.
Figur 1 zeigt eine Vorrichtung 100 zur induktiven Bestimmung der Position eines Elements 105. Die Vorrichtung kann insbesondere an Bord eines Kraftfahrzeugs verwendet werden, um eine Position oder Stellung eines beweglichen Elements zu bestimmen. Beispielsweise kann die Position eines Wählhebels für eine Gangstufe eines Getriebes bezüglich einer Konsole abgetastet werden. In einer anderen Ausführungsform kann ein Einschlagwinkel zwischen dem Kraftfahrzeug und einem mittels einer Anhängerkupplung angekoppelten Anhängers bestimmt werden. Das magnetische Element 105 ist allgemein ein Element, das ein magnetisches Wechselfeld, dem es ausgesetzt ist, beeinflusst. Dabei kann das Element 105 insbesondere elektrisch leitfähig sein, um das magnetische Wechselfeld im Bereich der Spule 1 15 zu schwächen, oder ferromagnetisch und elektrisch isolierend, um das magnetische Wechselfeld im Bereich der Spule 1 15 zu verstärken. Im ersten Fall kann das Element 105 beispielsweise Kupfer oder Aluminium umfassen, im zweiten Fall beispielsweise Eisen, Nickel oder Cobalt. Die Vorrichtung 100 umfasst zusätzlich zum Element 105 einen Signalgenerator 1 10 zur Bereitstellung eines Rechtecksignals, eine Spule 1 15 und eine Auswerteeinrichtung 120, und ein Widerstand R zur Strombegrenzung, der mit dem Signalgenerator 1 10 in Reihe mit der Spule 1 15 nachgeschaltet ist. Der Strom, der durch die Spule 1 15 durchströmt kann somit auf einenvorgegebenen maximalen Stromwert begrenzt werden, und die Lebensdauer der Vorrichtung kann erhöht werden.
Der Signalgenerator 1 10 stellt an seinen Ausgang eine Rechteckspannung bezüglich eines festen Potentials bereit, in der Darstellung von Figur 1 bezüglich Masse. Die Spule 1 15 ist mit einem ersten Ende mit dem Ausgang des Signalgenerators 1 10 und mit dem anderen Ende mit einem weiteren festen Potential verbunden, das dem anderen festen Potential entsprechen kann. Die Auswerteeinrichtung 120 ist mit der Spule 1 15 verbunden und dazu eingerichtet, eine Spannung abzutasten, die sich an der Spule 1 15 in Abhängigkeit des Rechtecksignals des Signalgenerators 1 10 ergibt. Dazu ist bevorzugterweise ein Integrator oder Tiefpassfilter 125 zwischen der Spule 1 15 und der Auswerteeinrichtung 120 vorgesehen. Optional kann eine Diode 130 in Durchlassrichtung von der Spule 1 15 zum Tiefpassfilter 125 führen. Der Tiefpassfilter 125 integriert hochfrequente Signale an der Spule 1 15 über einen vorbestimmten Zeitraum auf und stellt der Auswerteeinrichtung 120 eine entsprechende Spannung zur Verfügung. Die Position des Elements 105 bezüglich der Spule 1 15 beeinflusst deren Induktivität. In Abhängigkeit des Materials des Elements 105 kann die Induktivität der Spule 1 15 bei Annäherung des Elements 105 an die Spule 1 15 vergrößert oder verkleinert werden. Die Spule 1 15 ist bevorzugterweise als Flachspule ausgeführt, wobei sie eine begrenzte Ausdehnung hat, um handhabbar zu bleiben. Die Induktivität der Spule 1 15 ist daher relativ gering. Die Ausdehnung des Elements 105 liegt üblicherweise im Bereich der Ausdehnung der Flachspule 1 15.
Das Rechtecksignal des Signalgenerators 1 10 kann angesehen werden als Überlagerung von Sinus- bzw. Kosinussignalen unterschiedlicher Frequenzen und Amplituden. Ein erstes Sinussignal hat als Grundfrequenz die Frequenz des Rechtecksignals. Weitere sinusförmige Signale haben Frequenzen, die ganzzahligen Vielfachen der Grundfrequenz entsprechen. Je höher die Frequenz ist, desto geringer ist üblicherweise die Amplitude der Frequenz.
Ungeradzahlige Vielfache der Grundfrequenz wirken zueinander verstärkend, sodass die Spule 1 15 - insbesondere wenn ihre Induktivität klein ist - auf mehrere der Sinussignale reagieren kann, sodass die an ihr abfallende Spannung gleich mehrfach von der Position des Elements 105 beeinflusst sein kann. Ein Spannungsunterschied an der Spule 1 15 bei anwesendem und abwesendem Element 105 kann daher ma- ximiert sein. Das Messsignal kann einen verbesserten Signal-Rausch-Abstand aufweisen und ein Verstärker für das Messsignal kann eingespart werden.
Die Auswerteeinrichtung 120 kann insbesondere einen Digital-Analog-Wandler umfassen. Dieser kann einen numerischen Wert beispielsweise an einem programmierbaren Mikrocomputer bereitstellen. Eine andere Signalverarbeitung der Messspannung ist jedoch auch möglich.
Figur 2 zeigt eine schematische Darstellung einer erweiterten Vorrichtung 100 nach dem Muster von Figur 1 . Hier sind mehrere Spulen 1 15 vorgesehen, deren jeweils eines Ende mit dem Signalgenerator 1 10 über den Widerstand R verbunden ist. Das jeweils andere Ende ist mittels einer Schalteinrichtung 205 mit dem vorbestimmten, konstanten Potential verbindbar. Die Schalteinrichtungen 205 können insbesondere durch Transistoren gebildet sein. Nachdem die Schalteinrichtungen 205 ungeachtet der Frequenz des Rechtecksignals des Signalgenerators 1 10 keine hohen Frequenzen übertragen müssen, können hierfür beispielsweise kostengünstige Niederfrequenztransistoren verwendet werden.
Die Schalteinrichtungen 205 werden durch eine Steuereinrichtung 210 gesteuert, die insbesondere einen programmierbaren Mikrocomputer umfassen kann. Die Steuereinrichtung 210 ist dazu eingerichtet, zu jedem Zeitpunkt nur eine der Schalteinrichtungen 205 zu schließen, um eine Messung der Position des Elements 105 - oder mehrerer Elemente 105 - bezüglich der jeweils zugeordneten Spule 1 15 durchzuführen. Die Steuereinrichtung 210 kann auch eine weitere Verarbeitung der mittels der Auswerteeinrichtung 120 bestimmten Spannung durchführen. Insbesondere dann, wenn die Steuereinrichtung 210 als programmierbarer Mikrocomputer ausgeführt ist, kann die Auswertung numerische oder statistische Operationen umfassen.
In der dargestellten Ausführungsform ist die Steuereinrichtung 210 auch zur Bereitstellung des Rechtecksignals ausgebildet und arbeitet somit auch als Signalgenerator 1 10. Beispielsweise kann eine serielle oder parallele Schnittstelle der Steuereinrichtung 210 dazu genutzt werden, das Rechtecksignal mit relativ hoher Amplitude, beispielsweise zwischen 0 und 3,3 Volt oder zwischen 0 und 5 Volt bereitzustellen. Für andere Spannungen können entsprechend Begrenzer oder Verstärker eingesetzt werden.
Durch das oben beschriebene Rechtecksignal können kurze Einschwingzeiten der Spulen 1 15 bewirkt werden. Das heißt, dass eine an der Spule 1 15 abgreifbare Spannung schneller als bei einem Sinussignal auf die Anwesenheit oder Abwesenheit des Elements 105 hinweisen kann. Ein Messvorgang mit einer einzelnen Spule 1 15 kann dadurch relativ schnell durchgeführt werden, beispielsweise während einer Messphase von ca. 10 bis 20 Mikrosekunden. Zwischen einzelnen Messphasen mit unterschiedlichen Spulen 1 15 kann jeweils eine Messpause eingelegt werden, die eine ähnliche Dauer haben kann. Durch die kurzen Messzeiten können viele Spulen 1 15 nacheinander durch die Steuereinrichtung 21 0 abgefragt werden, sodass auch mit geringer Verarbeitungskapazität der Steuereinrichtung 210 eine sichere und zügige Positionsbestimmung möglich sein kann. Die Steuereinrichtung 210 kann in einer üblichen Anwendung mit bis zu ca. 20 Spulen 1 15 einen handelsüblichen 8 Bit- Mikrocomputer umfassen. Ein 32 Bit-Mikrocomputer, wie er für Sinussignal-basierte Messverfahren erforderlich ist, kann eingespart werden.
Das Element 105 kann in seinen Abmessungen bezüglich der Anordnung von Spulen 1 15 so gestaltet sein, dass es mehrere Spulen 1 15 gleichzeitig beeinflussen kann. Da die Induktivität jeder Spule 1 15 in Abhängigkeit des jeweiligen Abstands des Elements 105 mehr oder weniger stark beeinflusst wird, kann die genaue Position des Elements 105 dann anhand von Verhältnissen der durch die beeinflussten Spulen 1 15 an den Tiefpassfiltern 125 bereitgestellten Spannungen abgeschätzt werden.
Bezuqszeichen
100 Vorrichtung
105 Element
0 Signalgenerator
1 15 Spule
120 Auswerteeinrichtung
125 Tiefpassfilter
130 Diode
205 Schalteinrichtung
210 Steuereinrichtung
R Widerstand

Claims

Patentansprüche
Vorrichtung (100) zur induktiven Positionsbestimmung, umfassend:
- einen Signalgenerator (1 10);
- eine mit dem Signalgenerator (1 10) verbundene Spule (1 15);
- ein Element (105) zur Beeinflussung der Induktivität der Spule (1 15) in Abhängigkeit seines Abstands zur Spule (1 15);
- eine Auswerteeinrichtung (120) zur Bestimmung der Position des Elements (105) bezüglich der Spule (1 15) auf der Basis einer Spannung an der Spule (1 15),
dadurch gekennzeichnet, dass
- der Signalgenerator (1 10) ein Rechtecksignal bereitstellt.
Vorrichtung (100) nach Anspruch 1 , wobei die Spannung an der Spule (1 15) eine Wechselspannung mit der Frequenz des Rechtecksignals und wenigstens eine weitere Wechselspannung mit einer ganzzahlig vielfachen Frequenz des Rechtecksignals umfasst.
Vorrichtung (100) nach einem der vorangehenden Ansprüche, wobei eine an der Spule (1 15) anliegende Wechselspannung mittels eines Tiefpassfilters (125) in eine Gleichspannung integriert wird.
Vorrichtung (100) nach einem der vorangehenden Ansprüche, wobei die Spule (1 15) eine Planarspule (1 15) ist.
Vorrichtung (100) nach einem der vorangehenden Ansprüche, ferner umfassend eine steuerbare Schalteinrichtung (205) zur Verbindung eines Endes der Spule (1 15) mit einem vorbestimmten Potential.
Vorrichtung (100) nach Anspruch 5, wobei mehrere Spulen (1 15) mit jeweils zugeordneten Schalteinrichtungen (205) vorgesehen sind.
7. Vorrichtung (100) nach Anspruch 6, wobei eine Steuereinrichtung (210) vorgesehen ist, die dazu eingerichtet ist, immer nur eine der Schalteinrichtungen (205) zu schließen, um eine Positionsbestimmung bezüglich der zugeordneten Spule (1 15) durchzuführen.
8. Vorrichtung (100) nach einem der vorangehenden Ansprüche, wobei die Auswerteeinrichtung (120) einen Analog-Digital-Wandler und einen Mikrocomputer umfasst und der Mikrocomputer einen digitalen Ausgang (1 10) umfasst, der zur Bereitstellung des Rechtecksignals eingerichtet ist.
9. Vorrichtung (100) nach einem der vorangehenden Ansprüche, wobei das Element (105) ein elektrisch leitfähiges Dämpfungselement umfasst.
10. Vorrichtung (100) nach einem der vorangehenden Ansprüche, wobei das Element (105) ein ferromagnetisches und elektrisch isolierendes Verstärkungselement umfasst.
1 1 . Vorrichtung (100) nach zumindest einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass der Signalgenerator (1 10) das Rechtecksignal zur Anregung der Spule (1 15) bereitstellt.
12. Vorrichtung (100) nach zumindest einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass das Rechtecksignal des Signalgenerators (1 10) die Spule (1 15) unmittelbar und/oder vermittels ausschließlich passiver elektrischer Bauelemente beaufschlagen kann.
13. Vorrichtung (100) nach zumindest einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass ein Widerstand (R) zur Strombegrenzung dem Signalgenerator in Reihe mit der Spule (1 15) nachgeschaltet ist.
14. Vorrichtung (100) nach zumindest einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass die Spule (1 15) als einlagige Planarspule ausgestaltet ist.
15. Schaltvorrichtung zum Selektieren einer Gangstufe eines Kraftfahrzeugs umfassend einer Vorrichtung nach zumindest einem der vorangehenden Ansprüche.
PCT/EP2015/078461 2014-12-04 2015-12-03 Induktive positionsbestimmung WO2016087562A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017529722A JP2017538937A (ja) 2014-12-04 2015-12-03 インダクティブ方式の位置判定
EP15804761.3A EP3227640A1 (de) 2014-12-04 2015-12-03 Induktive positionsbestimmung
CN201580065680.8A CN107003150A (zh) 2014-12-04 2015-12-03 感应式位置确定设备
US15/532,159 US20170310118A1 (en) 2014-12-04 2015-12-03 Inductive position determination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014224859.0 2014-12-04
DE102014224859.0A DE102014224859A1 (de) 2014-12-04 2014-12-04 Induktive Positionsbestimmung

Publications (1)

Publication Number Publication Date
WO2016087562A1 true WO2016087562A1 (de) 2016-06-09

Family

ID=54396886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/078461 WO2016087562A1 (de) 2014-12-04 2015-12-03 Induktive positionsbestimmung

Country Status (6)

Country Link
US (1) US20170310118A1 (de)
EP (1) EP3227640A1 (de)
JP (1) JP2017538937A (de)
CN (1) CN107003150A (de)
DE (1) DE102014224859A1 (de)
WO (1) WO2016087562A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011597A1 (de) * 2017-07-13 2019-01-17 Zf Friedrichshafen Ag Induktiver näherungsschalter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090892A2 (en) * 2001-05-07 2002-11-14 Marposs Società per Azioni Conditioning device for an analog transducer
DE102004033085A1 (de) * 2004-07-08 2006-01-26 Robert Bosch Gmbh Integrator-Auswerteeinheit für Wirbelstromsensoren
EP2713144A1 (de) * 2012-06-19 2014-04-02 Levex Corporation Messvorrichtung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE888560A (fr) * 1980-04-26 1981-08-17 Lucas Industries Ltd Transducteurs de mesure de deplacements et leur utilisation pour detecter les deplacements des suspensions de vehicules,
DE3242109A1 (de) * 1982-11-13 1984-05-17 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur erfassung der drehzahl eines rotierenden teils
DE4427990C2 (de) * 1994-08-08 2000-11-23 Becker Wolf Juergen Induktiver Näherungssensor zur materialunabhängigen Abstandsmessung
DE19805621A1 (de) * 1998-02-12 1999-08-19 Hydraulik Ring Gmbh Anordnung zur berührungslosen Positionsbestimmung eines Meßobjektes, vorzugsweise einer Schaltwelle eines Kraftfahrzeuggetriebes
DE10022821A1 (de) * 2000-05-10 2001-11-15 Schultz Wolfgang E Messeinrichtung mit induktivem Wegsensor
JP4189872B2 (ja) * 2001-04-23 2008-12-03 株式会社リベックス 位置検出器
WO2006016144A2 (en) * 2004-08-09 2006-02-16 Sensopad Limited Sensing apparatus and method
DE202004019489U1 (de) * 2004-12-17 2005-05-25 Cherry Gmbh Induktive Sensoreinheit
DE102007055155A1 (de) * 2007-11-18 2009-05-28 Rudolf Schubach Induktiver Näherungssensor, Inkrementalgeber mit Richtungserkennung und Auswerteschaltung
US20110128014A1 (en) * 2008-06-05 2011-06-02 Martin Roy Harrison Position sensor
US20120104999A1 (en) * 2010-11-02 2012-05-03 Triune Ip Llc Multiple Coil System
DE102011102796A1 (de) * 2011-05-23 2012-11-29 Trw Automotive Electronics & Components Gmbh Positionssensor, Aktor-Sensor-Vorrichtung und Verfahren zur induktiven Erfassung einer Position
US9291510B2 (en) * 2012-06-19 2016-03-22 Levex Corporation Measuring apparatus
JP6233641B2 (ja) * 2014-01-31 2017-11-22 パナソニックIpマネジメント株式会社 位置センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090892A2 (en) * 2001-05-07 2002-11-14 Marposs Società per Azioni Conditioning device for an analog transducer
DE102004033085A1 (de) * 2004-07-08 2006-01-26 Robert Bosch Gmbh Integrator-Auswerteeinheit für Wirbelstromsensoren
EP2713144A1 (de) * 2012-06-19 2014-04-02 Levex Corporation Messvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3227640A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011597A1 (de) * 2017-07-13 2019-01-17 Zf Friedrichshafen Ag Induktiver näherungsschalter
CN110892642A (zh) * 2017-07-13 2020-03-17 Zf 腓德烈斯哈芬股份公司 感应式的接近开关

Also Published As

Publication number Publication date
US20170310118A1 (en) 2017-10-26
JP2017538937A (ja) 2017-12-28
EP3227640A1 (de) 2017-10-11
CN107003150A (zh) 2017-08-01
DE102014224859A1 (de) 2016-06-09

Similar Documents

Publication Publication Date Title
DE102009009061A1 (de) Verfahren zum induktiven Erzeugen eines elektrischen Messsignals sowie zugehörige Sensorvorrichtung
DE102011116545A1 (de) Integrierte Magnetfeldmessvorrichtung
DE112016005046T5 (de) Magnetfeld-Erfassungsvorrichtung und Magnetfeld-Erfassungsverfahren
DE102007007551A1 (de) Induktiver Näherungssensor
WO2011138063A2 (de) Erfassung eines metallischen oder magnetischen objekts
DE112011101945T5 (de) Robustes kapazitives Messsystern
DE102016217255A1 (de) Drehwinkelsensor und Statorelement für diesen
DE102011085737A1 (de) Winkelsensor auf Wirbelstrombasis
EP3824323B1 (de) Detektor zum detektieren von elektrisch leitfähigem material
WO2016087562A1 (de) Induktive positionsbestimmung
DE102008056700A1 (de) Drehzahlsensor zum Ermitteln von "langsamen (Nulldrehzahl) und schnellen" Drehzahlen sowie zur gleichzeitigen Ermittlung der Drehrichtung
DE102014113545A1 (de) Vorrichtung und Verfahren zur Überwachung einer Prozessgröße eines Mediums
DE102013225874A1 (de) Induktiver Drehwinkelsensor
DE102008064544B4 (de) Positions-/Wegmesssystem und Verfahren zur Bestimmung der Position eines Gebers
EP4031884B1 (de) Sensorvorrichtung mit sensor und stromrichter
DE102007027419A1 (de) Induktiver Messumformer für Weg oder Winkel
DE102013225897A1 (de) Induktiver Sensor mit einem beliebig langen Messweg
DE102014224858A1 (de) Induktive Positionsbestimmung
DE19837331B4 (de) Verfahren und Vorrichtung zum Messen einer Drehbewegung
EP3652858A1 (de) Induktiver näherungsschalter
DE102023108386B3 (de) Teilentladungssensor, Verfahren zum Steuern eines Spalts eines Magnetkerns und Steuerungsvorrichtung
EP3314274B1 (de) Schaltungsanordnung zur erfassung von mindestens zwei stromanstiegen
DE102023107760A1 (de) Induktiver Näherungsschalter und Verfahren zum Betreiben eines induktiven Näherungsschalters
DE102022208616A1 (de) Induktive Sensoranordnung zur Ermittlung eines Drehwinkels oder eines Differenzwinkels
WO2016083019A1 (de) Vorrichtung und verfahren zur auswertung eines wirbelstromsensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804761

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015804761

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017529722

Country of ref document: JP

Kind code of ref document: A