WO2016080255A1 - Display device - Google Patents
Display device Download PDFInfo
- Publication number
- WO2016080255A1 WO2016080255A1 PCT/JP2015/081696 JP2015081696W WO2016080255A1 WO 2016080255 A1 WO2016080255 A1 WO 2016080255A1 JP 2015081696 W JP2015081696 W JP 2015081696W WO 2016080255 A1 WO2016080255 A1 WO 2016080255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- common voltage
- display device
- electrode
- liquid crystal
- wiring
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/006—Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
Definitions
- the present invention relates to a display device.
- a liquid crystal panel used in a liquid crystal display device has a structure in which a liquid crystal layer is sandwiched between a pair of glass substrates.
- One of the glass substrates is an array substrate having TFTs and pixel electrodes as switching elements. Composed.
- This array substrate has a configuration in which gate wirings and source wirings are provided in a grid pattern on the substrate, and TFTs and pixel electrodes are provided at intersections of the gate wirings and the source wirings.
- the pixel electrode is interposed between the common electrode facing the pixel electrode.
- a technique for applying a voltage that reverses with a field period is known. When such a technique is employed, flicker called flicker may occur depending on the voltage applied between the pixel electrode and the common electrode.
- Patent Document 1 includes an optical unit that collects transmitted light from a liquid crystal display panel on a surface of an optical sensor by a condensing lens and detects the level of transmitted light by the optical sensor, and based on the detection signal.
- a technology related to a liquid crystal display panel automatic adjustment device that automatically adjusts a plurality of trimmers provided in a liquid crystal display panel and sets flicker to a good state is disclosed.
- the present invention has been completed based on the above circumstances, and an object thereof is to provide a display device capable of suppressing the occurrence of flicker.
- the display device of the present invention includes a substrate, a plurality of gate wirings arranged in parallel on the substrate, a plurality of source wirings arranged in parallel across the gate wiring on the substrate, and a plurality of the gate wirings And a plurality of transparent electrodes respectively disposed in a region formed by intersecting the plurality of source wirings, a gate electrode disposed in each of the regions and connected to the gate wiring, and connected to the source wiring
- a plurality of switching elements having a source electrode and a drain electrode connected to the transparent electrode, and connected to the drain electrode of at least one of the plurality of switching elements and applied to the drain electrode
- a wiring for inspection that can be connected to a DC component extraction unit that extracts a DC component of the voltage to be detected.
- the display device of the present invention includes the inspection wiring that can be connected to the direct current component extraction unit that extracts the direct current component of the voltage value of the drain electrode, the direct current component of the voltage value of the drain electrode can be obtained via the inspection wiring. Can be extracted. For this reason, based on the DC component information, for example, the potential difference between the transparent electrode and the common electrode can be adjusted to suppress flicker of the display device.
- the substrate is divided into a display region and a non-display region surrounding the display region, and the switching element to which the inspection wiring is connected includes a plurality of gate wirings in the non-display region of the substrate.
- the plurality of source lines are arranged in a dummy pixel region formed by intersecting. According to such a configuration, the inspection wiring is not routed to the pixel region, and the display quality of the display device is not impaired by providing the inspection wiring.
- the substrate is divided into a display region and a non-display region surrounding the display region, and the switching element to which the inspection wiring is connected includes a plurality of gate wirings and a plurality of gate wirings in the display region of the substrate. Are arranged in a pixel region formed by crossing the source wiring. According to such a configuration, even when it is difficult to secure a region formed by the intersection of the gate wiring and the source wiring in the non-display region due to the narrow frame of the display device, the pixel region The DC component of the drain electrode voltage value can be extracted.
- a common electrode that forms a capacitance with the transparent electrode is further provided.
- the drain voltage applied to the drain electrode is an alternating voltage
- the common electrode has a positive polarity.
- the direct current component extracted by the direct current component extraction unit so that the potential difference between the drain electrode and the common electrode and the potential difference between the drain electrode and the common electrode at the time of the negative polarity are substantially the same.
- a common voltage calculated based on the above is applied. According to such a configuration, by adjusting the common voltage, the potential difference between the common electrode is substantially the same between the positive polarity and the negative polarity of the drain voltage, and thus the occurrence of flicker is suitably suppressed. can do.
- the wiring for use has a terminal portion that can be connected to an inspection device including the DC component extraction unit, and the inspection device further includes a common voltage calculation unit that calculates a set value of the common voltage, The setting value of the common voltage calculated by the common voltage calculation unit of the inspection apparatus is written in the storage unit.
- the storage unit and the common voltage generation unit are provided on the substrate. According to such a configuration, by providing the storage unit and the common voltage generation unit on the substrate, it is possible to realize a display device in which flicker is preferably suppressed.
- a circuit board for supplying a voltage to the common electrode is further provided, and the storage unit and the common voltage generation unit are provided on the circuit board. According to such a configuration, the storage unit and the common voltage generation unit are provided on the circuit board even when it is difficult to provide the storage unit and the common voltage generation unit on the substrate due to the narrow frame of the display device. Thus, it is possible to realize a display device in which flicker is preferably suppressed.
- the apparatus further includes the DC component extraction unit and a common voltage generation unit that generates the common voltage based on the DC component extracted by the DC component extraction unit.
- the common voltage can be appropriately adjusted not only when the liquid crystal display device is manufactured but also when the liquid crystal display device is used. For example, flicker occurs due to a change in temperature environment or the like. Can be suppressed.
- a common voltage calculation unit that calculates a set value of the common voltage, and the common voltage calculated by the common voltage calculation unit
- a common voltage generation unit configured to generate the common voltage based on a voltage setting value; According to such a configuration, even if it is difficult to generate the common voltage directly from the direct current component due to design constraints, the common voltage calculation unit calculates the common voltage setting value and based on this Common voltage can be generated.
- the DC component extraction unit, a common voltage calculation unit that calculates a set value of the common voltage based on the DC component extracted by the DC component extraction unit, and the common voltage calculated by the common voltage calculation unit A storage unit that stores a set value of the voltage; and a common voltage generation unit that generates the common voltage based on the set value of the common voltage stored in the storage unit. According to such a configuration, the load on the DC component extraction unit and the common voltage calculation unit can be reduced by generating the common voltage based on the set value stored in the storage unit for a certain period.
- a plurality of the inspection wirings are provided branched from the drain electrode. According to such a configuration, when one inspection wiring is disconnected at the time of manufacture, another inspection wiring can be used as a backup, so that it is not necessary to make the substrate unusable. Also, it can be expected to improve the yield.
- a dummy wiring not connected to the extraction unit is further provided. According to such a configuration, the inspection wiring is arranged by arranging the dummy wiring in the area where the inspection wiring is not arranged in the area formed by the intersection of the gate wiring and the source wiring. It is possible to suppress a situation in which the electrical characteristics differ between the region where the inspection wiring is arranged and the region where the inspection wiring is not arranged.
- a counter substrate that is opposed to the substrate and on which a color filter is disposed, and a liquid crystal layer that is sandwiched between the substrate and the counter substrate.
- a display device can be applied as a liquid crystal display device to various uses, for example, a display such as a portable information terminal or a television receiver.
- the display apparatus which can suppress generation
- FIG. 1 is a schematic plan view showing a connection configuration of a liquid crystal panel on which a driver according to Embodiment 1 of the present invention is mounted, a flexible board, and a control circuit board.
- Block diagram showing configuration and inspection mode of liquid crystal display device The figure showing the change for every frame regarding the voltage of the data signal supplied to the drain electrode, the drain voltage, and the common voltage
- FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
- the liquid crystal display device 10 is illustrated as a display device.
- a part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and the directions of the axes are drawn in common directions in the drawings.
- FIG. 2 is used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
- the liquid crystal display device (display device) 10 drives a liquid crystal panel 11 having a display area AA capable of displaying an image and a non-display area NAA outside the display area AA, and the liquid crystal panel 11.
- a flexible substrate (external connection component) 13 and a backlight device (illumination device) 14 that is an external light source that supplies light to the liquid crystal panel 11 are provided.
- the liquid crystal display device 10 also includes a pair of front and back exterior members 15 and 16 for housing and holding the liquid crystal panel 11 and the backlight device 14 assembled to each other.
- an opening 15a for allowing an image displayed in the display area AA of the liquid crystal panel 11 to be visually recognized from the outside is formed.
- the liquid crystal display device 10 according to the present embodiment includes a notebook computer (including a tablet notebook computer), a mobile phone (including a smartphone), a portable information terminal (including an electronic book, a PDA, etc.), a digital photo frame, It is used for various electronic devices (not shown) such as portable game machines and electronic ink paper. For this reason, the screen size of the liquid crystal panel 11 constituting the liquid crystal display device 10 is set to about several inches to several tens of inches, and is generally classified into a small size and a small size.
- the backlight device 14 includes a chassis 14a having a substantially box shape that opens toward the front side (the liquid crystal panel 11 side), and a light source (not shown) disposed in the chassis 14a (for example, a cold cathode tube, LED, organic EL, etc.) and an optical member (not shown) arranged to cover the opening of the chassis 14a.
- the optical member has a function of converting light emitted from the light source into a planar shape.
- the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and is displayed at a position offset toward one end side (the upper side shown in FIG. 1) in the long side direction.
- a portion (active area) AA is arranged, and a driver 21 and a flexible substrate 13 are respectively attached at positions offset toward the other end side (the lower side shown in FIG. 1) in the long side direction.
- an area outside the display area AA is a non-display area (non-active area) NAA in which no image is displayed.
- the non-display area NAA is a substantially frame-shaped area (CF described later) surrounding the display area AA.
- the area secured on the other end side in the long side direction includes the mounting area for the driver 21 and the flexible substrate 13.
- the short side direction in the liquid crystal panel 11 coincides with the X-axis direction of each drawing, and the long side direction coincides with the Y-axis direction of each drawing.
- a frame-shaped one-dot chain line that is slightly smaller than the CF substrate 11a represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA.
- the control circuit board 12 is attached to the back surface of the chassis 14a (the outer surface opposite to the liquid crystal panel 11 side) of the backlight device 14 with screws or the like.
- the control circuit board 12 is mounted with electronic components for supplying various input signals to the driver 21 on a board made of paper phenol or glass epoxy resin, and wiring (conductive path) of a predetermined pattern (not shown) is provided. Routed formation.
- One end (one end side) of the flexible substrate 13 is electrically and mechanically connected to the control circuit board 12 via an ACF (Anisotropic Conductive Film) (not shown).
- the flexible substrate (FPC substrate) 13 includes a base material made of a synthetic resin material (for example, polyimide resin) having insulating properties and flexibility, and a large number of wirings are provided on the base material. It has a pattern (not shown), and one end in the length direction is connected to the control circuit board 12 arranged on the back side of the chassis 14a as described above, while the other end Since the portion (the other end side) is connected to the array substrate 11 b in the liquid crystal panel 11, the liquid crystal display device 10 is bent in a folded shape so that the cross-sectional shape is substantially U-shaped.
- a synthetic resin material for example, polyimide resin
- the wiring pattern is exposed to the outside to form terminal portions (not shown), and these terminal portions are respectively connected to the control circuit board 12 and the liquid crystal panel 11. Are electrically connected to each other. Thereby, an input signal supplied from the control circuit board 12 side can be transmitted to the liquid crystal panel 11 side.
- the driver 21 is composed of an LSI chip having a drive circuit therein, and operates based on a signal supplied from a control circuit board 12 that is a signal supply source. Specifically, an input signal supplied from the control circuit board 12 is processed to generate an output signal, and the output signal is output toward the display area AA of the liquid crystal panel 11.
- the driver 21 uses a memory (storage unit) 36 that stores a setting value of a common voltage Vcom applied to the common electrode 22 described later, and a setting value of the common voltage Vcom stored in the memory 36.
- a common voltage generator 37 for generating the common voltage Vcom.
- the driver 21 has a horizontally long shape when viewed in a plan view (has a long shape along the short side of the liquid crystal panel 11) and is directly mounted on the non-display area NAA of the array substrate 11b of the liquid crystal panel 11. That is, COG (Chip On Glass) is mounted.
- the long side direction of the driver 21 coincides with the X-axis direction (the short side direction of the liquid crystal panel 11), and the short side direction coincides with the Y-axis direction (the long side direction of the liquid crystal panel 11).
- the liquid crystal panel 11 includes a pair of substrates 11a and 11b, and a liquid crystal layer including liquid crystal molecules that are interposed between the substrates 11a and 11b and that are substances whose optical characteristics change with application of an electric field.
- Liquid crystal) 11c, and both substrates 11a and 11b are bonded together with a sealant 11d while maintaining a gap corresponding to the thickness of the liquid crystal layer 11c.
- the liquid crystal panel 11 according to the present embodiment is an FFS (Fringe Field Switching) mode in which the operation mode is further improved from the IPS (In-Plane Field Switching) mode, and is an array substrate (see Claims) of the pair of substrates 11a and 11b.
- a transparent electrode 18 and a common electrode (counter electrode, common electrode) 22 which will be described later are formed on the substrate 11b side, and the transparent electrode 18 and the common electrode 22 are arranged in different layers. is there.
- the front side (front side) of the pair of substrates 11a and 11b is a CF substrate (counter substrate) 11a
- the back side (back side) is an array substrate 11b.
- the CF substrate 11a has a short side dimension substantially equal to that of the array substrate 11b as shown in FIGS. 1 and 2, but the long side dimension is smaller than that of the array substrate 11b. It is bonded to 11b with one end (upper side shown in FIG. 1) in the long side direction aligned. Therefore, the other end (the lower side shown in FIG.
- a plurality of gate wirings 19 are arranged in parallel on the array substrate 11b, and a plurality of source wirings 20 are arranged in parallel across the gate wiring 19 on the array substrate 11b.
- a plurality of transparent electrodes 18 are arranged in a region 31 formed by intersecting a gate wiring (scanning signal line, row control line) 19 and a source wiring (data signal line, column control line) 20, respectively. ing. In the region 31, a plurality of TFTs 17 are arranged corresponding to the respective transparent electrodes 18.
- a large number of TFTs 17 and transparent electrodes 18 that are switching elements are provided in a matrix, and the gate lines 19 and source lines 20 that form a lattice surround the TFTs 17 and the transparent electrodes 18. It is arranged in this way.
- the gate wiring 19 is arranged so as to overlap with one end of the transparent electrode 18 in a plan view (viewed from a normal direction to the plate surface of the array substrate 11b). For this reason, a parasitic capacitance Cgd is formed between the gate wiring 19 and the transparent electrode 18 (see FIG. 3).
- pixel area 31A a region 31 when collectively referred to.
- dummy pixel area 31B a region 31 when collectively referred to.
- the one disposed in the pixel region 31 ⁇ / b> A is referred to as a pixel electrode 18 ⁇ / b> A
- the one disposed in the dummy pixel region 31 ⁇ / b> B is referred to as a dummy pixel electrode 18 ⁇ / b> B and is distinguished from each other.
- these pixel electrode 18A and dummy pixel electrode 18B are generically referred to, they are simply referred to as transparent electrodes 18.
- auxiliary capacity wiring (storage capacity wiring, Cs wiring) 25 that is parallel to the gate wiring 19 and overlaps the other end of the transparent electrode 18 in plan view.
- the auxiliary capacitance line 25 is made of the same metal film as the gate line 19 and is alternately arranged with the gate line 19.
- a predetermined reference potential is applied to the auxiliary capacitance line 25, and a storage capacitance Ccs is formed between the auxiliary capacitance line 25 and the transparent electrode 18.
- the TFT 17 is connected to the gate electrode 17a connected to the gate wiring 19, the channel portion 17d made of a semiconductor film and overlapping the gate electrode 17a, the source wiring 20, and a part of the channel portion 17d. And a drain electrode 17c connected to the transparent electrode 18 while being connected to the other part of the channel part 17d. And the channel part 17d bridge
- the transparent electrode 18 is made of a transparent conductive film, and forms a vertically long substantially rectangular shape (substantially rectangular shape) as a whole in a region 31 surrounded by the plurality of gate wirings 19 and the plurality of source wirings 20. Yes.
- the transparent electrode 18 is formed in a substantially comb-like shape by providing a plurality of vertically long slits (not shown).
- the transparent electrode 18 is formed such that an interlayer insulating film is interposed between the transparent electrode 18 and the common electrode 22 described below.
- the common electrode 22 is made of a transparent conductive film formed in a layer different from that of the transparent electrode 18, and is a so-called solid pattern that extends over substantially the entire display area AA of the array substrate 11b and the dummy pixel area 31B in the non-display area NAA. It is said.
- the common electrode 22 is opposed to the transparent electrode 18 via an interlayer insulating film, and a capacitance Clc is formed therebetween.
- the liquid crystal layer 11c has a normal direction to the plate surface of the array substrate 11b in addition to the component along the plate surface of the array substrate 11b by the slits of the transparent electrode 18.
- each pixel electrode 18A on the array substrate 11b side in a plan view.
- Color filters 11h arranged in parallel in a matrix are provided. Between each colored portion constituting the color filter 11h, a substantially lattice-shaped light shielding layer (black matrix) 11i for preventing color mixture is formed.
- the light shielding layer 11i is arranged so as to overlap the above-described gate wiring 19 and source wiring 20 in a plan view.
- one pixel as a display unit is formed by a set of three colored portions of R (red), G (green), and B (blue) and three pixel electrodes 18A facing them. It is configured.
- a unit constituted by a set of any one color portion and one pixel electrode 18A facing the colored portion is referred to as a display pixel 30A.
- a colored portion of any one color is formed so as to face the dummy pixel electrode 18B, and the display pixel 30A has the same mode as the above-described display pixel 30A.
- a dummy pixel 30B that does not contribute is configured.
- the colored portion does not necessarily have to be formed in the dummy pixel 30B as long as it does not affect the electrical characteristics of the dummy pixel 30B.
- the display pixels 30A and the dummy pixels 30B are generically referred to, they are simply referred to as pixels 30.
- the dummy pixels 30B are arranged in the non-display area NAA of the array substrate 11b (more specifically, the area overlapping the liquid crystal layer 11c in the non-display area NAA).
- the dummy pixel 30B has an inspection wiring 32 connected to the drain electrode 17c.
- the inspection wiring 32 is not connected to the drain electrode 17c.
- the dummy pixel 30B and the display pixel 30A differ only in the presence or absence of the inspection wiring 32, and other configurations such as the size, shape, and routing path of each electrode are the same design.
- the dummy pixel 30 ⁇ / b> B can be said to be a drain voltage confirmation pixel for confirming the drain voltage Vd of the liquid crystal display device 10 through the inspection wiring 32.
- the inspection wiring 32 is electrically connected to the drain electrode 17c directly or via a dummy pixel electrode 18B.
- the inspection wiring 32 is routed to a region of the array substrate 11b that does not overlap the CF substrate 11a, and a terminal portion 33 is formed at the end opposite to the side connected to the drain electrode 17c. .
- the terminal part 33 is mutually connectable with the test
- the structure of the inspection wiring 32 and the wiring path thereof can be set as appropriate, and preferably formed in a manner that does not easily affect the electrical characteristics of each electrode provided in the dummy pixel electrode 18B. And have been routed. An aspect of inspecting the liquid crystal panel 11 by connecting the inspection device 40 to the inspection wiring 32 will be described later.
- the common electrode 22 is applied with the common voltage Vcom generated by the common voltage generator 37 based on the set value of the common voltage Vcom stored in the memory 36, and the transparent electrode 18 by the TFT 17 as will be described later.
- the common voltage Vcom is always a constant value.
- the reference potential of the auxiliary capacitance line 25 is set to the same potential as the common voltage Vcom of the common electrode 22.
- the TFT 17 When the TFT 17 is turned on by a scanning signal supplied to the gate electrode 17a through the gate wiring 19 at a predetermined timing (an on voltage Von is applied to the gate electrode), the source electrode 17b is connected through the source wiring 20. The data signal supplied to is transmitted to the drain electrode 17c through the channel portion 17d. At this time, the potential of the drain electrode 17 c is substantially the same as the potential applied to the source wiring 20. While the on voltage Von is applied to the gate electrode 17a, the charge applied from the source line 20 is charged to the liquid crystal layer 11c (electrostatic capacitance Clc) and the storage capacitor Ccs.
- the liquid crystal layer 11c electrostatic capacitance Clc
- the TFT 17 is driven by so-called “frame inversion driving” in which the polarity is inverted every frame display period, and has a relatively higher potential (positive polarity) than the common voltage Vcom of the common electrode 22. And a potential relatively lower than the common voltage Vcom of the common electrode 22 (negative potential) are alternately supplied to the transparent electrode 18 via the TFT 17 every frame display period. ing.
- the frame rate is set to 60 fps, for example. According to such a driving method, the direction in which the voltage is applied between the common electrode 22 and the transparent electrode 18 is reversed, so that the direction of the liquid crystal molecules contained in the liquid crystal layer 11c is in a state in which the direction is directed to a specific direction. It is possible to avoid the phenomenon from occurring.
- the common voltage Vcom is adjusted in consideration of ⁇ V so that the potential difference between the transparent electrode 18 and the common electrode 22 is the same between the positive polarity and the negative polarity.
- the liquid crystal display device 10 is inspected by using the inspection device 40 and adjusted to suppress the flicker.
- the inspection apparatus 40 includes a direct current component extraction unit 34 that extracts a direct current component Vd (DC) of the drain voltage Vd applied to the drain electrode 17c, and a drain electrode 17c when the drain voltage Vd is positive.
- DC component extracted by the DC component extraction unit 34 so that the potential difference between the drain electrode 17c and the common electrode 22 at the time of negative polarity of the drain voltage Vd and the common electrode 22 is substantially the same.
- a common voltage calculation unit 35 that calculates the common voltage Vcom based on.
- the inspection device 40 only needs to include at least the DC component extraction unit 34 and the common voltage calculation unit 35, and may further include various other functional units.
- the DC component extraction unit 34 has a DC component measurement meter. When an electric signal of the drain voltage Vd (AC) taken into the inspection device 40 is input, the DC component extraction unit 34 converts this into DC component Vd (DC) information, that is, The average value information is converted and output.
- the common voltage calculation unit 35 has a function of converting the DC component Vd (DC) information into a set value of the common voltage Vcom. Based on the DC component Vd (DC) information obtained by the DC component extraction unit 34, the common voltage calculation unit 35 A set value of the common voltage Vcom is calculated by the set conversion formula and output. In the present embodiment, since the common voltage Vcom is a constant value for each frame, the common voltage Vcom is equivalent to the DC component Vd (DC).
- the common voltage calculation unit 35 in the driving method of the liquid crystal display device in which the voltage applied to the common electrode 22 is shifted together with the polarity inversion of the drain voltage Vd, the voltage of the common electrode 22 for each frame is changed.
- the set value may be calculated, or in addition, the conversion formula may be appropriately determined in consideration of the driving method and the electrical characteristics of the display panel 11.
- the liquid crystal display device 10 is shipped as a product after being manufactured and inspected and adjusted by the inspection device 40. Specifically, when the liquid crystal display device 10 is manufactured, the inspection device 40 is connected to the terminal portion 33 of the inspection wiring 32 and writes the common voltage Vcom set value to the memory 36 provided in the driver 21. Connected as possible. Then, in the liquid crystal display device 10 connected to a power source (not shown), the dummy pixel 30B is AC driven over a predetermined frame period, and the electrical signal of the drain voltage Vd (AC) of the drain electrode 17c is supplied to the inspection wiring 32.
- the inspection device 40 is connected to the terminal portion 33 of the inspection wiring 32 and writes the common voltage Vcom set value to the memory 36 provided in the driver 21. Connected as possible. Then, in the liquid crystal display device 10 connected to a power source (not shown), the dummy pixel 30B is AC driven over a predetermined frame period, and the electrical signal of the drain voltage Vd (AC) of the drain electrode 17c is supplied to the inspection wiring 32
- the set value of the optimized common voltage Vcom is written in the memory 36 through the direct current component extraction unit 34 and the common voltage calculation unit 35 sequentially.
- the common voltage Vcom is generated by the common voltage generator 37 based on the set value of the common voltage Vcom stored in the memory 36.
- the display pixel 30A has the same electrical characteristics as the dummy pixel 30B, the potential difference between the pixel electrode 18A and the common electrode 22 is positive and negative as in the dummy pixel 30B.
- the liquid crystal display device 10 is in a state in which the occurrence of flicker is suppressed, that is, in a state in which flicker adjustment is performed.
- the series of operations up to this point can be automatically performed by the inspection apparatus 40 without any work such as a person checking and adjusting flicker.
- the liquid crystal display device 10 includes the array substrate 11b, the plurality of gate wirings 19 arranged in parallel on the array substrate 11b, and the gate wirings 19 arranged in parallel on the array substrate 11b. And a plurality of transparent electrodes respectively disposed in a region 31 (a pixel region 31A and a dummy pixel region 31B) formed by intersecting a plurality of source wires 20, a plurality of gate wires 19 and a plurality of source wires 20. (Pixel electrode 18A and dummy pixel electrode 18B) and a drain connected to a gate electrode 17a connected to the gate wiring 19, a source electrode 17b connected to the source wiring 20, and a transparent electrode 18, respectively.
- a plurality of TFTs 17 having an electrode 17c and a T disposed in the dummy pixel region 31B among the plurality of TFTs 17.
- An inspection wiring 32 connected to the drain electrode 17c of T17 and connectable to a DC component extraction unit 34 for extracting the DC component Vd (DC) of the drain voltage Vd applied to the drain electrode 17c;
- the liquid crystal display device 10 includes the inspection wiring 32 that can be connected to the direct current component extraction unit 34 that extracts the direct current component Vd (DC) of the voltage value of the drain electrode 17c.
- the DC component Vd (DC) of the voltage value of the drain electrode 17c can be extracted. For this reason, based on the DC component Vd (DC) information, for example, the potential difference between the transparent electrode 18 and the common electrode 22 can be adjusted to suppress flicker of the liquid crystal display device 10.
- the conventional liquid crystal panel has a specification in which the drain electrode potential cannot be confirmed. For this reason, the potential difference between the transparent electrode 18 and the common electrode 22 is adjusted while confirming the presence or absence of flicker by an optical sensor or visual inspection by an inspector so that the common voltage Vcom at which flicker is minimized is obtained. There was a need to adjust. Further, the adjustment method is analog, for example, by changing an electric signal such as a potential difference between the transparent electrode 18 and the common electrode 22 so that the flicker is minimized by visual observation or using a dedicated optical measuring instrument. It was common to adjust. On the other hand, in the present embodiment, by providing the inspection wiring 32, the potential of the drain electrode 17c can be directly confirmed, so it is not necessary to confirm the presence or absence of flicker.
- the common voltage Vcom can be determined based on the DC component Vd (DC) information, there is no error or work error for each worker in the adjustment, and the optimum common voltage Vcom is surely obtained. Can be determined.
- the array substrate 11b is divided into a display area AA and a non-display area NAA surrounding the display area AA, and the TFT 17 to which the inspection wiring 32 is connected is arranged in the non-display area NAA of the array substrate 11b.
- the plurality of gate lines 19 and the plurality of source lines 20 are arranged in a dummy pixel region 31B formed by intersecting. According to such a configuration, the inspection wiring 32 is not routed to the pixel region 31A, and the display quality of the liquid crystal display device 10 is not impaired by providing the inspection wiring 32.
- the common electrode 22 that forms a capacitance Clc with the transparent electrode 18 is further provided.
- the common electrode 22 When the drain voltage Vd is AC driven, the common electrode 22 has a positive polarity.
- the DC component extraction unit 34 extracts the potential difference between the drain electrode 17c and the common electrode 22 and the potential difference between the drain electrode 17c and the common electrode 22 at the time of the negative polarity.
- a common voltage Vcom calculated based on the DC component is applied. According to such a configuration, by adjusting the common voltage Vcom, the potential difference between the common electrode 22 is substantially the same when the drain voltage Vd is positive and negative, and therefore flicker is prevented. It can suppress suitably.
- the memory 36 stores a set value of the common voltage Vcom, and a common voltage generation unit 37 that generates the common voltage Vcom based on the set value of the common voltage Vcom stored in the memory 36, and includes a test wiring 32 includes a terminal unit 33 that can be connected to an inspection device 40 that includes a DC component extraction unit 34, and the inspection device 40 includes a common voltage calculation unit 35 that calculates a common voltage Vcom.
- the common voltage Vcom calculated by the common voltage calculation unit 35 of the inspection apparatus 40 is written. According to such a configuration, by using the inspection device 40, adjustment until generation of the optimized common voltage Vcom does not require, for example, an optical unit for detecting flicker, and the inspector can visually check. Thus, it is possible to automatically perform the operation without checking the presence or absence of flicker and adjusting the liquid crystal display device manually.
- the memory 36 and the common voltage generator 37 are provided on the array substrate 11b. According to such a configuration, by providing the memory 36 and the common voltage generation unit 37 on the array substrate 11b, the liquid crystal display device 10 in which flicker is preferably suppressed can be realized.
- a CF substrate 11A that is opposed to the array substrate 11b and on which the color filter 11h is disposed, and a liquid crystal layer 11c that is sandwiched between the array substrate 11b and the CF substrate 11A are provided.
- a liquid crystal display device 10 can be applied as a liquid crystal display device to various uses, for example, a display such as a portable information terminal or a television receiver.
- the inspection wiring 132 is connected to the drain electrode 17c of at least one display pixel 30A among the plurality of display pixels 30A provided in the display area AA.
- the display pixel 30A provided with the inspection wiring 132 is a display pixel 30A arranged around the display area AA, that is, a display pixel 30A adjacent to the non-display area NAA in consideration of the wiring path of the inspection wiring 132. It is preferable.
- the display pixel 30A provided with the inspection wiring 132 is different from the other display pixels 30A only in the presence or absence of the inspection wiring 132, and the other configurations such as the size, shape, wiring route, and the like of each electrode are the same.
- the drain voltage Vd of the other display pixel 30A can be estimated by measuring the drain voltage Vd of the display pixel 30A provided with the inspection wiring 132.
- the display pixel 30 ⁇ / b> A provided with the inspection wiring 132 can be said to be a drain voltage confirmation pixel for confirming the drain voltage Vd of the liquid crystal display device 110.
- the configuration of the inspection wiring 132 is the same as that of the above-described inspection wiring 32 of the first embodiment, and a description thereof will be omitted.
- the array substrate 11b is divided into a display area AA and a non-display area NAA surrounding the display area, and the TFT 17 to which the inspection wiring 132 is connected includes a plurality of gate wirings in the display area AA in the array substrate 11b. 19 and a plurality of source lines 20 are arranged in a pixel region 31A formed by crossing. According to such a configuration, even when it is difficult to secure the dummy pixel region 31B in the non-display region NAA with the narrowing of the frame of the liquid crystal display device 10, the voltage value of the drain electrode 17c in the pixel region 31A.
- the direct current component Vd (DC) can be extracted.
- a third embodiment of the present invention will be described with reference to FIG.
- the liquid crystal display device 210 according to the third embodiment is different from the first embodiment described above in that the memory 236 and the common voltage generation unit 237 are provided on the control circuit board (circuit board) 12.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the inspection device 40 is connected to the terminal portion 33 of the inspection wiring 32 and connected to the memory 236 provided in the control circuit board 12 so that the common voltage Vcom can be written. Then, in the liquid crystal display device 210 connected to a power source (not shown), the dummy pixel 30B is AC driven over a predetermined frame period, and the electrical signal of the drain voltage Vd (AC) of the drain electrode 17c is supplied to the inspection wiring 32. Directly into the inspection apparatus 40 via Then, in the inspection device 40, the set value of the optimized common voltage Vcom is written in the memory 236 through the direct current component extraction unit 34 and the common voltage calculation unit 35 sequentially.
- the common voltage Vcom is generated by the common voltage generation unit 237 based on the set value of the common voltage Vcom stored in the memory 236.
- the common voltage Vcom generated by the control circuit board 12 is applied to the common electrode 22 through the flexible board 13.
- the liquid crystal display device 310 of the fourth embodiment is different from the first embodiment described above in that it includes a direct current component extraction unit 334.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the DC component extraction unit 334 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 310. Similarly, a dummy pixel 30B is formed on the array substrate 11b. In this embodiment, the inspection wiring 32 connected to the drain electrode 17c of the dummy pixel 30B is connected to the terminal portion 33 or the external inspection device 40. It is directly connected to the DC component extraction unit 334 without a connection wiring. Then, the DC component extraction unit 334 processes the electrical signal of the drain voltage Vd taken from the drain electrode 17c of the dummy pixel 30B, and extracts the DC component Vd (DC).
- DC DC component Vd
- the liquid crystal display device 310 includes a common voltage generation unit 337 that generates a common voltage Vcom equivalent to the direct current component Vd (DC) based on the direct current component Vd (DC) information extracted by the direct current component extraction unit 334.
- the common voltage generation unit 337 is a circuit unit provided in the non-display area NAA in the array substrate 11b.
- the setting value of the common voltage Vcom can be appropriately optimized in accordance with the change in the direct current component Vd (DC) value. For this reason, the potential difference between the pixel electrode 18A and the common electrode 22 is substantially the same for each frame, regardless of the variation in the value of the drain voltage Vd ( ⁇ V value).
- the liquid crystal display device 310 further includes a DC component extraction unit 334 and a common voltage generation unit 337 that generates the common voltage Vcom based on the DC component extracted by the DC component extraction unit 334.
- the common voltage Vcom can be appropriately adjusted not only when the liquid crystal display device 310 is manufactured but also when the liquid crystal display device 310 is used. For example, flicker occurs due to a change in temperature or the like. Can be suppressed.
- flicker may occur due to, for example, a change in the temperature environment according to the usage situation.
- the values of the parasitic capacitance Cgd, capacitance, Clc, and storage capacitance Ccs change depending on the temperature, that is, the above-described ⁇ V changes depending on the temperature, so that the optimum flicker is minimized.
- the value of the common voltage Vcom and the like also changes depending on the environment such as temperature.
- the change in ⁇ V can be offset by changing the common voltage Vcom in accordance with the change in the parasitic capacitance Cgd, the electrostatic capacitance, Clc, and the storage capacitance Ccs, that is, ⁇ V.
- the set value of the common voltage Vcom is appropriately optimized, and the display quality can be maintained regardless of changes in the temperature environment or the like.
- the liquid crystal display device 410 according to the fifth embodiment further includes a common voltage calculation unit 435 in the liquid crystal display device 310 according to the fourth embodiment, and the DC component Vd (DC) information output from the DC component extraction unit 434 is the common voltage calculation.
- the difference is that the set value of the common voltage Vcom calculated there is input to the common voltage generation unit 437 via the unit 435.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the common voltage calculation unit 435 has a function of converting the DC component Vd (DC) information into a set value of the common voltage Vcom, and is set in advance based on the DC component Vd (DC) information obtained by the DC component extraction unit 434.
- the set value of the common voltage Vcom is calculated by the converted equation.
- the common voltage generation unit 437 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 410.
- the liquid crystal display device 410 includes a DC component extraction unit 434 and a common voltage calculation unit 435 that calculates a set value of the common voltage Vcom based on the DC component Vd (DC) extracted by the DC component extraction unit 434. And a common voltage generation unit 437 that generates the common voltage Vcom based on the set value of the common voltage Vcom calculated by the common voltage calculation unit 435. According to such a configuration, even if it is difficult to directly generate the common voltage Vcom from the direct current component Vd (DC) due to design constraints, the common voltage calculation unit 435 sets the set value of the common voltage Vcom. The common voltage Vcom can be generated based on the calculation.
- the liquid crystal display device 510 according to the sixth embodiment further includes a memory 536 in the liquid crystal display device 410 according to the fifth embodiment, and the setting value of the common voltage Vcom calculated by the common voltage calculation unit 535 is written into the memory 536.
- the difference is that the set value of the common voltage Vcom stored in the memory 536 is input to the common voltage generation unit 537.
- the memory 536 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 510, similarly to the DC component extraction unit 534 and the like.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the liquid crystal display device 510 includes a DC component extraction unit 534 and a common voltage calculation unit 535 that calculates a set value of the common voltage Vcom based on the DC component Vd (DC) extracted by the DC component extraction unit 534.
- a memory 536 that stores the set value of the common voltage Vcom calculated by the common voltage calculation unit 535, and a common voltage generation unit 537 that generates the common voltage Vcom based on the set value of the common voltage Vcom stored in the memory 536. And comprising.
- the load on the DC component extraction unit 534 and the common voltage calculation unit 535 is reduced by generating the common voltage Vcom based on the set value stored in the memory 536 for a certain period. Can do.
- a seventh embodiment of the present invention will be described with reference to FIG.
- the liquid crystal display device 610 of the seventh embodiment is different from the liquid crystal display device 10 of the first embodiment in that a plurality of inspection wirings 632 (two in this embodiment) are provided.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the inspection wiring 632 includes two inspection wirings 632A and 634B branched from the drain electrode 17c. According to such a configuration, when one of the inspection wirings 632A and 634B is disconnected at the time of manufacture, the other inspection wiring can be used as a backup, and therefore the array substrate 11b cannot be used. It can also be expected to improve the yield, such as eliminating the need for a state.
- the liquid crystal display device 710 of the eighth embodiment is different from the liquid crystal display device 10 of the first embodiment in that the inspection wiring 32 is arranged on the dummy pixel 30B, and the dummy wiring 738 is provided on the display pixel 30A.
- movement, and effect as above-mentioned Embodiment 1 is abbreviate
- the dummy wiring 738 is connected to the drain electrode 17c provided in the display pixel 30A, and is routed in the same manner as the inspection wiring 32.
- the dummy wiring 738 is used as a DC component extraction unit that extracts a DC component of the voltage value of the drain electrode 17c.
- the capacitance formed between the dummy wiring 738 and other electrodes and wirings in the display pixel 30A is the same as that between the inspection wiring 32 and other electrodes and wirings in the dummy pixel 30B. It is equivalent to the capacitance formed by In the present embodiment, the dummy wiring 738 is formed corresponding to the drain electrode 17c of all the display pixels 30A except the dummy pixel 30B.
- the dummy wiring 738 is also provided in the region 31 where the inspection wiring 32 is not arranged among the regions 31 formed by the intersection of the plurality of gate wirings 19 and the plurality of source wirings 20.
- This arrangement prevents the electrical characteristics of the region 31 (dummy pixel region 31B) in which the inspection wiring 32 is disposed and the region 31 (pixel region 31A) in which the inspection wiring 32 is not disposed from being different. can do.
- the drain voltage Vd of the display pixel 30A can be estimated from the drain voltage Vd captured from the inspection wiring 32 more preferably.
- the present invention is not limited to the embodiments described with reference to the above description and drawings.
- the following embodiments are also included in the technical scope of the present invention.
- (1) in addition to the above-described embodiments, for example, in the configuration in which the inspection wiring is provided in the display pixel of Embodiment 2, the dummy wiring disclosed in Embodiment 8 is further added to the display pixel in which the inspection wiring is not provided.
- the configuration may be provided, and the configurations of the respective embodiments may be appropriately combined without departing from the gist thereof.
- the method of adjusting the common voltage applied to the common electrode in order to adjust the flicker is exemplified, but the method of adjusting the flicker is not limited to this.
- the voltage value applied to the electrodes other than the common electrode may be adjusted as appropriate.
- the voltage application time per unit time applied to each electrode may be appropriately set. You may adjust.
- drain voltage check pixels a configuration in which one drain voltage check pixel (a dummy pixel, a display pixel provided with a test wiring) is provided is exemplified, but the number of drain voltage check pixels is not limited thereto. I can't.
- a plurality of drain voltage confirmation pixels may be provided.In that case, a common voltage setting value or the like is set based on an average value of a plurality of DC component information obtained from the plurality of drain voltage confirmation pixels. You may decide.
- the reference electrode in the common electrode or the auxiliary capacitance wiring is exemplified as having a constant potential between the positive polarity and the negative polarity of the drain electrode.
- the present invention can also be applied to a configuration in which the reference potential varies.
- the reference potential applied to the common electrode and the reference potential applied to the auxiliary capacitance wiring are shown to be the same potential.
- the reference potential applied to the common electrode is described above.
- the present invention can also be applied to a case where the reference potential applied to the auxiliary capacitor wiring is different from the reference potential.
- the TFT is exemplified as the switching element of the liquid crystal display device.
- the present invention can be applied to a liquid crystal display device using a switching element other than the TFT (for example, a thin film diode (TFD)).
- the present invention can be applied to a liquid crystal display device for monochrome display in addition to a liquid crystal display device for color display.
- the FFS type liquid crystal panel is exemplified, but the present invention can be applied to, for example, an IPS type liquid crystal panel. Furthermore, the present invention can also be applied to a VA liquid crystal panel or an MVA liquid crystal panel in which a common electrode is formed on the CF substrate side.
- the driver is mounted directly on the array substrate by COG, but the driver is mounted on a flexible substrate connected to the array substrate via the ACF. It is included in the present invention.
- the liquid crystal panel having a vertically long rectangular shape is illustrated, but the shape of the liquid crystal panel is not limited thereto.
- the present invention can be applied to a liquid crystal panel having a horizontally long square shape or a liquid crystal panel having a square shape.
- the present invention includes a configuration in which a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in each embodiment.
- a liquid crystal panel in which a touch panel pattern is directly formed is also included in the present invention.
- a transmissive liquid crystal display device including a backlight device that is an external light source is illustrated.
- the present invention is applied to a reflective liquid crystal display device that performs display using external light.
- the backlight device can be omitted.
- a liquid crystal panel having a configuration in which a liquid crystal layer is sandwiched between a pair of substrates has been exemplified.
- a display panel in which functional organic molecules other than a liquid crystal material are sandwiched between a pair of substrates is also applicable to.
- a liquid crystal display device using a liquid crystal panel as an example of the display panel has been illustrated.
- PDP plasma display panel
- organic EL panel organic EL panel
- CRT CRT
- the present invention is also applicable to a liquid crystal display device using a cathode ray tube (Cathode Ray Tube) or EPD (Electrophoretic Display Panel). In that case, the backlight device can be omitted.
- a liquid crystal panel is used as the display panel.
- a MEMS (Micro Electro Mechanical Systems) display panel that displays an image using light from a backlight device is used. It is also possible to use it.
- a number of minute mechanical shutters constituting display pixels are arranged in a plane in a matrix, and the opening and closing of each mechanical shutter is individually controlled, so that each display pixel is controlled by a backlight device. By adjusting the amount of transmitted light related to the light, an image with a predetermined gradation can be displayed.
- liquid crystal panels used for various electronic devices such as electronic ink paper are exemplified, but the present invention is also applicable to liquid crystal panels classified into medium-sized or large-sized (super-large) screens having a screen size of, for example, 20 inches to 90 inches. Applicable. In that case, the liquid crystal panel can be used for an electronic device such as a television receiver, an electronic signboard (digital signage), or an electronic blackboard.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
This liquid crystal display device (10) is provided with: an array substrate (11b); a plurality of gate lines (19); a plurality of source lines (20); a plurality of transparent electrodes (18) respectively disposed in regions (31) formed by the plurality of gate lines (19) and the plurality of source lines (20) intersecting with each other; a plurality of TFTs (17) respectively disposed in the regions (31) and having gate electrodes (17a) connected to the gate lines (19), source electrodes (17b) connected to the source lines (20), and drain electrodes (17c) connected to the transparent electrodes (18); and an inspection line (32) connected to a drain electrode (17c) of at least one TFT (17) from among the plurality of TFTs (17) and also connectable to a DC component extracting unit (34) for extracting a DC component Vd (DC) of a drain voltage Vd applied to the drain electrode (17c).
Description
本発明は、表示装置に関する。
The present invention relates to a display device.
液晶表示装置に用いられる液晶パネルは、一対のガラス基板間に液晶層が挟持された構成とされているが、そのうち一方のガラス基板は、スイッチング素子であるTFT及び画素電極を備えたアレイ基板として構成される。このアレイ基板は、ゲート配線とソース配線とが同基板上に格子状に設けられ、ゲート配線とソース配線との交差部にTFT及び画素電極が設けられた構成を有している。このような構成の液晶表示装置において、液晶分子の方向が特定方向を向いた状態になる、焼き付きと呼ばれる現象が生じることを抑制するために、画素電極とこれと対向する共通電極との間にフィールド周期で反転する電圧を印加する技術が知られている。このような技術を採用した場合、画素電極と共通電極との間に印加される電圧によっては、フリッカと呼ばれるちらつきが発生するおそれがある。
A liquid crystal panel used in a liquid crystal display device has a structure in which a liquid crystal layer is sandwiched between a pair of glass substrates. One of the glass substrates is an array substrate having TFTs and pixel electrodes as switching elements. Composed. This array substrate has a configuration in which gate wirings and source wirings are provided in a grid pattern on the substrate, and TFTs and pixel electrodes are provided at intersections of the gate wirings and the source wirings. In the liquid crystal display device having such a configuration, in order to suppress the occurrence of a phenomenon called burn-in, in which the liquid crystal molecules are oriented in a specific direction, the pixel electrode is interposed between the common electrode facing the pixel electrode. A technique for applying a voltage that reverses with a field period is known. When such a technique is employed, flicker called flicker may occur depending on the voltage applied between the pixel electrode and the common electrode.
下記特許文献1には、液晶表示パネルから出た透過光を集光レンズにより光センサの面上に集光せしめ当該光センサにより透過光のレベルを検出する光学ユニットを備え、その検出信号に基づいて、液晶表示パネルに備えられた複数のトリマを自動的に調整しフリッカを良好な状態に設定するとされる液晶表示パネル自動調整装置に係る技術が開示されている。
Patent Document 1 below includes an optical unit that collects transmitted light from a liquid crystal display panel on a surface of an optical sensor by a condensing lens and detects the level of transmitted light by the optical sensor, and based on the detection signal. Thus, a technology related to a liquid crystal display panel automatic adjustment device that automatically adjusts a plurality of trimmers provided in a liquid crystal display panel and sets flicker to a good state is disclosed.
(発明が解決しようとする課題)
しかしながら、上記した特許文献1に開示の液晶表示パネル自動調整装置を用いる場合には、光学ユニットにより透過光のレベルを検出する必要があり、光センサなどの大がかりな設備が必要となる。また、大がかりな設備を必要としない手法として、例えば、検査員の目視によりフリッカの有無を把握し、検査員が必要と判断したときに自らの手で液晶表示装置を調整するということも考えられるが、そのような手法では、検査員毎の判定誤差や調整作業に係る作業ミスが発生するおそれがある。 (Problems to be solved by the invention)
However, in the case of using the liquid crystal display panel automatic adjustment device disclosed in Patent Document 1 described above, it is necessary to detect the level of transmitted light using an optical unit, and a large-scale facility such as an optical sensor is required. In addition, as a technique that does not require large-scale equipment, for example, it is conceivable that the presence or absence of flicker is grasped by an inspector's visual observation, and the liquid crystal display device is adjusted by one's own hand when the inspector determines that it is necessary. However, with such a method, there is a possibility that a determination error for each inspector or a work error related to the adjustment work may occur.
しかしながら、上記した特許文献1に開示の液晶表示パネル自動調整装置を用いる場合には、光学ユニットにより透過光のレベルを検出する必要があり、光センサなどの大がかりな設備が必要となる。また、大がかりな設備を必要としない手法として、例えば、検査員の目視によりフリッカの有無を把握し、検査員が必要と判断したときに自らの手で液晶表示装置を調整するということも考えられるが、そのような手法では、検査員毎の判定誤差や調整作業に係る作業ミスが発生するおそれがある。 (Problems to be solved by the invention)
However, in the case of using the liquid crystal display panel automatic adjustment device disclosed in Patent Document 1 described above, it is necessary to detect the level of transmitted light using an optical unit, and a large-scale facility such as an optical sensor is required. In addition, as a technique that does not require large-scale equipment, for example, it is conceivable that the presence or absence of flicker is grasped by an inspector's visual observation, and the liquid crystal display device is adjusted by one's own hand when the inspector determines that it is necessary. However, with such a method, there is a possibility that a determination error for each inspector or a work error related to the adjustment work may occur.
本発明は上記のような事情に基づいて完成されたものであって、フリッカの発生を抑制可能な表示装置を提供することを目的とする。
The present invention has been completed based on the above circumstances, and an object thereof is to provide a display device capable of suppressing the occurrence of flicker.
(課題を解決するための手段)
本発明の表示装置は、基板と、前記基板上に並列配置される複数のゲート配線と、前記基板上に前記ゲート配線と交差して並列配置される複数のソース配線と、複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成される領域にそれぞれ配置される複数の透明電極と、前記領域にそれぞれ配置され、前記ゲート配線と接続されるゲート電極、前記ソース配線と接続されるソース電極、および前記透明電極と接続されるドレイン電極を有する複数のスイッチング素子と、前記複数のスイッチング素子のうち少なくとも一つのスイッチング素子の前記ドレイン電極に接続されるとともに、当該ドレイン電極に印加される電圧の直流成分を抽出する直流成分抽出部に接続可能とされた検査用配線と、を備える。 (Means for solving the problem)
The display device of the present invention includes a substrate, a plurality of gate wirings arranged in parallel on the substrate, a plurality of source wirings arranged in parallel across the gate wiring on the substrate, and a plurality of the gate wirings And a plurality of transparent electrodes respectively disposed in a region formed by intersecting the plurality of source wirings, a gate electrode disposed in each of the regions and connected to the gate wiring, and connected to the source wiring A plurality of switching elements having a source electrode and a drain electrode connected to the transparent electrode, and connected to the drain electrode of at least one of the plurality of switching elements and applied to the drain electrode And a wiring for inspection that can be connected to a DC component extraction unit that extracts a DC component of the voltage to be detected.
本発明の表示装置は、基板と、前記基板上に並列配置される複数のゲート配線と、前記基板上に前記ゲート配線と交差して並列配置される複数のソース配線と、複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成される領域にそれぞれ配置される複数の透明電極と、前記領域にそれぞれ配置され、前記ゲート配線と接続されるゲート電極、前記ソース配線と接続されるソース電極、および前記透明電極と接続されるドレイン電極を有する複数のスイッチング素子と、前記複数のスイッチング素子のうち少なくとも一つのスイッチング素子の前記ドレイン電極に接続されるとともに、当該ドレイン電極に印加される電圧の直流成分を抽出する直流成分抽出部に接続可能とされた検査用配線と、を備える。 (Means for solving the problem)
The display device of the present invention includes a substrate, a plurality of gate wirings arranged in parallel on the substrate, a plurality of source wirings arranged in parallel across the gate wiring on the substrate, and a plurality of the gate wirings And a plurality of transparent electrodes respectively disposed in a region formed by intersecting the plurality of source wirings, a gate electrode disposed in each of the regions and connected to the gate wiring, and connected to the source wiring A plurality of switching elements having a source electrode and a drain electrode connected to the transparent electrode, and connected to the drain electrode of at least one of the plurality of switching elements and applied to the drain electrode And a wiring for inspection that can be connected to a DC component extraction unit that extracts a DC component of the voltage to be detected.
本発明の表示装置は、ドレイン電極の電圧値の直流成分を抽出する直流成分抽出部に接続可能とされた検査用配線を備えるから、検査用配線を介してドレイン電極の電圧値の直流成分を抽出することができる。このため、当該直流成分情報に基づいて、例えば、透明電極と共通電極との間の電位差を調整して、表示装置のフリッカを抑制することができる。
Since the display device of the present invention includes the inspection wiring that can be connected to the direct current component extraction unit that extracts the direct current component of the voltage value of the drain electrode, the direct current component of the voltage value of the drain electrode can be obtained via the inspection wiring. Can be extracted. For this reason, based on the DC component information, for example, the potential difference between the transparent electrode and the common electrode can be adjusted to suppress flicker of the display device.
本発明の実施態様として、次の構成が好ましい。
(1)前記基板は、表示領域と前記表示領域を取り囲む非表示領域とに区分され、前記検査用配線が接続された前記スイッチング素子は、前記基板における前記非表示領域において複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成されるダミー画素領域に配置されている。このような構成によれば、検査用配線が画素領域に引き廻されることがなく、検査用配線を設けたことにより、表示装置の表示品位を損なうことがない。 The following configuration is preferable as an embodiment of the present invention.
(1) The substrate is divided into a display region and a non-display region surrounding the display region, and the switching element to which the inspection wiring is connected includes a plurality of gate wirings in the non-display region of the substrate. The plurality of source lines are arranged in a dummy pixel region formed by intersecting. According to such a configuration, the inspection wiring is not routed to the pixel region, and the display quality of the display device is not impaired by providing the inspection wiring.
(1)前記基板は、表示領域と前記表示領域を取り囲む非表示領域とに区分され、前記検査用配線が接続された前記スイッチング素子は、前記基板における前記非表示領域において複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成されるダミー画素領域に配置されている。このような構成によれば、検査用配線が画素領域に引き廻されることがなく、検査用配線を設けたことにより、表示装置の表示品位を損なうことがない。 The following configuration is preferable as an embodiment of the present invention.
(1) The substrate is divided into a display region and a non-display region surrounding the display region, and the switching element to which the inspection wiring is connected includes a plurality of gate wirings in the non-display region of the substrate. The plurality of source lines are arranged in a dummy pixel region formed by intersecting. According to such a configuration, the inspection wiring is not routed to the pixel region, and the display quality of the display device is not impaired by providing the inspection wiring.
(2)前記基板は、表示領域と前記表示領域を取り囲む非表示領域とに区分され、前記検査用配線が接続された前記スイッチング素子は、前記基板における前記表示領域において複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成される画素領域に配置されている。このような構成によれば、表示装置の狭額縁化に伴い、非表示領域にゲート配線とソース配線とが交差することによって形成される領域を確保することが難しい場合であっても、画素領域においてドレイン電極の電圧値の直流成分を抽出することができる。
(2) The substrate is divided into a display region and a non-display region surrounding the display region, and the switching element to which the inspection wiring is connected includes a plurality of gate wirings and a plurality of gate wirings in the display region of the substrate. Are arranged in a pixel region formed by crossing the source wiring. According to such a configuration, even when it is difficult to secure a region formed by the intersection of the gate wiring and the source wiring in the non-display region due to the narrow frame of the display device, the pixel region The DC component of the drain electrode voltage value can be extracted.
(3)前記透明電極との間で静電容量を形成する共通電極を更に備え、前記共通電極には、前記ドレイン電極に印加されるドレイン電圧が交流電圧である場合において、その正極性時における前記ドレイン電極と当該共通電極との間の電位差とその負極性時における前記ドレイン電極と当該共通電極との間の電位差とが略同じとなるように、前記直流成分抽出部で抽出された直流成分に基づいて算出された共通電圧が印加される。このような構成によれば、共通電圧を調整することで、ドレイン電圧の正極性時と負極性時とで共通電極との間の電位差が略同じとされるから、フリッカの発生を好適に抑制することができる。
(3) A common electrode that forms a capacitance with the transparent electrode is further provided. When the drain voltage applied to the drain electrode is an alternating voltage, the common electrode has a positive polarity. The direct current component extracted by the direct current component extraction unit so that the potential difference between the drain electrode and the common electrode and the potential difference between the drain electrode and the common electrode at the time of the negative polarity are substantially the same. A common voltage calculated based on the above is applied. According to such a configuration, by adjusting the common voltage, the potential difference between the common electrode is substantially the same between the positive polarity and the negative polarity of the drain voltage, and thus the occurrence of flicker is suitably suppressed. can do.
(4)前記共通電圧の設定値を記憶する記憶部と、前記記憶部に記憶された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備え、前記検査用配線は、前記直流成分抽出部を備える検査装置に接続可能とされた端子部を有し、前記検査装置は、前記共通電圧の設定値を算出する共通電圧算出部を更に備えており、前記記憶部には、前記検査装置の前記共通電圧算出部で算出された前記共通電圧の設定値が書き込まれる。このような構成によれば、検査装置を用いることで、最適化された共通電圧の生成までの調整を、例えば、フリッカを検出する光学ユニット等を必要とせず、また、検査員が目視でフリッカの有無を確認して、手作業で表示装置を調整する等の作業を経ることなく、自動で行うことができる。
(4) a storage unit that stores a setting value of the common voltage; and a common voltage generation unit that generates the common voltage based on the setting value of the common voltage stored in the storage unit, The wiring for use has a terminal portion that can be connected to an inspection device including the DC component extraction unit, and the inspection device further includes a common voltage calculation unit that calculates a set value of the common voltage, The setting value of the common voltage calculated by the common voltage calculation unit of the inspection apparatus is written in the storage unit. According to such a configuration, by using the inspection apparatus, adjustment until the generation of the optimized common voltage is not required, for example, an optical unit for detecting flicker or the like, and the inspector visually checks the flicker. It is possible to automatically perform the operation without checking the presence or absence and adjusting the display device manually.
(5)前記記憶部と前記共通電圧生成部とは、前記基板上に設けられている。このような構成によれば、記憶部と共通電圧生成部を基板上に設けることで、好適にフリッカが抑制された表示装置を実現可能となる。
(5) The storage unit and the common voltage generation unit are provided on the substrate. According to such a configuration, by providing the storage unit and the common voltage generation unit on the substrate, it is possible to realize a display device in which flicker is preferably suppressed.
(6)前記共通電極に電圧を供給するための回路基板を更に備え、前記記憶部と前記共通電圧生成部とは、前記回路基板に設けられている。このような構成によれば、表示装置の狭額縁化に伴い、記憶部と共通電圧生成部を基板上に設けることが難しい場合であっても、記憶部と共通電圧生成部を回路基板に設けることで、好適にフリッカが抑制された表示装置を実現可能となる。
(6) A circuit board for supplying a voltage to the common electrode is further provided, and the storage unit and the common voltage generation unit are provided on the circuit board. According to such a configuration, the storage unit and the common voltage generation unit are provided on the circuit board even when it is difficult to provide the storage unit and the common voltage generation unit on the substrate due to the narrow frame of the display device. Thus, it is possible to realize a display device in which flicker is preferably suppressed.
(7)前記直流成分抽出部と、前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える。このような構成によれば、液晶表示装置の製造時のみならず、液晶表示装置の使用時においても適宜共通電圧の調整をすることができ、例えば、温度環境等の変化によりフリッカが発生することを抑制することができる。
(7) The apparatus further includes the DC component extraction unit and a common voltage generation unit that generates the common voltage based on the DC component extracted by the DC component extraction unit. According to such a configuration, the common voltage can be appropriately adjusted not only when the liquid crystal display device is manufactured but also when the liquid crystal display device is used. For example, flicker occurs due to a change in temperature environment or the like. Can be suppressed.
(8)前記直流成分抽出部と、前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧の設定値を算出する共通電圧算出部と、前記共通電圧算出部で算出された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える。このような構成によれば、設計制約上、直接的に直流成分から共通電圧を生成することが難しい場合であっても、共通電圧算出部で共通電圧の設定値を算出して、これに基づいて共通電圧を生成することができる。
(8) Based on the DC component extraction unit, the DC component extracted by the DC component extraction unit, a common voltage calculation unit that calculates a set value of the common voltage, and the common voltage calculated by the common voltage calculation unit A common voltage generation unit configured to generate the common voltage based on a voltage setting value; According to such a configuration, even if it is difficult to generate the common voltage directly from the direct current component due to design constraints, the common voltage calculation unit calculates the common voltage setting value and based on this Common voltage can be generated.
(9)前記直流成分抽出部と、前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧の設定値を算出する共通電圧算出部と、前記共通電圧算出部で算出された前記共通電圧の設定値を記憶する記憶部と、前記記憶部に記憶された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える。このような構成によれば、一定期間は、記憶部に記憶された設定値に基づいて共通電圧を生成することで、直流成分抽出部や共通電圧算出部への負荷を軽減することができる。
(9) The DC component extraction unit, a common voltage calculation unit that calculates a set value of the common voltage based on the DC component extracted by the DC component extraction unit, and the common voltage calculated by the common voltage calculation unit A storage unit that stores a set value of the voltage; and a common voltage generation unit that generates the common voltage based on the set value of the common voltage stored in the storage unit. According to such a configuration, the load on the DC component extraction unit and the common voltage calculation unit can be reduced by generating the common voltage based on the set value stored in the storage unit for a certain period.
(10)前記検査用配線は、前記ドレイン電極から分岐して複数設けられている。このような構成によれば、製造時に検査用配線が1本断線してしまった場合に、別の検査用配線をバックアップ用として使用することが出来る為、基板を使用不可状態にせずに済むといった、歩留まり向上の効果なども期待できる。
(10) A plurality of the inspection wirings are provided branched from the drain electrode. According to such a configuration, when one inspection wiring is disconnected at the time of manufacture, another inspection wiring can be used as a backup, so that it is not necessary to make the substrate unusable. Also, it can be expected to improve the yield.
(11)前記複数のスイッチング素子のうち少なくとも一つのスイッチング素子の前記ドレイン電極に接続され、前記検査用配線と同様に配索される一方、当該ドレイン電極の電圧値の直流成分を抽出する直流成分抽出部に接続されないダミー配線を更に備える。このような構成によれば、ゲート配線とソース配線とが交差することによって形成される領域のうち、検査用配線が配されていない領域にダミー配線を配することで、検査用配線が配された領域と、検査用配線が配されていない領域とで電気的な特性が異なる事態を抑制することができる。
(11) A DC component that is connected to the drain electrode of at least one switching element among the plurality of switching elements and is arranged in the same manner as the inspection wiring, and extracts a DC component of a voltage value of the drain electrode. A dummy wiring not connected to the extraction unit is further provided. According to such a configuration, the inspection wiring is arranged by arranging the dummy wiring in the area where the inspection wiring is not arranged in the area formed by the intersection of the gate wiring and the source wiring. It is possible to suppress a situation in which the electrical characteristics differ between the region where the inspection wiring is arranged and the region where the inspection wiring is not arranged.
(12)前記基板と対向状をなすとともにカラーフィルタが配された対向基板と、前記基板と前記対向基板との間に挟持される液晶層と、を備える。このような表示装置は液晶表示装置として、種々の用途、例えば携帯型情報端末やテレビ受信装置などのディスプレイ等に適用可能である。
(12) A counter substrate that is opposed to the substrate and on which a color filter is disposed, and a liquid crystal layer that is sandwiched between the substrate and the counter substrate. Such a display device can be applied as a liquid crystal display device to various uses, for example, a display such as a portable information terminal or a television receiver.
(発明の効果)
本発明によれば、フリッカの発生を抑制可能な表示装置を提供することができる。 (The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the display apparatus which can suppress generation | occurrence | production of flicker can be provided.
本発明によれば、フリッカの発生を抑制可能な表示装置を提供することができる。 (The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the display apparatus which can suppress generation | occurrence | production of flicker can be provided.
<実施形態1>
本発明の実施形態1を図1から図5によって説明する。本実施形態では、表示装置として液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面において共通の方向となるように描かれている。また、上下方向については、図2を基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。 <Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquidcrystal display device 10 is illustrated as a display device. A part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and the directions of the axes are drawn in common directions in the drawings. As for the vertical direction, FIG. 2 is used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
本発明の実施形態1を図1から図5によって説明する。本実施形態では、表示装置として液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面において共通の方向となるように描かれている。また、上下方向については、図2を基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。 <Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquid
液晶表示装置(表示装置)10は、図1及び図2に示すように、画像を表示可能な表示領域AA及び表示領域AA外の非表示領域NAAを有する液晶パネル11と、液晶パネル11を駆動するドライバ(パネル駆動部)21と、ドライバ21に対して各種入力信号を外部から供給する制御回路基板(回路基板)12と、液晶パネル11と外部の制御回路基板12とを電気的に接続するフレキシブル基板(外部接続部品)13と、液晶パネル11に光を供給する外部光源であるバックライト装置(照明装置)14とを備える。また、液晶表示装置10は、相互に組み付けた液晶パネル11及びバックライト装置14を収容・保持するための表裏一対の外装部材15,16をも備えており、このうち表側の外装部材15には、液晶パネル11の表示領域AAに表示された画像を外部から視認させるための開口部15aが形成されている。本実施形態に係る液晶表示装置10は、ノートパソコン(タブレット型ノートパソコンなどを含む)、携帯電話(スマートフォンなどを含む)、携帯型情報端末(電子ブックやPDAなどを含む)、デジタルフォトフレーム、携帯型ゲーム機、電子インクペーパなどの各種電子機器(図示せず)に用いられるものである。このため、液晶表示装置10を構成する液晶パネル11の画面サイズは、数インチ~10数インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。
As shown in FIGS. 1 and 2, the liquid crystal display device (display device) 10 drives a liquid crystal panel 11 having a display area AA capable of displaying an image and a non-display area NAA outside the display area AA, and the liquid crystal panel 11. The driver (panel drive unit) 21 to be connected, the control circuit board (circuit board) 12 for supplying various input signals to the driver 21 from the outside, and the liquid crystal panel 11 and the external control circuit board 12 are electrically connected. A flexible substrate (external connection component) 13 and a backlight device (illumination device) 14 that is an external light source that supplies light to the liquid crystal panel 11 are provided. The liquid crystal display device 10 also includes a pair of front and back exterior members 15 and 16 for housing and holding the liquid crystal panel 11 and the backlight device 14 assembled to each other. In addition, an opening 15a for allowing an image displayed in the display area AA of the liquid crystal panel 11 to be visually recognized from the outside is formed. The liquid crystal display device 10 according to the present embodiment includes a notebook computer (including a tablet notebook computer), a mobile phone (including a smartphone), a portable information terminal (including an electronic book, a PDA, etc.), a digital photo frame, It is used for various electronic devices (not shown) such as portable game machines and electronic ink paper. For this reason, the screen size of the liquid crystal panel 11 constituting the liquid crystal display device 10 is set to about several inches to several tens of inches, and is generally classified into a small size and a small size.
先にバックライト装置14について簡単に説明する。バックライト装置14は、図2に示すように、表側(液晶パネル11側)に向けて開口した略箱形をなすシャーシ14aと、シャーシ14a内に配された図示しない光源(例えば冷陰極管、LED、有機ELなど)と、シャーシ14aの開口部を覆う形で配される図示しない光学部材とを備える。光学部材は、光源から発せられる光を面状に変換するなどの機能を有するものである。
First, the backlight device 14 will be briefly described. As shown in FIG. 2, the backlight device 14 includes a chassis 14a having a substantially box shape that opens toward the front side (the liquid crystal panel 11 side), and a light source (not shown) disposed in the chassis 14a (for example, a cold cathode tube, LED, organic EL, etc.) and an optical member (not shown) arranged to cover the opening of the chassis 14a. The optical member has a function of converting light emitted from the light source into a planar shape.
続いて、液晶パネル11について説明する。液晶パネル11は、図1に示すように、全体として縦長な方形状(矩形状)をなしており、その長辺方向における一方の端部側(図1に示す上側)に片寄った位置に表示部(アクティブエリア)AAが配されるとともに、長辺方向における他方の端部側(図1に示す下側)に片寄った位置にドライバ21及びフレキシブル基板13がそれぞれ取り付けられている。この液晶パネル11において表示領域AA外の領域が、画像が表示されない非表示部(ノンアクティブエリア)NAAとされ、この非表示領域NAAは、表示領域AAを取り囲む略枠状の領域(後述するCF基板11aにおける額縁部分)と、長辺方向の他方の端部側に確保された領域(後述するアレイ基板11bのうちCF基板11aとは重畳せずに露出する部分)とからなり、このうちの長辺方向の他方の端部側に確保された領域にドライバ21及びフレキシブル基板13の実装領域が含まれている。液晶パネル11における短辺方向が各図面のX軸方向と一致し、長辺方向が各図面のY軸方向と一致している。なお、図1では、CF基板11aよりも一回り小さな枠状の一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。
Subsequently, the liquid crystal panel 11 will be described. As shown in FIG. 1, the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and is displayed at a position offset toward one end side (the upper side shown in FIG. 1) in the long side direction. A portion (active area) AA is arranged, and a driver 21 and a flexible substrate 13 are respectively attached at positions offset toward the other end side (the lower side shown in FIG. 1) in the long side direction. In the liquid crystal panel 11, an area outside the display area AA is a non-display area (non-active area) NAA in which no image is displayed. The non-display area NAA is a substantially frame-shaped area (CF described later) surrounding the display area AA. Frame portion in the substrate 11a) and a region (the portion exposed without overlapping with the CF substrate 11a in the array substrate 11b to be described later) secured on the other end side in the long side direction. The area secured on the other end side in the long side direction includes the mounting area for the driver 21 and the flexible substrate 13. The short side direction in the liquid crystal panel 11 coincides with the X-axis direction of each drawing, and the long side direction coincides with the Y-axis direction of each drawing. In FIG. 1, a frame-shaped one-dot chain line that is slightly smaller than the CF substrate 11a represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA.
続いて、液晶パネル11に接続される部材について説明する。制御回路基板12は、図1及び図2に示すように、バックライト装置14におけるシャーシ14aの裏面(液晶パネル11側とは反対側の外面)にネジなどにより取り付けられている。この制御回路基板12は、紙フェノールないしはガラスエポキシ樹脂製の基板上に、ドライバ21に各種入力信号を供給するための電子部品が実装されるとともに、図示しない所定のパターンの配線(導電路)が配索形成されている。この制御回路基板12には、フレキシブル基板13の一方の端部(一端側)が図示しないACF(Anisotropic Conductive Film)を介して電気的に且つ機械的に接続されている。
Subsequently, members connected to the liquid crystal panel 11 will be described. As shown in FIGS. 1 and 2, the control circuit board 12 is attached to the back surface of the chassis 14a (the outer surface opposite to the liquid crystal panel 11 side) of the backlight device 14 with screws or the like. The control circuit board 12 is mounted with electronic components for supplying various input signals to the driver 21 on a board made of paper phenol or glass epoxy resin, and wiring (conductive path) of a predetermined pattern (not shown) is provided. Routed formation. One end (one end side) of the flexible substrate 13 is electrically and mechanically connected to the control circuit board 12 via an ACF (Anisotropic Conductive Film) (not shown).
フレキシブル基板(FPC基板)13は、図2に示すように、絶縁性及び可撓性を有する合成樹脂材料(例えばポリイミド系樹脂等)からなる基材を備え、その基材上に多数本の配線パターン(図示せず)を有しており、長さ方向についての一方の端部が既述した通りシャーシ14aの裏面側に配された制御回路基板12に接続されるのに対し、他方の端部(他端側)が液晶パネル11におけるアレイ基板11bに接続されているため、液晶表示装置10内では断面形状が略U型となるよう折り返し状に屈曲されている。フレキシブル基板13における長さ方向についての両端部においては、配線パターンが外部に露出して端子部(図示せず)を構成しており、これらの端子部がそれぞれ制御回路基板12及び液晶パネル11に対して電気的に接続されている。これにより、制御回路基板12側から供給される入力信号を液晶パネル11側に伝送することが可能とされている。
As shown in FIG. 2, the flexible substrate (FPC substrate) 13 includes a base material made of a synthetic resin material (for example, polyimide resin) having insulating properties and flexibility, and a large number of wirings are provided on the base material. It has a pattern (not shown), and one end in the length direction is connected to the control circuit board 12 arranged on the back side of the chassis 14a as described above, while the other end Since the portion (the other end side) is connected to the array substrate 11 b in the liquid crystal panel 11, the liquid crystal display device 10 is bent in a folded shape so that the cross-sectional shape is substantially U-shaped. At both ends of the flexible substrate 13 in the length direction, the wiring pattern is exposed to the outside to form terminal portions (not shown), and these terminal portions are respectively connected to the control circuit board 12 and the liquid crystal panel 11. Are electrically connected to each other. Thereby, an input signal supplied from the control circuit board 12 side can be transmitted to the liquid crystal panel 11 side.
ドライバ21は、図1に示すように、内部に駆動回路を有するLSIチップからなるものとされ、信号供給源である制御回路基板12から供給される信号に基づいて作動する。具体的には、制御回路基板12から供給される入力信号を処理して出力信号を生成し、その出力信号を液晶パネル11の表示領域AAへ向けて出力するものとされる。また、本実施形態では、ドライバ21は、後述する共通電極22に印加される共通電圧Vcomの設定値を記憶するメモリ(記憶部)36と、メモリ36に記憶された共通電圧Vcomの設定値に基づき、共通電圧Vcomを生成する共通電圧生成部37と、を有する。このドライバ21は、平面に視て横長の方形状をなす(液晶パネル11の短辺に沿って長手状をなす)とともに、液晶パネル11のアレイ基板11bにおける非表示領域NAAに対して直接実装され、つまりCOG(Chip On Glass)実装されている。なお、ドライバ21の長辺方向がX軸方向(液晶パネル11の短辺方向)と一致し、同短辺方向がY軸方向(液晶パネル11の長辺方向)と一致している。
As shown in FIG. 1, the driver 21 is composed of an LSI chip having a drive circuit therein, and operates based on a signal supplied from a control circuit board 12 that is a signal supply source. Specifically, an input signal supplied from the control circuit board 12 is processed to generate an output signal, and the output signal is output toward the display area AA of the liquid crystal panel 11. In the present embodiment, the driver 21 uses a memory (storage unit) 36 that stores a setting value of a common voltage Vcom applied to the common electrode 22 described later, and a setting value of the common voltage Vcom stored in the memory 36. And a common voltage generator 37 for generating the common voltage Vcom. The driver 21 has a horizontally long shape when viewed in a plan view (has a long shape along the short side of the liquid crystal panel 11) and is directly mounted on the non-display area NAA of the array substrate 11b of the liquid crystal panel 11. That is, COG (Chip On Glass) is mounted. The long side direction of the driver 21 coincides with the X-axis direction (the short side direction of the liquid crystal panel 11), and the short side direction coincides with the Y-axis direction (the long side direction of the liquid crystal panel 11).
改めて、液晶パネル11について説明する。液晶パネル11は、図2に示すように、一対の基板11a,11bと、両基板11a,11b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層(液晶)11cとを備え、両基板11a,11bが液晶層11cの厚さ分のギャップを維持した状態でシール剤11dによって貼り合わせられている。本実施形態に係る液晶パネル11は、動作モードがIPS(In-Plane Switching)モードをさらに改良したFFS(Fringe Field Switching)モードであり、一対の基板11a,11bのうちのアレイ基板(特許請求の範囲に記載の基板)11b側に後述する透明電極18及び共通電極(対向電極、コモン電極)22を共に形成し、且つこれら透明電極18と共通電極22とを異なる層に配してなるものである。一対の基板11a,11bのうち表側(正面側)がCF基板(対向基板)11aとされ、裏側(背面側)がアレイ基板11bとされる。このうち、CF基板11aは、図1及び図2に示すように、短辺寸法がアレイ基板11bと概ね同等であるものの、長辺寸法がアレイ基板11bよりも小さなものとされるとともに、アレイ基板11bに対して長辺方向についての一方(図1に示す上側)の端部を揃えた状態で貼り合わせられている。従って、アレイ基板11bのうち長辺方向についての他方(図1に示す下側)の端部は、所定範囲にわたってCF基板11aが重なり合うことがなく、表裏両板面が外部に露出した状態とされており、ここにドライバ21及びフレキシブル基板13の実装領域が確保されている。
The liquid crystal panel 11 will be described again. As shown in FIG. 2, the liquid crystal panel 11 includes a pair of substrates 11a and 11b, and a liquid crystal layer including liquid crystal molecules that are interposed between the substrates 11a and 11b and that are substances whose optical characteristics change with application of an electric field. Liquid crystal) 11c, and both substrates 11a and 11b are bonded together with a sealant 11d while maintaining a gap corresponding to the thickness of the liquid crystal layer 11c. The liquid crystal panel 11 according to the present embodiment is an FFS (Fringe Field Switching) mode in which the operation mode is further improved from the IPS (In-Plane Field Switching) mode, and is an array substrate (see Claims) of the pair of substrates 11a and 11b. A transparent electrode 18 and a common electrode (counter electrode, common electrode) 22 which will be described later are formed on the substrate 11b side, and the transparent electrode 18 and the common electrode 22 are arranged in different layers. is there. The front side (front side) of the pair of substrates 11a and 11b is a CF substrate (counter substrate) 11a, and the back side (back side) is an array substrate 11b. Among these, the CF substrate 11a has a short side dimension substantially equal to that of the array substrate 11b as shown in FIGS. 1 and 2, but the long side dimension is smaller than that of the array substrate 11b. It is bonded to 11b with one end (upper side shown in FIG. 1) in the long side direction aligned. Therefore, the other end (the lower side shown in FIG. 1) of the array substrate 11b in the long side direction is in a state in which the CF substrate 11a does not overlap over a predetermined range and both the front and back plate surfaces are exposed to the outside. Here, a mounting area for the driver 21 and the flexible board 13 is secured.
続いて、アレイ基板11bの構成について順次に説明する。アレイ基板11bには、図3に示すように、複数のゲート配線19がアレイ基板11b上に並列配置されるとともに、複数のソース配線20がアレイ基板11b上にゲート配線19と交差して並列配置されており、ゲート配線(走査信号線、行制御線)19とソース配線(データ信号線、列制御線)20とが交差することによって形成される領域31に複数の透明電極18がそれぞれ配置されている。そして、領域31には、各透明電極18に対応して複数のTFT17が、それぞれ配置されている。言い換えると、スイッチング素子であるTFT17、及び透明電極18が多数個ずつマトリクス状に並んで設けられるとともに、これらTFT17及び透明電極18の周りには、格子状をなすゲート配線19及びソース配線20が取り囲むようにして配設されている。ゲート配線19は、透明電極18の一端部に対して平面に視て(アレイ基板11bの板面に対する法線方向から視て)重畳する配置とされる。このため、ゲート配線19と透明電極18との間には、寄生容量Cgdが形成されている(図3を参照)。
Subsequently, the configuration of the array substrate 11b will be described sequentially. In the array substrate 11b, as shown in FIG. 3, a plurality of gate wirings 19 are arranged in parallel on the array substrate 11b, and a plurality of source wirings 20 are arranged in parallel across the gate wiring 19 on the array substrate 11b. A plurality of transparent electrodes 18 are arranged in a region 31 formed by intersecting a gate wiring (scanning signal line, row control line) 19 and a source wiring (data signal line, column control line) 20, respectively. ing. In the region 31, a plurality of TFTs 17 are arranged corresponding to the respective transparent electrodes 18. In other words, a large number of TFTs 17 and transparent electrodes 18 that are switching elements are provided in a matrix, and the gate lines 19 and source lines 20 that form a lattice surround the TFTs 17 and the transparent electrodes 18. It is arranged in this way. The gate wiring 19 is arranged so as to overlap with one end of the transparent electrode 18 in a plan view (viewed from a normal direction to the plate surface of the array substrate 11b). For this reason, a parasitic capacitance Cgd is formed between the gate wiring 19 and the transparent electrode 18 (see FIG. 3).
ここで、ゲート配線(走査信号線、行制御線)19とソース配線(データ信号線、列制御線)20とが交差することによって形成される領域31のうち、表示領域AAに配置されるものを、画素領域31Aと呼ぶとともに、非表示領域NAAに配置されるものをダミー画素領域31Bと呼び、互いに区別する。これらの画素領域31Aおよびダミー画素領域31Bを総称する場合には、単に領域31と呼ぶ。また、透明電極18のうち、画素領域31Aに配置されるものを画素電極18Aと呼ぶとともに、ダミー画素領域31Bに配置されるものをダミー画素電極18Bと呼び、互いに区別する。これらの画素電極18Aおよびダミー画素電極18Bを総称する場合には、単に透明電極18と呼ぶ。
Here, among the areas 31 formed by the intersection of the gate lines (scanning signal lines, row control lines) 19 and the source lines (data signal lines, column control lines) 20, those arranged in the display area AA Are referred to as a pixel area 31A, and those arranged in the non-display area NAA are referred to as a dummy pixel area 31B and are distinguished from each other. The pixel region 31A and the dummy pixel region 31B are collectively referred to as a region 31 when collectively referred to. Further, among the transparent electrodes 18, the one disposed in the pixel region 31 </ b> A is referred to as a pixel electrode 18 </ b> A, and the one disposed in the dummy pixel region 31 </ b> B is referred to as a dummy pixel electrode 18 </ b> B and is distinguished from each other. When these pixel electrode 18A and dummy pixel electrode 18B are generically referred to, they are simply referred to as transparent electrodes 18.
さらに、アレイ基板20には、図3に示すように、ゲート配線19に並行するとともに透明電極18の他端部に対して平面に視て重畳する補助容量配線(蓄積容量配線、Cs配線)25が設けられている。補助容量配線25は、ゲート配線19と同じ金属膜からなり、ゲート配線19と交互に配されている。この補助容量配線25には、所定の基準電位が印加されるようになっており、補助容量配線25と透明電極18との間には、蓄積容量Ccsが形成されている。
Further, on the array substrate 20, as shown in FIG. 3, auxiliary capacity wiring (storage capacity wiring, Cs wiring) 25 that is parallel to the gate wiring 19 and overlaps the other end of the transparent electrode 18 in plan view. Is provided. The auxiliary capacitance line 25 is made of the same metal film as the gate line 19 and is alternately arranged with the gate line 19. A predetermined reference potential is applied to the auxiliary capacitance line 25, and a storage capacitance Ccs is formed between the auxiliary capacitance line 25 and the transparent electrode 18.
TFT17は、ゲート配線19と接続されるゲート電極17aと、半導体膜からなりゲート電極17aと重畳する形で形成されるチャネル部17dと、ソース配線20と接続されるとともに、チャネル部17dの一部に接続されるソース電極17bと、チャネル部17dの他部に接続されるとともに、透明電極18と接続されるドレイン電極17cとを有して構成されている。そして、チャネル部17dは、ソース電極17bとドレイン電極17cとを架け渡して両電極17b,17c間での電子の移動を可能としている。
The TFT 17 is connected to the gate electrode 17a connected to the gate wiring 19, the channel portion 17d made of a semiconductor film and overlapping the gate electrode 17a, the source wiring 20, and a part of the channel portion 17d. And a drain electrode 17c connected to the transparent electrode 18 while being connected to the other part of the channel part 17d. And the channel part 17d bridge | crosses the source electrode 17b and the drain electrode 17c, and enables the movement of the electron between both electrodes 17b and 17c.
透明電極18は、透明な導電膜からなり、複数のゲート配線19と複数のソース配線20とに囲まれた領域31において全体として平面に視て縦長の略方形状(略矩形状)をなしている。透明電極18は、縦長のスリット(不図示)が複数本設けられることで略櫛歯状に形成されている。透明電極18は、次述する共通電極22との間に層間絶縁膜が介在するようにして形成されている。
The transparent electrode 18 is made of a transparent conductive film, and forms a vertically long substantially rectangular shape (substantially rectangular shape) as a whole in a region 31 surrounded by the plurality of gate wirings 19 and the plurality of source wirings 20. Yes. The transparent electrode 18 is formed in a substantially comb-like shape by providing a plurality of vertically long slits (not shown). The transparent electrode 18 is formed such that an interlayer insulating film is interposed between the transparent electrode 18 and the common electrode 22 described below.
共通電極22は、透明電極18とは異なる層に形成された透明な導電膜からなり、アレイ基板11bの表示領域AAにおけるほぼ全面および非表示領域NAAにおけるダミー画素領域31Bにわたる、いわゆるベタ状のパターンとされる。共通電極22は、層間絶縁膜を介して透明電極18と対向状をなすとともに、その間に静電容量Clcを形成している。共通電極22と透明電極18の間に電位差が生じると、液晶層11cには、透明電極18のスリットによってアレイ基板11bの板面に沿う成分に加えて、アレイ基板11bの板面に対する法線方向の成分を含むフリンジ電界(斜め電界)が印加されるので、液晶層11cに含まれる液晶分子のうち、スリットに存在するものに加えて、透明電極18上に存在するものもその配向状態を適切にスイッチングすることができる。もって、液晶パネル11の表示領域AAにおいては、開口率が高くなって十分な透過光量が得られるとともに、高い視野角性能を得ることができる。
The common electrode 22 is made of a transparent conductive film formed in a layer different from that of the transparent electrode 18, and is a so-called solid pattern that extends over substantially the entire display area AA of the array substrate 11b and the dummy pixel area 31B in the non-display area NAA. It is said. The common electrode 22 is opposed to the transparent electrode 18 via an interlayer insulating film, and a capacitance Clc is formed therebetween. When a potential difference is generated between the common electrode 22 and the transparent electrode 18, the liquid crystal layer 11c has a normal direction to the plate surface of the array substrate 11b in addition to the component along the plate surface of the array substrate 11b by the slits of the transparent electrode 18. Since a fringe electric field (diagonal electric field) containing the above component is applied, among the liquid crystal molecules contained in the liquid crystal layer 11c, those present on the transparent electrode 18 in addition to those present in the slit are appropriately aligned. Can be switched to. Therefore, in the display area AA of the liquid crystal panel 11, the aperture ratio is increased to obtain a sufficient amount of transmitted light, and high viewing angle performance can be obtained.
CF基板11aにおける表示領域AAには、R(赤色),G(緑色),B(青色)等の各着色部が、アレイ基板11b側の各画素電極18Aと平面に視て重畳するよう多数個マトリクス状に並列して配置されたカラーフィルタ11hが設けられている。カラーフィルタ11hをなす各着色部間には、混色を防ぐための略格子状の遮光層(ブラックマトリクス)11iが形成されている。遮光層11iは、上記したゲート配線19及びソース配線20と平面に視て重畳する配置とされる。なお、当該液晶パネル11においては、R(赤色),G(緑色),B(青色)の3色の着色部及びそれらと対向する3つの画素電極18Aの組によって表示単位である1つの画素が構成されている。本実施形態では、説明の便宜のために、いずれか1色の着色部及びこれと対向する1つ画素電極18Aの組によって構成される単位を表示画素30Aと呼ぶ。また、CF基板11aにおける非表示領域NAAには、ダミー画素電極18Bと対向するようにしていずれか1色の着色部が形成され、上述の表示画素30Aと同様の態様とされる一方、表示に寄与しないダミー画素30Bが構成されている。なお、ダミー画素30Bには、当該ダミー画素30Bの電気的特性に影響を与えない限り、着色部は必ずしも形成されていなくてもよい。以下の説明において、表示画素30Aおよびダミー画素30Bを総称する場合には、単に画素30と呼ぶ。
In the display area AA of the CF substrate 11a, a large number of colored portions such as R (red), G (green), and B (blue) are superimposed on each pixel electrode 18A on the array substrate 11b side in a plan view. Color filters 11h arranged in parallel in a matrix are provided. Between each colored portion constituting the color filter 11h, a substantially lattice-shaped light shielding layer (black matrix) 11i for preventing color mixture is formed. The light shielding layer 11i is arranged so as to overlap the above-described gate wiring 19 and source wiring 20 in a plan view. Note that in the liquid crystal panel 11, one pixel as a display unit is formed by a set of three colored portions of R (red), G (green), and B (blue) and three pixel electrodes 18A facing them. It is configured. In the present embodiment, for convenience of explanation, a unit constituted by a set of any one color portion and one pixel electrode 18A facing the colored portion is referred to as a display pixel 30A. Further, in the non-display area NAA in the CF substrate 11a, a colored portion of any one color is formed so as to face the dummy pixel electrode 18B, and the display pixel 30A has the same mode as the above-described display pixel 30A. A dummy pixel 30B that does not contribute is configured. Note that the colored portion does not necessarily have to be formed in the dummy pixel 30B as long as it does not affect the electrical characteristics of the dummy pixel 30B. In the following description, when the display pixels 30A and the dummy pixels 30B are generically referred to, they are simply referred to as pixels 30.
次に、ダミー画素30Bに係る構成について説明する。ダミー画素30Bは、図3に示すように、アレイ基板11bの非表示領域NAA(さらに詳しくは、非表示領域NAAのうち液晶層11cと重畳する領域)に配置されている。そして、ダミー画素30Bは、そのドレイン電極17cに検査用配線32が接続されている。なお、本実施形態では、表示領域AAに配置される表示画素30Aは、そのドレイン電極17cに検査用配線32は接続されていない。言い換えれば、ダミー画素30Bと表示画素30Aとは、検査用配線32の有無のみが相違し、各電極の大きさ、形状、配索経路等その他の構成は同様の設計とされており、ダミー画素30Bのドレイン電圧Vdを測定することで、表示画素30Aのドレイン電圧Vdを推定可能となっている。ダミー画素30Bは、検査用配線32を介して液晶表示装置10のドレイン電圧Vdを確認するためのドレイン電圧確認用画素ともいえる。
Next, a configuration related to the dummy pixel 30B will be described. As shown in FIG. 3, the dummy pixels 30B are arranged in the non-display area NAA of the array substrate 11b (more specifically, the area overlapping the liquid crystal layer 11c in the non-display area NAA). The dummy pixel 30B has an inspection wiring 32 connected to the drain electrode 17c. In the present embodiment, in the display pixel 30A arranged in the display area AA, the inspection wiring 32 is not connected to the drain electrode 17c. In other words, the dummy pixel 30B and the display pixel 30A differ only in the presence or absence of the inspection wiring 32, and other configurations such as the size, shape, and routing path of each electrode are the same design. By measuring the drain voltage Vd of 30B, the drain voltage Vd of the display pixel 30A can be estimated. The dummy pixel 30 </ b> B can be said to be a drain voltage confirmation pixel for confirming the drain voltage Vd of the liquid crystal display device 10 through the inspection wiring 32.
検査用配線32は、図3に示すように、ドレイン電極17cに対して直接的に、またはダミー画素電極18Bを介在する形で電気的に接続されている。そして、検査用配線32は、アレイ基板11bのうちCF基板11aと重なりあわない領域まで配索され、ドレイン電極17cと接続される側とは反対側の端部に端子部33が形成されている。そして、端子部33が後述する検査装置40と互いに接続可能とされている。なお、検査用配線32の構造、及びその配索経路については適宜設定可能とされており、好ましくは、ダミー画素電極18Bに設けられた各電極の電気的特性に影響を与えにくい態様で、形成及び配索されている。検査用配線32に検査装置40を接続して液晶パネル11を検査する態様については、後に説明する。
As shown in FIG. 3, the inspection wiring 32 is electrically connected to the drain electrode 17c directly or via a dummy pixel electrode 18B. The inspection wiring 32 is routed to a region of the array substrate 11b that does not overlap the CF substrate 11a, and a terminal portion 33 is formed at the end opposite to the side connected to the drain electrode 17c. . And the terminal part 33 is mutually connectable with the test | inspection apparatus 40 mentioned later. It should be noted that the structure of the inspection wiring 32 and the wiring path thereof can be set as appropriate, and preferably formed in a manner that does not easily affect the electrical characteristics of each electrode provided in the dummy pixel electrode 18B. And have been routed. An aspect of inspecting the liquid crystal panel 11 by connecting the inspection device 40 to the inspection wiring 32 will be described later.
ここで、液晶表示装置10の駆動方式について図4及び図5を参照して説明する。共通電極22には、メモリ36に記憶された共通電圧Vcomの設定値に基づき、共通電圧生成部37で生成された共通電圧Vcomが印加されるものとされ、後述するようにTFT17により透明電極18に印加する電位を制御することで、両電極18,22間に所定の電位差を生じさせることが可能となっている。なお、本実施形態では、共通電圧Vcomは常時一定の値とされる。また、補助容量配線25の基準電位が共通電極22の共通電圧Vcomと同電位とされる。
Here, the driving method of the liquid crystal display device 10 will be described with reference to FIGS. The common electrode 22 is applied with the common voltage Vcom generated by the common voltage generator 37 based on the set value of the common voltage Vcom stored in the memory 36, and the transparent electrode 18 by the TFT 17 as will be described later. By controlling the potential applied to the electrode 18, a predetermined potential difference can be generated between the electrodes 18 and 22. In the present embodiment, the common voltage Vcom is always a constant value. Further, the reference potential of the auxiliary capacitance line 25 is set to the same potential as the common voltage Vcom of the common electrode 22.
そして、ゲート配線19を介してゲート電極17aに所定のタイミングで供給される走査信号によりTFT17がONされる(ゲート電極にオン電圧Vonが印加される)と、ソース配線20を介してソース電極17bに供給されるデータ信号がチャネル部17dを介してドレイン電極17cへと伝達される。この際、ドレイン電極17cの電位はソース配線20に印加された電位と略同じになる。そして、ゲート電極17aにオン電圧Vonが印加されている間、ソース配線20から印加された電荷は液晶層11c(静電容量Clc)及び蓄積容量Ccsにチャージされる。TFT17がOFFされた(ゲート電極にオフ電圧Voffが印加された)後も、液晶層11cにチャージされた電荷は保持されるが、ゲート配線19とドレイン電極17cとの間に形成された寄生容量Cgdの影響で、オフ電圧Voff印加時にドレイン電極17cの電位がΔV引き込まれる現象が発生する(図5参照)。このΔVは、以下の式(1)のように表わすことができる。ここで、静電容量Clc、蓄積容量Ccs、及び寄生容量Cgdは、液晶パネル11製造上のばらつきにより、各液晶パネル11毎にその値が異なる。このため、ΔVは液晶パネル11毎に異なる値となっている。
ΔV=(Von-Voff)×Cgd÷(Clc+Ccs+Cgd)・・・(1) When theTFT 17 is turned on by a scanning signal supplied to the gate electrode 17a through the gate wiring 19 at a predetermined timing (an on voltage Von is applied to the gate electrode), the source electrode 17b is connected through the source wiring 20. The data signal supplied to is transmitted to the drain electrode 17c through the channel portion 17d. At this time, the potential of the drain electrode 17 c is substantially the same as the potential applied to the source wiring 20. While the on voltage Von is applied to the gate electrode 17a, the charge applied from the source line 20 is charged to the liquid crystal layer 11c (electrostatic capacitance Clc) and the storage capacitor Ccs. Even after the TFT 17 is turned off (off voltage Voff is applied to the gate electrode), the charge charged in the liquid crystal layer 11c is retained, but the parasitic capacitance formed between the gate wiring 19 and the drain electrode 17c. Due to the influence of Cgd, a phenomenon occurs in which the potential of the drain electrode 17c is drawn by ΔV when the off voltage Voff is applied (see FIG. 5). This ΔV can be expressed as the following formula (1). Here, the values of the electrostatic capacitance Clc, the storage capacitance Ccs, and the parasitic capacitance Cgd are different for each liquid crystal panel 11 due to variations in manufacturing the liquid crystal panel 11. Therefore, ΔV has a different value for each liquid crystal panel 11.
ΔV = (Von−Voff) × Cgd ÷ (Clc + Ccs + Cgd) (1)
ΔV=(Von-Voff)×Cgd÷(Clc+Ccs+Cgd)・・・(1) When the
ΔV = (Von−Voff) × Cgd ÷ (Clc + Ccs + Cgd) (1)
TFT17は、図5に示すように、1フレーム表示期間毎に極性を反転させる、いわゆる「フレーム反転駆動」により駆動されており、共通電極22の共通電圧Vcomよりも相対的に高い電位(正極性の電位)と、共通電極22の共通電圧Vcomよりも相対的に低い電位(負極性の電位)と、が1フレーム表示期間毎に交互にTFT17を介して透明電極18に供給されるようになっている。なお、フレームレートは、例えば60fpsとされる。このような駆動方法によれば、共通電極22と透明電極18の間の電圧印加方向が反転することで、液晶層11cに含まれる液晶分子の方向が特定方向を向いた状態になる焼き付きと呼ばれる現象が起こることを回避可能とされる。
As shown in FIG. 5, the TFT 17 is driven by so-called “frame inversion driving” in which the polarity is inverted every frame display period, and has a relatively higher potential (positive polarity) than the common voltage Vcom of the common electrode 22. And a potential relatively lower than the common voltage Vcom of the common electrode 22 (negative potential) are alternately supplied to the transparent electrode 18 via the TFT 17 every frame display period. ing. The frame rate is set to 60 fps, for example. According to such a driving method, the direction in which the voltage is applied between the common electrode 22 and the transparent electrode 18 is reversed, so that the direction of the liquid crystal molecules contained in the liquid crystal layer 11c is in a state in which the direction is directed to a specific direction. It is possible to avoid the phenomenon from occurring.
一方、フレーム反転駆動方式では、極性反転の際に正極性時と負極性時とで液晶層11cに印加される電圧の実効値が異なると、フレーム期間毎にその光透過率(明るさ)が異なることとなり、フリッカと呼ばれるちらつきが発生する。このため、フリッカを抑制するためには、透明電極18と共通電極22の間の電位差が、正極性時と負極性時とで同じとなるように、ΔVを考慮して共通電圧Vcomを調整する必要がある。
On the other hand, in the frame inversion driving method, when the effective value of the voltage applied to the liquid crystal layer 11c is different between the positive polarity and the negative polarity at the time of polarity inversion, the light transmittance (brightness) is different for each frame period. Therefore, flickering called flicker occurs. Therefore, in order to suppress flicker, the common voltage Vcom is adjusted in consideration of ΔV so that the potential difference between the transparent electrode 18 and the common electrode 22 is the same between the positive polarity and the negative polarity. There is a need.
本実施形態では、液晶表示装置10を検査装置40を用いて検査して、そのフリッカを抑制するべく調整しているが、以下、その態様について説明する。検査装置40は、図4に示すように、ドレイン電極17cに印加されるドレイン電圧Vdの直流成分Vd(DC)を抽出する直流成分抽出部34と、ドレイン電圧Vdの正極性時におけるドレイン電極17cと共通電極22との間の電位差とドレイン電圧Vdの負極性時におけるドレイン電極17cと共通電極22との間の電位差とが略同じとなるように、直流成分抽出部34で抽出された直流成分に基づいて共通電圧Vcomを算出する共通電圧算出部35と、を備える。なお、検査装置40は、直流成分抽出部34と、共通電圧算出部35とを少なくとも備えていればよく、その他の各種機能部を更に備えていてもよい。
In the present embodiment, the liquid crystal display device 10 is inspected by using the inspection device 40 and adjusted to suppress the flicker. Hereinafter, this aspect will be described. As shown in FIG. 4, the inspection apparatus 40 includes a direct current component extraction unit 34 that extracts a direct current component Vd (DC) of the drain voltage Vd applied to the drain electrode 17c, and a drain electrode 17c when the drain voltage Vd is positive. DC component extracted by the DC component extraction unit 34 so that the potential difference between the drain electrode 17c and the common electrode 22 at the time of negative polarity of the drain voltage Vd and the common electrode 22 is substantially the same. And a common voltage calculation unit 35 that calculates the common voltage Vcom based on. The inspection device 40 only needs to include at least the DC component extraction unit 34 and the common voltage calculation unit 35, and may further include various other functional units.
直流成分抽出部34は、DC成分測定用メータを有し、検査装置40に取り込まれたドレイン電圧Vd(AC)の電気信号が入力されると、これを直流成分Vd(DC)情報、すなわち、その平均値情報に変換して、出力する。共通電圧算出部35は、直流成分Vd(DC)情報を共通電圧Vcomの設定値に変換する機能を有し、直流成分抽出部34で得られた直流成分Vd(DC)情報に基づいて、予め設定された変換式により共通電圧Vcomの設定値を算出して、出力する。本実施形態では、共通電圧Vcomは、各フレーム毎に一定の値とされているため、共通電圧Vcomは直流成分Vd(DC)と同等とされている。また、共通電圧算出部35の別の態様としては、ドレイン電圧Vdの極性反転とともに共通電極22に印加される電圧をシフトさせる液晶表示装置の駆動方式において、各フレーム毎における共通電極22の電圧の設定値を算出するものであってもよく、その他にも、駆動方式や表示パネル11の電気的特性を考慮して適宜その変換式を定めればよい。
The DC component extraction unit 34 has a DC component measurement meter. When an electric signal of the drain voltage Vd (AC) taken into the inspection device 40 is input, the DC component extraction unit 34 converts this into DC component Vd (DC) information, that is, The average value information is converted and output. The common voltage calculation unit 35 has a function of converting the DC component Vd (DC) information into a set value of the common voltage Vcom. Based on the DC component Vd (DC) information obtained by the DC component extraction unit 34, the common voltage calculation unit 35 A set value of the common voltage Vcom is calculated by the set conversion formula and output. In the present embodiment, since the common voltage Vcom is a constant value for each frame, the common voltage Vcom is equivalent to the DC component Vd (DC). As another mode of the common voltage calculation unit 35, in the driving method of the liquid crystal display device in which the voltage applied to the common electrode 22 is shifted together with the polarity inversion of the drain voltage Vd, the voltage of the common electrode 22 for each frame is changed. The set value may be calculated, or in addition, the conversion formula may be appropriately determined in consideration of the driving method and the electrical characteristics of the display panel 11.
液晶表示装置10は、製造後、検査装置40で検査・調整された後に製品として出荷される。具体的には、液晶表示装置10が製造されると、検査装置40が、検査用配線32の端子部33に接続されるとともに、ドライバ21に備えられたメモリ36に共通電圧Vcom設定値を書き込み可能に接続される。そして、図示しない電源に接続された液晶表示装置10において、所定フレーム期間に亘ってダミー画素30Bを交流駆動して、そのドレイン電極17cのドレイン電圧Vd(AC)の電気信号を、検査用配線32を介して直接的に検査装置40に取り込む。そして、検査装置40において直流成分抽出部34と、共通電圧算出部35とを順次に経て、最適化された共通電圧Vcomの設定値をメモリ36に書き込む。すると、液晶表示装置10で表示をする際には、メモリ36に記憶された共通電圧Vcomの設定値に基づき、共通電圧生成部37で共通電圧Vcomが生成されることとなる。この際、表示画素30Aは、ダミー画素30Bと同様の電気的特性を有するから、ダミー画素30Bと同様に、画素電極18Aと共通電極22の間の電位差が正極性の時と負極性の時とで略同じとなり、液晶表示装置10はフリッカの発生が抑制された状態、すなわち、フリッカ調整がなされた状態となっている。ここまでの一連動作には、例えば、人がフリッカを確認して調整するなどの作業がなく、全て検査装置40により自動的に行うことができる。
The liquid crystal display device 10 is shipped as a product after being manufactured and inspected and adjusted by the inspection device 40. Specifically, when the liquid crystal display device 10 is manufactured, the inspection device 40 is connected to the terminal portion 33 of the inspection wiring 32 and writes the common voltage Vcom set value to the memory 36 provided in the driver 21. Connected as possible. Then, in the liquid crystal display device 10 connected to a power source (not shown), the dummy pixel 30B is AC driven over a predetermined frame period, and the electrical signal of the drain voltage Vd (AC) of the drain electrode 17c is supplied to the inspection wiring 32. Directly into the inspection apparatus 40 via Then, in the inspection device 40, the set value of the optimized common voltage Vcom is written in the memory 36 through the direct current component extraction unit 34 and the common voltage calculation unit 35 sequentially. Then, when displaying on the liquid crystal display device 10, the common voltage Vcom is generated by the common voltage generator 37 based on the set value of the common voltage Vcom stored in the memory 36. At this time, since the display pixel 30A has the same electrical characteristics as the dummy pixel 30B, the potential difference between the pixel electrode 18A and the common electrode 22 is positive and negative as in the dummy pixel 30B. The liquid crystal display device 10 is in a state in which the occurrence of flicker is suppressed, that is, in a state in which flicker adjustment is performed. The series of operations up to this point can be automatically performed by the inspection apparatus 40 without any work such as a person checking and adjusting flicker.
以上説明したように本実施形態の液晶表示装置10は、アレイ基板11bと、アレイ基板11b上に並列配置される複数のゲート配線19と、アレイ基板11b上にゲート配線19と交差して並列配置される複数のソース配線20と、複数のゲート配線19と複数のソース配線20とが交差することによって形成される領域31(画素領域31A及びダミー画素領域31B)にそれぞれ配置される複数の透明電極(画素電極18A及びダミー画素電極18B)と、領域31にそれぞれ配置され、ゲート配線19と接続されるゲート電極17a、ソース配線20と接続されるソース電極17b、および透明電極18と接続されるドレイン電極17cを有する複数のTFT17と、複数のTFT17のうちダミー画素領域31Bに配置されたTFT17のドレイン電極17cに接続されるとともに、当該ドレイン電極17cに印加されるドレイン電圧Vdの直流成分Vd(DC)を抽出する直流成分抽出部34に接続可能とされた検査用配線32と、を備える。
As described above, the liquid crystal display device 10 according to the present embodiment includes the array substrate 11b, the plurality of gate wirings 19 arranged in parallel on the array substrate 11b, and the gate wirings 19 arranged in parallel on the array substrate 11b. And a plurality of transparent electrodes respectively disposed in a region 31 (a pixel region 31A and a dummy pixel region 31B) formed by intersecting a plurality of source wires 20, a plurality of gate wires 19 and a plurality of source wires 20. (Pixel electrode 18A and dummy pixel electrode 18B) and a drain connected to a gate electrode 17a connected to the gate wiring 19, a source electrode 17b connected to the source wiring 20, and a transparent electrode 18, respectively. A plurality of TFTs 17 having an electrode 17c and a T disposed in the dummy pixel region 31B among the plurality of TFTs 17. An inspection wiring 32 connected to the drain electrode 17c of T17 and connectable to a DC component extraction unit 34 for extracting the DC component Vd (DC) of the drain voltage Vd applied to the drain electrode 17c; Prepare.
上記した液晶表示装置10は、ドレイン電極17cの電圧値の直流成分Vd(DC)を抽出する直流成分抽出部34に接続可能とされた検査用配線32を備えるから、検査用配線32を介してドレイン電極17cの電圧値の直流成分Vd(DC)を抽出することができる。このため、当該直流成分Vd(DC)情報に基づいて、例えば、透明電極18と共通電極22との間の電位差を調整して、液晶表示装置10のフリッカを抑制することができる。
The liquid crystal display device 10 includes the inspection wiring 32 that can be connected to the direct current component extraction unit 34 that extracts the direct current component Vd (DC) of the voltage value of the drain electrode 17c. The DC component Vd (DC) of the voltage value of the drain electrode 17c can be extracted. For this reason, based on the DC component Vd (DC) information, for example, the potential difference between the transparent electrode 18 and the common electrode 22 can be adjusted to suppress flicker of the liquid crystal display device 10.
具体的には、従来の液晶パネルはドレイン電極の電位を確認することが出来ない仕様になっていた。このため、光センサや、検査員による目視によって、フリッカの有無を確認しつつ、透明電極18と共通電極22との間の電位差を調整して、フリッカが最小となる共通電圧Vcomとなるように調整する必要があった。また、その調整法はアナログ的に、例えば透明電極18と共通電極22との間の電位差等の電気信号を変化させて、目視又は専用の光学測定器を用いて、フリッカが最小になるように調整するのが一般的であった。一方、本実施形態では、検査用配線32を設けることで、ドレイン電極17cの電位を直接的に確認することができるから、フリッカの有無を確認する必要がない。このため、フリッカを確認するための光学センサに係る設備や検査員の人員等を削減して、検査環境全体の規模の縮小及び設備費用の縮小を図ることができる。さらに、本実施形態では、当該直流成分Vd(DC)情報に基づいて共通電圧Vcomを決定することができるから、その調整に作業者毎の誤差や作業ミスがなく、確実に最適な共通電圧Vcomを決定することができる。
Specifically, the conventional liquid crystal panel has a specification in which the drain electrode potential cannot be confirmed. For this reason, the potential difference between the transparent electrode 18 and the common electrode 22 is adjusted while confirming the presence or absence of flicker by an optical sensor or visual inspection by an inspector so that the common voltage Vcom at which flicker is minimized is obtained. There was a need to adjust. Further, the adjustment method is analog, for example, by changing an electric signal such as a potential difference between the transparent electrode 18 and the common electrode 22 so that the flicker is minimized by visual observation or using a dedicated optical measuring instrument. It was common to adjust. On the other hand, in the present embodiment, by providing the inspection wiring 32, the potential of the drain electrode 17c can be directly confirmed, so it is not necessary to confirm the presence or absence of flicker. For this reason, it is possible to reduce the equipment related to the optical sensor for checking flicker, the number of inspectors, and the like, thereby reducing the scale of the entire inspection environment and the equipment cost. Furthermore, in this embodiment, since the common voltage Vcom can be determined based on the DC component Vd (DC) information, there is no error or work error for each worker in the adjustment, and the optimum common voltage Vcom is surely obtained. Can be determined.
また、本実施形態では、アレイ基板11bは、表示領域AAと表示領域AAを取り囲む非表示領域NAAとに区分され、検査用配線32が接続されたTFT17は、アレイ基板11bにおける非表示領域NAAにおいて複数のゲート配線19と複数のソース配線20とが交差することによって形成されるダミー画素領域31Bに配置されている。このような構成によれば、検査用配線32が画素領域31Aに引き廻されることがなく、検査用配線32を設けたことにより、液晶表示装置10の表示品位を損なうことがない。
In the present embodiment, the array substrate 11b is divided into a display area AA and a non-display area NAA surrounding the display area AA, and the TFT 17 to which the inspection wiring 32 is connected is arranged in the non-display area NAA of the array substrate 11b. The plurality of gate lines 19 and the plurality of source lines 20 are arranged in a dummy pixel region 31B formed by intersecting. According to such a configuration, the inspection wiring 32 is not routed to the pixel region 31A, and the display quality of the liquid crystal display device 10 is not impaired by providing the inspection wiring 32.
また、本実施形態では、透明電極18との間で静電容量Clcを形成する共通電極22を更に備え、共通電極22には、ドレイン電圧Vdが交流駆動される場合において、その正極性時におけるドレイン電極17cと当該共通電極22との間の電位差とその負極性時におけるドレイン電極17cと当該共通電極22との間の電位差とが略同じとなるように、直流成分抽出部34で抽出された直流成分に基づいて算出された共通電圧Vcomが印加される。このような構成によれば、共通電圧Vcomを調整することで、ドレイン電圧Vdの正極性時と負極性時とで共通電極22との間の電位差が略同じとされるから、フリッカの発生を好適に抑制することができる。
Further, in the present embodiment, the common electrode 22 that forms a capacitance Clc with the transparent electrode 18 is further provided. When the drain voltage Vd is AC driven, the common electrode 22 has a positive polarity. The DC component extraction unit 34 extracts the potential difference between the drain electrode 17c and the common electrode 22 and the potential difference between the drain electrode 17c and the common electrode 22 at the time of the negative polarity. A common voltage Vcom calculated based on the DC component is applied. According to such a configuration, by adjusting the common voltage Vcom, the potential difference between the common electrode 22 is substantially the same when the drain voltage Vd is positive and negative, and therefore flicker is prevented. It can suppress suitably.
また、共通電圧Vcomの設定値を記憶するメモリ36と、メモリ36に記憶された共通電圧Vcomの設定値に基づき、共通電圧Vcomを生成する共通電圧生成部37と、を更に備え、検査用配線32は、直流成分抽出部34を備える検査装置40に接続可能とされた端子部33を有し、検査装置40は、共通電圧Vcomを算出する共通電圧算出部35を備えており、メモリ36には、検査装置40の共通電圧算出部35で算出された共通電圧Vcomが書き込まれる。このような構成によれば、検査装置40を用いることで、最適化された共通電圧Vcomの生成までの調整を、例えば、フリッカを検出する光学ユニット等を必要とせず、また、検査員が目視でフリッカの有無を確認して、手作業で液晶表示装置を調整する等の作業を経ることなく、自動で行うことができる。
Further, the memory 36 stores a set value of the common voltage Vcom, and a common voltage generation unit 37 that generates the common voltage Vcom based on the set value of the common voltage Vcom stored in the memory 36, and includes a test wiring 32 includes a terminal unit 33 that can be connected to an inspection device 40 that includes a DC component extraction unit 34, and the inspection device 40 includes a common voltage calculation unit 35 that calculates a common voltage Vcom. The common voltage Vcom calculated by the common voltage calculation unit 35 of the inspection apparatus 40 is written. According to such a configuration, by using the inspection device 40, adjustment until generation of the optimized common voltage Vcom does not require, for example, an optical unit for detecting flicker, and the inspector can visually check. Thus, it is possible to automatically perform the operation without checking the presence or absence of flicker and adjusting the liquid crystal display device manually.
また、本実施形態では、メモリ36と共通電圧生成部37とは、アレイ基板11b上に設けられている。このような構成によれば、メモリ36と共通電圧生成部37をアレイ基板11b上に設けることで、好適にフリッカが抑制された液晶表示装置10を実現可能となる。
In this embodiment, the memory 36 and the common voltage generator 37 are provided on the array substrate 11b. According to such a configuration, by providing the memory 36 and the common voltage generation unit 37 on the array substrate 11b, the liquid crystal display device 10 in which flicker is preferably suppressed can be realized.
また、本実施形態では、アレイ基板11bと対向状をなすとともにカラーフィルタ11hが配されたCF基板11Aと、アレイ基板11bとCF基板11Aとの間に挟持される液晶層11cと、を備える。このような液晶表示装置10は液晶表示装置として、種々の用途、例えば携帯型情報端末やテレビ受信装置などのディスプレイ等に適用可能である。
Further, in the present embodiment, a CF substrate 11A that is opposed to the array substrate 11b and on which the color filter 11h is disposed, and a liquid crystal layer 11c that is sandwiched between the array substrate 11b and the CF substrate 11A are provided. Such a liquid crystal display device 10 can be applied as a liquid crystal display device to various uses, for example, a display such as a portable information terminal or a television receiver.
<実施形態2>
本発明の実施形態2を図6及び図7によって説明する。この実施形態2では、上記した実施形態1に記載したダミー画素30Bが設けられておらず、検査用配線132が表示画素30Aに形成された液晶表示装置110を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the liquidcrystal display device 110 in which the dummy pixel 30B described in the first embodiment is not provided and the inspection wiring 132 is formed in the display pixel 30A is shown. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態2を図6及び図7によって説明する。この実施形態2では、上記した実施形態1に記載したダミー画素30Bが設けられておらず、検査用配線132が表示画素30Aに形成された液晶表示装置110を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 2>
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the liquid
表示領域AAに設けられた複数の表示画素30Aのうち、少なくとも一つの表示画素30Aには、そのドレイン電極17cに検査用配線132が接続されている。検査用配線132を設ける表示画素30Aは、検査用配線132の配索経路を考慮すると、表示領域AAの周囲に配される表示画素30A、すなわち、非表示領域NAAに隣接する表示画素30Aとされることが好ましい。なお、検査用配線132が設けられた表示画素30Aとその他の表示画素30Aとは、検査用配線132の有無のみが相違し、各電極の大きさ、形状、配索経路等その他の構成は同様の設計とされており、検査用配線132が設けられた表示画素30Aのドレイン電圧Vdを測定することで、その他の表示画素30Aのドレイン電圧Vdについても推定可能となっている。検査用配線132が設けられた表示画素30Aは、液晶表示装置110のドレイン電圧Vdを確認するためのドレイン電圧確認用画素ともいえる。また、検査用配線132の構成については、上記した実施形態1の検査用配線32と同様であり、説明を省略する。
The inspection wiring 132 is connected to the drain electrode 17c of at least one display pixel 30A among the plurality of display pixels 30A provided in the display area AA. The display pixel 30A provided with the inspection wiring 132 is a display pixel 30A arranged around the display area AA, that is, a display pixel 30A adjacent to the non-display area NAA in consideration of the wiring path of the inspection wiring 132. It is preferable. The display pixel 30A provided with the inspection wiring 132 is different from the other display pixels 30A only in the presence or absence of the inspection wiring 132, and the other configurations such as the size, shape, wiring route, and the like of each electrode are the same. The drain voltage Vd of the other display pixel 30A can be estimated by measuring the drain voltage Vd of the display pixel 30A provided with the inspection wiring 132. The display pixel 30 </ b> A provided with the inspection wiring 132 can be said to be a drain voltage confirmation pixel for confirming the drain voltage Vd of the liquid crystal display device 110. The configuration of the inspection wiring 132 is the same as that of the above-described inspection wiring 32 of the first embodiment, and a description thereof will be omitted.
本実施形態では、アレイ基板11bは、表示領域AAと表示領域を取り囲む非表示領域NAAとに区分され、検査用配線132が接続されたTFT17は、アレイ基板11bにおける表示領域AAにおいて複数のゲート配線19と複数のソース配線20とが交差することによって形成される画素領域31Aに配置されている。このような構成によれば、液晶表示装置10の狭額縁化に伴い、非表示領域NAAにダミー画素領域31Bを確保することが難しい場合であっても、画素領域31Aにおいてドレイン電極17cの電圧値の直流成分Vd(DC)を抽出することができる。
In this embodiment, the array substrate 11b is divided into a display area AA and a non-display area NAA surrounding the display area, and the TFT 17 to which the inspection wiring 132 is connected includes a plurality of gate wirings in the display area AA in the array substrate 11b. 19 and a plurality of source lines 20 are arranged in a pixel region 31A formed by crossing. According to such a configuration, even when it is difficult to secure the dummy pixel region 31B in the non-display region NAA with the narrowing of the frame of the liquid crystal display device 10, the voltage value of the drain electrode 17c in the pixel region 31A. The direct current component Vd (DC) can be extracted.
<実施形態3>
本発明の実施形態3を図8によって説明する。この実施形態3の液晶表示装置210では、メモリ236及び共通電圧生成部237が制御回路基板(回路基板)12に設けられている点が上記した実施形態1と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 3>
A third embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 210 according to the third embodiment is different from the first embodiment described above in that the memory 236 and the common voltage generation unit 237 are provided on the control circuit board (circuit board) 12. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態3を図8によって説明する。この実施形態3の液晶表示装置210では、メモリ236及び共通電圧生成部237が制御回路基板(回路基板)12に設けられている点が上記した実施形態1と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 3>
A third embodiment of the present invention will be described with reference to FIG. The liquid
液晶表示装置210が製造されると、検査装置40が検査用配線32の端子部33に接続されるとともに、制御回路基板12に備えられたメモリ236に共通電圧Vcomを書き込み可能に接続される。そして、図示しない電源に接続された液晶表示装置210において、所定フレーム期間に亘ってダミー画素30Bを交流駆動して、そのドレイン電極17cのドレイン電圧Vd(AC)の電気信号を、検査用配線32を介して直接的に検査装置40に取り込む。そして、検査装置40において直流成分抽出部34と、共通電圧算出部35とを順次に経て、最適化された共通電圧Vcomの設定値をメモリ236に書き込む。すると、液晶表示装置110を表示する際には、メモリ236に記憶された共通電圧Vcomの設定値に基づき、共通電圧生成部237で共通電圧Vcomが生成されることとなる。なお、制御回路基板12で生成された共通電圧Vcomは、フレキシブル基板13を介して共通電極22に印加される。
When the liquid crystal display device 210 is manufactured, the inspection device 40 is connected to the terminal portion 33 of the inspection wiring 32 and connected to the memory 236 provided in the control circuit board 12 so that the common voltage Vcom can be written. Then, in the liquid crystal display device 210 connected to a power source (not shown), the dummy pixel 30B is AC driven over a predetermined frame period, and the electrical signal of the drain voltage Vd (AC) of the drain electrode 17c is supplied to the inspection wiring 32. Directly into the inspection apparatus 40 via Then, in the inspection device 40, the set value of the optimized common voltage Vcom is written in the memory 236 through the direct current component extraction unit 34 and the common voltage calculation unit 35 sequentially. Then, when displaying the liquid crystal display device 110, the common voltage Vcom is generated by the common voltage generation unit 237 based on the set value of the common voltage Vcom stored in the memory 236. The common voltage Vcom generated by the control circuit board 12 is applied to the common electrode 22 through the flexible board 13.
このような構成によれば、液晶表示装置210の狭額縁化に伴い、メモリ236と共通電圧生成部237をアレイ基板11b上に設けることが難しい場合であっても、メモリ236と共通電圧生成部237を制御回路基板12に設けることで、好適にフリッカが抑制された液晶表示装置210を実現可能となる。
According to such a configuration, even if it is difficult to provide the memory 236 and the common voltage generation unit 237 on the array substrate 11b with the narrowing of the frame of the liquid crystal display device 210, the memory 236 and the common voltage generation unit By providing 237 on the control circuit board 12, it is possible to realize the liquid crystal display device 210 in which flicker is preferably suppressed.
<実施形態4>
本発明の実施形態4を図9によって説明する。この実施形態4の液晶表示装置310は、直流成分抽出部334を備える点が上記した実施形態1と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 310 of the fourth embodiment is different from the first embodiment described above in that it includes a direct current component extraction unit 334. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態4を図9によって説明する。この実施形態4の液晶表示装置310は、直流成分抽出部334を備える点が上記した実施形態1と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. The liquid
直流成分抽出部334は、液晶表示装置310のうちアレイ基板11bにおける非表示領域NAAに設けられた回路部とされる。同じくアレイ基板11b上にはダミー画素30Bが形成されており、本実施形態では、当該ダミー画素30Bのドレイン電極17cに接続された検査用配線32が、端子部33や外部の検査装置40との接続配線を介さず直接的に直流成分抽出部334に接続されている。そして、直流成分抽出部334では、ダミー画素30Bのドレイン電極17cから取り込まれたドレイン電圧Vdの電気信号を処理して、当該直流成分Vd(DC)を抽出する。
The DC component extraction unit 334 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 310. Similarly, a dummy pixel 30B is formed on the array substrate 11b. In this embodiment, the inspection wiring 32 connected to the drain electrode 17c of the dummy pixel 30B is connected to the terminal portion 33 or the external inspection device 40. It is directly connected to the DC component extraction unit 334 without a connection wiring. Then, the DC component extraction unit 334 processes the electrical signal of the drain voltage Vd taken from the drain electrode 17c of the dummy pixel 30B, and extracts the DC component Vd (DC).
また、液晶表示装置310は、直流成分抽出部334で抽出された直流成分Vd(DC)情報に基づき、直流成分Vd(DC)と同等の共通電圧Vcomを生成する共通電圧生成部337を備える。共通電圧生成部337は、直流成分抽出部334と同様に、アレイ基板11bにおける非表示領域NAAに設けられた回路部とされる。言い換えれば、本実施形態では、液晶表示装置310の使用状態においても、直流成分Vd(DC)値の変化に応じて、共通電圧Vcomの設定値を適宜最適化することができる構成とされる。このため、ドレイン電圧Vdの値(ΔV値)の変動にかかわらず、画素電極18Aと共通電極22の間の電位差がフレーム毎に略同じとなる。
Further, the liquid crystal display device 310 includes a common voltage generation unit 337 that generates a common voltage Vcom equivalent to the direct current component Vd (DC) based on the direct current component Vd (DC) information extracted by the direct current component extraction unit 334. Similar to the DC component extraction unit 334, the common voltage generation unit 337 is a circuit unit provided in the non-display area NAA in the array substrate 11b. In other words, in the present embodiment, even when the liquid crystal display device 310 is in use, the setting value of the common voltage Vcom can be appropriately optimized in accordance with the change in the direct current component Vd (DC) value. For this reason, the potential difference between the pixel electrode 18A and the common electrode 22 is substantially the same for each frame, regardless of the variation in the value of the drain voltage Vd (ΔV value).
本実施形態では、液晶表示装置310は、直流成分抽出部334と、直流成分抽出部334で抽出された直流成分に基づき、共通電圧Vcomを生成する共通電圧生成部337と、を更に備える。このような構成によれば、液晶表示装置310の製造時のみならず、液晶表示装置310の使用時においても適宜共通電圧Vcomの調整をすることができ、例えば、温度等の変化によりフリッカが発生することを抑制することができる。
In the present embodiment, the liquid crystal display device 310 further includes a DC component extraction unit 334 and a common voltage generation unit 337 that generates the common voltage Vcom based on the DC component extracted by the DC component extraction unit 334. According to such a configuration, the common voltage Vcom can be appropriately adjusted not only when the liquid crystal display device 310 is manufactured but also when the liquid crystal display device 310 is used. For example, flicker occurs due to a change in temperature or the like. Can be suppressed.
具体的には、液晶表示装置は、製造工程時にフリッカが最小になるように調整されていたとしても、その使用状況に応じて、例えばその温度環境が変化することによってフリッカが発生する場合がある。これは、寄生容量Cgd、静電容量、Clc、蓄積容量Ccsの各容量はその温度によって値が変化する、すなわち、上述したΔVは温度に依存して変化するから、フリッカが最小となる最適な共通電圧Vcom等の値も温度等の環境に依存して変化するためである。一方、本実施形態では、寄生容量Cgd、静電容量、Clc、蓄積容量Ccs、すなわち、ΔVの変化に応じて共通電圧Vcomの変化させることで、ΔVの変化をオフセットすることができる。これにより、共通電圧Vcomの設定値が適宜最適化され、温度環境などの変化によらず表示品位を保つことができる。
Specifically, even if the liquid crystal display device is adjusted so that the flicker is minimized during the manufacturing process, flicker may occur due to, for example, a change in the temperature environment according to the usage situation. . This is because the values of the parasitic capacitance Cgd, capacitance, Clc, and storage capacitance Ccs change depending on the temperature, that is, the above-described ΔV changes depending on the temperature, so that the optimum flicker is minimized. This is because the value of the common voltage Vcom and the like also changes depending on the environment such as temperature. On the other hand, in the present embodiment, the change in ΔV can be offset by changing the common voltage Vcom in accordance with the change in the parasitic capacitance Cgd, the electrostatic capacitance, Clc, and the storage capacitance Ccs, that is, ΔV. As a result, the set value of the common voltage Vcom is appropriately optimized, and the display quality can be maintained regardless of changes in the temperature environment or the like.
<実施形態5>
本発明の実施形態5を図10によって説明する。この実施形態5の液晶表示装置410は、実施形態4に係る液晶表示装置310において更に共通電圧算出部435を備え、直流成分抽出部434から出力された直流成分Vd(DC)情報が共通電圧算出部435を経由して、そこで算出された共通電圧Vcomの設定値が共通電圧生成部437に入力される点が相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 410 according to the fifth embodiment further includes a common voltage calculation unit 435 in the liquid crystal display device 310 according to the fourth embodiment, and the DC component Vd (DC) information output from the DC component extraction unit 434 is the common voltage calculation. The difference is that the set value of the common voltage Vcom calculated there is input to the common voltage generation unit 437 via the unit 435. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態5を図10によって説明する。この実施形態5の液晶表示装置410は、実施形態4に係る液晶表示装置310において更に共通電圧算出部435を備え、直流成分抽出部434から出力された直流成分Vd(DC)情報が共通電圧算出部435を経由して、そこで算出された共通電圧Vcomの設定値が共通電圧生成部437に入力される点が相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. The liquid
共通電圧算出部435は、直流成分Vd(DC)情報を共通電圧Vcomの設定値に変換する機能を有し、直流成分抽出部434で得られた直流成分Vd(DC)情報に基づき、予め設定された変換式により共通電圧Vcomの設定値を算出する。共通電圧生成部437は、直流成分抽出部434等と同様に、液晶表示装置410のうちアレイ基板11bにおける非表示領域NAAに設けられた回路部とされる。
The common voltage calculation unit 435 has a function of converting the DC component Vd (DC) information into a set value of the common voltage Vcom, and is set in advance based on the DC component Vd (DC) information obtained by the DC component extraction unit 434. The set value of the common voltage Vcom is calculated by the converted equation. Similar to the DC component extraction unit 434 and the like, the common voltage generation unit 437 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 410.
本実施形態では、液晶表示装置410は、直流成分抽出部434と、直流成分抽出部434で抽出された直流成分Vd(DC)に基づき、共通電圧Vcomの設定値を算出する共通電圧算出部435と、共通電圧算出部435で算出された共通電圧Vcomの設定値に基づき、共通電圧Vcomを生成する共通電圧生成部437と、を備える。このような構成によれば、設計制約上、直接的に直流成分Vd(DC)から共通電圧Vcomを生成することが難しい場合であっても、共通電圧算出部435で共通電圧Vcomの設定値を算出して、これに基づいて共通電圧Vcomを生成することができる。
In the present embodiment, the liquid crystal display device 410 includes a DC component extraction unit 434 and a common voltage calculation unit 435 that calculates a set value of the common voltage Vcom based on the DC component Vd (DC) extracted by the DC component extraction unit 434. And a common voltage generation unit 437 that generates the common voltage Vcom based on the set value of the common voltage Vcom calculated by the common voltage calculation unit 435. According to such a configuration, even if it is difficult to directly generate the common voltage Vcom from the direct current component Vd (DC) due to design constraints, the common voltage calculation unit 435 sets the set value of the common voltage Vcom. The common voltage Vcom can be generated based on the calculation.
<実施形態6>
本発明の実施形態6を図11によって説明する。この実施形態6の液晶表示装置510は、実施形態5に係る液晶表示装置410において更にメモリ536を備え、共通電圧算出部535で算出された共通電圧Vcomの設定値がメモリ536に書き込まれ、当該メモリ536に記憶された共通電圧Vcomの設定値が共通電圧生成部537に入力される点が相違する。メモリ536は、直流成分抽出部534等と同様に、液晶表示装置510のうちアレイ基板11bにおける非表示領域NAAに設けられた回路部とされる。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 6>
A sixth embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 510 according to the sixth embodiment further includes a memory 536 in the liquid crystal display device 410 according to the fifth embodiment, and the setting value of the common voltage Vcom calculated by the common voltage calculation unit 535 is written into the memory 536. The difference is that the set value of the common voltage Vcom stored in the memory 536 is input to the common voltage generation unit 537. The memory 536 is a circuit unit provided in the non-display area NAA of the array substrate 11b in the liquid crystal display device 510, similarly to the DC component extraction unit 534 and the like. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態6を図11によって説明する。この実施形態6の液晶表示装置510は、実施形態5に係る液晶表示装置410において更にメモリ536を備え、共通電圧算出部535で算出された共通電圧Vcomの設定値がメモリ536に書き込まれ、当該メモリ536に記憶された共通電圧Vcomの設定値が共通電圧生成部537に入力される点が相違する。メモリ536は、直流成分抽出部534等と同様に、液晶表示装置510のうちアレイ基板11bにおける非表示領域NAAに設けられた回路部とされる。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 6>
A sixth embodiment of the present invention will be described with reference to FIG. The liquid
本実施形態では、液晶表示装置510は、直流成分抽出部534と、直流成分抽出部534で抽出された直流成分Vd(DC)に基づき、共通電圧Vcomの設定値を算出する共通電圧算出部535と、共通電圧算出部535で算出された共通電圧Vcomの設定値を記憶するメモリ536と、メモリ536に記憶された共通電圧Vcomの設定値に基づき、共通電圧Vcomを生成する共通電圧生成部537と、を備える。このような構成によれば、一定期間は、メモリ536に記憶された設定値に基づいて共通電圧Vcomを生成することで、直流成分抽出部534や共通電圧算出部535への負荷を軽減することができる。
In the present embodiment, the liquid crystal display device 510 includes a DC component extraction unit 534 and a common voltage calculation unit 535 that calculates a set value of the common voltage Vcom based on the DC component Vd (DC) extracted by the DC component extraction unit 534. A memory 536 that stores the set value of the common voltage Vcom calculated by the common voltage calculation unit 535, and a common voltage generation unit 537 that generates the common voltage Vcom based on the set value of the common voltage Vcom stored in the memory 536. And comprising. According to such a configuration, the load on the DC component extraction unit 534 and the common voltage calculation unit 535 is reduced by generating the common voltage Vcom based on the set value stored in the memory 536 for a certain period. Can do.
<実施形態7>
本発明の実施形態7を図12によって説明する。この実施形態7の液晶表示装置610は、検査用配線632を複数(本実施形態では、2つ)備える点が実施形態1の液晶表示装置10と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Embodiment 7>
A seventh embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 610 of the seventh embodiment is different from the liquid crystal display device 10 of the first embodiment in that a plurality of inspection wirings 632 (two in this embodiment) are provided. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態7を図12によって説明する。この実施形態7の液晶表示装置610は、検査用配線632を複数(本実施形態では、2つ)備える点が実施形態1の液晶表示装置10と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <
A seventh embodiment of the present invention will be described with reference to FIG. The liquid
本実施形態では、検査用配線632は、ドレイン電極17cから分岐する2つの検査用配線632A,634Bを有している。このような構成によれば、製造時に検査用配線632A,634Bのいずれか一方が断線してしまった場合、他方の検査用配線をバックアップ用として使用することが出来る為、アレイ基板11bを使用不可状態にせずに済むといった、歩留まり向上の効果なども期待できる。
In this embodiment, the inspection wiring 632 includes two inspection wirings 632A and 634B branched from the drain electrode 17c. According to such a configuration, when one of the inspection wirings 632A and 634B is disconnected at the time of manufacture, the other inspection wiring can be used as a backup, and therefore the array substrate 11b cannot be used. It can also be expected to improve the yield, such as eliminating the need for a state.
<実施形態8>
本発明の実施形態8を図13によって説明する。この実施形態8の液晶表示装置710は、ダミー画素30Bに検査用配線32が配される一方、表示画素30Aにダミー配線738を備える点が実施形態1の液晶表示装置10と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Eighth embodiment>
An eighth embodiment of the present invention will be described with reference to FIG. The liquidcrystal display device 710 of the eighth embodiment is different from the liquid crystal display device 10 of the first embodiment in that the inspection wiring 32 is arranged on the dummy pixel 30B, and the dummy wiring 738 is provided on the display pixel 30A. In addition, the overlapping description about the same structure, operation | movement, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
本発明の実施形態8を図13によって説明する。この実施形態8の液晶表示装置710は、ダミー画素30Bに検査用配線32が配される一方、表示画素30Aにダミー配線738を備える点が実施形態1の液晶表示装置10と相違する。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。 <Eighth embodiment>
An eighth embodiment of the present invention will be described with reference to FIG. The liquid
ダミー配線738は、表示画素30Aに設けられたドレイン電極17cに接続され、検査用配線32と同様に配索される一方、当該ドレイン電極17cの電圧値の直流成分を抽出する直流成分抽出部に接続されない。言い換えれば、ダミー配線738がその表示画素30A内において他の電極や配線等との間で形成する静電容量は、検査用配線32がそのダミー画素30B内において他の電極や配線等との間で形成する静電容量と同等とされている。本実施形態では、ダミー配線738は、ダミー画素30Bを除くすべての表示画素30Aのドレイン電極17cに対応して、それぞれ形成されている。
The dummy wiring 738 is connected to the drain electrode 17c provided in the display pixel 30A, and is routed in the same manner as the inspection wiring 32. On the other hand, the dummy wiring 738 is used as a DC component extraction unit that extracts a DC component of the voltage value of the drain electrode 17c. Not connected. In other words, the capacitance formed between the dummy wiring 738 and other electrodes and wirings in the display pixel 30A is the same as that between the inspection wiring 32 and other electrodes and wirings in the dummy pixel 30B. It is equivalent to the capacitance formed by In the present embodiment, the dummy wiring 738 is formed corresponding to the drain electrode 17c of all the display pixels 30A except the dummy pixel 30B.
このような構成によれば、複数のゲート配線19と複数のソース配線20とが交差することによって形成される領域31のうち、検査用配線32が配されていない領域31にもダミー配線738を配することで、検査用配線32が配された領域31(ダミー画素領域31B)と、検査用配線32が配されていない領域31(画素領域31A)とで電気的な特性が異なる事態を抑制することができる。この結果、より一層好適に、検査用配線32から取り込まれたドレイン電圧Vdから、表示画素30Aのドレイン電圧Vdを推定することができる。
According to such a configuration, the dummy wiring 738 is also provided in the region 31 where the inspection wiring 32 is not arranged among the regions 31 formed by the intersection of the plurality of gate wirings 19 and the plurality of source wirings 20. This arrangement prevents the electrical characteristics of the region 31 (dummy pixel region 31B) in which the inspection wiring 32 is disposed and the region 31 (pixel region 31A) in which the inspection wiring 32 is not disposed from being different. can do. As a result, the drain voltage Vd of the display pixel 30A can be estimated from the drain voltage Vd captured from the inspection wiring 32 more preferably.
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記した各実施形態以外にも、例えば、実施形態2の表示画素に検査用配線を設ける構成において、検査用配線を設けられていない表示画素に実施形態8に開示のダミー配線を更に備える構成であってもよく、その要旨を逸脱しない範囲で各実施形態の構成を適宜組み合わせることも可能である。 <Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In addition to the above-described embodiments, for example, in the configuration in which the inspection wiring is provided in the display pixel of Embodiment 2, the dummy wiring disclosed in Embodiment 8 is further added to the display pixel in which the inspection wiring is not provided. The configuration may be provided, and the configurations of the respective embodiments may be appropriately combined without departing from the gist thereof.
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記した各実施形態以外にも、例えば、実施形態2の表示画素に検査用配線を設ける構成において、検査用配線を設けられていない表示画素に実施形態8に開示のダミー配線を更に備える構成であってもよく、その要旨を逸脱しない範囲で各実施形態の構成を適宜組み合わせることも可能である。 <Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In addition to the above-described embodiments, for example, in the configuration in which the inspection wiring is provided in the display pixel of Embodiment 2, the dummy wiring disclosed in Embodiment 8 is further added to the display pixel in which the inspection wiring is not provided. The configuration may be provided, and the configurations of the respective embodiments may be appropriately combined without departing from the gist thereof.
(2)上記した実施形態では、フリッカを調整するために、共通電極に印加される共通電圧を調整する方法を例示したが、フリッカの調整方法はこれに限られない。例えば、フリッカを調整するために、共通電極以外の電極に印加される電圧値を適宜調整してもよく、また、電圧値以外にも各電極に印加される単位時間当たりの電圧印加時間を適宜調整してもよい。
(2) In the embodiment described above, the method of adjusting the common voltage applied to the common electrode in order to adjust the flicker is exemplified, but the method of adjusting the flicker is not limited to this. For example, in order to adjust flicker, the voltage value applied to the electrodes other than the common electrode may be adjusted as appropriate. In addition to the voltage value, the voltage application time per unit time applied to each electrode may be appropriately set. You may adjust.
(3)上記した実施形態では、ドレイン電圧確認用画素(ダミー画素、検査用配線が設けられた表示画素)が1つ設けられる構成を例示したが、ドレイン電圧確認用画素の数はこれに限られない。ドレイン電圧確認用画素は、複数設けられていてもよく、その場合には、複数のドレイン電圧確認用画素から得られた複数の直流成分情報の平均値に基づいて、共通電圧の設定値等を決定してもよい。
(3) In the above-described embodiment, a configuration in which one drain voltage check pixel (a dummy pixel, a display pixel provided with a test wiring) is provided is exemplified, but the number of drain voltage check pixels is not limited thereto. I can't. A plurality of drain voltage confirmation pixels may be provided.In that case, a common voltage setting value or the like is set based on an average value of a plurality of DC component information obtained from the plurality of drain voltage confirmation pixels. You may decide.
(4)上記した各実施形態では、共通電極または補助容量配線における基準電位がドレイン電極の正極性時と負極性時とで一定とされる構成のものを例示したが、共通電極または補助容量配線における基準電位が変動する構成においても本発明は適用可能である。
(4) In each of the embodiments described above, the reference electrode in the common electrode or the auxiliary capacitance wiring is exemplified as having a constant potential between the positive polarity and the negative polarity of the drain electrode. The present invention can also be applied to a configuration in which the reference potential varies.
(5)上記した各実施形態では、共通電極に印加される基準電位と、補助容量配線に印加される基準電位とが同電位とされる場合を示したが、共通電極に印加される基準電位と、補助容量配線に印加される基準電位とが異なる電位とされるものにも本発明は適用可能である。
(5) In each of the above-described embodiments, the reference potential applied to the common electrode and the reference potential applied to the auxiliary capacitance wiring are shown to be the same potential. However, the reference potential applied to the common electrode is described above. The present invention can also be applied to a case where the reference potential applied to the auxiliary capacitor wiring is different from the reference potential.
(6)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを例示したが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、またカラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
(6) In each of the embodiments described above, the TFT is exemplified as the switching element of the liquid crystal display device. However, the present invention can be applied to a liquid crystal display device using a switching element other than the TFT (for example, a thin film diode (TFD)). The present invention can be applied to a liquid crystal display device for monochrome display in addition to a liquid crystal display device for color display.
(7)上記した各実施形態では、FFS型の液晶パネルについて例示したが、それ以外にも例えばIPS型の液晶パネルにも本発明は適用可能である。さらには、共通電極がCF基板側に形成されたVA型の液晶パネルやMVA型の液晶パネルにも本発明は適用可能である。
(7) In each of the above-described embodiments, the FFS type liquid crystal panel is exemplified, but the present invention can be applied to, for example, an IPS type liquid crystal panel. Furthermore, the present invention can also be applied to a VA liquid crystal panel or an MVA liquid crystal panel in which a common electrode is formed on the CF substrate side.
(8)上記した各実施形態では、ドライバをアレイ基板上に直接COG実装したものを示したが、アレイ基板に対してACFを介して接続したフレキシブル基板上にドライバを実装するようにしたものも本発明に含まれる。
(8) In each of the embodiments described above, the driver is mounted directly on the array substrate by COG, but the driver is mounted on a flexible substrate connected to the array substrate via the ACF. It is included in the present invention.
(9)上記した各実施形態では、縦長な方形状をなす液晶パネルを例示したが、液晶パネルの形状はこれに限られない。例えば、横長な方形状をなす液晶パネルや正方形状をなす液晶パネルにも本発明は適用可能である。
(9) In each of the above-described embodiments, the liquid crystal panel having a vertically long rectangular shape is illustrated, but the shape of the liquid crystal panel is not limited thereto. For example, the present invention can be applied to a liquid crystal panel having a horizontally long square shape or a liquid crystal panel having a square shape.
(10)上記した各実施形態に記載した液晶パネルに対して、タッチパネルや視差バリアパネル(スイッチ液晶パネル)などの機能性パネルを積層する形で取り付けるようにしたものも本発明に含まれる。また、液晶パネルに直接タッチパネルパターンを形成するようにしたものも本発明に含まれる。
(10) The present invention includes a configuration in which a functional panel such as a touch panel or a parallax barrier panel (switch liquid crystal panel) is attached to the liquid crystal panel described in each embodiment. In addition, a liquid crystal panel in which a touch panel pattern is directly formed is also included in the present invention.
(11)上記した各実施形態では、外部光源であるバックライト装置を備えた透過型の液晶表示装置を例示したが、本発明は、外光を利用して表示を行う反射型液晶表示装置にも適用可能であり、その場合はバックライト装置を省略することができる。
(11) In each of the above-described embodiments, a transmissive liquid crystal display device including a backlight device that is an external light source is illustrated. However, the present invention is applied to a reflective liquid crystal display device that performs display using external light. In this case, the backlight device can be omitted.
(12)上記した各実施形態では、一対の基板間に液晶層が挟持された構成とされる液晶パネルについて例示したが、一対の基板間に液晶材料以外の機能性有機分子を挟持した表示パネルについても本発明は適用可能である。
(12) In each of the above embodiments, a liquid crystal panel having a configuration in which a liquid crystal layer is sandwiched between a pair of substrates has been exemplified. However, a display panel in which functional organic molecules other than a liquid crystal material are sandwiched between a pair of substrates. The present invention is also applicable to.
(13)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル:Plasma Display Panel)、有機ELパネル、CRT(陰極線管:Cathode Ray Tube) 、EPD(電気泳動ディスプレイパネル:Electrophoretic Display)など)を用いた液晶表示装置にも本発明は適用可能である。その場合、バックライト装置を省略することも可能である。
(13) In each of the above embodiments, a liquid crystal display device using a liquid crystal panel as an example of the display panel has been illustrated. However, other types of display panels (PDP (plasma display panel), organic EL panel, CRT ( The present invention is also applicable to a liquid crystal display device using a cathode ray tube (Cathode Ray Tube) or EPD (Electrophoretic Display Panel). In that case, the backlight device can be omitted.
(14)上記した各実施形態では、表示パネルとして液晶パネルを用いた場合を示したが、例えば、バックライト装置からの光を利用して画像を表示するMEMS(Micro Electro Mechanical Systems)表示パネルを用いることも可能である。このMEMS表示パネルは、表示画素を構成する微小な機械式シャッタが多数個マトリクス状に平面配置されてなり、各機械式シャッタの開閉を個別に制御することで、表示画素毎にバックライト装置からの光に係る透過光量を調整し、もって所定の階調の画像を表示することができる。
(14) In each of the embodiments described above, the case where a liquid crystal panel is used as the display panel has been described. For example, a MEMS (Micro Electro Mechanical Systems) display panel that displays an image using light from a backlight device is used. It is also possible to use it. In this MEMS display panel, a number of minute mechanical shutters constituting display pixels are arranged in a plane in a matrix, and the opening and closing of each mechanical shutter is individually controlled, so that each display pixel is controlled by a backlight device. By adjusting the amount of transmitted light related to the light, an image with a predetermined gradation can be displayed.
(15)上記した各実施形態では、小型または中小型に分類され、携帯型情報端末、携帯電話(スマートフォンを含む)、ノートパソコン(タブレット型ノートパソコンを含む)、デジタルフォトフレーム、携帯型ゲーム機、電子インクペーパなどの各種電子機器などに用いされる液晶パネルを例示したが、画面サイズが例えば20インチ~90インチで、中型または大型(超大型)に分類される液晶パネルにも本発明は適用可能である。その場合、液晶パネルをテレビ受信装置、電子看板(デジタルサイネージ)、電子黒板などの電子機器に用いることが可能とされる。
(15) In each of the above-described embodiments, it is classified as small or medium-sized, and is a portable information terminal, a mobile phone (including a smartphone), a notebook computer (including a tablet notebook computer), a digital photo frame, and a portable game machine. In addition, liquid crystal panels used for various electronic devices such as electronic ink paper are exemplified, but the present invention is also applicable to liquid crystal panels classified into medium-sized or large-sized (super-large) screens having a screen size of, for example, 20 inches to 90 inches. Applicable. In that case, the liquid crystal panel can be used for an electronic device such as a television receiver, an electronic signboard (digital signage), or an electronic blackboard.
10,110,210,310,410,510,610,710...液晶表示装置(表示装置)、11a...CF基板、11b...アレイ基板、11c...液晶層、11h...カラーフィルタ、17...TFT(スイッチング素子)、17a...ゲート電極、17b...ソース電極、17c...ドレイン電極、18...透明電極(画素部)、18A...画素電極、18B...ダミー画素電極、19...ゲート配線、20...ソース配線、22...共通電極、31...領域、31A...画素領域、31B...ダミー画素領域、31,132,632...検査用配線、33・・端子部、34,334,434,534...直流成分抽出部、35,435,535...共通電圧算出部、36,236,536...メモリ(記憶部)、37,237,337,437,537...共通電圧生成部、40...検査装置、738...ダミー配線
10, 110, 210, 310, 410, 510, 610, 710 ... liquid crystal display device (display device), 11a ... CF substrate, 11b ... array substrate, 11c ... liquid crystal layer, 11h ... Color filter, 17 ... TFT (switching element), 17a ... Gate electrode, 17b ... Source electrode, 17c ... Drain electrode, 18 ... Transparent electrode (pixel part), 18A ... Pixel electrode, 18B ... dummy pixel electrode, 19 ... gate wiring, 20 ... source wiring, 22 ... common electrode, 31 ... area, 31A ... pixel area, 31B ... dummy Pixel region 31, 132, 632... Inspection wiring, 33... Terminal part, 34, 334, 434, 534 ... DC component extraction part, 35 435, 535. , 236, 536 ... Memory (storage unit), 37, 237, 337, 437, 537 ... Common voltage generation unit, 0 ... inspection apparatus, 738 ... dummy wiring
Claims (13)
- 基板と、
前記基板上に並列配置される複数のゲート配線と、
前記基板上に前記ゲート配線と交差して並列配置される複数のソース配線と、
複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成される領域にそれぞれ配置される複数の透明電極と、
前記領域にそれぞれ配置され、前記ゲート配線と接続されるゲート電極、前記ソース配線と接続されるソース電極、および前記透明電極と接続されるドレイン電極を有する複数のスイッチング素子と、
前記複数のスイッチング素子のうち少なくとも一つのスイッチング素子の前記ドレイン電極に接続されるとともに、当該ドレイン電極に印加される電圧の直流成分を抽出する直流成分抽出部に接続可能とされた検査用配線と、を備える表示装置。 A substrate,
A plurality of gate wirings arranged in parallel on the substrate;
A plurality of source wirings arranged in parallel across the gate wiring on the substrate;
A plurality of transparent electrodes respectively disposed in a region formed by intersecting a plurality of the gate lines and the plurality of source lines;
A plurality of switching elements each disposed in the region and having a gate electrode connected to the gate wiring, a source electrode connected to the source wiring, and a drain electrode connected to the transparent electrode;
An inspection wiring connected to the drain electrode of at least one switching element of the plurality of switching elements and connectable to a DC component extraction unit for extracting a DC component of a voltage applied to the drain electrode; A display device comprising: - 前記基板は、表示領域と前記表示領域を取り囲む非表示領域とに区分され、
前記検査用配線が接続された前記スイッチング素子は、前記基板における前記非表示領域において複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成されるダミー画素領域に配置されている請求項1に記載の表示装置。 The substrate is divided into a display area and a non-display area surrounding the display area,
The switching element connected to the inspection wiring is disposed in a dummy pixel region formed by crossing a plurality of the gate wirings and a plurality of the source wirings in the non-display region of the substrate. Item 4. The display device according to Item 1. - 前記基板は、表示領域と前記表示領域を取り囲む非表示領域とに区分され、
前記検査用配線が接続された前記スイッチング素子は、前記基板における前記表示領域において複数の前記ゲート配線と複数の前記ソース配線とが交差することによって形成される画素領域に配置されている請求項1に記載の表示装置。 The substrate is divided into a display area and a non-display area surrounding the display area,
2. The switching element to which the inspection wiring is connected is disposed in a pixel region formed by intersecting a plurality of the gate wirings and a plurality of the source wirings in the display region of the substrate. The display device described in 1. - 前記透明電極との間で静電容量を形成する共通電極を更に備え、
前記共通電極には、前記ドレイン電極に印加されるドレイン電圧が交流電圧である場合において、その正極性時における前記ドレイン電極と当該共通電極との間の電位差とその負極性時における前記ドレイン電極と当該共通電極との間の電位差とが略同じとなるように、前記直流成分抽出部で抽出された直流成分に基づいて算出された共通電圧が印加される請求項1から請求項3のいずれか1項に記載の表示装置。 A common electrode that forms a capacitance with the transparent electrode;
When the drain voltage applied to the drain electrode is an AC voltage, the common electrode includes a potential difference between the drain electrode and the common electrode at the positive polarity and the drain electrode at the negative polarity. The common voltage calculated based on the DC component extracted by the DC component extraction unit is applied so that the potential difference between the common electrode and the common electrode is substantially the same. Item 1. A display device according to item 1. - 前記共通電圧の設定値を記憶する記憶部と、
前記記憶部に記憶された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備え、
前記検査用配線は、前記直流成分抽出部を備える検査装置に接続可能とされた端子部を有し、
前記検査装置は、前記共通電圧の設定値を算出する共通電圧算出部を更に備えており、
前記記憶部には、前記検査装置の前記共通電圧算出部で算出された前記共通電圧の設定値が書き込まれる請求項4に記載の表示装置。 A storage unit for storing a set value of the common voltage;
A common voltage generation unit that generates the common voltage based on a set value of the common voltage stored in the storage unit;
The inspection wiring has a terminal portion that can be connected to an inspection apparatus including the DC component extraction unit,
The inspection apparatus further includes a common voltage calculation unit that calculates a set value of the common voltage,
The display device according to claim 4, wherein the setting value of the common voltage calculated by the common voltage calculation unit of the inspection apparatus is written in the storage unit. - 前記記憶部と前記共通電圧生成部とは、前記基板上に設けられている請求項5に記載の表示装置。 The display device according to claim 5, wherein the storage unit and the common voltage generation unit are provided on the substrate.
- 前記共通電極に電圧を供給するための回路基板を更に備え、
前記記憶部と前記共通電圧生成部とは、前記回路基板に設けられている請求項5に記載の表示装置。 A circuit board for supplying a voltage to the common electrode;
The display device according to claim 5, wherein the storage unit and the common voltage generation unit are provided on the circuit board. - 前記直流成分抽出部と、
前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える請求項4に記載の表示装置。 The DC component extraction unit;
The display device according to claim 4, further comprising: a common voltage generation unit that generates the common voltage based on the DC component extracted by the DC component extraction unit. - 前記直流成分抽出部と、
前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧の設定値を算出する共通電圧算出部と、
前記算出部で算出された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える請求項4に記載の表示装置。 The DC component extraction unit;
A common voltage calculation unit that calculates a set value of the common voltage based on the DC component extracted by the DC component extraction unit;
The display device according to claim 4, further comprising: a common voltage generation unit that generates the common voltage based on a set value of the common voltage calculated by the calculation unit. - 前記直流成分抽出部と、
前記直流成分抽出部で抽出された直流成分に基づき、前記共通電圧の設定値を算出する算出部と、
前記共通電圧算出部で算出された前記共通電圧の設定値を記憶する記憶部と、
前記記憶部に記憶された前記共通電圧の設定値に基づき、前記共通電圧を生成する共通電圧生成部と、を更に備える請求項4に記載の表示装置。 The DC component extraction unit;
A calculation unit that calculates a set value of the common voltage based on the DC component extracted by the DC component extraction unit;
A storage unit for storing a setting value of the common voltage calculated by the common voltage calculation unit;
The display device according to claim 4, further comprising: a common voltage generation unit that generates the common voltage based on a set value of the common voltage stored in the storage unit. - 前記検査用配線は、前記ドレイン電極から分岐して複数設けられている請求項1から請求項10のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 10, wherein a plurality of the inspection wirings are branched from the drain electrode.
- 前記複数のスイッチング素子のうち少なくとも一つのスイッチング素子の前記ドレイン電極に接続され、前記検査用配線と同様に配索される一方、当該ドレイン電極の電圧値の直流成分を抽出する前記直流成分抽出部に接続されないダミー配線を更に備える請求項1から請求項11のいずれか1項に記載の表示装置。 The DC component extraction unit that is connected to the drain electrode of at least one switching element among the plurality of switching elements and is arranged in the same manner as the inspection wiring, and extracts a DC component of a voltage value of the drain electrode. The display device according to claim 1, further comprising a dummy wiring not connected to the display.
- 前記基板と対向状をなすとともにカラーフィルタが配された対向基板と、前記基板と前記対向基板との間に挟持される液晶層と、を備える請求項1から請求項12のいずれか1項に記載の表示装置。 The counter substrate according to any one of claims 1 to 12, further comprising: a counter substrate facing the substrate and having a color filter disposed thereon; and a liquid crystal layer sandwiched between the substrate and the counter substrate. The display device described.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-233439 | 2014-11-18 | ||
JP2014233439 | 2014-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080255A1 true WO2016080255A1 (en) | 2016-05-26 |
Family
ID=56013797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081696 WO2016080255A1 (en) | 2014-11-18 | 2015-11-11 | Display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016080255A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019061885A (en) * | 2017-09-27 | 2019-04-18 | 株式会社キーエンス | Photoelectric switch and sensor unit |
JP2020194798A (en) * | 2020-09-07 | 2020-12-03 | 株式会社キーエンス | Sensor unit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312633A (en) * | 1989-06-12 | 1991-01-21 | Hitachi Ltd | Liquid crystal display device |
JP2006243420A (en) * | 2005-03-04 | 2006-09-14 | Sharp Corp | Image signal line driving circuit and display device provided with the same |
WO2006123532A1 (en) * | 2005-05-20 | 2006-11-23 | Sharp Kabushiki Kaisha | Display apparatus driving circuit and driving method |
JP2010176028A (en) * | 2009-01-30 | 2010-08-12 | Sony Corp | Display device and electronic apparatus |
JP2011039458A (en) * | 2009-08-18 | 2011-02-24 | Victor Co Of Japan Ltd | Liquid crystal display device and common electrode voltage setting method thereof |
JP2014153492A (en) * | 2013-02-07 | 2014-08-25 | Seiko Epson Corp | Light-emitting device and electronic apparatus |
-
2015
- 2015-11-11 WO PCT/JP2015/081696 patent/WO2016080255A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312633A (en) * | 1989-06-12 | 1991-01-21 | Hitachi Ltd | Liquid crystal display device |
JP2006243420A (en) * | 2005-03-04 | 2006-09-14 | Sharp Corp | Image signal line driving circuit and display device provided with the same |
WO2006123532A1 (en) * | 2005-05-20 | 2006-11-23 | Sharp Kabushiki Kaisha | Display apparatus driving circuit and driving method |
JP2010176028A (en) * | 2009-01-30 | 2010-08-12 | Sony Corp | Display device and electronic apparatus |
JP2011039458A (en) * | 2009-08-18 | 2011-02-24 | Victor Co Of Japan Ltd | Liquid crystal display device and common electrode voltage setting method thereof |
JP2014153492A (en) * | 2013-02-07 | 2014-08-25 | Seiko Epson Corp | Light-emitting device and electronic apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019061885A (en) * | 2017-09-27 | 2019-04-18 | 株式会社キーエンス | Photoelectric switch and sensor unit |
JP2020194798A (en) * | 2020-09-07 | 2020-12-03 | 株式会社キーエンス | Sensor unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10802358B2 (en) | Display device with signal lines routed to decrease size of non-display area | |
US8884922B2 (en) | Display device including touch panel and parallax barrier sharing single board | |
US10354605B2 (en) | Liquid crystal display and method for manufacturing the same | |
CN102455538B (en) | There is the liquid crystal display of integrated touch panel | |
US10296120B2 (en) | Touch display panel and driving method | |
JP4869807B2 (en) | Display device | |
US20160111040A1 (en) | Panel array for display device with narrow bezel | |
KR102194484B1 (en) | Drive Printed-Circuit Board for Display Device and Display Device having the same | |
US20110007257A1 (en) | Liquid crystal display | |
KR20190016591A (en) | Liquid crystal display device capable of switching the viewing angle and method for switching the viewing angle | |
KR102287833B1 (en) | Method of driving display panel and display apparatus for performing the same | |
JP2018049193A (en) | Display device | |
JP6636609B2 (en) | Display device and display device inspection method | |
CN106816444A (en) | Transistor base and display device | |
KR20080070169A (en) | Display device | |
KR101541475B1 (en) | Liquid crystal display device | |
GB2505330A (en) | Method of driving a liquid crystal display device | |
WO2016080255A1 (en) | Display device | |
JP2008292525A (en) | Transmittance control panel and display device | |
KR101992852B1 (en) | Display device | |
KR20160091528A (en) | Display device and driving method for display device using the same | |
KR102075355B1 (en) | Liquid crystal display device | |
JP6332984B2 (en) | Liquid crystal characteristic measuring apparatus, liquid crystal characteristic measuring method, and liquid crystal display panel | |
JP2017129615A (en) | Display device | |
KR20160125275A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15860122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15860122 Country of ref document: EP Kind code of ref document: A1 |