WO2016076200A1 - 信号処理装置、信号処理方法およびコンピュータプログラム - Google Patents
信号処理装置、信号処理方法およびコンピュータプログラム Download PDFInfo
- Publication number
- WO2016076200A1 WO2016076200A1 PCT/JP2015/081182 JP2015081182W WO2016076200A1 WO 2016076200 A1 WO2016076200 A1 WO 2016076200A1 JP 2015081182 W JP2015081182 W JP 2015081182W WO 2016076200 A1 WO2016076200 A1 WO 2016076200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- time
- output signal
- convergence
- signal processing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
Definitions
- the present invention relates to a signal processing device, a signal processing method, and a computer program, and more particularly, to a signal processing device, a signal processing method, and a computer program for obtaining an estimated value based on an output signal from a sensor.
- some gas sensors, humidity sensors, and temperature sensors using semiconductors require a relatively long time from the start of measurement until the value of the output signal (for example, voltage value) converges. That is, when a certain attribute to be measured is obtained based on the output signal from the sensor, the attribute cannot be obtained until the value of the output signal converges.
- the value of the output signal for example, voltage value
- the value of the output signal converges means that the value of the output signal at a certain time when a sufficient time has passed and the value of the output signal at a time before a certain time.
- the difference is a value within a predetermined range for a predetermined time, and the value of the converged output signal is called a “convergence value”.
- the time from the start of measurement until the value of the output signal converges is called “response time”, and the period until the response time elapses is called “transient response period”.
- Patent Document 1 discloses a method for predicting a convergence value (final response value) of a radiation detector based on a dose rate or a count rate in an initial or intermediate period of a transient response period.
- the response characteristics of sensors often differ between rising and falling.
- the rising means that the value of the sensor output signal increases
- the falling means that the value of the sensor output signal decreases.
- the rising response time is Tr
- the falling response time is Td. It will be expressed as
- the prediction method described in Patent Document 1 uses the same time constant (T) for each of the rising response and the falling response, and when the response time of the sensor is different between the rising response and the falling response, the rising response and the rising response are detected. It becomes difficult to accurately obtain the convergence value for both of the downstream responses.
- each convergence value can be obtained accurately, but the time for obtaining the convergence value differs between the rising response and the falling response. become. Then, the timing of proceeding to the next process using each convergence value differs between the rising response time and the falling response time, and there is a problem that the next processing becomes complicated.
- the present invention has been made to solve the above problem, and can easily perform processing using a predicted value based on an output signal from a sensor having a rising response time and a falling response time different from each other.
- An object is to provide a signal processing device, a signal processing method, and a computer program.
- an input interface that receives an output signal V a (T) from a sensor, and a value of the output signal V a (T) is a first parameter that represents an attribute to be measured.
- the first convergence value V c 1 corresponding to the value P1 becomes the second convergence value V c 2 corresponding to the second value P2 different from the first value P1 of the parameter representing the attribute to be measured.
- the response time is Tr and the response time when the value of the output signal V a (T) is the second convergence value V c 2 to the first convergence value V c 1 is Td, the response time In the transient response period before Tr or Td elapses, the output signal that will be obtained at time T2 after the time T1 in accordance with the value V a _T1 of the output signal obtained at time T1.
- said pre Parts are the response time during which the predicted value becomes a value corresponding to the convergence value V c 2 of the second and TrE, the predicted value becomes a value corresponding to the first convergence value V c 1 Response Time
- TdE the predicted values such that TrE ⁇ Tr, TdE ⁇ Td,
- the prediction unit may perform the first convergence.
- a prediction value close to the value V c 1 is generated, and when the second convergence value V c 2 is taken over a time longer than the response time Tr or Td, a prediction value close to the second convergence value V c 2 is generated To do.
- the prediction unit includes a prediction unit corresponding to each of rising or falling of the output signal Va (T) .
- the prediction unit includes a memory that stores parameters corresponding to rising and falling edges of the output signal Va (T) .
- the signal processing device may further include a display device that displays the predicted value.
- the information processing device further includes an information generation unit that generates information based on the prediction value generated by the prediction unit.
- the signal processing device may further include a display device that displays the information.
- the signal processing device includes a client terminal and a server device connected to each other via a network, and the client terminal includes at least the input interface and a communication unit.
- the signal processing device may further include the sensor.
- a signal processing method includes a step of receiving an output signal V a (T) from a sensor, and a value of the output signal V a (T) is a first value of a parameter representing an attribute of a measurement target Response from the first convergence value V c 1 corresponding to P1 to the second convergence value V c 2 corresponding to the second value P2 different from the first value P1 of the parameter representing the attribute to be measured
- the response time Tr or, in the transient response period before Td has elapsed, according to the value V a _ T1 of the output signal obtained at time T1 may be obtained at time T2 later than the time T1 of the output signal a process for generating a predicted value V b _ T2 corresponding to the value, yield the predicted value of the second
- a program includes a step of receiving an output signal V a (T) from a sensor, and a value of the output signal V a (T) is set to a first value P1 of a parameter representing an attribute of a measurement target.
- the response time from the corresponding first convergence value V c 1 to the second convergence value V c 2 corresponding to the second value P2 different from the first value P1 of the parameter representing the attribute to be measured is obtained.
- the response time Tr or Td is defined as Td, where Td is the response time when the value of the output signal V a (T) becomes the first convergence value V c 1 from the second convergence value V c 2.
- the value of the output signal that will be obtained at time T2 after the time T1 is set according to the value V a _T1 of the output signal obtained at time T1.
- a process for generating a predicted value V b _ T2 corresponding convergence the predicted value is the second
- the predicted value is to TdE the response time becomes a value corresponding to the first convergence value V c 1, TrE ⁇ Tr, TdE ⁇ Td, And generating a predicted value such that
- a signal processing device a signal processing method, and a computer program that can easily perform processing using a predicted value based on an output signal from a sensor having different rising response time and falling response time. Can provide.
- (A)-(c) is a figure for demonstrating the relationship between the predicted value produced
- 3 is a flowchart illustrating a signal processing method according to the first embodiment.
- FIG. 6 is a flowchart illustrating a signal processing method according to the second embodiment. It is a figure which shows typically the structure of 20 A of prediction circuits used as the prediction circuit 20. FIG. It is a figure which shows typically the structure of the prediction circuit 20B used as the prediction circuit 20. FIG. It is a figure which shows typically the structure of 100 A of signal processing apparatuses by Embodiment 3 of this invention. It is a figure which shows typically the structure of 200 A of signal processing apparatuses by Embodiment 4 of this invention. It is a figure which shows typically the structure of signal processing apparatus 200B by Embodiment 5 of this invention. It is a figure which shows typically the structure of 200 C of signal processing apparatuses by Embodiment 6 of this invention.
- an input interface that receives an output signal V a (T) from a sensor, and a value of the output signal V a (T) is a first value of a parameter that represents an attribute of a measurement target Response time from the first convergence value V c 1 corresponding to P1 to the second convergence value V c 2 corresponding to the second value P2 different from the first value P1 of the parameter representing the attribute to be measured Is Tr, and the response time Tr or Td elapses when Td is the response time when the value of the output signal V a (T) changes from the second convergence value V c 2 to the first convergence value V c 1.
- the predicted value V b corresponding to the value of the likely will output signal obtained at time T2 after the time T1 generating a _ T2 and a prediction circuit (predictor), the prediction circuit, the convergence prediction value of the second
- the response time becomes a value corresponding to V c 2 and TrE the predicted value is to TdE the response time becomes a value corresponding to the first convergence value V c 1, TrE ⁇ Tr, TdE ⁇ Td,
- the attributes of the measurement object are, for example, humidity, temperature, gas concentration, and the parameters representing the attributes are relative humidity (RH) 60%, temperature 25 ° C., concentration 0.1 ppm, and the like, respectively.
- the signal processing method includes a step of receiving an output signal V a (T) from a sensor, and a value of the output signal V a (T) is a first value P1 of a parameter representing an attribute to be measured.
- Tr is the response time when the value of the output signal V a (T) changes from the second convergence value V c 2 to the first convergence value V c 1, Td, before the response time Tr or Td elapses
- Tr is the response time when the value of the output signal V a (T) changes from the second convergence value V c 2 to the first convergence value V c 1, Td, before the response time Tr or Td elapses
- the predicted value V b — corresponding to the value of the output signal that will be obtained at time T2 after time T1, according to the value V a — T1 of the output signal obtained at time T1.
- TrE response times predicted value becomes a value corresponding to the second convergence value V c 2
- Generating a predicted value such that
- the signal processing method according to the embodiment of the present invention can be executed by, for example, the signal processing apparatus described above.
- the computer program according to the embodiment of the present invention can cause a computer to execute the signal processing method.
- the computer may be a plurality of computers connected via a network.
- the signal processing device may be a computer, and may be a plurality of computers (for example, including a server device and a client terminal) connected via a network.
- the program according to the embodiment of the present invention can be implemented in a memory of a computer, for example.
- the time until the relative 63% value of each convergence value is reached instead of the response times Tr and Td (referred to as “63% response time”) is.) can be used Tr 63, Td 63.
- the relative 63% value of the convergence value refers to the value of the output signal Va (T) at which the change amount is 63% when the entire change amount is 100%.
- V c 1 For example, if the output of the sensor changes from a first convergent value V c 1 to the second convergence value V c 2, the second convergence value relative 63% value of V c 2, V c 1+ ( V c 2 -V c 1) a ⁇ 0.63, when the output of the sensor changes from the second convergence value V c 2 to the first convergence value V c 1, a first relative 63% convergence value V c 1
- the relative 63% value of the first convergence value V c 1 is represented as “V c 1 63 ”, and the relative 63% value of the second convergence value V c 2 is represented as “V c 2 63 ”. Further, the response time from when the predicted value becomes the relative 63% value V c 2 63 of the first converged value V c 1 to the second converged value V c 2 is expressed as “TrE 63 ”. The response time from the convergence value V c 2 of 2 to the relative 63% value V c 1 63 of the first convergence value V c 1 is expressed as “TdE 63 ”.
- the prediction circuit included in the signal processing device has TrE 63 ⁇ Tr 63 , TdE 63 ⁇ Td 63 ,
- the prediction value may be generated so that 1 ⁇ Td 63 / Tr 63
- The prediction circuit can also be configured to generate a prediction value such that 90 / TrE 90
- these prediction circuits can also generate prediction values such that TrE ⁇ Tr, TdE ⁇ Td,
- the first convergence value V c 1 and the second convergence value V c 2 are different values corresponding to different values of parameters representing certain attributes of the measurement target, and the first convergence value V c 1 and The magnitude relationship with the second convergence value V c 2 is not limited. That is, the first convergence value V c 1 ⁇ the second convergence value V c 2 may be satisfied, or the first convergence value V c 1> the second convergence value V c 2 may be satisfied. In the following, the case of the first convergence value V c 1 ⁇ the second convergence value V c 2 is mainly exemplified, and the parameter to be measured by the sensor changes from the first value P1 to the second value P2.
- the response time Tr from when the sensor output signal value reaches the second convergence value V c 2 from the first convergence value V c 1 corresponding to the first value P1 is referred to as a rising response time.
- the value of the sensor output signal corresponds to the second convergence value V corresponding to the second value P2.
- the response time Td from c 2 to the first convergence value V c 1 is called the falling response time.
- Tr and Td are not limited to this example.
- the sensor when the sensor is a humidity sensor, the sensor moves indoors (second humidity: parameter second value P2) from outdoor (first humidity: parameter first value P1), and again outdoor.
- first humidity parameter first value P1
- the value of the attribute (humidity) of the measurement target of the sensor changes from P1 to P2 and changes from P2 to P1, as shown in FIG.
- the change from P1 to P2 and the change from P2 to P1 are stepwise.
- the value of the output signal of the sensor at this time shows a step response characteristic as shown in FIG.
- a 63% response time can be used instead of the response time.
- the convergence value of the sensor output signal V a (T) corresponding to P1 is V c 1 and the convergence value of the sensor output signal V a (T) corresponding to P2 is V c 2 (V c 1 ⁇ V c 2).
- V a (T) V c 1+ (V c 2 ⁇ V c 1) ⁇ It is represented by (1-e ⁇ T / tr ).
- V a (T) V c 1+ (V c 2 ⁇ V c 1) ⁇ e -T / td
- the time constant tr is substantially equal to Tr 63
- the time constant td is substantially equal to Td 63 .
- the prediction circuit included in the signal processing device is configured to output the output signal obtained at time T1 in the transient response period before the response time Tr or Td elapses.
- a predicted value V b — T2 corresponding to the value of the output signal that will be obtained at time T2 after time T1 is generated.
- the prediction circuit uses TrE as the response time for which the predicted value becomes the value V c E2 corresponding to the second convergence value V c 2, and the predicted value becomes the value V c E1 corresponding to the first convergence value V c 1.
- the prediction circuit When the response time is TdE, predicted values V c E2 and V c E1 that satisfy TrE ⁇ Tr, TdE ⁇ Td,
- the response time of the sensor output signal V a (T) is different between rising and falling (Tr ⁇ Td, here, as a typical example, the case of Td> Tr is illustrated).
- the time (TrE, TdE) for generating the two predicted values (V c E2, V c E1) is shorter than the response time (Tr, Td) of the sensor, and
- Japanese Patent Laying-Open No. 2005-216202 discloses a method for outputting future values of time series data.
- the first time-series data is associated with the second time-series data that is later in timing than the first time-series data.
- Time series data at a certain timing is set as a prediction target, and second time series data associated with the first time series data corresponding to the specified learning pattern is determined as a future value.
- the response time differs between the rising edge and the falling edge as in the embodiment of the present invention, if the learning pattern corresponding to each of the rising edge and the falling edge is used, each of the rising edge and the falling edge is used. Data with reduced response time can be output.
- the prediction circuit may be configured to generate the predicted values V c E2 63 and V c E1 63 such that 1 ⁇ TdE 63 / TrE 63
- the prediction circuit may be configured to generate the predicted values V c E2 63 and V c E1 63 such that 1 ⁇ TdE 63 / TrE 63
- the prediction circuit may be configured to generate
- the prediction circuit included in the signal processing device generates a prediction value corresponding to a parameter representing each attribute when the value of the attribute to be measured does not change over time. For example, if the attribute parameter is constant at the first value P1, a first predicted value corresponding to the first value P1 is generated, and if the attribute parameter is constant at the second value P2, A second predicted value corresponding to the value P2 of 2 is generated. The first predicted value has a value close to the convergence value V c 1, and the second predicted value has a value close to the convergence value V c 2.
- V a _ T1 of the output signal prediction circuit is obtained at time T1
- V b _ T2 will be obtained at a time T2 after the time T1 the predicted value V b _ T2 corresponding to the value of the output signal
- a certain arithmetic expression may be used, or a neural network, a genetic algorithm, PID control, or the like may be used.
- a specific example of the prediction circuit will be described later.
- Japanese Patent Laid-Open No. 2001-41824 discloses a method of shortening the response time of a sensor by using a PID controller having control parameters P, I and D.
- Each of the control parameters P, I and D is used as a function of a time constant.
- the response time differs between the rising edge and the falling edge, if the control parameters corresponding to the rising edge and the falling edge are used, the rising edge and the falling edge Response time can be shortened.
- a signal processing apparatus used for obtaining a parameter P indicating humidity based on an output signal from a humidity sensor will be exemplified, and a signal processing apparatus according to an embodiment of the present invention and a signal processing method executed thereby will be described. To do.
- the computer program according to the embodiment of the present invention can cause a computer to execute the signal processing method.
- the embodiment of the present invention is not limited to the illustrated embodiment.
- FIG. 2 schematically shows the configuration of the signal processing apparatus 100 according to Embodiment 1 of the present invention.
- components having similar functions may be denoted by common reference numerals and description thereof may be omitted.
- the signal processing apparatus 100 includes an input interface 10 that receives the output signal V a (T) from the sensor 80, and the value of the output signal V a (T) is a first value P1 (first value ) of a parameter that represents an attribute to be measured. From a first convergence value V c 1 corresponding to a first humidity) to a second value P2 (second humidity) different from the first value P1 of a parameter representing an attribute of the measurement target.
- the prediction circuit 20 sets TrE as a response time at which the predicted value corresponds to the second convergence value V c 2, and a response time at which the predicted value becomes a value corresponding to the first convergence value V c 1.
- TrE sets TrE as a response time at which the predicted value corresponds to the second convergence value V c 2
- TdE is set, TE ⁇ Tr, TdE ⁇ Td,
- are generated as predicted values.
- the signal processing device 100 further includes an output device 60 that is optionally provided.
- the output device 60 is a display device, for example, and displays the predicted value output from the prediction circuit 20.
- the prediction circuit 20 may output the parameter value by converting the parameter value into a parameter value instead of outputting the predicted value as it is.
- the voltage value may be output instead of the humidity value.
- Such conversion may be performed by calculation or a lookup table may be used. Such conversion may be performed in the prediction circuit 20 or may be performed in the output device 60.
- the signal processing apparatus 100 is illustrated as an apparatus independent of the sensor 80, the signal processing apparatus 100 may include the sensor 80. Similarly, the signal processing apparatus according to the following embodiments may include a sensor.
- the signal processing apparatus 100 can execute the signal processing method shown in the flowchart shown in FIG.
- the output signal V a (T) is acquired from the sensor 80 by the input interface 10 (S1).
- the input interface 10 outputs the output signal V a (T) to the prediction circuit 20 (S2).
- the prediction circuit 20 generates the above-described prediction value (S3).
- the prediction circuit 20 outputs the predicted value to the output device 60, and the output device 60 outputs (for example, displays) the predicted value to the outside (S4). At this time, instead of the predicted value, a parameter corresponding to the predicted value may be output.
- step S5 it is determined whether or not to end the measurement. For example, it is determined whether or not the predicted value has converged. When it is determined that the predicted value has not converged, the process returns to the above step S1, and when it is determined that the predicted value has converged, the measurement is terminated. After the measurement, the predicted value corresponding to the convergence value may be continuously displayed. Alternatively, after the response time has elapsed, the value of the output signal Va (T) may be displayed instead of the predicted value. Of course, you may display what converted these into the value of the parameter.
- FIG. 4 schematically shows a configuration of a signal processing device 200 according to Embodiment 2 of the present invention. Unlike the previous signal processing device 100, the signal processing device 200 further includes an information generation circuit 50.
- the signal processing device 200 includes an input interface 10 that receives an output signal V a (T) from a sensor (not shown ) , and a prediction circuit 20.
- the prediction circuit 20 operates in the same manner as the prediction circuit 20 included in the signal processing apparatus 100 according to the first embodiment.
- the prediction circuit 20 outputs the generated prediction value to the information generation circuit 50.
- the information generation circuit 50 generates information based on the input predicted value.
- the “information” is information that changes according to the predicted value, and may be referred to as “secondary information”.
- the predicted value is a value that specifies humidity
- the information includes a comfort index, caution information for heat stroke or influenza, and the like.
- the information that changes in accordance with the humidity value may depend on not only the humidity value but also the temperature (air temperature) at the same time. Since a temperature sensor can also be used as the sensor 80, the signal processing apparatus 200 of the second embodiment may be applied to the output signal of the temperature sensor.
- the information generation circuit 50 outputs the generated information to the output device 60.
- the output device 60 is a display device, for example, and displays information output from the information generation circuit 50.
- the output device 60 may further process and display the information.
- the signal processing apparatus 200 of Embodiment 2 can execute the signal processing method shown in the flowchart shown in FIG.
- the output signal V a (T) is acquired from the sensor 80 by the input interface 10 (S11).
- the input interface 10 outputs the output signal V a (T) to the prediction circuit 20 (S12).
- the prediction circuit 20 generates the above-described prediction value and outputs the prediction value to the information generation circuit 50 (S13).
- the information generation circuit 50 generates information based on the predicted value and outputs it to the output device 60 (S14).
- the output device 60 outputs (for example, displays) the information to the outside (S15). At this time, the information may be further processed and output.
- step S16 it is determined whether or not to end the measurement. For example, it is determined whether or not the predicted value has converged. When it is determined that the predicted value has not converged, the process returns to the above step S11, and when it is determined that the predicted value has converged, the measurement is terminated. After the measurement is completed, information corresponding to the convergence value may be continuously displayed.
- the prediction circuit 20 shown in FIG. 6 can be realized by a processor or a semiconductor integrated circuit, for example.
- the semiconductor integrated circuit include ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
- a computer program that demonstrates the function of each component in the prediction circuit 20 is mounted in the memory, and the processor in the semiconductor integrated circuit sequentially executes the computer program to realize the function of each component. May be.
- the prediction circuit 20A illustrated in FIG. 6 includes a rising / falling determination circuit 22, a rising prediction circuit 22a, and a falling prediction circuit 22b.
- Rising / falling determination circuit 22 receives the output signal V a of the sensor (T), the time change of the output signal V a (T) is, to determine which of the rising or falling, the determination result In response, the output signal Va (T) is output to the rising prediction circuit 22a or the falling prediction circuit 22b.
- the rising prediction circuit 22a and the falling prediction circuit 22b generate predicted values according to their response characteristics.
- the prediction circuit 20A can generate a predicted value in response to the rise or fall of the output signal Va (T) , even if the rise response time Tr and the fall response time Td are different, they are independent of each other.
- the predicted values TrE and TdE can be generated with a very high accuracy. Further, the prediction circuit 20A can generate predicted values TrE and TdE that satisfy TrE ⁇ Tr, TdE ⁇ Td,
- the 7 includes a rise / fall determination circuit 22, a memory 24, and a rise / fall prediction circuit 22c.
- the rising / falling determination circuit 22 receives the sensor output signal Va (T) , and determines whether the time change of the output signal Va (T) is rising or falling.
- the memory 24 stores, for example, parameters used for prediction when the response is rising and parameters used for prediction when the response is falling. In accordance with the determination result of the rising / falling determination circuit 22, the parameter corresponding to each response is supplied from the memory 24 to the rising / falling prediction circuit 22c.
- the prediction circuit 20B can generate a prediction value in response to the rising or falling of the output signal Va (T) , so that the rising response time Tr and the falling response time Td are obtained. Even if they are different, the predicted values TrE and TdE can be generated independently with high accuracy. Further, the prediction circuit 20A can generate predicted values TrE and TdE that satisfy TrE ⁇ Tr, TdE ⁇ Td,
- the signal processing apparatuses 100 and 200 may be computers that are controlled to execute the above-described signal processing method by a computer program.
- the computer may be a mobile terminal device such as a smartphone.
- the mobile terminal device may include a sensor.
- the computer may be a terminal such as a tablet, a smart watch (a device that can be worn on the wrist in the manner of a watch and has functions such as arithmetic processing and communication in addition to the watch), and a wearable device. May be provided.
- the signal processing apparatus includes a server device and a client terminal connected via a network.
- the client terminal is, for example, a computer having a communication circuit, and may be, for example, a smartphone, a tablet, a smart watch, or a wearable device. Further, the client terminal may include a sensor.
- FIG. 8 schematically shows the configuration of a signal processing device 100A according to Embodiment 3 of the present invention.
- the signal processing device 100A includes a client terminal 100AC and a server device 100AS.
- the client terminal 100AC further includes a communication circuit 30 in addition to the input interface 10 and the output device 60, and can be connected to the server device 100AS via a network (for example, the Internet).
- the server device 100AS includes a prediction circuit 20, and the client terminal 100AC exchanges the output signal Va (T) and the prediction value with the prediction circuit 20 of the server device 100AS via the communication circuit 30.
- the signal processing device 100A can operate in the same manner as the signal processing device 100 of the first embodiment.
- the signal processing devices 200A to 200C according to the fourth to sixth embodiments can operate in the same manner as the signal processing device 200 according to the second embodiment.
- FIG. 9 schematically shows the configuration of a signal processing device 200A according to Embodiment 4 of the present invention.
- the signal processing device 200A includes a client terminal 200AC and a server device 200AS.
- the client terminal 200AC further includes a communication circuit 30 in addition to the input interface 10 and the output device 60, and can be connected to the server device 200AS via a network (for example, the Internet).
- the server device 200AS includes a prediction circuit 20 and an information generation circuit 50, and the client terminal 200AC sends the output signal Va (T) and information via the communication circuit 30 to the prediction circuit 20 and information generation of the server device 200AS. Exchanges with the circuit 50.
- FIG. 10 schematically shows the configuration of a signal processing device 200B according to Embodiment 5 of the present invention.
- the signal processing device 200B includes a client terminal 200BC and a server device 200BS.
- the client terminal 200BC further includes a communication circuit 30 in addition to the input interface 10, the prediction circuit 20, and the output device 60, and can be connected to the server device 200BS via a network (for example, the Internet).
- the server device 200BS has an information generation circuit 50, and the client terminal 200BC exchanges predicted values and information with the information generation circuit 50 of the server device 200BS via the communication circuit 30.
- FIG. 11 schematically shows the configuration of a signal processing device 200C according to Embodiment 6 of the present invention.
- the signal processing device 200C includes a client terminal 200CC and a server device 200CS.
- the client terminal 200CC further includes a communication circuit 30 in addition to the input interface 10, the information generation circuit 50, and the output device 60, and can be connected to the server device 200CS via a network (for example, the Internet).
- the server device 200CS includes a prediction circuit 20, and the client terminal 200CC exchanges the output signal Va (T) and the prediction value with the prediction circuit 20 of the server device 200CS via the communication circuit 30.
- the overall processing time can be optimized. Thereby, the time for which the user waits for the output of information can be shortened.
- the signal processing devices of the first to sixth embodiments and the sensor 80 can be connected via a network.
- the attribute of the measurement target is humidity
- the present invention is not limited to this, and the temperature, atmospheric pressure, gas concentration, and the like can also be set as the measurement target attribute.
- the measurement target attribute is such environmental information
- the value of the measurement target attribute changes suddenly when the user moves from indoors to the outdoors or removes the signal processing device from the bag or pocket.
- the signal processing apparatus according to the embodiment of the present invention is used, even if the measurement is performed immediately after the power is turned on, the response time elapses regardless of whether the measurement value changes in the rising response or the falling response. It is possible to quickly know environmental information such as humidity, temperature, and pressure after the change without waiting for it.
- the signal processing apparatus uses, for example, the odor of the food (that is, the concentration of the chemical substance in the air around the food) as the attribute of the measurement target, and the maturity (or the time of eating) of the food. It can be a parameter representing an attribute.
- the user can know the maturity level or the time of eating quickly without waiting for the response time to elapse, regardless of whether the measured value of the odor of the food is a rising response or a falling response. Therefore, for example, foodstuffs at the time of eating can be selected and purchased using the signal processing apparatus according to the embodiment of the present invention in a supermarket or the like.
- the signal processing device is used to estimate the maturity level or the time of eating, thereby determining the date and time for harvesting and shipping, and the shipping location (whether it is near or far) ), Expiration date and quality retention period can be determined.
- the signal processing device may be incorporated in a cooking device such as a microwave oven.
- the cooking condition of the food can be estimated using the output signal of the sensor that detects water vapor or the like emitted from the food.
- the signal processing device may be incorporated in an air conditioner such as an air conditioner, a dehumidifier, a humidifier, or an air purifier.
- an air conditioner such as an air conditioner, a dehumidifier, a humidifier, or an air purifier.
- the situation of the surrounding environment can be estimated using the output signal of the sensor that detects the temperature, humidity, odor, dirt, and the like of the surrounding environment.
- the attribute to be measured may be biological information such as the body temperature or the sweating amount of a human body or an animal. Even in this case, it is possible to quickly know biological information such as body temperature and sweating after the change without waiting for the response time to elapse for both the rising response and falling response of the measured value. it can.
- This specification discloses a signal processing device, a signal processing method, and a computer program described in the following items.
- the value of the output signal V a (T) is the first convergence value V c 1 corresponding to the first value P1 of the parameter representing the attribute of the measurement target, and the first of the parameters representing the attribute of the measurement target.
- the response time to become the second convergence value V c 2 corresponding to the second value P2 different from the value P1 of 1 is Tr, and the value of the output signal V a (T) is the second convergence value V c.
- the response time from 2 to the first convergence value V c 1 is Td
- the value V of the output signal obtained at time T1 in the transient response period before the response time Tr or Td elapses.
- TrE As a response time in which the predicted value is a value corresponding to the second convergence value V c 2, and a response in which the predicted value is a value corresponding to the first convergence value V c 1
- a signal processing device that generates the predicted value such that TrE ⁇ Tr, TdE ⁇ Td,
- the signal processing device described in Item 1 it is possible to easily perform processing using a predicted value based on an output signal from a sensor having a rising response time Tr and a falling response time Td different from each other.
- the prediction unit sets the first convergence value V c 1 to the first convergence value V c 1.
- Item 1 which generates a prediction value close to the second convergence value V c 2 when generating a close prediction value and taking the second convergence value V c 2 over a time longer than the response time Tr or Td.
- Item 3 The signal processing device according to Item 1 or 2, wherein the prediction unit includes a prediction unit corresponding to rising or falling of the output signal Va (T) .
- Item 3 The signal processing device according to Item 1 or 2, wherein the prediction unit includes a memory that stores parameters corresponding to rising or falling of the output signal Va (T) .
- the predicted value can be displayed to the user.
- Item 7 The signal processing device according to Item 6, further comprising a display device for displaying the information.
- secondary information based on the predicted value can be provided to the user.
- the signal processing device described in item 8 variations of the signal processing device can be provided.
- the calculation can be distributed to the server device and the client terminal according to the calculation load for prediction and information generation.
- variations of the signal processing device can be provided. Further, by incorporating a sensor in the apparatus, the overall configuration can be reduced in size.
- the response time corresponding to the convergence value V c 2 of the current is TrE, and the predicted value is the first convergence value V c
- the response time corresponding to the convergence value V c 2 of the current is TrE, and the predicted value is the first convergence value V c
- the present invention can be used for a signal processing device, a signal processing method, and a computer program for obtaining a predicted value based on an output signal from a sensor.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
図2に、本発明の実施形態1による信号処理装置100の構成を模式的に示す。なお、以下の図面において同様の機能を有する構成要素に共通の参照符号を付し、説明を省略することがある。
図4に、本発明の実施形態2による信号処理装置200の構成を模式的に示す。信号処理装置200は、先の信号処理装置100と異なり、情報生成回路50をさらに有している。
図8に、本発明の実施形態3による信号処理装置100Aの構成を模式的に示す。
実施形態4~6による信号処理装置200A~200Cは、実施形態2の信号処理装置200と同様に動作することができる。
センサから出力信号Va(T)を受け取る入力インターフェイスと、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する予測部とを有し、
前記予測部は、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する、信号処理装置。
前記予測部は、前記出力信号Va(T)の値が、前記応答時間TrまたはTdより長い時間にわたって前記第1の収束値Vc1をとるとき、前記第1の収束値Vc1に近い予測値を生成し、前記応答時間TrまたはTdより長い時間にわたって前記第2の収束値Vc2をとるとき、前記第2の収束値Vc2に近い予測値を生成する、項目1に記載の信号処理装置。
前記予測部は、前記出力信号Va(T)の立上りまたは立下りのそれぞれに対応する予測部を有する、項目1または2に記載の信号処理装置。
前記予測部は、前記出力信号Va(T)の立上りまたは立下りのそれぞれに対応するパラメータを格納するメモリを有する、項目1または2に記載の信号処理装置。
前記予測値を表示する表示装置をさらに有する、項目1から4のいずれかに記載の信号処理装置。
前記予測部によって生成された前記予測値に基づいて、情報を生成する情報生成部をさらに有する、項目1から5のいずれかに記載の信号処理装置。
前記情報を表示する表示装置をさらに有する、項目6に記載の信号処理装置。
ネットワークによって互いに接続されたクライアント端末とサーバ機器とを有し、
前記クライアント端末は、少なくとも前記入力インターフェイスと通信部とを有する、項目1から7のいずれかに記載の信号処理装置。
前記センサをさらに有する、項目1から8のいずれかに記載の信号処理装置。
センサから出力信号Va(T)を受け取る工程と、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する工程であって、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する工程とを包含する、信号処理方法。
センサから出力信号Va(T)を受け取る工程と、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する工程であって、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する工程とをコンピュータに実行させるプログラム。
20、20A、20B 予測回路(予測部)
22 立上り/立下り判断回路
22a 立上り予測回路
22b 立下り予測回路
22c 立上り・立下り予測回路
24 メモリ
30 通信回路
50 情報生成回路
60 出力装置
80 センサ
100、100A、200、200A、200B、200C 信号処理装置
100AC、200AC、200BC、200CC クライアント端末
100AS、200AS、200BS、200CS サーバ機器
Claims (10)
- センサから出力信号Va(T)を受け取る入力インターフェイスと、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する予測部とを有し、
前記予測部は、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する、信号処理装置。 - 前記予測部は、前記出力信号Va(T)の値が、前記応答時間TrまたはTdより長い時間にわたって前記第1の収束値Vc1をとるとき、前記第1の収束値Vc1に近い予測値を生成し、前記応答時間TrまたはTdより長い時間にわたって前記第2の収束値Vc2をとるとき、前記第2の収束値Vc2に近い予測値を生成する、請求項1に記載の信号処理装置。
- 前記予測部は、前記出力信号Va(T)の立上りまたは立下りのそれぞれに対応する予測部を有する、請求項1または2に記載の信号処理装置。
- 前記予測部は、前記出力信号Va(T)の立上りまたは立下りのそれぞれに対応するパラメータを格納するメモリを有する、請求項1または2に記載の信号処理装置。
- 前記予測部によって生成された前記予測値に基づいて、情報を生成する情報生成部をさらに有する、請求項1から4のいずれかに記載の信号処理装置。
- 前記情報を表示する表示装置をさらに有する、請求項5に記載の信号処理装置。
- ネットワークによって互いに接続されたクライアント端末とサーバ機器とを有し、
前記クライアント端末は、少なくとも前記入力インターフェイスと通信部とを有する、請求項1から6のいずれかに記載の信号処理装置。 - 前記センサをさらに有する、請求項1から7のいずれかに記載の信号処理装置。
- センサから出力信号Va(T)を受け取る工程と、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する工程であって、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する工程とを包含する、信号処理方法。 - センサから出力信号Va(T)を受け取る工程と、
前記出力信号Va(T)の値が、測定対象のある属性を表すパラメータの第1の値P1に対応する第1の収束値Vc1から、測定対象のある属性を表すパラメータの前記第1の値P1と異なる第2の値P2に対応する第2の収束値Vc2となる応答時間をTrとし、前記出力信号Va(T)の値が、前記第2の収束値Vc2から前記第1の収束値Vc1となる応答時間をTdとするとき、前記応答時間TrまたはTdが経過する前の過渡応答期間においては、時刻T1に得られた前記出力信号の値Va_T1に応じて、前記時刻T1より後の時刻T2に得られるであろう前記出力信号の値に対応する予測値Vb_T2を生成する工程であって、前記予測値が前記第2の収束値Vc2に対応する値となる応答時間をTrEとし、前記予測値が前記第1の収束値Vc1に対応する値となる応答時間をTdEとするとき、TrE<Tr、TdE<Td、|1-Td/Tr|>|1-TdE/TrE|となるような前記予測値を生成する工程とをコンピュータに実行させるプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580061334.2A CN107110672B (zh) | 2014-11-14 | 2015-11-05 | 信号处理装置、信号处理方法及计算机程序 |
US15/526,014 US10480967B2 (en) | 2014-11-14 | 2015-11-05 | Signal processing device and signal processing method |
JP2016559008A JP6285566B2 (ja) | 2014-11-14 | 2015-11-05 | 信号処理装置、信号処理方法およびコンピュータプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014232094 | 2014-11-14 | ||
JP2014-232094 | 2014-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076200A1 true WO2016076200A1 (ja) | 2016-05-19 |
Family
ID=55954289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081182 WO2016076200A1 (ja) | 2014-11-14 | 2015-11-05 | 信号処理装置、信号処理方法およびコンピュータプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10480967B2 (ja) |
JP (1) | JP6285566B2 (ja) |
CN (1) | CN107110672B (ja) |
WO (1) | WO2016076200A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017228711A (ja) * | 2016-06-24 | 2017-12-28 | 富士通株式会社 | 電子部品モジュール、電子部品モジュールの製造方法、端末及び信号処理システム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60239815A (ja) * | 1984-05-14 | 1985-11-28 | Matsushita Electric Ind Co Ltd | 計測器の電源故障信号出力回路 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4541734A (en) * | 1982-06-24 | 1985-09-17 | Terumo Kabushiki Kaisha | Electronic clinical thermometer, and method of measuring body temperature |
EP0813127A3 (en) * | 1988-05-20 | 1998-05-06 | Matsushita Electric Industrial Co., Ltd. | Inference rule determining method and inference device |
JP3068091B1 (ja) * | 1999-06-02 | 2000-07-24 | 核燃料サイクル開発機構 | 異常診断装置 |
DE19932079C1 (de) | 1999-07-12 | 2001-01-11 | Heraeus Electro Nite Int | Verfahren zur Verkürzung der Ansprechzeit eines Temperatursensors |
US8180464B2 (en) * | 2002-04-18 | 2012-05-15 | Cleveland State University | Extended active disturbance rejection controller |
JP2005216202A (ja) | 2004-02-02 | 2005-08-11 | Fuji Heavy Ind Ltd | 未来値予測装置および未来値予測方法 |
JP2005222444A (ja) * | 2004-02-09 | 2005-08-18 | Toshiba Corp | 統計的予測値演算方法および装置 |
JP2005242803A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | 機械の性能推定器、性能推定方法及び性能推定プログラム |
WO2006090634A1 (ja) | 2005-02-22 | 2006-08-31 | National Institute Of Radiological Sciences | 放射線検出値の予測方法及び予測応答型放射線検出器 |
JP4786425B2 (ja) * | 2006-06-07 | 2011-10-05 | シャープ株式会社 | 制御装置および制御方法 |
JP2008083866A (ja) * | 2006-09-26 | 2008-04-10 | Matsushita Electric Works Ltd | 異常監視装置 |
JP2008282150A (ja) * | 2007-05-09 | 2008-11-20 | Matsushita Electric Ind Co Ltd | 信号処理装置及び信号処理システム |
JP2009039658A (ja) * | 2007-08-09 | 2009-02-26 | Seiko Epson Corp | 液状体の吐出制御方法、液滴吐出装置 |
US8249616B2 (en) * | 2007-08-23 | 2012-08-21 | Texas Instruments Incorporated | Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks |
US8918325B2 (en) * | 2009-06-01 | 2014-12-23 | Mitsubishi Electric Corporation | Signal processing device for processing stereo signals |
CN102063007B (zh) * | 2009-11-18 | 2012-11-07 | 中强光电股份有限公司 | 液晶眼镜、投影显示系统及其控制方法 |
CA2699596A1 (fr) * | 2010-03-24 | 2011-09-24 | Hydro-Quebec | Systeme et methode de synchronisation de phase de signaux produits par des unites de mesure respectives |
JP5140138B2 (ja) * | 2010-11-04 | 2013-02-06 | 本田技研工業株式会社 | 制御装置 |
CN102783034B (zh) * | 2011-02-01 | 2014-12-17 | 华为技术有限公司 | 用于提供信号处理系数的方法和设备 |
WO2012104910A1 (ja) * | 2011-02-02 | 2012-08-09 | 三菱電機株式会社 | 電力開閉装置の動作時間予測装置および方法 |
-
2015
- 2015-11-05 JP JP2016559008A patent/JP6285566B2/ja active Active
- 2015-11-05 CN CN201580061334.2A patent/CN107110672B/zh not_active Expired - Fee Related
- 2015-11-05 WO PCT/JP2015/081182 patent/WO2016076200A1/ja active Application Filing
- 2015-11-05 US US15/526,014 patent/US10480967B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60239815A (ja) * | 1984-05-14 | 1985-11-28 | Matsushita Electric Ind Co Ltd | 計測器の電源故障信号出力回路 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017228711A (ja) * | 2016-06-24 | 2017-12-28 | 富士通株式会社 | 電子部品モジュール、電子部品モジュールの製造方法、端末及び信号処理システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016076200A1 (ja) | 2017-09-28 |
CN107110672B (zh) | 2019-11-19 |
JP6285566B2 (ja) | 2018-02-28 |
US20170322057A1 (en) | 2017-11-09 |
US10480967B2 (en) | 2019-11-19 |
CN107110672A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6389934B2 (ja) | 節電支援システム、及び節電支援装置 | |
US10571314B2 (en) | Signal processing apparatus and signal processing method | |
US10275659B2 (en) | Computer vision and sensor assisted contamination tracking | |
Friend et al. | Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 | |
JP6660613B2 (ja) | 断熱性能推定装置、及び、断熱性能推定方法 | |
JP2017004278A (ja) | プラント運転支援装置、プラント運転支援方法、及びプログラム | |
Liu et al. | Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming | |
US20140104385A1 (en) | Method and apparatus for determining information associated with a food product | |
KR20160084585A (ko) | 센서 정보 처리 방법 및 장치 | |
US20180293240A1 (en) | Automated measurement of content quality | |
WO2016105883A1 (en) | Context derived behavior modeling and feedback | |
WO2018079367A1 (ja) | 商品需要予測システム、商品需要予測方法および商品需要予測プログラム | |
MX361975B (es) | Estandarización de sensores cruzados. | |
RU2019138318A (ru) | Оценивание назначенных устройств и услуг | |
JP2018529143A5 (ja) | ||
JP6285566B2 (ja) | 信号処理装置、信号処理方法およびコンピュータプログラム | |
US20190223660A1 (en) | System and method for real time synchronization of set of instructions using iot devices | |
Wu | Robust design of nonlinear multiple dynamic quality characteristics | |
WO2019131140A1 (ja) | 需要予測装置、需要予測方法、及びプログラム | |
Dusadeerungsikul et al. | Precision agriculture with AI-based responsive monitoring algorithm | |
US20180058848A1 (en) | Electronic device, detecting method, and non-transitory computer-readable recording medium | |
JP2019067214A (ja) | 判定プログラム、判定方法、端末装置、学習データ、及びモデル | |
JP2021507416A (ja) | ユーザ固有ユーザインターフェースの生成 | |
JP2015195063A5 (ja) | ||
US10698370B2 (en) | Device control method, device control apparatus and device control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859335 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016559008 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15526014 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15859335 Country of ref document: EP Kind code of ref document: A1 |