Nothing Special   »   [go: up one dir, main page]

WO2016072818A1 - Continuous production method for norbornene derivative - Google Patents

Continuous production method for norbornene derivative Download PDF

Info

Publication number
WO2016072818A1
WO2016072818A1 PCT/KR2015/012002 KR2015012002W WO2016072818A1 WO 2016072818 A1 WO2016072818 A1 WO 2016072818A1 KR 2015012002 W KR2015012002 W KR 2015012002W WO 2016072818 A1 WO2016072818 A1 WO 2016072818A1
Authority
WO
WIPO (PCT)
Prior art keywords
norbornene derivative
reactor
producing
reaction
norbornene
Prior art date
Application number
PCT/KR2015/012002
Other languages
French (fr)
Korean (ko)
Inventor
장용희
원종호
이현직
송영지
최용진
이원재
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150156012A external-priority patent/KR20160055085A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2016072818A1 publication Critical patent/WO2016072818A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/62Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids

Definitions

  • the present invention relates to a continuous production method of norbornene derivatives, and relates to a continuous production method of norbornene derivatives in which the yield, exo ratio and productivity are significantly increased as compared to using a conventional batch reactor.
  • Cyclic olefin polymer is a polymer composed of cyclic monomers such as norbornene, and has excellent transparency, heat resistance, and chemical resistance, and has very low birefringence and water absorption rate compared to existing olefinic polymers. It can be applied to various medical materials such as optical materials, capacitor films, information electronic materials such as low dielectric materials, low absorbing syringes, blister packaging, and the like.
  • the cyclic olefin polymerization technology includes ring opening metathesis polymerization (ROMP), ring opening metathesis polymerization followed by hydrogenation, copolymerization with ethylene, and homopolymerization.
  • the norbornene polymer is a polymer that is variously applied to the above fields.
  • the dicyclopentadiene (cyclopentadiene) or cyclopentadiene (cyclopentadiene) is reacted with an olefin as a monomer to introduce a double bond, and polymerized it to produce a norbornene polymer.
  • U.S. Pat.No. 2,340,908 discloses about 200 under a pressure of 50 to about 100 bar.
  • dicyclopentadiene it is essential to use dicyclopentadiene in high purity to prepare the norbornene polymer, but it is converted to cyclopentadiene under temperature and pressure conditions, or dicyclopentadiene and cyclopentadiene cause a cyclization reaction to dimer ) Or by-products such as trimers. Moreover, in the case of the dicyclopentadiene, it is difficult to produce pure norbornene due to difficulty in distillation purification.
  • a batch reactor is used in the production of norbornene derivatives, which is difficult to operate the reactor in commercial production, and there is a problem in that the investment cost and operation cost increase.
  • operation with a batch reactor usually requires repeating a series of operations such as elevated temperature, reactant injection, reaction, cooling and product discharge. Therefore, there is a problem in that the reactor volume or the number of reactors needs to be increased for mass production because the productivity per batch operation is low.
  • an object of the present invention is to provide a method for producing a norbornene derivative having excellent yield, exo ratio and productivity even in a continuous reactor.
  • cyclopentadiene, dicyclopentadiene or a mixture thereof and a compound represented by Formula 1;
  • the reaction solution containing the reaction is continuously added to the continuous reactor, the molar ratio of cyclopentadiene and the compound represented by the formula (1) is 1: 1 to 1:10, or dicyclopentadiene represented by the formula (1) It provides a method for producing a norbornene derivative having a molar ratio of 1: 2 to 1:20.
  • n is an integer of 0 to 10
  • R is an alkyl group having 1 to 20 carbon atoms.
  • the continuous reactor is any one selected from a continuous stirred tank reactor, a tubular reactor, and a semi-batch reactor. Can be.
  • the space velocity of the reaction solution introduced into the reactor may be 0.05 ⁇ 5h -1
  • the reaction temperature may be 170 to 300 °C
  • the reaction pressure is 1 to 20 bar Can be.
  • the reaction solution is 2,6-di-tert-butyl-4-methylphenol ((2,6-di-tert-butyl-4-methylphenol), 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl (2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl), aniline, cyclohexane, phenol, 4-ethoxyphenol, nitrobenzene, It may further comprise at least one polymerization inhibitor selected from the group consisting of hydroquinone, benzoquinone, copper dichloride, and iganox, wherein the polymerization inhibitor is cyclopentadiene, dicyclopentadiene or a mixture thereof and the above formula. 0.01 to 1 part by weight based on 100 parts by weight of the total of the compound represented by 1.
  • the present invention can provide a method for producing a norbornene derivative using a continuous reactor. It is an object of the present invention to provide a production method in which the yield, exo ratio and productivity are significantly increased compared to the case of using a conventional batch reactor.
  • the present invention is made by reacting only the reaction solution without using a separate solvent, a high purity norbornene derivative can be prepared by a simple method without a separate complex purification device.
  • FIG. 1 is a schematic diagram of a reaction apparatus including a CSTR reactor according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a reactor including a tubular reactor according to a preferred embodiment of the present invention.
  • the present inventors have made diligent efforts to improve productivity, and found that the above problems can be solved by using a continuous reactor.
  • the present invention is cyclopentadiene, dicyclopentadiene or a mixture thereof; And a reaction solution containing a compound represented by Chemical Formula 1 is continuously added to a continuous reactor for reaction, and a molar ratio of cyclopentadiene and the compound represented by Chemical Formula 1 is 1: 1 to 1:10, or dicyclopenta
  • n is an integer of 0 to 10, preferably an integer of 0 to 4
  • R is an alkyl group of 1 to 20 carbon atoms, preferably an alkyl group of 1 to 8 carbon atoms.
  • the continuous reactor is not particularly limited to the type of reactor if the reaction can be continuously added to the reaction proceeds.
  • the reactor may be any one selected from a continuous stirred tank reactor, a tubular reactor, and a semi-batch reactor, and more preferably, a continuous stirred tank reactor. It may be a continuous stirred tank reactor.
  • the space velocity of the reaction solution introduced into the reactor may be 0.05 ⁇ 5h -1 , preferably 0.1 ⁇ 3h -1 . If the space velocity of the reaction solution is less than 0.05h -1 , the reaction is not completed, there may be a problem that the yield and exo ratio is lowered, if it exceeds 5h -1 , there may be a problem that the yield is lowered. Therefore, the space velocity in the above range may be preferable.
  • the space velocity is a value obtained by dividing the volume flow rate (cm 3 / hr) of the liquid phase reactant by the reactor volume (cm 3 ).
  • Cyclopentadiene is generally unstable at room temperature and is easily changed into dicyclopentadiene, making it very difficult to exist as pure cyclopentadiene.
  • Dicyclopentadiene Since it decomposes into two molecules of cyclopentadiene and participates in the norbornene production reaction, in the present invention, either cyclopentadiene or dicyclopentadiene can be used as a raw material for the reaction.
  • reaction solution a) converting dicyclopentadiene to cyclopentadiene in the reactor; And b) Diels-Alder Reaction with the cyclopentadiene compound represented by Chemical Formula 1 below.
  • a norbornene derivative may be prepared.
  • the conversion reaction of dicyclopentadiene to cyclopentadiene (or monomerization) in step a) is an endothermic reaction, and is performed at appropriate temperature and pressure conditions.
  • the conversion step is carried out at a temperature of 170 to 300 ° C. and / or a pressure of 1 to 20 bar. If it is out of the above range, the conversion rate of dicyclopentadiene is reduced, or the decomposition product is converted into an oligomer, and the yield of cyclopentadiene is lowered.
  • the norbornene derivative may be prepared by reacting the cyclopentadiene converted in step a) with the compound represented by Chemical Formula 1.
  • the Diels-Alder cyclization reaction of the reaction takes place after the dicyclopentadiene is converted to cyclopentadiene and is the same reactor as in step a) under a temperature of 170 to 300 ° C. and / or a pressure of 1 to 20 bar. Can be performed continuously within.
  • the reactor may be carried out at a temperature of 170 ⁇ 300 °C, preferably may be carried out at 190 ⁇ 280 °C.
  • the pressure in the reactor may appear to increase in pressure due to the vaporization of the reactants at a high temperature during the reaction, preferably carried out under a pressure of 1 to 20 bar, more preferably 2 to 15 bar.
  • the reaction rate of the cyclization reaction of step b) depends on the substituent R of the compound represented by Formula 1, and the reaction rate increases as the electron withdrawing group is present.
  • the content of the compound represented by Chemical Formula 1 may be determined in consideration of the conversion rate of dicyclopentadiene first injected.
  • the molar ratio of the cyclopentadiene and the compound represented by the formula (1) in the reactant is in the range of 1: 1 to 1:10, preferably 1: 1 to 1: 5 It may be more preferably in the range of 1: 1 to 1: 2.
  • the molar ratio of dicyclopentadiene and the compound represented by Chemical Formula 1 may be in the range of 1: 2 to 1:20, preferably in the range of 1: 2 to 1:10, and more preferably 1 It may range from 2: 2 to 4: 4. This is because the degree of reaction progression and the selectivity are related.
  • the molar ratio is less than the above range, the desired norbornene yield cannot be achieved, and side reactions such as cyclization of unreacted cyclopentadiene or dicyclopentadiene and norbornene proceed to generate by-products, which is undesirable. Can not do it.
  • the molar ratio exceeds the above range, the unreacted compound represented by the formula (1) remains, which leads to lower purification efficiency.
  • cooling is preferably performed quickly.
  • a polymerization inhibitor during the reaction in order to prevent the reactants and products from polymerizing and polymerizing or decomposing during the reaction.
  • the reaction solution is 2,6-di-tert-butyl-4-methylphenol ((2,6-di-tert-butyl-4-methylphenol), 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl (2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl), aniline, cyclohexane, phenol, 4-ethoxyphenol, nitrobenzene, Hydroquinone, benzoquinone, copper dichloride, and diganox may further include one or more polymerization inhibitors selected from the group consisting of, but the polymerization inhibitor is not limited thereto.
  • iganox examples include Irganox 1010, Irganox 1035, Irgarnox 1076, Irganox 1081, Irganox 1098, Irganox 1135, Irganox 1330, Irganox 1520, Irganox 1726, and Irganox 245.
  • the polymerization inhibitor may be contained in an amount of 0.01 to 1 parts by weight based on 100 parts by weight of the total of the compound represented by the following formula (1): cyclopentadiene, dicyclopentadiene, It may be, preferably 0.01 to 0.3 parts by weight. If the polymerization inhibitor is less than 0.01 part by weight, the polymerization of the reactant (Cp or DCPD) itself can not be effectively prevented, and if it exceeds 1 part by weight, it does not affect the polymerization prevention effect any more, and if a large amount is used There is a problem that the polymerization inhibitor must be removed after the synthesis is completed. Therefore, it is preferable to include in the above range. However, the addition of the polymerization inhibitor is not essential in the present invention.
  • the norbornene derivatives prepared in the present invention are formed of two isomers of exo and endo.
  • the substituent is formed when the substituent is formed in the space closest to the longest chain
  • the exo isomer is formed when the substituent is formed in the part far from the longest chain. Therefore, Exo ratio means the ratio occupied by the exo isomer among norbornene derivatives.
  • the yield of the norbornene derivative prepared by the production method of the present invention is 80 to 95%, the exo ratio may be 20 to 70%.
  • the exo ratio of the norbornene derivative may be preferably 40 to 70, more preferably 45 to 70 , Most preferably 50 to 70.
  • the present invention is made by reacting only the reaction solution without using a separate solvent, it is possible to produce a high purity norbornene derivative by a simple method without a separate complicated purification device.
  • FIG. 1 is a schematic diagram of a continuous reactor including a CSTR reactor used in the method for producing norbornene derivatives according to the present invention.
  • the reaction apparatus is a cyclopentadiene, dicyclopentadiene or a mixture thereof, the starting material, the reaction solution containing the compound represented by the formula (1) and the polymerization inhibitor at a constant rate LC pump (11), CSTR reactor 12 connected to the pump, an electric heater (13) mounted to the bottom of the reactor to heat the reactor to react the reaction liquid, the reactor ( A cooling bath (Water bath) 14 connected with 12) for cooling the prepared norbornene derivatives; And a peristaltic pump 15 for recovering the produced norbornene derivative from the reactor.
  • the pressure regulation is controlled by an N 2 regulator.
  • Figure 2 is a schematic diagram of a reaction apparatus including a PFR reactor used in the method for producing a norbornene derivative according to the present invention.
  • the reaction apparatus is a cyclopentadiene, dicyclopentadiene or a mixture thereof, the starting material, the reaction solution containing the compound represented by the formula (1) and the polymerization inhibitor at a constant rate LC pump 21:
  • a tubular reactor 23 connected to the pump, an electric heater 22 and a thermocouple surrounding the tubular reactor, and the tubular reactor 23.
  • a cooling bath (Water bath, 24) connected to the to cool the produced norbornene derivatives; And a back pressure regulator 25 for regulating the pressure in the reactor.
  • the reactors 12 and 23 may be used in various forms, but a CSTR or PFR reactor that is a continuous reactor is preferable. More preferably, the CSTR reactor is well mixed, so that the temperature distribution of the internal reaction solution is constant. It is advantageous for PFR reactors to have as small a diameter as possible for thermal efficiency, uniform temperature distribution and instant cooling after the reaction.
  • the size of the reactor (12, 23) is used cyclopentadiene, dicyclopentadiene or mixtures thereof and the compound represented by the following formula (1); It may vary depending on the content of the reaction solution containing.
  • the norbornene derivatives prepared in the reactors 12 and 23 pass through the cooling tanks 14 and 24 and quench to terminate the reaction, thereby recovering the high purity norbornene derivatives.
  • the cooled norbornene derivative is purified by conventional purification methods.
  • the reactor an autoclave 1 L high pressure reactor was used.
  • the molar ratio of dicyclopentadiene and butyl acrylate is 0.5: 1.3 in the high pressure reactor.
  • 153.1 g of dicyclopentadiene with 96% purity and 368.4 g of butyl acrlyate with 99.5% purity and 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor (2,6- 1.5 g of di-tert-butyl-4-methylphenol) was added thereto, and after 5 substitutions using nitrogen, the internal temperature was raised to 230 ° C. using an electric heater.
  • the reaction was carried out in the same manner as in Example 1 except that the reactor internal temperature was 210 ° C., and the feed rate was 5.8 g / min (space velocity 1.5 h ⁇ 1 ).
  • the reactor an autoclave 1 L high pressure reactor was used.
  • the molar ratio of dicyclopentadiene and methyl acrylate in the high pressure reactor is 0.5: 1.3. 194.8 g of dicyclopentadiene with 96% purity, 314.9 g of methyl acrlyate with 99.5% purity, and 2,6-di-tert-butyl-4-methylphenol (2,6) as polymerization inhibitor 1.9 g of -di-tert-butyl-4-methylphenol) was added and substituted five times with nitrogen, and then the internal temperature was increased to 210 ° C. using an electric heater.
  • a tubular reactor made of 1/4 "tubes was used as a reactor.
  • the molar ratio of dicyclopentadiene and butyl acrylate in a 1 L flask was 0.5: 1.3. 153.1 g of dicyclopentadiene with 96% purity, 368.4 g of butyl acrlyate with 99.5% purity and 2,6-di-tert-butyl-4-methylphenol (2,6- After diluting 1.5 g of di-tert-butyl-4-methylphenol), a uniform state was made by stirring.
  • the prepared solution is introduced into the reactor at a flow rate of 2.4 g / min (space velocity 0.5 h -1 ) using a Hitachi LC pump, and the pressure is maintained at 10 bar using a back pressure regulator. After confirming that the flow rate is uniformly discharged, the reaction temperature was maintained at 210 ° C. through an electric heater.
  • an autoclave 1 L high pressure reactor was used as the reactor.
  • 83.5 g of dicyclopentadiene (96% pure) and 200.9 g of butyl acrlyate (99.5% pure) were polymerized in a high pressure reactor so that the molar ratio of dicyclopentadiene and methyl acrylate was 0.5: 1.3.
  • 0.8g of 2,6-ditert-butyl-4-methylphenol (2,6-ditert-butyl-4-methylphenol) was added as an inhibitor, and substituted five times with nitrogen, followed by an electric heater. And the temperature was raised to 210 ° C to react.
  • BENB norbornene produced by the reaction of DCPD with BA
  • Exo ratio exo GC peak area / (exo GC peak area + endo GC peak area)
  • Example 4 the reaction temperature was kept constant, and samples were obtained at intervals of 30 min from 1 hr after quantitative analysis using gas chromatography, and the results were obtained in Table 2 as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for producing a norbornene derivative having a molar ratio of 1:1 to 1:10 for cyclopentadiene and a compound expressed by the chemical formula 1, or a molar ratio of 1:2 to 1:20 for dicyclopentadiene and a compound expressed by the chemical formula 1, the method comprising continuously adding and reacting, in a continuous reactor, a reaction solution comprising cyclopentadiene, dicyclopentadiene or a mixture thereof and a compound expressed by the chemical formula 1. [Chemical formula 1] CH2=CH-(CH2)n-C(=O)OR where n is an integer 1-10 and R is an alkyl group of 1-20 carbon atoms

Description

노보넨 유도체의 연속식 제조 방법Continuous production process of norbornene derivatives
본 출원은 2014년 11월 07일자 한국 특허 출원 제10-2014-0154508 및 2015년 11월 06일자 한국 특허 출원 제10-2015-0156012호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0154508 filed November 07, 2014 and Korean Patent Application No. 10-2015-0156012 filed November 06, 2015, All content disclosed in is included as part of this specification.
본 발명은 노보넨 유도체의 연속식 제조 방법에 관한 것으로서, 종래의 배치 반응기 사용할 경우 대비, 수율, exo 비율 및 생산성이 현저하게 상승시키는 노보넨 유도체의 연속식 제조 방법에 관한 것이다.The present invention relates to a continuous production method of norbornene derivatives, and relates to a continuous production method of norbornene derivatives in which the yield, exo ratio and productivity are significantly increased as compared to using a conventional batch reactor.
고리형 올레핀 중합체는 노보넨과 같은 고리형 모노머로 이루어진 중합체로서 기존 올레핀계 중합체에 비해 투명성, 내열성, 내약품성이 우수하고 복굴절율과 수분흡수율이 매우 낮아 CD, DVD, POF(Plastic Optical Fiber)와 같은 광학소재, 축전(Capacitor) 필름, 저유전체와 같은 정보전자소재, 저흡수성 주사기, 블리스터 팩키징(Blister Packaging) 등과 같은 의료용 소재에 다양하게 응용될 수 있다. 이와 관련한 고리형 올레핀 중합기술은 ROMP(Ring Opening Metathesis Polymerization), HROMP(ring opening metathesis polymerization followed by hydrogenation), 에틸렌과의 공중합 및 균일 중합 등을 이루어지고 있다. 그 중 노보넨 중합체는 상기와 같은 분야에 다양하게 적용되고 있는 고분자이다. 이에 모노머로 디시클로펜타디엔(dicyclopentadiene) 또는 시클로펜타디엔(cyclopentadiene)을 올레핀과 반응시켜 이중결합을 도입하고, 이를 중합하여 노보넨 중합체를 제조하고 있다.Cyclic olefin polymer is a polymer composed of cyclic monomers such as norbornene, and has excellent transparency, heat resistance, and chemical resistance, and has very low birefringence and water absorption rate compared to existing olefinic polymers. It can be applied to various medical materials such as optical materials, capacitor films, information electronic materials such as low dielectric materials, low absorbing syringes, blister packaging, and the like. In this regard, the cyclic olefin polymerization technology includes ring opening metathesis polymerization (ROMP), ring opening metathesis polymerization followed by hydrogenation, copolymerization with ethylene, and homopolymerization. The norbornene polymer is a polymer that is variously applied to the above fields. The dicyclopentadiene (cyclopentadiene) or cyclopentadiene (cyclopentadiene) is reacted with an olefin as a monomer to introduce a double bond, and polymerized it to produce a norbornene polymer.
노보넨의 합성은 1941년 L.M.Joshel과 L.W.Butz에 의한 문헌(J. Am. Chem., 63, 3350)에 처음으로 기재된 이후로, 미합중국특허 제2,340,908호는 50 내지 약 100 bar의 압력하에 약 200℃의 온도에서 디시클로펜타디엔과 에틸렌의 반응을 개시하고 있으며, 이때 노보넨의 최종 수율이 45%로 기재하고 있다. 상기 노보넨 중합체를 제조하기 위해선 디시클로펜타디엔을 고순도로 사용하는 것이 필수적이나, 온도 및 압력 조건하에 시클로펜타디엔으로 전환되거나, 디시클로펜타디엔과 시클로펜타디엔이 고리화 반응을 일으켜 다이머(dimer) 또는 트리머(trimer)와 같은 부산물이 발생한다. 더욱이 상기 디시클로펜타디엔의 경우 증류 정제가 어려워 순수 노보넨의 제조가 어려운 실정이다. Since the synthesis of norbornene was first described in 1941 by LMJoshel and LWButz (J. Am. Chem., 63, 3350), U.S. Pat.No. 2,340,908 discloses about 200 under a pressure of 50 to about 100 bar. The reaction of dicyclopentadiene and ethylene is initiated at a temperature of < RTI ID = 0.0 > C, < / RTI > where the final yield of norbornene is described as 45%. It is essential to use dicyclopentadiene in high purity to prepare the norbornene polymer, but it is converted to cyclopentadiene under temperature and pressure conditions, or dicyclopentadiene and cyclopentadiene cause a cyclization reaction to dimer ) Or by-products such as trimers. Moreover, in the case of the dicyclopentadiene, it is difficult to produce pure norbornene due to difficulty in distillation purification.
일반적으로 노보넨 유도체 제조에 있어서 배치(Batch) 반응기를 사용하는데, 이는 상업 생산 시 반응기 조작이 어렵고, 투자비 및 운전비가 상승하는 문제가 있다. 또한, 배치 반응기를 사용한 운전은 대개 승온, 반응물 주입, 반응, 냉각 및 생성물 배출 등의 일련의 조작을 반복해야 한다. 따라서, 배치 운전 당 생산성이 낮기 때문에 대량 생산을 하기 위해서는 반응기 부피 혹은 반응기 개수를 증가시켜야 하는 문제점이 있다.In general, a batch reactor is used in the production of norbornene derivatives, which is difficult to operate the reactor in commercial production, and there is a problem in that the investment cost and operation cost increase. In addition, operation with a batch reactor usually requires repeating a series of operations such as elevated temperature, reactant injection, reaction, cooling and product discharge. Therefore, there is a problem in that the reactor volume or the number of reactors needs to be increased for mass production because the productivity per batch operation is low.
이에, 본 발명은 연속식 반응기에서도 수율, exo 비율 및 생산성이 우수한 노보넨 유도체의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for producing a norbornene derivative having excellent yield, exo ratio and productivity even in a continuous reactor.
상기 목적을 달성하기 위해서, 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물; 및 하기 화학식 1로 표시되는 화합물; 을 포함하는 반응액이 연속식 반응기에 연속적으로 투입되어 반응하고, 시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:1 내지 1:10, 또는 디시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:2 내지 1:20인 노보넨 유도체의 제조방법을 제공한다. In order to achieve the above object, cyclopentadiene, dicyclopentadiene or a mixture thereof; And a compound represented by Formula 1; The reaction solution containing the reaction is continuously added to the continuous reactor, the molar ratio of cyclopentadiene and the compound represented by the formula (1) is 1: 1 to 1:10, or dicyclopentadiene represented by the formula (1) It provides a method for producing a norbornene derivative having a molar ratio of 1: 2 to 1:20.
[화학식 1][Formula 1]
CH2=CH-(CH2)n-C(=O)ORCH 2 = CH- (CH 2 ) n -C (= O) OR
상기 화학식 1에서 n은 0 내지 10의 정수이고, R은 탄소수 1 내지 20의 알킬기이다. In Formula 1 n is an integer of 0 to 10, R is an alkyl group having 1 to 20 carbon atoms.
본 발명의 바람직한 일실시예에 따르면, 상기 연속식 반응기는 연속교반형 탱크반응기(Continuous Stirred Tank Reactor), 관형 반응기(Tubular Reactor) 및 반회분식 반응기(Semi-batch Reactor) 중 선택되는 어느 하나의 반응기일 수 있다.According to a preferred embodiment of the present invention, the continuous reactor is any one selected from a continuous stirred tank reactor, a tubular reactor, and a semi-batch reactor. Can be.
본 발명의 바람직한 일실시예에 따르면, 상기 반응기에 투입되는 반응액의 공간속도는 0.05 ~ 5h-1일 수 있고, 상기 반응 온도는 170 내지 300℃일 수 있고, 상기 반응 압력은 1 내지 20 bar일 수 있다.According to a preferred embodiment of the present invention, the space velocity of the reaction solution introduced into the reactor may be 0.05 ~ 5h -1 , the reaction temperature may be 170 to 300 ℃, the reaction pressure is 1 to 20 bar Can be.
본 발명의 바람직한 일실시예에 따르면, 상기 반응액은 2,6-디-터트-부틸-4-메틸페놀((2,6-di-tert-butyl-4-methylphenol), 2,2-디(4-tert-옥틸페닐)-1-피크릴하이드라질(2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl), 아닐린, 시클로헥산, 페놀, 4-에톡시페놀, 니트로벤젠, 하이드로퀴논, 벤조퀴논, 이염화구리, 및 이가녹스로 이루어진 군으로부터 선택된 1 종 이상의 중합 방지제를 추가로 포함할 수 있다. 상기 중합방지제는 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물과 상기 화학식 1로 표시되는 화합물의 총합 100 중량부에 대하여 0.01 내지 1 중량부로 포함할 수 있다.According to a preferred embodiment of the present invention, the reaction solution is 2,6-di-tert-butyl-4-methylphenol ((2,6-di-tert-butyl-4-methylphenol), 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl (2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl), aniline, cyclohexane, phenol, 4-ethoxyphenol, nitrobenzene, It may further comprise at least one polymerization inhibitor selected from the group consisting of hydroquinone, benzoquinone, copper dichloride, and iganox, wherein the polymerization inhibitor is cyclopentadiene, dicyclopentadiene or a mixture thereof and the above formula. 0.01 to 1 part by weight based on 100 parts by weight of the total of the compound represented by 1.
본 발명은 연속식 반응기를 사용하는 노보넨 유도체의 제조방법을 제공할 수 있다. 본 발명은 종래의 배치 반응기 사용할 경우 대비, 수율, exo 비율 및 생산성이 현저하게 상승시키는 제조방법을 제공하는 것을 목적으로 한다. The present invention can provide a method for producing a norbornene derivative using a continuous reactor. It is an object of the present invention to provide a production method in which the yield, exo ratio and productivity are significantly increased compared to the case of using a conventional batch reactor.
또한, 본 발명은 별도의 용매를 사용하지 않고 반응액만을 반응시켜 이루어지므로, 별도의 복합한 정제장치 없이도 간단한 방법만으로 고순도의 노보넨 유도체를 제조할 수 있다.In addition, since the present invention is made by reacting only the reaction solution without using a separate solvent, a high purity norbornene derivative can be prepared by a simple method without a separate complex purification device.
도 1은 본 발명의 바람직한 일실시예에 따른 CSTR 반응기를 포함하는 반응장치의 모식도이다.1 is a schematic diagram of a reaction apparatus including a CSTR reactor according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 일실시예에 따른 관형 반응기를 포함하는 반응장치의 모식도이다.2 is a schematic diagram of a reactor including a tubular reactor according to a preferred embodiment of the present invention.
이하, 본 발명을 상세하게 설명한다. 하기의 구체적 설명은 본 발명의 일 실시예에 대한 설명이므로, 비록 한정적 표현이 있더라도 특허청구범위로부터 정해지는 권리범위를 제한하는 것은 아니다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail. The following detailed description is for the description of one embodiment of the present invention, although not limited to the scope of the claims defined by the claims.
일반적으로 노보넨 유도체 제조에 있어서, 현재까지는 배치 반응기를 사용하였으며, 이에 상업 생산 시 반응기 조작이 어렵고, 투자비 및 운전비가 상승하는 문제가 있다. In general, in the production of norbornene derivatives, a batch reactor has been used so far, and thus, it is difficult to operate the reactor in commercial production, and there is a problem in that the investment cost and operation cost increase.
이에 본 발명자들은 생산성을 향상시키기 위하여 예의 노력한 바, 연속식 반응기를 사용함으로써, 상기의 문제점을 해결할 수 있다는 것을 발견하였다. The present inventors have made diligent efforts to improve productivity, and found that the above problems can be solved by using a continuous reactor.
즉, 본 발명은 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물; 및 하기 화학식 1로 표시되는 화합물를 포함하는 반응액이 연속식 반응기에 연속적으로 투입되어 반응하고, 시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:1 내지 1:10, 또는 디시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:2 내지 1:20인 노보넨 유도체의 제조방법을 제공한다.That is, the present invention is cyclopentadiene, dicyclopentadiene or a mixture thereof; And a reaction solution containing a compound represented by Chemical Formula 1 is continuously added to a continuous reactor for reaction, and a molar ratio of cyclopentadiene and the compound represented by Chemical Formula 1 is 1: 1 to 1:10, or dicyclopenta Provided is a method for preparing a norbornene derivative in which a molar ratio of diene to a compound represented by Chemical Formula 1 is 1: 2 to 1:20.
[화학식 1][Formula 1]
CH2=CH-(CH2)n-C(=O)ORCH 2 = CH- (CH 2 ) n -C (= O) OR
상기 화학식 1에서, n은 0 내지 10의 정수, 바람직하게는 0 ~ 4의 정수이고, R은 탄소수 1 내지 20의 알킬기, 바람직하게는 탄소수 1 ~ 8의 알킬기이다.In Formula 1, n is an integer of 0 to 10, preferably an integer of 0 to 4, R is an alkyl group of 1 to 20 carbon atoms, preferably an alkyl group of 1 to 8 carbon atoms.
본 발명의 바람직한 일실시예에 따르면, 상기 연속식 반응기는 반응물이 연속적으로 투입되어 반응이 진행될 수 있다면 반응기 종류에 특별한 제한을 두지 않는다. 그러나 바람직하게는 연속교반형 탱크반응기(Continuous Stirred Tank Reactor), 관형 반응기(Tubular Reactor) 및 반회분식 반응기(Semi-batch Reactor)중 선택되는 어느 하나의 반응기 일 수 있고, 더욱 바람직하게는 연속교반형 탱크반응기(Continuous Stirred Tank Reactor)일 수 있다. According to a preferred embodiment of the present invention, the continuous reactor is not particularly limited to the type of reactor if the reaction can be continuously added to the reaction proceeds. However, preferably, the reactor may be any one selected from a continuous stirred tank reactor, a tubular reactor, and a semi-batch reactor, and more preferably, a continuous stirred tank reactor. It may be a continuous stirred tank reactor.
본 발명의 바람직한 일실시예에 따르면, 상기 반응기로 투입되는 상기 반응액의 공간속도는 0.05 ~ 5h-1일 수 있고, 바람직하게는 0.1 ~ 3h-1일 수 있다. 만약 상기 반응액의 공간속도가 0.05h-1 미만이면, 반응이 완료되지 않아 수율과 exo 비율이 낮아지는 문제가 있을 수 있고, 5h-1을 초과하면, 수율이 낮아지는 문제가 있을 수 있다. 따라서 상기 범위의 공간속도가 바람직할 수 있다.According to a preferred embodiment of the present invention, the space velocity of the reaction solution introduced into the reactor may be 0.05 ~ 5h -1 , preferably 0.1 ~ 3h -1 . If the space velocity of the reaction solution is less than 0.05h -1 , the reaction is not completed, there may be a problem that the yield and exo ratio is lowered, if it exceeds 5h -1 , there may be a problem that the yield is lowered. Therefore, the space velocity in the above range may be preferable.
한편, 상기 공간속도는 액상 반응물의 부피 유량(cm3/hr)을 반응기 부피(cm3)로 나눈 값이다. Meanwhile, the space velocity is a value obtained by dividing the volume flow rate (cm 3 / hr) of the liquid phase reactant by the reactor volume (cm 3 ).
시클로펜타디엔은 일반적으로 상온에서 불안정하여 쉽게 디시클로펜타디엔으로 변화하여 순수한 시클로펜타디엔으로 존재하기가 매우 어렵다. 그러나 디시클로펜타디엔은 고온에서 두 분자의 시클로펜타디엔으로 분해되어 노보넨 생성 반응에 참여하게 되므로, 본 발명에서는 시클로펜타디엔이나 디시클로펜타디엔 어느 것 상관없이 반응에 원료로 사용할 수 있다.Cyclopentadiene is generally unstable at room temperature and is easily changed into dicyclopentadiene, making it very difficult to exist as pure cyclopentadiene. Dicyclopentadiene, however, Since it decomposes into two molecules of cyclopentadiene and participates in the norbornene production reaction, in the present invention, either cyclopentadiene or dicyclopentadiene can be used as a raw material for the reaction.
또한, 본 발명의 바람직한 일실시예에 따르면, 상기 반응액은 상기 반응기에서 a) 디시클로펜타디엔을 시클로펜타디엔으로 전환하는 단계; 및 b) 상기 시클로펜타디엔과 하기 화학식 1로 표시되는 화합물과 딜스-알더 반응(Diels-Alder Reaction)하는 단계;를 포함하여 노보넨 유도체를 제조할 수 있다. In addition, according to a preferred embodiment of the present invention, the reaction solution a) converting dicyclopentadiene to cyclopentadiene in the reactor; And b) Diels-Alder Reaction with the cyclopentadiene compound represented by Chemical Formula 1 below. A norbornene derivative may be prepared.
구체적으로 설명하면, 상기 a)단계의 디시클로펜타디엔으로부터 시클로펜타디엔으로의 전환 반응(또는 단량화 반응)은 흡열반응으로, 적절한 온도 및 압력 조건에서 수행한다. 바람직하기로, 상기 전환 단계는 170 내지 300℃의 온도 및/또는 1 내지 20bar의 압력하에 수행한다. 만약, 상기 범위를 벗어나게 되면 디시클로펜타디엔의 전환율이 감소하거나, 분해 생성물이 올리고머로 전환되어 시클로펜타디엔의 수율이 저하된다.Specifically, the conversion reaction of dicyclopentadiene to cyclopentadiene (or monomerization) in step a) is an endothermic reaction, and is performed at appropriate temperature and pressure conditions. Preferably, the conversion step is carried out at a temperature of 170 to 300 ° C. and / or a pressure of 1 to 20 bar. If it is out of the above range, the conversion rate of dicyclopentadiene is reduced, or the decomposition product is converted into an oligomer, and the yield of cyclopentadiene is lowered.
그리고 상기 b) 단계에서는 상기 단계 a)에서 전환된 시클로펜타디엔을 화학식 1로 표시되는 화합물과 반응시켜 노보넨 유도체를 제조할 수 있다. 상기 반응의 딜스-알더 고리화 반응은 디시클로펜타디엔이 시클로펜타디엔으로 전환된 후 이루어지며, 170 내지 300℃의 온도 및/또는 1 내지 20 bar의 압력하에 상기 단계 a)와 동일한 반응기 내에서 연속적으로 수행될 수 있다. In the step b), the norbornene derivative may be prepared by reacting the cyclopentadiene converted in step a) with the compound represented by Chemical Formula 1. The Diels-Alder cyclization reaction of the reaction takes place after the dicyclopentadiene is converted to cyclopentadiene and is the same reactor as in step a) under a temperature of 170 to 300 ° C. and / or a pressure of 1 to 20 bar. Can be performed continuously within.
따라서 본 발명의 바람직한 일실시예에 따르면, 상기 반응기는 170 ~ 300℃의 온도에서 반응을 수행할 수 있고, 바람직하게는 190 ~ 280℃에서 수행될 수 있다.Therefore, according to a preferred embodiment of the present invention, the reactor may be carried out at a temperature of 170 ~ 300 ℃, preferably may be carried out at 190 ~ 280 ℃.
상기 반응기 내의 압력은 반응이 진행되는 동안에 높은 온도에서 반응물들의 기화로 인한 압력 상승이 나타날 수 있으며, 바람직하게는 1 내지 20 bar, 더욱 바람직하게는 2 ~ 15bar의 압력하에서 반응을 수행할 수 있다. The pressure in the reactor may appear to increase in pressure due to the vaporization of the reactants at a high temperature during the reaction, preferably carried out under a pressure of 1 to 20 bar, more preferably 2 to 15 bar.
상기 b)단계의 고리화 반응의 반응 속도는 상기 화학식 1로 표시되는 화합물의 치환기 R에 따라 달라지며, 전자 끌게 그룹(electron withdrawing group)이 존재할수록 반응속도가 증가한다. 이때 상기 화학식 1로 표시되는 화합물의 함량은 최초 주입되는 디시클로펜타디엔의 전환율을 고려하여 결정될 수 있다. The reaction rate of the cyclization reaction of step b) depends on the substituent R of the compound represented by Formula 1, and the reaction rate increases as the electron withdrawing group is present. In this case, the content of the compound represented by Chemical Formula 1 may be determined in consideration of the conversion rate of dicyclopentadiene first injected.
즉, 본 발명의 바람직한 일실시예에 따르면, 상기 반응물 중 시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:1 내지 1:10, 바람직하게는 1: 1 내지 1: 5의 범위일 수 있으며, 보다 바람직하게는 1:1 내지 1: 2의 범위일 수 있다. 그리고 디시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:2 내지 1:20의 범위일 수 있고, 바람직하게는 1: 2 내지 1: 10의 범위일 수 있으며, 보다 바람직하게는 1:2 내지 1: 4의 범위일 수 있다. 이는 반응 진행 정도와 선택도에 관련이 있기 때문이다. 만약, 몰비가 상기 범위 미만이면 원하는 노보넨의 수율을 달성할 수 없고, 미반응된 시클로펜타디엔 또는 디시클로펜타디엔과 노보넨의 고리화반응과 같은 부반응이 진행되어 부산물이 발생하게 되어 바람직하지 못하다. 또한, 몰비가 상기 범위를 초과하게 되면 미반응된 화학식 1로 표시되는 화합물이 잔류하게 되어 추후 정제 효율이 떨어지게 된다. 한편, 반응 종료 후 시클로펜타디엔의 디시클로펜타디엔으로의 전환을 막기 위해 재빨리 냉각을 수행하는 것이 바람직하다. 이와 같이, 디시클로펜타디엔의 시클로펜타디엔으로의 전환단계와, 상기 시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 고리화 단계를 적절히 제어하여 고순도의 노보넨을 고수율로 제조할 수 있다. 더욱이, 상기 반응들은 용매를 사용하지 않고 수행하여 간단한 정제 공정만으로도 노보넨을 얻을 수 있다.That is, according to a preferred embodiment of the present invention, the molar ratio of the cyclopentadiene and the compound represented by the formula (1) in the reactant is in the range of 1: 1 to 1:10, preferably 1: 1 to 1: 5 It may be more preferably in the range of 1: 1 to 1: 2. The molar ratio of dicyclopentadiene and the compound represented by Chemical Formula 1 may be in the range of 1: 2 to 1:20, preferably in the range of 1: 2 to 1:10, and more preferably 1 It may range from 2: 2 to 4: 4. This is because the degree of reaction progression and the selectivity are related. If the molar ratio is less than the above range, the desired norbornene yield cannot be achieved, and side reactions such as cyclization of unreacted cyclopentadiene or dicyclopentadiene and norbornene proceed to generate by-products, which is undesirable. Can not do it. In addition, when the molar ratio exceeds the above range, the unreacted compound represented by the formula (1) remains, which leads to lower purification efficiency. On the other hand, in order to prevent the conversion of cyclopentadiene to dicyclopentadiene after completion of the reaction, cooling is preferably performed quickly. As such, by controlling the conversion of dicyclopentadiene to cyclopentadiene and the cyclization step of the cyclopentadiene and the compound represented by Formula 1, high purity norbornene can be produced in high yield. Furthermore, the reactions can be carried out without the use of solvents to obtain norbornene with a simple purification process.
또한, 본 발명의 제조방법에서 반응물 및 생성물이 반응 중에 중합되어 고분자화 되거나 분해하는 현상을 방지하기 위하여 상기 반응 시 중합 방지제를 추가로 첨가하는 것이 바람직하다. In addition, in the preparation method of the present invention, it is preferable to further add a polymerization inhibitor during the reaction in order to prevent the reactants and products from polymerizing and polymerizing or decomposing during the reaction.
본 발명의 바람직한 일실시예에 따르면, 상기 반응액은 2,6-디-터트-부틸-4-메틸페놀((2,6-di-tert-butyl-4-methylphenol), 2,2-디(4-tert-옥틸페닐)-1-피크릴하이드라질(2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl), 아닐린, 시클로헥산, 페놀, 4-에톡시페놀, 니트로벤젠, 하이드로퀴논, 벤조퀴논, 이염화구리, 및 이가녹스로 이루어진 군으로부터 선택된 1 종 이상의 중합 방지제를 추가로 포함할 수 있고, 상기 중합방지제는 이에 한정되지 않는다.According to a preferred embodiment of the present invention, the reaction solution is 2,6-di-tert-butyl-4-methylphenol ((2,6-di-tert-butyl-4-methylphenol), 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl (2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl), aniline, cyclohexane, phenol, 4-ethoxyphenol, nitrobenzene, Hydroquinone, benzoquinone, copper dichloride, and diganox may further include one or more polymerization inhibitors selected from the group consisting of, but the polymerization inhibitor is not limited thereto.
이가녹스의 구체적인 예로서는 Irganox 1010, Irganox 1035, Irgarnox 1076, Irganox 1081, Irganox 1098, Irganox 1135, Irganox 1330, Irganox 1520, Irganox 1726 및 Irganox 245 등을 예로 들 수 있다. Specific examples of iganox include Irganox 1010, Irganox 1035, Irgarnox 1076, Irganox 1081, Irganox 1098, Irganox 1135, Irganox 1330, Irganox 1520, Irganox 1726, and Irganox 245.
그리고, 본 발명의 노보넨 유도체 제조방법에서 상기 중합방지제는 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물과 상기 화학식 1로 표시되는 화합물의 총합 100 중량부에 대하여 0. 01 내지 1 중량부로 포함할 수 있고, 바람직하게는 0.01 ~ 0.3중량부로 포함할 수 있다. 만약, 상기 중합방지제가 0.01 중량부 미만인 경우에는 반응물(Cp 혹은 DCPD) 자체의 중합을 효율적으로 막을 수가 없으며, 1 중량부를 초과하면, 중합방지 효과에 더 이상의 영향을 주지 않으며, 많은 양을 사용할 경우 합성이 완료된 후 중합방지제를 제거해야 하는 문제가 있다. 따라서 상기 범위로 포함하는 것이 바람직하다. 그러나, 본 발명에서 중합방지제의 첨가가 필수적인 것은 아니다. In addition, in the method for preparing norbornene derivatives of the present invention, the polymerization inhibitor may be contained in an amount of 0.01 to 1 parts by weight based on 100 parts by weight of the total of the compound represented by the following formula (1): cyclopentadiene, dicyclopentadiene, It may be, preferably 0.01 to 0.3 parts by weight. If the polymerization inhibitor is less than 0.01 part by weight, the polymerization of the reactant (Cp or DCPD) itself can not be effectively prevented, and if it exceeds 1 part by weight, it does not affect the polymerization prevention effect any more, and if a large amount is used There is a problem that the polymerization inhibitor must be removed after the synthesis is completed. Therefore, it is preferable to include in the above range. However, the addition of the polymerization inhibitor is not essential in the present invention.
본 발명에서 제조되는 노보넨 유도체는 exo, endo 두 가지 이성질체로 형성된다. 하기 화학식 2를 참고하여 설명하면, 이중 가장 긴 체인과 공간적으로 가까운 부분에 치환체가 형성된 경우 endo 이성질체, 가장 긴 체인과 먼 부분에 치환체가 형성된 경우 exo 이성질체라 명한다. 따라서, Exo 비율은 노보넨 유도체 중에서 exo 이성질체가 차지하는 비율을 의미한다.The norbornene derivatives prepared in the present invention are formed of two isomers of exo and endo. Referring to the following Formula 2, the substituent is formed when the substituent is formed in the space closest to the longest chain, the exo isomer is formed when the substituent is formed in the part far from the longest chain. Therefore, Exo ratio means the ratio occupied by the exo isomer among norbornene derivatives.
[화학식 2][Formula 2]
Figure PCTKR2015012002-appb-I000001
Figure PCTKR2015012002-appb-I000001
한편, 종래의 노보넨 유도체 제조방법은 배치 반응기를 사용하였으며, 이에 상업 생산 시 반응기 조작이 어렵고, 투자비 및 운전비가 상승하는 문제가 있다. On the other hand, the conventional norbornene derivative manufacturing method used a batch reactor, it is difficult to operate the reactor during commercial production, there is a problem that the investment cost and operating costs increase.
그러나, 본 발명에서는 연속식 반응기를 사용함으로써, 배치 반응기 사용할 경우 대비, 노보넨 유도체 수율, exo 비율 및 생산성을 현저하게 상승시킬 수 있게 한다. 상기 Exo 비율은 최종 제품의 물성을 확보하는데 중요한 인자이다.However, in the present invention, by using a continuous reactor, it is possible to significantly increase the norbornene derivative yield, exo ratio and productivity compared to when using a batch reactor. The Exo ratio is an important factor in securing the physical properties of the final product.
상기와 같은 본 발명의 특징에 따라서, 본 발명의 제조방법으로 제조된 노보넨 유도체의 수율은 80 내지 95 %이며, exo 비율은 20 내지 70%일 수 있다.According to the characteristics of the present invention as described above, the yield of the norbornene derivative prepared by the production method of the present invention is 80 to 95%, the exo ratio may be 20 to 70%.
또한, 본 발명의 제조방법으로 제조된 노보넨 유도체의 수율은 85 내지 95 %일 때는 상기 노보넨 유도체의 exo 비율이 바람직하게는 40 내지 70일 수 있으며, 더욱 바람직하게는 45 내지 70일 수 있으며, 가장 바람직하게는 50 내지 70일 수 있다.In addition, when the yield of the norbornene derivative prepared by the production method of the present invention is 85 to 95%, the exo ratio of the norbornene derivative may be preferably 40 to 70, more preferably 45 to 70 , Most preferably 50 to 70.
또한, 본 발명은 별도의 용매를 사용하지 않고 반응액만을 반응시켜 이루어지므로, 별도의 복잡한 정제장치 없이도 간단한 방법만으로 고순도의 노보넨 유도체를 제조할 수 있다.In addition, since the present invention is made by reacting only the reaction solution without using a separate solvent, it is possible to produce a high purity norbornene derivative by a simple method without a separate complicated purification device.
도 1은 본 발명에 따른 노보넨 유도체 제조방법에 사용되는 CSTR 반응기를 포함하는 연속식 반응장치의 모식도이다.1 is a schematic diagram of a continuous reactor including a CSTR reactor used in the method for producing norbornene derivatives according to the present invention.
도 1을 참조하면, 본 발명에 따른 반응장치는 출발 물질인 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물, 상기 화학식 1로 표시되는 화합물 및 중합방지제를 포함하는 반응액을 일정 속도로 투입하기 위한 펌프(LC pump, 11), 상기 펌프와 연결되어 있는 CSTR 반응기(12), 상기 반응기를 가열하여 반응액을 반응시키기 위해 상기 반응기 하부에 장착된 전기히터(Electric heater, 13), 상기 반응기(12)와 연결되며, 제조된 노보넨 유도체를 냉각시키기 위한 냉각조(Water bath, 14); 및 제조된 노보넨 유도체를 반응기로부터 회수하기 위한 연동펌프(Peristaltic pump, 15)를 포함한다. CSTR 반응기의 경우, 압력 조절은 N2 조절기(regulator)로 조절한다.Referring to Figure 1, the reaction apparatus according to the present invention is a cyclopentadiene, dicyclopentadiene or a mixture thereof, the starting material, the reaction solution containing the compound represented by the formula (1) and the polymerization inhibitor at a constant rate LC pump (11), CSTR reactor 12 connected to the pump, an electric heater (13) mounted to the bottom of the reactor to heat the reactor to react the reaction liquid, the reactor ( A cooling bath (Water bath) 14 connected with 12) for cooling the prepared norbornene derivatives; And a peristaltic pump 15 for recovering the produced norbornene derivative from the reactor. In the case of the CSTR reactor, the pressure regulation is controlled by an N 2 regulator.
도 2는 본 발명에 따른 노보넨 유도체를 제조방법에 사용되는 PFR 반응기를 포함하는 반응장치의 모식도이다.Figure 2 is a schematic diagram of a reaction apparatus including a PFR reactor used in the method for producing a norbornene derivative according to the present invention.
도 2를 참조하면, 본 발명에 따른 반응장치는 출발 물질인 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물, 상기 화학식 1로 표시되는 화합물 및 중합방지제를 포함하는 반응액을 일정 속도로 투입하기 위한 펌프(LC pump, 21): 상기 펌프와 연결되어 있는 관형 반응기(Tubular reactor, 23), 상기 관형 반응기를 둘러싼 전기히터(Electric heater, 22)와 열전대(Thermocouple), 그리고 상기 관형 반응기(23)와 연결되며, 제조된 노보넨 유도체를 냉각시키기 위한 냉각조(Water bath, 24); 및 상기 반응장치 내 압력을 조절하기 위한 역압력제어기(Back pressure regulator, 25)를 포함한다. Referring to Figure 2, the reaction apparatus according to the present invention is a cyclopentadiene, dicyclopentadiene or a mixture thereof, the starting material, the reaction solution containing the compound represented by the formula (1) and the polymerization inhibitor at a constant rate LC pump 21: A tubular reactor 23 connected to the pump, an electric heater 22 and a thermocouple surrounding the tubular reactor, and the tubular reactor 23. A cooling bath (Water bath, 24) connected to the to cool the produced norbornene derivatives; And a back pressure regulator 25 for regulating the pressure in the reactor.
상기한 반응장치를 이용하여 노보넨 유도체의 제조 공정을 살펴보면 다음과 같다. Looking at the process for producing a norbornene derivative using the above reaction device is as follows.
우선 반응기(12,22)에 출발물질로 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물; 및 하기 화학식 1 로 표시되는 화합물; 을 포함하는 반응액을 일정 몰비로 주입한 후, 펌프(11,21)를 이용하여 출발물질과 동일한 몰비의 반응액을 반응기(12,23) 내부로 연속적으로 투입한다. 상기 반응기(12,23)는 가열조(13,22)에 의해 170 내지 300 ℃의 온도로 가열하고, 압력조절기(25)에 의해 1 내지 20bar의 압력을 유지함으로써, 상기 반응기(12,23) 내에서 반응액이 반응을 수행하여 본 발명에 따른 노보넨 유도체를 제조한다. First, cyclopentadiene, dicyclopentadiene or mixtures thereof as starting materials in the reactors 12 and 22; And a compound represented by Formula 1 below; After the injection of the reaction solution containing a constant molar ratio, using the pump (11, 21) to continuously input the reaction liquid of the same molar ratio as the starting material into the reactor (12, 23). The reactors 12 and 23 are heated to a temperature of 170 to 300 ° C. by the heating tanks 13 and 22, and maintained at a pressure of 1 to 20 bar by the pressure regulator 25 to thereby maintain the pressures of the reactors 12 and 23. The reaction solution in the reaction to produce a norbornene derivative according to the present invention.
이와 같은 반응기(12,23)는 다양한 형태가 사용될 수 있으나, 연속식 반응기인 CSTR 또는 PFR 반응기가 바람직하다. 더욱 바람직하기로는 CSTR 반응기는 혼합(Mixing)이 잘되어 내부 반응액의 온도 분포가 일정한 것이 유리하다. PFR 반응기는 가능한 한 작은 직경을 가지는 것이 열 효율, 균일한 온도분포 그리고 반응 후 순간적인 냉각을 위해 유리하다. 이때, 상기 반응기(12, 23)의 크기는 사용되는 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물 및 하기 화학식 1 로 표시되는 화합물; 을 포함하는 반응액의 함량에 따라 달라질 수 있다.The reactors 12 and 23 may be used in various forms, but a CSTR or PFR reactor that is a continuous reactor is preferable. More preferably, the CSTR reactor is well mixed, so that the temperature distribution of the internal reaction solution is constant. It is advantageous for PFR reactors to have as small a diameter as possible for thermal efficiency, uniform temperature distribution and instant cooling after the reaction. At this time, the size of the reactor (12, 23) is used cyclopentadiene, dicyclopentadiene or mixtures thereof and the compound represented by the following formula (1); It may vary depending on the content of the reaction solution containing.
이어서, 상기 반응기(12, 23)에서 제조된 노보넨 유도체는 냉각조(14,24)를 통과, 급랭하여 반응을 종료시킴으로써, 고순도의 노보넨 유도체를 회수한다. Subsequently, the norbornene derivatives prepared in the reactors 12 and 23 pass through the cooling tanks 14 and 24 and quench to terminate the reaction, thereby recovering the high purity norbornene derivatives.
다음으로, 상기 냉각된 노보넨 유도체는 통상적인 정제방법에 의해 정제된다. Next, the cooled norbornene derivative is purified by conventional purification methods.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명하지만, 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다. 본 발명의 범위는 특허청구범위에 표시되었고, 더욱이 특허 청구범위 기록과 균등한 의미 및 범위 내에서의 모든 변경을 함유하고 있다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 중량 기준이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but embodiments of the present invention disclosed below are exemplified to the last, and the scope of the present invention is not limited to these embodiments. The scope of the invention is indicated in the appended claims, and moreover contains all modifications within the meaning and range equivalent to the claims. In addition, "%" and "part" which show content in a following example and a comparative example are a basis of weight unless there is particular notice.
실시예 1Example 1
반응 장치로서, Autoclave 사의 1L 고압반응기를 사용하였다. 먼저 고압반응기에 디시클로펜타디엔과 부틸아크릴레이트의 몰비가 0.5: 1.3가 되도록 순도 96%의 디시클로펜타디엔(dicyclopentadiene) 153.1g과 순도 99.5%의 부틸아크릴레이트(butyl acrlyate) 368.4g 그리고 중합방지제로 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methylphenol)을 1.5g 투입하고, 질소를 이용하여 5회 치환 후 전기히터(electric heater)를 이용하여 내부온도를 230℃까지 승온하였다. 230℃ 도달 시점부터 1시간 반응 후 히타치(Hitachi)사의 LC 펌프(pump)를 이용하여 반응기에 투입한 것과 정확히 동일한 조성의 혼합물을 8.6g/min 의 속도(공간속도 1h-1)로 투입하여 주며, 마스터플렉스(Masterflex)사의 연동펌프(peristaltic pump)를 이용하여 동일량을 배출해 주었다. 배출 시 높은 온도로 인한 위험을 방지해 주기 위해 냉각조(water bath)를 통과시켜 토출 온도를 50℃ 이하로 유지시켜 주었다.As the reactor, an autoclave 1 L high pressure reactor was used. First, the molar ratio of dicyclopentadiene and butyl acrylate is 0.5: 1.3 in the high pressure reactor. 153.1 g of dicyclopentadiene with 96% purity and 368.4 g of butyl acrlyate with 99.5% purity and 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor (2,6- 1.5 g of di-tert-butyl-4-methylphenol) was added thereto, and after 5 substitutions using nitrogen, the internal temperature was raised to 230 ° C. using an electric heater. After 1 hour of reaction from the time of reaching 230 ℃, a mixture of exactly the same composition as that introduced into the reactor using a Hitachi LC pump is introduced at a rate of 8.6 g / min (space velocity 1h -1 ). The same amount was discharged using a peristaltic pump from Masterflex. In order to prevent the risk of high temperature during discharge, the water was passed through a water bath to maintain the discharge temperature below 50 ° C.
실시예 2Example 2
반응기 내부온도가 210℃이고, 투입속도가 5.8g/min(공간속도 1.5h-1)인 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. The reaction was carried out in the same manner as in Example 1 except that the reactor internal temperature was 210 ° C., and the feed rate was 5.8 g / min (space velocity 1.5 h −1 ).
실시예 3Example 3
반응 장치로서, Autoclave 사의 1L 고압반응기를 사용하였다. 먼저 고압반응기에 디시클로펜타디엔과 메틸아크릴레이트의 몰비가 0.5: 1.3가 되도록 순도 96%의 디시클로펜타디엔(dicyclopentadiene) 194.8g과 순도 99.5%의 메틸 아크리레이트(methyl acrlyate) 314.9g 그리고 중합방지제로 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methylphenol)을 1.9g 투입하고 질소를 이용하여 5회 치환후 전기히터(electric heater)를 이용하여 내부온도를 210℃까지 승온하였다. 210℃ 도달 시점부터 1시간 반응 후 히타치(Hitachi) 사의 LC 펌프(pump)를 이용하여 반응기에 투입한 것과 정확히 동일한 조성의 혼합물을 2.84g/min의 속도(공간속도 3-1)로 투입하여 주며, 마스터플렉스(masterflex)사의 연동펌프(peristaltic pump)를 이용하여 동일량을 배출해 주었다. 배출 시 높은 온도로 인한 위험을 방지해 주기 위해 냉각조(water bath)를 통과시켜 토출 온도를 50℃ 이하로 유지시켜 주었다. As the reactor, an autoclave 1 L high pressure reactor was used. First, the molar ratio of dicyclopentadiene and methyl acrylate in the high pressure reactor is 0.5: 1.3. 194.8 g of dicyclopentadiene with 96% purity, 314.9 g of methyl acrlyate with 99.5% purity, and 2,6-di-tert-butyl-4-methylphenol (2,6) as polymerization inhibitor 1.9 g of -di-tert-butyl-4-methylphenol) was added and substituted five times with nitrogen, and then the internal temperature was increased to 210 ° C. using an electric heater. After 1 hour from the time of reaching 210 ℃, using a LC pump (Hitachi Co., Ltd.), the mixture of the same composition as that put in the reactor at a rate of 2.84 g / min (space velocity 3 -1 ) Using the masterflex's peristaltic pump (peristaltic pump), the same amount was discharged. In order to prevent the risk of high temperature during discharge, the water was passed through a water bath to maintain the discharge temperature below 50 ° C.
실시예 4Example 4
반응 장치로서, 1/4" 튜브(tube)로 제작한 관형 반응기(tubular reactor)를 사용하였다. 먼저 1L 플라스크(Flask)에 디시클로펜타디엔과 부틸아크릴레이트의 몰비가 0.5: 1.3가 되도록 순도 96%의 디시클로펜타디엔(dicyclopentadiene) 153.1g과 순도 99.5%의 부틸 아크릴레이트(butyl acrlyate) 368.4g 그리고 중합방지제로 2,6-디-터트-부틸-4-메틸페놀(2,6-di-tert-butyl-4-methylphenol)을 1.5g투입한 후 교반을 통해 균일한 상태를 만들어 주었다. 만들어진 용액을 히타치(Hitachi)사의 LC 펌프(pump)를 이용하여 2.4g/min 유량(공간속도 0.5h-1)으로 반응기에 투입하며 역압력제어기(back pressure regulator)를 이용하여 압력을 10bar로 유지하여 유량이 균일하게 배출되는 것을 확인한 후 전기히터(electric heater)를 통해 반응 온도를 210℃로 유지해 주었다.As a reactor, a tubular reactor made of 1/4 "tubes was used. First, the molar ratio of dicyclopentadiene and butyl acrylate in a 1 L flask was 0.5: 1.3. 153.1 g of dicyclopentadiene with 96% purity, 368.4 g of butyl acrlyate with 99.5% purity and 2,6-di-tert-butyl-4-methylphenol (2,6- After diluting 1.5 g of di-tert-butyl-4-methylphenol), a uniform state was made by stirring. The prepared solution is introduced into the reactor at a flow rate of 2.4 g / min (space velocity 0.5 h -1 ) using a Hitachi LC pump, and the pressure is maintained at 10 bar using a back pressure regulator. After confirming that the flow rate is uniformly discharged, the reaction temperature was maintained at 210 ° C. through an electric heater.
비교예 1Comparative Example 1
반응 장치로서, Autoclave 사의 1L 고압반응기를 사용하였다. 먼저 고압반응기에 디시클로펜타디엔과 메틸아크릴레이트의 몰비가 0.5: 1.3가 되도록 순도 96%의 디시클로펜타디엔(dicyclopentadiene)83.5g과 순도 99.5%의 부틸 아크릴레이트(butyl acrlyate) 200.9g을 그리고 중합방지제로 2,6-디-터트-부틸-4-메틸페놀(2,6-ditert-butyl-4-methylphenol)을 0.8g 투입하고, 질소를 이용하여 5회 치환 후 전기히터(electricheater)를 이용하여 내부온도를 210℃까지 승온하여 반응하였다.As the reactor, an autoclave 1 L high pressure reactor was used. First, 83.5 g of dicyclopentadiene (96% pure) and 200.9 g of butyl acrlyate (99.5% pure) were polymerized in a high pressure reactor so that the molar ratio of dicyclopentadiene and methyl acrylate was 0.5: 1.3. 0.8g of 2,6-ditert-butyl-4-methylphenol (2,6-ditert-butyl-4-methylphenol) was added as an inhibitor, and substituted five times with nitrogen, followed by an electric heater. And the temperature was raised to 210 ° C to react.
실험예 1Experimental Example 1
상기 실시예 1 내지 3을 통해 얻어진 생성물(product)을 매시간 가스크로마토그래피(gas chromatography)를 이용하여 정량 분석하고, 수율과 EXO비율을 하기 수학식으로 계산하여, 그 결과를 하기 표 1에 나타내었다. The products obtained through Examples 1 to 3 were quantitatively analyzed by gas chromatography every hour, and the yield and EXO ratio were calculated by the following equations, and the results are shown in Table 1 below. .
※ 수율 = (DCPD사용량+BA 사용량) × GC factor × BENB area × GC 샘플 무게 × 100 /(BENB 이론량 × STD area)※ Yield = (DCPD usage + BA usage) × GC factor × BENB area × GC sample weight × 100 / (BENB theoretical amount × STD area)
- BENB 이론양 = DCPD 사용량 × 2 × BENB M.W. / DCPD M.W.-BENB theory = DCPD consumption × 2 × BENB M.W. / DCPD M.W.
- GC factor = GC 상의 BENB와 internal standard 같은 양일 때 area 비율-GC factor = area ratio at the same amount of BENB and internal standard on GC
- BA = 부틸아크릴레이트BA = butyl acrylate
- DCPD = 디시클로펜타디엔DCPD = dicyclopentadiene
- BENB = DCPD와 BA가 반응하여 생성된 노보넨BENB = norbornene produced by the reaction of DCPD with BA
- STD = GC 측정 시 사용되는 internal standard -STD = internal standard used for GC measurement
※ Exo 비율 = exo GC peak area / (exo GC peak area + endo GC peak area)※ Exo ratio = exo GC peak area / (exo GC peak area + endo GC peak area)
표 1
연속투입 후경과시간(hr) 실시예 1 실시예 2 실시예 3
수율(%) Exo비율(%) 수율(%) Exo비율(%) 수율(%) Exo비율(%)
1 90.72 49.24 93.77 45.70 91.50 46.74
2 90.64 49.12 92.96 45.47 91.78 45.44
3 90.30 49.11 94.11 45.07 92.18 45.50
4 90.30 49.11 93.51 45.05 91.77 45.49
Table 1
Elapsed time after continuous feeding (hr) Example 1 Example 2 Example 3
yield(%) Exo Ratio (%) yield(%) Exo Ratio (%) yield(%) Exo Ratio (%)
One 90.72 49.24 93.77 45.70 91.50 46.74
2 90.64 49.12 92.96 45.47 91.78 45.44
3 90.30 49.11 94.11 45.07 92.18 45.50
4 90.30 49.11 93.51 45.05 91.77 45.49
실험예 2Experimental Example 2
상기 실시예 4를 반응 온도를 일정하게 유지하며 1hr 경과 후부터 30min 간격으로 시료를 얻어 가스 크로마토 그래피(gas chromatography)를 이용하여 정량 분석한 결과 다음과 같이 표 2에 결과를 얻었다.In Example 4, the reaction temperature was kept constant, and samples were obtained at intervals of 30 min from 1 hr after quantitative analysis using gas chromatography, and the results were obtained in Table 2 as follows.
표 2
연속투입 후 경과시간(hr) 실시예 4
수율(%) Exo비율(%)
1.5 93.77 51.90
2 94.45 52.10
2.5 93.68 52.27
TABLE 2
Elapsed time after continuous feeding (hr) Example 4
yield(%) Exo Ratio (%)
1.5 93.77 51.90
2 94.45 52.10
2.5 93.68 52.27
실험예 3Experimental Example 3
상기 비교예 1의 배치 반응으로 실험한 후, 30min 간격으로 시료를 얻어 가스 크로마토 그래피(gas chromatography)를 이용하여 정량 분석한 결과 다음과 같이 표 3에 결과를 얻었다.After experimenting with the batch reaction of Comparative Example 1, samples were obtained at 30 min intervals and quantitatively analyzed by gas chromatography, and the results are obtained in Table 3 as follows.
표 3
투입 후 경과시간(hr) 비교예 1
수율(%) Exo비율(%)
0.5 81.6 38.9
1.0 83.0 45.0
1.5 78.8 48.7
TABLE 3
Elapsed time after loading (hr) Comparative Example 1
yield(%) Exo Ratio (%)
0.5 81.6 38.9
1.0 83.0 45.0
1.5 78.8 48.7
[부호의 설명][Description of the code]
11: LC 펌프(LC pump) 12: CSTR 반응기 11: LC pump 12: CSTR reactor
13: 전기히터(Electric heater) 14: 냉각조(Water bath)13: Electric heater 14: Water bath
15: 연동펌프(Peristaltic Pump) 21: LC 펌프(LC pump) 15: Peristaltic Pump 21: LC Pump
22: 전기히터(Electric heater) 23: 관형 반응기(Tubular reactor)22: electric heater 23: tubular reactor
24: 냉각조(Water bath) 24: water bath
25: 역압력조절기(Back pressure regulator)25: Back pressure regulator
26: 열전대(Thermocouple)26: Thermocouple

Claims (13)

  1. 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물; 및 하기 화학식 1 로 표시되는 화합물;을 포함하는 반응액을 연속식 반응기에 연속적으로 투입하여 반응을 수행하고,Cyclopentadiene, dicyclopentadiene or mixtures thereof; And a reaction liquid containing a compound represented by the following Chemical Formula 1; continuously added to a continuous reactor to carry out the reaction,
    상기 시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:1 내지 1:10, 또는 상기 디시클로펜타디엔과 상기 화학식 1로 표시되는 화합물의 몰비가 1:2 내지 1:20인 노보넨 유도체의 제조방법;Norbornene in which the molar ratio of the cyclopentadiene and the compound represented by Formula 1 is 1: 1 to 1:10, or the molar ratio of the dicyclopentadiene and the compound represented by Formula 1 is 1: 2 to 1:20. Preparation of derivatives;
    [화학식 1][Formula 1]
    CH2=CH-(CH2)n-C(=O)ORCH 2 = CH- (CH 2 ) n -C (= O) OR
    상기 화학식 1에서,In Chemical Formula 1,
    n은 0 내지 10의 정수이고, R은 탄소수 1 내지 20의 알킬기이다.n is an integer of 0-10, R is a C1-C20 alkyl group.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 연속식 반응기는 연속교반형탱크반응기(Continuous Stirred Tank Reactor), 관형 반응기(Tubular Reactor) 및 반회분식 반응기(Semi-batch Reactor) 중 선택되는 어느 하나의 연속 반응기인 것을 특징으로 하는 노보넨 유도체의 제조방법.The continuous reactor is any one continuous reactor selected from a continuous stirred tank reactor, a tubular reactor, and a semi-batch reactor. Manufacturing method.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 반응기에 투입되는 상기 반응액의 공간속도는The space velocity of the reaction solution introduced into the reactor
    0.05 ~ 5h-1인 것을 특징으로 하는 노보넨 유도체의 제조방법.Method for producing a norbornene derivative, characterized in that 0.05 ~ 5h -1 .
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 반응의 온도는 The temperature of the reaction
    170 내지 300 ℃인 것을 특징으로 하는 노보넨 유도체의 제조방법.Method for producing a norbornene derivative, characterized in that 170 to 300 ℃.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 반응의 압력은 The pressure of the reaction
    1 내지 20 bar인 것을 특징으로 하는 노보넨 유도체의 제조방법.Method for producing a norbornene derivative, characterized in that 1 to 20 bar.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 반응액은The reaction solution
    a) 디시클로펜타디엔을 시클로펜타디엔으로 전환하는 단계; 및a) converting dicyclopentadiene to cyclopentadiene; And
    b) 상기 시클로펜타디엔과 하기 화학식 1 로 표시되는 화합물과 딜스-알더 반응(Diels-Alder Reaction)하는 단계;를 포함하여 노보넨 유도체를 제조하는 것을 특징으로 하는 노보넨 유도체의 제조방법. b) Diels-Alder Reaction with the cyclopentadiene compound represented by the following formula (1); a method for producing a norbornene derivative, comprising the production of norbornene derivatives.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 반응액은 The reaction solution
    2,6-디-터트-부틸-4-메틸페놀((2,6-di-tert-butyl-4-methylphenol), 2,2-디(4-tert-옥틸페닐)-1-피크릴하이드라질(2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl), 아닐린, 시클로헥산, 페놀, 4-에톡시페놀, 니트로벤젠, 하이드로퀴논, 벤조퀴논, 이염화구리, 및 이가녹스로 이루어진 군으로부터 선택된 1 종 이상의 중합 방지제를 추가로 포함하는 것을 특징으로 하는 노보넨 유도체의 제조방법.2,6-di-tert-butyl-4-methylphenol ((2,6-di-tert-butyl-4-methylphenol), 2,2-di (4-tert-octylphenyl) -1-picrylhydride Lazyl (2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl), aniline, cyclohexane, phenol, 4-ethoxyphenol, nitrobenzene, hydroquinone, benzoquinone, copper dichloride, and iganox A method for producing a norbornene derivative, further comprising at least one polymerization inhibitor selected from the group consisting of:
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 중합방지제는 시클로펜타디엔, 디시클로펜타디엔 또는 이들의 혼합물과 상기 화학식 1로 표시되는 화합물의 총합의 100 중량부에 대하여 0.01 내지 1 중량부로 포함하는 것을 특징으로 하는 노보넨 유도체의 제조방법.The polymerization inhibitor is a method for producing a norbornene derivative, characterized in that it comprises 0.01 to 1 part by weight based on 100 parts by weight of the total of cyclopentadiene, dicyclopentadiene or a mixture thereof and the compound represented by the formula (1).
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 노보넨 유도체의 수율은 80 내지 95 %인 것을 특징으로 하는 노보넨 유도체의 제조방법.Yield of the norbornene derivative is a method for producing a norbornene derivative, characterized in that 80 to 95%.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 노보넨 유도체의 exo 비율은 20 내지 70인 것을 특징으로 하는 노보넨 유도체의 제조방법.The exo ratio of the norbornene derivative is a method for producing a norbornene derivative, characterized in that 20 to 70.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 노보넨 유도체의 수율은 85 내지 95 %이고, 상기 노보넨 유도체의 exo 비율은 40 내지 70인 것을 특징으로 하는 노보넨 유도체의 제조방법.The yield of the norbornene derivative is 85 to 95%, the exo ratio of the norbornene derivative is a method for producing a norbornene derivative, characterized in that 40 to 70.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 노보넨 유도체의 exo 비율은 45 내지 70인 것을 특징으로 하는 노보넨 유도체의 제조방법.The exo ratio of the norbornene derivative is a method for producing a norbornene derivative, characterized in that 45 to 70.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 노보넨 유도체의 exo 비율은 50 내지 70인 것을 특징으로 하는 노보넨 유도체의 제조방법.The exo ratio of the norbornene derivative is a method for producing a norbornene derivative, characterized in that 50 to 70.
PCT/KR2015/012002 2014-11-07 2015-11-09 Continuous production method for norbornene derivative WO2016072818A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0154508 2014-11-07
KR20140154508 2014-11-07
KR10-2015-0156012 2015-11-06
KR1020150156012A KR20160055085A (en) 2014-11-07 2015-11-06 Continuous production method of norbornene derivative

Publications (1)

Publication Number Publication Date
WO2016072818A1 true WO2016072818A1 (en) 2016-05-12

Family

ID=55909451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012002 WO2016072818A1 (en) 2014-11-07 2015-11-09 Continuous production method for norbornene derivative

Country Status (1)

Country Link
WO (1) WO2016072818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050006A (en) * 2016-12-12 2019-07-23 韩华化学株式会社 Prepare the method for the resin based on bicyclopentadiene and the resin based on bicyclopentadiene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026612A (en) * 2001-09-26 2003-04-03 삼성종합화학주식회사 Process for Preparing Exo-rich Norbornene Ester
KR20060098501A (en) * 2005-03-03 2006-09-19 주식회사 엘지화학 Method of preparation norbornene derivatives
KR20070092819A (en) * 2006-03-09 2007-09-14 주식회사 코오롱 Preparation method of nobornene-ester monomer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030026612A (en) * 2001-09-26 2003-04-03 삼성종합화학주식회사 Process for Preparing Exo-rich Norbornene Ester
KR20060098501A (en) * 2005-03-03 2006-09-19 주식회사 엘지화학 Method of preparation norbornene derivatives
KR20070092819A (en) * 2006-03-09 2007-09-14 주식회사 코오롱 Preparation method of nobornene-ester monomer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050006A (en) * 2016-12-12 2019-07-23 韩华化学株式会社 Prepare the method for the resin based on bicyclopentadiene and the resin based on bicyclopentadiene
US10961337B2 (en) 2016-12-12 2021-03-30 Hanwha Chemical Corporation Method of preparing dicyclopentadiene-based resin and dicyclopentadiene-based resin
CN110050006B (en) * 2016-12-12 2021-10-22 韩华化学株式会社 Method for preparing dicyclopentadiene-based resin and dicyclopentadiene-based resin
CN113736019A (en) * 2016-12-12 2021-12-03 韩华化学株式会社 Method for preparing dicyclopentadiene-based resin and dicyclopentadiene-based resin
CN113736019B (en) * 2016-12-12 2023-05-16 韩华化学株式会社 Method for preparing dicyclopentadiene-based resin and dicyclopentadiene-based resin

Similar Documents

Publication Publication Date Title
TWI403523B (en) Method for preparing the exo-rich norbornene monomer comprising polar functional group, the polymer prepared therefrom and method for preparing the same
CN107417490B (en) Tower type continuous photochlorination method for preparing chlorobenzyl
WO2016072818A1 (en) Continuous production method for norbornene derivative
KR101223868B1 (en) Preparation method of Nobornene-ester monomer
Shiohara et al. Asymmetric anionic polymerization of alkyl-substituted N, N-diphenylacrylamide derivatives
WO2024139679A1 (en) Production process for norbornene
KR20160055085A (en) Continuous production method of norbornene derivative
EP0457355A2 (en) Process for the continuous bulk production of acrylic polymers
KR102004517B1 (en) Continuous production method of norbornene derivative
Pryor et al. Radical production from the interaction of closed-shell molecules. 4. 1, 4-Diradicals and the isotope effects on the spontaneous polymerization of pentafluorostyrene
US4849565A (en) 1,3-diethynyladamantane and methods of polymerization thereof
US2870196A (en) Method of preparing 2, 3-dicarbomethoxy-1, 3-butadiene
KR100424431B1 (en) Process for Preparing Exo-rich Norbornene Ester
KR100831631B1 (en) Method of preparation norbornene derivatives
CN118619803B (en) Norbornene production process
KR20230043174A (en) ester compound
WO2024058532A1 (en) Method for producing terephthaloyl chloride by controlling light amount
WO2022035261A1 (en) Method for producing zero-valent nickel compound and method for producing polymer
US3344199A (en) Process for forming cyclododecatriene
US4918158A (en) 1,3-diethynyladamantane and methods of polymerization thereof
JP4980670B2 (en) Cyclic olefin and process for producing the same
Schneider et al. Alicyclic reaction mechanisms. 7. The predominance and quantification of steric effects in the solvolysis of secondary aliphatic esters
KR101074500B1 (en) Method for preparing norbornene monomer comprising non-polar alkyl functional group
US3692801A (en) 2-alkylidene oxetane compounds
JP7147234B2 (en) Method for producing methacrylic acid ester polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857356

Country of ref document: EP

Kind code of ref document: A1