Nothing Special   »   [go: up one dir, main page]

WO2016072473A1 - 蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン - Google Patents

蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン Download PDF

Info

Publication number
WO2016072473A1
WO2016072473A1 PCT/JP2015/081223 JP2015081223W WO2016072473A1 WO 2016072473 A1 WO2016072473 A1 WO 2016072473A1 JP 2015081223 W JP2015081223 W JP 2015081223W WO 2016072473 A1 WO2016072473 A1 WO 2016072473A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
steam turbine
facing surface
rotor blade
coating layer
Prior art date
Application number
PCT/JP2015/081223
Other languages
English (en)
French (fr)
Inventor
創一朗 田畑
裕基 榎本
杼谷 直人
俊爾 今井
栗村 隆之
尚俊 岡矢
友太 沖森
晴彦 浅香
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2016557812A priority Critical patent/JP6345268B2/ja
Priority to KR1020187025319A priority patent/KR102206203B1/ko
Priority to KR1020177003238A priority patent/KR20170027832A/ko
Priority to DE112015003695.4T priority patent/DE112015003695B4/de
Priority to US15/507,042 priority patent/US10570754B2/en
Priority to CN201580044571.8A priority patent/CN106574506B/zh
Publication of WO2016072473A1 publication Critical patent/WO2016072473A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys

Definitions

  • the present disclosure relates to a steam turbine blade, a method for manufacturing a steam turbine blade, and a steam turbine.
  • an axial flow type steam turbine used for power generation has a plurality of stationary blade rows and moving blade rows, and each of the stationary blade row and the moving blade row includes a plurality of turbine stationary blades and turbine blades.
  • an integral shroud blade disclosed in JP-A-4-5402 has an integral shroud at the tip of the blade. The blades are configured to be twisted back and deformed by centrifugal force during operation of the turbine, so that adjacent integral shrouds contact each other.
  • an integral stub is provided at the intermediate portion of the blade, as disclosed in Japanese Patent Laid-Open No. 4-5402, in order to increase structural damping, particularly as a measure against stress increase due to the increase in the length of the steam turbine long blade. May be provided.
  • integral shroud blade disclosed in Japanese Patent Laid-Open No. 4-5402
  • integral stubs that project in a triangular shape are provided on both sides of the blade at the middle of the blade.
  • Turbine blades having an integral shroud at the blade tip and an integral stub at the middle of the blade are also disclosed in Japanese Patent Nos. 4058906 and 2011-137424.
  • the interval between the end faces facing each other of the integral shroud (first connecting member) is the end face facing each other of the integral stub (second connecting member). It is set to be smaller than the interval between them.
  • an intermediate connecting member provided for improving the vibration characteristics of a moving blade that is a long blade is a flow path resistance of steam flowing between the moving blades, and aerodynamic performance is reduced. Will bring. Therefore, in the turbine rotor cascade disclosed in Japanese Patent Application Laid-Open No. 2011-137424, the aerodynamics between the rotor blades is optimized by optimizing the position of the intermediate connecting member between the rotor blades and the cross-sectional shape of the intermediate connecting member. It is considered that a significant loss can be reduced.
  • Japanese Patent Application Laid-Open No. 2004-270023 discloses a method for treating a device that is subject to erosion by a liquid and an erosion-preventing coating film alloy.
  • a cobalt-based alloy having a predetermined composition is applied to a blade of a steam turbine as a device subjected to liquid erosion by laser plating. Is done.
  • Japanese Patent Application Laid-Open No. 2014-163371 discloses a high-speed flame spraying of chromium carbide (CrC) using NiCr as a binder on a connecting surface (cover and tie boss) of a turbine rotor blade made of a titanium alloy. It is disclosed that coating is applied by HVOF spraying. That is, Japanese Patent Application Laid-Open No. 2014-163371 discloses high-speed flame spraying of a mixture.
  • CrC chromium carbide
  • At least one embodiment of the present invention provides a steam turbine blade and a steam turbine blade in which damage due to fretting wear and fatigue is prevented at a portion where adjacent turbine blades contact each other.
  • An object of the present invention is to provide a blade manufacturing method and a steam turbine.
  • one steam turbine rotor blade for configuring a steam turbine rotor blade row includes: A wing portion, a blade root portion provided on one end side of the wing portion, a first connection portion provided on the other end side of the wing portion and having a first facing surface, and a first connection portion provided in the middle of the wing portion; A blade main body having a second connecting portion having two opposed surfaces, wherein the first opposed surface and the second opposed surface are first opposed to another blade main body disposed adjacent to each other in the blade row.
  • a rotor blade body configured to be opposed to the surface and the second opposing surface;
  • a coating layer made of a single composition Co-based alloy is formed on at least one of the first facing surface and the second facing surface, and the adjacent turbine blades are made of a single composition Co-based alloy.
  • the resulting coating layers are in contact with each other.
  • the coating layer made of a single composition Co-based alloy is excellent in fretting resistance. According to the configuration of (1) above, at least one of the first connecting portion and the second connecting portion provided with the covering layer. Damage due to fretting wear and fatigue is prevented.
  • the coating layer is formed on the surface of the first facing surface and / or the second facing surface by high-speed flame spraying, and the thickness of the diffusion layer is 10 ⁇ m or less.
  • the coating layer is formed on at least the surface of the second facing surface.
  • the second connecting portion is for increasing structural damping, and the peak stress acting on the second facing surface of the second connecting portion has not been so large.
  • the peak stress acting on the second facing surface of the second connecting part has also increased, causing fretting at the second connecting part. It has been found that the resulting damage is becoming more likely to occur.
  • the coating layer is formed on the surface of the second facing surface of the second connecting portion, it is possible to prevent damage to the second connecting portion due to fretting. Can do.
  • the first connecting portion is connected obliquely with respect to a side edge of the first facing surface, and is adjacent to the moving blade row. Having a first inclined surface configured to enlarge the interval between the first connecting portions;
  • the second connecting portion includes a second inclined surface that is connected obliquely with respect to a side edge of the second facing surface, and is configured to increase an interval between adjacent second connecting portions in the moving blade row.
  • the peak stress which acts on the 1st counter surface is reduced, and damage to the 1st connection part by fretting is prevented more certainly.
  • the area of the first facing surface is substantially reduced, and the average surface pressure of the first facing surface is increased. If a coating layer is formed on the surface, fretting wear and fatigue due to an increase in average surface pressure can be prevented.
  • the first connecting portion is connected to a tip edge of the first facing surface and is adjacent to the moving blade row. Having a first curved surface configured to enlarge the spacing of the mating first coupling portions;
  • the second connecting portion has a second curved surface that is connected to the leading edge of the second facing surface and is configured to increase the interval between adjacent second connecting portions in the moving blade row.
  • the first curved surface when the first curved surface is provided, the area of the first facing surface is substantially reduced, and the average surface pressure of the first facing surface is increased. If a coating layer is formed on the surface, fretting wear and fretting fatigue due to an increase in average surface pressure can be prevented. Further, according to the configuration of (4) above, by providing the second curved surface that is continuous with the tip edge of the second opposing surface of the second connecting portion, the occurrence of contact between the second opposing surfaces is more assured. Can be suppressed. For this reason, the peak stress which acts on the 2nd counter surface is reduced, and the damage of the 2nd connecting part by fretting is prevented more certainly.
  • the first connecting portion has a third inclined surface that is connected to a leading edge of the first facing surface and is configured to expand a distance between adjacent first connecting portions in the blade row.
  • the second connecting portion has a fourth inclined surface that is connected to the tip edge of the second facing surface and is configured to increase the interval between adjacent second connecting portions in the moving blade row.
  • the first connection portion and the second connection portion are more reliably damaged by fretting. To be prevented.
  • the side edge is connected to the inclined surface.
  • a curved surface is connected to the tip edge.
  • the second connecting portion has a second inclined surface that is connected obliquely with respect to a side edge of the second facing surface and is configured to expand a distance between adjacent second connecting portions in the blade row, It has a 2nd curved surface which continued to the front-end edge of the said 2nd opposing surface, and was comprised so that the space
  • the second inclined surface connected to the side edge of the second facing surface is provided, and the second curved surface connected to the tip edge of the second facing surface is provided, so that the second connection by fretting is performed. Damage to the part can be prevented more reliably.
  • one steam turbine rotor blade for configuring a steam turbine rotor blade row includes: A wing portion, a blade root portion provided on one end side of the wing portion, a first connection portion provided on the other end side of the wing portion and having a first facing surface, and a first connection portion provided in the middle of the wing portion; A blade main body having a second connecting portion having two opposed surfaces, wherein the first opposed surface and the second opposed surface are first opposed to another blade main body disposed adjacent to each other in the blade row.
  • a rotor blade body configured to be opposed to the surface and the second opposing surface;
  • the second connecting portion includes a second inclined surface that is connected obliquely with respect to a side edge of the second facing surface, and is configured to increase an interval between adjacent second connecting portions in the moving blade row.
  • connection line connecting the leading edge and the trailing edge of the blade part and the second facing surface in the transverse section of the rotor blade body at the position where the second connecting part is provided on the blade part and has the second connecting part Is an acute angle and the perpendicular line of the second opposing surface intersects the wing part, when machining the surface connected to the side edge of the second opposing surface, the machine tool is Since the interference occurs, it is a manual work, but the work connected to the side edge is a simple inclined surface, so that the work can be easily and stably performed.
  • the rotor blade body is made of precipitation hardening stainless steel.
  • the formed rotor blade body is subjected to heat treatment, for example, solution treatment and age hardening treatment in sequence, and the hardness of the stainless steel is adjusted to an appropriate value.
  • heat treatment for example, solution treatment and age hardening treatment in sequence
  • the heat treatment is required again to adjust the hardness.
  • the blade main body is hardly heated during high-speed flame spraying. For this reason, the hardness of the rotor blade body does not change due to high-speed flame spraying, and the coating layer can be easily formed without requiring special temperature control for the rotor blade body.
  • the friction coefficient of precipitation hardening stainless steel is lower than that of titanium alloy, and conventionally, there is almost no risk of fretting wear and fatigue in a moving blade made of precipitation hardening stainless steel.
  • the peak stress acting on the first facing surface and the second facing surface is increasing with the recent increase in output and the length of the moving blade in the steam turbine. It has been found that there is an increased possibility of damage due to fretting. Therefore, in the configuration of (8) above, a coating layer is provided on at least one of the first facing surface and the second facing surface even when the rotor blade body is made of precipitation hardening stainless steel. This prevents damage due to fretting.
  • the length of the last stage rotor blade is increased to increase the annular area and reduce the exhaust loss.
  • the turbine blades having the above-described configurations (1) to (8) are lengthened, damage due to fretting at the contact portion between adjacent turbine blades is prevented. Useful as.
  • a steam turbine including any one of the steam turbine rotor blades of the above (1) to (8) is provided.
  • a manufacturing method of one steam turbine rotor blade for constituting a steam turbine rotor blade row A wing portion, a blade root portion provided on one end side of the wing portion, a first connection portion provided on the other end side of the wing portion and having a first facing surface, and a first connection portion provided in the middle of the wing portion;
  • a blade main body having a second connecting portion having two opposed surfaces, wherein the first opposed surface and the second opposed surface are first opposed to another blade main body disposed adjacent to each other in the blade row.
  • the first counter surface and the second counter surface are made of a Co-based alloy at an angle of 0 ° to 60 ° with respect to a normal line of the counter surface with respect to the counter surface to be coated. Powder is sprayed.
  • the angle of the spraying direction with respect to the normal line of the opposing surface is in the range of 0 ° or more and 60 ° or less, the porosity of the coating layer can be lowered and the fretting resistance performance of the coating layer can be increased.
  • a steam turbine blade a method for manufacturing a steam turbine blade, and a steam turbine in which damage due to fretting is prevented at a portion where the turbine blades contact each other.
  • FIG. 3 is a perspective view schematically showing one moving blade belonging to the last stage moving blade row. It is a perspective view which shows a part of wing
  • FIG. 9 is a schematic sectional view taken along line XI-XI in FIG. 8. It is an expanded view which shows roughly the 1st connection part which concerns on other embodiment. It is an expanded view which shows one 2nd connection part which concerns on other embodiment roughly.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • an expression representing a shape such as a square shape or a cylindrical shape represents not only a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or the like as long as the same effect can be obtained.
  • the shape to be included is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
  • FIG. 1 is a block diagram schematically showing the configuration of a power generation system according to an embodiment of the present invention.
  • the power generation system is a combined power generation system and includes a gas turbine 1, a steam turbine 3, an exhaust heat recovery boiler 5, and generators 7 and 9.
  • the power generation system is a conventional power generation system that includes a steam turbine 3 that generates steam by burning fuel inside instead of the exhaust heat recovery boiler 5.
  • the power generation system is for private use, and in some embodiments, the power generation system is for business use.
  • the gas turbine 1 includes a compressor 11, a combustor 13, and a turbine 15.
  • the compressor 11 compresses air using a part of the output of the turbine 15, and the compressed air is supplied to the combustor 13.
  • the combustor 13 is supplied with compressed air and fuel, and the fuel is combusted.
  • the combustion gas generated by the combustion of the fuel is supplied to the turbine 15, and the turbine 15 generates torque as an output using the combustion gas.
  • the turbine 15 is connected to the generator 7, and the generator 7 generates power using a part of the output of the turbine 15.
  • Combustion gas (hereinafter also referred to as exhaust gas) that has worked in the turbine 15 is supplied to the exhaust heat recovery boiler 5.
  • the exhaust heat recovery boiler 5 generates steam using the heat (exhaust heat) of the combustion gas.
  • the exhaust heat recovery boiler 5 includes an economizer 17, a header 19, an evaporator 21, a superheater 23, a reheater 25, and a denitrator 27. Water is heated by the economizer 17, the evaporator 21, and the superheater 23, whereby superheated steam is obtained.
  • the superheated steam is supplied to the steam turbine 3.
  • the steam supplied to the steam turbine 3 is once returned to the exhaust heat recovery boiler 5 and supplied to the reheater 25.
  • the reheater 25 heats the steam, and the heated steam is supplied to the steam turbine 3.
  • the denitration device 27 has a function of removing NOx contained in the exhaust gas.
  • the exhaust gas discharged from the exhaust heat recovery boiler 5 is released through the chimney 29, for example.
  • the steam turbine 3 is connected to a generator 9.
  • the steam turbine 3 generates torque using steam, and the generator 9 generates power using torque.
  • the steam turbine 3 includes a high-pressure turbine 31, an intermediate-pressure turbine 33, and a low-pressure turbine 35, and each of the high-pressure turbine 31, the intermediate-pressure turbine 33, and the low-pressure turbine 35 generates torque using steam.
  • a condenser 37 is connected to the steam turbine 3, and the steam discharged from the low-pressure turbine 35 of the steam turbine 3 is condensed by the condenser 37 into water.
  • the condenser 37 is connected to the exhaust heat recovery boiler 5 via a condensate pump 39, and the water obtained by the condenser 37 is supplied to the exhaust heat recovery boiler 5 by the condensate pump 39.
  • FIG. 2 is a longitudinal sectional view showing a schematic configuration of the steam turbine 3.
  • the steam turbine 3 in FIG. 2 is a single-chamber steam turbine in which a high-pressure turbine 31, an intermediate-pressure turbine 33, and a low-pressure turbine 35 are integrally formed.
  • the steam turbine is a multi-chamber type in which a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine are formed separately.
  • the multi-chamber steam turbine may be a tandem type or a cross type.
  • the 2 has a housing 41 forming a passenger compartment, a rotor 43, a stationary blade row fixed to the housing 41, and a plurality of blade rows fixed to the rotor 43.
  • the rotor 43 is rotatably supported by radial bearings 44 and 45, and at least a part of the rotor 43 extends in the housing 41.
  • the generator 9 is connected to one end side of the rotor 43.
  • a cylindrical internal flow path 46 is formed between the housing 41 and the rotor 43, and a stationary blade row and a moving blade row are arranged in the internal flow channel 46.
  • the stationary blade row and the moving blade row include those belonging to the high pressure turbine 31, those belonging to the intermediate pressure turbine 33, and those belonging to the low pressure turbine 35.
  • Each stationary blade row includes a plurality of stationary blades arranged in the circumferential direction of the rotor 43, and each stationary blade is fixed to the housing 41.
  • Each moving blade row includes a plurality of moving blades arranged in the circumferential direction of the rotor 43, and each moving blade is fixed to the rotor 43. In each stationary blade row, the flow of steam is accelerated, and in each blade row, steam energy is converted into rotational energy of the rotor 43.
  • the moving blade row (hereinafter also referred to as the last-stage moving blade row) 47 of the low-pressure turbine 35 located on the most downstream side in the steam flow direction has a large share of output in the steam turbine 3.
  • the last stage moving blade row 47 is lengthened.
  • FIG. 3 is a plan view schematically showing the final stage moving blade row 47
  • FIG. 4 is a schematic view of one moving blade (hereinafter also referred to as the final stage moving blade) 49 belonging to the final stage moving blade row 47. It is a perspective view shown in FIG.
  • the moving blade 49 includes a moving blade body 50, and the moving blade body 50 includes a blade portion 51, a blade root portion 53, a first connection portion 55, and a second connection portion 57.
  • the wing part 51 has a high-pressure surface (abdominal surface) 51a and a low-pressure surface (back surface) 51b opposite to each other.
  • a steam channel is formed between the high-pressure surface 51a and the low-pressure surface 51b of the adjacent wings 51, and the wings 51 receive energy from the steam flowing through the channel.
  • the high-pressure surface 51a and the low-pressure surface 51b of the wing part 51 have a predetermined width and extend in the radial direction of the rotor 43, and the cross-sectional shape of the wing part 51 perpendicular to the radial direction is formed in a predetermined cross-sectional shape.
  • the high pressure surface 51 a and the low pressure surface 51 b of the wing portion 51 are directed from the inner side to the outer side in the radial direction of the rotor 43. And gradually twisted.
  • the blade root portion 53 is integrally provided on one end side (root side) of the blade portion 51 in the radial direction of the rotor 43, and the rotor 43 is provided with an engagement portion that can be engaged with the blade root portion 53. Accordingly, the final stage moving blade 49 is fixed to the rotor 43 via the blade root portion 53.
  • the blade root 53 has a Christmas tree shape in a cross section orthogonal to the axial direction of the rotor 43. In this case, a groove extending in the axial direction as an engaging portion is formed in the rotor 43, and the blade root portion 53 is inserted in the axial direction with respect to the groove of the rotor 43.
  • the first connecting portion 55 is integrally provided on the other end side (tip end side) of the blade portion 51 in the radial direction of the rotor 43.
  • FIG. 5 schematically shows a part of the wing portion 51 together with the first connecting portion 55.
  • FIG. 6 is a developed view schematically showing the plurality of first connecting portions 55.
  • the first connecting portion 55 is also called an integral shroud, and is provided to reduce the vibration amplitude and the number of modes of the elongated last stage moving blade row 47. That is, the adjacent last stage blades 49 are integrated by connecting via the first connecting portion 55 on the outer side in the radial direction of the rotor 43, thereby reducing the vibration amplitude and the number of modes of the last stage blade array 47. I am letting.
  • the first connecting portion 55 has first opposing surfaces 59 on both sides in the circumferential direction of the rotor 43.
  • the first facing surfaces 59 of the adjacent last stage moving blades 49 are arranged to face each other.
  • the first facing surfaces 59 that face each other are shaped to be parallel to each other when the blade portion 51 is twisted back and deformed by the action of centrifugal force during operation of the steam turbine 3.
  • the first connecting portion 55 has triangular prism-shaped protrusions 61 on both sides in the circumferential direction of the rotor 43, and one side surface of the protrusion 61 forms a first facing surface 59.
  • the second connecting portion 57 is integrally provided on each of the high pressure surface 51 a and the low pressure surface 51 b of the blade portion 51 in the middle in the radial direction of the rotor 43.
  • FIG. 7 schematically shows a part of the wing part 51 together with the second connecting part 57.
  • FIG. 8 is a developed view schematically showing the plurality of second connecting portions 57.
  • the second connecting portion 57 is also referred to as an integral stub, and is mainly provided to increase the structural damping of the elongated last stage moving blade row 47. That is, the adjacent last stage moving blades 49 are integrated by connecting via the second connecting portion 57 in the middle of the rotor 43 in the radial direction, thereby increasing the structural damping of the last stage moving blade row 47.
  • the second connecting portion 57 has a second facing surface 63.
  • the second facing surfaces 63 of the adjacent last stage moving blades 49 are arranged to face each other.
  • the second facing surfaces 63 facing each other are shaped so as to be parallel to each other when the blade portion 51 is twisted back and deformed by the action of centrifugal force during operation of the steam turbine 3.
  • the second connecting portion 57 has a triangular prism shape, and one side surface of the second connecting portion 57 constitutes the second facing surface 63. Further, for example, as shown in FIG.
  • connection line Lc connecting the leading edge and the trailing edge of the blade portion 51, and the second facing surface
  • the angle ⁇ a formed with 63 is an acute angle, and the perpendicular Lr of the second facing surface 63 intersects the wing part 51.
  • a coating layer 65 made of a single composition Co-based alloy formed by high-speed flame spraying is formed on at least one of the first facing surface 59 and the second facing surface 63 described above.
  • the thickness of the diffusion layer between the covering layer 65 and the underlying surface is 10 ⁇ m or less.
  • the Co-based alloy is a fretting wear resistant material having excellent fretting wear resistance. Examples of the Co-based alloy include a stellite alloy and a trihalloy alloy.
  • As the anti-fretting wear material CuNiIn, CuAl, CuTi, or the like can be used as a Cu-based alloy in addition to a Co-based alloy. In the present embodiment, as schematically shown enlarged in the circles of FIGS.
  • the covering layer 65 is formed on both the first opposing surface 59 and the second opposing surface 63.
  • the coating layers 65 on the first opposing surfaces 59 facing each other are in contact with each other, and the coating layers 65 on the opposing second facing surfaces 63 are in contact with each other.
  • the covering layer 65 is formed over the entire range of the opposing first opposing surfaces 59 in contact with each other and the entire range of the opposing second opposing surfaces 63 in contact with each other.
  • FIG. 9 is a flowchart schematically showing a method of manufacturing the final stage moving blade 49.
  • the rotor blade body 50 is formed by forging, for example (S10).
  • the molded blade main body 50 is heat treated to adjust the strength and hardness of the blade main body 50 (S12).
  • the heat treatment includes a quenching process (solution treatment process) and a tempering process (age hardening process).
  • the temperature of the solution treatment step is in the range of 1020 ° C. to 1060 ° C.
  • the temperature of the age hardening treatment step is in the range of 470 ° C. to 660 ° C.
  • the surface hardness of the rotor blade body 50 subjected to the heat treatment is 500HV0.5 or more in the Vickers hardness test specified in JIS Z2244 2008.
  • the heat-treated blade main body 50 is subjected to, for example, an oxide film removal process by polishing, and the surface oxide film is removed (S14).
  • the rotor blade main body 50 from which the oxide film has been removed is subjected to a roughening process on the first facing surface 59 and the second facing surface 63 (S16).
  • the roughening process S16 is to roughen the surface roughness of the first facing surface 59 and the second facing surface 63, and is performed by blasting, for example.
  • the roughening process S16 is performed by grit blasting using sharp particles.
  • the surface roughness of the first facing surface 59 and the second facing surface 63 subjected to the roughening treatment is within the range of 6.0 ⁇ m or more and 7.0 ⁇ m or less in the arithmetic average roughness Ra specified in JIS B0601 2013. It is in.
  • areas other than the first facing surface 59 and the second facing surface 63 are masked to prevent the surface from becoming rough.
  • the coating layer 65 is formed on the rotor blade main body 50 subjected to the roughening process by high-speed flame spraying on the first facing surface 59 and the second facing surface 63 (S18).
  • High-speed flame spraying S18 is, for example, HVOF (High Velocity Oxygen Fuel) or HVAF (High Velocity Air Fuel) spraying is used.
  • the coating layer 65 can be formed by spraying a powder material onto the object to be coated with a high-speed combustion gas generated by combustion of oxygen or air and fuel. In this embodiment, HVOF spraying is employed.
  • the powder material for forming the coating layer 65 is made of a Co-based alloy having the same composition as the coating layer 65.
  • the particle diameter of the powder material is in the range of 10 ⁇ m or more and 70 ⁇ m or less in terms of the arithmetic average particle diameter defined in JIS Z8819-2 2001.
  • the inclination of the spraying direction of the powder material with respect to the normal line of the first facing surface 59 or the second facing surface 63 to be coated that is, the incident angle ⁇ i is in the range of 0 ° to 60 ° with reference to FIG. Is in.
  • the inclination of the spray direction is in the range of 0 ° or more and 60 ° or less, the porosity of the coating layer 65 can be lowered, and the fretting resistance of the coating layer 65 can be increased.
  • the porosity in the coating layer 65 is 5% or less.
  • the coating layer 65 made of a single composition Co-based alloy is formed on at least one of the first facing surface 59 and the second facing surface 63.
  • the coating layers 65 made of a Co-based alloy having a single composition are in contact with each other.
  • the coating layer 65 made of a Co-based alloy having a single composition has excellent fretting resistance, and damage due to fretting in the first connecting portion 55 and the second connecting portion 57 provided with the covering layer 65 is prevented.
  • the coating layer 65 is formed on the surface of the first facing surface 59 or the second facing surface 63 by high-speed flame spraying, and no thermal diffusion treatment is performed after the high-speed flame spraying.
  • the thickness of the diffusion layer existing between the covering layer 65 and the underlying surface is 10 ⁇ m or less.
  • the crack does not progress to the first connecting portion 55 and the second connecting portion 57 that are the base. Therefore, even if damaged by fretting, it is only necessary to repair the damage by coating the Co-based alloy again by high-speed flame spraying, and it is not necessary to replace the blade itself. Therefore, the cost for restoration can be reduced, the construction period required for restoration can be shortened, and the operating rate of the steam turbine can be increased.
  • the periphery of the first connecting portion 55 located on the outer peripheral portion of the final stage moving blade row 47 is in a wet region, but the first facing surfaces 59 face each other, and the first There is almost no possibility of erosion occurring on the one opposing surface 59.
  • the periphery of the second connecting portion 57 located in the blade intermediate portion of the last stage moving blade row 47 is not in the wet region, and the second facing surfaces 63 face each other, and the first facing surface Similarly to 59, there is almost no possibility of erosion on the second facing surface 63, and there is no need to provide a protective film for preventing erosion.
  • the covering layer 65 is directly laminated on the surface of the first facing surface 59 or the second facing surface 63.
  • FIG. 10 is a cross-sectional observation result by an optical microscope of the coating layer 65 formed on the second facing surface 63 of the second connecting portion 57 after the fretting fatigue test.
  • the thickness of the diffusion layer is 10 ⁇ m or less, and is substantially zero.
  • the crack (crack) generated in the covering layer 65 reaches the interface with the base (base material) and then becomes a lateral crack along the interface, and the crack reaches the inside of the base. Not progressing.
  • the Co-based alloy constituting the coating layer 65 is Stellite (registered trademark) No. 1 having the composition (64Co-28Cr-4W-1C-3Fe) exemplified in Table 1. 6.
  • the thickness of the covering layer 65 is in the range of 0.1 mm to 0.6 mm in some embodiments, and in the range of 0.3 mm to 0.5 mm in some embodiments.
  • the covering layer 65 is formed on at least the surface of the second facing surface 63.
  • the covering layer 65 is formed on the surface of the second facing surface 63 of the second connecting portion 57, it is possible to prevent the second connecting portion 57 from being damaged due to fretting. Can do.
  • the last stage moving blade 49 is a moving blade having a blade height of 40 inches or more.
  • FIG. 11 is a schematic cross-sectional view along the line XI-XI in FIG.
  • the second connecting portion 57 is connected obliquely with respect to both side edges of the second facing surface 63, and is adjacent to the second stage moving blade row 47. It has the 2nd inclined surface 69 comprised so that the space
  • the coating layer 65 is formed on the surface of the second facing surface 63, fretting wear and fatigue due to an increase in average surface pressure can be prevented. In some embodiments, the coating layer 65 is also formed on the surface of the second inclined surface 69.
  • the first connecting portion 55 is connected obliquely with respect to both side edges of the first facing surface 59, and the final stage moving blade It has the 1st inclined surface 67 comprised so that the space
  • Both side edges of the first connecting portion 55 are separated from each other in the radial direction of the rotor 43, that is, in the height direction of the final stage moving blade 49, and the first inclined surface 67 is formed on the first stage moving blade 49. Inclined with respect to the height direction.
  • the coating layer 65 is formed on the surface of the first facing surface 59, fretting wear and fatigue due to an increase in average surface pressure can be prevented. In some embodiments, the coating layer 65 is also formed on the surface of the first inclined surface 67.
  • the first connecting portion 55 is connected to the tip edge of the first facing surface 59 and is adjacent to the first stage moving blade row 47.
  • the first curved surface 71 is configured to increase the distance between the first curved surface 71 and the second curved surface 71. According to the above configuration, by providing the first curved surface 71 that is continuous with the distal end edge of the first opposing surface 59 of the first connecting portion 55, occurrence of contact between the first opposing surfaces 59 is prevented. For this reason, the peak stress which acts on the 1st opposing surface 59 is reduced, and the damage of the 1st connection part 55 by fretting wear and fatigue is prevented more reliably.
  • the coating layer 65 is formed on the surface of the first facing surface 59, fretting wear and fatigue due to an increase in average surface pressure can be prevented. In some embodiments, the coating layer 65 is also formed on the surface of the first curved surface 71.
  • the second connecting portion 57 is connected to the leading edge of the second facing surface 63 and is adjacent to the second stage moving blade row 47.
  • the second curved surface 73 is configured to increase the distance between the second curved surface 73 and the second curved surface 73. According to the above configuration, by providing the second curved surface 73 that is continuous with the distal end edge of the second opposing surface 63 of the second connecting portion 57, the occurrence of contact between the second opposing surfaces 63 is prevented. For this reason, the peak stress which acts on the 2nd opposing surface 63 is reduced, and the damage of the 2nd connection part 57 by fretting wear and fatigue is prevented more reliably.
  • the coating layer 65 is formed on the surface of the first facing surface 59, fretting wear and fatigue due to an increase in average surface pressure can be prevented. In some embodiments, the coating layer 65 is also formed on the surface of the second curved surface 73.
  • the first connecting portion 55 has a third inclined surface 75 instead of the first curved surface 71
  • the second connecting portion 57 is A fourth inclined surface 77 is provided instead of the second curved surface 73.
  • the third inclined surface 75 is connected to the leading edge of the first facing surface 59 and is configured to increase the interval between the adjacent first connecting portions 55 in the moving blade row.
  • the 4th inclined surface 77 continues to the front-end edge of the 2nd opposing surface 63, and is comprised so that the space
  • the local stress generated at the tip edge is higher than that at the side edge.
  • the 1st inclined surface 67 or the 2nd inclined surface 69 While connecting the 1st inclined surface 67 or the 2nd inclined surface 69, the 1st curved surface 71 or the 2nd curved surface 73 is continued at the front-end edge.
  • the blade body 50 is made of precipitation hardened stainless steel.
  • the formed rotor blade body 50 is sequentially subjected to heat treatment, for example, solution treatment and age hardening treatment, and the hardness of the stainless steel is adjusted to an appropriate value.
  • heat treatment for example, solution treatment and age hardening treatment
  • the heat treatment is required again to adjust the hardness.
  • any kind of processing is to be performed on the rotor blade body 50 after the heat treatment, it is necessary to perform temperature management so that the temperature of the rotor blade body 50 does not exceed the heat treatment temperature.
  • the coating layer 65 when the coating layer 65 is formed by high-speed flame spraying, the rotor blade body 50 is hardly heated. For this reason, even if the moving blade body 50 is made of precipitation hardening stainless steel, the hardness of the moving blade body 50 is not changed by high-speed flame spraying. Therefore, the coating layer 65 can be easily formed without requiring special temperature management for the rotor blade body 50.
  • the friction coefficient of precipitation hardening stainless steel is lower than that of titanium alloy, and conventionally, there is almost no risk of fretting wear and fatigue in a moving blade made of precipitation hardening stainless steel.
  • the peak stress acting on the first facing surface 59 and the second facing surface 63 has increased with the recent increase in output and the length of the moving blade in the steam turbine, and the first connecting portion 55 and the second connecting portion 55 are also increased. It has been found that there is a high possibility that damage due to fretting occurs in the connecting portion 57. Therefore, in some embodiments, even when the rotor blade body 50 is made of precipitation hardening stainless steel, the coating layer 65 is formed on at least one of the first facing surface 59 and the second facing surface 63. By providing, fretting wear and fatigue damage are prevented.
  • the precipitation hardening stainless steel is 17-4PH (SUS630) having the composition illustrated in Table 2.
  • the base is precipitation hardening stainless steel and the coating layer 65 is a Co-based alloy
  • the thickness of the coating layer 65 can be easily measured with an electromagnetic film pressure gauge. For this reason, peeling and abrasion of the coating layer 65 can be easily grasped, and the coating layer 65 can be repaired promptly as necessary. Then, according to the high-speed flame spraying, the temperature management of the rotor blade body 50 is not particularly required, so that the coating layer 65 can be easily repaired.
  • FIG. 14 shows the metal structure of the cross section of the coating layer of the example obtained by high-speed flame spraying of Stellite (registered trademark) # 6. From FIG. 14, it can be seen that the metal structure of the coating layer of the example is not a mottled structure and is substantially uniform. When a microhardness test (Hv 0.002) was performed at a plurality of locations on the coating layer of the example, the microhardness was approximately 800 to 1200 in all regions of the coating layer. Also from this point, it turns out that the metal structure of the coating layer of an Example is substantially uniform.
  • Hv 0.002 microhardness test
  • FIG. 15 shows the cross section of the metallographic structure and the microhardness test result of the coating layer of the comparative example obtained by high-speed flame spraying of mixed powder of Cr3C2 and NiCr (Cr3C2-25NiCr).
  • Cr3C2 Cr3C2-25NiCr
  • FIG. 15 shows the cross section of the metallographic structure and the microhardness test result of the coating layer of the comparative example obtained by high-speed flame spraying of mixed powder of Cr3C2 and NiCr (Cr3C2-25NiCr).
  • the coating layer of the comparative example since it is a composite of Cr3C2 and NiCr, from the measurement result of the form of the metal structure and its microhardness, it is not a homogeneous structure, but a region. It can be seen that there is a big difference in hardness.
  • the coating layer of the comparative example as shown in FIG.
  • NiCr is used as a binder, and a coating layer is formed by applying chromium carbide (Cr3C2) by high-speed flame spraying.
  • Cr3C2 chromium carbide
  • a Co-based alloy having a single composition is obtained by high-speed flame spraying as in the embodiment of the present invention.
  • the coating layer 65 to be obtained is superior in wear resistance and the like because there is no structural unevenness in hardness. Therefore, in the embodiment of the present invention, a Co-based alloy having a single composition, preferably Stellite (registered trademark) is used so that the coating layer 65 having a homogeneous structure and hardness distribution can be formed in consideration of the area around the local surface.
  • the coating layer 65 is formed by high-speed flame spraying of # 6.
  • the present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.
  • the moving blade used in the final stage moving blade 49 can be applied to the steam turbine moving blades other than the final stage, but is suitable for the final stage of the low pressure steam turbine having the strictest use conditions. This is because since the coating layer 65 is formed by high-speed flame spraying, the thermal effect on the ground is small when the coating layer 65 is formed, and the physical properties of the ground are not changed. Thereby, even if the coating layer 65 is formed, for example, it is possible to prevent the occurrence of stress corrosion cracking in the rotor blade body 50 under wet steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

 蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼は、翼部、翼部の一端側に設けられた翼根部、翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体を備える。第1対向面及び第2対向面は、動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成されている。また、蒸気タービン動翼は、第1対向面及び第2対向面のうち少なくとも一方の表面上に高速フレーム溶射により形成された単一組成のCo基合金からなる被覆層であって、該被覆層と表面の間の拡散層の厚さが10μm以下の状態で表面上に形成された被覆層を備える。

Description

蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン
 本開示は蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービンに関する。
 例えば発電等に利用される軸流式の蒸気タービンは、複数の静翼列及び動翼列を有し、静翼列及び動翼列は、それぞれ複数のタービン静翼及びタービン動翼からなる。
 タービン動翼として、特開平4-5402号公報が開示するインテグラルシュラウド翼は、翼の先端にインテグラルシュラウドを有する。翼は、タービンの運転時、遠心力により捩り戻り変形し、これにより、隣り合うインテグラルシュラウドが相互に接触するように構成されている。
 この種のタービン動翼では、特に、蒸気タービン長翼の長大化による応力増加の対策として、構造減衰を高めるため、特開平4-5402号公報のように、翼の中間部にインテグラルスタブが設けられることがある。特開平4-5402号公報が開示するインテグラルシュラウド翼では、翼先端部のインテグラルシュラウドのほかに、翼中間部の翼両面側に、三角形状に突出したインテグラルスタブが設けられている。翼が遠心力により捩り戻り変形すると、隣り合うインテグラルスタブ同士が互いに接触し、それによって、構造減衰を高めている。
 翼先端部にインテグラルシュラウドを設け、さらに翼の中間部にインテグラルスタブを設けたタービン動翼は、特許第4058906号公報、特開2011-137424号公報にも開示されている。
 特許第4058906号公報が開示する蒸気タービンの動翼では、インテグラルシュラウド(第一の連結部材)の互いに対向する端面間の間隔が、インテグラルスタブ(第二の連結部材)の互いに対向する端面間の間隔よりも小さくなるように設定されている。これにより、ロータの回転数上昇に伴い、まず、インテグラルシュラウド同士が接触し、その後にインテグラルスタブ同士が接触することになるため、連結部材と翼部との結合部に過大応力が発生するのが抑制され、タービンの起動から定格運転に至るまでの運転範囲において強度振動的に信頼性を向上した動翼を備えた蒸気タービンが提供されると考えられている。
 特開2011-137424号公報では、長翼となる動翼の振動特性を改善するために設けた中間連結部材は、それが、動翼間を流れる蒸気の流路抵抗となり、空力性能の低下をもたらすことになる。そこで、特開2011-137424号公報が開示するタービン動翼列では、中間連結部材の動翼間における配置位置や、中間連結部材の断面形状を適正化することで、動翼間における空気力学的な損失を低減することができるものと考えられている。
 一方、蒸気タービンでは、蒸気は、各タービン段落で膨張仕事をし、蒸気の持つエネルギが低くなり、後段落になるほど蒸気温度は低下し、蒸気通路部は湿り域になる。この湿り域で回転するタービン動翼には、特に周速の大きい翼先端の前縁部が、蒸気中の液滴の衝突により浸食(エロージョン)を受けることがある。そこで、特開2004-270023号公報は、液体による浸食を受ける機器を処理する方法及び浸食防止被覆膜合金を開示している。
 特開2004-270023号公報が開示する液体による浸食を受ける機器を処理する方法では、所定の組成を有するコバルト系合金が、液体による浸食を受ける機器としての蒸気タービンのブレードに、レーザーめっきにより塗布される。
 特開2014-163371号公報には、チタン合金からなるタービン動翼の、その連結部材(カバーとタイボス)接触面に、バインダにはNiCrを用いて、クロムカーバイド(CrC)を、高速フレーム溶射(HVOF溶射)により被膜施工することが開示されている。つまり、特開2014-163371号公報には、混合物を高速フレーム溶射することが開示されている。
 近年、蒸気タービンには高出力化が求められており、タービンの運転条件は、タービン動翼、特に最終段のタービン動翼にとって極めて過酷になってきている。本発明者らは、このような過酷な条件下では、翼前縁のエロージョン(液滴の衝突による浸食)の他にも、蒸気タービンの耐久性向上のために、個々のタービン動翼において改善することが望ましい事項が存在するとの知見を得た。
 具体的には、タービン動翼のシュラウドやインテグラルスタブ等、タービン動翼が相互に接触する部位において、翼振動の発生に伴い、接触面に微小な繰り返し往復滑りおよび繰り返し荷重が作用することで、フレッティング摩耗および疲労が発生する可能性があり、フレッティングに起因する損傷を防止するのが望ましいとの知見を得た。
 特に、チタン系合金に比べて摩擦係数が小さく、フレッティングに起因する損傷の虞が殆どなかったステンレス鋼からなるタービン動翼にあっても、高出力化したときの接触部位におけるピーク応力の上昇に伴い、フレッティングに起因する損傷を防止するのが望ましいとの知見を得た。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、隣り合うタービン動翼が相互に接触する部位における、フレッティング摩耗および疲労に起因する損傷が防止された蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービンを提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る、蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼は、
 翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体と、
 前記第1対向面及び前記第2対向面のうち少なくとも一方の表面上に高速フレーム溶射により形成された単一組成のCo基合金からなる被覆層であって、該被覆層と前記表面の間の拡散層の厚さが10μm以下の状態で前記表面上に形成された被覆層と
を備える。
 第1対向面及び第2対向面のうち少なくとも一方の表面上には単一組成のCo基合金からなる被覆層が形成されており、隣り合うタービン動翼では、単一組成のCo基合金からなる被覆層が相互に接触する。単一組成のCo基合金からなる被覆層は耐フレッティング性に優れており、上記(1)の構成によれば、第1連結部及び第2連結部のうち被覆層が設けられた少なくとも一方におけるフレッティング摩耗および疲労による損傷が防止される。
 一方、被覆層は高速フレーム溶射により第1対向面及び/又は第2対向面の表面上に形成されており、拡散層の厚さが10μm以下である。このため、たとえ被覆層にフレッティングにより亀裂が生じたとしても、亀裂が下地(母材)にまで進行することがない。したがって、もし、フレッティングにより損傷を受けたとしても、その損傷は、再度、高速フレーム溶射によりCo基合金をコーティングして修復すれば足り、翼自体を換装する必要がない。
(2)幾つかの実施形態では、上記(1)の構成において、前記被覆層は、少なくとも前記第2対向面の表面上に形成されている。
 従来、第2連結部は、構造減衰を高めるためのものであり、第2連結部の第2対向面に作用するピーク応力はそれほど大きくはなかった。しかしながら、近年の蒸気タービンにおける高出力化や蒸気タービン動翼の長翼化に伴い、第2連結部の第2対向面に作用するピーク応力も増大しており、第2連結部においてフレッティングに起因する損傷が発生する可能性が高くなってきていることがわかってきた。
 この点、上記(2)の構成によれば、被覆層が第2連結部の第2対向面の表面上に形成されているので、フレッティングに起因する第2連結部の損傷を防止することができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記第1連結部は、前記第1対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第1傾斜面を有し、
 前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有する。
 上記(3)の構成によれば、第1連結部の第1対向面の側縁に連なる第1傾斜面を設けたことにより、第1対向面間での片当たりの発生を抑えることができる。このため、第1対向面に作用するピーク応力が低減され、フレッティングによる第1連結部の損傷がより確実に防止される。
 一方、第1傾斜面を設けた場合、第1対向面の面積が実質的に減少し、第1対向面の平均面圧が上昇することとなるが、この場合であっても、第1対向面の表面上に被覆層を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
 また、上記(3)の構成によれば、第2連結部の第2対向面の側縁に連なる第2傾斜面を設けたことにより、第2対向面間での片当たりの発生を抑えることができる。このため、第2対向面に作用するピーク応力が低減され、フレッティングによる第2連結部の損傷がより確実に防止される。
 一方、第2傾斜面を設けた場合、第2対向面の面積が実質的に減少し、第2対向面の平均面圧が上昇することとなるが、この場合であっても、第2対向面の表面上に被覆層を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れか1つの構成において、前記第1連結部は、前記第1対向面の先端縁に連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第1湾曲面を有し、
 前記第2連結部は、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2湾曲面を有する。
 上記(4)の構成によれば、第1連結部の第1対向面の先端縁に連なる第1湾曲面を設けたことにより、第1対向面間での片当たりの発生をより確実に抑えることができる。このため、第1対向面に作用するピーク応力が低減され、フレッティングによる第1連結部の損傷がより確実に防止される。
 一方、第1湾曲面を設けた場合、第1対向面の面積が実質的に減少し、第1対向面の平均面圧が上昇することになるが、この場合であっても、第1対向面の表面上に被覆層を形成しておけば、平均面圧上昇によるフレッティング摩耗やフレッティング疲労を防止することができる。
 また、上記(4)の構成によれば、第2連結部の第2対向面の先端縁に連なる第2湾曲面を設けたことにより、第2対向面間での片当たりの発生をより確実に抑えることができる。このため、第2対向面に作用するピーク応力が低減され、フレッティングによる第2連結部の損傷がより確実に防止される。
 一方、第2湾曲面を設けた場合、第2対向面の面積が実質的に減少し、第2対向面の平均面圧が上昇することになるが、この場合であっても、第12対向面の表面上に被覆層を形成しておけば、平均面圧上昇によるフレッティング摩耗やフレッティング疲労を防止することができる。
(5)幾つかの実施態様では、上記(1)乃至(3)の何れか1つの構成において、
 前記第1連結部は、前記第1対向面の先端縁に連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第3傾斜面を有し、
 前記第2連結部は、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第4傾斜面を有する。
 上記構成(5)によっても、上記構成(4)の場合と同様、第3傾斜面及び第4傾斜面を設けたことにより、フレッティングによる第1連結部及び第2連結部の損傷がより確実に防止される。
 ただし、第1対向面や第2対向面において、先端縁に発生する局所応力は、側縁のそれに比べて高くなることに着目し、上記構成(4)では、側縁には傾斜面を連ねる一方、先端縁には湾曲面を連ねている。局所応力が高くなる先端縁に湾曲面を連ねることで、片当たりを確実に抑えて、フレッティング摩耗やフレッティング疲労をより確実に防止することができる。
(6)幾つかの実施形態では、上記(2)の構成において、
 前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有するとともに、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2湾曲面を有する。
 上記構成(6)によれば、第2対向面の側縁に連なる第2傾斜面を設け、第2対向面の先端縁に連なる第2湾曲面を設けたことにより、フレッティングによる第2連結部の損傷をより確実に防止することができる。
(7)本発明の少なくとも一実施形態に係る、蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼は、
翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体と、
 前記第2対向面の表面上に形成された耐フレッティング摩耗材からなる被覆層と、を備え、
 前記第2連結部を有する位置における前記動翼本体の横断面において、前記翼部の前縁と後縁とを結んだ結線と、前記第2対向面とのなす角が鋭角であり、かつ、前記第2対向面の垂線が前記翼部と交差し、
 前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有する。
 第2連結部が翼部に設けられ、第2連結部を有する位置における動翼本体の横断面において、翼部の前縁と後縁とを結んだ結線と、第2対向面とのなす角が鋭角であり、かつ、第2対向面の垂線が翼部と交差している場合、第2対向面の側縁に連なる面を加工するとき、工作機械が第2連結部根本の翼部と干渉するため、手作業となるが、前記側縁に連なる面を単純な傾斜面とすることで、作業を簡単かつ安定したものにできる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れか1つの構成において、前記動翼本体は析出硬化型のステンレス鋼からなる。
 動翼本体が析出硬化型のステンレス鋼からなる場合、成形された動翼本体には熱処理、例えば溶体化処理及び時効硬化処理が順次施され、ステンレス鋼の硬度が適当な値に調整される。熱処理後に動翼本体が加熱された場合、硬度を調整するために再度熱処理が必要になる。或いは、熱処理後に動翼本体に対して何らかの処理を行おうとする場合、動翼本体の温度が熱処理温度を超えないように温度管理を行う必要がある。
 この点、上記(8)の構成によれば、高速フレーム溶射の際、動翼本体は殆ど加熱されない。このため、高速フレーム溶射により動翼本体の硬度が変化することはなく、動翼本体のための特別な温度管理を必要とすることなく、被覆層を容易に形成することができる。
 なお、析出硬化型ステンレス鋼の摩擦係数は、チタン合金に比べて低く、従来、析出硬化型ステンレス鋼からなる動翼ではフレッティング摩耗および疲労の虞は殆どなかった。しかしながら、近年の蒸気タービンにおける高出力化や動翼の長翼化に伴い、第1対向面や第2対向面に作用するピーク応力も増大しており、第1連結部や第2連結部においてフレッティングに起因する損傷が発生する可能性が高くなっていることがわかってきた。
 そこで、上記(8)の構成では、動翼本体が析出硬化型のステンレス鋼からなる場合であっても、第1対向面及び第2対向面のうち少なくとも一方の表面上に被覆層を設けることにより、フレッティングによる損傷が防止される。
 ここで、蒸気タービンでは、最終段動翼の長大化により、環状面積を増大して排気損失の低減が図られている。この点、上記(1)から(8)の構成のタービン動翼は、長大化しても、隣り合うタービン動翼の接触部位におけるフレッティングによる損傷が防止されるので、蒸気タービンの最終段動翼として有用である。
(9)本発明の少なくとも一実施形態によれば、上記(1)乃至(8)の何れか1つの蒸気タービン動翼を備える蒸気タービンが提供される。
(10)本発明の少なくとも一実施形態に係る、蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼の製造方法は、
 翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体を用意する工程と、
 前記第1対向面及び前記第2対向面のうち少なくとも一方の表面上に、高速フレーム溶射により単一組成のCo基合金からなる被覆層を形成する高速フレーム溶射工程とを備え、
 前記高速フレーム溶射工程では、前記第1対向面及び前記第2対向面のうち被覆対象の対向面に対し、該対向面の法線に対し0°以上60°以下の角度でCo基合金からなる粉末が吹き付けられる。
 対向面の法線に対する吹き付け方向の角度が0°以上60°以下の範囲内にある場合、被覆層における気孔率を低くし、被覆層の耐フレッティング性能を高くすることができる。
 本発明の少なくとも一実施形態によれば、タービン動翼が相互に接触する部位における、フレッティングに起因する損傷が防止された蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービンが提供される。
本発明の一実施形態に係る発電システムの構成を概略的に示すブロック図である。 蒸気タービンの概略的な構成を示す縦断面図である。 最終段動翼列を概略的に示す平面図である。 最終段動翼列に属する1つの動翼を概略的に示す斜視図である。 第1連結部とともに翼部の一部を概略的に示す斜視図である。 複数の第1連結部を概略的に示す展開図であり、拡大された円内には、径方向直交断面が概略的に示されている。 第2連結部とともに翼部の一部を概略的に示す斜視図である。 複数の第2連結部を概略的に示す展開図であり、拡大された円内には、径方向直交断面が概略的に示されている。 最終段動翼の製造方法を概略的に示すフローチャートである。 フレッティング疲労試験後における、第2連結部の第2対向面上に形成された被覆層の光学顕微鏡による断面観察結果である。 図8中のXI-XI線に沿う概略的な断面図である。 他の実施形態に係る1つの第1連結部を概略的に示す展開図である。 他の実施形態に係る1つの第2連結部を概略的に示す展開図である。 ステライト(登録商標)♯6を高速溶射フレームして得られた実施例の被覆層の金属組織の断面を示す図である。 Cr3C2とNiCrの混合粉末(Cr3C2-25NiCr)を高速溶射フレームして得られた比較例の被覆層の金属組織の断面及び微小硬さ試験結果を示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、本発明の一実施形態に係る発電システムの構成を概略的に示すブロック図である。発電システムは、複合発電システムであり、ガスタービン1と、蒸気タービン3と、排熱回収ボイラ5と、発電機7,9とを備える。
 幾つかの実施形態では、発電システムは、排熱回収ボイラ5に代えて、燃料を内部で燃焼させて蒸気を発生させるボイラと、蒸気タービン3とを備える従来型の発電システムである。幾つかの実施形態では、発電システムは自家用であり、幾つかの実施形態では、発電システムは事業用である。
 ガスタービン1は、圧縮機11と、燃焼器13と、タービン15とを備える。圧縮機11は、タービン15の出力の一部を利用して空気を圧縮し、圧縮された空気が燃焼器13に供給される。燃焼器13には圧縮空気と燃料が供給され、燃料が燃焼させられる。燃料の燃焼により発生した燃焼ガスは、タービン15に供給され、燃焼ガスを利用してタービン15が出力としてのトルクを発生させる。
 タービン15は、発電機7に接続され、タービン15の出力の一部を利用して発電機7が発電する。
 タービン15で仕事をした燃焼ガス(以下、排ガスともいう)は、排熱回収ボイラ5に供給される。排熱回収ボイラ5は、燃焼ガスの熱(排熱)を利用して、蒸気を発生させる。
 例えば、排熱回収ボイラ5は、エコノマイザ17、ヘッダ19、蒸発器21、過熱器23、再熱器25及び脱硝器27を有する。水は、エコノマイザ17、蒸発器21及び過熱器23により加熱され、これにより過熱蒸気が得られる。過熱蒸気は、蒸気タービン3に供給される。蒸気タービン3に供給された蒸気は、排熱回収ボイラ5に一度戻されて再熱器25に供給される。再熱器25は、蒸気を加熱し、加熱された蒸気が蒸気タービン3に供給される。
 脱硝器27は、排ガスに含まれるNOxを除去する機能を有する。排熱回収ボイラ5から排出された排ガスは、例えば、煙突29を通じて放出される。
 蒸気タービン3は、発電機9に接続されている。蒸気タービン3は、蒸気を利用してトルクを発生させ、発電機9はトルクを利用して発電する。例えば、蒸気タービン3は、高圧タービン31、中圧タービン33及び低圧タービン35を有し、高圧タービン31、中圧タービン33及び低圧タービン35の各々が蒸気を利用してトルクを発生させる。
 蒸気タービン3には、復水器37が接続され、蒸気タービン3の低圧タービン35から放出された蒸気は、復水器37によって凝縮させられて水になる。復水器37は、復水ポンプ39を介して排熱回収ボイラ5に接続され、復水ポンプ39によって、復水器37で得られた水が、排熱回収ボイラ5に供給される。
 図2は、蒸気タービン3の概略的な構成を示す縦断面図である。
 図2の蒸気タービン3は、高圧タービン31、中圧タービン33及び低圧タービン35が一体に形成された単車室形の蒸気タービンである。幾つかの実施形態では、蒸気タービンは、高圧タービン、中圧タービン及び低圧タービンが別体に形成された複車室形である。複車室形の蒸気タービンは、タンデム形であってもクロス形であってもよい。
 図2の蒸気タービン3は、車室を形成するハウジング41と、ロータ43と、ハウジング41に固定された静翼列と、ロータ43に固定された複数の動翼列とを有する。ロータ43は、ラジアル軸受44,45によって回転可能に支持され、ロータ43の少なくとも一部は、ハウジング41内を延びている。ロータ43の一端側に、発電機9が接続されている。
 ハウジング41とロータ43との間には筒状の内部流路46が形成され、内部流路46に静翼列及び動翼列が配置される。静翼列及び動翼列には、高圧タービン31に属するもの、中圧タービン33に属するもの、及び、低圧タービン35に属するものがある。各静翼列は、ロータ43の周方向に配列された複数の静翼からなり、各静翼はハウジング41に対して固定されている。各動翼列は、ロータ43の周方向に配列された複数の動翼からなり、各動翼は、ロータ43に対して固定されている。各静翼列では、蒸気の流れが加速され、各動翼列では、蒸気のエネルギがロータ43の回転エネルギに変換される。
 蒸気の流動方向にて最下流に位置する低圧タービン35の動翼列(以下、最終段動翼列とも称する)47は、蒸気タービン3に占める出力の分担が大きい。排気損失の低減により蒸気タービン3の効率を改善することを目的として、最終段動翼列47の長大化が図られている。
 図3は、最終段動翼列47を概略的に示す平面図であり、図4は、最終段動翼列47に属する1つの動翼(以下、最終段動翼とも称する)49を概略的に示す斜視図である。
 動翼49は、動翼本体50を有し、動翼本体50は、翼部51、翼根部53、第1連結部55及び第2連結部57を有する。
 翼部51は、互いに反対向きの高圧面(腹面)51a及び低圧面(背面)51bを有する。隣り合う翼部51の高圧面51aと低圧面51bとの間に蒸気の流路が形成され、流路を流れる蒸気から翼部51がエネルギを受け取る。翼部51の高圧面51a及び低圧面51bは、所定の幅をもって、ロータ43の径方向にそれぞれ延び、径方向と直交する翼部51の断面形状は所定の断面形状に形成されている。なお、翼部51の周速は、径方向内側と外側で異なっていることを考慮して、翼部51の高圧面51a及び低圧面51bは、ロータ43の径方向にて内側から外側に向かって徐々に捩られた形状を有する。
 翼根部53は、ロータ43の径方向にて翼部51の一端側(根元側)に一体に設けられ、ロータ43には、翼根部53と係合可能な係合部が設けられる。従って、翼根部53を介して、最終段動翼49がロータ43に固定される。
 幾つかの実施形態では、翼根部53は、ロータ43の軸方向と直交する断面にて、クリスマスツリー形の形状を有する。この場合、ロータ43には係合部として軸方向に延びる溝が形成され、翼根部53は、ロータ43の溝に対し軸方向に挿入される。
 第1連結部55は、ロータ43の径方向にて翼部51の他端側(先端側)に一体に設けられている。図5は、第1連結部55とともに翼部51の一部を概略的に示している。図6は、複数の第1連結部55を概略的に示す展開図である。
 第1連結部55は、インテグラルシュラウドとも称され、長大化された最終段動翼列47の振動の振幅やモード数を減少させるために設けられている。すなわち、隣り合う最終段動翼49を、ロータ43の径方向外側で第1連結部55を介して連結することにより一体化し、これにより最終段動翼列47の振動の振幅やモード数を減少させている。
 具体的には、第1連結部55は、ロータ43の周方向にて両側に第1対向面59を有する。隣り合う最終段動翼49の第1対向面59は相互に対向するよう配置される。なお、相互に対向する第1対向面59は、蒸気タービン3の運転時、遠心力の作用により翼部51が捩り戻り変形したときに、互いに平行になるように成形されている。
 例えば、第1連結部55は、ロータ43の周方向にて両側に三角柱形状の突起61を有し、突起61の一側面が第1対向面59を構成している。
 第2連結部57は、翼部51の高圧面51a及び低圧面51bの各々に、ロータ43の径方向にて中間に一体に設けられている。図7は、第2連結部57とともに翼部51の一部を概略的に示している。図8は、複数の第2連結部57を概略的に示す展開図である。
 第2連結部57は、インテグラルスタブとも称され、主として、長大化された最終段動翼列47の構造減衰を高めるために設けられている。すなわち、隣り合う最終段動翼49を、ロータ43の径方向中間で第2連結部57を介して連結することにより一体化し、これにより最終段動翼列47の構造減衰を高めている。
 具体的には、第2連結部57は、第2対向面63を有する。隣り合う最終段動翼49の第2対向面63は相互に対向するよう配置される。なお、相互に対向する第2対向面63は、蒸気タービン3の運転時、遠心力の作用により翼部51が捩り戻り変形したときに、互いに平行になるように成形されている。
 例えば、第2連結部57は三角柱形状を有し、第2連結部57の一側面が第2対向面63を構成している。
 また例えば、図8に示したように、第2連結部57を有する位置における動翼本体50の横断面において、翼部51の前縁と後縁とを結んだ結線Lcと、第2対向面63とのなす角θaが鋭角であり、かつ、第2対向面63の垂線Lrが翼部51と交差している。
 上述した第1対向面59及び第2対向面63のうち少なくとも一方の表面上には、高速フレーム溶射により形成された単一組成のCo基合金からなる被覆層65が形成されている。そして、被覆層65とその下地の表面との間の拡散層の厚さは10μm以下である。
 Co基合金は、耐フレッティング摩耗性に優れた耐フレッティング摩耗材である。Co基合金としては、例えばステライト合金、トリハロイ合金などを挙げることができる。耐フレッティング摩耗材としては、Co基合金の他、Cuベースの合金としてCuNiIn、CuAl、CuTiなどを用いることができる。
 本実施形態では、図6及び図8の円内に拡大して概略的に示したように、第1対向面59及び第2対向面63の両方に被覆層65が形成されている。この場合、隣り合う最終段動翼49間では、対向する第1対向面59上の被覆層65が相互に接触し、対向する第2対向面63上の被覆層65が相互に接触する。
 例えば、被覆層65は、対向する第1対向面59の相互に接触する範囲の全域、及び、対向する第2対向面63の相互に接触する範囲の全域に形成されている。
 以下、上述した最終段動翼49の製造方法を説明する。
 図9は、最終段動翼49の製造方法を概略的に示すフローチャートである。図9に示したように、まず、動翼本体50が、例えば鍛造により成形される(S10)。成形された動翼本体50は熱処理され、動翼本体50の強度や硬度が調整される(S12)。例えば熱処理は、焼き入れ工程(溶体化処理工程)と焼き戻し工程(時効硬化処理工程)とを含む。
 例えば、溶体化処理工程の温度は、1020℃以上1060℃以下の範囲内にあり、時効硬化処理工程の温度は、470℃以上660℃以下の範囲内にある。
 例えば、熱処理された動翼本体50の表面硬さは、JIS Z2244 2008に規定されたビッカース硬さ試験において、500HV0.5以上である。
 熱処理された動翼本体50には、例えば研磨による酸化膜除去処理が施され、表面の酸化膜が除去される(S14)。
 酸化膜が除去された動翼本体50には、第1対向面59及び第2対向面63に粗化処理が施される(S16)。粗化処理S16は、第1対向面59及び第2対向面63の表面粗さを粗くするものであり、例えばブラストにより行われる。幾つかの実施形態では、尖った粒子を用いたグリットブラストにより粗化処理S16が行われる。
 例えば、粗化処理された第1対向面59及び第2対向面63の表面粗さは、JIS B0601 2013に規定された算術平均粗さRaにて、6.0μm以上7.0μm以下の範囲内にある。
 なお、粗化処理S16の際、第1対向面59及び第2対向面63以外の領域についてはマスキングすることにより、表面が粗くなることを防止する。
 粗化処理された動翼本体50には、第1対向面59及び第2対向面63上に高速フレーム溶射により被覆層65が形成される(S18)。
 高速フレーム溶射S18は、例えば、HVOF(High
Velocity Oxygen Fuel)溶射又はHVAF(High Velocity Air Fuel)溶射により行われる。高速フレーム溶射S18では、酸素又は空気と燃料の燃焼により発生させた高速の燃焼ガスによって、粉末材料を被覆対象に吹き付けることにより、被覆層65を形成することができる。
 本実施形態では、HVOF溶射が採用される。
 被覆層65を形成するための粉末材料は、被覆層65と同じ組成のCo基合金からなる。
 例えば、粉末材料の粒径は、JIS Z8819-2 2001に規定される算術平均粒子径にて、10μm以上70μm以下の範囲内にある。
 また例えば、被覆対象である第1対向面59又は第2対向面63の法線に対する粉末材料の吹き付け方向の傾き、即ち入射角θiは、図8を参照すると、0°以上60°以下の範囲内にある。吹き付け方向の傾きが0°以上60°以下の範囲内にある場合、被覆層65における気孔率を低くし、被覆層65の耐フレッティング性能を高くすることができる。例えば、被覆層65における気孔率は5%以下である。
 上述した本発明の少なくとも一実施形態に係る蒸気タービン3では、第1対向面59及び第2対向面63のうち少なくとも一方の表面上には単一組成のCo基合金からなる被覆層65が形成されており、隣り合う最終段動翼49では、単一組成のCo基合金からなる被覆層65が相互に接触する。単一組成のCo基合金からなる被覆層65は耐フレッティング性に優れており、被覆層65が設けられた第1連結部55及び第2連結部57におけるフレッティングによる損傷が防止される。
 一方、被覆層65は高速フレーム溶射により第1対向面59又は第2対向面63の表面上に形成されており、高速フレーム溶射の後に熱拡散処理が行われていない。このため、被覆層65とその下地の表面との間に存在する拡散層の厚さが10μm以下である。このため、たとえ被覆層65にフレッティング疲労により亀裂が生じたとしても、亀裂が下地である第1連結部55や第2連結部57に進行することがない。したがって、もし、フレッティングにより損傷を受けたとしても、その損傷は、再度、高速フレーム溶射によりCo基合金をコーティングして修復すれば足り、翼自体を換装する必要はない。そのため、修復のためのコストを低減できるとともに、復旧に要する工期をも短縮し得て、蒸気タービンの稼働率を高めることができる。
 なお、蒸気タービン3の運転時、最終段動翼列47の外周部に位置する第1連結部55の周囲は湿り域にあるが、第1対向面59同士は相互に対向しており、第1対向面59にエロージョンが発生する可能性はほとんどない。また、最終段動翼列47の翼中間部に位置する第2連結部57の周囲は、湿り域にはなく、さらに、第2対向面63同士は相互に対向しており、第1対向面59と同様に、第2対向面63においても、エロージョンが発生する可能性は殆どなく、エロージョンを防止するための保護膜を設ける必要性はない。
 しかし、最近の、最終段動翼の長大化やタービンの高出力化により、従来、構造減衰を高めるために設けられ、対向面に作用するピーク応力はさほど大きくないと考えられていた第2連結部の第2対向面においてさえも、接触部位において、ピーク応力が上昇していることがわかってきて、フレッティングに起因する損傷を防止するため、対向面にフレッティング性の高い被覆層を形成するなど、処置を講ずるのが望ましいとの知見を得た。
 幾つかの実施形態では、被覆層65は、第1対向面59又は第2対向面63の表面上に直接積層される。
 図10は、フレッティング疲労試験後における、第2連結部57の第2対向面63上に形成された被覆層65の光学顕微鏡による断面観察結果である。図10からわかるように、高速フレーム溶射により被覆層65を形成した場合、拡散層の厚さは10μm以下であり、実質的に零である。そして、図10からわかるように、被覆層65に発生した割れ(亀裂)は、下地(母材)との界面に到達後、界面にそって横割れとなっており、亀裂が下地の内部まで進行していない。
 幾つかの実施形態では、被覆層65を構成するCo基合金は、表1に例示した組成(64Co-28Cr-4W-1C-3Fe)を有するステライト(登録商標)No.6である。
Figure JPOXMLDOC01-appb-T000001
 被覆層65の厚さは、幾つかの実施形態では、0.1mm以上0.6mm以下の範囲内にあり、幾つかの実施形態では0.3mm以上0.5mm以下の範囲内にある。
 幾つかの実施形態では、被覆層65は、少なくとも第2対向面63の表面上に形成されている。
 この点、上記構成によれば、被覆層65が第2連結部57の第2対向面63の表面上に形成されているので、フレッティングに起因する第2連結部57の損傷を防止することができる。
 幾つかの実施形態では、最終段動翼49は、翼高さが40インチ級以上の動翼である。
 図11は、図8中のXI-XI線に沿う概略的な断面図である。幾つかの実施形態では、図7及び図11に示したように、第2連結部57は、第2対向面63の両側縁に対しそれぞれ斜めに連なり、最終段動翼列47において隣り合う第2連結部57の間隔を拡大するように構成された第2傾斜面69を有する。
 なお、第2連結部57の両側縁は、ロータ43の径方向、換言すれば、最終段動翼49の高さ方向に相互に離間しており、第2傾斜面69は、最終段動翼49の高さ方向に対して傾斜している。
 上記構成によれば、第2連結部57の第2対向面63の両側縁にそれぞれ連なる第2傾斜面69を設けたことにより、第2対向面63間での片当たり、すなわち局所的な接触の発生が防止される。このため、第2対向面63に作用するピーク応力が低減され、フレッティングによる第2連結部57の損傷がより確実に防止される。
 一方、第2傾斜面69を設けた場合、第2対向面63の面積が実質的に減少し、第2対向面63の平均面圧が上昇することとなるが、この場合であっても、第2対向面63の表面上に被覆層65を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
 幾つかの実施形態では、第2傾斜面69の表面上にも被覆層65が形成される。
 幾つかの実施形態では、図5の円内に拡大して概略的に示したように、第1連結部55は、第1対向面59の両側縁に対しそれぞれ斜めに連なり、最終段動翼列47において隣り合う第1連結部55の間隔を拡大するように構成された第1傾斜面67を有する。
 なお、第1連結部55の両側縁は、ロータ43の径方向、即ち、最終段動翼49の高さ方向に相互に離間しており、第1傾斜面67は、最終段動翼49の高さ方向に対して傾斜している。
 上記構成によれば、第1連結部55の第1対向面59の両側縁に連なる第1傾斜面67をそれぞれ設けたことにより、第1対向面59間での片当たりの発生が防止される。このため、第1対向面59に作用するピーク応力が低減され、フレッティングによる第1連結部55の損傷がより確実に防止される。
 一方、第1傾斜面67を設けた場合、第1対向面59の面積が実質的に減少し、第1対向面59の平均面圧が上昇することとなるが、この場合であっても、第1対向面59の表面上に被覆層65を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
 幾つかの実施形態では、第1傾斜面67の表面上にも被覆層65が形成される。
 幾つかの実施形態では、図5及び図6に示したように、第1連結部55は、第1対向面59の先端縁に連なり、最終段動翼列47において隣り合う第1連結部55の間隔を拡大するように構成された第1湾曲面71を有する。
 上記構成によれば、第1連結部55の第1対向面59の先端縁に連なる第1湾曲面71を設けたことにより、第1対向面59間での片当たりの発生が防止される。このため、第1対向面59に作用するピーク応力が低減され、フレッティング摩耗および疲労による第1連結部55の損傷がより確実に防止される。
 一方、第1湾曲面71を設けた場合、第1対向面59の面積が実質的に減少し、第1対向面59の平均面圧が上昇することとなるが、この場合であっても、第1対向面59の表面上に被覆層65を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
 幾つかの実施形態では、第1湾曲面71の表面上にも被覆層65が形成される。
 幾つかの実施形態では、図7及び図8に示したように、第2連結部57は、第2対向面63の先端縁に連なり、最終段動翼列47において隣り合う第2連結部57の間隔を拡大するように構成された第2湾曲面73を有する。
 上記構成によれば、第2連結部57の第2対向面63の先端縁に連なる第2湾曲面73を設けたことにより、第2対向面63間での片当たりの発生が防止される。このため、第2対向面63に作用するピーク応力が低減され、フレッティング摩耗および疲労による第2連結部57の損傷がより確実に防止される。
 一方、第2湾曲面73を設けた場合、第2対向面63の面積が実質的に減少し、第2対向面63の平均面圧が上昇することとなるが、この場合であっても、第1対向面59の表面上に被覆層65を形成しておけば、平均面圧上昇によるフレッティング摩耗および疲労を防止することができる。
 幾つかの実施形態では、第2湾曲面73の表面上にも被覆層65が形成される。
 幾つかの実施形態では、図12及び図13にそれぞれ示したように、第1連結部55は、第1湾曲面71に代えて第3傾斜面75を有し、第2連結部57は、第2湾曲面73に代えて第4傾斜面77を有する。
 第3傾斜面75は、第1対向面59の先端縁に連なり、動翼列において隣り合う第1連結部55の間隔を拡大するように構成されている。
 第4傾斜面77は、第2対向面63の先端縁に連なり、動翼列において隣り合う第2連結部57の間隔を拡大するように構成されている。
 この構成によっても、第1湾曲面71及び第2湾曲面73を設けた場合と同様、第3傾斜面75及び第4傾斜面77を設けたことにより、フレッティングによる第1連結部55及び第2連結部57の損傷がより確実に防止される。
 ただし、第1対向面59や第2対向面63において、先端縁に発生する局所応力は、側縁のそれに比べて高くなることに着目し、図5及び図7の構成では、側縁には第1傾斜面67又は第2傾斜面69を連ねる一方、先端縁には第1湾曲面71又は第2湾曲面73を連ねている。局所応力が高くなる先端縁に第1湾曲面71又は第2湾曲面73を連ねることで、片当たりを確実に抑えて、フレッティング摩耗やフレッティング疲労をより確実に防止することができる。
 幾つかの実施形態では、動翼本体50は析出硬化型のステンレス鋼からなる。
 動翼本体50が析出硬化型のステンレス鋼からなる場合、成形された動翼本体50には熱処理、例えば溶体化処理及び時効硬化処理が順次施され、ステンレス鋼の硬度が適当な値に調整される。熱処理後に動翼本体50が加熱された場合、硬度を調整するために再度熱処理が必要になる。或いは、熱処理後に動翼本体50に対して何らかの処理を行おうとする場合、動翼本体50の温度が熱処理温度を超えないように温度管理を行う必要がある。
 この点、高速フレーム溶射により被覆層65を形成した場合、動翼本体50は殆ど加熱されない。このため、動翼本体50が析出硬化型のステンレス鋼からなる場合であっても、高速フレーム溶射により動翼本体50の硬度が変化することはない。従って、動翼本体50のための特別な温度管理を必要とすることなく、被覆層65を容易に形成することができる。
 なお、析出硬化型ステンレス鋼の摩擦係数は、チタン合金に比べて低く、従来、析出硬化型ステンレス鋼からなる動翼ではフレッティング摩耗および疲労の虞は殆どなかった。しかしながら、近年の蒸気タービンにおける高出力化や動翼の長翼化に伴い、第1対向面59や第2対向面63に作用するピーク応力も増大しており、第1連結部55や第2連結部57においてフレッティングに起因する損傷が発生する可能性が高くなっていることがわかってきた。
 そこで、幾つかの実施形態では、動翼本体50が析出硬化型のステンレス鋼からなる場合であっても、第1対向面59及び第2対向面63のうち少なくとも一方の表面上に被覆層65を設けることにより、フレッティング摩耗および疲労による損傷が防止される。
 幾つかの実施形態では、析出硬化型ステンレス鋼は、表2に例示した組成を有する17-4PH(SUS630)である。
 下地が析出硬化型ステンレス鋼であり、被覆層65がCo基合金の場合、電磁膜圧計により被覆層65の厚さを容易に計測することができる。このため、被覆層65の剥離や摩耗を容易に把握することができ、必要に応じて速やかに、被覆層65を修復することができる。そして、高速フレーム溶射によれば、動翼本体50の温度管理が特に必要ないので、被覆層65を容易に修復することができる。
Figure JPOXMLDOC01-appb-T000002
 ここで、図14は、ステライト(登録商標)♯6を高速フレーム溶射して得られた実施例の被覆層の断面の金属組織を示している。図14から、実施例の被覆層の金属組織はまだらな組織にはなっておらず、略均一であることがわかる。実施例の被覆層の複数の箇所で微小硬さ試験(Hv0.002)を行ったところ、微小硬さは、被覆層の全ての領域で、概ね800~1200であった。この点からも、実施例の被覆層の金属組織は略均一であることがわかる。
 一方、図15は、Cr3C2とNiCrの混合粉末(Cr3C2-25NiCr)を高速溶射フレームして得られた比較例の被覆層の金属組織の断面及び微小硬さ試験結果を示している。
 図15に示したように、比較例の被覆層にあっては、Cr3C2とNiCrの複合物であるが故に、金属組織の形態及びその微小硬さの測定結果から、均質組織ではなく、領域によって硬さに大きな違いがあることが分かる。具体的には、比較例の被覆層にあっては、図15に示したように、白色領域1、白色領域2及び灰色領域の存在が認められ、領域間で微小硬さに大きな違いがある。
 ここで、広い面積で接触し、接触部に多少の面圧分布しか生じないような部位へ適用する場合には、バインダにNiCrを用い、クロムカーバイド(Cr3C2)を高速フレーム溶射にて施工した被覆層(溶射被膜)を用いることも可能であると考えられる。つまり、特開2014-163371号公報に記載された発明では、Ti材の摺動性改善のために、バインダにNiCrを用い、クロムカーバイド(Cr3C2)を高速フレーム溶射にて施工した被覆層が施工されているが、これは、特開2014-163371号公報に記載された発明では、翼において、シュラウド、スタブコンタクト面共に「べた当たり」を想定し、バインダにNiCrを用い、CrCを高速フレーム溶射により被膜施工するのが良いとされたものと考えられる。
 しかしながら、本発明者らの知見によれば、蒸気タービン翼のように局所面あたりが生じる場合には、本発明の実施形態のように、単一組成のCo基合金を高速フレーム溶射して得られる被覆層65の方が、複合物を高速フレーム溶射して得られる被覆層に比べ、組織的に硬さの不均一が無く、耐摩耗性等において優位である。そこで、本発明の実施形態では、局所面あたりを考慮して、均質な組織及び硬さ分布を有する被覆層65を形成できるように、単一組成のCo基合金、好ましくはステライト(登録商標)♯6を高速フレーム溶射して被覆層65を形成しているのである。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 また、最終段動翼49に用いられた動翼は、最終段以外の蒸気タービン動翼にも適用可能であるが、最も使用条件が厳しい低圧蒸気タービンの最終段に好適である。
 これは、被覆層65の形成を高速フレーム溶射により行うため、被覆層65の形成の際、下地に与える熱影響が小さく、下地の物性が変化しないためである。これにより、例えば、被覆層65を形成したとしても、湿り蒸気下での動翼本体50における応力腐食割れの発生を防止することができる。
1     ガスタービン
3     蒸気タービン
5     排熱回収ボイラ
7,9   発電機
11    圧縮機
13    燃焼器
15    タービン
17    エコノマイザ
19    ヘッダ
21    蒸発器
23    過熱器
25    再熱器
27    脱硝器
29    煙突
31    高圧タービン
33    中圧タービン
35    低圧タービン
37    復水器
39    復水ポンプ
41    ハウジング(車室)
43    ロータ
44,45 ラジアル軸受
46    内部流路
47    最終段動翼列
49    最終段動翼
50    動翼本体
51    翼部
51a   高圧面
51b   低圧面
53    翼根部
55    第1連結部
57    第2連結部
59    第1対向面
61    突起
63    第2対向面
65    被覆層
67    第1傾斜面
69    第2傾斜面
71    第1湾曲面
73    第2湾曲面
75    第3傾斜面
77    第4傾斜面
 

Claims (10)

  1.  蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼において、
     翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体と、
     前記第1対向面及び前記第2対向面のうち少なくとも一方の表面上に高速フレーム溶射により形成された単一組成のCo基合金からなる被覆層であって、該被覆層と前記表面の間の拡散層の厚さが10μm以下の状態で前記表面上に形成された被覆層と
    を備えることを特徴とする蒸気タービン動翼。
  2.  前記被覆層は、少なくとも前記第2対向面の表面上に形成されている
    ことを特徴とする請求項1に記載の蒸気タービン動翼。
  3.  前記第1連結部は、前記第1対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第1傾斜面を有し、
     前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有する
    ことを特徴とする請求項1又は2に記載の蒸気タービン動翼。
  4.  前記第1連結部は、前記第1対向面の先端縁に連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第1湾曲面を有し、
     前記第2連結部は、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2湾曲面を有する
    ことを特徴とする請求項1乃至3のうち何れか一項に記載の蒸気タービン動翼。
  5.  前記第1連結部は、前記第1対向面の先端縁に連なり、前記動翼列において隣り合う第1連結部の間隔を拡大するように構成された第3傾斜面を有し、
     前記第2連結部は、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第4傾斜面を有する
    ことを特徴とする請求項1乃至3のうち何れか一項に記載の蒸気タービン動翼。
  6.  前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有するとともに、前記第2対向面の先端縁に連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2湾曲面を有する
    ことを特徴とする請求項2に記載の蒸気タービン動翼。
  7.  蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼において、
    翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体と、
     前記第2対向面の表面上に形成された耐フレッティング摩耗材からなる被覆層と、を備え、
     前記第2連結部を有する位置における前記動翼本体の横断面において、前記翼部の前縁と後縁とを結んだ結線と、前記第2対向面とのなす角が鋭角であり、かつ、前記第2対向面の垂線が前記翼部と交差し、
     前記第2連結部は、前記第2対向面の側縁に対し斜めに連なり、前記動翼列において隣り合う第2連結部の間隔を拡大するように構成された第2傾斜面を有する、
    ことを特徴とする蒸気タービン動翼。
  8.  前記動翼本体は析出硬化型のステンレス鋼からなる
    ことを特徴とする請求項1乃至7の何れか一項に記載の蒸気タービン動翼。
  9.  請求項1乃至8の何れか一項に記載のタービン動翼を備えることを特徴とする蒸気タービン。
  10.  蒸気タービンの動翼列を構成するための1つの蒸気タービン動翼の製造方法において、
     翼部、前記翼部の一端側に設けられた翼根部、前記翼部の他端側に設けられ且つ第1対向面を有する第1連結部、及び、前記翼部の中間に設けられ且つ第2対向面を有する第2連結部を有する動翼本体であって、前記第1対向面及び前記第2対向面は、前記動翼列において隣に配置される他の動翼本体の第1対向面及び第2対向面とそれぞれ対向配置されるように構成された動翼本体を用意する工程と、
     前記第1対向面及び前記第2対向面のうち少なくとも一方の表面上に、高速フレーム溶射により単一組成のCo基合金からなる被覆層を形成する高速フレーム溶射工程とを備え、
     前記高速フレーム溶射工程では、前記第1対向面及び前記第2対向面のうち被覆対象の対向面に対し、該対向面の法線に対し0°以上60°以下の角度でCo基合金からなる粉末が吹き付けられる
    ことを特徴とする蒸気タービン動翼の製造方法。
PCT/JP2015/081223 2014-11-06 2015-11-05 蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン WO2016072473A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016557812A JP6345268B2 (ja) 2014-11-06 2015-11-05 蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン
KR1020187025319A KR102206203B1 (ko) 2014-11-06 2015-11-05 증기 터빈 동익, 증기 터빈 동익의 제조 방법 및 증기 터빈
KR1020177003238A KR20170027832A (ko) 2014-11-06 2015-11-05 증기 터빈 동익, 증기 터빈 동익의 제조 방법 및 증기 터빈
DE112015003695.4T DE112015003695B4 (de) 2014-11-06 2015-11-05 Dampfturbinenrotorblatt, Verfahren zum Herstellen eines Dampfturbinenrotorblatts, und Dampfturbine
US15/507,042 US10570754B2 (en) 2014-11-06 2015-11-05 Steam turbine rotor blade, method for manufacturing steam turbine rotor blade, and steam turbine
CN201580044571.8A CN106574506B (zh) 2014-11-06 2015-11-05 蒸汽涡轮动叶片、蒸汽涡轮动叶片的制造方法及蒸汽涡轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-226118 2014-11-06
JP2014226118 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072473A1 true WO2016072473A1 (ja) 2016-05-12

Family

ID=55909197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081223 WO2016072473A1 (ja) 2014-11-06 2015-11-05 蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン

Country Status (6)

Country Link
US (1) US10570754B2 (ja)
JP (1) JP6345268B2 (ja)
KR (2) KR20170027832A (ja)
CN (2) CN106574506B (ja)
DE (1) DE112015003695B4 (ja)
WO (1) WO2016072473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244900A1 (ja) * 2018-06-19 2019-12-26 三菱日立パワーシステムズ株式会社 タービン動翼、ターボ機械及びコンタクト面製造方法
JP2021116700A (ja) * 2020-01-22 2021-08-10 三菱重工業株式会社 回転機械の支持装置、支持方法および回転機械

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294801B2 (en) * 2017-07-25 2019-05-21 United Technologies Corporation Rotor blade having anti-wear surface
JP7398198B2 (ja) * 2019-03-12 2023-12-14 三菱重工業株式会社 タービン動翼及びコンタクト面製造方法
JP7434199B2 (ja) * 2021-03-08 2024-02-20 株式会社東芝 タービン動翼

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152803A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd シュラウドコンタクト面のコーティング方法およびシュラウド付き動翼
JP2013249532A (ja) * 2012-06-04 2013-12-12 Toshiba Corp 蒸気タービン設備用部材の製造方法、蒸気タービン設備用部材、蒸気加減弁、蒸気タービン
JP2014163381A (ja) * 2013-02-21 2014-09-08 General Electric Co <Ge> 合成接触角を有するタービンブレード先端シュラウド及びミッドスパンスナバ
JP2014163371A (ja) * 2013-02-28 2014-09-08 Hitachi Ltd タービン動翼
JP2014177709A (ja) * 2014-05-07 2014-09-25 Mitsubishi Heavy Ind Ltd 遮熱コーティング部材の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756607A (en) * 1980-09-22 1982-04-05 Hitachi Ltd Connecting device for rotary blade
JPS62101802A (ja) 1985-10-28 1987-05-12 Mitsubishi Heavy Ind Ltd チタン動翼
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
US5499905A (en) * 1988-02-05 1996-03-19 Siemens Aktiengesellschaft Metallic component of a gas turbine installation having protective coatings
JP2678647B2 (ja) 1989-01-31 1997-11-17 株式会社東芝 タービン動翼間の間隙計測方法
JP2895157B2 (ja) 1990-04-20 1999-05-24 三菱重工業株式会社 インテグラルシュラウド翼
US5137426A (en) 1990-08-06 1992-08-11 General Electric Company Blade shroud deformable protective coating
JPH108905A (ja) * 1996-06-26 1998-01-13 Mitsubishi Heavy Ind Ltd インテグラルシュラウド翼
JP2991991B2 (ja) * 1997-03-24 1999-12-20 トーカロ株式会社 耐高温環境用溶射被覆部材およびその製造方法
WO1999013200A1 (fr) 1997-09-05 1999-03-18 Hitachi, Ltd. Turbine a vapeur
JPH11336502A (ja) 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd 蒸気タービン動翼及びこの動翼を有する蒸気タービン
US20040124231A1 (en) 1999-06-29 2004-07-01 Hasz Wayne Charles Method for coating a substrate
WO2003104616A1 (ja) 2002-06-07 2003-12-18 三菱重工業株式会社 タービン動翼組立体及びその組立方法
ITMI20022057A1 (it) 2002-09-27 2004-03-28 Nuovo Pignone Spa Metodo per trattare organi soggetti ad erosione da liquidi e lega antierosione di rivestimento.
ITMI20022056A1 (it) 2002-09-27 2004-03-28 Nuovo Pignone Spa Lega a base cobalto per il rivestimento di organi soggetti ad erosione da liquido.
JP4191621B2 (ja) * 2004-01-22 2008-12-03 三菱重工業株式会社 タービン動翼
JP2007303440A (ja) 2006-05-15 2007-11-22 Toshiba Corp タービンおよびタービン動翼
US7527477B2 (en) * 2006-07-31 2009-05-05 General Electric Company Rotor blade and method of fabricating same
US8453325B2 (en) * 2009-11-18 2013-06-04 United Technologies Corporation Method of repair on nickel based HPT shrouds
JP5558095B2 (ja) 2009-12-28 2014-07-23 株式会社東芝 タービン動翼翼列および蒸気タービン
JP5538101B2 (ja) 2010-07-06 2014-07-02 三菱重工業株式会社 溶射粉の再利用方法、この方法を実行する設備、及びコーティング部材の製造方法
FR2967714B1 (fr) * 2010-11-22 2012-12-14 Snecma Aube mobile de turbomachine
JP5591152B2 (ja) 2011-02-28 2014-09-17 三菱重工業株式会社 タービン動翼
FR2985759B1 (fr) * 2012-01-17 2014-03-07 Snecma Aube mobile de turbomachine
US9365932B2 (en) * 2012-06-20 2016-06-14 General Electric Company Erosion and corrosion resistant coatings for exhaust gas recirculation based gas turbines
US9546555B2 (en) 2012-12-17 2017-01-17 General Electric Company Tapered part-span shroud

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152803A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd シュラウドコンタクト面のコーティング方法およびシュラウド付き動翼
JP2013249532A (ja) * 2012-06-04 2013-12-12 Toshiba Corp 蒸気タービン設備用部材の製造方法、蒸気タービン設備用部材、蒸気加減弁、蒸気タービン
JP2014163381A (ja) * 2013-02-21 2014-09-08 General Electric Co <Ge> 合成接触角を有するタービンブレード先端シュラウド及びミッドスパンスナバ
JP2014163371A (ja) * 2013-02-28 2014-09-08 Hitachi Ltd タービン動翼
JP2014177709A (ja) * 2014-05-07 2014-09-25 Mitsubishi Heavy Ind Ltd 遮熱コーティング部材の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244900A1 (ja) * 2018-06-19 2019-12-26 三菱日立パワーシステムズ株式会社 タービン動翼、ターボ機械及びコンタクト面製造方法
JPWO2019244900A1 (ja) * 2018-06-19 2021-05-20 三菱パワー株式会社 タービン動翼、ターボ機械及びコンタクト面製造方法
US11286785B2 (en) 2018-06-19 2022-03-29 Mitsubishi Power, Ltd. Turbine rotor blade, turbo machine, and contact surface manufacturing method
JP2021116700A (ja) * 2020-01-22 2021-08-10 三菱重工業株式会社 回転機械の支持装置、支持方法および回転機械
JP7406998B2 (ja) 2020-01-22 2023-12-28 三菱重工業株式会社 回転機械の支持装置、支持方法および回転機械

Also Published As

Publication number Publication date
CN106574506A (zh) 2017-04-19
US10570754B2 (en) 2020-02-25
CN109057873A (zh) 2018-12-21
CN109057873B (zh) 2021-05-18
US20170268350A1 (en) 2017-09-21
KR102206203B1 (ko) 2021-01-22
DE112015003695B4 (de) 2024-12-24
KR20170027832A (ko) 2017-03-10
JPWO2016072473A1 (ja) 2017-08-31
CN106574506B (zh) 2019-01-08
KR20180100462A (ko) 2018-09-10
DE112015003695T5 (de) 2017-05-18
JP6345268B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6345268B2 (ja) 蒸気タービン動翼、蒸気タービン動翼の製造方法及び蒸気タービン
US8573945B2 (en) Compressor stator vane
US10519788B2 (en) Composite airfoil metal patch
US8118557B2 (en) Steam turbine rotating blade of 52 inch active length for steam turbine low pressure application
JP2008163937A (ja) 回転アセンブリ部品及び部品の製造方法
US9556741B2 (en) Shrouded blade for a gas turbine engine
US9982358B2 (en) Abrasive tip blade manufacture methods
JP2009216089A (ja) 低圧セクション蒸気タービンバケット
EP1862643B1 (en) Method for manufacturing a coated compressor blade
US20160186626A1 (en) Engine component and methods for an engine component
EP3006676B1 (en) Fan for a gas turbine engine, corresponding fan blade and manufacturing method
KR20170007370A (ko) 터보기계의 구성요소의 제조 방법, 터보기계의 구성요소 및 터보기계
US9890790B2 (en) Adjusted rotating airfoil
JP2010065687A (ja) 翼形部及び翼形部をレーザショックピーニングする方法
EP3839096A1 (en) Diffusion barrier to prevent super alloy depletion into nickel-cbn blade tip coating
US20160238021A1 (en) Compressor Airfoil
US10214794B2 (en) Method for manufacturing components for gas turbine engines
US11629603B2 (en) Turbomachine airfoil having a variable thickness thermal barrier coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557812

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003238

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507042

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003695

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857118

Country of ref document: EP

Kind code of ref document: A1