Nothing Special   »   [go: up one dir, main page]

WO2016067960A1 - ニッケル複合水酸化物とその製造方法 - Google Patents

ニッケル複合水酸化物とその製造方法 Download PDF

Info

Publication number
WO2016067960A1
WO2016067960A1 PCT/JP2015/079491 JP2015079491W WO2016067960A1 WO 2016067960 A1 WO2016067960 A1 WO 2016067960A1 JP 2015079491 W JP2015079491 W JP 2015079491W WO 2016067960 A1 WO2016067960 A1 WO 2016067960A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel composite
composite hydroxide
hydroxide
aqueous solution
carbonate
Prior art date
Application number
PCT/JP2015/079491
Other languages
English (en)
French (fr)
Inventor
寛子 大下
一臣 漁師
高木 正徳
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015125811A external-priority patent/JP6287970B2/ja
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US15/523,568 priority Critical patent/US10294120B2/en
Priority to EP15853848.8A priority patent/EP3225591B1/en
Priority to CN201580059107.6A priority patent/CN107001070B/zh
Publication of WO2016067960A1 publication Critical patent/WO2016067960A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel composite hydroxide serving as a precursor of a positive electrode active material used as a positive electrode material in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery and a method for producing the same.
  • This application includes Japanese Patent Application No. 2014-221859 filed on October 30, 2014 in Japan and Japanese Patent Application No. 2015-2015 filed on June 23, 2015 in Japan. The priority is claimed on the basis of 125811, which is incorporated herein by reference.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of detaching and inserting lithium is used as an active material for the negative electrode and the positive electrode.
  • lithium ion secondary batteries using a layered or spinel type lithium metal composite oxide as a positive electrode material have a high voltage of 4V. Therefore, practical use is progressing as a battery having a high energy density.
  • LiCoO 2 lithium cobalt composite oxide
  • the lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material, it causes an increase in the cost of the active material and the battery, and an alternative to the active material is desired.
  • lithium nickel composite oxide (LiNiO 2 ), which can be expected to have a higher capacity using nickel cheaper than cobalt, has attracted attention.
  • Lithium-nickel composite oxide not only has a low cost but also has a lower electrochemical potential than lithium-cobalt composite oxide. Therefore, decomposition due to oxidation of the electrolyte is less problematic, and higher capacity can be expected. Since it shows a high battery voltage as well as the system, it has been actively developed.
  • the lithium-nickel composite oxide when a lithium ion secondary battery is produced using a material synthesized purely of nickel alone as a positive electrode active material, is inferior in cycle characteristics compared to cobalt-based materials, and also in a high temperature environment. When used or stored, there is a drawback that the battery performance is relatively easily lost.
  • Patent Document 1 in order to improve the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li x Ni a Co b M c O 2 (0.8 ⁇ x ⁇ 1.2, 0.01 ⁇ a ⁇ 0.99, 0.01 ⁇ b ⁇ 0.99, 0.01 ⁇ c ⁇ 0.3, 0.8 ⁇ a + b + c ⁇ 1.2, M is Al , V, Mn, Fe, Cu, and Zn) have been proposed.
  • LiNi x M 1-x O 2 (M is Co, Mn, Cr, Fe, V, Al) as a positive electrode active material that provides a non-aqueous electrolyte secondary battery with high capacity and excellent cycle characteristics.
  • Lithium-containing composite oxides, etc. which are one or more selected from the above and represented by x: 1> x ⁇ 0.5) have been proposed.
  • the lithium nickel composite oxide obtained by the manufacturing methods as described in Patent Documents 1 and 2 has higher charge capacity and discharge capacity than the lithium cobalt composite oxide and improved cycle characteristics. Only in the second charge / discharge, there is a problem that the discharge capacity is smaller than the charge capacity, and the so-called irreversible capacity defined by the difference between the two is large.
  • the lithium nickel composite oxide is usually manufactured from a step of mixing a nickel composite hydroxide with a lithium compound and baking.
  • the nickel composite hydroxide contains impurities such as sulfate radicals derived from raw materials in the manufacturing process of the nickel composite hydroxide. These impurities often inhibit the reaction with lithium in the step of mixing and baking the lithium compound, and lower the crystallinity of the lithium nickel composite oxide having a layered structure.
  • the lithium-nickel composite oxide having low crystallinity has a problem in that when a battery is formed as a positive electrode material, the Li diffusion in the solid phase is inhibited and the capacity is reduced. Furthermore, the impurities contained in the nickel composite hydroxide remain in the lithium nickel composite oxide even after mixing with the lithium compound and firing. Since these do not contribute to the charge / discharge reaction, when the battery is configured, the negative electrode material must be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode material. As a result, the capacity per weight and volume of the battery as a whole is reduced, and excess lithium accumulated in the negative electrode as an irreversible capacity becomes a problem from the viewpoint of safety.
  • a lithium nickel composite oxide with a lower impurity content is required, but for that purpose, a nickel composite hydroxide with a lower impurity content is required.
  • the present invention provides a precursor of a positive electrode active material that can obtain a high-capacity non-aqueous electrolyte secondary battery by inhibiting the reaction with lithium and further reducing the amount of impurities that do not contribute to the charge / discharge reaction.
  • a nickel composite hydroxide and a method for producing the same are provided.
  • an alkaline solution is a mixed solution of an alkali metal hydroxide and a carbonate, so that the sulfate group which is an impurity is used.
  • the present invention has been completed with the knowledge that the above can be reduced.
  • Nickel composite hydroxide according to the present invention for achieving the above object, the general formula Ni 1-x-y Co x Al y (OH) 2 + ⁇ (0.05 ⁇ x ⁇ 0.35,0.01 ⁇ y ⁇ 0.2, x + y ⁇ 0.4, 0 ⁇ ⁇ ⁇ 0.5), and are spherical secondary particles formed by aggregation of a plurality of plate-like primary particles, and the secondary particles have an average
  • the particle size is 3 ⁇ m to 20 ⁇ m
  • the sulfate radical content is 1.0 mass% or less
  • the chlorine content is 0.5 mass% or less
  • the carbonate radical content is 1.0 mass% to 2.5 mass%. It is characterized by mass%.
  • the method for producing a nickel composite hydroxide according to the present invention is a method for producing a nickel composite hydroxide by producing a nickel composite hydroxide by a crystallization reaction.
  • a crystallization step of crystallization by adding an alkaline solution to a reaction solution containing a mixed aqueous solution, an ammonium ion supplier, and an aluminum source, wherein the alkaline solution is a mixed aqueous solution of an alkali metal hydroxide and a carbonate
  • the ratio [CO 3 2 ⁇ ] / [OH ⁇ ] of the carbonate to the alkali metal hydroxide in the mixed aqueous solution is 0.002 or more and 0.050 or less.
  • the present invention provides a nickel composite hydroxide with a low content of impurities that makes it possible to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery having a small irreversible capacity. Further, in the present invention, such a nickel composite hydroxide can be easily manufactured, has high productivity, and extremely high industrial value.
  • Nickel composite hydroxide 2. Manufacturing method of nickel composite hydroxide 3. Positive electrode active material for non-aqueous electrolyte secondary battery 4. Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery Nonaqueous electrolyte secondary battery
  • Nickel composite hydroxide> Nickel composite hydroxide of the present invention have the general formula Ni 1-x-y Co x Al y (OH) 2 + ⁇ (0.05 ⁇ x ⁇ 0.35,0.01 ⁇ y ⁇ 0.2, x + y ⁇ 0 .4, 0 ⁇ ⁇ ⁇ 0.5), and spherical secondary particles formed by aggregation of a plurality of plate-like primary particles, and the secondary particles have an average particle size of 3 to 20 ⁇ m.
  • the sulfate radical content is 1.0 mass% or less, the chlorine content is 0.5 mass% or less, and the carbonate radical content is 1.0 mass% to 2.5 mass%. It is a feature.
  • the characteristics of each element will be described in detail.
  • Nickel composite hydroxide is particulate, the composition has the general formula Ni 1-x-y Co x Al y (OH) 2 + ⁇ (0.05 ⁇ x ⁇ 0.35,0.01 ⁇ y ⁇ 0 .2, x + y ⁇ 0.4, 0 ⁇ ⁇ ⁇ 0.5).
  • x indicating the cobalt content is 0.05 ⁇ x ⁇ 0.35.
  • x indicating the cobalt content is 0.05 ⁇ x ⁇ 0.35, and considering the battery characteristics and cost of the positive electrode active material, 0.07 ⁇ x ⁇ 0.25 is preferable. More preferably, 0.10 ⁇ x ⁇ 0.20.
  • y indicating the aluminum content is 0.01 ⁇ y ⁇ 0.2, preferably 0.01 ⁇ y ⁇ 0.1.
  • the durability characteristics and safety of the battery can be improved.
  • the aluminum is adjusted so as to be uniformly distributed inside the particles, the above effect can be obtained with the whole particles, and a larger effect can be obtained with the same addition amount, and a decrease in capacity can be suppressed. There is. Since the effect expected when y is less than 0.01 because the amount of aluminum added is too small, it is not preferable.
  • the amount of aluminum added is too large and exceeds 0.2, the metal element contributing to the Redox reaction decreases, and the battery capacity of the positive electrode active material decreases, which is not preferable. Furthermore, the total atomic ratio of cobalt and aluminum is x + y ⁇ 0.4. When the atomic ratio of the total of cobalt and aluminum exceeds 0.4, the capacity of the obtained positive electrode active material is excessively reduced.
  • composition analysis method is not particularly limited, but can be determined from chemical analysis by ICP emission spectroscopy.
  • the nickel composite hydroxide is composed of spherical secondary particles formed by aggregation of a plurality of primary particles.
  • shape of the primary particles constituting the secondary particles various forms such as a plate shape, a needle shape, a rectangular parallelepiped shape, an elliptical shape, and a rhombohedral shape can be adopted.
  • the aggregated state of a plurality of primary particles can be applied to the present invention not only in the case of aggregation in a random direction but also in the case of aggregation in the major axis direction of the primary particles radially from the center.
  • plate-like and / or needle-like primary particles are aggregated in random directions to form secondary particles.
  • voids are formed almost uniformly between the primary particles, and when mixed with the lithium compound and fired, the molten lithium compound reaches the secondary particles, and the lithium is sufficiently diffused. Because it is.
  • the shape observation method of the primary particles and the secondary particles is not particularly limited, but can be measured by observing the cross section of the nickel composite hydroxide using a scanning electron microscope.
  • the average particle diameter of the nickel composite hydroxide is adjusted to 3 to 20 ⁇ m. An average particle size of less than 3 ⁇ m is not preferable because when the positive electrode is formed, the packing density of the particles decreases and the battery capacity per positive electrode volume decreases. On the other hand, if the average particle size exceeds 20 ⁇ m, the specific surface area of the positive electrode active material is decreased and the interface with the battery electrolyte is decreased, whereby the resistance of the positive electrode is increased and the output characteristics of the battery are decreased. . Therefore, if the nickel composite hydroxide has an average particle diameter of 3 to 20 ⁇ m, preferably adjusted to 3 to 15 ⁇ m, more preferably 4 to 12 ⁇ m, this positive electrode active material was used for the positive electrode. In the battery, the battery capacity per volume can be increased, the safety is high, and the cycle characteristics are good.
  • the measuring method of the average particle diameter is not particularly limited, but can be determined from, for example, a volume integrated value measured by a laser light diffraction / scattering particle size analyzer.
  • the nickel composite hydroxide contains sulfate radicals and chlorine as impurities. Sulfate radicals and chlorine are derived from the raw materials used in the crystallization process described later.
  • the nickel composite hydroxide has a sulfate radical content of 1.0 mass% or less, preferably 0.6 mass% or less, and a chlorine content of 0.5 mass% or less, preferably 0.3 mass% or less. It is.
  • the reaction with lithium is inhibited in the step of mixing with the lithium compound and firing, and the crystallinity of the lithium nickel composite oxide having a layered structure Reduce.
  • Lithium nickel composite oxide having low crystallinity has a problem in that when a battery is formed as a positive electrode material, Li diffusion in the solid phase is inhibited and the capacity is reduced.
  • the impurities contained in the nickel composite hydroxide remain in the lithium nickel composite oxide even after being mixed with the lithium compound and baked. Since these impurities do not contribute to the charge / discharge reaction, when the battery is configured, the negative electrode material has to be used in the battery by an amount corresponding to the irreversible capacity of the positive electrode material. As a result, the capacity per weight and volume of the battery as a whole is reduced, and excess lithium accumulated in the negative electrode as an irreversible capacity becomes a problem from the viewpoint of safety.
  • the nickel composite hydroxide has a carbonate radical content of 1.0% by mass to 2.5% by mass.
  • the carbonate radical contained in the nickel composite hydroxide is derived from the carbonate used in the crystallization step described later.
  • the carbonate radical is volatilized in the step of mixing and firing the nickel composite hydroxide and the lithium compound, and therefore does not remain in the lithium nickel composite oxide as the positive electrode material. If the carbonate radical content in the nickel composite hydroxide is in the range of 1.0% to 2.5% by weight, it is contained in the nickel composite hydroxide when mixed with the lithium compound and fired.
  • the carbonate group content can be determined, for example, by measuring the total carbon element content of the nickel composite hydroxide and converting the measured total carbon element amount into CO 3 .
  • the carbonate radical content is less than 1.0% by mass
  • the contact with the molten lithium compound becomes insufficient when mixed with the lithium compound and fired. Therefore, the crystallinity of the obtained lithium nickel composite oxide is lowered, and when a battery is constructed as the positive electrode material, there arises a problem that the capacity is reduced by inhibiting Li diffusion in the solid phase.
  • the carbonate group content exceeds 2.5% by mass, in the step of mixing with a lithium compound and baking to obtain a lithium nickel composite oxide, the generated carbon dioxide gas inhibits the reaction, and the lithium nickel composite oxide Crystallinity decreases.
  • the nickel composite hydroxide is preferably adjusted so that [(d90-d10) / average particle size], which is an index indicating the spread of the particle size distribution of the particles, is 0.55 or less.
  • the particle size distribution is wide and [(d90 ⁇ d10) / average particle size], which is an index indicating the spread of the particle size distribution, exceeds 0.55, the particle size is very small with respect to the average particle size. There are many fine particles and particles having a very large particle size (large particles) with respect to the average particle size.
  • a positive electrode is formed using a positive electrode active material in which a large amount of fine particles are present, heat may be generated due to a local reaction of the fine particles, safety is reduced, and fine particles having a large specific surface area are selectively used. Since it deteriorates, the cycle characteristics deteriorate, which is not preferable.
  • the particle size distribution of the positive electrode active material is adjusted so that the index [(d90-d10) / average particle size] indicating the spread of the particle size distribution of the particles is 0.55 or less, the fine particles and large particles Therefore, a battery using this positive electrode active material for the positive electrode is excellent in safety, and good cycle characteristics and battery output can be obtained.
  • d10 is the cumulative volume of all particles when the number of particles in each particle size is accumulated from the smallest particle size. It means the particle size which becomes 10% of the total volume. Further, d90 means a particle size in which the cumulative volume becomes 90% of the total volume of all particles when the number of particles in each particle size is accumulated from the smallest particle size.
  • the method for obtaining the average particle diameter and d90 and d10 is not particularly limited, but for example, it can be obtained from the volume integrated value measured with a laser light diffraction / scattering particle size analyzer.
  • the nickel composite hydroxide is preferably adjusted to have a specific surface area of 15 m 2 / g to 60 m 2 / g. This is because when the specific surface area is in the range of 15 m 2 / g to 60 m 2 / g, a particle surface area that can contact the molten lithium compound can be sufficiently obtained when mixed with the lithium compound and fired. On the other hand, when the specific surface area is less than 15 m 2 / g, the contact with the molten lithium compound is insufficient when mixed and fired with the lithium compound, the crystallinity of the resulting lithium nickel composite oxide is lowered, and the positive electrode material When the battery is configured, there is a problem that the capacity is reduced by inhibiting Li diffusion in the solid phase.
  • the manufacturing method of nickel composite hydroxide manufactures the above-mentioned nickel composite hydroxide by crystallization reaction.
  • the method for producing a nickel composite hydroxide has a pH value of 12.0 to 13.4 measured on a mixed aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier and an aluminum source with a liquid temperature of 25 ° C. as a reference.
  • a nucleation step for nucleation in a reaction solution (hereinafter also referred to as an aqueous solution for nucleation) obtained by adding an alkaline solution so as to become a reaction solution containing nuclei formed in the nucleation step (Hereinafter also referred to as an aqueous solution for particle growth) is a particle growth step of growing nuclei by adding an alkaline solution so that the pH value measured with a liquid temperature of 25 ° C. as a reference is 10.5 to 12.0.
  • the alkali solution used is a mixed aqueous solution of alkali metal hydroxide and carbonate, and [CO 3 2 ⁇ ] / [OH ⁇ ] representing the mixing ratio of the alkali metal hydroxide and carbonate in the mixed aqueous solution is 0.002. It is 0.050 or less.
  • the particle size distribution of the obtained nickel composite hydroxide becomes wide.
  • the time when the nucleation reaction mainly occurs (nucleation process) and the time when the particle growth reaction mainly occurs (particle growth process) are clearly defined. Even if both steps are carried out in the same reaction vessel, the separation is characterized in that a composite hydroxide having a narrow particle size distribution can be obtained.
  • nucleation process In the nucleation step, an alkaline aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier and an aluminum source is adjusted so that the pH value measured on the basis of a liquid temperature of 25 ° C. is 12.0 to 13.4. The solution is added, and the nickel composite hydroxide is nucleated in the resulting reaction solution (nucleation solution).
  • a sodium aluminate aqueous solution is preferably contained as an aluminum source.
  • the molar ratio of sodium to aluminum (Na / Al) in the aqueous sodium aluminate solution is preferably 1.5 to 3.0.
  • the ammonium concentration of the reaction solution is preferably adjusted within the range of 3 to 25 g / L.
  • a mixed aqueous solution containing nickel and cobalt, an ammonium ion supplier, and an aluminum source are placed in a reaction vessel, and an alkali solution is placed therein to adjust the pH, causing a crystallization reaction to produce nuclei.
  • an alkali solution is placed therein to adjust the pH, causing a crystallization reaction to produce nuclei.
  • the order in which the mixed aqueous solution, the ammonium ion supplier, the aluminum source, and the alkaline solution are put into the reaction tank is not particularly limited, and nucleation may be performed by putting them together.
  • the pH value of the reaction aqueous solution and the concentration of ammonium ions change with the nucleation. Therefore, the alkaline aqueous solution and the aqueous ammonia solution are supplied to the reaction aqueous solution together with the nickel cobalt mixed aqueous solution, and the pH of the reaction aqueous solution
  • the alkali solution and the ammonium ion supplier are appropriately added to the reaction vessel and controlled so that the value and the ammonium concentration are maintained at predetermined values.
  • nucleation step when a mixed aqueous solution containing nickel and cobalt, an aqueous alkaline solution, an ammonium ion supplier and an aluminum source are continuously supplied to the reaction aqueous solution, new nuclei are continuously generated in the reaction aqueous solution. Will continue.
  • nucleation step when a predetermined amount of nuclei is generated in the reaction solution, the nucleation reaction is terminated.
  • whether or not a predetermined amount of nuclei has been generated in the reaction solution can be determined by the amount of metal salt added to the reaction solution.
  • the pH value of the reaction solution (particle growth aqueous solution) containing nuclei formed in the nucleation step is 10.5 to 12.2.
  • the particle growth reaction is carried out by adjusting to be in the range of 0 to obtain nickel composite hydroxide particles. More specifically, the pH value of the reaction aqueous solution is controlled by adding an inorganic acid of the same type as the acid constituting the metal compound, for example, sulfuric acid or the like, or adjusting the supply amount of the alkaline aqueous solution.
  • the particle growth step when the pH value of the aqueous solution for particle growth becomes 12.0 or less, nuclei in the aqueous solution for particle growth grow to form a nickel composite hydroxide having a predetermined particle diameter.
  • the pH value of the aqueous solution for particle growth is in the range of 10.5 to 12.0, and the nucleus growth reaction takes precedence over the nucleus generation reaction. Nuclei are hardly generated.
  • the particle growth reaction when a predetermined amount of nickel composite hydroxide having a predetermined particle size is generated in the aqueous solution for particle growth, the particle growth reaction is terminated.
  • the amount of nickel composite hydroxide having a predetermined particle size is determined by the amount of metal salt added to the reaction aqueous solution.
  • the salt such as nickel salt and cobalt salt used in the mixed aqueous solution containing nickel and cobalt is not particularly limited as long as it is a water-soluble compound, but sulfate, nitrate, chloride, etc. may be used. it can. For example, nickel sulfate and cobalt sulfate are preferable.
  • the concentration of the mixed aqueous solution is preferably 1 mol / L to 2.6 mol / L, more preferably 1 mol / L to 2.2 mol / L in total of the metal salts. If the concentration is less than 1 mol / L, the resulting hydroxide slurry concentration is low and the productivity is poor. On the other hand, if it exceeds 2.6 mol / L, crystal precipitation and freezing occur at ⁇ 5 ° C. or less, which may clog the piping of the equipment, and it is necessary to keep the piping warm or warm, which is expensive.
  • the amount of the mixed aqueous solution supplied to the reaction tank is such that the concentration of the crystallized product at the time when the crystallization reaction is completed is approximately 30 g / L to 250 g / L, preferably 80 g / L to 150 g / L. It is preferable to do.
  • the crystallized substance concentration is less than 30 g / L, aggregation of primary particles may be insufficient, and when it exceeds 250 g / L, diffusion of the mixed aqueous solution to be added in the reaction vessel is sufficient. This is because the grain growth may be biased.
  • ammonia ion supplier is not particularly limited as long as it is a water-soluble compound, but ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, and the like can be used. For example, ammonia and ammonium sulfate are preferably used. It is done.
  • the ammonium ion supplier is such that the ammonia concentration in the reaction solution is preferably 3 g / L to 25 g / L, more preferably 5 g / L to 20 g / L, and even more preferably 5 g / L to 15 g / L.
  • metal ions particularly Ni ions
  • the solubility of the metal ions increases, the growth of primary particles is promoted, and the dense nickel composite hydroxide particles are formed. It is easy to obtain.
  • nickel composite hydroxide particles having a uniform shape and particle size are easily obtained.
  • by setting the ammonia concentration in the reaction solution to 3 g / L to 25 g / L, it is easy to obtain nickel composite hydroxide particles having a more precise shape and particle size.
  • the solubility of metal ions may become unstable, primary particles having a uniform shape and particle size are not formed, and gel-like nuclei are formed. The particle size distribution may be broadened.
  • the ammonia concentration exceeds 25 g / L, the solubility of metal ions becomes too high, the amount of metal ions remaining in the reaction aqueous solution increases, and the composition may shift.
  • the concentration of ammonium ions can be measured with a general ion meter.
  • the alkaline solution is a mixed aqueous solution of alkali metal hydroxide and carbonate.
  • the ratio of carbonate to alkali metal hydroxide ([CO 3 2 ⁇ ] / [OH ⁇ ]) representing the mixing ratio of alkali metal hydroxide and carbonate is 0.002 or more and 0.050 or less, 0 0.005 or more and 0.030 or less is preferable, and 0.010 or more and 0.025 or less is more preferable.
  • the alkaline solution a mixed aqueous solution of alkali metal hydroxide and carbonate
  • anions such as sulfate radicals and chlorine remaining as impurities in the nickel composite hydroxide obtained in the crystallization step are converted to carbonate radicals and ions.
  • the carbonate radical is volatilized in the step of mixing and firing the nickel composite hydroxide and the lithium compound, and therefore does not remain in the lithium nickel composite oxide as the positive electrode material. Therefore, by exchanging sulfate radicals and chlorine with carbonate radicals, it is possible to reduce the number of impurities such as sulfate radicals and chlorine remaining in the nickel composite acid.
  • the alkali metal hydroxide is preferably at least one selected from lithium hydroxide, sodium hydroxide, and potassium hydroxide, and a compound that is easily dissolved in water is preferable because the amount added can be easily controlled.
  • the carbonate is preferably at least one selected from sodium carbonate, potassium carbonate, and ammonium carbonate, and a compound that is easily soluble in water is preferable because the amount added can be easily controlled.
  • the method for adding the alkaline solution to the reaction vessel is not particularly limited, and the pH value of the reaction solution is maintained within a predetermined range described later with a pump capable of flow rate control such as a metering pump. , May be added.
  • the aluminum source used in the crystallization step is preferably an aqueous sodium aluminate solution.
  • aluminum hydroxide precipitates at a lower pH than nickel hydroxide or cobalt hydroxide, so that aluminum hydroxide is likely to precipitate alone and has a narrow particle size distribution.
  • Nickel composite hydroxide cannot be obtained.
  • the sodium aluminate aqueous solution can be obtained, for example, by dissolving a predetermined amount of sodium aluminate in water to form an aqueous solution and adding a predetermined amount of sodium hydroxide.
  • the sodium in the sodium aluminate aqueous solution is more preferably in a molar ratio of 1.5 to 3.0 with respect to aluminum.
  • the amount of sodium that is, the amount of sodium hydroxide is out of the range of 1.5 to 3.0 in terms of molar ratio, the stability of the aqueous sodium aluminate solution decreases, and immediately after being added to the reaction vessel or before being added.
  • a mixed aqueous solution containing nickel and cobalt and a sodium aluminate aqueous solution may be simultaneously added to the reaction vessel.
  • the metal concentrations of nickel, cobalt, and aluminum and the addition flow rates of the mixed aqueous solution and the sodium aluminate aqueous solution are adjusted so as to meet the target composition ratio.
  • the pH value measured on the basis of 25 ° C. is 12.0 to 13.4 in an aqueous solution containing nickel and cobalt, an ammonium ion supplier, and an aluminum source.
  • a nucleation step in which an alkali solution is added to perform nucleation, and a reaction solution (particle growth aqueous solution) containing nuclei formed in the nucleation step has a pH value of 10 measured based on a liquid temperature of 25 ° C. More preferably, it comprises a particle growth step in which an alkali solution is added so as to be 5 to 12.0 and controlled to grow nuclei.
  • the nucleation reaction and the particle growth reaction do not proceed at the same time in the same tank, but mainly the time when the nucleation reaction (nucleation process) occurs and the time when the particle growth reaction (particle growth process) occurs mainly. It is characterized by clearly separating.
  • the pH value of the reaction aqueous solution is controlled so as to be in the range of 12.0 to 13.4, preferably 12.3 to 13.0 based on the liquid temperature of 25 ° C.
  • pH value exceeds 13.4
  • generated nucleus becomes too fine and there exists a problem which reaction aqueous solution gelatinizes.
  • the pH value is less than 12.0, a nucleus growth reaction occurs together with nucleation, so that the range of the particle size distribution of the nuclei formed becomes wide and non-uniform.
  • the nucleation step by controlling the pH value of the reaction aqueous solution to 12.0 to 13.4, it is possible to suppress the growth of the nuclei and cause only the nucleation, and the formed nuclei are homogeneous and The range of the particle size distribution can be narrow.
  • the pH value of the aqueous reaction solution it is necessary to control the pH value of the aqueous reaction solution to be in the range of 10.5 to 12.0, preferably 11.0 to 12.0 on the basis of the liquid temperature of 25 ° C.
  • the pH value exceeds 12.0, the number of newly generated nuclei increases and fine secondary particles are generated, so that a nickel composite hydroxide having a good particle size distribution cannot be obtained.
  • the pH value is less than 10.5, the solubility by ammonium ions is high, and the metal ions remaining in the liquid without being precipitated increase, so that the production efficiency is deteriorated.
  • the pH value of the reaction aqueous solution to 10.5 to 12.0 in the particle growth process, only the growth of nuclei generated in the nucleation process is preferentially caused and new nucleation is suppressed.
  • the resulting nickel composite hydroxide can be homogeneous and have a narrow particle size distribution range.
  • the pH value When the pH value is 12, it is a boundary condition between nucleation and particle growth, and therefore, it can be set as either a nucleation step or a particle growth step depending on the presence or absence of nuclei present in the reaction aqueous solution. . That is, if the pH value in the nucleation step is higher than 12 and a large amount of nuclei are produced, and if the pH value is set to 12 in the particle growth step, a large amount of nuclei are present in the reaction aqueous solution, so the growth of nuclei takes priority. As a result, nickel hydroxide having a narrow particle size distribution and a relatively large particle size can be obtained.
  • the pH value of the particle growth process may be controlled to a value lower than the pH value of the nucleation process.
  • the pH value of the particle growth process is It is preferably 0.5 or more lower than the pH value of the production step, more preferably 1.0 or more.
  • the nucleation process and the particle growth process are clearly separated according to the pH value, so that the nucleation process takes precedence in the nucleation process and almost no nucleus growth occurs. Only new nuclei are produced and almost no new nuclei are generated. For this reason, in the nucleation step, homogeneous nuclei with a narrow particle size distribution range can be formed, and in the particle growth step, nuclei can be grown homogeneously. Therefore, in the method for producing nickel composite hydroxide, uniform nickel composite hydroxide particles having a narrow particle size distribution range can be obtained.
  • the temperature of the reaction solution is preferably set to 20 to 80 ° C., more preferably 30 to 70 ° C., and further preferably 35 to 60 ° C.
  • the solubility of metal ions is low, so that nucleation is likely to occur and control becomes difficult.
  • the temperature exceeds 80 ° C. volatilization of ammonia is promoted, so that an excess ammonium ion supplier must be added to maintain a predetermined ammonia concentration, resulting in high cost.
  • reaction atmosphere The particle size and particle structure of the nickel composite hydroxide are also controlled by the reaction atmosphere in the crystallization process.
  • the atmosphere in the reaction vessel during the crystallization process is controlled to a non-oxidizing atmosphere, the growth of primary particles forming the nickel composite hydroxide is promoted, the primary particles are large and dense, and the particle size is appropriately large. Secondary particles are formed.
  • relatively large primary particles can be obtained by setting a non-oxidizing atmosphere having an oxygen concentration of 5.0% by volume or less, preferably 2.5% by volume or less, more preferably 1.0% by volume or less.
  • the growth of particles is promoted by the aggregation of the primary particles, and secondary particles having an appropriate size can be obtained.
  • the alkali metal in the alkaline solution is added.
  • the ratio of carbonate to hydroxide ([CO 3 2 ⁇ ] / [OH ⁇ ]) is 0.002 or more and 0.050 or less, so that the carbonate radical and the sulfate radical or chlorine of the impurity are ion-exchanged. To reduce residual sulfate radicals and chlorine.
  • the sulfate radical content in the obtained nickel composite hydroxide becomes 1.0 mass% or less, and the chlorine content becomes 0.5 mass% or less. Therefore, the positive electrode active material using this nickel composite hydroxide as a precursor has high crystallinity, can increase the battery capacity, and can provide a non-aqueous electrolyte secondary battery having high safety. Further, this nickel composite hydroxide production method can easily produce a nickel composite hydroxide, has high productivity, and has extremely high industrial value.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery can be obtained using the nickel composite hydroxide described above as a precursor.
  • the positive electrode active material is made of a lithium-nickel composite oxide composed of a hexagonal lithium-containing composite oxide having a layered structure using nickel composite hydroxide as a raw material. Since the lithium nickel composite oxide has a predetermined composition and average particle size and is adjusted to a predetermined particle size distribution, it has excellent cycle characteristics and safety, small particle size, high particle size uniformity, It is suitable as a material for the positive electrode of an aqueous electrolyte secondary battery.
  • the positive electrode active material is composed of a lithium nickel cobalt aluminum composite oxide, and the composition thereof is represented by a general formula: Li t Ni 1-xy Co x Al y O 2 (where 0.97 ⁇ t ⁇ 1 .20, 0.05 ⁇ x ⁇ 0.35, 0.01 ⁇ y ⁇ 0.2, and x + y ⁇ 0.4.
  • the atomic ratio t of lithium is preferably in the above range (0.97 ⁇ t ⁇ 1.20).
  • the reaction resistance of the positive electrode in the nonaqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the battery output decreases.
  • the atomic ratio t of lithium is larger than 1.20, the initial discharge capacity of the positive electrode active material is lowered and the reaction resistance of the positive electrode is also increased.
  • the atomic ratio t of lithium is preferably 0.97 ⁇ t ⁇ 1.20, and more preferably, the atomic ratio t of lithium is 1.05 or more.
  • the atomic ratio of cobalt is preferably 0.05 ⁇ x ⁇ 0.35, and more preferably 0.07 ⁇ x ⁇ 0.25, and 0.10 ⁇ x ⁇ 0. More preferably, it is 20.
  • the atomic ratio y of aluminum to the atoms of all metals other than lithium is preferably adjusted so that 0.01 ⁇ y ⁇ 0.2, and 0.01 ⁇ y ⁇ 0.1. It is more preferable to adjust so that it becomes.
  • the reason is that by adding aluminum in the positive electrode active material, the durability and safety of the battery can be improved when used as the positive electrode active material of the battery.
  • the positive electrode active material if the aluminum is adjusted so as to be uniformly distributed inside the particle, the effect of improving the durability and safety of the battery can be obtained throughout the particle, and the same addition amount is obtained.
  • the positive electrode active material when the atomic ratio y of aluminum to the atoms of all metals other than lithium is less than 0.01, cycle characteristics and safety are insufficient, which is not preferable. In addition, when the atomic ratio y of aluminum to atoms of all metals other than lithium in the positive electrode active material exceeds 0.2, the metal element contributing to the Redox reaction is decreased, and the battery capacity is decreased, which is not preferable.
  • the positive electrode active material has inherited the properties of the above-mentioned nickel composite hydroxide as a precursor, the sulfate radical content is 1.0 mass% or less, preferably 0.6 mass% or less, and the chlorine content. Is 0.5 mass% or less, preferably 0.3 mass% or less, and the carbonate radical content is 1.0 mass% to 2.5 mass%.
  • the average particle diameter of the positive electrode active material is 3 ⁇ m to 25 ⁇ m, the battery capacity per volume can be increased, the safety is high, and the cycle characteristics are also good.
  • the index indicating the spread of the particle size distribution of the positive electrode active material [(D90-D10) / average particle size] is 0.55 or less, and the proportion of particles and large particles is small.
  • the battery used in the above has excellent safety and can obtain good cycle characteristics and battery output.
  • the method for producing the positive electrode active material is not particularly limited as long as it can be produced from the nickel composite hydroxide described above. However, if the following method for producing the positive electrode active material is employed, the positive electrode active material is more reliably produced. This is preferable because it is possible.
  • the manufacturing method of the positive electrode active material is such that a nickel compound hydroxide as a raw material of the positive electrode active material is heat-treated and a lithium compound is mixed with the nickel composite hydroxide particles after the heat treatment step to remove moisture. Then, a mixing step for forming a mixture is performed, and a baking step for baking the mixture formed in the mixing step is performed. And in the manufacturing method of a positive electrode active material, a lithium nickel composite oxide, ie, a positive electrode active material, can be obtained by crushing the baked fired material.
  • the heat treatment step it may be heated to a temperature at which the residual moisture of the nickel composite hydroxide is removed, and the heat treatment temperature is not particularly limited, but is preferably 300 ° C to 800 ° C.
  • the heat treatment temperature is less than 300 ° C., the decomposition of the nickel composite hydroxide does not proceed sufficiently and the significance of performing the heat treatment step is diminished, which is not industrially appropriate.
  • the heat treatment temperature exceeds 800 ° C., the particles converted into the nickel composite oxide may sinter and aggregate.
  • the atmosphere in which the heat treatment is performed is not particularly limited, and is preferably performed in an air stream that can be easily performed.
  • the lithium-containing material to be mixed with the nickel composite hydroxide particles after the heat treatment is not particularly limited.
  • lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is available. It is preferable in that it is easy. In particular, in view of ease of handling and quality stability, it is more preferable to use lithium hydroxide in the mixing step.
  • a general mixer can be used for the mixing process, and for example, a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like can be used.
  • a shaker mixer a Laedige mixer, a Julia mixer, a V blender, or the like can be used.
  • these mixers it is sufficient that the heat-treated particles and the lithium-containing material are sufficiently mixed to such an extent that a complex such as a composite hydroxide is not destroyed.
  • the lithium mixture is fired at 700 ° C. to 850 ° C., particularly preferably at 720 ° C. to 820 ° C.
  • the firing temperature of the lithium mixture is less than 700 ° C., the diffusion of lithium into the heat treated particles is not sufficiently performed, surplus lithium and unreacted particles remain, or the crystal structure is not sufficiently arranged, There arises a problem that sufficient battery characteristics cannot be obtained.
  • the firing time of the lithium mixture is preferably at least 3 hours or more, and more preferably 6 to 24 hours. This is because when the firing time of the lithium mixture is less than 3 hours, the lithium nickel composite oxide may not be sufficiently generated.
  • the atmosphere at the time of firing the lithium mixture is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18 volume% to 100 volume%.
  • the positive electrode active material obtained by this positive electrode active material production method has few impurities remaining inside and high crystallinity, so the capacity per unit weight and volume as a whole battery does not decrease, A positive electrode of a non-aqueous electrolyte secondary battery having a higher capacity than before can be obtained.
  • Non-aqueous electrolyte secondary battery The positive electrode active material described above is preferably used as a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the embodiment at the time of using for nonaqueous electrolyte secondary batteries is illustrated.
  • the nonaqueous electrolyte secondary battery employs a positive electrode using the positive electrode active material described above. Since the nonaqueous electrolyte secondary battery has substantially the same structure as a general nonaqueous electrolyte secondary battery except that the positive electrode active material described above is used as the positive electrode material, it will be briefly described.
  • the non-aqueous electrolyte secondary battery has a structure including a case, a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and a separator housed in the case.
  • the positive electrode is a sheet-like member.
  • a positive electrode mixture paste obtained by mixing a positive electrode active material, a conductive material, and a binder is applied to the surface of an aluminum foil current collector and dried. Can be formed.
  • the negative electrode is a sheet-like member formed by applying a negative electrode mixture paste containing a negative electrode active material to the surface of a metal foil current collector such as copper and drying it.
  • the separator for example, a thin film such as polyethylene or polypropylene and a film having many fine pores can be used. In addition, if it has a function of a separator, it will not specifically limit.
  • the nonaqueous electrolytic solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent ethylene carbonate, propylene carbonate, or the like can be used.
  • electrolyte salt LiPF 6 , LiBF 4 , LiClO 4 or the like can be used.
  • the non-aqueous electrolyte secondary battery having the above-described configuration has a positive electrode using the positive electrode active material having the nickel composite hydroxide as a precursor, the capacity per unit weight and volume as a whole battery. Has a high capacity, a small irreversible capacity, and a high safety.
  • the nickel composite hydroxides obtained by the crystallization steps described in Examples 1 to 15 and Comparative Examples 1 to 3 were washed, solid-liquid separated, dried and collected as a powder, and then various analyzes were performed by the following methods. .
  • the composition of the nickel composite hydroxide was measured with a high frequency inductively coupled plasma (ICP) emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation) after dissolving the sample in nitric acid.
  • ICP inductively coupled plasma
  • the sulfate radical content was determined by dissolving the sample with nitric acid and then measuring the elemental sulfur with an ICP emission spectrophotometer (ICPS-8100, manufactured by Shimadzu Corporation) and converting the measured amount of elemental sulfur to SO 4 .
  • ICP emission spectrophotometer ICPS-8100, manufactured by Shimadzu Corporation
  • the chlorine content was measured with an automatic titration apparatus (Hiranuma Sangyo Co., Ltd., COM-1600).
  • the carbonate radical content was determined by measuring the total carbon element content with a carbon sulfur analyzer (CS-600 manufactured by LECO) and converting the measured total carbon element amount into CO 3 .
  • the specific surface area was measured by a BET method using a specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Kantasorb QS-10).
  • the lithium nickel composite oxide was prepared and evaluated by the following method.
  • the nickel composite hydroxide particles produced in the examples and comparative examples were heat-treated at 700 ° C. for 6 hours in an air (oxygen: 21 vol%) air stream to recover the nickel composite oxide particles.
  • Mixing was performed using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willy et Bacofen (WAB)).
  • the obtained mixture was calcined at 500 ° C. for 4 hours in an oxygen stream (oxygen: 100% by volume), then calcined at 730 ° C. for 24 hours, cooled and then crushed to obtain lithium nickel composite oxide. I got a thing.
  • the sulfate group content of the obtained lithium nickel composite oxide was determined by measuring the elemental sulfur using an ICP emission spectroscopic analyzer (ICPS-8100, manufactured by Shimadzu Corporation) after dissolving the sample in nitric acid. the amount of the element was determined by converting the SO 4.
  • ICP emission spectroscopic analyzer ICPS-8100, manufactured by Shimadzu Corporation
  • the Li-occupancy ratio indicating the crystallinity of the lithium-nickel composite oxide was calculated by performing a Rietveld analysis from a diffraction pattern obtained using an X-ray diffractometer (manufactured by Panalical, X'Pert PRO).
  • Example 1 The nickel composite hydroxide was produced as follows using the method of the present invention.
  • Appropriate amounts of 25% aqueous sodium hydroxide and 25% aqueous ammonia are added to the water in the reaction tank, and the pH of the reaction solution in the tank is 12.8 as a pH value measured with a liquid temperature of 25 ° C. as a reference. It was adjusted. Further, the ammonia concentration in the reaction solution was adjusted to 10 g / L.
  • Ni: Co 0.84: 0.16.
  • a predetermined amount of sodium aluminate was dissolved in water, and a 25% aqueous sodium hydroxide solution was added so that the ratio of sodium to aluminum was 1.7.
  • an alkali solution was prepared by dissolving sodium hydroxide and sodium carbonate in water such that [CO 3 2 ⁇ ] / [OH ⁇ ] was 0.025.
  • the mixed aqueous solution was added to the reaction solution in the reaction vessel at 12.9 ml / min.
  • a sodium aluminate aqueous solution, 25% aqueous ammonia, and an alkaline solution were also added to the reaction solution in the reaction tank at a constant rate, and the pH value was set to 12. with the ammonia concentration in the reaction solution maintained at 10 g / L. While controlling at 8 (nucleation pH value), crystallization was carried out for 2 minutes and 30 seconds to perform nucleation.
  • Example 2 a nickel composite hydroxide is obtained in the same manner as in Example 1 except that when adjusting the alkali solution, [CO 3 2 ⁇ ] / [OH ⁇ ] is 0.003. And evaluated.
  • Example 3 a nickel composite hydroxide is obtained in the same manner as in Example 1, except that when adjusting the alkaline solution, [CO 3 2 ⁇ ] / [OH ⁇ ] is 0.040. And evaluated.
  • Example 4 when sodium aluminate was dissolved in a predetermined amount of water, the same procedure as in Example 1 was performed except that a 25% sodium hydroxide aqueous solution had a ratio of sodium to aluminum of 1.0. Nickel composite hydroxide was obtained and evaluated.
  • Example 5 In Example 5, when dissolving a predetermined amount of sodium aluminate in water, nickel was added in the same manner as in Example 1 except that a 25% sodium hydroxide aqueous solution had a ratio of sodium to aluminum of 3.5. A composite hydroxide was obtained and evaluated.
  • Example 6 a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the nucleation step was 13.6.
  • Example 7 a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the nucleation step was 11.8.
  • Example 8 a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the particle growth step was 12.3.
  • Example 9 In Example 9, a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the pH of the particle growth step was 10.2.
  • Example 13 In Example 13, a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the alkali metal hydroxide in preparing the alkaline solution was potassium hydroxide and the carbonate was potassium carbonate. .
  • Example 14 nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that sodium carbonate was changed to ammonium carbonate and the ammonia concentration was adjusted to 20 g / L.
  • Example 15 In Example 15, a nickel composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the bath temperature was set to 35 ° C.
  • Comparative Example 1 a nickel composite hydroxide was obtained in the same manner as in Example 1 except that the alkali solution was only sodium hydroxide and [CO 3 2 ⁇ ] / [OH ⁇ ] was 0. evaluated.
  • Comparative Example 2 a nickel composite hydroxide is obtained in the same manner as in Example 1 except that when adjusting the alkaline solution, [CO 3 2 ⁇ ] / [OH ⁇ ] is 0.001. And evaluated.
  • Comparative Example 3 a nickel composite hydroxide is obtained in the same manner as in Example 1 except that when adjusting the alkaline solution, [CO 3 2 ⁇ ] / [OH ⁇ ] is 0.055. And evaluated.
  • Table 1 shows the production conditions of the nickel composite hydroxides of Examples 1 to 15 and Comparative Examples 1 to 3. Furthermore, the evaluation result of the obtained nickel composite hydroxide is shown in Table 2, and the evaluation result of the lithium nickel composite oxide is shown in Table 3.
  • the obtained nickel composite hydroxide had an average particle size of 3 to 20 ⁇ m or less, a sulfate radical content of 1.0 mass% or less, and a chlorine content. The amount is 0.5% by mass or less, and the carbonate content is 1.0% by mass to 2.5% by mass.
  • the lithium site occupancy ratio indicating the crystallinity in the case of the lithium nickel composite oxide exceeds 99.0%, and the lithium nickel excellent in crystallinity It turns out that complex oxide is obtained and it is useful as a positive electrode active material.
  • Na / Al in sodium aluminate is in the range of 1.5 to 3.0
  • the pH of the nucleation step is in the range of 12.0 to 13.4
  • the pH of the particle growth step is Examples 1 to 3 and 10 to 15 in the range of 10.5 to 12.0 have a narrower particle size distribution and appropriate specific surface area than Examples 4 to 9 which do not satisfy any of these. became.
  • nickel composite hydroxide particles are produced using the method for producing nickel composite hydroxide to which the present invention is applied, a lithium nickel composite oxide with high crystallinity is obtained, and a high capacity non-capacitance is obtained. It turns out that it is useful as a positive electrode material of an aqueous electrolyte secondary battery.
  • the nickel composite hydroxide of the present invention can be used not only for electric vehicles driven purely by electric energy but also as a precursor for battery materials for so-called hybrid vehicles used in combination with combustion engines such as gasoline engines and diesel engines. it can.
  • the power source for the electric vehicle includes not only a purely electric vehicle driven by electric energy but also a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.
  • a non-aqueous electrolyte secondary battery including a positive electrode active material obtained using a product as a precursor can be suitably used as a power source for these hybrid vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 不純物の硫酸根や塩素の含有量が低減されたニッケル複合水酸化物を得る。ニッケル及びコバルトを含む混合水溶液と、アンモニウムイオン供給体と、アルミニウム源とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、混合水溶液におけるアルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]を0.002以上0.050以下とすることで、Ni1-x-yCoAl(OH)2+α(0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4、0≦α≦0.5)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、二次粒子は、平均粒径が3~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%であるニッケル複合水酸化物を得る。

Description

ニッケル複合水酸化物とその製造方法
 本発明は、リチウムイオン二次電池などの非水系電解質二次電池において正極材料として用いられる正極活物質の前駆体となるニッケル複合水酸化物及びその製造方法に関する。本出願は、日本国において2014年10月30日に出願された日本特許出願番号特願2014-221859、及び、日本国において2015年6月23日に出願された日本特許出願番号特願2015-125811を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。このような要求を満たす二次電池としては、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極及び正極と電解液等で構成され、負極及び正極の活物質として、リチウムを脱離及び挿入することが可能な材料が用いられている。
 リチウムイオン二次電池については、現在研究開発が盛んに行われているが、中でも、層状又はスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
 リチウムイオン二次電池の正極材料として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発はこれまで数多く行われてきており、すでにさまざまな成果が得られている。しかしながら、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を用いるため、活物質さらには電池のコストアップの原因となり、活物質の代替が望まれている。
 そこで、コバルトよりも安価なニッケルを用いて、より高容量が期待できるリチウムニッケル複合酸化物(LiNiO)が注目されている。リチウムニッケル複合酸化物は、コスト面だけでなく、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すことから、電解液の酸化による分解が問題になりにくく、より高い容量が期待でき、さらにコバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。
 しかしながら、リチウムニッケル複合酸化物は、純粋にニッケルのみで合成した材料を正極活物質として用いてリチウムイオン二次電池を作製した場合、コバルト系に比べてサイクル特性が劣り、また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点がある。
 このような欠点を解決するために、例えば特許文献1では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LiNiCo(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu、及びZnから選ばれる少なくとも1種の元素)で表されるリチウム含有複合酸化物が提案されている。
 特許文献2では、高容量でサイクル特性が優れた非水電解液二次電池を提供する正極活物質として、LiNi1-x(MはCo、Mn、Cr、Fe、V、Alのうちから選ばれる1種類以上であり、x:1>x≧0.5)で表されるリチウム含有複合酸化物等が提案されている。
特開平08-213015号公報 特開平09-129230号公報
 しかしながら、上記特許文献1及び2のような製造方法によって得られたリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されているが、1回目の充放電に限り、充電容量に比べて放電容量が小さく、両者の差で定義される、いわゆる不可逆容量が大きいという問題がある。
 リチウムニッケル複合酸化物は、通常、ニッケル複合水酸化物をリチウム化合物と混合して焼成する工程から製造される。ニッケル複合水酸化物は、ニッケル複合水酸化物の製造工程で原料由来の硫酸根などの不純物が含まれる。これら不純物は、リチウム化合物を混合し、焼成する工程において、リチウムとの反応を阻害することが多く、層状構造であるリチウムニッケル複合酸化物の結晶性を低下させる。
 結晶性の低いリチウムニッケル複合酸化物は、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。さらに、ニッケル複合水酸化物に含まれる不純物は、リチウム化合物と混合し、焼成した後もリチウムニッケル複合酸化物中に残留する。これらは、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを負えない。その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となる。
 そのため、より不純物含有量の少ないリチウムニッケル複合酸化物が求められるが、そのためには不純物含有量の少ないニッケル複合水酸化物が必要となる。
 そこで、本発明は、リチウムとの反応を阻害し、さらに充放電反応に寄与しない不純物量を低減させることで、高容量な非水系電解質二次電池を得ることが可能な正極活物質の前駆体となるニッケル複合水酸化物とその製造方法を提供するものである。
 本発明者らは、鋭意検討したところ、晶析反応によってニッケル複合水酸化物を製造する工程において、アルカリ溶液をアルカリ金属水酸化物と炭酸塩の混合溶液とすることで、不純物である硫酸根などを低減できるとの知見を得て、本発明を完成したものである。
 上述した目的を達成する本発明に係るニッケル複合水酸化物は、一般式Ni1-x-yCoAl(OH)2+α(0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4、0≦α≦0.5)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%であることを特徴とする。
 また、上述した目的を達成する本発明に係るニッケル複合水酸化物の製造方法は、晶析反応によってニッケル複合水酸化物を製造するニッケル複合水酸化物の製造方法であって、ニッケル及びコバルトを含む混合水溶液と、アンモニウムイオン供給体と、アルミニウム源とを含む反応溶液にアルカリ溶液を添加して晶析する晶析工程を有し、アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]が0.002以上0.050以下であることを特徴とする。
 本発明は、不可逆容量の小さい非水系電解質二次電池用の正極活物質を得ることを可能にする不純物の含有量が少ないニッケル複合水酸化物が得られる。また、本発明では、このようなニッケル複合水酸化物を容易に製造でき、生産性が高く、工業的価値が極めて大きいものである。
 以下に、本発明を適用したニッケル複合水酸化物及びその製造方法について詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明に係る実施の形態の説明は、以下の順序で行う。
 1.ニッケル複合水酸化物
 2.ニッケル複合水酸化物の製造方法
 3.非水系電解質二次電池用正極活物質
 4.非水系電解質二次電池用正極活物質の製造方法
 5.非水電解質二次電池
 <1.ニッケル複合水酸化物>
 本発明のニッケル複合水酸化物は、一般式Ni1-x-yCoAl(OH)2+α(0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4、0≦α≦0.5)で表され、複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%~2.5質量%であることを特徴としている。以下、各要素の特徴を詳細に説明する。
 [粒子の組成]
 ニッケル複合水酸化物は、粒子状であり、その組成が、一般式Ni1-x-yCoAl(OH)2+α(0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4、0≦α≦0.5)で表されるように調整されるものである。
 上記一般式においてコバルト含有量を示すxは、0.05≦x≦0.35である。コバルトを適度に添加することで、得られる正極活物質のサイクル特性や充放電に伴うLiの脱挿入による結晶格子の膨張収縮挙動を低減できる。コバルト含有量が少なすぎてxが0.05未満であると、期待する効果を得ることができないため好ましくない。一方、コバルト含有量が多すぎてxが0.35を超えると、正極活物質の初期放電容量の低下が大きくなってしまい、さらにコスト面で不利となる問題もあるため好ましくない。したがって、コバルト含有量を示すxは、0.05≦x≦0.35であり、正極活物質の電池特性やコストをより考慮すると、0.07≦x≦0.25が好ましく、実質的に0.10≦x≦0.20とすることがより好ましい。
 次に、アルミニウム含有量を示すyは、0.01≦y≦0.2、好ましくは0.01≦y≦0.1である。この範囲でアルミニウムを添加すると、得られる正極活物質を電池の正極活物質として用いられた場合に電池の耐久特性や安全性を向上させることができる。特に、アルミニウムは、粒子の内部に均一に分布するように調整されていれば、粒子全体で上記効果を得ることができ、同じ添加量でより大きな効果が得られ容量の低下を抑制できるという利点がある。アルミニウム添加量が少なすぎてyが0.01未満になると期待する効果を得らないため好ましくない。一方、アルミニウム添加量が多すぎて0.2を超えると、Redox反応に貢献する金属元素が減少し、正極活物質の電池容量が低下するため好ましくない。更に、コバルトとアルミニウムの合計の原子比は、x+y<0.4である。コバルトとアルミニウムの合計の原子比が0.4を超えると、得られる正極活物質の容量の低下が大きくなり過ぎる。
 組成の分析方法は、特に限定されないが、ICP発光分光法による化学分析から求めることができる。
 [粒子構造]
 ニッケル複合水酸化物は、複数の一次粒子が凝集して形成された球状の二次粒子により構成される。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、菱面体状などのさまざまな形態を採りうる。また、複数の一次粒子の凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に一次粒子の長径方向に凝集する場合等も本発明に適用することは可能である。
 凝集状態としては、板状及び/又は針状の一次粒子がランダムな方向に凝集して二次粒子を形成していることが好ましい。このような構造の場合、一次粒子間にほぼ均一に空隙が生じて、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物が二次粒子内へ行きわたり、リチウムの拡散が十分に行われるからである。
 なお、一次粒子及び二次粒子の形状観察方法は特に限定されないが、ニッケル複合水酸化物の断面を走査型電子顕微鏡を用いて観察することによって測定できる。
 [平均粒径]
 ニッケル複合水酸化物は、粒子の平均粒径が3~20μmに調整されている。平均粒径が3μm未満の場合には、正極を形成したときに粒子の充填密度が低下して正極の容積あたりの電池容量が低下するため好ましくない。一方、平均粒径が20μmを超えると、正極活物質の比表面積が低下して電池の電解液との界面が減少することにより正極の抵抗が上昇して電池の出力特性が低下するため好ましくない。したがって、ニッケル複合水酸化物は、粒子の平均粒径が3~20μmであり、好ましくは3~15μm、より好ましくは4~12μmとなるように調整すれば、この正極活物質を正極に用いた電池では、容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好である。
 平均粒径の測定方法は、特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 [不純物含有量]
 ニッケル複合水酸化物は、硫酸根や塩素が不純物として含有されている。硫酸根や塩素は、後述する晶析工程で用いた原料に由来する。ニッケル複合水酸化物は、硫酸根含有量が1.0質量%以下、好ましくは0.6質量%以下であり、かつ塩素含有量が0.5質量%以下、好ましくは0.3質量%以下である。
 ニッケル複合水酸化物中の硫酸根含有量が1.0質量%を超えると、リチウム化合物と混合し焼成する工程においてリチウムとの反応を阻害し、層状構造であるリチウムニッケル複合酸化物の結晶性を低下させる。結晶性の低いリチウムニッケル複合酸化物は、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。さらに、ニッケル複合水酸化物に含まれる不純物は、リチウム化合物と混合し焼成後もリチウムニッケル複合酸化物中に残留する。これら不純物は、充放電反応に寄与しないため、電池を構成する際、正極材料の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ない。その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となる。
 一方、塩素含有量が0.5質量%を超えると、硫酸根の場合と同様に、電池容量の低下や安全性の問題がある。さらに、塩素は主にLiClやNaClの形態でリチウムニッケル複合酸化物中に残留する。これらは吸湿性が高いため、電池内部に水分を持ち込む要因となり、電池の劣化の原因となる。
 [炭酸根含有量]
 ニッケル複合水酸化物は、炭酸根含有量が1.0質量%~2.5質量%である。ここで、ニッケル複合水酸化物に含有される炭酸根は、後述する晶析工程で用いた炭酸塩に由来する。また炭酸根は、ニッケル複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケル複合酸化物中には残留しない。ニッケル複合水酸化物に含有する炭酸根含有量が1.0質量%~2.5質量%の範囲であれば、リチウム化合物と混合して焼成する際にニッケル複合水酸化物に含有されている炭酸根の揮発に伴い粒子内に細孔が形成されて、溶融したリチウム化合物と適度に接触でき、リチウムニッケル複合酸化物の結晶成長が適度に進行する。炭酸根含有量は、例えば、ニッケル複合水酸化物の全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めることができる。
 一方、炭酸根含有量が1.0質量%を下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となる。そのため、得られるリチウムニッケル複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題が生じる。炭酸根含有量が2.5質量%を超えると、リチウム化合物と混合し、焼成してリチウムニッケル複合酸化物を得る工程で、発生する炭酸ガスが反応を阻害して、リチウムニッケル複合酸化物の結晶性が低下する。
 [粒度分布]
 ニッケル複合水酸化物は、粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下となるように調整されていることが好ましい。
 粒度分布が広範囲になっており、その粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55を超える場合、平均粒径に対して粒径が非常に小さい微粒子や、平均粒径に対して非常に粒径の大きい粒子(大粒粒子)が多く存在することになる。微粒子が多く存在する正極活物質を用いて正極を形成した場合には、微粒子の局所的な反応に起因して発熱する可能性があり安全性が低下し、比表面積が大きい微粒子が選択的に劣化するので、サイクル特性が悪化してしまうため好ましくない。一方、大径粒子が多く存在する正極活物質を用いて正極を形成した場合には、電解液と正極活物質との反応面積が十分に取れず反応抵抗の増加による電池出力が低下するため好ましくない。
 したがって、正極活物質の粒度分布が、粒子の粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕が0.55以下となるように調整されていれば、微粒子や大径粒子の割合が少ないので、この正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性および電池出力を得ることができる。
 なお、粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕において、d10は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の10%となる粒径を意味している。また、d90は、各粒径における粒子数を粒径が小さいほうから累積したときにおいて、その累積体積が全粒子の合計体積の90%となる粒径を意味している。
 平均粒径や、d90、d10を求める方法は特に限定されないが、例えば、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 [比表面積]
 ニッケル複合水酸化物は、比表面積が15m/g~60m/gとなるように調整されていることが好ましい。比表面積が15m/g~60m/gの範囲であれば、リチウム化合物と混合して焼成する際に、溶融したリチウム化合物と接触できる粒子表面積が十分に得られるからである。一方、比表面積が15m/gを下回ると、リチウム化合物と混合し焼成する際に溶融したリチウム化合物との接触が不十分となり、得られるリチウムニッケル複合酸化物の結晶性が低下し、正極材料として電池を構成する際、固相内でのLi拡散を阻害して容量が低下するという問題がある。比表面積が60m/gを超えると、リチウム化合物と混合し焼成する際に、結晶成長が進みすぎて、層状化合物であるリチウム遷移金属複合酸化物のリチウム層にニッケルが混入するカチオンミキシングが起こり、充放電容量が減少するため好ましくない。
 <2.ニッケル複合水酸化物の製造方法>
 ニッケル複合水酸化物の製造方法は、晶析反応によって上述のニッケル複合水酸化物を製造する。ニッケル複合水酸化物の製造方法は、ニッケル及びコバルトを含む混合水溶液とアンモニウムイオン供給体とアルミニウム源とを含む水溶液に、液温25℃を基準として測定するpH値が12.0~13.4になるようにアルカリ溶液を添加して得られた反応溶液(以下、核生成用水溶液ともいう。)中で核生成を行う核生成工程と、核生成工程において形成された核を含有する反応溶液(以下、粒子成長用水溶液ともいう。)を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加して核を成長させる粒子成長工程とを有する。用いるアルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、混合水溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が0.002以上0.050以下である。
 従来の連続晶析法では、核生成反応と粒子成長反応とが同じ反応槽内において同時に進行するため、得られるニッケル複合水酸化物の粒度分布が広範囲となってしまう。これに対して、本発明を適用したニッケル複合水酸化物の製造方法は、主として核生成反応が生じる時間(核生成工程)と、主として粒子成長反応が生じる時間(粒子成長工程)とを明確に分離することにより、両工程を同じ反応槽内で行ったとしても、狭い粒度分布を持つ複合水酸化物を得ることができる点に特徴がある。
 以下、各工程の特徴を詳細に説明する。
 [核生成工程]
 核生成工程では、ニッケル及びコバルトを含む混合水溶液とアンモニウムイオン供給体とアルミニウム源とを含む水溶液に、液温25℃を基準として測定するpH値が12.0~13.4になるようにアルカリ溶液を添加し、得られた反応溶液(核生成用溶液)中でニッケル複合水酸化物の核生成を行う。
 核生成工程では、アルミニウム源としてアルミン酸ナトリウム水溶液を含有させることが好ましい。その際に、アルミン酸ナトリウム水溶液中のアルミニウムに対するナトリウムのモル比(Na/Al)を1.5~3.0とすることが好ましい。反応溶液のアンモニウム濃度は3~25g/Lの範囲内に調整することが好ましい。
 核生成工程では、反応槽にニッケル及びコバルトを含む混合水溶液とアンモニウムイオン供給体とアルミニウム源を入れ、そこに、pHを調整するため、アルカリ溶液を入れ、晶析反応を生じさせて核を生成する。なお、核生成工程では、反応槽に、混合水溶液、アンモニウムイオン供給体、アルミニウム源、アルカリ溶液を入れる順序は特に限定されず、それらを同時に入れて核生成を行ってもよい。
 核生成工程では、核生成に伴って、反応水溶液のpH値及びアンモニウムイオンの濃度が変化するので、反応水溶液に、ニッケルコバルト混合水溶液と共に、アルカリ水溶液やアンモニア水溶液を供給して、反応水溶液のpH値及びアンモニウム濃度を所定の値を維持するように、適宜、アルカリ溶液やアンモニウムイオン供給体を反応槽に添加して制御する。
 核生成工程では、反応水溶液に対して、ニッケル及びコバルトを含む混合水溶液、アルカリ水溶液、アンモニウムイオン供給体及びアルミニウム源を連続して供給すると、反応水溶液中に連続して新しい核が生成し、それが継続する。そして、核生成工程では、反応溶液中に、所定の量の核が生成すると、核生成反応を終了する。なお、核生成工程では、反応溶液中に所定量の核が生成したか否かは、反応溶液に添加した金属塩の量によって判断することができる。
 [粒子成長工程]
 粒子成長工程では、核生成工程において形成された核を含有する反応溶液(粒子成長用水溶液)のpH値が、液温25℃を基準として測定したときのpH値として、10.5~12.0の範囲となるように調整することにより粒子成長反応を行い、ニッケル複合水酸化物の粒子を得る。より詳細には、金属化合物を構成する酸と同種の無機酸、例えば硫酸等を添加して、又はアルカリ水溶液の供給量を調整して、反応水溶液のpH値を制御する。
 粒子成長工程では、粒子成長用水溶液のpH値が12.0以下となると、粒子成長用水溶液中の核が成長して、所定の粒子径を有するニッケル複合水酸化物を形成する。粒子成長工程では、粒子成長用水溶液のpH値が10.5~12.0の範囲にあり、核の生成反応よりも核の成長反応が優先して生じるので、粒子成長用水溶液中に新たな核は殆ど生成しない。
 そして、粒子成長工程では、粒子成長用水溶液中に、所定の粒径を有するニッケル複合水酸化物が所定の量だけ生成すると、粒子成長反応を終了する。なお、粒子成長工程では、所定の粒径を有するニッケル複合水酸化物の生成量は、反応水溶液に添加した金属塩の量によって判断する。
 以下に、核生成工程及び粒子成長工程で用いる材料や条件について説明する。
 (ニッケル及びコバルトを含む混合水溶液)
 ニッケル及びコバルトを含む混合水溶液に用いられる、ニッケル塩、コバルト塩などの塩としては、水溶性の化合物であれば特に限定するものではないが、硫酸塩、硝酸塩、塩化物などを使用することができる。例えば、硫酸ニッケル、硫酸コバルトが好ましい。
 混合水溶液の濃度は、金属塩の合計で1mol/L~2.6mol/Lとすることが好ましく、1mol/L~2.2mol/Lとすることがより好ましい。1mol/L未満であると、得られる水酸化物スラリー濃度が低く、生産性に劣る。一方、2.6mol/Lを超えると、-5℃以下で結晶析出や凍結が起こり、設備の配管を詰まらせる恐れがあり、配管の保温もしくは加温を行う必要があり、コストがかかる。
 さらに、混合水溶液を反応槽に供給する量は、晶析反応を終えた時点での晶析物濃度が、概ね30g/L~250g/L、好ましくは80g/L~150g/Lになるようにすることが好ましい。晶析物濃度が30g/L未満の場合には、一次粒子の凝集が不十分になることがあり、250g/Lを超える場合には、添加する混合水溶液の反応槽内での拡散が十分でなく、粒子成長に偏りが生じることがあるからである。
 (アンモニアイオン供給体)
 アンモニウムイオン供給体は、水溶性の化合物であれば特に限定するものではないが、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどを使用することができ、例えば、アンモニア、硫酸アンモニウムが好ましく用いられる。
 アンモニウムイオン供給体は、反応溶液中のアンモニア濃度が好ましくは3g/L~25g/L、より好ましくは5g/L~20g/L、さらに好ましくは5g/L~15g/Lとなるように反応溶液に供給する。反応溶液中にアンモニウムイオンが存在することで、金属イオン、特にNiイオンはアンミン錯体を形成し、金属イオンの溶解度が大きくなり、一次粒子の成長が促進され、緻密なニッケル複合水酸化物粒子が得られ易い。さらに、金属イオンの溶解度が安定するため、形状及び粒径が整ったニッケル複合水酸化物粒子が得られ易い。特に、反応液中のアンモニア濃度を3g/L~25g/Lとすることで、より緻密で形状及び粒径が整ったニッケル複合水酸化物粒子が得られ易い。
 反応溶液中のアンモニア濃度が3g/L未満であると、金属イオンの溶解度が不安定になる場合があり、形状及び粒径が整った一次粒子が形成されず、ゲル状の核が生成して粒度分布が広くなることがある。一方、アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、組成のずれが起きる場合がある。アンモニウムイオンの濃度は、一般的なイオンメータによって測定可能である。
 (アルカリ溶液)
 アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液である。アルカリ金属水酸化物と炭酸塩の混合割合を表すアルカリ金属水酸化物に対する炭酸塩の比([CO 2-]/[OH])が、0.002以上0.050以下であり、0.005以上0.030以下であることが好ましく、0.010以上、0.025以下であることがより好ましい。
 アルカリ溶液を、アルカリ金属水酸化物と炭酸塩の混合水溶液とすることで、晶析工程において得られるニッケル複合水酸化物中に不純物として残留する硫酸根や塩素などのアニオンを、炭酸根とイオン交換することができる。炭酸根は、ニッケル複合水酸化物とリチウム化合物を混合し、焼成する工程において揮発するため正極材料であるリチウムニッケル複合酸化物中には残留しない。したがって、硫酸根や塩素を炭酸根とイオン交換することで、ニッケル複合酸物に残留する不純物の硫酸根や塩素を少なくすることができる。
 アルカリ金属水酸化物に対する炭酸塩の比([CO 2-]/[OH])が0.002未満であると、晶析工程において、原料由来の不純物である硫酸根や塩素と炭酸イオンの置換が不十分となり、これら不純物がニッケル複合水酸化物中に取り込みやすくなる。一方、[CO 2-]/[OH]が0.050を超えても、原料由来の不純物である硫酸根や塩素の低減は変わらず、過剰に加えた炭酸塩は、コストを増加させる。
 アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
 炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる1種類以上であることが好ましく、水に溶解し易い化合物は添加量を制御し易く好ましい。
 また、アルカリ溶液を反応槽に添加する方法については、特に限定されるものではなく、定量ポンプなど、流量制御が可能なポンプで、反応溶液のpH値が後述する所定範囲に保持されるように、添加すればよい。
 (アルミニウム源)
 晶析工程で用いるアルミニウム源は、アルミン酸ナトリウム水溶液を使用することが好ましい。それ以外の化合物、例えば硫酸アルミニウム等を用いた場合、水酸化ニッケルや水酸化コバルトに比べて水酸化アルミニウムが低いpHで析出するため、水酸化アルミニウムが単独で析出しやすく、狭い粒度分布を有するニッケル複合水酸化物を得ることはできない。
 アルミン酸ナトリウム水溶液は、例えば、所定量のアルミン酸ナトリウムを水に溶解して水溶液とし、水酸化ナトリウムを所定量添加することで得られる。このとき、アルミン酸ナトリウム水溶液中のナトリウムは、アルミニウムに対するモル比で1.5~3.0であることがより好ましい。ナトリウム量、つまり水酸化ナトリウム量がモル比で1.5~3.0の範囲外の場合は、アルミン酸ナトリウム水溶液の安定性が低下し、反応槽に添加された直後、あるいは添加される前に水酸化アルミニウムの微細粒子として析出しやすくなり、水酸化ニッケル、水酸化コバルトとの共沈反応が起こりにくくなって、広い粒度分布を持つ粒子が生成し、粒子内部のアルミニウム濃度に分布が不均一になるといった問題が生じるため好ましくない。
 アルミニウムをニッケル複合水酸化物粒子の内部に均一に分散させるためには、ニッケル及びコバルトを含む混合水溶液とアルミン酸ナトリウム水溶液を反応槽に同時に添加すればよい。この際、一般式に示すように、目標とする組成比に合うように、ニッケル、コバルト、アルミニウムのそれぞれの金属濃度と、混合水溶液及びアルミン酸ナトリウム水溶液の添加流量を調整する。
 (pH制御)
 晶析工程においては、ニッケル及びコバルトを含む混合水溶液と、アンモニウムイオン供給体と、アルミニウム源とを含む水溶液に、25℃を基準として測定するpH値が12.0~13.4になるようにアルカリ溶液を添加して、核生成を行う核生成工程と、核生成工程において形成された核を含有する反応溶液(粒子成長用水溶液)を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加して、制御して核を成長させる粒子成長工程とからなることがより好ましい。すなわち、核生成反応と粒子成長反応とが同じ槽内において同じ時期に進行するのではなく、主として核生成反応(核生成工程)が生じる時間と、主として粒子成長反応(粒子成長工程)が生じる時間とを明確に分離したことに特徴を有している。
 核生成工程においては、反応水溶液のpH値が、液温25℃基準で12.0~13.4、好ましくは12.3~13.0の範囲となるように制御する。pH値が13.4を超える場合、生成する核が微細になり過ぎ、反応水溶液がゲル化する問題がある。また、pH値が12.0未満では、核形成とともに核の成長反応が生じるので、形成される核の粒度分布の範囲が広くなり不均質なものとなってしまう。すなわち、核生成工程において、反応水溶液のpH値を12.0~13.4に制御することで、核の成長を抑制してほぼ核生成のみを起こすことができ、形成される核も均質かつ粒度分布の範囲が狭いものとすることができる。
 一方、粒子成長工程においては、反応水溶液のpH値が、液温25℃基準で10.5~12.0、好ましくは11.0~12.0の範囲となるように制御する必要がある。pH値が12.0を超える場合、新たに生成される核が多くなり、微細二次粒子が生成するため、粒径分布が良好なニッケル複合水酸化物が得られない。また、pH値が10.5未満では、アンモニウムイオンによる溶解度が高く、析出せずに液中に残る金属イオンが増えるため、生産効率が悪化する。すなわち、粒子成長工程において、反応水溶液のpH値を10.5~12.0に制御することで、核生成工程で生成した核の成長のみを優先的に起こさせ、新たな核形成を抑制することができ、得られるニッケル複合水酸化物を均質かつ粒度分布の範囲を狭いものとすることができる。
 なお、pH値が12の場合は、核生成と粒子成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程もしくは粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12より高くして多量に核生成させた後、粒子成長工程でpH値を12とすると、反応水溶液中に多量の核が存在するため、核の成長が優先して起こり、粒径分布が狭く比較的大きな粒径のニッケル水酸化物が得られる。
 一方、反応溶液中に核が存在しない状態、すなわち、核生成工程においてpH値を12とした場合、成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12より小さくすることで、生成した核が成長して良好なニッケル複合水酸化物が得られる。
 いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 以上のごとく、核生成工程と粒子成長工程をpH値により明確に分離することで、核生成工程では核生成が優先して起こり核の成長はほとんど生じず、逆に、粒子成長工程では核成長のみが生じ、ほとんど新しい核は生成されない。このため、核生成工程では、粒度分布の範囲が狭く均質な核を形成させることができ、また、粒子成長工程では、均質に核を成長させることができる。したがって、ニッケル複合水酸化物の製造方法では、粒度分布の範囲が狭く均質なニッケル複合水酸化物粒子を得ることができる。
 (反応液温度)
 反応槽内において、反応溶液(粒子成長用水溶液)の温度は、好ましくは20~80℃、より好ましくは30~70℃、さらに好ましくは35~60℃に設定する。反応溶液の温度が20℃未満の場合、金属イオンの溶解度が低いため核発生が起こりやすく制御が難しくなる。一方、80℃を超えると、アンモニアの揮発が促進されるため、所定のアンモニア濃度を保つために、過剰のアンモニウムイオン供給体を添加しなければならならず、コスト高となる。
 (反応雰囲気)
 ニッケル複合水酸化物の粒径及び粒子構造は、晶析工程における反応雰囲気によっても制御される。
 晶析工程中の反応槽内の雰囲気を非酸化性雰囲気に制御した場合、ニッケル複合水酸化物を形成する一次粒子の成長が促進され、一次粒子が大きく緻密で、粒径が適度に大きな二次粒子が形成される。特に、晶析工程において、酸素濃度が5.0容量%以下、好ましくは2.5容量%以下、より好ましくは1.0容量%以下の非酸化性雰囲気とすることで、比較的大きな一次粒子からなる核が生成されるとともに、一次粒子の凝集により粒子成長が促進され、適度な大きさの二次粒子を得ることができる。
 反応槽内の空間をこのような雰囲気に保つための手段としては、窒素などの不活性ガスを反応槽内の空間部へ流通させること、さらには反応液中に不活性ガスをバブリングさせることがあげられる。
 以上のようなニッケル複合水酸化物の製造方法では、ニッケル及びコバルトを含む混合水溶液と、アンモニウムイオン供給体と、アルミニウム源とを含む水溶液に、アルカリ溶液を添加する際に、アルカリ溶液におけるアルカリ金属水酸化物に対する炭酸塩の比([CO 2-]/[OH])が0.002以上0.050以下となるようにすることで、炭酸根と不純物の硫酸根や塩素をイオン交換させ、残留する硫酸根や塩素を低減することができる。これにより、得られたニッケル複合水酸化物中の硫酸根含有量は、1.0質量%以下となり、塩素含有量は0.5質量%以下となる。したがって、このニッケル複合水酸化物を前駆体とする正極活物質は、結晶性が高く、電池容量を高くでき、高い安全性を有する非水系電解質二次電池を得ることができる。また、このニッケル複合水酸化物の製造方法は、ニッケル複合水酸化物を容易に製造でき、生産性が高く、工業的価値が極めて大きいものである。
 [3.非水系電解質二次電池用正極活物質]
 上述したニッケル複合水酸化物を前駆体として、非水系電解質二次電池用正極活物質を得ることができる。正極活物質は、ニッケル複合水酸化物を原料とし、層状構造を有する六方晶系リチウム含有複合酸化物により構成されるリチウムニッケル複合酸化物からなるものである。リチウムニッケル複合酸化物は、所定の組成や平均粒径を有し、且つ所定の粒度分布に調整されているため、サイクル特性や安全性に優れ、小粒径で粒径均一性が高く、非水系電解質二次電池の正極の材料として適したものである。
 [組成]
 正極活物質は、リチウムニッケルコバルトアルミニウム複合酸化物からなり、その組成は、一般式:LiNi1-x-yCoAl(但し、式中において、0.97≦t≦1.20、0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4を満たす。)で表される。
 正極活物質においては、リチウムの原子比tが上記範囲(0.97≦t≦1.20)内にあることが好ましい。リチウムの原子比tが0.97よりも少ない場合には、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。一方、リチウムの原子比tが1.20よりも多い場合には、正極活物質の初期放電容量が低下すると共に、正極の反応抵抗も増加してしまう。従って、リチウムの原子比tは、0.97≦t≦1.20とすることが好ましく、特に、リチウムの原子比tを1.05以上とすることがより好ましい。
 正極活物質にコバルトを含有させることで、良好なサイクル特性を得ることができる。これは、結晶格子のニッケルの一部をコバルトに置換することにより、充放電に伴うリチウムの脱挿入による結晶格子の膨張収縮挙動を低減できるためである。また、コバルトの原子比は、0.05≦x≦0.35が好ましく、電池特性や安全性を考慮すると、0.07≦x≦0.25がより好ましく、0.10≦x≦0.20とすることがさらに好ましい。
 正極活物質では、リチウム以外の全金属の原子に対するアルミニウムの原子比yが、0.01≦y≦0.2となるように調整されていることが好ましく、0.01≦y≦0.1となるように調整されていることがより好ましい。その理由は、正極活物質中にアルミニウムを添加することにより、電池の正極活物質として用いた場合において、電池の耐久特性や安全性を向上させることができるからである。特に、正極活物質では、アルミニウムが粒子の内部に均一に分布するように調整されていれば、粒子全体で電池の耐久性や安全性を向上させる効果を得ることができ、同じ添加量であっても、より大きな効果が得られ、容量の低下を抑制できるという利点がある。
 一方、正極活物質では、リチウム以外の全金属の原子に対するアルミニウムの原子比yが、0.01を下回ると、サイクル特性や安全性が不十分となるため好ましくない。また、正極活物質におけるリチウム以外の全金属の原子に対するアルミニウムの原子比yが、0.2を超えると、Redox反応に貢献する金属元素が減少し、電池容量が低下するため好ましくない。
 正極活物質は、前駆体である上述したニッケル複合水酸化物の性状を引き継いでおり、硫酸根含有量が1.0質量%以下、好ましくは0.6質量%以下であり、かつ塩素含有量が0.5質量%以下、好ましくは0.3質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%である。
 また、正極活物質の平均粒径が3μm~25μmであり、容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性も良好である。
 正極活物質の粒度分布の広がりを示す指標である〔(D90-D10)/平均粒径〕が、0.55以下であり、粒子や大径粒子の割合が少ないので、この正極活物質を正極に用いた電池では、安全性に優れ、良好なサイクル特性及び電池出力を得ることができる。
 正極活物質の製造方法は、上述したニッケル複合水酸化物から製造できるのであれば、特に限定されないが、次のような正極活物質の製造方法を採用すれば、より確実に正極活物質を製造できるので、好ましい。
 正極活物質の製造方法は、正極活物質の原料となるニッケル複合水酸化物を熱処理して、水分を除去する熱処理工程後に、熱処理後のニッケル複合水酸化物の粒子に対してリチウム化合物を混合して混合物を形成する混合工程を行い、混合工程で形成された混合物を焼成する焼成工程を行う。そして、正極活物質の製造方法では、焼成された焼成物を解砕することによってリチウムニッケル複合酸化物、つまり、正極活物質を得ることができる。
 熱処理工程では、ニッケル複合水酸化物の残留水分が除去される温度まで加熱されればよく、その熱処理温度は特に限定されないが、300℃~800℃とすることが好ましい。熱処理温度が300℃未満では、ニッケル複合水酸化物の分解が十分に進行せず、熱処理工程を行った意義が薄れるため工業的に適当でない。一方、熱処理温度が800℃を超えると、ニッケル複合酸化物に転換された粒子が焼結して凝集することがある。
 熱処理工程において、熱処理を行う雰囲気は特に制限されるものではなく、簡易的に行える空気気流中において行うことが好ましい。
 混合工程では、熱処理後のニッケル複合水酸化物の粒子に対して混合するリチウム含有物としては特に限定されないが、例えば、水酸化リチウム、硝酸リチウム、炭酸リチウム、又はそれらの混合物等が、入手が容易であるという点で好ましい。特に、取り扱いの容易さ、品質の安定性を考慮すると、混合工程では、水酸化リチウムを用いることがより好ましい。
 混合工程では、混合処理に一般的な混合機を使用することができ、例えば、シェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダー等を用いることができる。これらの混合機を用いる場合には、複合水酸化物等の形骸が破壊されない程度で、熱処理粒子とリチウム含有物とが十分に混合されればよい。
 焼成工程では、リチウム混合物の焼成を700℃~850℃で行い、特に720℃~820℃で行うことが好ましい。リチウム混合物の焼成温度が700℃未満であると、熱処理粒子中へのリチウムの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、十分な電池特性が得られないという問題が生じる。
 焼成工程では、リチウム混合物の焼成時間を少なくとも3時間以上とすることが好ましく、より好ましくは、6時間~24時間である。リチウム混合物の焼成時間が3時間未満では、リチウムニッケル複合酸化物の生成が十分に行われないことがあるからである。
 また、焼成工程では、リチウム混合物の焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、特に、酸素濃度が18容量%~100容量%の雰囲気とすることがより好ましい。
 以上のような正極活物質の製造方法では、原料に上述した不純物の硫酸根、塩素の含有量が少ないニッケル複合水酸化物を用いているため、リチウム化合物と混合して焼成する際に、リチウムとの反応が阻害されず、リチウムニッケル複合酸化物の結晶性の低下を抑えられる。これにより、この正極活物質の製造方法で得られた正極活物質は、内部に残留している不純物が少なく、結晶性が高いため、電池全体として重量当り及び体積当りの容量が低下せず、従来よりも高容量の非水系電解質二次電池の正極を得ることができる。
 <5.非水系電解質二次電池>
 上述した正極活物質は、非水系電解質二次電池の正極活物質として好適に用いられるものである。以下、非水系電解質二次電池用として用いられる際の実施態様を例示する。
 非水系電解質二次電池は、上述した正極活物質を用いた正極を採用したものである。非水系電解質二次電池は、正極材料に上述した正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えているため、簡単に説明する。
 非水系電解質二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレーターを備えた構造を有している。
 正極は、シート状の部材であり、例えば、アルミニウム箔製の集電体の表面に、正極活物質と、導電材および結着剤を混合してなる正極合材ペーストを塗布し、乾燥して形成することができる。
 負極は、銅などの金属箔集電体の表面に、負極活物質を含有する負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。
 セパレーターは、例えば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができる。なお、セパレーターの機能を有するものであれば、特に限定されない。
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート等を用いることができる。電解質塩としては、LiPF、LiBF、LiClO等を用いることができる。
 上述した構成を有する非水系電解質二次電池は、上述したニッケル複合水酸化物を前駆体とする正極活物質を用いた正極を有しているので、電池全体としての重量当たり及び体積当たりの容量が高容量であり、不可逆容量が小さく、安全性が高いものである。
 以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、実施例及び比較例は、以下の装置及び方法を用いた測定結果により評価した。
 実施例1~15及び比較例1~3に記載する晶析工程により得られたニッケル複合水酸化物を洗浄、固液分離、乾燥し粉体として回収後、以下の方法で各種分析を実施した。
 ニッケル複合水酸化物の組成は、試料を硝酸溶解した後、高周波誘導結合プラズマ(ICP)発光分光分析装置(株式会社島津製作所製、ICPS-8100)で測定した。
 硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
 塩素含有量は、自動滴定装置(平沼産業株式会社製、COM-1600)で測定した。
 炭酸根含有量は、炭素硫黄分析装置(LECO社製CS-600)で全炭素元素含有量を測定し、この測定された全炭素元素の量をCOに換算することにより求めた。
 比表面積は、比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS-10)を用いて、BET法により測定した。
 リチウムニッケル複合酸化物は、以下の方法で作製および評価を行った。実施例及び比較例で作製したニッケル複合水酸化物粒子を、空気(酸素:21容量%)気流中にて温度700℃で6時間の熱処理を行い、ニッケル複合酸化物粒子を回収した。続いて、Li/Me=1.025となるように水酸化リチウムを秤量し、回収したニッケル複合酸化物粒子と混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。
 次に、得られたこの混合物を酸素気流中(酸素:100容量%)にて500℃で4時間仮焼した後、730℃で24時間焼成し、冷却した後に解砕してリチウムニッケル複合酸化物を得た。
 得られたリチウムニッケル複合酸化物の硫酸根含有量は、試料を硝酸溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS-8100)により硫黄元素を測定し、この測定された硫黄元素の量をSOに換算することにより求めた。
 リチウムニッケル複合酸化物の結晶性を示すLi席占有率は、X線回折装置(パナリティカル社製、X‘Pert PRO)を用いて得られた回折パターンから、リートベルト解析を行い算出した。
 なお、実施例及び比較例では、ニッケル複合水酸化物の製造に、和光純薬工業株式会社製の特級試薬を各試料に使用した。
 (実施例1)
 ニッケル複合水酸化物は、本発明の方法を用いて、以下のように作製した。
 まず、反応槽(5L)内に水を0.9L入れて撹拌しながら、槽内温度を50℃に設定し、反応槽に窒素ガスを流通させて窒素雰囲気とした。このときの反応槽内空間の酸素濃度は2.0%であった。
 反応槽内の水に25%水酸化ナトリウム水溶液と25%アンモニア水を適量加えて、液温25℃を基準として測定するpH値として、槽内の反応溶液のpHが12.8となるように調整した。また、反応溶液中のアンモニア濃度を10g/Lに調節した。
 次に、硫酸ニッケルと塩化コバルトを水に溶かして2.0mol/Lの混合水溶液を形成した。この混合水溶液では、各金属の元素モル比が、Ni:Co=0.84:0.16となるように調整した。別途、アルミン酸ナトリウムを所定量水に溶解し、25%水酸化ナトリウム水溶液をアルミニウムに対するナトリウムの比が1.7となるように添加した。さらに、水酸化ナトリウムと炭酸ナトリウムを[CO 2-]/[OH]が0.025となるように水に溶解してアルカリ溶液を調整した。
 混合水溶液を、反応槽内の反応溶液に12.9ml/分で加えた。同時に、アルミン酸ナトリウム水溶液、25%アンモニア水、アルカリ溶液も反応槽内の反応溶液に一定速度で加えていき、反応溶液中のアンモニア濃度を10g/Lに保持した状態で、pH値を12.8(核生成pH値)に制御しながら2分30秒間晶析を行い、核生成を行った。アルミン酸ナトリウム水溶液の添加速度は、スラリー中の金属元素モル比が、Ni:Co:Al=81:16:3となるように調整した。
 その後、反応溶液のpH値が液温25℃を基準として測定するpH値として11.6(粒子成長pH値)になるまで、64%硫酸を添加した。液温25℃を基準として測定するpH値として、反応溶液のpH値が11.6に到達した後、混合水溶液、アルミン酸ナトリウム水溶液、25%アンモニア水、アルカリ溶液の供給を再開し、pH値を11.6に制御したまま、4時間晶析を継続し粒子成長を行うことにより、ニッケル複合水酸化物を得た。
 (実施例2)
 実施例2では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.003となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例3)
 実施例3では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.040となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例4)
 実施例4では、アルミン酸ナトリウムを所定量の水に溶解する際に、25%水酸化ナトリウム水溶液をアルミニウムに対するナトリウムの比が1.0となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例5)
 実施例5では、アルミン酸ナトリウムを所定量水に溶解する際に、25%水酸化ナトリウム水溶液をアルミニウムに対するナトリウムの比が3.5となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例6)
 実施例6では、核生成工程のpHを13.6とした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例7)
 実施例7では、核生成工程のpHを11.8とした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例8)
 実施例8では、粒子成長工程のpHを12.3とした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例9)
 実施例9では、粒子成長工程のpHを10.2とした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例10)
 実施例10では、アルミン酸ナトリウム水溶液の添加速度を、スラリー中の金属元素モル比が、Ni:Co:Al=78:15:7となるように調整した以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例11)
 実施例11では、アルミン酸ナトリウム水溶液の添加速度を、スラリー中の金属元素モル比が、Ni:Co:Al=74:14:12となるように調整した以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例12)
 実施例12では、アルミン酸ナトリウム水溶液の添加速度を、スラリー中の金属元素モル比が、Ni:Co:Al=69:13:18となるように調整した以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例13)
 実施例13では、アルカリ溶液を調整する際のアルカリ金属水酸化物を水酸化カリウムとし、炭酸塩を炭酸カリウムとした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例14)
 実施例14では、炭酸ナトリウムを炭酸アンモニウムに変更するとともにアンモニア濃度を20g/Lに調節した以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (実施例15)
 実施例15では、槽内温度を35℃に設定した以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (比較例1)
 比較例1では、アルカリ溶液を水酸化ナトリウムのみとし、[CO 2-]/[OH]が0となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (比較例2)
 比較例2では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.001となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (比較例3)
 比較例3では、アルカリ溶液を調整する際に、[CO 2-]/[OH]が0.055となるようにした以外は、実施例1と同様にしてニッケル複合水酸化物を得るとともに評価した。
 (評価)
 実施例1~15及び比較例1~3のニッケル複合水酸化物製造条件を表1に示す。さらに得られたニッケル複合水酸化物の評価結果を表2に、リチウムニッケル複合酸化物の評価結果を表3に示す。
 表2に示すように、実施例1~15では、得られたニッケル複合水酸化物の平均粒径が3~20μm以下であって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、さらに炭酸根含有量が1.0質量%~2.5質量%である。そして、表3に示すように、実施例1~15では、リチウムニッケル複合酸化物とした場合の結晶性を示すLi席占有率が99.0%を超えており、結晶性に優れたリチウムニッケル複合酸化物が得られ、正極活物質として有用であることが分かる。
 一方、比較例1及び2では、表1及び表2に示すように、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が0.002を下回るため、硫酸根や塩素含有量が高くなった。そして、表3に示すように、リチウムニッケル複合酸化物とした場合の結晶性を示すLi席占有率が99.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
 比較例3では、アルカリ溶液におけるアルカリ金属水酸化物と炭酸塩の混合割合を表す[CO 2-]/[OH]が0.050を上回るため、炭酸基含有量が高く、リチウムニッケル複合酸化物とした場合の結晶性を示すLi席占有率が99.0%を下回り、同様の組成比などを有する実施例1と比較して劣っていた。
 また、実施例の中でも、アルミン酸ナトリウム中のNa/Alが1.5~3.0の範囲内、核生成工程のpHが12.0~13.4の範囲内、粒子成長工程のpHが10.5~12.0の範囲内にある実施例1~3、10~15は、これらのいずれかを満たしていない実施例4~9と比べて、粒度分布が狭く、比表面積も適切となった。
 以上の結果より、本発明を適用したニッケル複合水酸化物の製造方法を用いて、ニッケル複合水酸化物粒子を製造すれば、結晶性の高いリチウムニッケル複合酸化物が得られ、高容量な非水系電解質二次電池の正極材料として有用であることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明のニッケル複合水酸化物は、純粋に電気エネルギーで駆動する電気自動車用のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電池材料の前駆体として用いることができる。なお、電気自動車用の電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源も含み、本発明のニッケル複合酸化物を前駆体として得た正極活物質を具える非水系電解質二次電池は、これらのハイブリッド車用の電源としても好適に用いることができる。

Claims (10)

  1.  一般式Ni1-x-yCoAl(OH)2+α(0.05≦x≦0.35、0.01≦y≦0.2、x+y<0.4、0≦α≦0.5)で表され、
     複数の板状一次粒子が凝集して形成された球状の二次粒子であり、該二次粒子は、平均粒径が3μm~20μmであって、硫酸根含有量が1.0質量%以下、かつ塩素含有量が0.5質量%以下であり、炭酸根含有量が1.0質量%~2.5質量%であることを特徴とするニッケル複合水酸化物。
  2.  当該ニッケル複合水酸化物の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.55以下であることを特徴とする請求項1に記載のニッケル複合水酸化物。
  3.  比表面積が15m/g~60m/gであることを特徴とする請求項1又は請求項2に記載のニッケル複合水酸化物。
  4.  晶析反応によってニッケル複合水酸化物を製造するニッケル複合水酸化物の製造方法であって、
     ニッケル及びコバルトを含む混合水溶液と、アンモニウムイオン供給体と、アルミニウム源とを含む水溶液に、アルカリ溶液を添加して得た反応溶液中で晶析する晶析工程を有し、
     前記アルカリ溶液は、アルカリ金属水酸化物と炭酸塩の混合水溶液であり、該混合水溶液における該アルカリ金属水酸化物に対する該炭酸塩の比[CO 2-]/[OH]が0.002以上0.050以下であることを特徴とするニッケル複合水酸化物の製造方法。
  5.  前記晶析工程において、前記アルミニウム源にはアルミン酸ナトリウム水溶液を使用し、
     前記アルミン酸ナトリウム水溶液中のアルミニウムに対するナトリウムのモル比(Na/Al)が1.5~3.0であることを特徴とする請求項4に記載のニッケル複合水酸化物の製造方法。
  6.  前記晶析工程は、核生成工程と、粒子成長工程とからなり、
     前記核生成工程では、液温25℃を基準として測定するpH値が12.0~13.4になるようにアルカリ溶液を前記水溶液に添加して前記反応溶液中で核生成を行い、
     前記粒子成長工程では、前記核生成工程において形成された核を含有する前記反応溶液を、液温25℃を基準として測定するpH値が10.5~12.0となるようにアルカリ溶液を添加することを特徴とする請求項4又は請求項5に記載のニッケル複合水酸化物の製造方法。
  7.  前記アルカリ金属水酸化物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウムから選ばれる1種類以上であることを特徴とする請求項4乃至請求項6のいずれか1項に記載のニッケル複合水酸化物の製造方法。
  8.  前記炭酸塩は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムから選ばれる1種類以上であることを特徴とする請求項4乃至請求項7のいずれか1項に記載のニッケル複合水酸化物の製造方法。
  9.  前記晶析工程では、反応溶液のアンモニア濃度を、3g/L~25g/Lの範囲内に維持することを特徴とする請求項4乃至請求項8のいずれか1項に記載のニッケル複合水酸化物の製造方法。
  10.  前記晶析工程では、反応温度を20℃~80℃の範囲内に維持することを特徴とする請求項4乃至請求項9のいずれか1項に記載のニッケル複合水酸化物の製造方法。
PCT/JP2015/079491 2014-10-30 2015-10-20 ニッケル複合水酸化物とその製造方法 WO2016067960A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/523,568 US10294120B2 (en) 2014-10-30 2015-10-20 Nickel composite hydroxide and process for producing same
EP15853848.8A EP3225591B1 (en) 2014-10-30 2015-10-20 Nickel composite hydroxide and process for producing same
CN201580059107.6A CN107001070B (zh) 2014-10-30 2015-10-20 镍复合氢氧化物和其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-221859 2014-10-30
JP2014221859 2014-10-30
JP2015-125811 2015-06-23
JP2015125811A JP6287970B2 (ja) 2014-10-30 2015-06-23 ニッケル複合水酸化物とその製造方法

Publications (1)

Publication Number Publication Date
WO2016067960A1 true WO2016067960A1 (ja) 2016-05-06

Family

ID=55857301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079491 WO2016067960A1 (ja) 2014-10-30 2015-10-20 ニッケル複合水酸化物とその製造方法

Country Status (1)

Country Link
WO (1) WO2016067960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094482A1 (en) * 2018-11-09 2020-05-14 Basf Se Process for making a nickel composite hydroxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518871A (ja) * 2009-02-20 2012-08-16 ユミコア ソシエテ アノニム Li蓄電池内での高い安全性と高出力とを兼備する非均質な正電極材料
JP2014156397A (ja) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd ニッケル含有水酸化物、ニッケル含有酸化物およびこれらの製造方法
JP2015128004A (ja) * 2013-12-27 2015-07-09 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法及び非水電解質二次電池用正極活物質とその製造方法
JP2015191848A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518871A (ja) * 2009-02-20 2012-08-16 ユミコア ソシエテ アノニム Li蓄電池内での高い安全性と高出力とを兼備する非均質な正電極材料
JP2015128004A (ja) * 2013-12-27 2015-07-09 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法及び非水電解質二次電池用正極活物質とその製造方法
JP2015191848A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法
JP2014156397A (ja) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd ニッケル含有水酸化物、ニッケル含有酸化物およびこれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094482A1 (en) * 2018-11-09 2020-05-14 Basf Se Process for making a nickel composite hydroxide
US12006230B2 (en) 2018-11-09 2024-06-11 Basf Se Process for making a nickel composite hydroxide

Similar Documents

Publication Publication Date Title
JP6287970B2 (ja) ニッケル複合水酸化物とその製造方法
JP6265117B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP5316726B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP6252010B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法、並びに、非水電解質二次電池
KR101644258B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
JP5880426B2 (ja) ニッケル複合水酸化物及びその製造方法、並びに正極活物質の製造方法
JP5638232B2 (ja) 非水系電解質二次電池正極活物質用ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6244713B2 (ja) 非水電解質二次電池用正極活物質の製造方法
JP5877817B2 (ja) 非水系二次電池用正極活物質及びその正極活物質を用いた非水系電解質二次電池
WO2012165654A1 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
WO2011067937A1 (ja) ニッケル複合水酸化物粒子および非水系電解質二次電池
WO2015198711A1 (ja) ニッケル複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP2011116580A5 (ja)
JP2013147416A (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US20170155144A1 (en) Manganese-cobalt composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
JP6583418B2 (ja) マンガンニッケル複合水酸化物及びその製造方法、リチウムマンガンニッケル複合酸化物及びその製造方法、並びに非水系電解質二次電池
WO2016067960A1 (ja) ニッケル複合水酸化物とその製造方法
JP6020700B2 (ja) 正極活物質及びその製造方法、並びに非水系電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015853848

Country of ref document: EP