Nothing Special   »   [go: up one dir, main page]

WO2016065830A1 - 一种天线阵耦合校准网络装置及校准方法、存储介质 - Google Patents

一种天线阵耦合校准网络装置及校准方法、存储介质 Download PDF

Info

Publication number
WO2016065830A1
WO2016065830A1 PCT/CN2015/075139 CN2015075139W WO2016065830A1 WO 2016065830 A1 WO2016065830 A1 WO 2016065830A1 CN 2015075139 W CN2015075139 W CN 2015075139W WO 2016065830 A1 WO2016065830 A1 WO 2016065830A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
connector
coupled
calibration network
calibration
Prior art date
Application number
PCT/CN2015/075139
Other languages
English (en)
French (fr)
Inventor
周虹
毛胤电
沈楠
田之继
吴建军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP15855760.3A priority Critical patent/EP3214773A4/en
Priority to JP2017523492A priority patent/JP2017539138A/ja
Publication of WO2016065830A1 publication Critical patent/WO2016065830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to an antenna technology of a wireless communication system, and more particularly to an antenna array coupling calibration network apparatus, a calibration method, and a storage medium.
  • the single-chip will be greatly reduced.
  • the antenna power is greatly reduced in design difficulty for the base station system transceiver link. Therefore, large-scale smart antenna communication will become a development trend, and the coupled calibration network is one of the key components of large-scale smart antennas. Its implementation not only directly affects the beamforming effect of large-scale smart antennas, but also indirectly affects The module architecture design of the base station system.
  • a coupling calibration network device for a linear array of smart antenna arrays is provided in Chinese patent CN2755871Y, comprising N antenna array elements, N couplers and several power splitters/combiners (N ⁇ 2).
  • N antenna array elements (11) are arranged in a straight line into a linear antenna array;
  • the coupler is a microstrip directional coupler composed of two close-range metal parallel microstrips;
  • N microstrip directional couplers and several power dividers / combiner is fabricated on a coupled calibration network board (12) that is placed behind the radiation direction of the linear array antenna, and N microstrip directional couplers are coupled to the calibration network.
  • the distribution on the circuit board is distributed one by one correspondingly to the N antenna elements; a metal reflector (13) is disposed behind the circuit board of the coupled calibration network to achieve directional coverage of the linear antenna array.
  • the apparatus includes a radio frequency connector 14, a plurality of antenna array input/output connectors 15, and a calibration port input/output connector 16 that are coupled to the calibration network and the antenna elements.
  • the patented antenna array, the coupled calibration network, and the reflector are each a separate plate, which are not integrated on the same dielectric plate, which is not conducive to the integration of the base station system; the antenna array input/output connector and the calibration port input/output connector are connected to the base station system.
  • a smart antenna and a calibration device thereof are disclosed in Chinese Patent No. CN103746193A, including a reflector (21), a vibrator (22), an end cover (23), and a connecting reflector (21) and an end cover ( 23) a mounting plate (24), wherein the smart antenna further comprises a calibration device; the calibration device comprises a dielectric plate (25), a plurality of connectors (26) and a calibration network (27); and the calibration network (27) is printed on the dielectric plate Surface comprising a power distribution network formed by a plurality of power splitters and a plurality of directional couplers; any branch port of the power splitter network is connected to a coupler; the connector core is directly connected to the power distribution network or The signal input port of the directional coupler is connected, and one connector corresponds to one port; the calibration device is fixed to one side of the mounting plate; the mounting plate (24) is provided with at least one bending strip (241), and the bending bar (241) runs through the calibration The device is fixed
  • the patented vibrator and the calibration network are connected by a soldering cable (28). If it is a large-scale antenna array, the number of cables is large, which is not conducive to production; the vibrator and the calibration network are vertically connected, and the assembly needs to be assisted.
  • a bending strip (241) is used to fix the device, which is not conducive to subsequent production, and the system integration is not high.
  • the embodiments of the present invention mainly provide a wireless array coupled calibration network device, a calibration method, and a storage medium.
  • An embodiment of the present invention provides an antenna array coupling calibration network device, the device comprising: a dielectric board, a coupled calibration network, an antenna array, a first RF connector, and a second RF connector; wherein the coupled calibration network Provided on one side of the dielectric board, the antenna array is disposed on the other side of the dielectric board, the dielectric board is provided with a via, and the antenna array is connected to the coupled calibration network through a via;
  • the intermediate layer of the dielectric board serves as both a ground layer and a metal reflector; the first RF connector and the second RF connector are arranged on the dielectric board and are respectively connected to the coupled calibration network.
  • the embodiment of the invention further provides an antenna array coupling calibration network calibration method, which is performed by an antenna array coupling calibration network device, the device comprising: a dielectric board, a coupling calibration network, an antenna array, a first RF connector, and a second RF connector; wherein the coupling calibration network is disposed on one side of the dielectric board, the antenna array is disposed on another side of the dielectric board, and the dielectric board is provided with a via hole, the antenna The array and the coupled calibration network are connected by via holes; the intermediate layer of the dielectric plate serves as both a ground layer and a metal reflector; the first RF connector and the second RF connector are arranged on the dielectric plate.
  • radio frequency signals from the base station system transmit channel are respectively input through the first RF connector, coupled through a coupled calibration network, and combined to form a calibration signal, and the calibration signal passes through the second RF
  • the connector outputs a calibration link to the base station system.
  • the embodiment of the invention further provides an antenna array coupling calibration network calibration method, which is performed by an antenna array coupling calibration network device, the device comprising: a dielectric board, a coupling calibration network, an antenna array, a first RF connector, and a second RF connector; wherein the coupled calibration network is disposed on one side of the dielectric panel, and the antenna array is disposed on the dielectric panel
  • the dielectric board is provided with a via hole, and the antenna array is connected to the coupling calibration network through a via;
  • the intermediate layer of the dielectric board serves as a ground layer and a metal reflector simultaneously; the first radio frequency connection And a second RF connector arranged on the dielectric board, respectively connected to the coupled calibration network; a calibration signal from the base station system calibration link is input through the second RF connector, and is divided into multiple via a coupled calibration network After the signals are coupled and coupled, the first RF connector is output to the receiving channel of the base station system.
  • Embodiments of the present invention also provide a computer storage medium in which a computer program for performing the antenna array coupling calibration network calibration method described above is stored.
  • the antenna array, the coupling calibration network, and the metal reflector are all integrated on the same dielectric plate, and the antenna array element and the coupled calibration network are connected by a via hole to increase reliability and avoid the use of a large number of RF cables.
  • the antenna size can be reduced, the base station system integration and miniaturization performance can be improved, and the realization of the large-scale smart antenna array coupling calibration network device is facilitated, which is convenient for production debugging and mass production, and is more suitable for the popularization of wireless communication systems.
  • FIG. 1 is a schematic structural view of a coupled calibration network device of a related patent linear array smart antenna array
  • FIG. 2 is a schematic structural view of a related patent smart antenna and a calibration device thereof;
  • FIG. 7 is a structural diagram of a coupling unit of a coupled calibration network according to an embodiment of the present invention.
  • a via 38 is provided in the dielectric plate 31, and the antenna array is coupled to the coupled calibration network 32 via a via 38.
  • the dielectric board 31 is a printed circuit board (PCB), and an antenna array is disposed on one side, and a coupled calibration network 32 is printed on one side; the intermediate layer of the dielectric board 31 serves as a ground layer for coupling the calibration network 32 and the antenna array.
  • the metal reflector 34 of the antenna array the directional radiation of the antenna array is strengthened;
  • the antenna array is composed of 16 antenna array elements 33 configured to receive or transmit signals, and the 16 antenna array elements 33 may be arranged in a straight line, a circular array or other irregular shapes; and/or 16 antennas.
  • the array elements 33 may also be equally spaced or unequally spaced; and/or the 16 antenna elements 33 may also be directional, single-polarized or dual-polarized; and/or, 16 antenna elements
  • the orientation of 33 may be any angle, such as 30°, 60°, etc.; and/or, the dual polarization of 16 antenna elements 33 may be horizontal vertical polarization or ⁇ 45° polarization.
  • the coupled calibration network 32 includes a microstrip directional coupler and a splitter/combiner.
  • the number of microstrip directional couplers is the same as the number of antenna array elements, and one-to-one correspondence, each antenna array element 33 is a microstrip line 35.
  • the corresponding microstrip directional coupler on the coupled calibration network 32 is connected through the via 38, so that the antenna array and the coupled calibration network can be disposed in the same medium. On the board, it is also possible to avoid the use of cable welding methods that are not conducive to production.
  • the downlink calibration working link flow of the above device is: 16 radio frequency signals of the base station system transmission channel are respectively input by 16 first RF connectors 36, coupled by the coupling calibration network 32 and "equal difference, equal phase shift" After synthesizing one calibration signal, the second RF connector 37 outputs a calibration link to the base station system for calibration.
  • the upstream calibration working link flow of the above device is: the calibration signal from the base station system calibration link is input through the second RF connector 37, and is divided into 16 via the coupled calibration network 32 by "equal loss, equal phase shift". After the signals are coupled and coupled, the 16 first RF connectors 36 are respectively output to the receiving channels of the base station system.
  • the 16 first RF connectors 36 and the second RF connectors 37 are arranged inside the dielectric board 31, and the non-edge extension area is advantageous for miniaturization and integration of the structure, and any other reliable connection of similar functions can be used. Use, no longer repeat them.
  • the first RF connector 36 is configured to input or output a radio frequency signal
  • the second RF connector 37 is configured to input or output a calibration signal
  • the RF connector having a blind insertion and a radial axial floating characteristic can be respectively adopted to facilitate the base station system. connection.
  • each antenna array element 41, 42, 43, 44 each antenna array element
  • the columns all include antenna elements 33 formed by four dual-polarized oscillators, and each antenna element 33 in each array of antenna elements has a polarization direction of +45° and -45° with respect to the vertical or horizontal direction, and is configured to transmit signals.
  • the antenna elements 33 adjacent to each other in each antenna array column are connected in parallel by a structure such as a microstrip line 35, and are connected to the microstrip directional coupler through the via 38.
  • Each of the antenna elements may be arranged in parallel or equally spaced, or may be arranged in an interlaced, unequal pitch, or a different combination of the modes.
  • the antenna element 33 may be a metal vibrator or a microstrip structure or a patch structure.
  • the antenna element 33 may be in a dual polarization mode or a single polarization mode.
  • Longitudinal metal partitions 51, 52, 53 are respectively vertically disposed between adjacent two antenna array rows 41 and 42, 42 and 43, and 43 and 44, metal partitions 51, 52, 53 and metal reflectors Conductive or capacitive coupling is used between 34.
  • the spacers may be arranged in units of antenna array elements, that is, the metal spacers 54, 55, 56 perpendicularly intersecting the metal spacers 51, 52, 53 may be added, and the antenna array may also be
  • the metal side plates 57, 58, 59, 60 are added around the element, and the manner in which the metal partitions and the surrounding side plates are added is not limited to the manner shown in FIG. 5, and the metal partitions may be separately designed or integrated on the radome structure. Improve the strength of the radome and enhance the safety and stability of the antenna system. It is also possible to add a small cover or the like above the antenna element, so that each antenna element has a more independent space, and will not be described again.
  • the coupled calibration network includes 16 identical microstrip directional coupling circuits 61 and 15 1:2 power split/combiners 62, 16
  • the first RF connector 36 is a second RF connector 37 configured to calibrate the signal input and output.
  • each of the two adjacent microstrip directional coupling circuits 61 is connected by a 1:2 power splitter/combiner 62, and one end of each of the microstrip directional coupling circuits 61 is connected to a first RF connector 36, and One end is connected to the adjacent microstrip directional coupling circuit through a 1:2 power splitter/combiner 62, and the two split ports of each 1:2 power splitter/combiner 62 are respectively connected to two microstrip orientations.
  • the coupling circuit 61, the junction ports of the 15 1:2 power splitters/combiners are connected to the second RF connector 37.
  • the number of 16 microstrip directional couplers is the same as the number of antenna elements, and two similar metal parallel microstrip lines are used, so that the product performance consistency is excellent.
  • 16 microstrip directional coupling circuits 61 are distributed along the 16 antenna arrays on the circuit board of the coupled calibration network, and each microstrip directional coupler is connected to a first RF connector to facilitate the radio frequency transceiver with the base station system. Communication; the 16 microstrip directional couplers are identical, which is convenient for production and debugging; the electrical connection between the 16 microstrip directional couplers and the corresponding antenna array elements adopts a via mode, and the performance is better.
  • the ground phase consistency of the signal from the microstrip directional coupler to the antenna element is ensured, and the structure is Simple integration, high reliability and easy production.
  • the number of power splitters/combiners 62 is limited by the number of split/combiners.
  • the embodiment of Figure 6 uses a 1:2 power split/combiner, thus requiring 15 power splitters/combiners 62 to complete the split/combination of the 16 signals, and finally to synthesize 1 signal to the second RF connector 37. If a 1:4 power split/combiner is used, after setting 16 antenna elements and 16 microstrip directional couplers, only five 1:4 power splitters/combiners are needed to complete 16 Branch/combination of road signals.
  • FIG. 7 is a schematic diagram of any one of the coupling units in the coupled calibration network according to an embodiment of the present invention, one coupling unit including two microstrip directional couplers 61 and a 1:2 power split/combiner, specifically, each microstrip orientation
  • the coupler 61 includes two microstrips.
  • One end of the microstrip 71 is connected to one antenna array 33 through the via 38, and the other end is connected to the radio frequency input end of the radio frequency transceiver corresponding to the base station system, that is, the first radio frequency connector is connected. 36;
  • One end of the other microstrip 72 is connected to a 50 ⁇ matching load 74 (also grounded), and the other end is connected to a shunt port of the 1:2 power shunt/combiner 62.
  • 73 in Fig. 7 is the isolation resistance of the power splitter/combiner 62.
  • the above embodiment is a 16-element antenna array coupled calibration network device. According to the same principle, a larger-scale antenna array coupling calibration network device such as 32, 64, and 128 can also be designed. Embodiments of the invention are particularly applicable to large scale antenna arrays.
  • the embodiment of the present invention further provides an antenna array coupling calibration network calibration method, and the M (M is an integer not less than 2, for example, 16) array element array coupling calibration network device
  • the method comprises: the M radio frequency signals from the transmitting channel of the base station system are respectively input through the M first RF connectors, coupled through the coupled calibration network, and synthesizing a calibration signal, and the calibration signal is further connected through the second RF connection.
  • the device outputs a calibration link to the base station system.
  • the embodiment of the present invention further provides an antenna array coupling calibration network calibration method, by using M (M is an integer not less than 2, for example, 16) array element array coupling calibration network device Implementation, the method includes: calibrating a link from a base station system The calibration signal is input through the second RF connector, divided into M signals via the coupled calibration network, and coupled, and outputted by the M first RF connectors to the receiving channels of the base station system.
  • M is an integer not less than 2, for example, 16 array element array coupling calibration network device
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program for performing the antenna array coupling calibration network calibration method of the embodiment of the present invention is stored.
  • the antenna array, the coupling calibration network, and the metal reflector are all integrated on the same dielectric plate, and the antenna array element and the coupled calibration network are connected by a via hole, which can increase reliability and avoid a large number of radio frequencies.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明公开了一种天线阵耦合校准网络装置,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接。相应的,本发明还公开了天线阵耦合校准网络的校准方法、存储介质。

Description

一种天线阵耦合校准网络装置及校准方法、存储介质 技术领域
本发明涉及无线通信系统的天线技术,更确切地说是涉及一种天线阵耦合校准网络装置及校准方法、存储介质。
背景技术
在当代蜂窝系统中,用户对无线数据速率的不断增长的需求导致有限的带宽被相邻的小区共用,所造成的小区间的干扰是数据传输速率和服务质量的主要限制因素。处在小区边缘的用户受到小区的干扰尤其严重。很多无线服务供应商一直在努力改善小区边缘用户的服务质量。在这些尝试中,用多天线技术所提供的更多的自由度来缓解小区边缘用户的服务性能下降是最有潜力的方向。同时传统的4天线、8天线大功率基站系统对基站系统收发信机链路模块的设计难度高,如果将大功率均分到更大规模天线后,如16天线、64天线,将大大降低单天线功率,对基站系统收发信机链路设计难度大大降低。因此,大规模智能天线通信将成为一种发展趋势,而耦合校准网络作为大规模智能天线的关键部件之一,它的实现不但直接影响到大规模智能天线的波束赋形效果,而且间接影响到基站系统的模块架构设计。
如图1所示,在中国专利CN2755871Y中给出一种直线排列智能天线阵的耦合校准网络装置,包含N个天线阵元、N个耦合器和若干个功分器/合路器(N≥2)。N个天线阵元(11)成直线排列成直线天线阵;耦合器是微带定向耦合器,由两条近距离的金属平行微带组成;N个微带定向耦合器与若干个功分器/合路器制作在一块耦合校准网络电路板(12)上,该电路板设置在直线天线阵辐射方向的后面,N个微带定向耦合器在耦合校准网 络电路板上的分布随N个天线阵元一一对应地分布;一块金属反射板(13),设置在耦合校准网络电路板后面,使直线天线阵实现定向覆盖。此外,该装置还包括是耦合校准网络与天线阵元的射频连接器14、8个天线阵输入/输出接头15、和1个校准口输入/输出接头16。该专利天线阵、耦合校准网络、反射板各为单独板块,未集成在同一介质板上,不利于基站系统的集成化;天线阵输入/输出接头及校准口输入/输出接头与基站系统相连是通过在耦合校准网络边缘引出射频连接器或通过直接焊接电缆引出,对于大规模天线阵,必然需要增加射频连接器或者焊接线缆数量,如此,会显得杂乱繁琐,不利于基站系统的小型化和生产。
如图2所示,在中国专利CN103746193A中公开了一种智能天线及其校准装置,包括反射板(21)、振子(22)、端盖(23)及连接反射板(21)与端盖(23)的安装板(24),其中,智能天线还包括校准装置;校准装置包括介质板(25)、多个接头(26)及校准网络(27);校准网络(27)印制于介质板的表面,包括多个功率分配器形成的功率分配网络及多个定向耦合器;功率分配器网络的任一分路端口连接一定向耦合器;接头内芯直接与功率分配网络的合路端口或定向耦合器的信号输入端口连接,且一接头对应一端口;校准装置固定于安装板的一侧;安装板(24)设有至少一条折弯条(241),折弯条(241)贯穿校准装置固定于反射板(21)上。该专利振子与校准网络之间通过焊接线缆(28)连接,若为大规模天线阵,线缆数量纵多,不利于生产;振子与校准网络之间是垂直装置关系,装配时还需借助一条折弯条(241)来固定装置,不利于后续生产,系统集成度不高。
因此,需要提出一种新的方案,以减小天线尺寸、提高基站系统集成化及小型化性能,便于大规模生产,提高系统可靠性。
发明内容
为解决现有存在的技术问题,本发明实施例主要期望提供一种无线阵耦合校准网络装置及校准方法、存储介质。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种天线阵耦合校准网络装置,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接。
本发明实施例又提供了一种天线阵耦合校准网络校准方法,所述方法通过天线阵耦合校准网络装置执行,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接;来自基站系统发射通道的射频信号分别通过所述第一射频连接器输入,经由耦合校准网络耦合作用并合成一路校准信号,该校准信号再通过所述第二射频连接器输出到基站系统的校准链路。
本发明实施例又提供了一种天线阵耦合校准网络校准方法,所述方法通过天线阵耦合校准网络装置执行,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的 另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接;来自基站系统校准链路的校准信号通过所述第二射频连接器输入,经由耦合校准网络分成多路信号并耦合作用后,分别由所述第一射频连接器输出到基站系统的接收通道。
本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行上述的天线阵耦合校准网络校准方法。
本发明实施例中,将天线阵列、耦合校准网络、金属反射板全部集成到同一块介质板上,且天线阵元与耦合校准网络采用过孔方式连接,增加可靠性,避免大量射频电缆的使用,可以减小天线尺寸、提高基站系统集成化及小型化性能,有利于大规模智能天线阵耦合校准网络装置的实现,便于生产调试和大规模生产,更适用于无线通信系统的普及发展。
附图说明
图1为相关专利直线排列智能天线阵的耦合校准网络装置的结构示意图;
图2为相关专利智能天线及其校准装置的结构示意图;
图3为根据本发明实施例M=16阵元的天线阵耦合校准网络装置立体结构侧视图;
图4为根据本发明实施例M=16双极化阵元的天线阵列一个实例的俯视示意图;
图5为根据本发明实施例M=16双极化阵元的天线阵列另一个实例的俯视示意图;
图6为根据本发明实施例M=16阵元耦合校准网络的结构示意图;
图7为根据本发明实施例耦合校准网络任意一个耦合单元的组成结构 示意图。
具体实施方式
为使本发明的技术方案和优点更加清楚明白,以下举实施例并参照附图,对本发明进一步详细说明。
图3是本发明实施例的M=16阵元天线阵耦合校准网络的立体结构侧视图,其中,该天线阵耦合校准网络包括:介质板31、耦合校准网络32、天线阵列、16个第一射频连接器36和一个第二射频连接器37,其中,天线阵列与耦合校准网络32分别设置在介质板31的正反两个面,介质板31中间层同时作为接地层和金属反射板34,介质板31上设有过孔38,天线阵列通过过孔38与耦合校准网络32连接。
实际应用时,介质板31为印刷电路板(PCB,Printed Circuit Board),一面设置天线阵列,一面印刷耦合校准网络32;所述介质板31中间层作为耦合校准网络32和天线阵列的接地层,同时也作为天线阵列的金属反射板34,加强天线阵列的定向辐射;
该天线阵列由16个配置为接收或发射信号的天线阵元33排列组成,所述的16个天线阵元33可以是直线排列、环形排列或者其他不规则形状排列;和/或,16个天线阵元33还可以是等间距排列或者不等间距排列;和/或,16个天线阵元33还可以是定向方式、单极化方式或者双极化方式;和/或,16个天线阵元33的定向方式可以是任意角度的,如30°、60°等;和/或,16个天线阵元33的双极化方式可以是水平垂直极化或者±45°极化。
耦合校准网络32包括微带定向耦合器和分路/合路器,微带定向耦合器的个数与天线阵元的个数相同,并且一一对应,各个天线阵元33以微带线35等形式实现并联馈电后与耦合校准网络32上对应的微带定向耦合器通过过孔38连接,这样,可以使得天线阵列与耦合校准网络能设置在同一介质 板上,还可以避免采用不利于生产的线缆焊接方式。
上述装置的下行校准工作链路流程为:基站系统发射通道的16路射频信号分别由16个第一射频连接器36输入,经耦合校准网络32耦合并以“等差损、等相移”的方式合成一路校准信号后,通过第二射频连接器37输出到基站系统的校准链路进行校准。
上述装置的上行校准工作链路流程为:来自基站系统校准链路的校准信号通过所述第二射频连接器37输入,经由耦合校准网络32以“等差损、等相移”的方式分成16路信号并耦合作用后,分别由所述16个第一射频连接器36输出到基站系统的接收通道。
所述的16个第一射频连接器36和第二射频连接器37排布在介质板31内部,非边缘延伸区域,有利于结构小型化及集成化,其他任何类似功能的可靠连接方式均可使用,不再赘述。第一射频连接器36配置为输入或输出射频信号,第二射频连接器37配置为输入或者输出校准信号,可以分别采用具有盲插、径向轴向浮动特性的射频连接器,便于与基站系统连接。
图4是天线阵列一种实例的排布示意图,是M=16双极化阵元的天线阵俯视示意图,其中,对于四个天线阵元列41、42、43、44,每个天线阵元列都包括4个双极化振子形成的天线阵元33,每个天线阵元列中各个天线阵元33关于垂直方向或者水平方向成+45°和-45°极化方向,配置为发射信号和接收信号;每个天线阵元列中上下相邻的天线阵元33两两采用微带线35等结构实现并联馈电,通过过孔38与微带定向耦合器相连。其中,各个天线阵元可以是平行、等间距分布排列,也可是交错、不等间距分布排列或者这几种方式的不同组合分布排列。天线阵元33可以是金属振子,也可以是微带结构或者贴片结构,天线阵元33可以是双极化方式,也可以是单极化方式。
出于优化性能的目的,为了加强阵元间隔离度,如图5所示,可以在 相邻的两个天线阵元列41和42、42和43、以及43和44之间分别竖向设置纵长金属隔板51、52、53,金属隔板51、52、53与金属反射板34之间采用导电连接或者电容耦合连接。为进一步优化性能,也可以以天线阵元为单位,四周都设置隔板,即可以增加与金属隔板51、52、53垂直相交的金属隔板54、55、56,同时还可以在天线阵元四周增加金属侧板57、58、59、60,金属隔板及四周侧板添加的方式不仅限于图5所示方式,所述的金属隔板可以单独设计,也可以集成在天线罩结构上,提高天线罩强度,加强天线系统安全稳定性。也可以在天线阵元上方增加小盖板等其他方式,使得每个天线阵元都有更加独立的空间,不再赘述。
图6是本发明实施例M=16阵元耦合校准网络的俯视示意图,耦合校准网络包括16个完全相同的微带定向耦合电路61、15个1:2功率分路/合路器62、16个第一射频连接器36、1个配置为校准信号输入输出的第二射频连接器37。其中,每两个相邻的微带定向耦合电路61的通过一个1:2功率分路/合路器62连接,每个微带定向耦合电路61的一端连接一个第一射频连接器36,另一端通过一个1:2功率分路/合路器62连接相邻的微带定向耦合电路,每个1:2功率分路/合路器62的两个分路端口分别连接两个微带定向耦合电路61,15个1:2功率分路/合路器的合路端口连接后接到第二射频连接器37上。
16个微带定向耦合器的个数与天线阵元的个数一致,采用两条相近的金属平行微带线,故而具有极佳的产品性能一致性。16个微带定向耦合电路61在耦合校准网络的电路板上随16个天线阵元一一分布,每个微带定向耦合器连接一个第一射频连接器,便于与基站系统的射频收发信机通信;所述的16个微带定向耦合器完全相同,便于生产及调试;所述的16个微带定向耦合器与对应的天线阵元之间电性能连接采用过孔方式,性能上更好地保证了微带定向耦合器到天线阵子的信号的幅相一致性,同时结构上 简洁集成,可靠性高便于生产。
功率分路/合路器62的个数受限于分路/合路数,图6中实施例采用了1:2功率分路/合路器,因此需要15个功率分路/合路器62来完成16路信号的分路/合路,最终合成1路信号至第二射频连接器37。若采用1:4的功率分路/合路器,在设置16个天线阵元及16个微带定向耦合器后,则只需要5个1:4的功率分路/合路器来完成16路信号的分路/合路。
图7是本发明实施例耦合校准网络中任意一个耦合单元示意图,一个耦合单元包括两个微带定向耦合器61和一个1:2功率分路/合路器,具体的,每个微带定向耦合器61包括两条微带,一条微带71的一端通过过孔38对应连接一个天线阵元33,另一端连接基站系统对应的射频收发信机的射频输入端,即连接第一射频连接器36;另一条微带72的一端接50Ω匹配负载74(也可接地),另一端连接1:2功率分路/合路器62的分路端口。图7中73为功率分路/合路器62的隔离电阻。
上述实施例是16阵元天线阵耦合校准网络装置,按照相同的原理也可以设计32、64、128等更大规模的天线阵耦合校准网络装置。本发明实施例尤其适用于大规模天线阵。
针对基站无线发射系统的校准,本发明实施例还提供了提供一种天线阵耦合校准网络校准方法,通过M(M为不小于2的整数,例如可以是16)阵元天线阵耦合校准网络装置实现,该方法包括:来自基站系统发射通道的M个射频信号分别通过M个第一射频连接器输入,经由耦合校准网络耦合作用并合成一路校准信号,该校准信号再通过所述第二射频连接器输出到基站系统的校准链路。
针对基站无线接收系统的校准,本发明实施例还提供了提供一种天线阵耦合校准网络校准方法,通过M(M为不小于2的整数,例如可以是16)阵元天线阵耦合校准网络装置实现,该方法包括:来自基站系统校准链路 的校准信号通过所述第二射频连接器输入,经由耦合校准网络分成M路信号并耦合作用后,分别由所述M个第一射频连接器输出到基站系统的接收通道。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
相应的,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行本发明实施例的上述天线阵耦合校准网络校准方法。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
综合本发明的各实施例,将天线阵列、耦合校准网络、金属反射板全部集成到同一块介质板上,且天线阵元与耦合校准网络采用过孔方式连接,能够增加可靠性,避免大量射频电缆的使用,并且可以减小天线尺寸、提高基站系统集成化及小型化性能,有利于大规模智能天线阵耦合校准网络装置的实现,便于生产调试和大规模生产,更适用于无线通信系统的普及发展。

Claims (13)

  1. 一种天线阵耦合校准网络装置,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;
    其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接。
  2. 根据权利要求1所述的装置,其中,所述耦合校准网络包括分路/合路器和M个微带定向耦合器;所述天线阵列包括M个天线阵元,所述第一射频连接器为M个,所述第二射频连接器为一个,M为不小于2的整数;
    各个所述天线阵元并联馈电后通过过孔方式连接所述耦合校准网络上对应的微带定向耦合器;
    每个所述第一射频连接器连接一个所述微带定向耦合器,所述分路/合路器的合路端口连接所述第二射频连接器。
  3. 根据权利要求2所述的装置,其中,所述M个第一射频连接器和所述第二射频连接器排布在所述介质板的内部。
  4. 根据权利要求2所述的装置,其中,每个所述微带定向耦合器包括两个微带,其中一个微带的一端通过过孔连接对应的天线阵元,另一端连接所述第一射频连接器。
  5. 根据权利要求2所述的装置,其中,所述M个天线阵元为直线排列、环形排列或者其他不规则形状排列。
  6. 根据权利要求2所述的装置,其中,所述M个天线阵元为等间距排列或者不等间距排列。
  7. 根据权利要求2所述的装置,其中,所述M个天线阵元为定向方式、 单极化方式或者双极化方式。
  8. 根据权利要求2所述的装置,其中,
    所述天线阵列中每两个相邻天线阵元列之间设置有一条纵向金属隔板;
    和/或,所述天线阵列的每两个相邻天线阵元列之间设置有一条横向金属隔板;
    和/或,所述天线阵列的外围设置有金属侧板。
  9. 根据权利要求2所述的装置,其中,所述分路/合路器的数量根据分路数和天线阵元个数确定。
  10. 根据权利要求1所述的装置,其中,所述介质板为印刷电路板PCB。
  11. 一种天线阵耦合校准网络校准方法,其中,
    所述方法通过天线阵耦合校准网络装置执行,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接;
    来自基站系统发射通道的射频信号分别通过所述第一射频连接器输入,经由耦合校准网络耦合作用并合成一路校准信号,该校准信号再通过所述第二射频连接器输出到基站系统的校准链路。
  12. 一种天线阵耦合校准网络校准方法,其中,
    所述方法通过天线阵耦合校准网络装置执行,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及一个第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所 述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述介质板的中间层同时作为接地层和金属反射板;所述第一射频连接器和第二射频连接器排布在所述介质板上,分别与所述耦合校准网络连接;
    来自基站系统校准链路的校准信号通过所述第二射频连接器输入,经由耦合校准网络分成多路信号并耦合作用后,分别由所述第一射频连接器输出到基站系统的接收通道。
  13. 一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行权利要求11或12所述的天线阵耦合校准网络校准方法。
PCT/CN2015/075139 2014-10-28 2015-03-26 一种天线阵耦合校准网络装置及校准方法、存储介质 WO2016065830A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15855760.3A EP3214773A4 (en) 2014-10-28 2015-03-26 Antenna array coupling and calibrating network device and calibrating method, and storage medium
JP2017523492A JP2017539138A (ja) 2014-10-28 2015-03-26 アンテナアレイのカップリング校正ネットワーク装置、校正方法及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410586594.9 2014-10-28
CN201410586594.9A CN105634627B (zh) 2014-10-28 2014-10-28 一种天线阵耦合校准网络装置及校准方法

Publications (1)

Publication Number Publication Date
WO2016065830A1 true WO2016065830A1 (zh) 2016-05-06

Family

ID=55856500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075139 WO2016065830A1 (zh) 2014-10-28 2015-03-26 一种天线阵耦合校准网络装置及校准方法、存储介质

Country Status (4)

Country Link
EP (1) EP3214773A4 (zh)
JP (1) JP2017539138A (zh)
CN (1) CN105634627B (zh)
WO (1) WO2016065830A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099394B (zh) * 2016-06-28 2019-01-29 武汉虹信通信技术有限责任公司 一种用于5g系统的密集阵列天线
CN107567112A (zh) * 2016-06-30 2018-01-09 中兴通讯股份有限公司 一种基站
CN107908005A (zh) * 2017-12-14 2018-04-13 潘兆坤 一种视觉共享智能穿戴设备
CN108134176B (zh) * 2017-12-28 2019-01-18 荆门市亿美工业设计有限公司 一种多并联组合的定向耦合器组
CN108767458A (zh) * 2018-05-18 2018-11-06 成都泰格微波技术股份有限公司 一种强耦合校准功能大规模mimo天线
CN110557206B (zh) * 2018-05-31 2022-09-06 康普技术有限责任公司 天线校准装置
CN108808224B (zh) * 2018-06-29 2020-12-15 京信通信技术(广州)有限公司 Massive mimo天线
WO2021000262A1 (zh) * 2019-07-02 2021-01-07 瑞声声学科技(深圳)有限公司 一种基站天线
CN110198172B (zh) * 2019-07-05 2024-05-24 中天宽带技术有限公司 一种阵列天线的校准网络和基站天线
EP3772773A1 (en) * 2019-08-08 2021-02-10 Nokia Solutions and Networks Oy Antenna housing
CN112394233B (zh) * 2019-08-16 2024-07-30 稜研科技股份有限公司 天线封装验证板
WO2021128327A1 (zh) * 2019-12-27 2021-07-01 瑞声声学科技(深圳)有限公司 基站天线
CN115275555B (zh) * 2022-08-05 2023-11-10 中国船舶集团有限公司第七二三研究所 一种集成于天线的超宽带定向耦合器
CN116192293A (zh) * 2022-12-27 2023-05-30 江苏亨鑫科技有限公司 一种新型智能天线校准网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595831A (zh) * 2004-07-08 2005-03-16 中兴通讯股份有限公司 一种tdd无线通信系统智能天线阵校准的方法及装置
US20100123473A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co. Ltd. A test point structure for rf calibration and test of printed circuit board and method thereof
CN103825104A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种td-lte基站内置合路小型化智能天线
CN204243214U (zh) * 2014-10-28 2015-04-01 中兴通讯股份有限公司 一种智能天线装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951848A (zh) * 1972-09-20 1974-05-20
JPH07112131B2 (ja) * 1989-06-02 1995-11-29 山武ハネウエル株式会社 アンテナ装置
JP3141692B2 (ja) * 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
GB2342505B (en) * 1998-10-06 2003-06-04 Telecom Modus Ltd Antenna array calibration
CN1157966C (zh) * 2001-07-20 2004-07-14 电信科学技术研究院 无线通信系统智能天线阵的耦合校准网络及耦合校准方法
US20030227420A1 (en) * 2002-06-05 2003-12-11 Andrew Corporation Integrated aperture and calibration feed for adaptive beamforming systems
FR2919433B1 (fr) * 2007-07-27 2010-09-17 Thales Sa Module d'antenne compact.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595831A (zh) * 2004-07-08 2005-03-16 中兴通讯股份有限公司 一种tdd无线通信系统智能天线阵校准的方法及装置
US20100123473A1 (en) * 2008-11-20 2010-05-20 Samsung Electronics Co. Ltd. A test point structure for rf calibration and test of printed circuit board and method thereof
CN103825104A (zh) * 2014-01-24 2014-05-28 张家港保税区国信通信有限公司 一种td-lte基站内置合路小型化智能天线
CN204243214U (zh) * 2014-10-28 2015-04-01 中兴通讯股份有限公司 一种智能天线装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214773A4 *

Also Published As

Publication number Publication date
JP2017539138A (ja) 2017-12-28
CN105634627B (zh) 2021-04-02
EP3214773A1 (en) 2017-09-06
EP3214773A4 (en) 2017-10-04
CN105634627A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016065830A1 (zh) 一种天线阵耦合校准网络装置及校准方法、存储介质
WO2016065859A1 (zh) 一种智能天线装置
US11552385B2 (en) Feed network of base station antenna, base station antenna, and base station
CN109149128B (zh) 一种5g大规模阵列天线
CN107706544B (zh) 基站天线及其天线阵列模块
WO2018001007A1 (zh) 一种用于5g系统的密集阵列天线
CN105790860B (zh) 天线耦合校准系统
EP3232510B1 (en) Interlaced polarized multi-beam antenna
CN106711622B (zh) 天线阵列和天线
CN108417961B (zh) 一种Massive MIMO阵列天线
CN107799896A (zh) 一种运用于3500MHz附近频段的TD‑LTE智能天线
CN107004954B (zh) 双频天线和天线系统
CN217641786U (zh) 一种腔体移相器及基站天线
CN207852927U (zh) 3×3Butler矩阵馈电网络及天线
Zhao et al. Broadband dual polarization antenna array for 5G millimeter wave applications
CN207602790U (zh) 一种运用于3500MHz附近频段的TD-LTE智能天线
CN113363735A (zh) 5g大规模阵列电调天线
WO2020233518A1 (zh) 天线单元和电子设备
US20200313285A1 (en) Base station antenna and antenna array module thereof
CN106558764B (zh) 一种馈电结构及双频共口径天线
CN109888509B (zh) 大规模阵列天线
CN211045721U (zh) 天线和天线阵列
CN110571520A (zh) 一种低剖面5g天线辐射单元及天线阵列
CN106898877B (zh) 一种盲插结构的密集阵列天线
CN111029741B (zh) 天线阵列结构及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855760

Country of ref document: EP