Nothing Special   »   [go: up one dir, main page]

WO2016063543A1 - 流体システム - Google Patents

流体システム Download PDF

Info

Publication number
WO2016063543A1
WO2016063543A1 PCT/JP2015/005343 JP2015005343W WO2016063543A1 WO 2016063543 A1 WO2016063543 A1 WO 2016063543A1 JP 2015005343 W JP2015005343 W JP 2015005343W WO 2016063543 A1 WO2016063543 A1 WO 2016063543A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fluid
control device
machine
rotating electrical
Prior art date
Application number
PCT/JP2015/005343
Other languages
English (en)
French (fr)
Inventor
知己 阪本
淳 須原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES15853145T priority Critical patent/ES2744915T3/es
Priority to US15/517,803 priority patent/US10352293B2/en
Priority to CN201580056239.3A priority patent/CN107076102B/zh
Priority to AU2015334312A priority patent/AU2015334312B2/en
Priority to EP15853145.9A priority patent/EP3190289B1/en
Publication of WO2016063543A1 publication Critical patent/WO2016063543A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/08Regulating, i.e. acting automatically by speed, e.g. by measuring electric frequency or liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/08Regulating, i.e. acting automatically by speed, e.g. by measuring electric frequency or liquid flow
    • F03B15/12Regulating, i.e. acting automatically by speed, e.g. by measuring electric frequency or liquid flow with retroactive action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/16Regulating, i.e. acting automatically by power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0031Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/20Application within closed fluid conduits, e.g. pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/301Pressure
    • F05B2270/3015Pressure differential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a fluid system.
  • a bypass pipe (detour) is connected in parallel, and a flow rate control valve provided in the bypass pipe is controlled to keep the flow rate on the supplied water side constant.
  • Some are controlled (see, for example, Patent Document 1).
  • a flow rate detector (flow meter) is provided on the supplied water side, and the rotational speed of the water turbine is controlled based on the flow rate detected by the flow meter.
  • the flow meter is expensive, which increases the cost of the system. Further, since a relatively long straight pipe portion is required for the flow meter to exhibit a predetermined accuracy, the installation space tends to be large and the construction cost may increase.
  • the present invention has been made paying attention to the above problem, and it is an object of the present invention to be able to control the total flow rate without using a flow meter in a fluid system having a bypass.
  • the first aspect is: A fluid machine (W) installed in a pipeline system (1) through which a fluid flows with a head; A rotating electrical machine (G) connected to a rotating shaft (9) of the fluid machine (W); A flow control valve (6) provided in the middle of a bypass (5) connected in parallel with the fluid machine (W), Based on the above-described characteristics relating to the flow rate (Q) and the effective head (H) in the fluid machine (W), which are detectable characteristics related to the rotating electrical machine (G), the fluid machine (W) Estimating the flow rate (Q) and the effective head (H), and the flow resistance characteristic line (S) showing the relationship between the effective head (H) and the total flow rate (QT) in the pipeline system (1) The total flow rate (QT) in the pipeline system (1) is estimated based on the estimated flow rate (Q) and the effective head (H), and the estimated value of the total flow rate (QT) is A control device (20) for cooperatively controlling the fluid machine (W) and the flow rate adjusting valve (6) so
  • the fluid machine (W) and the flow rate adjustment are adjusted so that the fluid machine (W) and the flow rate adjustment valve (6) are closer to their target flow rate (QT * ).
  • the valve (6) is cooperatively controlled.
  • the second aspect is the first aspect
  • the control device (20) acquires the total flow rate (QT) and the effective head (H) at a plurality of operating points of the rotating electrical machine (G), and constructs the flow resistance characteristic line (S). It is characterized by.
  • control device (20) has a function of constructing the flow resistance characteristic line (S).
  • the third aspect is the second aspect,
  • the control device (20) has a function of updating the constructed flow resistance characteristic line (S).
  • control device (20) has a function of updating the flow resistance characteristic line (S).
  • the fourth aspect is any one of the first to third aspects.
  • the control device (20) repeats the cooperative control so that the estimated value converges to the target flow rate (QT * ).
  • the estimated value converges to the target flow rate (QT * ).
  • the fifth aspect is any one of the first to fourth aspects.
  • the control device (20) includes an operating state in which a maximum amount of power is generated as a fluid system using the rotating electrical machine (G) as a generator, an operating state in which the efficiency of the rotating electrical machine (G) is maximized, and the fluid
  • the cooperative control is performed so that the operation state is one of the operation states in which the efficiency of the machine (W) is maximized.
  • the fluid machine (W) and the flow rate adjustment valve (6) are cooperatively controlled so as to achieve a highly efficient operation state.
  • the total flow rate in the fluid system having a bypass, can be controlled without using a flow meter. Therefore, cost reduction and space saving can be expected as compared with the control of the total flow rate using a flow meter.
  • the flow resistance characteristic line can be easily constructed.
  • the flow resistance characteristic line is appropriately updated, it is possible to maintain the flow rate estimation accuracy with high accuracy.
  • the fluid system can be efficiently operated.
  • FIG. 1 is a schematic diagram illustrating an entire configuration of a pipeline system including a fluid system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a control system and a power supply interconnection of the rotating electrical machine of the fluid system.
  • FIG. 3 is a diagram illustrating a characteristic map stored in advance in a control device provided in the fluid system.
  • FIG. 4 is a block diagram showing an internal configuration of the optimum operation control device provided in the control device.
  • FIG. 5 is a flowchart for explaining system loss curve construction and cooperative control according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing how the system loss curve is measured.
  • FIG. 7 is a diagram illustrating a state of cooperative operation between the water wheel of the fluid system and the flow rate adjustment valve on the characteristic map. It is a flowchart explaining the construction and cooperative control of a system loss curve according to the second embodiment.
  • FIG. 1 shows an overall schematic configuration of a pipeline system (1) including a fluid system (A) according to Embodiment 1 of the present invention.
  • a water (fluid) storage tank (2) is disposed at the upstream end of the pipeline system (1), and a water receiving tank (3) is disposed at the downstream end.
  • the water wheel (W) of the fluid system (A) is arranged in the middle of the pipeline system (1). That is, the pipe line system (1) has a drop and fluid flows, and the water turbine (W) is an example of the fluid machine of the present invention.
  • a rotating electric machine (G) is connected to the rotating shaft (9) of the water wheel (W).
  • a bypass (5) that bypasses the water turbine (W) is connected to the pipeline system (1), and an electromagnetic flow regulating valve (6) is disposed in the middle of the bypass (5). . That is, the flow regulating valve (6) is connected to the pipe system (1) in parallel with the water turbine (W). For example, the amount of water to be supplied from the storage tank (2) to the pipe system (1) Open control is performed when the maximum processing flow rate of W) is exceeded, and part of the water volume from the storage tank (2) is routed to the pipeline (1) downstream of the water turbine (W) via the detour (5) Used to return.
  • the drop from the water level of the storage tank (2) to the water level of the receiving tank (3) is the total drop (Ho)
  • the water in the storage tank (2) is the pipeline system
  • the head which is obtained by subtracting the head corresponding to the pipe resistance from 1) through the water tank (3) from the total head (Ho), is the effective head (H) at the water turbine (W).
  • FIG. 2 shows the control system and power supply interconnection of the rotating electrical machine (G).
  • the rotating electrical machine (G) is a generator, and the power generation output is converted into a DC output by the converter unit (13) and then smoothed by the smoothing capacitor (12). ) And returned to the power supply (10).
  • a control device (20) is provided in the control system.
  • the control device (20) controls the operating state of the rotating electrical machine (G) via the converter unit (13).
  • the control device (20) has a memory device storing a microcomputer and a program for operating the microcomputer, and a characteristic map (M) shown in FIG. 3 is stored therein in advance.
  • This characteristic map (M) is based on the HQ map with the vertical axis representing the effective head (H) of the pipeline system (1) and the horizontal axis representing the flow rate (Q) supplied to the water turbine (W). The characteristic which can be detected in the machine (G) and correlates with the flow rate (Q) and the effective head (H) in the water turbine (W) is recorded.
  • the characteristics correlating with the flow rate (Q) and the effective head (H) are the torque value (T), the rotation speed, and the power generation (P) of the rotating electrical machine (G). More specifically, the characteristic map (M) of this embodiment is obtained by recording a plurality of equal torque curves and a plurality of constant velocity curves on the HQ map. It is stored in the memory device constituting the control device (20) in the form of a mathematical expression (function).
  • a curve (E) connecting the vertices of the plurality of equal power generation curves is a maximum power generation curve in which the rotating electric machine (G) obtains the maximum power generation as a generator.
  • the characteristic map (M) in which the torque value (T), rotational speed (N), and power generation (P) of the rotating electrical machine (G) are recorded on the HQ map is connected to the fluid system (A). It is unrelated to the pipeline system (1) and is a characteristic map specific to the fluid system (A).
  • This system loss curve (S) is a flow resistance characteristic line specific to the pipe system (1) shown in FIG. 1.
  • the effective head (H) decreases with a quadratic curve as the flow rate (Q) increases, and its curvature has a value specific to the pipe system (1) in FIG.
  • the total flow rate (QT) and effective head (H) in the pipeline system (1) including the fluid system (A) correspond to points on the system loss curve (S).
  • the flow rate adjustment valve (6) is fully closed and water is allowed to flow only to the water turbine (W)
  • the flow rate in the water wheel (W) is reduced in the pipeline system (1) including the fluid system (A). It is the total flow rate (QT), and the point corresponding to the flow rate (Q) and effective head (H) of the water turbine (W) at that time is on the system loss curve (S).
  • the operating point of the water turbine (W) is on the system loss curve (S).
  • the flow rate in the water turbine (W) and the flow rate in the detour (5) (that is, the flow rate in the flow control valve (6))
  • the total value is the total flow rate (QT) of the pipeline system (1) including the fluid system (A), and the total flow rate (QT) and the effective head (H) at that time are points on the system loss curve (S).
  • the operation point of the water turbine (W) is not on the system loss curve (S).
  • the measured system loss curve (S) is also stored in a memory device that constitutes the control device (20) in the form of a table (numerical table) or a mathematical expression (function) in the program.
  • the control device (20) includes a speed detector (21), an optimum operation control device (22), a speed controller (23), a torque controller (24), and a current.
  • a controller (25) and a selector (26) are provided.
  • the speed detector (21) receives the output of the current sensor (27) that detects the output current of the rotating electrical machine (G) and the output of the current controller (25) and determines the rotational speed of the rotating electrical machine (G). To detect.
  • the optimum operation control device (22) Based on the rotational speed (N) detected by the speed detector (21) and the torque value (T) from the torque controller (24), the optimum operation control device (22) ) And the operation point (effective head (H) and flow rate (Q)) of the water turbine (W) on the characteristic map (M) corresponding to the torque value (T).
  • the torque command value (T * ) or the rotation speed command value is calculated so that the operation point shifts to the operation point on the maximum power generation curve (E) that is the maximum power generation.
  • the optimum operation control device (22) switches between speed control and torque control with a selector (26) according to the operation state.
  • Fig. 4 shows the internal configuration of the optimum operation control device (22) of the control device (20).
  • the optimum operation control device (22) includes a flow rate calculation unit (30), an effective head calculation unit (31), and an optimum operation command calculator (32).
  • the flow rate calculation unit (30) receives the rotational speed (N) from the speed detector (21) in FIG. 2 and the torque value (T) from the torque controller (24), and receives the characteristic map ( M)
  • the flow rate (Q) at the operating point of the rotating electrical machine (G) determined by these rotational speed (N) and torque value (T) is calculated.
  • the effective head calculation unit (31) receives the internal calculation value of the flow rate calculation unit (30) (that is, the estimated value of the flow rate (Q)) and the rotational speed (N) from the speed detector (21), The effective head (H) at the operating point on the characteristic map (M) determined by the flow rate (Q) and the rotational speed (N) is calculated. That is, the effective head calculation unit (31) estimates the effective head (H).
  • the optimum operation command calculator (32) is operated based on the flow rate (Q) calculated by the flow rate calculation unit (30) and the effective head (H) calculated by the effective head calculation unit (31).
  • FIG. 5 is a flowchart for explaining the construction of the system loss curve (S) and the cooperative control described later.
  • the rotating electrical machine (G) has its rotational speed (N) or torque value (T) controlled by the control device (20) so that it reaches the operating point (Y) on the maximum power generation curve (E).
  • Sequential search control (MPPT control, Maximum Power Point Track control) is performed (step S02).
  • MPPT control the control device (20) controls the load of the rotating electrical machine (G), that is, the converter unit (13).
  • the control device (20) changes the operating point while maintaining the closed state of the flow rate adjustment valve (6) (see step S03).
  • the torque command value (T * ) to the torque controller (24) is first set to a predetermined value of the current torque value (To), for example, 30%, and the rotating electric machine (G) drive.
  • the flow rate (Q) and the effective head (H) at this operating point are estimated (step S04).
  • the control device (20) monitors the rotational speed (N) of the rotating electrical machine (G) detected by the speed detector (21) and the torque value (T) from the torque controller (24).
  • the flow rate (Q) and effective head (H) of the operating point on the characteristic map (M) determined by the information on the rotational speed (N) and torque value (T) are converted.
  • the flow rate (Q) and effective head (H) obtained by the conversion are stored in the memory device in the control device (20) (step S05).
  • the control device (20) sequentially sets the torque command value (T * ) to the torque controller (24) to, for example, 60% value, 90% value, and 120% value of the initial torque value (To).
  • the rotating electric machine (G) is operated in the same manner as described above, and the rotational speed (N) and torque value (T) of the rotating electric machine (G) in each operating state are monitored to rotate these machines. It is converted into the flow rate (Q) and effective head (H) at the operating point on the characteristic map (M) determined by the information on speed (N) and torque value (T).
  • the operating state of the rotating electrical machine (G) may be changed by changing the rotational speed (N) or a combination of these instead of changing the torque command value (T * ).
  • control device (20) confirms whether or not information on two or more operating points necessary for constructing the system loss curve (S) has been acquired (step S06). If the required number of points is not obtained, return to step S03 to change the operating point, and based on the characteristic map (M), the flow rate (Q) and effective head (H) after the operating point change To estimate.
  • the control device (20) constructs a system loss curve (S) (step S07).
  • a system loss curve (S) (step S07).
  • the system loss curve (S) is estimated using a piping model stored in advance.
  • this piping model has a characteristic that the effective head (H) decreases in proportion to the square of the flow rate (Q), that is, the square of the flow rate (Q).
  • the characteristic curve is expressed by a table or a mathematical expression.
  • the total head (Ho) and the piping resistance coefficient of the pipeline system (1) are estimated, and the acquired plurality of Interpolate the data between operating points to derive a new system loss curve (S) for the pipeline system (1).
  • the water turbine region is actually measured by operating the water wheel (W), and the large flow rate region is measured using a mathematical formula (or numerical value) obtained based on the measurement result of the water turbine region.
  • region which cannot drive a water turbine (W) can be obtained.
  • the system loss curve (S) of the pipeline system (1) constructed in this way is recorded in the characteristic map (M) of FIG.
  • the control device (20) stores the table or mathematical expression associated with the characteristic map (M) in the memory device in the control device (20).
  • the system loss curve (S) can be constructed by acquiring data of at least two operating points.
  • the operating point (torque value (T) and rotational speed (N)) of the rotating electrical machine (G) is changed a plurality of times for estimating the system loss curve (S), etc.
  • the flow rate (Q) and the effective head (H) on the characteristic map (M) at the operating points were ascertained.
  • the system loss curve (S) of the pipeline system (1) was constructed without arranging expensive flow sensors and pressure sensors in the pipeline system (1).
  • the system loss curve (S) may be constructed at the time of system construction in which the fluid system (A) is installed in the pipeline system (1), or the constructed flow resistance characteristic line (S) is updated.
  • the function may be provided in the control device (20), and may be appropriately updated by the control device (20) as necessary after the fluid system (A) is operated.
  • steps S08 to S12 correspond to the cooperative control.
  • the control may be started from any operating point (the target flow rate (QT * ) may be a value in the water turbine region or a value in the large flow region).
  • the target flow rate (QT * ) may be a value in the water turbine region or a value in the large flow region.
  • the rotating electric machine (G) is operated with the maximum generated power as an example.
  • the flow rate adjustment valve (6) is fully closed.
  • the control device (20) can estimate the flow rate (Qa) and the effective head (Ha) at this time based on the characteristic map (M).
  • the flow rate (Qa) in the water turbine (W) is the total flow rate (QT) of the pipeline system (1).
  • the control device (20) controls the opening of the flow rate adjustment valve (6) by a small opening degree (step width) that is set in advance, and fluid (here water ) Begins to flow (step S08). Further, the control device (20) maintains the opening degree of the flow rate adjustment valve (6) as it is, while operating the rotating electrical machine (G) (rotational speed (N) or torque value (T), or Both of them are sequentially searched (MPPT control) so as to be the operating point on the maximum power generation curve (E), and the convergence of the operating point is waited (step S09).
  • G rotating electrical machine
  • N rotational speed
  • T torque value
  • E maximum power generation curve
  • the total flow rate (QT) of the pipeline system (1) is increased, and the flow rate corresponding to the point (Pb) on the system loss curve (S) from the initial flow rate (Qa) (eg, flow rate Qb) become.
  • the drop corresponding to the pipe resistance of the pipeline system (1) also increases, and the effective drop decreases from the effective drop (Ha) to the effective drop (Hb).
  • the flow rate through the water turbine (W) converges from the initial flow rate (Qa) to the flow rate (Q1) (Q1 ⁇ Qa) at the operating point on the maximum power generation curve (E) corresponding to the effective head (Hb). is doing. Therefore, the flow rate that flows through the flow rate adjustment valve (6) is the difference between the current flow rate (QT) of the pipeline system (1) (QT) and the flow rate (Q1) that flows through the water turbine (W) (Qb- Q1).
  • the control device (20) estimates the flow rate (Q) and the effective head (H) at the operating point (step S10). Since the control device (20) can grasp the current rotational speed (N) and the torque value (T), the control device (20) can determine the water turbine (W) based on the grasped values and the characteristic map (M). The flow rate (Q1) and the effective head (Hb), that is, the operating point of the water turbine (W) are estimated (step S10). When the operating point of the water turbine (W) is obtained in this way, the control device (20), based on the effective head (Hb) and the system loss curve (S) estimated in step S10, the effective head (Hb) Qb which is the total flow rate (QT) corresponding to can be estimated (step S11).
  • the total flow rate (QT) of the pipeline system (1) is calculated from the flow rate (Qa) by the control device (20) controlling the water turbine (W) and the flow rate adjustment valve (6) in a coordinated manner. While increasing to the flow rate (Qb), the flow rate of the turbine (W) itself is the flow rate (Q1) corresponding to the operating point on the maximum power generation curve (E) in the turbine region (operation region of the turbine (W)). In the rotating electric machine (G), it is possible to obtain the maximum power generation with higher efficiency. That is, the control device (20) controls the rotating electrical machine (G) to an operating state where the maximum power generation amount is obtained as the fluid system (A) using the rotating electrical machine (G) as a generator.
  • control device (20) compares the current total flow rate (QT) with the target flow rate (QT * ) (step S12), and the total flow rate (QT) converges to the target flow rate (QT * ) (for example, If both are equal), the process returns to step S10. Otherwise, the control device (20) further opens the opening of the flow rate adjustment valve (6) by the above minute opening (step width).
  • the control is sequentially repeated, and each time the minute opening increases, the search state (MPPT) is set so that the operating state of the rotating electrical machine (G) becomes the operating point on the maximum power generation curve (E) as described above. Control) and wait for convergence of the operating point (steps S08 to S12).
  • the flow rate through the flow rate adjustment valve (6) gradually increases, and the total flow rate (QT) of the pipeline system (1) is changed from the flow rate (Qb) to the maximum processing flow rate (Qm) of the water turbine (W). Increase to the target flow rate (QT * ).
  • the flow rate in the water turbine (W) decreases on the maximum power generation curve (E) toward the lower left in FIG.
  • the control device (20) allows the water turbine to move so that the estimated value of the total flow rate (QT) of the pipeline system (1) approaches the target flow rate (QT * ) of the total flow rate (QT) of the pipeline system (1).
  • (W) and the flow regulating valve (6) are coordinated and controlled.
  • the flow rate that flows through the flow control valve (6) is the difference between the target flow rate (QT * ) and the flow rate (QE) that flows through the water turbine (W). (QT-QE).
  • the total flow rate (QT) can be controlled in the large flow rate region because the system loss curve (S) is extrapolated to this region.
  • the control device (20) it is needless to say that the total flow rate (QT) in the water turbine region can be estimated by the control device (20).
  • the total flow rate can be controlled without using a flow meter in a fluid system having a bypass. Therefore, compared with what controls a total flow using a flow meter, cost reduction and space saving can be anticipated.
  • the total flow rate can be controlled in the water turbine region or in the large flow region.
  • the water turbine (W) and the flow rate regulating valve (6) are coordinated to maintain the total flow rate (QT) of the pipeline system (1) at the target flow rate (QT * ), It becomes possible to obtain the maximum power generation possible under the total flow rate (QT). That is, highly efficient operation is possible. This highly efficient operation is possible in both the water turbine area and the large flow area. Therefore, in this embodiment, for example, when a value in the water turbine region is given as the target flow rate (QT * ) of the total flow rate (QT), the flow rate adjustment valve (6) is opened by the control device (20), for example. It is also possible to perform control so that the operation point of the water turbine (W) approaches a point on the maximum power generation curve (E).
  • Embodiment 2 of the Invention >> In the second embodiment, another example of the system loss curve construction flow will be described.
  • FIG. 8 is a flowchart for explaining the construction of the system loss curve (S) according to the second embodiment.
  • This flow includes Steps S21 to S25 and Steps S07 to S12.
  • Steps S08 to S12 are the flow of the cooperative control, and are the same as those described in the first embodiment.
  • steps S21 to S25 and step S07 are the system loss curve (S) construction flow, and in particular, steps S21 to S25 are different from the first embodiment. Below, a flow is demonstrated centering on this difference location.
  • control device (20) starts the operation of the water wheel (W) or the like with the flow rate adjustment valve (6) in a fully closed state (step S21). In this state, the control device (20) sets the operating point to an appropriate initial state (step S22). Then, the control device (20) waits for a predetermined time until the operation state at the operation point is stabilized, and then estimates the operation point (step S23).
  • the rotational speed (N) of the rotating electrical machine (G) detected by the speed detector (21) and the torque value (T) from the torque controller (24) are monitored,
  • the flow rate (Q) and effective head (H) at the operating point on the characteristic map (M) determined by the information on the rotational speed (N) and torque value (T) are converted.
  • the flow rate (Q) and the effective head (H) obtained by the conversion are stored in the memory device in the control device (20) (step S24).
  • the control device (20) confirms whether or not the current operation point is the power generation output maximum point (step S25).
  • the flow rate (Q) and effective head (H) at the changed operating point are estimated.
  • the flow rate (Q) and effective head (H) obtained thereby are stored in the memory device (steps S23 to S24).
  • the system loss curve (S) can be constructed (estimated) by acquiring data for at least two operating points, but in general, the operating point can be changed repeatedly until it converges to the maximum power generation output point. Thus, it is possible to obtain a sufficient number of data for estimating the system loss curve (S).
  • the control device (20) estimates the system loss curve (S) (step S07).
  • the system loss curve (S) is estimated in the same manner as in the first embodiment.
  • the large flow rate region is extrapolated to the large flow rate region by using a mathematical formula (or a numerical value) obtained based on the measurement result of the water turbine region. Estimate the system loss curve (S) at.
  • the system loss curve (S) estimated as described above can also be used for the cooperative control (steps S08 to S12). Steps S08 to S12 shown in FIG. 8 are the same as those in the first embodiment.
  • the total flow rate can be controlled without using a flow meter. That is, this embodiment can obtain the same effect as that of the first embodiment.
  • control is performed so that the operating state of the rotating electrical machine (G) reaches the maximum power generation state, but the present invention is not limited to this, and the rotating electrical machine (G) is in a predetermined operating state. It is sufficient to control.
  • a characteristic map (a curve indicating the efficiency of the rotating electrical machine (G), a curve indicating the efficiency of the water turbine (W), or a curve indicating the efficiency of the converter unit (13) ( The information in M) is stored in the control device (20), and the vehicle is operated at the operating point at which the efficiency obtained from this curve is maximized.
  • the operating state where the efficiency of the rotating electrical machine (G) is maximized the fluid machine (W).
  • the operation state in which the efficiency of () is maximized or the operation state in which the efficiency of the converter section (13) is maximized is used.
  • the system loss curve (S) with the effective head (H) on the vertical axis and the flow rate (Q) on the horizontal axis is adopted as the flow resistance characteristic line of the pipeline system (1).
  • the system loss curve with the vertical axis indicating the pressure difference (effective pressure difference) before and after the turbine (W) Equivalent to system loss curve (S) with effective head (H) on the axis. That is, a system loss curve in which the vertical axis represents the pressure difference before and after the water turbine (W) and the horizontal axis represents the flow rate (Q) may be used.
  • the operating point on the characteristic map (M) of the rotating electrical machine (G) is grasped by the combination of the rotational speed (N) and the torque value (T).
  • a combination of (N) and generated power (P), or a combination of torque value (T) and generated power (P) may be used. That is, the characteristics of the rotating electrical machine (G) used for the characteristic map (M) are the characteristics of the rotating electrical machine (G) correlated with the flow rate (Q) and the effective head (H) in the water turbine (fluid machine), and If it is a detectable characteristic, it is not limited to the rotational speed (N) and the torque value (T).
  • the flow rate (Q) and effective head (H) of the water turbine (W) can be correlated with the characteristics (detectable) of the rotating electrical machine (G), the fluid system (A)
  • the form of the water turbine (W) and the rotating electric machine (G) to be configured is not particularly limited. For example, even when the operation of the water turbine (W) cannot be varied by the rotating electric machine (G), the flow rate (Q) and the effective head (H) can be estimated as in the above embodiment.
  • control apparatus (20) controlled both the rotary electric machine (G) and the flow regulating valve (6)
  • the 1st control apparatus which controls a rotary electric machine (G) And a second control device for controlling the flow rate adjusting valve (6), and the operation state of the rotating electrical machine (G) and the valve opening degree of the flow rate adjusting valve (6) are entered between the two control devices.
  • the control device of the present invention may be constituted by the first and second control devices.
  • the present invention is useful as a fluid system.
  • a Fluid system G Rotating electrical machine W Turbine (fluid machine) DESCRIPTION OF SYMBOLS 1 Pipe line system 5 Detour 6 Flow control valve 9 Rotating shaft 20 Control apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

回転電気機械(G)に関する検出可能な特性であって、流体機械(W)における流量(Q)と有効落差(H)とに相関する特性に基づいて、流体機械(W)の流量(Q)と有効落差(H)を制御装置(20)で推定する。制御装置(20)では推定したこれらの値と流動抵抗特性線(S)とに基づいて管路系(1)における総流量(QT)を推定し、総流量(QT)の推定値が管路系(1)における総流量(QT)の目標流量(QT*)に近づくように流体機械(W)と流量調整弁(6)とを協調制御する。

Description

流体システム
 本発明は、流体システムに関するものである。
 例えば、水車で発電機を駆動する流体システムには、バイパス管路(迂回路)が並列接続され、バイパス管路に設けられた流量制御弁を制御することによって、被給水側の流量を一定に制御するものがある(例えば特許文献1を参照)。この特許文献の例では、被給水側に流量検出器(流量計)を設けて、流量計で検出された流量に基づいて水車の回転数を制御している。
特開2004-360482号公報
 しかしながら、一般的に流量計は高価であり、システムのコストアップの要因になる。また、流量計に所定の精度を発揮させるには比較的長い直管部が必要なので、設置スペースが大きくなりがちであるとともに、工事費も増大する可能性がある。
 本発明は上記の問題に着目してなされたものであり、迂回路を有した流体システムにおいて、流量計を用いなくても総流量の制御ができるようにすることを目的としている。
 上記の課題を解決するため、第1の態様は、
 落差を有して流体が流れる管路系(1)に設置される流体機械(W)と、
 上記流体機械(W)の回転軸(9)に連結された回転電気機械(G)と、
 上記流体機械(W)と並列に接続された迂回路(5)の途中に設けられた流量調整弁(6)と、
 上記回転電気機械(G)に関する検出可能な特性であって、上記流体機械(W)における流量(Q)と有効落差(H)とに相関する上記特性に基づいて、上記流体機械(W)における上記流量(Q)と上記有効落差(H)とを推定するとともに、上記有効落差(H)と管路系(1)における総流量(QT)との関係を示す流動抵抗特性線(S)と、推定した上記流量(Q)と上記有効落差(H)に基づいて、上記管路系(1)における上記総流量(QT)を推定し、該総流量(QT)の推定値が上記管路系(1)における総流量(QT)の目標流量(QT*)に近づくように上記流体機械(W)と上記流量調整弁(6)とを協調制御する制御装置(20)と、
を備えたことを特徴とする。
 この構成では、推定された総流量(QT)を用いて、流体機械(W)と流量調整弁(6)とがその目標流量(QT*)に近づくように、流体機械(W)と流量調整弁(6)とが協調制御される。
 また、第2の態様は、第1の態様において、
 上記制御装置(20)は、上記回転電気機械(G)の複数の運転点における総流量(QT)と上記有効落差(H)を取得して、上記流動抵抗特性線(S)を構築することを特徴とする。
 この構成では、制御装置(20)が流動抵抗特性線(S)を構築する機能を有する。
 また、第3の態様は、第2の態様において、
 上記制御装置(20)は、構築した上記流動抵抗特性線(S)を更新する機能を有することを特徴とする。
 この構成では、制御装置(20)が流動抵抗特性線(S)を更新する機能を有する。
 また、第4の態様は、第1から第3の態様の何れかにおいて、
 上記制御装置(20)は、上記推定値が上記目標流量(QT*)に収束するように、上記協調制御を繰り返すことを特徴とする。
 この構成では、推定値が上記目標流量(QT*)に収束する。
 また、第5の態様は、第1から第4の態様の何れかにおいて、
 上記制御装置(20)は、上記回転電気機械(G)を発電機とする流体システムとして最大発電量となる運転状態、上記回転電気機械(G)の効率が最大となる運転状態、及び上記流体機械(W)の効率が最大となる運転状態の何れかの運転状態となるように、上記協調制御を行うことを特徴とする。
 この構成では、高効率な運転状態となるように、流体機械(W)と流量調整弁(6)とが協調制御される。
 第1の態様によれば、迂回路を有した流体システムにおいて、流量計を用いなくても総流量の制御が可能になる。したがって、流量計を用いて総流量を制御するものと比べ、低コスト化と省スペース化が期待できる。
 また、第2の態様によれば、容易に流動抵抗特性線を構築することができる。
 また、第3の態様によれば、流動抵抗特性線が適宜更新されるので、流量の推定精度を高精度に保つことが可能になる。
 また、第4の態様によれば、確実に必要な総流量を得ることが可能になる。
 また、第5の態様によれば、流体システムを効率的に運用することが可能になる。
図1は、実施形態1に係る流体システムを含む管路系の全体構成を示す概略図である。 図2は、流体システムの回転電気機械の制御系及び電源連系を示すブロック図である。 図3は、流体システムに備える制御装置に予め記憶する特性マップを示す図である。 図4は、制御装置に備える最適運転制御装置の内部構成を示すブロック図である。 図5は、実施形態1に係るシステムロスカーブの構築と協調制御を説明するフローチャートである。 図6は、システムロスカーブの測定の様子を示す説明図である。 図7は、流体システムの水車と流量調整弁との協調運転の様子を特性マップ上で説明した図である。 実施形態2に係るシステムロスカーブの構築と協調制御を説明するフローチャートである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、又はその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 図1は、本発明の実施形態1の流体システム(A)を含む管路系(1)の全体概略構成を示す。同図において、管路系(1)の上流端には水(流体)の貯留槽(2)が配置され、下流端には受水槽(3)が配置されている。管路系(1)の途中には、流体システム(A)の水車(W)が配置されている。すなわち、管路系(1)は、落差を有して流体が流れるものであり、この水車(W)は、本発明の流体機械の一例である。この水車(W)の回転軸(9)には回転電気機械(G)が接続されている。また、管路系(1)には、水車(W)を迂回する迂回路(5)が接続され、この迂回路(5)の途中に電磁式の流量調整弁(6)が配置されている。すなわち、流量調整弁(6)は、管路系(1)に水車(W)と並列に接続されており、例えば貯留槽(2)から管路系(1)に供給すべき水量が水車(W)の最大処理流量を超えるときに開制御されて、貯留槽(2)からの水量の一部を、迂回路(5)を経て水車(W)の下流側の管路系(1)に戻すために使用する。
 図1の管路系(1)では、貯留槽(2)の水面から受水槽(3)の水面までの落差が総落差(Ho)であり、貯留槽(2)の水が管路系(1)を経て受水槽(3)に至るまでの管路抵抗に相当する落差を総落差(Ho)から減じた落差が水車(W)での有効落差(H)である。
 図2は、回転電気機械(G)の制御系及び電源連系を示す。同図において、回転電気機械(G)は、発電機であり、その発電出力はコンバータ部(13)により直流出力に変換された後、平滑コンデンサ(12)により平滑され、系統連系装置(11)に出力されて、電源(10)に戻される。
 また、制御系には、制御装置(20)が設けられている。制御装置(20)はコンバータ部(13)を介して回転電気機械(G)の運転状態を制御する。この例では制御装置(20)は、マイクロコンピュータとそれを動作させるプログラムを格納したメモリディバイスを有しており、内部には、予め、図3に示す特性マップ(M)が記憶されている。この特性マップ(M)は、縦軸を管路系(1)の有効落差(H)、横軸を水車(W)に供給される流量(Q)としたH-Qマップ上に、回転電気機械(G)において検出可能で且つ水車(W)における流量(Q)と有効落差(H)とに相関する特性を記録したものである。この例では、流量(Q)と有効落差(H)とに相関する特性は、回転電気機械(G)のトルク値(T)、回転速度、発電力(P)ある。より具体的に本実施形態の特性マップ(M)は、複数の等トルク曲線と、複数の等速度曲線をH-Qマップ上に記録したものであり、テーブル(数表)や、プログラム内の数式(関数)という形で、制御装置(20)を構成するメモリディバイスに格納されている。
 この特性マップ(M)において、回転電気機械(G)に負荷をかけずトルク零値(T=0)とした場合の無拘束速度曲線と回転数零値(N=0)の等速度曲線との間の領域は、水車(W)が水流により回転する水車領域(運転可能領域)であり、回転電気機械(G)は、この水車領域において、水車(W)により回転駆動されて発電機として運転されるのを基本とする。上記無拘束速度曲線よりも左側の領域は、水車ブレーキ領域(力行領域)である。
 上記水車領域において、複数の等トルク曲線は上記無拘束速度曲線(T=0)に沿い、マップ上、流量(Q)の増大に応じてトルク値も増大する。また、複数の等速度曲線は回転数零値(N=0)の等速度曲線に沿い、有効落差(H)が大きくなるほど回転数も上昇する。更に、破線で示した等発電力曲線は下に凸な曲線であって、有効落差(H)及び流量(Q)の増大に応じて発電力も増大する。この複数の等発電力曲線の頂点を結ぶ曲線(E)は、回転電気機械(G)が発電機として最大発電力を得る最大発電力曲線である。このH-Qマップ上に回転電気機械(G)のトルク値(T)、回転速度(N)、発電力(P)を記録した特性マップ(M)は、流体システム(A)に接続される管路系(1)とは無関係であり、流体システム(A)に固有の特性マップである。
 そして、特性マップ(M)に、実際の運転で測定した管路系(1)のシステムロスカーブ(S)を記録する。このシステムロスカーブ(S)の測定動作の詳細は後述する。このシステムロスカーブ(S)は、図1に示した管路系(1)に固有の流動抵抗特性線であって、流量(Q)=0のときの有効落差(H)が総落差(Ho)であり、流量(Q)の増大に応じて有効落差(H)が二次曲線的に減少する特性を持ち、その曲率は図1の管路系(1)固有の値を持つ。流体システム(A)を含む管路系(1)における総流量(QT)とその際の有効落差(H)とは、システムロスカーブ(S)上の点に対応する。例えば、流量調整弁(6)を全閉状態にして、水車(W)にのみ水を流したとすると、水車(W)における流量が、流体システム(A)を含む管路系(1)の総流量(QT)であり、その際の水車(W)の流量(Q)と有効落差(H)に対応する点がシステムロスカーブ(S)上にある。換言すると、水車(W)の運転点は、システムロスカーブ(S)上にある。
 また、水車(W)と迂回路(5)の両方に水を流したとすれば、水車(W)における流量と迂回路(5)における流量(すなわち流量調整弁(6)における流量)との合計値が、流体システム(A)を含む管路系(1)の総流量(QT)であり、総流量(QT)とその際の有効落差(H)がシステムロスカーブ(S)上の点に対応し、水車(W)の運転点はシステムロスカーブ(S)上にはない。
 なお、測定したシステムロスカーブ(S)もテーブル(数表)や、プログラム内の数式(関数)という形で、制御装置(20)を構成するメモリディバイスに格納する。
 図2に戻って、制御装置(20)の内部には、速度検出器(21)と、最適運転制御装置(22)と、速度制御器(23)と、トルク制御器(24)と、電流制御器(25)と、選択器(26)とが備えられる。速度検出器(21)は、回転電気機械(G)の出力電流を検出する電流センサ(27)の出力と電流制御器(25)の出力とを受けて回転電気機械(G)の回転速度を検出する。
 最適運転制御装置(22)は、速度検出器(21)で検出した回転速度(N)と、トルク制御器(24)からのトルク値(T)とに基づいて、これ等の回転速度(N)及びトルク値(T)に対応する特性マップ(M)上の水車(W)の運転点(有効落差(H)及び流量(Q))を演算(すなわち推定)し、この水車(W)の運転点から、最大発電力となる最大発電力曲線(E)上の運転点に移行するように、トルク指令値(T*)又は回転速度指令値を演算する。また、最適運転制御装置(22)は、運転状態に応じて速度制御かトルク制御かを選択器(26)で切り替える。
 制御装置(20)の最適運転制御装置(22)の内部構成を図4に示す。最適運転制御装置(22)は、流量演算部(30)と、有効落差演算部(31)と、最適運転指令演算器(32)とを有する。流量演算部(30)は、図2の速度検出器(21)からの回転速度(N)と、トルク制御器(24)からのトルク値(T)とを受けて、図3の特性マップ(M)上のこれ等の回転速度(N)及びトルク値(T)で決まる回転電気機械(G)の運転点での流量(Q)を演算する。また、有効落差演算部(31)は、流量演算部(30)の内部演算値(すなわち、流量(Q)の推定値)と速度検出器(21)からの回転速度(N)とを受け、この流量(Q)及び回転速度(N)で決まる特性マップ(M)上の運転点での有効落差(H)を演算する。すなわち、有効落差演算部(31)は、有効落差(H)を推定する。更に、最適運転指令演算器(32)は、流量演算部(30)で演算された流量(Q)と有効落差演算部(31)で演算された有効落差(H)とに基づいて、演算で求めた流量(Q)と有効落差(H)とで決まる特性マップ(M)上の水車(W)の運転点から最大発電力曲線(E)上の最大発電力となる運転点に移動するためのトルク指令値又は回転速度指令値を演算する。
 <管路系(1)のシステムロスカーブ(S)の測定>
 システムロスカーブ(S)の測定の詳細は次の通りである。図5は、システムロスカーブ(S)の構築と、後述の協調制御を説明するフローチャートである。管路系(1)の流量調整弁(6)が閉じた状態において(ステップS01参照)、回転電気機械(G)が、当初、特性マップ(M)上の水車領域内の任意の運転点、例えば、図6の特性マップ(M)上の最大発電力曲線(E)上の運転点(Y)で運転されている場合を例示して説明する(以下、この運転点(Y)を発電出力最大点とも呼ぶ)。この時、回転電気機械(G)は、制御装置(20)によって、最大発電力曲線(E)上の運転点(Y)になるように、その回転速度(N)又はトルク値(T)が逐次探索制御(MPPT制御、Maximum Power Point Track制御)されている(ステップS02)。なお、MPPT制御では、制御装置(20)は、回転電気機械(G)の負荷、すなわちコンバータ部(13)を制御する。
 そして、制御装置(20)は、流量調整弁(6)の閉状態を維持したまま、運転点を変更する(ステップS03参照)。例えば、トルク制御器(24)へのトルク指令値(T*)を、最初は、現在のトルク値(To)の所定%値、例えば30%値に設定して、回転電気機械(G)を運転する。この運転状態が安定するまで所定時間待った後、この運転点における流量(Q)及び有効落差(H)を推定する(ステップS04)。具体的に制御装置(20)は、速度検出器(21)で検出した回転電気機械(G)の回転速度(N)と、トルク制御器(24)からのトルク値(T)をモニタして、これ等の回転速度(N)及びトルク値(T)の情報で決まる特性マップ(M)上の運転点の流量(Q)及び有効落差(H)に変換する。そして、変換して得た流量(Q)及び有効落差(H)を制御装置(20)内のメモリディバイスに格納する(ステップS05)。
 その後、制御装置(20)は、トルク制御器(24)へのトルク指令値(T*)を、当初のトルク値(To)の例えば60%値、90%値、120%値に順次設定して、各々、回転電気機械(G)を上記と同様に運転し、各運転状態での回転電気機械(G)の回転速度(N)とトルク値(T)をモニタして、これ等の回転速度(N)及びトルク値(T)の情報で決まる特性マップ(M)上の運転点の流量(Q)及び有効落差(H)に変換する。尚、トルク指令値(T*)は無拘束速度曲線のT=0以上の値に設定する。なお、回転電気機械(G)の運転状態の変更は、トルク指令値(T*)の変更に代えて、回転速度(N)を変更したり、これ等を組み合わせて変更しても良い。
 そして、制御装置(20)は、システムロスカーブ(S)の構築に必要な、2点以上の運転点の情報を取得できたかどうかを確認する(ステップS06)。もし、必要な点数のデータが得られていない場合には、ステップS03に戻って運転点を変更し、運転点変更後の流量(Q)及び有効落差(H)を特性マップ(M)に基づいて推定する。
 一方、十分な数の運転点の情報が得られたら、制御装置(20)は、システムロスカーブ(S)を構築する(ステップS07)。この例では、図6に示したように、複数(上記説明では4点)の運転点(Z1)~(Z4)が得られたので、これ等の運転点のデータを用いて管路系(1)のシステムロスカーブ(S)を推定する。このシステムロスカーブ(S)の推定については、具体的には、予め記憶した配管モデルを使用して算出する。この配管モデルは、図3に示したシステムロスカーブ(S)から判るように流量(Q)の2乗に比例して有効落差(H)が減少する特性、すなわち、流量(Q)の2乗に比例して管路抵抗が増大する特性に基づいており、特性曲線がテーブル又は数式で表現されている。そして、取得した複数の運転点のデータと上記特性曲線で示された配管モデルとに基づいて、管路系(1)の総落差(Ho)及び配管抵抗係数を推定すると共に、取得した複数の運転点間のデータを補間して、管路系(1)の新たなシステムロスカーブ(S)を導出する。このシステムロスカーブ(S)の導出は、上記水車領域、水車ブレーキ領域、及び回転数零値(N=0)の等速度曲線の右側の領域(以下、説明の便宜のため大流量領域と呼ぶ)で行う。なお、この例では、水車領域については、実際に水車(W)を運転して測定を行い、上記大流量領域については、水車領域の測定結果に基づいて得た数式(或いは数値)を用いて、上記大流量領域に点を外挿する。それにより、水車(W)を運転させることができない上記大流量領域におけるシステムロスカーブ(S)を得ることができる。このように構築した管路系(1)のシステムロスカーブ(S)を図3の特性マップ(M)に記録する。具体的に制御装置(20)は、特性マップ(M)と関連づけたテーブルや数式として制御装置(20)内のメモリディバイスに格納する。尚、システムロスカーブ(S)の構築は、少なくとも2つの運転点のデータを取得すれば可能である。
 本実施形態では、システムロスカーブ(S)の推定について、既述の通り、回転電気機械(G)の運転点(トルク値(T)と回転速度(N))を複数回変更し、それ等の運転点での特性マップ(M)上の流量(Q)及び有効落差(H)を各々把握した。すなわち、管路系(1)に高価な流量センサや圧力センサなどのセンサ類を配置しないで、管路系(1)のシステムロスカーブ(S)を構築した。
 また、システムロスカーブ(S)の構築のタイミングは、流体システム(A)を管路系(1)に設置するシステム構築時に行っても良いし、構築した流動抵抗特性線(S)を更新する機能を制御装置(20)に設けておいて、流体システム(A)の稼働後に必要に応じて、制御装置(20)によって適宜更新しても良い。
 <水車(W)と流量調整弁(6)との協調運転>
 この流体システム(A)では、流量調整弁(6)を操作すると水車(W)の運転点が変動し、水車(W)の運転点を変更すると迂回路(5)の流量が変動することになる。そこで、この流体システム(A)では、水車(W)と流量調整弁(6)の協調制御、すなわち、水車(W)の状態と、流量調整弁(6)の状態の双方を考慮した制御が必要になる。
 以下では、管路系(1)に流す総流量(QT)の目標流量(QT*)が水車(W)の最大処理流量(Qm)を超える場合を例にして、水車(W)と流量調整弁(6)との協調運転(制御装置(20)による水車(W)と流量調整弁(6)の協調制御)を説明する。
 図5のフローチャートでは、ステップS08~ステップS12が上記協調制御に対応する。水車(W)の当初の運転状態として、何れの運転点(目標流量(QT*)としては、水車領域の値でもでもよいし、大流量領域の値でもよい)から制御を初めてもよいが、図7の特性マップ(M)で例えばシステムロスカーブ(S)上の流量(Qa)及び有効落差(Ha)の運転点(Pa)、すなわち、システムロスカーブ(S)と最大発電力曲線(E)との交点で運転されて、回転電気機械(G)が最大発電電力で運転されている場合を例に挙げて説明する。この時、流量調整弁(6)は全閉状態である。なお、制御装置(20)は、このときの流量(Qa)及び有効落差(Ha)を特性マップ(M)に基づいて推定することができる。流量調整弁(6)が全閉状態の場合は、水車(W)における流量(Qa)が、管路系(1)の総流量(QT)ということになる。
 いま、管路系(1)に流す総流量(QT)の目標流量(QT*)として水車(W)の最大処理流量(Qm)を越える流量を要求されたとする。この目標流量(QT*)は、図7の特性マップ(M)では、例えば、水車(W)の最大処理流量(Qm)(すなわち水車領域の図中右側境界(回転数零値(N=0)の等速度曲線上の流量)を越えたシステムロスカーブ(S)上の点に対応した流量であるものとする。
 協調制御を開始すると、制御装置(20)は、流量調整弁(6)の開度を予め設定した微小開度(ステップ幅)だけ開制御して、迂回路(5)に流体(ここでは水)を流し始める(ステップS08)。更に、制御装置(20)は、流量調整弁(6)の開度をそのままの状態に維持しつつ、回転電気機械(G)の運転状態(回転速度(N)又はトルク値(T)、或いはその双方)を最大発電力曲線(E)上の運転点になるように逐次探索制御(MPPT制御)し、その運転点の収束を待つ(ステップS09)。勿論、発電出力最大点以外の運転点に制御しても、総流量の制御は可能であり、ここで発電出力最大点に制御したのは例示にすぎない。
 これらの制御により、管路系(1)の総流量(QT)は増量し、当初の流量(Qa)から、システムロスカーブ(S)上の点(Pb)に対応した流量(例えば流量Qb)になる。この時、総流量(QT)の増量に伴い、管路系(1)の配管抵抗に相当する落差分も増大して、有効落差は有効落差(Ha)から有効落差(Hb)に減少する。一方、水車(W)を流れる流量は、当初の流量(Qa)から、有効落差(Hb)に対応する最大発電力曲線(E)上の運転点における流量(Q1)(Q1<Qa)に収束している。従って、流量調整弁(6)に流れる流量は、現在の管路系(1)の総流量(QT)であるQbと、水車(W)を流れる流量(Q1)との差の流量(Qb-Q1)である。
 そして、制御装置(20)はその運転点における流量(Q)及び有効落差(H)の推定を行う(ステップS10)。制御装置(20)では、現在の回転速度(N)及びトルク値(T)を把握できるので、制御装置(20)は、把握したこれらの値と特性マップ(M)に基づいて、水車(W)における流量(Q1)、有効落差(Hb)、すなわち水車(W)の運転点を推定するのである(ステップS10)。このようにして、水車(W)の運転点が求まると、制御装置(20)は、ステップS10において推定した有効落差(Hb)及びシステムロスカーブ(S)に基づいて、その有効落差(Hb)に対応する総流量(QT)であるQbを推定することができる(ステップS11)。
 以上のように、管路系(1)の総流量(QT)は、制御装置(20)が、水車(W)と流量調整弁(6)とを協調制御することにより、流量(Qa)から流量(Qb)に増量しつつ、水車(W)の流量自体は、水車領域(水車(W)の運転可能領域)内において、最大発電力曲線(E)上の運転点に対応した流量(Q1)に調整されるので、回転電気機械(G)ではより高効率で最大発電量を得ることが可能である。つまり、制御装置(20)は、回転電気機械(G)を発電機とする流体システム(A)として最大発電量となる運転状態に、該回転電気機械(G)を制御するのである。
 そして、制御装置(20)は、現在の総流量(QT)と目標流量(QT*)とを比較し(ステップS12)、総流量(QT)が目標流量(QT*)に収束した場合(例えば両者が等しくなった場合)にはステップS10の処理に戻り、そうでない場合には、制御装置(20)は、流量調整弁(6)の開度を更に上記微小開度(ステップ幅)だけ開制御することを順次繰り返し、その微小開度増大する毎に、上記と同様に回転電気機械(G)の運転状態を最大発電力曲線(E)上の運転点になるように逐次探索制御(MPPT制御)し、その運転点の収束を待つ(ステップS08~ステップS12)。
 これらの制御により、流量調整弁(6)を流れる流量は次第に増量し、管路系(1)の総流量(QT)は流量(Qb)から、水車(W)の最大処理流量(Qm)を越える、目標流量(QT*)に向って増量する。一方、水車(W)における流量は最大発電力曲線(E)上を図7中左斜め下方に向って減少して行く。つまり、制御装置(20)は、管路系(1)の総流量(QT)の推定値が、管路系(1)における総流量(QT)の目標流量(QT*)に近づくように水車(W)と流量調整弁(6)とを協調制御しているのである。
 総流量(QT)が目標流量(QT*)に収束したとき、流量調整弁(6)を流れる流量は、目標流量(QT*)と水車(W)を流れる流量(QE)との差の流量(QT-QE)である。このように、上記大流量領域において総流量(QT)を制御できるのは、システムロスカーブ(S)をこの領域にまで外挿したからである。勿論、制御装置(20)によって水車領域における総流量(QT)の推定ができることは言うまでもない。
 <本実施形態の効果>
 以上の通り、本実施形態によれば、迂回路を有した流体システムにおいて、流量計を用いなくても総流量の制御が可能になる。したがって、流量計を用いて総流量を制御するものと比べ、低コスト化と省スペース化を期待できる。また、この総流量の制御は、上記水車領域における運転でも、上記大流量領域でも可能である。
 また、本実施形態では、水車(W)と流量調整弁(6)を協調制御することにより、管路系(1)の総流量(QT)を目標流量(QT*)に維持しつつ、該総流量(QT)の下で可能な最大発電量を得ることが可能になる。つまり、高効率な運転が可能になる。この高効率な運転は、水車領域及び大流量領域の双方で可能である。したがって、本実施形態では、例えば、総流量(QT)の目標流量(QT*)として水車領域内の値が与えられた場合に、制御装置(20)によって、例えば流量調整弁(6)を開く制御を行って、最大発電力曲線(E)上の点に水車(W)の運転点が近づくように制御することも可能である。
 また、流体システム(A)の稼働後に、必要に応じてシステムロスカーブ(S)を制御装置(20)によって更新すれば、流量及び有効落差の推定精度を高精度に保つことが可能になる。
 《発明の実施形態2》
 実施形態2では、システムロスカーブ構築フローの他の例を説明する。
 図8は、実施形態2に係るシステムロスカーブ(S)の構築を説明するフローチャートである。このフローには、ステップS21~ステップS25、ステップS07~ステップS12が含まれ、ステップS08~ステップS12が上記協調制御のフローであり、実施形態1で説明したものと同じである。一方、ステップS21~ステップS25、及びステップS07がシステムロスカーブ(S)の構築フローであり、とりわけステップS21~ステップS25が実施形態1と異なっている。以下では、この相異箇所を中心にフローを説明する。
 本実施形態でも、図8に示すように、制御装置(20)は、流量調整弁(6)を全閉状態として、水車(W)等の運転を開始する(ステップS21)。その状態で、制御装置(20)は、適当な初期状態に運転点を設定する(ステップS22)。そして、制御装置(20)は、その運転点での運転状態が安定するまで所定時間待った後、運転点の推定を行う(ステップS23)。ここでの運転点の推定でも、速度検出器(21)で検出した回転電気機械(G)の回転速度(N)と、トルク制御器(24)からのトルク値(T)をモニタして、これ等の回転速度(N)及びトルク値(T)の情報で決まる特性マップ(M)上の運転点の流量(Q)及び有効落差(H)に変換する。そして、変換して得た流量(Q)及び有効落差(H)を制御装置(20)内のメモリディバイスに格納する(ステップS24)。
 次に、制御装置(20)は、現在の運転点が発電出力最大点か否かを確認する(ステップS25)。確認の結果、例えば、発電出力最大点に到達していなかったら、ステップS22に戻って運転点を変更した後に、変更後の運転点における流量(Q)及び有効落差(H)の推定を行うとともに、それにより得た流量(Q)及び有効落差(H)をメモリディバイスに格納する(ステップS23~ステップS24)。なお、システムロスカーブ(S)の構築(推定)は、少なくとも2つの運転点のデータを取得すれば可能であるが、一般的には、発電出力最大点に収束するまで運転点の変更を繰り返せば、システムロスカーブ(S)の推定に十分な数のデータを得ることができる。
 そして、ステップS25における確認の結果、運転点が発電出力最大点に到達していた場合には、制御装置(20)は、システムロスカーブ(S)の推定を行う(ステップS07)。本実施形態でもシステムロスカーブ(S)の推定は、実施形態1と同様にして行う。この際、上記大流量領域についても、実施形態1と同様に、水車領域の測定結果に基づいて得た数式(或いは数値)を用いて、上記大流量領域に点を外挿し、上記大流量領域におけるシステムロスカーブ(S)を推定する。
 上記のようにして推定したシステムロスカーブ(S)も、上記協調制御に利用できる(ステップS08~ステップS12)。図8に示したステップS08~ステップS12は、実施形態1のものと同様であり、本実施形態でも流量計を用いなくても総流量の制御が可能になる。すなわち、本実施形態でも実施形態1と同様の効果を得ることが可能になる。
 《その他の実施形態》
 なお、上記実施形態では、回転電気機械(G)の運転状態が最大発電量の状態になるように制御したが、本発明はこれに限定されず、回転電気機械(G)を所定の運転状態に制御すれば良い。例えば、最大発電力曲線(E)に代えて、回転電気機械(G)の効率を示す曲線、水車(W)の効率を示す曲線、或いはコンバータ部(13)の効率を示す曲線を特性マップ(M)内の情報として制御装置(20)に格納し、この曲線で求めた効率が最大となる運転点で運転するのである。すなわち、制御装置(20)によって回転電気機械(G)と流量調整弁(6)とを協調制御する場合の指標として、回転電気機械(G)の効率が最大となる運転状態、流体機械(W)の効率が最大となる運転状態、或いはコンバータ部(13)の効率が最大となる運転状態を用いるのである。
 また、管路系(1)の流動抵抗特性線として、図3に示したように、縦軸に有効落差(H)、横軸に流量(Q)をとったシステムロスカーブ(S)を採用したが、有効落差(H)と水車(W)前後の圧力差とは比例関係にあるので、縦軸に水車(W)前後の圧力差(有効圧力差)をとったシステムロスカーブは、縦軸に有効落差(H)をとったシステムロスカーブ(S)と等価である。すなわち、縦軸に水車(W)前後の圧力差、横軸に流量(Q)をとったシステムロスカーブを用いてもよい。
 加えて、上記実施形態では、回転電気機械(G)の特性マップ(M)上の運転点の把握は回転速度(N)とトルク値(T)との組合せにより行ったが、その他、回転速度(N)と発電力(P)との組合せや、トルク値(T)と発電力(P)との組合せであっても良い。つまり、特性マップ(M)に用いる回転電気機械(G)の特性は、水車(流体機械)における流量(Q)と有効落差(H)とに相関する回転電気機械(G)の特性で、且つそれが検出可能な特性であれば、回転速度(N)とトルク値(T)には限定されないのである。
 また、水車(W)における流量(Q)と有効落差(H)とに、回転電気機械(G)の特性(検出可能なもの)を対応づけることが可能であれば、流体システム(A)を構成する水車(W)や回転電気機械(G)の形式は特には限定されない。例えば、回転電気機械(G)により水車(W)の運転を可変できない場合でも、上記実施形態のようにして流量(Q)と有効落差(H)の推定が可能である。
 また、上記実施形態では、制御装置(20)は、回転電気機械(G)と流量調整弁(6)との双方を制御したが、回転電気機械(G)を制御する第1の制御装置と、流量調整弁(6)を制御する第2の制御装置とを設けて、両制御装置の間で回転電気機械(G)の運転状態と流量調整弁(6)の弁開度の情報を入出力して、この第1及び第2の制御装置により本発明の制御装置を構成しても良いのは勿論である。
 本発明は、流体システムとして有用である。
 A   流体システム
 G   回転電気機械
 W   水車(流体機械)
 1   管路系
 5   迂回路
 6   流量調整弁
 9   回転軸
 20  制御装置

Claims (5)

  1.  落差を有して流体が流れる管路系(1)に設置される流体機械(W)と、
     上記流体機械(W)の回転軸(9)に連結された回転電気機械(G)と、
     上記流体機械(W)と並列に接続された迂回路(5)の途中に設けられた流量調整弁(6)と、
     上記回転電気機械(G)に関する検出可能な特性であって、上記流体機械(W)における流量(Q)と有効落差(H)とに相関する上記特性に基づいて、上記流体機械(W)における上記流量(Q)と上記有効落差(H)とを推定するとともに、上記有効落差(H)と管路系(1)における総流量(QT)との関係を示す流動抵抗特性線(S)と、推定した上記流量(Q)と上記有効落差(H)に基づいて、上記管路系(1)における上記総流量(QT)を推定し、該総流量(QT)の推定値が上記管路系(1)における総流量(QT)の目標流量(QT*)に近づくように上記流体機械(W)と上記流量調整弁(6)とを協調制御する制御装置(20)と、
    を備えたことを特徴とする流体システム。
  2.  請求項1において、
     上記制御装置(20)は、上記回転電気機械(G)の複数の運転点における総流量(QT)と上記有効落差(H)を取得して、上記流動抵抗特性線(S)を構築することを特徴とする流体システム。
  3.  請求項2において、
     上記制御装置(20)は、構築した上記流動抵抗特性線(S)を更新する機能を有することを特徴とする流体システム。
  4.  請求項1から請求項3の何れかにおいて、
     上記制御装置(20)は、上記推定値が上記目標流量(QT*)に収束するように、上記協調制御を繰り返すことを特徴とする流体システム。
  5.  請求項1から請求項4の何れかにおいて、
     上記制御装置(20)は、上記回転電気機械(G)を発電機とする流体システムとして最大発電量となる運転状態、上記回転電気機械(G)の効率が最大となる運転状態、及び上記流体機械(W)の効率が最大となる運転状態の何れかの運転状態となるように、上記協調制御を行うことを特徴とする流体システム。
PCT/JP2015/005343 2014-10-23 2015-10-23 流体システム WO2016063543A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES15853145T ES2744915T3 (es) 2014-10-23 2015-10-23 Sistema de fluido
US15/517,803 US10352293B2 (en) 2014-10-23 2015-10-23 Fluid system
CN201580056239.3A CN107076102B (zh) 2014-10-23 2015-10-23 流体系统
AU2015334312A AU2015334312B2 (en) 2014-10-23 2015-10-23 Fluid system
EP15853145.9A EP3190289B1 (en) 2014-10-23 2015-10-23 Fluid system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-216548 2014-10-23
JP2014216548 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063543A1 true WO2016063543A1 (ja) 2016-04-28

Family

ID=55457019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005343 WO2016063543A1 (ja) 2014-10-23 2015-10-23 流体システム

Country Status (7)

Country Link
US (1) US10352293B2 (ja)
EP (1) EP3190289B1 (ja)
JP (2) JP5884934B1 (ja)
CN (1) CN107076102B (ja)
AU (1) AU2015334312B2 (ja)
ES (1) ES2744915T3 (ja)
WO (1) WO2016063543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496263A4 (en) * 2016-09-20 2020-02-19 Daikin Industries, Ltd. SYSTEM FOR PRODUCING HYDROELECTRIC ENERGY

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496264A4 (en) * 2016-09-20 2020-02-26 Daikin Industries, Ltd. HYDROELECTRIC ENERGY GENERATION SYSTEM
WO2018135661A1 (ja) 2017-01-23 2018-07-26 ダイキン工業株式会社 水力発電システム
JP6569713B2 (ja) * 2017-09-29 2019-09-04 ダイキン工業株式会社 水力発電システム
JP6593429B2 (ja) * 2017-12-20 2019-10-23 ダイキン工業株式会社 流体装置
CN108434994B (zh) * 2018-04-24 2020-09-15 天津大学 流体动量阶梯控制分离膜装置的能量转化方法
JP6849034B1 (ja) * 2019-09-26 2021-03-24 ダイキン工業株式会社 水力発電システム及び発電機制御方法
WO2021206758A1 (en) 2020-04-06 2021-10-14 BGH Designs, LLC Apparatuses, systems, and methods for providing power generation
US12104568B2 (en) 2020-04-06 2024-10-01 BGH Designs, LLC Apparatuses, systems, and methods for providing power generation
CN114017248B (zh) * 2021-10-27 2022-10-11 中国水利水电科学研究院 全功率变频抽蓄水轮机工况运行全路径优化方法和系统
CN114841022B (zh) * 2022-07-04 2022-09-20 中国长江三峡集团有限公司 变速机组吸出高度确定方法和装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250442A (ja) * 1996-03-15 1997-09-22 Kishiro Mizuguchi 水車装置
JP2004360482A (ja) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd ポンプ逆転水車型発電設備
JP2004364357A (ja) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd ポンプ逆転水車型発電設備
JP2009108756A (ja) * 2007-10-30 2009-05-21 Ebara Corp 水力コンプレッサ設備及びその運転方法
US20120326443A1 (en) * 2011-06-21 2012-12-27 Genalta Power, Inc. Variable speed power generation from industrial fluid energy sources

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496845A (en) * 1982-12-27 1985-01-29 Cla-Val Co. Method and apparatus for control of a turbine generator
WO2006088442A1 (en) * 2005-02-14 2006-08-24 Carrier Corporation Steam driven turbine generator system
FR2913730A1 (fr) * 2007-03-12 2008-09-19 Alstom Technology Ltd Installation hydraulique et procede de commande d'une telle installation
ZA200901070B (en) * 2008-02-25 2009-06-24 Van Blerk Coenraad Frederik Electricity generating arrangement
US20140265328A1 (en) * 2008-02-25 2014-09-18 Coenraad Frederik Van Blerk Electricity generating arrangement
WO2010119566A1 (ja) * 2009-04-17 2010-10-21 トヨタ自動車株式会社 電池システム、車両及び電池搭載機器
CN102878002B (zh) * 2012-10-10 2016-05-25 中国电建集团西北勘测设计研究院有限公司 一种防止水轮机引水系统水击压力升高的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250442A (ja) * 1996-03-15 1997-09-22 Kishiro Mizuguchi 水車装置
JP2004360482A (ja) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd ポンプ逆転水車型発電設備
JP2004364357A (ja) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd ポンプ逆転水車型発電設備
JP2009108756A (ja) * 2007-10-30 2009-05-21 Ebara Corp 水力コンプレッサ設備及びその運転方法
US20120326443A1 (en) * 2011-06-21 2012-12-27 Genalta Power, Inc. Variable speed power generation from industrial fluid energy sources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190289A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496263A4 (en) * 2016-09-20 2020-02-19 Daikin Industries, Ltd. SYSTEM FOR PRODUCING HYDROELECTRIC ENERGY

Also Published As

Publication number Publication date
ES2744915T3 (es) 2020-02-26
JP5884934B1 (ja) 2016-03-15
CN107076102A (zh) 2017-08-18
JP2016118207A (ja) 2016-06-30
EP3190289B1 (en) 2019-06-12
EP3190289A4 (en) 2018-02-28
AU2015334312A1 (en) 2017-05-04
US10352293B2 (en) 2019-07-16
EP3190289A1 (en) 2017-07-12
CN107076102B (zh) 2019-05-07
US20170314527A1 (en) 2017-11-02
JP2016084814A (ja) 2016-05-19
AU2015334312B2 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5884934B1 (ja) 流体システム
JP6304440B2 (ja) 水力発電システム
US20110208363A1 (en) Method of controlling an electro-hydraulic actuator system having multiple actuators
US9356551B2 (en) Method and apparatus for controlling an electric motor employed to power a fluidic pump
CN106030080B (zh) 用于操作联接至发生器的内燃机的方法以及用于执行该方法的装置
JP6849034B1 (ja) 水力発電システム及び発電機制御方法
JP2010539380A5 (ja)
CN106470883B (zh) 用于工作机器的功率效率控制机构
CN103240288A (zh) 轧制除鳞装置的控制装置
JP6119404B2 (ja) 流体装置
WO2016027463A1 (ja) 液圧ポンプの駆動システム
Gevorkov et al. Study of the centrifugal pump efficiency at throttling and speed control
JP2019110116A (ja) Pidのためのフィードバック制御に基づく偏微分
JP5829560B2 (ja) 冷却装置、加工装置、および、冷却油流量決定方法
JP6490416B2 (ja) ポンプ装置の消費電気エネルギを低減する制御プロセス
JP2016086480A (ja) 流体システム
JP5963305B2 (ja) 発電プラントの給水流量制御装置、および、通風流量制御装置
JP7108503B2 (ja) 制御装置、熱源システム、ファン起動台数決定方法及びプログラム
Lysenko Pressure control system of the pumping units with frequency-controlled induction motor
JP2016086479A (ja) 流体システム
JP2014217229A (ja) 流体装置
JP4610866B2 (ja) エネルギー回収システムと制御方法及び複数水車発電機システムと運転制御方法
EP3384134B1 (en) System comprising a turbomachine control system and a turbomachine, method of operating a turbomachine complex
JP7198743B2 (ja) エネルギー変換器と相互作用する電気機械を備える産業プラントの管理のための装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853145

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015853145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15517803

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015334312

Country of ref document: AU

Date of ref document: 20151023

Kind code of ref document: A