Nothing Special   »   [go: up one dir, main page]

WO2016060000A1 - リアクトル - Google Patents

リアクトル Download PDF

Info

Publication number
WO2016060000A1
WO2016060000A1 PCT/JP2015/078214 JP2015078214W WO2016060000A1 WO 2016060000 A1 WO2016060000 A1 WO 2016060000A1 JP 2015078214 W JP2015078214 W JP 2015078214W WO 2016060000 A1 WO2016060000 A1 WO 2016060000A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
winding
space
coil
reactor
Prior art date
Application number
PCT/JP2015/078214
Other languages
English (en)
French (fr)
Inventor
伸一郎 山本
三崎 貴史
雅幸 加藤
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2016060000A1 publication Critical patent/WO2016060000A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to a reactor used for a component of a power conversion device such as a vehicle-mounted DC-DC converter mounted on a vehicle such as a hybrid vehicle.
  • the present invention relates to a reactor that can effectively use a dead space as an arrangement position of a temperature sensor that measures the temperature of a coil and can accurately measure the temperature.
  • the reactor of Patent Document 1 includes a temperature sensor that measures the temperature of the coil so that the current to the coil can be controlled according to the temperature of the coil.
  • the coil is formed by arranging a pair of coil elements (winding portions) in which the windings are spirally wound in parallel (side by side) so that their axes are parallel to each other.
  • the end face shape of each winding portion is a rectangular shape having a corner R portion with rounded corners.
  • the temperature sensor is disposed in a trapezoidal space sandwiched between corner R portions opposed to each other in the pair of winding portions.
  • the temperature of the coil can be accurately measured by bringing the temperature sensor close to the coil.
  • the coil temperature can be measured with high accuracy, and further effective use of a different dead space as the position of the temperature sensor has been desired.
  • the present invention has been made in view of the above circumstances, and one of its purposes is a reactor that can effectively use a dead space as an arrangement position of a temperature sensor for measuring the temperature of a coil and can accurately measure the temperature. Is to provide.
  • the reactor according to an aspect of the present invention includes a coil, a magnetic core, a temperature sensor, and an opposing member.
  • the coil has a winding part formed by winding a winding.
  • a magnetic core has a part arrange
  • the temperature sensor measures the temperature of the coil.
  • the facing member faces the end surface of the winding part.
  • a temperature sensor is arrange
  • the above reactor can effectively use the dead space as the position of the temperature sensor, and can accurately measure the coil temperature.
  • FIG. 3 is a partial cross-sectional view showing a state where the reactor shown in FIG. 1 is cut along a (III)-(III) cutting line.
  • FIG. 3 is an exploded perspective view illustrating a manufacturing process of the reactor according to the first embodiment. It is a top view which shows the reactor of Embodiment 2. It is a top view which shows the reactor of Embodiment 3. It is a top view which shows the reactor of Embodiment 4. It is a top view which shows the reactor of Embodiment 5. It is a front view of the core components with which the reactor of Embodiment 5 is equipped.
  • a reactor includes a coil, a magnetic core, a temperature sensor, and an opposing member.
  • the coil has a winding part formed by winding a winding.
  • a magnetic core has a part arrange
  • the temperature sensor measures the temperature of the coil.
  • the facing member faces the end surface of the winding part.
  • a temperature sensor is arrange
  • the coil temperature can be accurately measured. This is because the space is formed by the end face of the winding portion and the opposing member, and thus the temperature sensor can be brought close to the coil by arranging the temperature sensor in the space. Further, since the temperature sensor is arranged in the space which is a dead space, the dead space can be effectively used.
  • the winding part is wound spirally, the opposing member has an opposing surface that faces the end face of the winding part, and the space is the end face of the winding part. And an inclined space formed by a surface including the opposing surface of the opposing member and corresponding to the inclination created by the end face of the winding portion.
  • the inclined space is a space that tapers along one of the winding directions of the winding. For this reason, the temperature sensor is easily sandwiched between the end surface of the winding portion and the facing surface of the facing member.
  • the coil includes a pair of winding portions that are arranged side by side so that their axes are parallel to each other, and a connection portion that connects the pair of winding portions at one end in the axial direction. Is provided.
  • the temperature sensor is disposed in the space where the pair of winding portions are located on the sides facing each other.
  • the above configuration facilitates optimal control of the current to the coil. This is because the space where the pair of winding portions are located on the sides facing each other is easy to detect the temperature with high accuracy. This is because, in particular, the space where the pair of winding portions are located on the sides facing each other is likely to have a higher coil temperature than the space located on the opposite side of the facing sides.
  • the temperature sensor when the coil includes a pair of winding parts and a connecting part, the temperature sensor may be disposed in the space located on the connecting part side.
  • the temperature of the coil in the space where the pair of winding portions are opposed to each other and on the connecting portion side is the temperature of the coil in the space where the pair of winding portions are opposite to each other and opposite to the connecting portion. It is because it is likely to be higher than that. The reason will be described later.
  • a sensor fixing portion that fixes a temperature sensor in the space is provided, and the sensor fixing portion includes a foamed resin that expands in volume.
  • the temperature sensor it is easy to fix the temperature sensor in the space, and it is easy to maintain the fixed state well. This is because it is easy to fill the gaps in the space with the volume expansion of the foamed resin. In particular, it can be expected that the gap is substantially eliminated depending on the amount of foamed resin and the expansion coefficient. In some cases, it can be expected that the temperature sensor is brought into close contact with the end surface of the winding part or the opposing surface of the opposing member as the volume expands. When the foamed resin has a certain degree of adhesive force, the temperature sensor can be firmly fixed by this adhesive force, so that it is easier to maintain the contact state between the temperature sensor and the end surface of the winding part or the opposing surface of the opposing member. .
  • Foamed resin is formed by volume expansion of unfoamed resin during the reactor manufacturing process. That is, in the manufacturing process, an unfoamed resin having a thickness smaller than that of the foamed resin after manufacture can be used. Therefore, it is easy to provide the space in the space with the temperature sensor.
  • the sensor fixing unit when the sensor fixing unit described above is provided, the sensor fixing unit includes a foamed resin disposed on the facing member side with respect to the temperature sensor and an adhesive disposed on the winding unit side. It is mentioned to have. In this case, the temperature sensor is in contact with the adhesive by the volume expansion of the foamed resin.
  • a groove portion is formed on the end face side of the winding portion of the facing member, and a temperature sensor is disposed in the groove portion.
  • the temperature sensor it is easy to place the temperature sensor in the space. This is because by forming the groove portion on the end face side of the opposing member, it is possible to widen the space that can be stored as compared with the case where there is no groove portion. In addition, since the temperature sensor can be arranged close to the end face of the winding portion, the temperature of the coil can be measured with sufficient accuracy, as compared with the case where the groove portion is not provided.
  • the facing member may be configured by a part of a core piece arranged outside the winding part of the magnetic core.
  • the gap between the coil and the core piece can be effectively used.
  • the facing member may be constituted by a resin mold portion that covers the surface of the core piece that is disposed outside the winding portion of the magnetic core.
  • Embodiment 1 [Overall structure of the reactor] A reactor 1A according to the first embodiment will be described with reference to FIGS.
  • the reactor 1A includes a coil 2 having a pair of winding portions 2a and 2b formed by winding a winding 2w, a magnetic core 3 having portions disposed inside and outside the coil 2, and a temperature at which the temperature of the coil 2 is measured.
  • a sensor 7 (FIG. 2).
  • the main feature of the reactor 1A is that the temperature sensor 7 is arranged in a specific dead space where the temperature can be measured with high accuracy.
  • reactor 1A an opposing member that faces the end surfaces of the winding portions 2a and 2b is provided, and the temperature sensor 7 is disposed in a space that is sandwiched between the opposing member and the end surfaces of the winding portions 2a and 2b.
  • the installation target side of reactor 1A is the installation side (lower side), and the opposite side is the opposing side (upper side).
  • the same reference numerals in the figure indicate the same names.
  • the coil 2 is formed from a pair of winding portions 2a and 2b formed by spirally winding a single continuous winding 2w having no joint portion, and a part of the winding 2w. 2b for connecting 2b (FIGS. 1, 2, and 4).
  • the winding 2w is a covered rectangular wire (so-called enameled wire) including a flat wire conductor (copper or the like) and an insulating coating (polyamideimide or the like) covering the outer periphery of the conductor.
  • the winding parts 2a and 2b are edgewise coils obtained by edgewise winding the covered rectangular wire.
  • Each winding part 2a, 2b is a hollow cylindrical body having the same number of turns, and the end face shape of each winding part 2a, 2b is a shape obtained by rounding the corners of the rectangular frame.
  • the winding portions 2a and 2b are arranged side by side (in parallel) so that their axial directions are parallel to each other.
  • the connecting portion 2r is configured by bending a part of the winding 2w into a U shape on the upper side of one end side in the axial direction of the coil 2 (FIG. 1, right side of FIG. 4, upper side of FIG. 2, left side of FIG. 3). ing. Both end portions 2e of the winding 2w forming each winding portion 2a, 2b are on the upper side of the opposite side to the connecting portion 2r side (the other end side in the axial direction of the coil 2, hereinafter referred to as the terminal side). To be extended in parallel to the axial direction of the coil 2. Both end portions 2e are connected to terminal members (not shown) on conductors exposed by peeling off the insulation coating at the ends. The coil 2 is connected to an external device (not shown) such as a power source for supplying power to the coil 2 through this terminal member.
  • an external device not shown
  • each winding part 2a, 2b forms a space 27G between the opposing member (here, the frame part 315) (FIGS. 2 and 3).
  • the temperature sensor 7 is disposed in the space 27G, and the temperature sensor 7 and the end face of the coil 2 are in contact with each other.
  • the contact of the temperature sensor 7 with the end face of the coil 2 is not only when the temperature sensor 7 and the end face of the coil 2 are in direct contact, but between the temperature sensor 7 and the end face of the coil 2, It includes the case of contacting through a solid material such as a protective member (both described later).
  • the solid substance is preferably made of a material having excellent thermal conductivity.
  • the opposing member forms a space 27G between the winding portions 2a and 2b.
  • the facing member has a facing surface that faces the end surfaces of the winding portions 2a and 2b.
  • the facing surface may be a flat surface or a curved surface.
  • the opposing surface is configured as a flat surface, it may be formed in parallel to the end faces of the winding portions 2a and 2b, or may be formed to be orthogonal to the axial direction of the winding portions 2a and 2b.
  • the said opposing surface is comprised with the plane orthogonal to the axial direction of winding part 2a, 2b.
  • This opposing member is comprised by the frame part 315 formed in series in the middle resin mold part 310m (after-mentioned) of the magnetic core 3 mentioned later in detail.
  • the frame portion 315 is interposed between end surfaces of the winding portions 2a and 2b and an inner end surface 32e of a core piece 32m (described later), and faces the end surfaces of the winding portions 2a and 2b. It has a facing surface 315c formed by a plane orthogonal to the axial direction of 2b (FIGS. 2 and 4). Other configurations of the frame portion 315 will be described later.
  • the opposing member may be an outer core portion (core piece 32m or side resin mold portion 320m) of the magnetic core 3, or a frame member that is not integrated with the middle resin mold portion 310m (for example, Modification 3 described later). ).
  • the space 27G is a space in which the temperature sensor 7 can be arranged.
  • the space 27G is formed by a surface including the end surfaces of the winding portions 2a and 2b and the facing surface 315c of the frame portion 315 when the coil 2 and the magnetic core 3 (described later) are combined.
  • the space 27G is a direction orthogonal to both the axial direction of the coil 2 (winding portions 2a and 2b) and the parallel direction of the winding portions 2a and 2b (vertical direction in FIG. 2, vertical direction in FIG. 3).
  • Direction
  • this space 27G is one opening (before the paper surface of FIG. 2, the upper surface of FIG. 3). Is a space having a substantially uniform thickness from the opening to the other opening (the back side in FIG. 2 and the bottom side in FIG. 3).
  • the space 27G has end faces (final turns) of the winding portions 2a and 2b. Corresponds to the tilt to create. That is, it is an inclined space that tapers from the one opening to the other opening.
  • the space 27G is the inclined space.
  • the thickness of the space 27G (the length along the axial direction of the coil 2) is approximately one sheet of the thickness of the winding 2w at a thick portion (here, the upper side). If this thick part is used as the insertion port of the temperature sensor 7 in the manufacturing process, the temperature sensor 7 can be easily inserted.
  • the opposing surface 315c is orthogonal to the axial direction of the winding portions 2a and 2b, the thickness of the space 27G is gradually reduced because it tapers along one of the winding directions of the winding 2w (FIG. 3).
  • the temperature sensor 7 when the temperature sensor 7 is inserted into the space 27G, the temperature sensor 7 is sandwiched in contact with both the end surfaces of the winding portions 2a and 2b and the opposing surface 315c of the frame portion 315 in the middle of the space 27G. Fixed (positioned).
  • the width of the space 27G (the length along the parallel direction of the winding portions 2a and 2b) is the same length as the width of the winding 2w.
  • the space 27G is formed in a total of four locations, one on each of the connecting portion 2r side and the terminal side, on the side where the winding portions 2a and 2b face each other and on the opposite side.
  • the reactor 1A includes a pair of winding portions 2a and 2b and frame portions 315 arranged on both end surfaces of the winding portions 2a and 2b.
  • the end surfaces of the winding portions 2a and 2b are arranged on the terminal side and the connecting portion 2r side, respectively.
  • a space 27G 1 and a space 27G 3 are formed between the right side of the terminal side end surface shown on the lower side of FIG. 2 and the facing surface 315c of one frame portion 315, respectively.
  • a space 27G 2 and a space 27G 4 are formed between the left end face on the connecting portion 2r side shown in the upper side of FIG. 2 and the facing surface 315c of the other frame portion 315, respectively.
  • the temperature sensor 7 measures the temperature of the coil 2.
  • the temperature sensor 7 is connected to a wiring 78 that transmits detection information to an external device (FIGS. 1 and 4). 2 and 3, the wiring is omitted for convenience of explanation. If a connector portion (not shown) for connecting to an external device is provided at the end of the wiring 78, the connection workability with the external device is excellent.
  • Examples of the temperature sensor 7 include a thermosensitive element such as a thermistor, a thermocouple, and a pyroelectric element.
  • the arrangement space of the temperature sensor 7 is at least one of the four spaces 27G 1 to 27G 4 described above.
  • the arrangement space of the temperature sensor 7 is a space 27G 1 (lower right in FIG. 2) on the terminal side right side of the winding part 2a, and a space 27G 4 (upper left side in FIG. 2) on the left end face of the winding part 2b on the connecting part 2r side. ), It is easy to insert the temperature sensor 7.
  • the arrangement space of the temperature sensor 7 is a space 27G 2 (upper center in FIG. 2) on the end face on the connecting portion 2r side in the winding part 2a and a space 27G 3 on the right side of the terminal side in the winding part 2b (in the center of FIG. 2).
  • a space 27G 2 upper center in FIG. 2
  • a space 27G 3 on the right side of the terminal side in the winding part 2b (in the center of FIG. 2).
  • One of the following is preferable. This is because the spaces 27G 2 and 27G 3 are opposite portions of the winding portions 2a and 2b, and the temperature of the coil 2 is likely to be higher than the spaces 27G 1 and 27G 4 . Therefore, it is easy to perform optimal control of the current to the coil 2.
  • the temperature sensor 7 is disposed in the spaces 27G 1 and 27G 4 even if it is affected by vibration during operation of the reactor 1A and the external environment. Compared to the above, the temperature sensor 7 is less likely to drop out of the spaces 27G 2 and 27G 3 .
  • the partition plate 319 is provided, the temperature sensor 7 is surrounded by the end surfaces of the winding portions 2a and 2b, the facing surface 315c of the frame portion 315, the partition plate 319, and the middle resin mold portion 310m, and the spaces 27G 2 and 27G 3 are formed. This is because a closed space is formed except for the insertion port (here, the upper side) of the temperature sensor 7.
  • Arrangement space of the temperature sensor 7, the space 27G 2 of the left end surface of the connecting portion 2r side of the winding portion 2a is particularly preferred. This makes it easier to perform optimal control of the current to the coil 2.
  • Space 27G 3 is close to the terminal side of the space 27G 2, easily dissipated through the terminal members and beyond the leads. Further, as compared with the case of disposing the temperature sensor 7 in the space 27G 3, easy to perform the operation of connecting the terminal member (not shown) to the end 2e of the winding 2w.
  • the arrangement height of the temperature sensor 7 in the space 27G depends on the thickness of the space 27G and the thickness of the temperature sensor 7, but is preferably near the center of the height of the coil 2 as shown in FIG. If it does so, it will be easy to detect the temperature of the location where the coil 2 becomes high temperature easily. Therefore, it is easy to perform optimal control of the current to the coil 2.
  • the thickness of the temperature sensor 7 (the thickness including the protective member 72 when the protective member 72 described later is provided) can be appropriately selected within a range smaller than the space 27G.
  • the thickness of the temperature sensor 7 refers to a length along the axial direction of the coil 2.
  • the thickness of the temperature sensor 7 is, for example, such that the temperature sensor 7 is in contact with the end surfaces of the winding portions 2a and 2b and the facing surface 315c of the frame portion 315 at approximately the center of the height in the space 27G and is sandwiched between the two. It is mentioned that.
  • the temperature sensor 7 Fixed in the space 27G 2 of the temperature sensor 7 is performed by sandwiching with the opposing surface 315c of the end surface and the frame 315 of the winding portion 2a as described above. Although details will be described in the second and subsequent embodiments, the sensor fixing unit such as an adhesive or foamed resin may be used.
  • the temperature sensor 7 is inserted into the space 27G after the space 27G is formed by combining the coil 2 and the magnetic core 3.
  • a protective member 72 for mechanically protecting the temperature sensor 7 is provided on the outer periphery of the temperature sensor 7.
  • the temperature sensor 7 is sandwiched between the end surface of the winding portion 2a and the facing surface 315c of the frame portion 315, so that the collapse by both members is prevented.
  • the protective member 72 may be a resin tube or a molded product made of resin mold and may be a columnar one.
  • the protection member 72 is provided in a columnar shape as shown in FIGS. 2 and 4, and the temperature sensor 7 is embedded therein.
  • Thermoplastic resins include polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin such as nylon 6, nylon 66, nylon 10T, nylon 9T, nylon 6T, poly Examples include butylene terephthalate (PBT) resin and acrylonitrile / butadiene / styrene (ABS) resin.
  • the thermosetting resin include unsaturated polyester resins, epoxy resins, urethane resins, and silicone resins.
  • the protective member 72 can be easily formed by using an appropriate resin molding method such as injection molding or cast molding with the temperature sensor 7 as a core.
  • the dead space can be effectively used as the arrangement position of the temperature sensor 7.
  • the temperature sensor 7 can be disposed close to the coil 2, the temperature of the coil 2 can be measured with high accuracy.
  • the winding portion 2a of the arrangement space of the temperature sensor 7, the side opposing the 2b, and that the space 27G 2 of the connecting portion 2r side precisely the temperature of the prone position increases the temperature of the coil 2 It can be measured and it is easy to optimally control the current to the coil 2.
  • the magnetic core 3 is an inner core portion which is a portion disposed in the winding portions 2a and 2b, and a portion where the coil 2 is not substantially disposed and protrudes outside the winding portions 2a and 2b. And a closed magnetic path when the coil 2 is excited.
  • the inner core portion includes a plurality of columnar core pieces 31m, a gap portion 310g interposed between the core pieces 31m, and a part of the middle resin mold portion 310m provided so as to cover these laminates.
  • the core component 310 is provided with (FIG. 4).
  • the outer core portion includes a columnar core piece 32m (FIGS. 1 and 4), a side resin mold portion 320m (FIG. 1) covering the core piece 32m, and another portion of the middle resin mold portion 310m (a frame portion 315 described later). It is supposed to be equipped with. As shown in FIG. 4, when the outer core portion is assembled to the core component 310 in the manufacturing process, only the core piece 32m is provided, and the resin mold portions 310m and 320m are not provided.
  • the magnetic core 3 is assembled with a pair of core pieces 32m so as to connect a pair of core components 310 arranged side by side, and in this state, a side resin mold part 320m is formed so as to cover each core piece 32m, thereby forming an annular body. It is a fixed molded product.
  • the core pieces 31m and 32m form a magnetic path.
  • the core pieces 31m and 32m include a soft magnetic material of 30% by volume or more, and more than 50% by volume.
  • a compacted body obtained by compression molding a soft magnetic metal powder such as iron or an iron alloy (Fe—Si alloy, Fe—Ni alloy, etc.) or a coating powder further provided with an insulating coating, soft magnetic powder and resin
  • a composite material (molded and cured body) in which the resin is solidified (cured) can be used.
  • the green compact is used.
  • the number, shape, size, composition, and the like of the core pieces included in the magnetic core 3 can be changed as appropriate.
  • the core piece 31m has a rectangular parallelepiped shape with rounded corners.
  • the core piece 32m has an inner end face 32e to which a pair of core components 310 are connected.
  • the inner end surface 32 e is a plane provided so as to be orthogonal to the axial direction of the coil 2.
  • the shape of the core piece 32m is a dome shape (deformed trapezoidal shape) in which the cross-sectional area of the upper surface and the lower surface decreases from the inner end surface 32e outward. In a state where the coil 2 and the magnetic core 3 are assembled, the lower surface of the outer core portion (core piece 32m) protrudes from the lower surface of the core component 310 (core piece 31m).
  • the end surfaces of the winding portions 2a and 2b of the coil 2 face the inner end surface of the outer core portion (the inner end surface 32e of the core piece 32m).
  • the installation surface of the coil 2 (the lower surfaces of the winding portions 2a and 2b) and the installation surface of the outer core portion (the lower surface of the side resin mold portion 320m) are substantially flush with each other. That is, the installation surface of the reactor 1A is mainly composed of the installation surface (lower surface) of the two outer core portions and the installation surface of the coil 2 (lower surfaces of the winding portions 2a and 2b).
  • the resin mold portions 310m and 320m are formed by covering the core pieces 31m and 32m, forming the inner core portion (joining the plurality of core pieces 31m), joining the inner core portion and the outer core portion (the core pieces 31m and 32m Bonding) and the formation of the gap portion 310g and the like.
  • the middle resin mold part 310m includes the following core coating part, a gap part 310g, and a frame part 315.
  • the core covering portion is provided so as to cover the outer periphery except for a part along the outer shape in a state where the plurality of core pieces 31m are arranged at equal intervals.
  • a part of the end face of the core piece 31m located at one end of the core component 310 is not covered with the middle resin mold portion 310m but is exposed (see the core component 310 on the left side of FIG. 4).
  • the gap portion 310g is filled in the gap between the adjacent core pieces 31m and functions as a gap.
  • the frame portion 315 is interposed between the end surfaces of the winding portions 2a and 2b of the coil 2 and the inner end surface 32e of the core piece 32m.
  • the core covering portion and the frame portion 315 are formed in series, and the shape of the middle resin mold portion 310m is L-shaped.
  • the frame portion 315 includes a portion covering a part of one end face of the laminate including the core piece 31 m constituting one inner core portion, and a core piece 31 m constituting the other inner core portion. And a through-hole 315h through which the stacked body is inserted.
  • a partition plate 319 interposed between the winding portions 2a and 2b is provided on one surface of the frame portion 315.
  • the partition plate 319 is formed over the entire vertical length of the frame portion 315.
  • the other surface of the frame portion 315 faces the inner end surface 32e of the core piece 32m, and the side resin mold portion 320m of the outer core portion is joined.
  • the frame portion 315 On the other surface of the frame portion 315, two upper and lower protrusions 316, a plurality of rectangular protrusions 317, and a locking portion 318 having an L-shaped cross section constituted by a part of the protrusions 316, Is formed.
  • the upper and lower two protrusions 316 surround the outer edge of the core piece 32m on the inner end face 32e side, and position the core piece 32.
  • the projecting portion 317 is in contact with the inner end surface 32e of the core piece 32m, and forms a gap between the frame portion 315 and the inner end surface 32e of the core piece 32m that promotes introduction of the constituent resin of the side resin mold portion 320m.
  • the locking portion 318 increases the bonding strength with the core component 310 when the constituent resin of the side resin mold portion 320m enters.
  • the locking portion 318 forms a filling space for the constituent resin between the other surface of the frame portion 315 and a piece parallel to the other surface.
  • the side resin mold part 320m has a core coating part covering the outer peripheral surface of the core piece 32m (FIG. 1).
  • the side resin mold part 320m has a gap part (not shown) that fills the gap between the core pieces 31m and 32m and functions as a gap.
  • the gap part replaces with the gap part by the constituent resin of resin mold part 310m, 320m, and it is set as the form provided with the gap material and air gap which consist of material with a relative permeability smaller than the core pieces 31m and 32m, or a form without a gap. be able to.
  • the material having a small relative magnetic permeability include nonmagnetic materials such as alumina.
  • the side resin mold part 320m includes an attachment part 325 to which a bolt (not shown) for fixing the reactor 1A to the installation target is attached.
  • the attachment portion 325 is a plurality of projecting pieces projecting outward from the coil 2 in the core piece 32m (here, a total of four pieces), and includes a bolt hole 325h.
  • the number of attachment portions 325, attachment positions, and the like can be changed as appropriate.
  • At least one of the above-described protrusion 316, protrusion 317, locking portion 318, partition plate 319, and attachment portion 325 can be omitted.
  • Examples of the constituent resin of the resin mold parts 310m and 320m include the same thermoplastic resin and thermosetting resin as the constituent material of the protective member 72 described above.
  • This constituent resin may contain a ceramic filler such as alumina or silica. If it does so, it will become resin mold part 310m, 320m excellent in heat conductivity, and the heat dissipation of reactor 1A can be improved.
  • the reactor 1A can include a heat radiating plate 8 that radiates heat from the combination of the coil 2 and the magnetic core 3 (FIG. 1).
  • the heat radiating plate 8 is formed of a rectangular plate-like member having a size capable of contacting the entire installation surface of the assembly including the coil 2 and the magnetic core 3. Therefore, the reactor 1A can efficiently transfer the heat of the coil 2 and the magnetic core 3 to the installation target.
  • flange portions having through holes through which bolts and the like for fixing the heat radiating plate 8 to the installation target are inserted may be provided at the four corners of the heat radiating plate 8 (all not shown). .
  • the thickness of the heat sink 8 can be selected as appropriate, and for example, about 2 mm to 5 mm.
  • a material having excellent thermal conductivity such as a metal such as aluminum or an alloy thereof or a nonmetal such as alumina can be used.
  • the heat sink 8 and the combined body can be fixed by, for example, the resin layer 9.
  • the resin layer 9 is provided so as to be in contact with at least the installation surface of the coil 2 among the installation surfaces of the assembly.
  • the coil 2 can be firmly fixed to the heat radiating plate 8 when the object to be installed or the above heat radiating plate 8 is provided.
  • the stability of fixing to 8 can be achieved.
  • the size of the resin layer 9 is such that it is interposed on the entire installation surface of the assembly.
  • the constituent material of the resin layer 9 includes an insulating resin, particularly a ceramic filler, and has excellent heat dissipation (for example, the thermal conductivity is 0.1 W / m ⁇ K or more, further 1 W / m ⁇ K or more, In particular, 2 W / m ⁇ K or more) is preferable.
  • the resin include thermosetting resins such as epoxy resin, silicone resin, and unsaturated polyester, and thermoplastic resins such as PPS resin and LCP.
  • Reactor 1A includes, for example, the following preparation process, core component 310 manufacturing process, coil 2 and magnetic core (core component 310, core piece 32m) assembly process, side resin mold part 320m formation process, temperature sensor 7 It can manufacture with the manufacturing method of a reactor provided with an arrangement
  • the coil 2 In the preparation step, the coil 2, the core pieces 31m and 32m, and the temperature sensor 7 are prepared.
  • a plurality of core pieces 31m are spaced apart and covered with a middle resin mold portion 310m, and the resin is also filled between the core pieces 31m and 31m, and includes a frame portion 315 and a gap portion 310g.
  • the core component 310 is produced.
  • the core covering portion of the core component 310 is inserted into each of the winding portions 2a and 2b of the coil 2, and the core piece 32m is arranged so as to sandwich both the frame portions 315, and Assembled to make a braid.
  • the exposed part of the core piece 32m of the assembly assembled in the above-described ring shape is covered with the side resin mold part 320m, and an assembly in which the coil 2 and the magnetic core 3 are integrated is manufactured.
  • step of arranging temperature sensors plug the temperature sensor 7 in the space 27G 2, it is clamped between the opposing surfaces 315c of the end surface and the frame 315 of the winding portion 2a.
  • the temperature sensor 7 can be disposed close to the coil 2 simply by inserting the temperature sensor 7 into the space 27G, it is easy to manufacture the reactor 1A that can accurately measure the temperature of the coil 2.
  • Embodiment 2 With reference to FIG. 5, the reactor 1B of Embodiment 2 is demonstrated.
  • the reactor 1B is different from the reactor 1A of the first embodiment in that the reactor 1B includes a sensor fixing portion 4B that fixes the temperature sensor 7 in the space 27G, and the other points are the same as the reactor 1A of the first embodiment.
  • the description will be focused on this difference, and the description of other configurations will be omitted. This also applies to the third and subsequent embodiments.
  • the sensor fixing part 4B is composed of an adhesive 41.
  • the application position of the adhesive 41 may be the opposing surface 315c of the frame portion 315 (opposing member) or the end surface of the winding portion 2a. Regardless of the application position, the adhesive 41 may be applied in advance and the temperature sensor 7 may be fixed before the coil 2 and the core component 310 are combined. Here, the temperature sensor 7 is adhered by applying the adhesive 41 to the end face of the winding portion 2a.
  • the material of the adhesive 41 include a thermosetting resin similar to the resin of the resin layer 9 and a thermoplastic resin.
  • Temperature sensor 7 The thickness of the temperature sensor 7 can be reduced as compared with the first embodiment. Temperature sensor 7 the wound portion 2a, even without pinching the end surface and the frame 315 facing surface 315c of 2b, since easily maintain a fixed state of the temperature sensor 7 in the space 27G 2 by the adhesive 41 better It is.
  • the reactor 1B is manufactured by performing an adhesive application process and a temperature sensor bonding process after the core component manufacturing process and before the coil and magnetic core assembly process. You can do it. That is, the manufacturing method of the reactor 1B includes a preparation process, a core component manufacturing process, an adhesive application process, a temperature sensor bonding process, a coil and magnetic core assembling process, and a side resin mold portion forming process. it can.
  • the adhesive application step the adhesive 41 is applied to the end face of the winding portion 2a.
  • the temperature sensor bonding process the temperature sensor 7 is pressed against the adhesive 41 to adhere to the end surface of the winding portion 2a. Then, the process after the assembly
  • the temperature sensor 7 since the temperature sensor 7 is adhered and fixed by applying the adhesive 41 to the end face of the winding part 2a, the temperature sensor 7 is brought into close contact with the end face of the winding part 2a. Can be detected with high accuracy. Therefore, it is easy to perform optimal control of the current to the coil 2. Further, on the likely temperature sensor 7 is fixed in the space 27G 2 by adhesive 41, it tends to maintain the fixed state satisfactorily. Therefore, it is easy to suppress the dropping of the temperature sensor 7 even if it is affected by vibration during operation of the reactor 1B or an external environment.
  • Embodiment 3 With reference to FIG. 6, the reactor 1C of Embodiment 3 is demonstrated. Reactor 1C is different from sensor fixing portion 4B of reactor 1B of the second embodiment in the constituent members of sensor fixing portion 4C, and the other points are the same as reactors 1A and 1B of the first and second embodiments.
  • the sensor fixing portion 4C is made of a foamed resin 42 that expands in volume.
  • the foamed resin 42 is a resin that includes a plurality of bubbles and these bubbles. Foamed resin 42, by the resin by foaming to volume expansion, burying the space 27G 2 is filled in the space 27G 2. This buried, to fix the temperature sensor 7 in the space 27G 2.
  • the arrangement position of the foamed resin 42 may be on the frame part 315 (opposing member) side with respect to the temperature sensor 7 or on the end face side of the winding parts 2a and 2b.
  • the foamed resin 42 is adapted to contact the facing surface 315c of the frame 315, the coil 2 a temperature sensor 7 are embedded in the space 27G 2 (winding portions 2a, 2b) and are contacted. That is, the temperature sensor 7 is fixed in contact with the end surfaces of the winding portions 2a and 2b.
  • the foamed resin 42 is wound portion 2a, as well as contact with the end faces of 2b, and temperature sensor 7 are embedded in the space 27G 2 is contacted with the facing surface 315c of the frame portion 315.
  • the temperature sensor 7 is fixed in a state where it is in contact with the facing surface 315c.
  • the temperature sensor 7 and the end surface of the coil 2 may be in direct contact with each other, or a solid material such as the foamed resin 42, the adhesive 41, and the protection member 72 is provided between the temperature sensor 7 and the end surface of the coil 2. You may make it contact through. In either case, easy to maintain the fixed state of the temperature sensor 7 in the space 27G 2. Further, depending on the amount of the foamed resin 42, the expansion coefficient, and the like, it is expected to contribute to prevention of expansion and contraction (vibration prevention) of the winding portions 2a and 2b due to a part of the foamed resin 42 being interposed.
  • the arrangement position of the foamed resin 42 is set to the frame portion 315 side with respect to the temperature sensor 7. Since the temperature sensor 7 is brought into contact with the winding portions 2a and 2b by the volume expansion of the foamed resin 42, the temperature of the coil 2 can be easily measured with high accuracy.
  • the shape of the foamed resin 42 to volume expansion in the space 27G 2, is approximately along the shape in the space 27G 2.
  • the size of the foamed resin 42 (fill volume) may be appropriately selected to the extent that can be embedded in the gap space 27G 2.
  • a part of the temperature sensor 7 is in contact with the end face of the winding part 2a, and the sensor fixing part 4C is formed so as to cover the other part of the temperature sensor 7. That is, the foamed resin 42 is mainly provided between the facing surfaces 315c and the temperature sensor 7 of the frame part 315, the temperature sensor 7 by burying the gap space 27G 2 due to volume expansion on the end face of the winding portion 2a It is fixed.
  • the material of the foamed resin 42 is preferably one that is excellent in electrical insulation and one that is excellent in heat resistance against the maximum temperature of the coil 2 (150 ° C. or higher, more preferably 180 ° C. or higher).
  • the resin since the constituent resin can come into contact with a liquid refrigerant used for cooling the reactor 1C, it is preferable that the resin has excellent resistance to the liquid refrigerant.
  • Specific materials for the foamed resin 42 include PPS resin, PA resin such as nylon, polyimide resin, and the like. If these resins have adhesive strength to some extent, the contact state between the coil 2 and the temperature sensor 7 can be more easily maintained.
  • An unfoamed resin (not shown) can be suitably used as a raw material for the foamed resin 42.
  • Unfoamed resin is easy to handle and is easy to prepare in a desired shape. In addition, since it is excellent in flexibility, it is easy to place it at an arbitrary location, and it is excellent in workability.
  • a commercially available product or a known product can be used as the unfoamed resin. For example, if the thickness of the resin after foaming is 3 times or more, further 4.5 times or more, and even 5 times or more than the thickness of the resin before foaming, it is easy to fill the space 27G.
  • the expansion coefficient obtained by (thickness of resin after foaming / thickness of resin before foaming) is 3 or more, 4.5 or more, and 5 or more.
  • the unfoamed resin is sufficiently thin (for example, 0.2 mm or less), and the unexpanded resin and the temperature sensor 7 are used even in a narrow space such as the space 27G. At the same time, it can be inserted easily and has excellent workability.
  • the reactor 1C is manufactured by performing a temperature sensor, an unfoamed resin arrangement step, and a foaming step instead of the temperature sensor arrangement step after the resin mold portion 320m formation step. It can be done by going through. That is, the reactor manufacturing method includes a preparation process, a core part manufacturing process, a coil and magnetic core assembly process, a side resin mold portion forming process, a temperature sensor and unfoamed resin arrangement process, and a foaming process. A temperature sensor and unfoamed resin placement step, inserting the unfoamed resin in the space 27G 2 with temperature sensor 7. In the foaming step, heat treatment necessary for foaming the unfoamed resin is performed to foam the unfoamed resin to form the foamed resin 42.
  • the temperature sensor 7 is brought into close contact with the end surface of the winding portion 2a to accurately detect the temperature of the coil 2. Easy to do. Therefore, it is easy to perform optimal control of the current to the coil 2. Moreover, it is easy to fix the temperature sensor 7, and it is easy to maintain the fixed state well, and it is easier to further prevent the temperature sensor 7 from dropping off.
  • Embodiment 4 With reference to FIG. 7, the reactor 1D of Embodiment 4 is demonstrated.
  • Reactor 1D differs from reactors 1B and 1C of reactors 1B and 1C in the second and third embodiments in the configuration of sensor fixing unit 4D, and is otherwise the same as reactors 1A and 1C in the first to third embodiments. .
  • the sensor fixing portion 4D has both an adhesive 41 and a foamed resin 42.
  • the positional relationship between the adhesive 41 and the foamed resin 42 may be opposite to each other across the temperature sensor 7. That is, when the application position of the adhesive 41 is the end face of the winding part 2 a and the arrangement position of the foamed resin 42 is the frame part 315 (opposing member) side, or the application position of the adhesive 41 is the opposing face of the frame part 315. 315c, and the case where the arrangement position of the foamed resin 42 is the end face side of the winding part 2a is mentioned.
  • the fixed state of the temperature sensor 7 in the space 27G 2 can be preferably maintained.
  • the temperature sensor 7 is brought into close contact with the end face of the winding part 2a, and the contact state with the winding part 2a is easily maintained.
  • the application position of the adhesive 41 is the end face of the winding part 2a
  • the arrangement position of the foamed resin 42 is the frame part 315 side.
  • the reactor 1D can be manufactured by performing the unfoamed resin placement step and the foaming step described in the third embodiment after the side resin mold portion forming step in the manufacturing method described in the second embodiment. That is, the reactor manufacturing method includes a preparation process, a core part manufacturing process, an adhesive application process, a temperature sensor bonding process, a coil and magnetic core assembly process, a side resin mold part forming process, and an unfoamed resin. Arrangement step and foaming step. In the unfoamed resin arrangement step, unfoamed resin is interposed between the temperature sensor 7 adhered to the end surface of the winding portion 2a and the facing surface 315c of the frame portion 315.
  • positioning process of unfoamed resin is also performed in the assembly
  • the temperature sensor 7 since the foamed resin 42 fills the gap between the temperature sensor 7 and the facing surface 315c, the temperature sensor 7 is easily brought into close contact with the winding portion 2a, and the contact state is easily maintained. . For this reason, it is easier to optimally control the current to the coil 2, and the temperature sensor 7 is more easily prevented from dropping off.
  • Embodiment 5 A reactor 1E according to the fifth embodiment will be described with reference to FIGS.
  • Reactor 1E is mainly different from reactors 1A to 1D of Embodiments 1 to 4 in that a groove is formed on the end face side (opposing surface) of the winding portion of the opposing member.
  • the facing member is constituted by a frame portion 315.
  • a groove portion 315t is formed on the facing surface 315c of the frame portion 315.
  • the temperature sensor 7 is disposed in the groove 315t.
  • the width (the length along the parallel direction of the winding portions 2a and 2b) and the depth (the length along the axial direction of the coil 2) of the groove portion 315t may be such that the temperature sensor 7 can be fitted.
  • the width of the groove 315 t is made slightly larger than the temperature sensor 7, and the depth of the groove 315 t is about half the thickness of the temperature sensor 7.
  • the length of the groove portion 315t (the length along the vertical direction) can be appropriately selected according to the desired arrangement height of the temperature sensor 7.
  • the length of the groove portion 315t may be from the upper part of the frame portion 315 to the middle, and may be a groove portion 315t having a closed end, or the length of the groove portion 315t may be the length over the entire length of the frame portion 315, and there is no closed end. It is good also as the groove part 315t.
  • the length from the upper part of the frame part 315 to the approximate center is a groove part 315t having a closed end.
  • the temperature sensor 7 can be easily disposed in the space 27G.
  • components other than the core component 310 are omitted.
  • the formation of the groove portion 315t may be performed simultaneously with the molding of the middle resin mold portion 310m, or may be performed separately by machining such as cutting.
  • a slit extending through the front and back in the thickness direction of the frame portion 315 may be formed.
  • Space 27G 2 has an end face of the winding portion 2a, and the opposing surface 315c of the frame 315, is formed in the groove 315T. Compared to the space 27G of the first to fourth embodiments, the space 27G is wider by the groove portion 315t, so that the temperature sensor 7 can be easily disposed in the space 27G.
  • the temperature sensor 7 is positioned at the closed end of the groove 315t. Although the temperature sensor 7 is not in close contact with the end surface of the winding part 2a, the temperature sensor 7 can be disposed close to the end surface of the winding part 2a to some extent, so that the temperature of the coil 2 can be measured with sufficient accuracy.
  • the temperature sensor 7 is preferably fixed by a sensor fixing portion 4E.
  • the sensor fixing portion 4E is preferably provided so as to be in contact with both the temperature sensor 7 and the end surfaces of the winding portions 2a and 2b. Then, it is easy to fix the temperature sensor 7 to the groove portion 315t by the sensor fixing portion 4E, and the sensor fixing portion 4E can be used as a temperature transmission path of the coil 2 to the temperature sensor 7, and the temperature of the coil 2 can be adjusted. Easy to measure accurately.
  • the sensor fixing portion 4E only one of the above-described adhesive and foamed resin may be used, or both the adhesive and the foamed resin may be used. Here, both an adhesive and a foamed resin are used.
  • the application position of the adhesive 41 is in the groove 315t, and the arrangement position of the foamed resin 42 is the end face side of the winding part 2a.
  • the adhesive bonding 41, the temperature sensor 7 by the burying of the gap space 27G 2 due to volume expansion of the foamed resin 42 can be fixed in the groove portion 315T.
  • the temperature of the coil 2 can be easily transmitted to the temperature sensor 7 by the foamed resin 42 coming into contact with the end surface of the winding portion 2a.
  • the manufacturing method of the reactor 1E is different in that the object to be applied in the adhesive application step of the manufacturing method described in the fourth embodiment is the groove portion 315t of the frame portion 315. Otherwise, the manufacturing method described in the fourth embodiment. It is the same.
  • reactor 1E by forming the groove 315T on the opposite surface 315c of the frame 315, so it is possible to increase the space 27G 2 as compared to the case without the groove 315T, arranged a temperature sensor 7 in the space 27G 2 Easy to do. Further, since the temperature sensor 7 can be arranged close to the end surface of the winding portion 2a to some extent, the temperature of the coil 2 can be measured with sufficient accuracy.
  • the outer core part is also a core part including a core piece 32m and a side resin mold part 320m, like the inner core part, and a pair of (inner) core parts 310 and a pair of (outer) core parts.
  • a total of four core parts can be assembled.
  • the opposing member can be constituted by the outer core component (side resin mold part).
  • each core part can be manufactured, and the shape of the object to be coated becomes simple, so that the productivity of the assembled part is excellent.
  • the core parts are provided with engaging portions that engage with each other, the assembled state can be maintained firmly.
  • Modification 2 >> In the modification 1, the form provided with a total of four columnar core components was demonstrated.
  • a set of L-shaped core components in which a laminate including the core piece 31m constituting one inner core portion and the one core piece 32m are assembled in an L shape and integrally held in the resin mold portion.
  • a U-shaped core component in which two laminates constituting one inner core part and one core piece 32m are assembled in a U shape and are integrally held in a resin mold part, and one outer part It can be set as the form provided with a core component.
  • the configuration in which the magnetic core 3 includes the resin mold portions 310m and 320m that cover the core pieces 31m and 32m has been described.
  • it can replace with the form which is not provided with the resin mold part, and the resin mold part, and can be set as the form provided with the interposition insulation member.
  • the intervening insulating member includes, for example, a cylindrical member interposed between the winding portions 2a and 2b and the inner core portion including the plurality of core pieces 31m, the end faces of the winding portions 2a and 2b, and the core pieces 32m. What is provided with the frame member interposed between the end surfaces 32e is mentioned.
  • the frame member has a flat plate shape like the frame portion 315, and is provided with a pair of through holes through which the pair of inner core portions are inserted.
  • the opposing member that forms the space 27G with the end surfaces of the winding portions 2a and 2b is constituted by the frame member.
  • the frame member has an opposing surface constituted by a plane orthogonal to the end surfaces of the winding portions 2a and 2b and orthogonal to the axial direction of the winding portions 2a and 2b.
  • it can be set as the form provided with the individual case which accommodates the assembly containing the coil 2 and the magnetic core 3.
  • FIG. Or it can be set as the form provided with an individual case and sealing resin with which it fills in an individual case. Then, mechanical protection of reactor 1A and protection from the external environment can be achieved.
  • a reactor including a coil having only one winding part and a magnetic core called an EE type core or an EI type core can be used.
  • the reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power conversion device.
  • an in-vehicle converter typically a DC-DC converter
  • an air conditioner converter mounted on a vehicle
  • a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be suitably used as a component part of a power conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 コイルの温度を測定する温度センサの配置位置としてデッドスペースを有効利用できて、その温度を精度よく測定できるリアクトルを提供する。巻線を巻回してなる巻回部を有するコイルと、前記巻回部の内外に配置される部分を有する磁性コアと、前記コイルの温度を測定する温度センサと、前記巻回部の端面に対向する対向部材とを備え、前記温度センサは、前記巻回部の端面と、前記対向部材とで挟まれる空間に配置されるリアクトル。

Description

リアクトル
 本発明は、ハイブリッド自動車などの車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品などに利用されるリアクトルに関する。特に、コイルの温度を測定する温度センサの配置位置としてデッドスペースを有効利用できて、その温度を精度よく測定できるリアクトルに関する。
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。リアクトルは、コイルと磁性コアとを備え、ハイブリッド自動車などの車両に搭載されるコンバータに利用される。リアクトルは、主に通電に伴うコイルの発熱により損失の増大などを招き得る。そこで、特許文献1のリアクトルは、コイルの温度を測定する温度センサを備え、コイルの温度に応じてコイルへの電流の制御を行えるようにしている。コイルは、巻線を螺旋状に巻回した一対のコイル素子(巻回部)を互いの軸が平行するように並列(横並び)に配置してなる。各巻回部の端面形状は、角部を丸めた角R部を有する矩形状である。温度センサは、一対の巻回部において対向配置された角R部に挟まれる台形状の空間に配置されている。
特開2014-093375号公報
 上述のように温度センサをコイルに近接させることでコイルの温度を精度良く測定できる。このようにコイルの温度を精度よく測定できる上に、温度センサの配置位置として異なるデッドスペースの更なる有効利用が望まれていた。
 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、コイルの温度を測定する温度センサの配置位置としてデッドスペースを有効利用できて、その温度を精度よく測定できるリアクトルを提供することにある。
 本発明の一態様に係るリアクトルは、コイルと、磁性コアと、温度センサと、対向部材とを備える。コイルは、巻線を巻回してなる巻回部を有する。磁性コアは、巻回部の内外に配置される部分を有する。温度センサは、コイルの温度を測定する。対向部材は、巻回部の端面に対向する。温度センサは、巻回部の端面と、対向部材とで挟まれる空間に配置される。
 上記リアクトルは、温度センサの配置位置としてデッドスペースを有効利用できて、コイルの温度を精度よく測定できる。
実施形態1のリアクトルを示す概略斜視図である。 実施形態1のリアクトルを示す上面図である。 図1に示すリアクトルの(III)-(III)切断線で切断した状態を示す部分断面図である。 実施形態1のリアクトルの製造過程を説明する分解斜視図である。 実施形態2のリアクトルを示す上面図である。 実施形態3のリアクトルを示す上面図である。 実施形態4のリアクトルを示す上面図である。 実施形態5のリアクトルを示す上面図である。 実施形態5のリアクトルに備わるコア部品の正面図である。
 《本発明の実施形態の説明》
 最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係るリアクトルは、コイルと、磁性コアと、温度センサと、対向部材とを備える。コイルは、巻線を巻回してなる巻回部を有する。磁性コアは、巻回部の内外に配置される部分を有する。温度センサは、コイルの温度を測定する。対向部材は、巻回部の端面に対向する。温度センサは、巻回部の端面と、対向部材とで挟まれる空間に配置される。
 上記の構成によれば、コイルの温度を精度よく測定できる。上記空間は、巻回部の端面と対向部材とで形成されるため、温度センサを上記空間に配置することでコイルに近接させられるからである。また、デッドスペースである上記空間に温度センサを配置するため、デッドスペースを有効利用できる。
 (2)上記リアクトルの一形態として、巻回部は、螺旋状に巻回されており、対向部材は、巻回部の端面に対向する対向面を有し、空間が、巻回部の端面と、対向部材の対向面とを含む面で形成されて巻回部の端面がつくる傾斜に対応した傾斜空間であることが挙げられる。
 上記の構成によれば、温度センサを上記空間に固定し易い。上記傾斜空間は、巻線の巻回方向の一方に沿って先細りする空間である。そのため、温度センサを巻回部の端面と対向部材の対向面とで挟持させ易いからである。
 (3)上記リアクトルの一形態として、コイルは、互いの軸が平行となるように横並びに配置される一対の巻回部と、軸方向一端側で一対の巻回部を連結する連結部とを備えることが挙げられる。この場合、温度センサは、一対の巻回部が互いに対向する側に位置する上記空間に配置されることが好ましい。
 上記の構成によれば、コイルへの電流の最適な制御を行い易い。一対の巻回部が互いに対向する側に位置する空間は、上記温度を精度よく検知し易いからである。特に、一対の巻回部が互いに対向する側に位置する空間は、その対向する側の反対側に位置する空間に比較してコイルの温度が高くなり易いからである。
 (4)上記リアクトルの一形態として、上述のコイルが一対の巻回部と連結部とを備える場合、温度センサは、連結部側に位置する上記空間に配置されることが挙げられる。
 上記の構成によれば、コイルへの電流の最適な制御をより一層行い易い。一対の巻回部が互いに対向する側でかつ連結部側に位置する上記空間でのコイルの温度は、一対の巻回部が互いに対向する側でかつ連結部と反対側に位置する上記空間に比較して、高くなり易いからである。その理由については後述する。
 (5)上記リアクトルの一形態として、空間内に温度センサを固定するセンサ固定部を備え、センサ固定部は、体積膨張する発泡樹脂を有することが挙げられる。
 上記の構成によれば、上記空間内に温度センサを固定し易い上に、その固定状態を良好に維持し易い。発泡樹脂の体積膨張に伴って、上記空間の隙間を埋め易いからである。特に、発泡樹脂の量や膨張率などによっては上記隙間を実質的に無くすことが期待できる。場合によっては、体積膨張に伴って温度センサを巻回部の端面や対向部材の対向面に密着させることが期待できる。発泡樹脂がある程度の接着力を有する場合には、この接着力によって、温度センサを強固に固定できるため、温度センサと巻回部の端面や対向部材の対向面との接触状態をより維持し易い。
 発泡樹脂は、リアクトルの製造過程で未発泡の樹脂を体積膨張させることで形成される。即ち、製造過程では製造後の発泡樹脂に比べて厚さの薄い未発泡の樹脂を利用できるので、さほど広くない上記空間にも温度センサと共に設け易い。
 (6)上記リアクトルの一形態として、上述のセンサ固定部を備える場合、センサ固定部は、温度センサに対して対向部材側に配置される発泡樹脂と巻回部側に配置される接着剤とを有することが挙げられる。この場合、温度センサは、発泡樹脂の体積膨張によって接着剤に接触している。
 上記の構成によれば、発泡樹脂の体積膨張により温度センサを接着剤に接触させ易いため、温度センサと巻回部との接触状態を良好に維持し易い。
 (7)上記リアクトルの一形態として、対向部材における巻回部の端面側には、溝部が形成され、温度センサが、溝部に配置されていることが挙げられる。
 上記の構成によれば、上記空間に温度センサを配置し易い。溝部を対向部材の上記端面側に形成することで、溝部のない場合に比較して収納可能な空間を広くできるからである。また、上記溝部を備えない場合と遜色なく温度センサを巻回部の端面に対して近づけて配置することもできるため、コイルの温度を十分に精度良く測定できる。
 (8)上記リアクトルの一形態として、対向部材は、磁性コアのうち巻回部の外に配置されるコア片の一部で構成されることが挙げられる。
 上記の構成によれば、コイルと上記コア片との間の隙間を有効活用できる。
 (9)上記リアクトルの一形態として、対向部材は、磁性コアのうち巻回部の外に配置されるコア片の表面を覆う樹脂モールド部で構成されることが挙げられる。
 上記の構成によれば、温度センサと上記コア片との擦れによる温度センサの損傷を抑制し易い。また、コイルとコア片との接触を抑制でき、両者の絶縁を高め易い。
 《本発明の実施形態の詳細》
 本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。
 《実施形態1》
 〔リアクトルの全体構成〕
 図1~4を参照して、実施形態1のリアクトル1Aを説明する。リアクトル1Aは、巻線2wを巻回してなる一対の巻回部2a,2bを有するコイル2と、コイル2の内外に配置される部分を有する磁性コア3と、コイル2の温度を測定する温度センサ7(図2)とを備える。リアクトル1Aの主たる特徴とするところは、上記温度を精度良く測定可能な特定のデッドスペースに温度センサ7を配置する点にある。具体的には、巻回部2a,2bの端面に対向する対向部材を備え、その対向部材と巻回部2a,2bの端面とで挟まれる空間に温度センサ7を配置する。以下、リアクトル1Aの主たる特徴部分及び関連する部分の構成、並びに主要な効果を順に説明し、その後、各構成を詳細に説明し、最後にリアクトル1Aの製造方法を説明する。ここでは、リアクトル1Aの設置対象側を設置側(下側)、その反対側を対向側(上側)とする。図中の同一符号は同一名称物を示す。
 〔主たる特徴部分及び関連する部分の構成〕
  [コイル]
 コイル2は、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなる一対の巻回部2a,2bと、巻線2wの一部から形成されて両巻回部2a,2bを連結する連結部2rとを備える(図1,2,4)。巻線2wは、平角線の導体(銅など)と、この導体の外周を覆う絶縁被覆(ポリアミドイミドなど)とを備える被覆平角線(所謂エナメル線)である。巻回部2a,2bは、この被覆平角線をエッジワイズ巻きしたエッジワイズコイルである。各巻回部2a,2bは、互いに同一の巻数の中空の筒状体であり、各巻回部2a,2bの端面形状は、矩形枠の角部を丸めた形状としている。各巻回部2a,2bの配置は、各軸方向が平行するように横並び(並列)した状態としている。
 連結部2rは、コイル2の軸方向一端側(図1、4紙面右側、図2紙面上側、図3紙面左側)の上側で、巻線2wの一部をU字状に屈曲して構成している。各巻回部2a,2bを形成する巻線2wの両端部2eは、連結部2r側と反対側(コイル2の軸方向他端側、以下、端子側ということがある)の上側でターン形成部分からコイル2の軸方向に平行に引き延ばされている。両端部2eは、その先端の絶縁被覆が剥されて露出した導体に端子部材(図示略)が接続される。コイル2は、この端子部材を介してコイル2に電力供給を行なう電源などの外部装置(図示略)が接続される。
 各巻回部2a,2bは、詳しくは後述するが、対向部材(ここでは、枠部315)との間に空間27Gを形成する(図2、3)。この空間27Gには温度センサ7が配置されて、温度センサ7とコイル2の端面とが接触する。温度センサ7のコイル2の端面との接触とは、温度センサ7とコイル2の端面とを直接接触させる場合の他、温度センサ7とコイル2の端面との間に接着剤や、発泡樹脂、保護部材など(いずれも後述)といった固体物質を介して接触させる場合も含む。固体物質は、熱伝導性に優れる材質で構成することが好ましい。
  [対向部材]
 対向部材は、上述のように各巻回部2a,2bとの間に空間27Gを形成する。対向部材は、巻回部2a,2bの端面に対向する対向面を有する。この対向面は、平面で構成されていてもよいし、曲面で構成されていてもよい。対向面を平面で構成する場合、巻回部2a,2bの端面に平行に形成されていても良いし、巻回部2a,2bの軸方向に直交すように形成されていてもよい。ここでは、上記対向面は、巻回部2a,2bの軸方向に直交する平面で構成している。この対向部材は、詳しくは後述する磁性コア3のミドル樹脂モールド部310m(後述)に一連に形成されている枠部315で構成されている。この枠部315は、巻回部2a,2bの端面とコア片32m(後述)の内端面32eとの間に介在され、巻回部2a,2bの端面に対向すると共に、巻回部2a,2bの軸方向に直交する平面で形成される対向面315cを有する(図2,4)。枠部315におけるその他の構成は、後述する。なお、対向部材としては、磁性コア3の外側コア部(コア片32mやサイド樹脂モールド部320m)としたり、ミドル樹脂モールド部310mに一体化されていない枠体部材(例えば、後述の変形例3)としたりすることができる。
  [空間]
 空間27Gは、温度センサ7が配置可能な空間である。空間27Gは、コイル2と磁性コア3(後述)とが組み合わされた状態では、巻回部2a,2bの端面と枠部315の対向面315cとを含む面で形成される。具体的には、空間27Gは、コイル2(巻回部2a,2b)の軸方向、及び巻回部2a,2bの並列方向の双方に直交する方向(図2紙面垂直方向、図3紙面上下方向)に延びる空間である。対向面315cが巻回部2a,2bの端面と平行な場合(特に端面と平行な平面で構成される場合)、この空間27Gは、一方の開口部(図2紙面手前、図3紙面上側)から他方の開口部(図2紙面奥側、図3紙面下側)に向かって略均一の厚さの空間である。対向面315cが巻回部2a,2bの軸方向と直交する場合(特に軸方向と直交する平面で構成される場合)、この空間27Gは、各巻回部2a,2bの端面(最終ターン)がつくる傾斜に対応している。即ち、上記一方の開口部から上記他方の開口部に向かって先細りする傾斜空間である。ここでは、空間27Gは上記傾斜空間である。
 空間27Gの厚さ(コイル2の軸方向に沿った長さ)は、厚い箇所(ここでは上側)で凡そ巻線2wの厚さ一枚分の厚さである。この厚い箇所を製造過程で温度センサ7の差し込み口とすると、温度センサ7を差し込み易い。対向面315cが巻回部2a,2bの軸方向と直交する場合、空間27Gの厚さは、巻線2wの巻回方向の一方に沿って先細りするため徐々に薄くなる(図3)。そのため、温度センサ7を空間27Gに差し込むと、温度センサ7は空間27Gの途中で巻回部2a,2bの端面と枠部315の対向面315cの両面に接触して挟持されて、空間27G内に固定(位置決め)される。空間27Gの幅(巻回部2a,2bの並列方向に沿った長さ)は、巻線2wの幅と同等の長さである。
 空間27Gは、巻回部2a,2bが互いに対向する側とその反対側とのそれぞれにおいて、連結部2r側と端子側とに一箇所ずつの合計四箇所に形成される。リアクトル1Aでは一対の巻回部2a,2bと巻回部2a,2bの両端面に配置される枠部315とを備える。各巻回部2a,2bの端面は、端子側と連結部2r側とのそれぞれに配置される。具体的には、両巻回部2a,2b共に、図2紙面下側に示す端子側の端面右側と一方の枠部315の対向面315cとの間にそれぞれ空間27G、空間27Gが形成され、図2紙面上側に示す連結部2r側の端面左側と他方の枠部315の対向面315cとの間にそれぞれ空間27G、空間27Gが形成される。
  [温度センサ]
 温度センサ7は、コイル2の温度を測定する。温度センサ7には、検知情報を外部装置に伝達する配線78が接続されている(図1,4)。図2、3では、説明の便宜上、配線を省略している。配線78の端部には、外部装置に接続するコネクタ部(図示せず)を設けると、外部装置との接続作業性に優れる。温度センサ7は、サーミスタ、熱電対、焦電素子といった感熱素子が挙げられる。
 温度センサ7の配置空間は、上述の四箇所の空間27G~27Gの少なくとも一つである。温度センサ7の配置空間は、巻回部2aにおける端子側の端面右側の空間27G(図2右下)、及び巻回部2bにおける連結部2r側の端面左側の空間27G(図2左上)のいずれか一方とすると、温度センサ7を差し込み易い。
 温度センサ7の配置空間は、巻回部2aにおける連結部2r側の端面左側の空間27G(図2中央上)、及び巻回部2bにおける端子側の端面右側の空間27G(図2中央下)のいずれか一方が好ましい。空間27G、27Gは、両巻回部2a,2bの対向箇所であり、空間27G、27Gに比較して、コイル2の温度が高くなり易いからである。そのため、コイル2への電流の最適な制御を行い易い。また、枠部315が仕切り板319(後述)を備える場合には、リアクトル1Aの動作時の振動や外部環境からの影響を受けても、温度センサ7を空間27G、27Gに配置する場合に比較して、温度センサ7が空間27G、27Gから脱落し難い。仕切り板319を備える場合、温度センサ7は、巻回部2a、2bの端面と枠部315の対向面315cと仕切り板319とミドル樹脂モールド部310mとで囲まれ、空間27G、27Gが温度センサ7の差込口(ここでは上側)を除いて閉鎖空間になるためである。
 温度センサ7の配置空間は、巻回部2aにおける連結部2r側の端面左側の空間27Gが特に好ましい。そうすれば、コイル2への電流の最適な制御をより一層行い易い。空間27Gは、空間27Gに比較して、コイル2の温度が高くなり易いからである。空間27Gは空間27Gよりも端子側に近く、端子部材やその先のリード線を介して放熱し易い。また、温度センサ7を空間27Gに配置する場合に比較して、巻線2wの端部2eへの端子部材(図示略)の接続作業を行い易い。空間27Gであれば、配線78が端部2eと離れていることで端子部材の接続作業の邪魔になり難いからである。ここでは、温度センサ7の配置位置を巻回部2aにおける連結部2r側の端面左側の空間27Gとしている。
 温度センサ7の空間27G内における配置高さは、空間27Gの厚さや温度センサ7の厚さにもよるが、図3に示すようにコイル2の高さの略中央近傍とすることが好ましい。そうすれば、コイル2の高温となり易い箇所の温度を検知し易い。そのため、コイル2への電流の最適な制御を行い易い。
 温度センサ7の厚さ(後述する保護部材72を備える場合、保護部材72を含む厚さ)は、空間27Gよりも小さい範囲で適宜選択できる。ここで温度センサ7の厚さとは、コイル2の軸方向に沿った長さを言う。温度センサ7の厚さは、例えば、上述のように空間27Gにおける高さの略中央で巻回部2a,2bの端面と枠部315の対向面315cとに接触し、両者で挟持される程度であることが挙げられる。
 温度センサ7の空間27G内での固定は、上述のように巻回部2aの端面と枠部315の対向面315cとで挟持することで行える。詳しくは実施形態2以降で説明するが接着剤や発泡樹脂などのセンサ固定部で行ってもよい。温度センサ7を空間27Gに差し込む時期は、コイル2と磁性コア3とを組み合わせて空間27Gが形成された後に行うことが挙げられる。
 温度センサ7の外周には、温度センサ7を機械的に保護する保護部材72が設けられていることが好ましい。特に、実施形態1では温度センサ7を巻回部2aの端面と枠部315の対向面315cとで挟持させているため、両部材による圧壊を防ぐためである。保護部材72は、樹脂のチューブや、樹脂のモールドによる成形品であって柱状のものなどを利用できる。保護部材72は、図2、4に示すように円柱状に設けられて、その内部に温度センサ7が埋設されている。
 保護部材72の構成材料は、例えば、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。熱可塑性樹脂は、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6・ナイロン66・ナイロン10T・ナイロン9T・ナイロン6Tなどのポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などが挙げられる。熱硬化性樹脂は、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などが挙げられる。保護部材72は、温度センサ7を中子として、射出成形や注型成形などの適宜な樹脂成形法を利用することで容易に形成できる。
 〔リアクトルの主たる特徴部分における作用効果〕
 リアクトル1Aによれば、温度センサ7を空間27Gに配置することで、温度センサ7の配置位置としてデッドスペースを有効利用できる。その上、温度センサ7をコイル2に近接配置できるため、コイル2の温度を精度よく測定できる。特に、温度センサ7の配置空間を巻回部2a,2bの互いに対向する側で、かつ連結部2r側の空間27Gとすることで、コイル2の温度が高くなり易い箇所の温度を精度良く測定でき、コイル2への電流の最適な制御を行い易い。
 〔その他の特徴部分を含む各構成の説明〕
  [磁性コア]
 磁性コア3は、巻回部2a,2b内に配置される部分となる内側コア部と、コイル2が実質的に配置されず、巻回部2a,2b外に突出するように配置される部分となる外側コア部とを備える環状の部材であり、コイル2を励磁したときに閉磁路を形成する。
 ここでは、内側コア部は、複数の柱状のコア片31mと、コア片31m間に介在されるギャップ部分310gと、これらの積層物を覆うように設けられたミドル樹脂モールド部310mの一部とを備えるコア部品310としている(図4)。外側コア部は、柱状のコア片32m(図1,4)と、このコア片32mを覆うサイド樹脂モールド部320m(図1)と、ミドル樹脂モールド部310mの他部(後述する枠部315)とを備えるものとしている。この外側コア部は、図4に示すように、製造過程でコア部品310に組み付けられる際には、コア片32mのみであり、樹脂モールド部310m,320mを備えていない。磁性コア3は、横並びされた一対のコア部品310を繋ぐように一対のコア片32mが組み付けられ、この状態で各コア片32mを覆うようにサイド樹脂モールド部320mが成形されて、環状体として固定された成形品となっている。
   (コア片)
 コア片31m,32mは、磁路を形成する。コア片31m,32mは、軟磁性材料を30体積%以上、更に50体積%超含むことが挙げられる。具体的には、鉄や鉄合金(Fe-Si合金、Fe-Ni合金など)といった軟磁性金属粉末や更に絶縁被覆を備える被覆粉末などを圧縮成形した圧粉成形体、軟磁性粉末と樹脂とを含み樹脂が固化(硬化)している複合材料(成形硬化体)などが利用できる。この例では、圧粉成形体としている。磁性コア3に備えるコア片の個数、形状、大きさ、組成などは適宜変更できる。
 コア片31mの形状は、角部を丸めた直方体状である。コア片32mは、一対のコア部品310が接続される内端面32eを有する。内端面32eは、コイル2の軸方向に直交するように設けられた平面である。コア片32mの形状は、上面及び下面が内端面32eから外方に向かって断面積が小さくなるドーム状(変形台形状)である。コイル2と磁性コア3とを組み付けた状態で、外側コア部(コア片32m)の下面は、コア部品310(コア片31m)の下面よりも突出している。そのため、コイル2の巻回部2a,2bの端面は外側コア部の内端面(コア片32mの内端面32e)に対向する。そして、コイル2の設置面(巻回部2a,2bの下面)と、外側コア部の設置面(サイド樹脂モールド部320mの下面)とが実質的に面一である。即ち、リアクトル1Aの設置面は、主として2個の外側コア部の設置面(下面)と、コイル2の設置面(巻回部2a,2bの下面)とで構成される。
   (樹脂モールド部)
 樹脂モールド部310m,320mは、コア片31m,32mの被覆、内側コア部の形成(複数のコア片31m同士の接合)、内側コア部と外側コア部との接合(コア片31m,32m同士の接合)、ギャップ部分310gなどの形成、といった種々の機能を有する。
 ミドル樹脂モールド部310mは、以下のコア被覆部分と、ギャップ部分310gと、枠部315とを備える。コア被覆部分は、複数のコア片31mが等間隔に配列された状態でその外形に沿って、一部を除いて外周を覆うように設けられている。ここでは、コア部品310の一端部に位置するコア片31mの端面の一部がミドル樹脂モールド部310mに覆われず、露出されている(図4の左側のコア部品310参照)。ギャップ部分310gは、隣り合うコア片31m間の隙間に充填されてギャップとして機能する。枠部315は、コイル2の巻回部2a,2bの端面とコア片32mの内端面32eとの間に介在される。上記コア被覆部分と枠部315とは一連に形成されており、ミドル樹脂モールド部310mの形状はL字状である。
 枠部315は、図4に示すように、一方の内側コア部を構成するコア片31mを含む積層物の一端面の一部を覆う部分と、他方の内側コア部を構成するコア片31mを含む積層物が挿通される貫通孔315hとを備える。枠部315の一面には、上述の対向面315cに加えて、巻回部2a,2b間に介在される仕切り板319を備える。仕切り板319は、枠部315の上下の全長に亘って形成されている。枠部315の他面は、コア片32mの内端面32eに対向し、外側コア部のサイド樹脂モールド部320mが接合される。枠部315の他面には、上下二つの]状の突条316と、複数の矩形状の突出部317と、突条316の一部で構成される断面L字状の係止部318とが形成されている。上下二つの突条316は、コア片32mの内端面32e側の外縁を囲んでコア片32の位置決めを行う。突出部317は、コア片32mの内端面32eと接触して、枠部315とコア片32mの内端面32eとの間にサイド樹脂モールド部320mの構成樹脂の導入を促進する隙間を形成する。係止部318は、サイド樹脂モールド部320mの構成樹脂が入り込むことでコア部品310との結合強度を高める。この係止部318は、枠部315の他面とこの他面に平行な片との間に、上記構成樹脂の充填空間を形成する。
 サイド樹脂モールド部320mは、コア片32mの外周面を覆うコア被覆部分を有する(図1)。サイド樹脂モールド部320mは、コア片31m,32m間の隙間に充填されてギャップとして機能するギャップ部分(図示せず)を有する。
 なお、樹脂モールド部310m,320mの構成樹脂によるギャップ部分に代えて、コア片31m,32mよりも比透磁率が小さい材料からなるギャップ材やエアギャップを備える形態、或いはギャップを備えない形態とすることができる。比透磁率の小さい材料は、例えば、アルミナなどの非磁性材料が挙げられる。
 その他、サイド樹脂モールド部320mは、図1、2に示すように、リアクトル1Aを設置対象に固定するためのボルト(図示せず)が取り付けられる取付部325を備える。取付部325は、コア片32mにおいてコイル2から離れるように外方に突出する複数の突片であり(ここでは合計四個)、ボルト孔325hを備える。取付部325の個数、取付位置などは適宜変更できる。
 上述の突条316、突出部317、係止部318、仕切り板319、及び取付部325の少なくとも一つを省略できる。
 樹脂モールド部310m,320mの構成樹脂は、上述の保護部材72の構成材料と同様の熱可塑性樹脂や熱硬化性樹脂が挙げられる。この構成樹脂には、アルミナやシリカなどのセラミックスフィラーなどを含有していてもよい。そうすれば、熱伝導性に優れる樹脂モールド部310m,320mとなり、リアクトル1Aの放熱性を高められる。
  [放熱板]
 リアクトル1Aは、コイル2と磁性コア3との組合体を放熱する放熱板8を備えることができる(図1)。放熱板8は、コイル2と磁性コア3とを含む組合体の設置面全面に接触可能な大きさを有する矩形板状の部材で構成している。そのため、リアクトル1Aは、コイル2と磁性コア3の熱を設置対象に効率良く伝えられる。上述した取付部325を備えない場合、放熱板8の四隅には、放熱板8を設置対象に固定するためのボルトなどを挿通させる貫通孔を有するフランジ部を設けるとよい(いずれも図示略)。放熱板8の厚さは、適宜選択でき、例えば2mm以上5mm以下程度が挙げられる。放熱板8の構成材料は、アルミニウムやその合金といった金属や、アルミナなどの非金属などの熱伝導性に優れるものを利用できる。放熱板8と組合体との固定は、例えば、樹脂層9によって行える。
  [樹脂層]
 樹脂層9は、組合体の設置面のうち少なくともコイル2の設置面に接するように設けられることが挙げられる。樹脂層9を備えることで、設置対象又は上述の放熱板8を備える場合には放熱板8にコイル2を強固に固定でき、コイル2の動きの規制、放熱性の向上、設置対象又は放熱板8への固定の安定性などを図ることができる。樹脂層9の大きさは、組合体の設置面全面に介在される程度としている。樹脂層9の構成材料は、絶縁性樹脂、特にセラミックスフィラーなどを含有して放熱性に優れるもの(例えば、熱伝導率は、0.1W/m・K以上、更に1W/m・K以上、特に2W/m・K以上)が好ましい。具体的な樹脂は、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、PPS樹脂、LCPなどの熱可塑性樹脂が挙げられる。
 〔リアクトルの製造方法〕
 リアクトル1Aは、例えば、以下の準備工程、コア部品310の作製工程、コイル2と磁性コア(コア部品310,コア片32m)との組み付け工程、サイド樹脂モールド部320mの形成工程、温度センサ7の配置工程を備えるリアクトルの製造方法によって製造できる。各工程の概略は以下の通りである。
 準備工程では、コイル2、コア片31m,32m、温度センサ7を準備する。
 コア部品の作製工程では、複数のコア片31mを離間して配置してミドル樹脂モールド部310mで覆うと共に、コア片31m,31m間にも樹脂を充填し、枠部315及びギャップ部分310gを含むコア部品310を作製する。
 コイルと磁性コアとの組み付け工程では、コイル2の巻回部2a,2b内にコア部品310のコア被覆部分をそれぞれ挿入し、両枠部315を挟むようにコア片32mを配置して、環状に組み付けて組物を作製する。
 サイド樹脂モールド部の形成工程では、上述の環状に組み付けた組物のコア片32mの露出部分をサイド樹脂モールド部320mで覆い、コイル2と磁性コア3とを一体化した組合体を作製する。
 温度センサの配置工程では、温度センサ7を空間27Gに差し込み、巻回部2aの端面と枠部315の対向面315cとで挟持させる。
 その後、必要に応じて、樹脂層9を介して放熱板8上に組合体を固定する。
 この製造方法によれば、温度センサ7を空間27Gに差し込むだけで温度センサ7をコイル2に近接配置できるため、コイル2の温度を精度よく測定できるリアクトル1Aの製造が容易である。
 《実施形態2》
 図5を参照して、実施形態2のリアクトル1Bを説明する。リアクトル1Bは、上述の空間27Gで温度センサ7を固定するセンサ固定部4Bを備える点が実施形態1のリアクトル1Aと相違し、その他の点は実施形態1のリアクトル1Aと同様である。以下、この相違点を中心に説明し、その他の構成は説明を省略する。この点は実施形態3以降も同様である。
 [センサ固定部]
 センサ固定部4Bは、接着剤41で構成する。接着剤41の塗布位置は、枠部315(対向部材)の対向面315cでもよいし、巻回部2aの端面でもよい。塗布位置がいずれの場合でも、コイル2とコア部品310とを組み合わせる前に予め接着剤41を塗布すると共に、温度センサ7を固定しておくとよい。ここでは、接着剤41を巻回部2aの端面に塗布して温度センサ7を接着させている。接着剤41の材質は、上述の樹脂層9の樹脂と同様の熱硬化性樹脂や、熱可塑性樹脂が挙げられる。
 [温度センサ]
 温度センサ7の厚さは、実施形態1に比較して小さくできる。温度センサ7を巻回部2a,2bの端面と枠部315の対向面315cで挟持させなくても、接着剤41による空間27G内での温度センサ7の固定状態を良好に維持し易いからである。
 [リアクトルの製造方法]
 リアクトル1Bの製造は、実施形態1で説明した製造方法において、コア部品の作製工程後、コイルと磁性コアとの組み付け工程前に、接着剤の塗布工程と、温度センサの接着工程とを経ることで行える。即ち、リアクトル1Bの製造方法は、準備工程、コア部品の作製工程、接着剤の塗布工程、温度センサの接着工程、コイルと磁性コアとの組み付け工程、サイド樹脂モールド部の形成工程を備えることができる。接着剤の塗布工程は、巻回部2aの端面に接着剤41を塗布する。温度センサの接着工程は、温度センサ7を接着剤41に押し付けて巻回部2aの端面に接着させる。その後、実施形態1で説明した温度センサ7の配置工程を除いて、実施形態1で説明したコイルと磁性コアとの組み付け工程以降の工程を行う。
 リアクトル1Bによれば、接着剤41を巻回部2aの端面に塗布して温度センサ7を接着固定しているため、温度センサ7を巻回部2aの端面に密着させられてコイル2の温度を精度よく検知し易い。そのため、コイル2への電流の最適な制御を行い易い。また、接着剤41により空間27G内に温度センサ7を固定し易い上に、その固定状態を良好に維持し易い。そのため、リアクトル1Bの動作時の振動や外部環境からの影響を受けても温度センサ7の脱落などを抑制し易い。
 《実施形態3》
 図6を参照して、実施形態3のリアクトル1Cを説明する。リアクトル1Cは、センサ固定部4Cの構成部材が実施形態2のリアクトル1Bのセンサ固定部4Bと相違し、その他の点は実施形態1、2のリアクトル1A、1Bと同様である。
 [センサ固定部]
 センサ固定部4Cは、体積膨張する発泡樹脂42で構成する。発泡樹脂42は、複数の気泡及びこれらの気泡を内包する樹脂である。発泡樹脂42は、樹脂を発泡させて体積膨張させることで、空間27Gに充填されて空間27Gを埋設する。この埋設により、空間27G内に温度センサ7を固定する。
 発泡樹脂42の配置位置は、温度センサ7に対して枠部315(対向部材)側でもよいし、巻回部2a,2bの端面側でもよい。前者の場合、発泡樹脂42は、枠部315の対向面315cに接触すると共に、空間27G内を埋設して温度センサ7をコイル2(巻回部2a,2b)と接触させる。即ち、温度センサ7が巻回部2a,2bの端面に接触した状態で固定される。後者の場合、発泡樹脂42は、巻回部2a,2bの端面に接触すると共に、空間27G内を埋設して温度センサ7を枠部315の対向面315cと接触させる。即ち、温度センサ7が対向面315cに接触した状態で固定される。このように、温度センサ7とコイル2の端面とは、直接接触させてもよいし、温度センサ7とコイル2の端面との間に発泡樹脂42や、接着剤41、保護部材72といった固体物質を介して接触させてもよい。いずれの場合でも、空間27G内での温度センサ7の固定状態を維持し易い。また、発泡樹脂42の量や膨張率などによっては発泡樹脂42の一部が介在することによる巻回部2a,2bの伸縮防止(振動防止)に寄与すると期待される。ここでは、発泡樹脂42の配置位置は、温度センサ7に対して枠部315側としている。発泡樹脂42の体積膨張により温度センサ7を巻回部2a,2bに接触させられるため、コイル2の温度を精度良く測定し易い。
 発泡樹脂42の形状は、空間27G内で体積膨張するため、空間27Gに凡そ沿った形状である。発泡樹脂42の大きさ(充填体積)は、空間27Gの隙間を埋設できる程度で適宜選択できる。ここでは、温度センサ7の一部が巻回部2aの端面に接触し、温度センサ7の他部を覆うようにセンサ固定部4Cが形成されている。即ち、発泡樹脂42は、主として枠部315の対向面315cと温度センサ7との間に介在して、体積膨張に伴う空間27Gの隙間の埋設によって温度センサ7を巻回部2aの端面に固定している。
 発泡樹脂42の材質は、電気絶縁性に優れるもの、コイル2の最高到達温度に対する耐熱性に優れるもの(150℃以上、更に180℃以上)が好ましい。また、この構成樹脂は、リアクトル1Cの冷却に用いられる液体冷媒などに接触し得ることから、液体冷媒に対する耐性に優れるものが好ましい。具体的な発泡樹脂42の材質は、PPS樹脂、ナイロンなどのPA樹脂、ポリイミド樹脂などが挙げられる。これらの樹脂が接着力をある程度有していれば、コイル2と温度センサ7との接触状態をより維持し易い。
 発泡樹脂42の原料には、未発泡の樹脂(図示略)を好適に利用できる。未発泡の樹脂は、取り扱い易く、所望の形状のものを用意しやすい。その上、可撓性に優れるため任意の箇所に配置し易く、作業性に優れる。未発泡の樹脂は、市販品や公知のものを利用できる。例えば、発泡後の樹脂の厚さが、発泡前の樹脂の厚さの3倍以上、更に4.5倍以上、更には5倍以上のものであれば、空間27Gの隙間を埋め易い。具体的には、(発泡後の樹脂の厚さ/発泡前の樹脂の厚さ)で求められる膨張率が3以上、4.5以上、5以上であるものが挙げられる。膨張率が上記の範囲を満たす場合には、未発泡の樹脂の厚さが十分に薄く(例えば、0.2mm以下)、空間27Gといった狭い箇所であっても、未発泡の樹脂と温度センサ7とを同時に、かつ容易に挿入でき、作業性に優れる。
 [リアクトルの製造方法]
 リアクトル1Cの製造は、実施形態1で説明した製造方法において、樹脂モールド部320mの形成工程後、温度センサの配置工程の代わりに、温度センサと未発泡の樹脂の配置工程と、発泡工程とを経ることで行える。即ち、リアクトルの製造方法は、準備工程、コア部品の作製工程、コイルと磁性コアとの組み付け工程、サイド樹脂モールド部の形成工程、温度センサと未発泡の樹脂の配置工程、発泡工程を備える。温度センサと未発泡の樹脂の配置工程では、温度センサ7と共に未発泡の樹脂を空間27Gに差し込む。そして、発泡工程では、未発泡の樹脂が発泡するのに必要な熱処理を施して、未発泡の樹脂を発泡させて発泡樹脂42を形成する。
 上述のリアクトル1Cによれば、温度センサ7と対向面315cとの間に発泡樹脂42が介在するため、温度センサ7を巻回部2aの端面に密着させられてコイル2の温度を精度よく検知し易い。そのため、コイル2への電流の最適な制御を行い易い。また、温度センサ7を固定し易い上に、その固定状態を良好に維持し易く、温度センサ7の脱落などをより一層抑制し易い。
 《実施形態4》
 図7を参照して、実施形態4のリアクトル1Dを説明する。リアクトル1Dは、センサ固定部4Dの構成が実施形態2,3のリアクトル1B、1Cのセンサ固定部4B、4Cと相違し、その他の点は実施形態1~3のリアクトル1A~1Cと同様である。
 [センサ固定部]
 センサ固定部4Dは、接着剤41と発泡樹脂42の両方を有する。接着剤41と発泡樹脂42の位置関係は、温度センサ7を挟んで互いに反対の位置とすることが挙げられる。即ち、接着剤41の塗布位置を巻回部2aの端面とし、発泡樹脂42の配置位置を枠部315(対向部材)側とする場合や、接着剤41の塗布位置を枠部315の対向面315cとし、発泡樹脂42の配置位置を巻回部2aの端面側とする場合が挙げられる。いずれの場合でも、発泡樹脂42の体積膨張により温度センサ7を接着剤41に接触させ易いため、空間27G内での温度センサ7の固定状態を良好に維持できる。特に、前者の場合には温度センサ7を巻回部2aの端面に密着させられ、巻回部2aとの接触状態を良好に維持し易い。ここでは、接着剤41の塗布位置を巻回部2aの端面とし、発泡樹脂42の配置位置を枠部315側とする。
 [リアクトルの製造方法]
 リアクトル1Dの製造は、実施形態2で説明した製造方法において、サイド樹脂モールド部の形成工程後、実施形態3で説明した未発泡の樹脂の配置工程と発泡工程とを経ることで行える。即ち、リアクトルの製造方法は、準備工程、コア部品の作製工程、接着剤の塗布工程、温度センサの接着工程、コイルと磁性コアとの組み付け工程、サイド樹脂モールド部の形成工程、未発泡の樹脂の配置工程、発泡工程を備える。未発泡の樹脂の配置工程では、巻回部2aの端面に接着させた温度センサ7と枠部315の対向面315cとの間に未発泡の樹脂を介在させる。或いは、実施形態2で説明した製造方法において、温度センサの接着工程後のコイルと磁性コアとの組み付け工程の際、未発泡の樹脂の配置工程も併せて行う。そして、その後のサイド樹脂モールド部の形成工程と同時やその前後に実施形態3で説明した発泡工程を経ることで行える。
 リアクトル1Dによれば、発泡樹脂42が温度センサ7と対向面315cとの間の隙間を埋めるため、温度センサ7を巻回部2aに密着させ易い上に、その接触状態を良好に維持し易い。そのため、コイル2への電流の最適な制御をより一層行い易い上に、温度センサ7の脱落などをより一層抑制し易い。
 《実施形態5》
 図8、9を参照して、実施形態5のリアクトル1Eを説明する。リアクトル1Eは、対向部材における巻回部の端面側(対向面)に溝部が形成されている点が主として実施形態1~4のリアクトル1A~1Dと相違する。
 [対向部材]
 対向部材は、枠部315で構成している。枠部315の対向面315cには、溝部315tが形成されている。この溝部315tに温度センサ7を配置する。溝部315tの幅(巻回部2a,2bの並列方向に沿った長さ)及び深さ(コイル2の軸方向に沿った長さ)は、温度センサ7を嵌め込める程度であればよい。ここでは、図8の一点鎖線円内に拡大して示すように、溝部315tの幅を温度センサ7よりも少し大きくし、溝部315tの深さを温度センサ7の厚さの半分程度としている。溝部315tの長さ(上下方向に沿った長さ)は、温度センサ7の所望の配置高さに応じて適宜選択できる。溝部315tの長さを枠部315の上部から途中までとして、閉鎖端を有する溝部315tとしてもよいし、溝部315tの長さを枠部315の上下の全長に亘る長さとして、閉鎖端の無い溝部315tとしてもよい。ここでは、図9に示すように、枠部315の上部から略中央まで(枠部315の略上半分)の長さとして、閉鎖端を有する溝部315tとしている。溝部315tが閉鎖端を有することで、空間27Gに温度センサ7を容易に配置できる。なお、図9では、説明の便宜上、コア部品310以外は省略して示している。溝部315tの形成は、ミドル樹脂モールド部310mの成形と同時に行ってもよいし、別途切削などの機械加工により行ってもよい。なお、溝部315tに代えて、枠部315の厚さ方向の表裏に抜けるスリットを形成してもよい。
 [空間]
 空間27Gは、巻回部2aの端面と、枠部315の対向面315cと、溝部315tとで形成される。実施形態1~4の空間27Gに比較して、溝部315tの分だけ空間27Gが広いため、空間27Gに温度センサ7を配置し易い。
 [温度センサ]
 温度センサ7は、溝部315tの閉鎖端に位置決めされている。温度センサ7は巻回部2aの端面と密着しないものの、巻回部2aの端面に対してある程度近づけて配置できるため、コイル2の温度を十分に精度良く測定できる。温度センサ7はセンサ固定部4Eにより固定されていることが好ましい。
 [センサ固定部]
 センサ固定部4Eは、温度センサ7と巻回部2a,2bの端面の両方に接するように設けられていることが好ましい。そうすれば、センサ固定部4Eにより温度センサ7の溝部315tへの固定を行い易い上に、センサ固定部4Eを温度センサ7へのコイル2の温度の伝達経路に利用でき、コイル2の温度を精度よく測定し易い。センサ固定部4Eには、上述した接着剤や発泡樹脂のどちらかのみを用いてもよいし、接着剤と発泡樹脂の両方を用いてもよい。ここでは、接着剤と発泡樹脂の両方を用いる。具体的には、図8の一点鎖線円に囲まれた拡大図に示すように、接着剤41の塗布位置を溝部315t内とし、発泡樹脂42の配置位置を巻回部2aの端面側とすることが挙げられる。この場合、接着剤41による接着と、発泡樹脂42の体積膨張に伴う空間27Gの隙間の埋設とにより温度センサ7を溝部315t内に固定できる。その上、発泡樹脂42が巻回部2aの端面に接触することで、温度センサ7にコイル2の温度を伝達し易い。
 [リアクトルの製造方法]
 リアクトル1Eの製造方法は、実施形態4で説明した製造方法の接着剤の塗布工程において塗布する対象が枠部315の溝部315tである点が相違し、それ以外は実施形態4で説明した製造方法と同様である。
 上述したリアクトル1Eによれば、溝部315tを枠部315の対向面315cに形成することで、溝部315tのない場合に比較して空間27Gを広くでき、空間27G内に温度センサ7を配置し易い。また、温度センサ7を巻回部2aの端面に対してある程度近づけて配置できるため、コイル2の温度を十分に精度良く測定できる。
 《変形例1》
 実施形態1では、ミドル樹脂モールド部310mの形成時期とサイド樹脂モールド部320mの形成時期とが異なる構成を説明した。変形例1として、外側コア部も、内側コア部と同様に、コア片32mとサイド樹脂モールド部320mとを備えるコア部品とし、一対の(内側)コア部品310と、一対の(外側)コア部品との合計4個のコア部品を組み付ける形態とすることができる。この形態では、対向部材を上記外側コア部品(サイド樹脂モールド部)で構成することができる。この形態は、各コア部品をそれぞれ製造できる上に、被覆対象の形状が単純になり、組付部品の製造性に優れる。コア部品同士が相互に係合する係合部などを備えると、組み付け状態を強固に維持できる。
 《変形例2》
 変形例1では、合計4個の柱状のコア部品を備える形態を説明した。変形例2では、一方の内側コア部を構成するコア片31mを含む積層物と一方のコア片32mとがL状に組み付けられて樹脂モールド部に一体に保持されたL字コア部品を一組備える形態や、双方の内側コア部を構成する2個の積層物と一方のコア片32mとがU状に組み付けられて樹脂モールド部に一体に保持されたU字コア部品と、1個の外側コア部品とを備える形態などとすることができる。
 《変形例3》
 実施形態1では、磁性コア3がコア片31m,32mを覆う樹脂モールド部310m,320mを備える構成を説明した。その他、樹脂モールド部を備えていない形態、樹脂モールド部に代えて、介在絶縁部材を備える形態とすることができる。介在絶縁部材は、例えば、巻回部2a,2bと複数のコア片31mを含む内側コア部との間に介在される筒状部材と、巻回部2a,2bの端面とコア片32mの内端面32eとの間に介在される枠体部材とを備えるものが挙げられる。枠体部材は、枠部315のような平板状であり、一対の内側コア部が挿通される一対の貫通孔が設けられる。この場合、巻回部2a,2bの端面とで空間27Gを形成する対向部材は、上記枠体部材で構成される。即ち、枠体部材は、巻回部2a,2bの端面に対向すると共に、巻回部2a,2bの軸方向に直交する平面で構成される対向面を有する。これらの形態では、コイル2と磁性コア3とを含む組合体を収納する個別ケースを備える形態とすることができる。又は、個別ケースと、個別ケース内に充填される封止樹脂とを備える形態とすることができる。そうすれば、リアクトル1Aの機械的保護、外部環境からの保護を図ることができる。
 本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、巻回部が一つのみであるコイルと、E-E型コアやE-I型コアなどと呼ばれる磁性コアとを備えるリアクトルとすることができる。
 本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に好適に利用できる。
 1A、1B、1C、1D、1E リアクトル
 2 コイル
  2a、2b 巻回部 2r 連結部 2w 巻線 2e 端部
 27G、27G、27G、27G、27G4 空間
 3 磁性コア
  31m、32m コア片 32e 内端面
  310 コア部品
  310m ミドル樹脂モールド部 310g ギャップ部分
  315 枠部 315c 対向面 315h 貫通孔 315t 溝部
  316 突条 317 突出部 318 係止部 319 仕切り板
  320m サイド樹脂モールド部
  325 取付部 325h ボルト孔
 4B、4C、4D、4E センサ固定部
  41 接着剤 42 発泡樹脂
 7 温度センサ 72 保護部材 78 配線
 8 放熱板
 9 樹脂層

Claims (9)

  1.  巻線を巻回してなる巻回部を有するコイルと、
     前記巻回部の内外に配置される部分を有する磁性コアと、
     前記コイルの温度を測定する温度センサと、
     前記巻回部の端面に対向する対向部材とを備え、
     前記温度センサは、前記巻回部の端面と、前記対向部材とで挟まれる空間に配置されるリアクトル。
  2.  前記巻回部は、螺旋状に巻回されており、
     前記対向部材は、前記巻回部の端面に対向する対向面を有し、
     前記空間が、前記巻回部の端面と、前記対向部材の前記対向面とを含む面で形成されて前記巻回部の端面がつくる傾斜に対応した傾斜空間である請求項1に記載のリアクトル。
  3.  前記コイルは、互いの軸が平行となるように横並びに配置される一対の前記巻回部と、軸方向一端側で前記一対の巻回部を連結する連結部とを備え、
     前記温度センサは、前記一対の巻回部が互いに対向する側に位置する前記空間に配置される請求項1又は請求項2に記載のリアクトル。
  4.  前記温度センサは、前記連結部側に位置する前記空間に配置される請求項3に記載のリアクトル。
  5.  前記空間内に前記温度センサを固定するセンサ固定部を備え、
     前記センサ固定部は、体積膨張する発泡樹脂を有する請求項1~請求項4のいずれか1項に記載のリアクトル。
  6.  前記センサ固定部は、前記温度センサに対して前記対向部材側に配置される前記発泡樹脂と前記巻回部側に配置される接着剤とを有し、
     前記温度センサは、前記発泡樹脂の体積膨張によって前記接着剤に接触している請求項5に記載のリアクトル。
  7.  前記対向部材における前記巻回部の端面側には、溝部が形成され、
     前記温度センサが、前記溝部に配置されている請求項1~請求項6のいずれか1項に記載のリアクトル。
  8.  前記対向部材が、前記磁性コアのうち前記巻回部の外に配置されるコア片の一部で構成される請求項1~請求項7のいずれか1項に記載のリアクトル。
  9.  前記対向部材が、前記磁性コアのうち前記巻回部の外に配置されるコア片の表面を覆う樹脂モールド部で構成される請求項1~請求項7のいずれか1項に記載のリアクトル。
PCT/JP2015/078214 2014-10-15 2015-10-05 リアクトル WO2016060000A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014211262A JP6379981B2 (ja) 2014-10-15 2014-10-15 リアクトル
JP2014-211262 2014-10-15

Publications (1)

Publication Number Publication Date
WO2016060000A1 true WO2016060000A1 (ja) 2016-04-21

Family

ID=55746548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078214 WO2016060000A1 (ja) 2014-10-15 2015-10-05 リアクトル

Country Status (2)

Country Link
JP (1) JP6379981B2 (ja)
WO (1) WO2016060000A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779467B2 (ja) 2017-08-21 2020-11-04 株式会社オートネットワーク技術研究所 リアクトル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148157A (ja) * 1995-11-27 1997-06-06 Matsushita Electric Works Ltd 電磁装置及びその製造方法
JP2006351719A (ja) * 2005-06-14 2006-12-28 Sumitomo Electric Ind Ltd リアクトル
JP2010074150A (ja) * 2008-08-22 2010-04-02 Sumitomo Electric Ind Ltd リアクトル用部品およびリアクトル
JP2010093138A (ja) * 2008-10-09 2010-04-22 Sumitomo Electric Ind Ltd リアクトル
JP2014093375A (ja) * 2012-11-01 2014-05-19 Auto Network Gijutsu Kenkyusho:Kk リアクトル、コンバータ、及び電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148157A (ja) * 1995-11-27 1997-06-06 Matsushita Electric Works Ltd 電磁装置及びその製造方法
JP2006351719A (ja) * 2005-06-14 2006-12-28 Sumitomo Electric Ind Ltd リアクトル
JP2010074150A (ja) * 2008-08-22 2010-04-02 Sumitomo Electric Ind Ltd リアクトル用部品およびリアクトル
JP2010093138A (ja) * 2008-10-09 2010-04-22 Sumitomo Electric Ind Ltd リアクトル
JP2014093375A (ja) * 2012-11-01 2014-05-19 Auto Network Gijutsu Kenkyusho:Kk リアクトル、コンバータ、及び電力変換装置

Also Published As

Publication number Publication date
JP2016082042A (ja) 2016-05-16
JP6379981B2 (ja) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6358565B2 (ja) リアクトル、およびリアクトルの製造方法
JP6376461B2 (ja) リアクトル
US10141102B2 (en) Reactor
CN108463862B (zh) 电抗器及电抗器的制造方法
JP6460393B2 (ja) リアクトル
WO2016167199A1 (ja) リアクトル
US11017935B2 (en) Reactor
JP6379981B2 (ja) リアクトル
CN109416976B (zh) 电抗器及电抗器的制造方法
CN112640015A (zh) 电抗器
JP6362030B2 (ja) リアクトル
US11908613B2 (en) Reactor
CN111788646B (zh) 电抗器
CN109416977B (zh) 电抗器
JP6808177B2 (ja) リアクトル
JP2018139332A (ja) リアクトル、およびリアクトルの製造方法
WO2016199700A1 (ja) リアクトル、およびリアクトルの製造方法
CN112970080B (zh) 电抗器
CN111656470B (zh) 电抗器
JP2011009660A (ja) リアクトル
WO2019171940A1 (ja) リアクトル
WO2020105469A1 (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850058

Country of ref document: EP

Kind code of ref document: A1