WO2016052974A1 - 광섬유 브래그 격자 기반 센서 및 이를 이용한 측정장치 - Google Patents
광섬유 브래그 격자 기반 센서 및 이를 이용한 측정장치 Download PDFInfo
- Publication number
- WO2016052974A1 WO2016052974A1 PCT/KR2015/010276 KR2015010276W WO2016052974A1 WO 2016052974 A1 WO2016052974 A1 WO 2016052974A1 KR 2015010276 W KR2015010276 W KR 2015010276W WO 2016052974 A1 WO2016052974 A1 WO 2016052974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- bragg grating
- fiber bragg
- magnet
- based sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/02—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
- G01P5/06—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using rotation of vanes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P13/00—Indicating or recording presence, absence, or direction, of movement
- G01P13/02—Indicating direction only, e.g. by weather vane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/14—Rainfall or precipitation gauges
Definitions
- the present invention forms a plurality of optical fiber Bragg grating (Fiber Bragg Grating) on a single fiber according to a certain length, for example, the characteristics of the wavelength of the light reflected from each grating is changed according to external conditions such as tensile strength
- the present invention relates to an optical fiber Bragg grating based sensor and a measuring device using the same.
- an increasing number of measuring devices are installed in remote areas such as mountainous regions, distant oceans, and uninhabited islands to measure weather conditions such as heavy rain, storms and heavy snow in real time.
- the present invention has been made in view of the problems of the prior art, and an object thereof is to provide an optical fiber Bragg grating based sensor capable of observing the weather without a power supply and an observation apparatus using the same.
- the optical fiber Bragg grating-based sensor of the present invention for solving the above problems, an optical fiber, an optical fiber Bragg grating formed on a portion of the optical fiber, tension applying means arranged to apply tension to the optical fiber Bragg grating, and the tension applying means And a magnet portion for driving the light source, wherein the tension applying means drives the distance when the distance from the magnet portion is within a predetermined distance to apply tension to the optical fiber Bragg grating to deform the optical fiber Bragg grating to pass through the optical fiber.
- the magnet portion includes a rotating shaft, a rotating body rotating about the rotating shaft, and a magnet disposed at an opposite end of the rotating shaft of the rotating body, wherein the rotating body rotates about the rotating shaft.
- the distance between the tension applying means and the magnet portion is closer or farther within a predetermined distance.
- the tension applying means includes a moving axis moving in the rotational axis direction when the distance between the tension applying means and the magnet portion approaches within a predetermined distance, and the optical fiber Bragg grating while interlocking with the moving axis. And a tensile strength changing member for applying the tension, and an elastic member for regulating the moving distance of the moving shaft in the rotational axis direction to be within a predetermined distance.
- the precipitation measurement apparatus of the present invention includes a tipping bucket and a fiber Bragg grating based sensor for detecting the seesaw operation of the tipping bucket in response to the rainfall falling per unit time, the fiber Bragg grating based sensor The one of the optical fiber Bragg grating-based sensor, the distance between the tension applying means and the magnet portion is changed by rotating the magnet portion in conjunction with the seesaw operation of the tipping bucket.
- the wind direction measuring apparatus of the present invention includes a wind vane rotating in the wind blowing direction, and a fiber Bragg grating-based sensor for detecting the rotation of the wind vane
- the optical fiber Bragg grating-based sensor is any one of the The optical fiber Bragg grating-based sensor, the distance between the tension applying means and the magnet portion is changed by the magnet portion rotates in conjunction with the rotation of the wind vane.
- the wind speed measuring apparatus of the present invention includes a wind distribution member that rotates according to the wind speed, and an optical fiber Bragg grating-based sensor for detecting the rotation of the wind distribution member, wherein the optical fiber Bragg grating-based sensor is the one of the optical fibers Bragg grating-based sensor, the distance between the tension applying means and the magnet portion is changed by the magnet portion rotates in conjunction with the rotation of the wind distribution member.
- the optical fiber Bragg grating-based sensor of the present invention and the observation system using the same include a magnet portion for varying the degree of tension of the optical fiber Bragg grating, so that the wavelength of light passing through the optical fiber according to the degree of tension of the optical fiber Bragg grating which varies with the magnetic force change of the magnet part. Since it senses the change and observes weather such as precipitation, wind direction, and wind speed, it is easy to install at the site where power supply is difficult because power supply equipment is not required at the observation site, and economic efficiency can be improved due to large power consumption reduction effect.
- FIG. 1 is a schematic diagram schematically showing a schematic configuration of an optical fiber Bragg grating based sensor of a preferred embodiment of the present invention
- FIG. 2 is a graph showing a wavelength change of light passing through an optical fiber according to the position of the magnet of FIG.
- FIG. 3 is a schematic diagram showing an apparatus for measuring precipitation using an optical fiber Bragg grating based sensor according to an embodiment
- FIG. 4 is a schematic view showing a wind direction / wind speed measuring apparatus using an optical fiber Bragg grating-based sensor according to the embodiment
- FIG. 5 is a plan view showing a circular ring counterweight included in the wind direction / wind velocity measurement apparatus using the optical fiber Bragg grating-based sensor according to the embodiment,
- FIG. 6 is a plan view illustrating an optical fiber Bragg grating based sensor according to an exemplary embodiment in which the wind direction of FIG. 4 is sensed;
- FIG. 7 is a plan view illustrating an optical fiber Bragg grating based sensor according to an exemplary embodiment of sensing wind speed of FIG. 4;
- FIG. 8 is a graph illustrating a change in wavelength of light passing through an optical fiber according to the magnet position of FIG. 6.
- This embodiment relates to an optical fiber Bragg grating based sensor.
- 1 is a schematic diagram schematically showing a configuration of an optical fiber Bragg grating based sensor of a preferred embodiment of the present invention.
- the optical fiber Bragg grating-based sensor 10 of the first embodiment has a tension outside the optical fiber 2 and the magnet part 1 and the optical fiber Bragg grating 2a in which the optical fiber Bragg grating 2a is formed. It includes a tension applying unit 9 for applying.
- the optical fiber 2 is an optical fiber of a known configuration, and the optical fiber Bragg grating 2a is a known optical fiber Bragg grating formed along a predetermined length in a part of this known optical fiber.
- the magnet part 1 provides a driving force to the tension applying part 9 which applies or releases tension to the outside of the optical fiber Bragg grating 2a, and is coupled to the rotating shaft 3 so as to be movable rotationally.
- the magnet 7 and the tension applying portion 9 disposed at the end thereof are rotated.
- the distance between the magnet detection unit 93 is farther away than the predetermined distance or closer to within the predetermined distance.
- the tension applying unit 9 includes a moving shaft 91, a magnet detecting unit 93, a slide guide 95, an elastic member 97, and a tensile strength changing member 99.
- the movement shaft 91 is disposed in a direction perpendicular to the optical fiber 2 at a position extending from the rotation shaft 3 of the magnet portion 1, and can linearly reciprocate in a direction approaching or away from the rotation shaft 3. Axis is arranged.
- the magnet detecting unit 93 is disposed at the end of the moving shaft 91 close to the rotation shaft 3, and is preferably formed of a magnetic material that can be attracted by the magnetic force of the magnet 7.
- the slide guide 95 is disposed on at least one side of the moving shaft 91, and guides the moving shaft 91 to linearly reciprocate along the direction of the rotating shaft 3 of the rotating body 5.
- the elastic member 97 is disposed at an end opposite to the rotational axis 3 of the movement shaft 91 so that one end is connected to the end opposite to the rotational shaft 3 and the other end is fixed to a case or the like, not shown,
- the moving distance in the direction of the rotation axis 3 of the 91 is regulated to be within a certain distance, for example, it can be composed of an elastic body such as a coil spring.
- the tensile strength changing member 99 is arranged to be movable in connection with a linear reciprocating motion of the moving shaft 91 in contact with the optical fiber Bragg grating 2a, and as shown in FIG.
- the moving shaft 91 moves in the direction of arrow A
- no tension is applied to the optical fiber Bragg grating 2a
- the moving shaft 91 of the tension applying unit 9 moves in the direction of arrow B as shown in FIG.
- tension is applied to the optical fiber Bragg grating 2a to deform the optical fiber Bragg grating 2a.
- the tensile strength changing member 99 has a semicircular shape, but it is not necessarily a semicircular shape, and may be any shape as long as it can change the tension applied to the optical fiber Bragg grating 2a.
- FIG. 2 is a graph illustrating a wavelength change of light passing through an optical fiber according to the position of the magnet of FIG. 1.
- the magnetic body 1 is rotated around the rotating shaft 3 in a state as shown in Fig. 1 (a) by a force applied from the outside (specific examples will be described in Examples 2 and 3).
- a force applied from the outside specifically examples will be described in Examples 2 and 3.
- the magnet (5) is rotated counterclockwise and the magnet (7) is rotated to a position away from the magnet sensing unit (93) of the tension applying unit (9)
- the suction force is weaker than the force by which the elastic member 97 of the tension applying section 9 pulls the moving shaft 91 in a direction away from the rotation shaft 3, so that the moving shaft 91 of the tension applying section 9 is shown in FIG. It becomes the state moved to the arrow A direction of 1 (a), and in this state, the tension by the tensile strength change member 99 is not applied to the optical fiber Bragg grating 2a.
- the rotating body 5 rotates clockwise about the rotating shaft 3 so that the rotating shaft 3 and the magnet are rotated.
- the sensing unit 93 and the moving shaft 91 are in a state of being in a straight line, whereby the magnetic force (suction force) of the magnet 7 of the magnet unit 1 is the elastic member 97 of the tension applying unit 9. Is stronger than the pulling force of the moving shaft 91 in the direction away from the rotation shaft 3, so that the moving shaft 91 of the tension applying section 9 is moved in the direction of the arrow B in FIG. 1 (b),
- the optical fiber Bragg grating 2a is in a state in which its shape is deformed by the tension applied by the tensile strength changing member 99.
- the magnet 7 pulls the magnet sensing unit 93 in the rotational axis 3 direction
- the elastic member 97 moves the movement axis 91 in the direction opposite to the rotational axis 3 direction.
- the relation with the pulling force is that when the magnet 7 of the magnet part 1 is located away from the magnet sensing part 93 of the tension applying part 9 as shown in FIG.
- the elastic member 97 pulls the magnet detecting part 93 in the direction opposite to the rotation axis 3 via the moving shaft 91 rather than the force that pulls the magnet detecting part 93 in the rotation axis 3 direction.
- the wavelength of light passing through the optical fiber 2 in a state in which tension is not applied to the optical fiber Bragg grating 2a by the tension applying unit 9 is referred to as ⁇ 3
- the change in the physical quantity can be sensed by counting the number of times the wavelength of the light passing through the optical fiber 2 changes between ⁇ 3 and ⁇ 3 + ⁇ .
- optical fiber Bragg grating-based sensor 10 of the present embodiment is installed at a plurality of remote locations, and the wavelength of light of the optical fiber 2 of each of the plurality of optical fiber Bragg grating-based sensors 10 is set to different wavelengths. May be identified.
- the rotating body 5 of the magnet 1 moves only as a pendulum about the rotating shaft 3, but the rotating body 5 is formed around the rotating shaft 3. You can also configure to exercise.
- Example 2 is demonstrated.
- the second embodiment relates to an example of using the optical fiber Bragg grating-based sensor 10 of the first embodiment for the precipitation measurement
- Figure 3 is a schematic diagram showing a precipitation measurement apparatus using the optical fiber Bragg grating-based sensor according to the second embodiment.
- the precipitation measuring apparatus using the optical fiber Bragg grating-based sensor according to Embodiment 2 performs seesawing from side to side according to the amount of rainwater and stores or stores rainwater in a space formed in the tipping bucket 11.
- Tipping bucket 11 which is operated to throw away the outside, a pivot shaft 13 serving as a central axis of the seesaw, a support 15 fixed to a lower portion of the pivot shaft 13 of the tipping bucket 11,
- the magnet 17 fixed to the end of the support 15, and applied in conjunction with the linear reciprocating motion of the tension applying unit 19 and the tension applying unit 19 to perform a linear reciprocating motion in accordance with the change in the magnetic force of the magnet 17
- the optical fiber Bragg grating 210 is installed so that the tension is changed to include the optical fiber 21 is formed.
- the rotating shaft 13, the support 15, and the magnet 17 correspond to the rotating shaft 3, the rotating body 5 and the magnet 7 of the first embodiment, respectively, and the tension applying unit 19
- the optical fiber Bragg grating 210 and the optical fiber 21 correspond to the optical fiber Bragg grating 2a and the optical fiber 2, respectively.
- the tension applying unit 19 includes a moving shaft 191, a magnet detecting unit 193, a slide guide 195, an elastic member 197, and a tensile strength changing member 199, wherein the moving shaft 191 is on the moving shaft 91 of the first embodiment, the magnet detecting unit 193 is the magnet detecting unit 93 of the first embodiment, the slide guide 195 is the slide guide 95 of the first embodiment
- the elastic member 197 corresponds to the elastic member 97 of the first embodiment, and the tensile strength changing member 199 corresponds to the tensile strength changing member 99 of the first embodiment, respectively.
- the tipping bucket 11 collects rainwater in a space formed in the tipping bucket 11 itself when it rains, and when a predetermined amount of rainwater collects in the space of the tipping bucket 11, the tipping bucket ( 11) is rotated to be inclined by a predetermined angle as shown in Fig. 3 (a) to discard the rainwater filled in the space, if the water is discarded lightly rotates again to the position as shown in Fig. 3 (b) to fill the rain water is repeated Is configured to.
- the tipping bucket 11 is in the state of FIG. 3 (b), that is, the rotation shaft 13 and the rotational body 15 and the movement shaft 191 are located in a straight line. 13 is a position in which the elastic force of the elastic member 197 is overcome and pulled toward the rotation axis 13, whereby the tensile strength changing member 199 also moves toward the rotation axis 3 to tension the optical fiber Bragg grating 210. This becomes the applied state.
- the distance between the magnet 17 and the magnet sensing unit 193 of the tension applying unit 19 is farther than that in FIG. 3B, and the magnet (
- the suction force of the magnet 17 and the elastic member 197 have a greater force for the elastic member 197 of the tension applying unit 19 to pull the moving shaft 191 than the suction force that the 17 attracts the magnet sensing unit 193. Since the tension of the is adjusted, the moving shaft 191 is moved away from the rotation axis 13 by the force of the elastic member 197, and the tensile strength changing member 199 is attached to the optical fiber Bragg grating 210. The tension by is not applied.
- the tipping bucket 11 when the tipping bucket 11 is in the state of FIG. 3 (a) and all the rainwater collected in the tipping bucket 11 is discharged to the outside, the tipping bucket 11 returns to the position of FIG. 3 (b) again. Go ahead and repeat the previous operation, the number of repetitions of the operation per unit time is determined in proportion to the amount of rainwater filling tipping bucket 11 per unit time, that is, rainfall per unit time.
- a change in the intensity of light passing through the optical fiber 20 occurs in the state of (a) and (b) of FIG. Can be measured.
- the accuracy of the precipitation measurement by the optical fiber Bragg grating-based sensor has an error range accuracy within ⁇ 3% at rainfall intensity of 20 mm / h to 50 mm / h, and the resolution is 0.4 mm to 0.6 mm. .
- Figure 4 is a schematic diagram showing the wind direction / wind speed measuring apparatus using the optical fiber Bragg grating based sensor according to the third embodiment
- Figure 5 is a circular annular ring included in the wind direction / wind speed measuring apparatus using the optical fiber Bragg grating based sensor according to the third embodiment
- a plan view showing the counterweight. 6 is a plan view illustrating an optical fiber Bragg grating based sensor according to the third embodiment of the present invention for sensing the wind direction of FIG. 4
- FIG. 7 is a plan view illustrating an optical fiber Bragg grating based sensor according to the third embodiment for sensing the wind speed of FIG. 4. .
- the wind direction / wind velocity measuring apparatus using the optical fiber Bragg grating-based sensor according to the third embodiment is provided with a wind vane 311 and a wind distribution member 313 to rotate by wind direction / wind speed.
- the wind velocity rotating part 31 and the wind direction blade 311 are disposed below the wind direction rotary pillar 33 and the wind direction rotating member 33 and rotated in conjunction with the wind direction member 311,
- the second support fixed vertically to the other side of the wind support rotary pillar (34), the first support (35) vertically fixed to one side of the wind direction rotary column (33), which rotates in the same way in conjunction with ( 35 ′), the third support 36 vertically fixed to one side of the wind turbine 34, the fourth support 36 ′ vertically fixed to the other side of the wind turbine 34, and the first support 35.
- a counterweight (3) provided at each of the magnets 37, the second support 35 'and the fourth support 36' fixed to the ends of each of the third support 36 and 8), the optical fiber 41, the optical fiber Bragg grating 410 is formed is interlocked according to the linear reciprocating motion of the tension applying unit 39 and the linear linear reciprocating motion according to the change of the magnetic force of the magnet 37 Include.
- the optical fiber Bragg grating-based sensor includes the optical fiber 41 formed with the magnet 37, the tension applying unit 39 and the optical fiber Bragg grating 410, the linear reciprocating motion of the tension applying unit 39 Sensing a wavelength variation generated according to the degree of tension of the optical fiber Bragg grating 410 is changed in proportion to the.
- the magnet portion includes a magnet 37 and a tension applying portion 39.
- the wind vane 311 rotates the wind direction rotary column 33 in the wind blowing direction by the wind.
- the wind distribution member 313 has a plurality of wind distributions (wind) is integrally installed radially and irrespective of the direction of the wind when the wind is rotated by the wind, and is rotatable even in the fine wind.
- each of the wind cups may be formed in a hemispherical shape whose belly is bulging to one side, and may be formed like a cup concave inside.
- the magnet 37 Since the magnet 37 is fixed to each end of each of the first support 35 and the second support 36, the magnet 37 rotates in accordance with the rotational operation of the first support 35 or the second support 36. ⁇ )).
- the magnet 37 may be a permanent magnet.
- the counterweight 38 is installed so that the wind direction rotary column 33 and the wind speed rotation column 34 rotate in proportion to the wind speed and the wind speed even at a small wind and wind speed. That is, in the case of small wind and wind speed, since the magnet 37 is fixed to the tension applying unit 39 by the magnetic force, the wind direction rotary column 33 and the wind speed rotation column 34 have small size of the wind and wind speed. It may not rotate freely in proportion to. In order to prevent such adverse effects, the balance weight 38 is installed to generate an inertia moment using a torque. In addition, the counterweight 38 may be installed in a ring-shaped circular ring, as shown in FIG.
- the tension applying unit 39 includes a moving shaft 391, a magnet sensing unit 393, a slide guide 395, an elastic member 397, and a tensile strength changing member 399.
- the tension applying unit 39 includes eight tension applying units disposed in each of east (E), west (W), south (S), north (N) and northeast, southeast, northwest, and southwest directions. 39.
- the tension applying unit 39 includes four tension applying units 39 disposed in directions of copper (E), west (W), south (S), and north (N), respectively. It can be composed of).
- the moving shaft 391 is spaced apart from the magnet 37.
- the moving shaft 391 is a magnet (37) rotation (rotation) of the middle east (E), west (W), south (S) and north ( It is located at a position opposite to the magnet 37 when it is located at any one of N) and spaced apart.
- the magnet detecting unit 393 is fixed to the upper end of the moving shaft 391 and detects the magnetic force of the magnet 37.
- the magnet detecting unit 393 may be a metal bar.
- the moving shaft 391 and the magnet detecting unit 393 may include a magnet (a magnet) when the magnet 37 reaches a position opposite to the moving shaft 391 during the rotation (rotation) of the magnet 37. It is lifted up by the influence of 37) magnetic force.
- the magnetic force generated by the magnet 37 may vary depending on the design features of the system, but may be strong enough to move the moving shaft 391 and the magnet sensing portion 393 upward. Accordingly, the moving shaft 391 is moved upward and attracted toward the magnet 37 through the magnetic force generated by the magnet 37.
- the slide guide 395 is disposed at one lower portion of the moving shaft 391 to guide the movable shaft 391 to be movable.
- the elastic member 397 is disposed under the moving shaft 391 and is configured to prevent the magnet 37 and the magnet sensing unit 393 from contacting each other. That is, the elastic member 397 is configured such that there is a gap between the magnet 37 and the magnet sensing unit 393 throughout the rotation (rotation) of the magnet 37. In addition, the elastic member 397 is rotated (rotated) to a position where the magnet 37 is not opposed to the moving shaft 391 so that the magnetic force applied to the magnet sensing unit 393 disappears. 391) can be pulled down and moved to its initial position.
- the elastic member 397 may be a spring.
- the tensile strength changing member 399 is a seating portion of the optical fiber Bragg grating 410, and is disposed on the side of the moving shaft 391.
- the tensile strength changing member 399 is disposed at the upper side of the other side of the moving shaft 191 opposite to one side of the moving shaft 391.
- the tensile strength changing member 399 may be disposed on the upper portion of one side of the moving shaft (391).
- the tensile strength changing member 199 may be connected to the optical fiber Bragg grating 210 by a connecting means such as an annular band.
- the tensile strength changing member 399 may be an arch bracket to increase the degree of tension of the optical fiber Bragg grating 410.
- FIG. 8 is a graph illustrating a change in wavelength of light passing through an optical fiber according to the magnet position of FIG. 6.
- the wind direction / wind speed measuring device configured as described above is the wind direction feather 311 is rotated in the direction of the wind blowing and the wind direction rotary column 33 is rotated in conjunction with the rotation, the wind breeze member 313 is rotated when the wind blows In conjunction with its rotation, the wind speed rotating column 34 is rotated.
- the optical fiber Bragg grating-based sensor according to the third embodiment senses the rotation of the wind direction rotating column 33 and the wind speed rotating column 34.
- the optical fiber Bragg grating-based sensor has a measurement range of 0 ° to 360 °, an accuracy of 5 ° or less, and a resolution of 4 ° to 6 °.
- the magnet 37 fixed to the end of the first support 35 is rotated (rotated) in conjunction with the rotational movement of the wind direction rotary column 33, the end of the third support 36
- the magnet 37 fixed thereto is rotated (rotated) in conjunction with the rotational operation of the wind speed rotation column 34.
- the tension applying portion 39 linearly reciprocates in accordance with the change in the magnetic force of the magnet 37 due to the rotation (rotation).
- the optical fiber Bragg grating-based sensor senses the wavelength shift generated according to the tension degree of the optical fiber Bragg grating 410 that is changed in proportion to the linear reciprocating motion of the tension applying unit 39, the wind direction rotation
- the rotational movement of the pillar 33 and the wind speed rotating column 34 is sensed.
- ⁇ 4 and ⁇ 5 each have a wavelength shift with ⁇ 4 and ⁇ 5
- the wavelength shift is sensed, thereby sensing the rotational operation of the wind direction rotating column 33.
- the wavelength shift size can be measured as a relative comparison value.
- the wind direction may be measured even with the wavelength shift data.
- the wind direction / wind speed measuring device measures the wind direction by the position of the magnet 37 fixed to the end of the first support 35, and measures the wind speed by counting the rotation of the wind speed rotation column 34.
- the optical fiber Bragg grating-based sensor and the measuring device using the same includes a magnet portion for varying the degree of tension of the optical fiber Bragg grating, according to the tension degree of the optical fiber Bragg grating variable by the magnetic force change of the magnet portion It detects changes in the wavelength of light passing through the optical fiber and observes weather conditions such as precipitation, wind direction, and wind speed, so it is easy to install in the field where power supply is difficult because power supply equipment is not required at the observation site, and the power consumption reduction effect is large. Economics can be improved.
- Wind direction / wind rotation part 33 Wind direction rotation pillar
Landscapes
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ecology (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Hydrology & Water Resources (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optical Transform (AREA)
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
Abstract
본 발명은 광섬유(2)와, 광섬유의 일부에 형성된 광섬유 브래그 격자(2a)와, 광섬유 브래그 격자에 장력을 인가하도록 배치되는 장력 인가부(9)와, 장력 인가부를 구동하는 자석부(1)를 포함하며, 장력 인가부는 자석부와의 거리가 미리 정해진 거리 이내이면 구동하여 광섬유 브래그 격자에 장력을 인가함으로써 당해 광섬유 브래그 격자를 변형시켜서 광섬유를 통과하는 광의 파장을 변화시킨다.
Description
본 발명은 한 가닥의 광섬유에 복수의 광섬유 브래그 격자(Fiber Bragg Grating)를 일정한 길이에 따라서 형성하여, 예를 들어 인장강도 등의 외부의 조건변화에 따라서 각 격자에서 반사되는 빛의 파장이 달라지는 특성을 이용한 광섬유 브래그 격자 기반 센서 및 이를 이용한 측정장치에 관한 것이다.
최근, 지구 온난화 등에 따라 국지적으로 폭우, 폭풍, 폭설이 발생하는 기상이변이 빈번하게 발생하고 있고, 이와 같은 국지적인 기상이변의 관측을 위해서는 산간 오지나 먼바다 등에도 기상관측시설의 설치의 필요성이 증가하고 있다.
이와 같은 요청에 부응하기 위해 산간 오지, 먼바다, 무인도 등의 사람의 접근이 어려운 지역에 설치하여 폭우, 폭풍, 폭설 등의 기상상태를 실시간으로 측정하는 측정장치가 증가하고 있다.
그러나 현재 사용되고 있는 일반적인 기상측정장치는 외부로부터 전원을 공급해야 하는 전자식 센서장치를 이용하고 있으므로 산간 오지나 먼바다와 같이 전력의 공급이 어려운 지역에의 설치에는 어려움이 있다.
본 발명은 상기 종래 기술의 문제점을 감안하여 이루어진 것으로, 전원 공급 장치가 없이 기상을 관측할 수 있는 광섬유 브래그 격자 기반 센서 및 이를 이용한 관측장치를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명의 광섬유 브래그 격자 기반 센서는, 광섬유와, 상기 광섬유의 일부에 형성된 광섬유 브래그 격자와, 상기 광섬유 브래그 격자에 장력을 인가하도록 배치되는 장력 인가수단과, 상기 장력 인가수단을 구동하는 자석부를 포함하며, 상기 장력 인가수단은 상기 자석부와의 거리가 미리 정해진 거리 이내이면 구동하여 상기 광섬유 브래그 격자에 장력을 인가함으로써 당해 광섬유 브래그 격자를 변형시켜서 상기 광섬유를 통과하는 광의 파장을 변화시킨다.
바람직하게는, 상기 자석부는, 회동 축과, 상기 회동 축을 중심으로 회동하는 회동체와, 상기 회동체의 상기 회동 축의 반대쪽 단부에 배치된 자석을 포함하며, 상기 회동체가 상기 회동 축을 중심으로 회동함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 미리 정해진 거리 이내로 가까워지거나 또는 멀어진다.
바람직하게는, 상기 장력 인가수단은, 상기 장력 인가수단과 상기 자석부 사이의 거리가 미리 정해진 거리 이내로 가까워지면 상기 회동 축 방향으로 이동하는 이동 축과, 상기 이동 축과 연동하면서 상기 광섬유 브래그 격자에 상기 장력을 인가하는 인장강도 변경부재와, 상기 이동 축의 상기 회동 축 방향으로의 이동거리가 일정 거리 이내가 되도록 규제하는 탄성 부재를 포함한다.
또, 본 발명의 강수량 측정장치는, 단위 시간당 내리는 강우량에 대응하여 시소동작을 티핑 버킷과, 상기 티핑 버킷의 상기 시소동작을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고, 상기 광섬유 브래그 격자 기반 센서는 상기 어느 하나의 광섬유 브래그 격자 기반 센서이며, 상기 자석부가 상기 티핑 버킷의 상기 시소동작에 연동하여 회동함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동된다.
또, 본 발명의 풍향 측정장치는, 바람이 불어오는 방향으로 회전하는 풍향 깃과, 상기 풍향 깃의 회전을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고, 상기 광섬유 브래그 격자 기반 센서는 상기 어느 하나의 광섬유 브래그 격자 기반 센서이며, 상기 자석부가 상기 풍향 깃의 회전에 연동하여 회전함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동된다.
또, 본 발명의 풍속 측정장치는, 바람의 속도에 따라서 회전하는 풍배 부재와, 상기 풍배 부재의 회전을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고, 상기 광섬유 브래그 격자 기반 센서는 상기 어느 하나의 광섬유 브래그 격자 기반 센서이며, 상기 자석부가 상기 풍배 부재의 회전에 연동하여 회전함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동된다.
본 발명의 광섬유 브래그 격자 기반 센서 및 이를 이용하는 관측 시스템은 광섬유 브래그 격자의 인장 정도를 가변시키는 자석부를 포함함으로써, 자석부의 자기력 변화로 가변하는 광섬유 브래그 격자의 인장 정도에 따라 광섬유를 통과하는 빛의 파장 변화를 센싱하여 강수량, 풍향, 풍속 등 기상을 관측하기 때문에, 관측현장에 전원 공급 장치 등이 필요치 않아 전력 공급이 어려운 현장에 설치가 용이하고, 소비전력 절감효과가 커 경제성이 향상될 수 있다.
도 1은 본 발명의 바람직한 실시 예의 광섬유 브래그 격자 기반 센서의 개략적인 구성을 모식적으로 나타낸 개략도,
도 2는 도 1의 자석의 위치에 따라 광섬유를 통과하는 빛의 파장 변화를 나타낸 그래프,
도 3은 실시 예에 따른 광섬유 브래그 격자 기반 센서를 이용하는 강수량 측정장치을 나타낸 개략도,
도 4는 실시 예에 따른 광섬유 브래그 격자 기반 센서를 이용하는 풍향/풍속 측정장치을 나타낸 개략도,
도 5는 실시 예에 따른 광섬유 브래그 격자 기반 센서를 이용하는 풍향/풍속 측정장치에 포함된 원형고리형 평형 추를 나타낸 평면도,
도 6은 도 4의 풍향을 센싱 하는 실시 예에 따른 광섬유 브래그 격자 기반 센서를 나타낸 평면도,
도 7은 도 4의 풍속을 센싱 하는 실시 예에 따른 광섬유 브래그 격자 기반 센서를 나타낸 평면도,
도 8은 도 6의 자석 위치에 따라 광섬유를 통과하는 빛의 파장 변화를 나타낸 그래프이다.
이하, 첨부 도면을 참조하면서 본 발명의 바람직한 실시 예에 대해서 상세하게 설명한다.
<실시 예 1>
본 실시 예는 광섬유 브래그 격자 기반 센서에 관한 것이다. 도 1은 본 발명의 바람직한 실시 예의 광섬유 브래그 격자 기반 센서의 개략적인 구성을 모식적으로 나타낸 개략도이다.
도 1에 나타내는 것과 같이, 본 실시 예 1의 광섬유 브래그 격자 기반 센서(10)는 광섬유 브래그 격자(2a)가 형성된 광섬유(2)와 자석부(1) 및 광섬유 브래그 격자(2a)의 외부에 장력을 인가하는 장력 인가부(9)를 포함한다.
광섬유(2)는 공지의 구성의 광섬유이고, 광섬유 브래그 격자(2a)는 이 공지의 광섬유의 일부에 일정한 길이에 따라서 형성된 공지의 광섬유 브래그 격자이다.
자석부(1)는 광섬유 브래그 격자(2a)의 외부에 장력을 인가 또는 해제하는 장력 인가부(9)에 구동력을 제공하며 회동 축(3) 상에 결합하여 회동(moving rotationally, 回動) 가능한 회동체(5)와, 회동체(5)의 회동 축(3)과 반대쪽 단부에 배치되며 예를 들어 영구자석 등으로 이루어지는 자석(7)을 포함하며, 본 실시 예의 자석부(1)는 예를 들어서 도 1의 (a) 및 (b)에 나타내는 것과 같이 회동 축(3)을 중심으로 하여 회동체(5)가 회동함으로써 그 단부에 배치된 자석(7)과 장력 인가부(9)의 자석 감지부(93) 사이의 거리가 미리 정해진 거리 이상으로 멀어지거나 또는 미리 정해진 거리 이내로 가까워지게 된다.
장력 인가부(9)는 이동 축(91)과 자석 감지부(93)와 슬라이드 가이드(95)와 탄성 부재(97) 및 인장강도 변경부재(99)를 포함한다.
이동 축(91)은 자석부(1)의 회동 축(3)으로부터 연장된 위치에서 광섬유(2)와 수직인 방향에 배치되며, 회동 축(3)과 가까워지거나 멀어지는 방향으로 직선 왕복운동이 가능하게 배치된 축이다.
자석 감지부(93)는 이동 축(91)의 회동 축(3)에 가까운 쪽의 단부에 배치되며, 상기 자석(7)의 자력에 의해 흡인될 수 있는 자성체로 형성하는 것이 바람직하다.
슬라이드 가이드(95)는 이동 축(91)의 적어도 일측에 배치되며, 이동 축(91)이 회동체(5)의 회동 축(3) 방향을 따라서 직선 왕복운동을 하도록 가이드 한다.
탄성 부재(97)는 이동 축(91)의 상기 회동 축(3)과 반대쪽 단부에 배치되어서, 일단은 회동 축(3)과 반대쪽 단부와 연결되고 타단은 미 도시의 케이스 등에 고정되고, 이동 축(91)의 상기 회동 축(3) 방향으로의 이동거리가 일정 거리 이내가 되도록 규제하며, 예를 들어 코일스프링과 같은 탄성체로 구성할 수 있다.
인장강도 변경부재(99)는 광섬유 브래그 격자(2a)와 접한 상태에서 이동 축(91)의 직선 왕복운동에 연동하여 이동 가능하게 배치되며, 도 1 (a)와 같이 장력 인가부(9)의 이동 축(91)이 화살표 A 방향으로 이동한 때에는 광섬유 브래그 격자(2a)에 장력을 인가하지 않으며, 도 1 (b)와 같이 장력 인가부(9)의 이동 축(91)이 화살표 B 방향으로 이동한 때에는 광섬유 브래그 격자(2a)에 장력을 인가하여 광섬유 브래그 격자(2a)를 변형시킨다. 도 1에서는 인장강도 변경부재(99)는 반원 형상을 하고 있으나, 반드시 반원형상이어야 하는 것은 아니며, 광섬유 브래그 격자(2a)에 인가되는 장력을 변경시킬 수 있는 형상이면 어떤 형상이라도 좋다.
이어서, 본 실시 예 1의 광섬유 브래그 격자 기반 센서(10)의 동작에 대해서 도 2도 참조하면서 설명한다. 도 2는 도 1의 자석의 위치에 따라 광섬유를 통과하는 빛의 파장 변화를 나타낸 그래프이다.
먼저, 외부로부터 가해지는 힘(구체적인 예에 대해서는 실시 예 2, 3에서 설명한다)에 의해 자석부(1)가 도 1 (a)와 같은 상태, 즉, 회동 축(3)을 중심으로 회동체(5)가 반시계방향으로 회동하여 자석(7)이 장력 인가부(9)의 자석 감지부(93)와 멀어지는 위치로 회동한 상태인 때에는 자석부(1)의 자석(7)의 자력(흡인력)이 장력 인가부(9)의 탄성 부재(97)가 이동 축(91)을 회동 축(3)과 멀어지는 방향으로 끌어당기는 힘보다 약해서 장력 인가부(9)의 이동 축(91)은 도 1 (a)의 화살표 A 방향으로 이동한 상태가 되며, 이 상태에서는 광섬유 브래그 격자(2a)에는 인장강도 변경부재(99)에 의한 장력이 인가되지 않는다.
다음에, 자석부(1)의 위치가 도 1 (a)에서 (b)로 변경되면, 회동 축(3)을 중심으로 회동체(5)가 시계방향으로 회전하여 회동 축(3)과 자석 감지부(93) 및 이동 축(91)이 일직선상에 놓인 상태가 되고, 이에 의해 자석부(1)의 자석(7)의 자력(흡인력)이 장력 인가부(9)의 탄성 부재(97)가 이동 축(91)을 회동 축(3)과 멀어지는 방향으로 끌어당기는 힘보다 강해서 장력 인가부(9)의 이동 축(91)은 도 1 (b)의 화살표 B 방향으로 이동한 상태가 되며, 이 상태에서는 광섬유 브래그 격자(2a)는 인장강도 변경부재(99)에 의해 인가되는 장력에 의해 그 형상이 변형되는 상태가 된다.
따라서 본 실시 예에서 자석(7)이 자석 감지부(93)를 회동 축(3) 방향으로 끌어당기는 힘과 탄성 부재(97)가 이동 축(91)을 회동 축(3) 방향과 반대방향으로 끌어당기는 힘과의 관계는, 자석부(1)의 자석(7)이 도 1의 (a)와 같이 장력 인가부(9)의 자석 감지부(93)와 멀어진 위치에 있을 때에는 자석(7)이 자석 감지부(93)를 회동 축(3) 방향으로 끌어당기는 힘보다 탄성 부재(97)가 이동 축(91)을 통해서 자석 감지부(93)를 회동 축(3) 방향과 반대방향으로 끌어당기는 힘이 더 크고, 반대로, 자석부(1)의 자석(7)이 도 1의 (b)와 같이 장력 인가부(9)의 자석 감지부(93)와 가까워진 위치에 있을 때에는 자석(7)이 자석 감지부(93)를 회동 축(3) 방향으로 끌어당기는 힘이 탄성 부재(97)가 이동 축(91)을 통해서 자석 감지부(93)를 회동 축(3) 방향과 반대방향으로 끌어당기는 힘보다 더 큰 관계가 되도록 설정하면 된다.
도 1 (a)의 상태와 같이 장력 인가부(9)에 의해 광섬유 브래그 격자(2a)에 장력이 인가되지 않은 상태에서 광섬유(2)를 통과하는 광의 파장을 λ3라고 하고, 장력 인가부(9)에 의해 광섬유 브래그 격자(2a)에 장력이 인가되어 광섬유 브래그 격자(2a)가 도 1 (b)의 상태와 같이 변형된 상태에서 광섬유(2)를 통과하는 광의 파장을 λ3+△λ라고 하면, 예를 들어 일정 기간 내에 광섬유(2)를 통과하는 광의 파장이 λ3와 λ3+△λ 사이에서 변화하는 횟수를 카운트하는 등에 의해 물리량의 변화를 센싱할 수 있다.
또, 본 실시 예의 광섬유 브래그 격자 기반 센서(10)를 원격지의 복수의 장소에 설치하고, 복수의 광섬유 브래그 격자 기반 센서(10) 각각의 광섬유(2)의 광의 파장을 서로 다른 파장으로 함으로써 그 위치를 식별할 수도 있다.
또, 상기 설명에서는 자석부(1)의 회동체(5)가 회동 축(3)을 중심으로 마치 진자와 같이 움직이는 것으로만 설명하였으나, 회동체(5)는 회동 축(3)을 중심으로 원운동을 하도록 구성해도 좋다.
<실시 예 2>
이어서, 실시 예 2에 대해서 설명한다. 본 실시 예 2는 실시 예 1의 광섬유 브래그 격자 기반 센서(10)를 강수량 측정에 이용하는 예에 관한 것이며, 도 3은 실시 예 2에 따른 광섬유 브래그 격자 기반 센서를 이용하는 강수량 측정장치을 나타낸 개략도이다.
도 3에 도시된 바와 같이, 실시 예 2에 따른 광섬유 브래그 격자 기반 센서를 이용하는 강수량 측정장치은 빗물의 양에 따라 좌우로 시소동작을 하며 티핑 버킷(11) 내에 형성된 공간 내에 빗물을 저장하거나 또는 저장된 빗물을 외부에 버리도록 동작하는 티핑 버킷(11)과, 상기 시소의 중심축이 되는 회동 축(13)과, 티핑 버킷(11)의 회동 축(13)의 하부에 고정된 지지대(15)와, 지지대(15)의 단부에 고정된 자석(17)과, 자석(17)의 자기력 변화에 따라 직선 왕복운동을 하는 장력 인가부(19) 및 장력 인가부(19)의 직선 왕복운동에 연동하여 인가되는 장력이 변경되도록 설치된 광섬유 브래그 격자(210)가 형성된 광섬유(21)를 포함한다.
여기서, 회동 축(13), 지지대(15), 자석(17)은 각각 실시 예 1의 회동 축(3), 회동체(5) 및 자석(7)에 대응하고, 장력 인가부(19)는 실시 예 1의 장력 인가부(9)에 대응하며, 광섬유 브래그 격자(210) 및 광섬유(21)는 각각 실시 예 1의 광섬유 브래그 격자(2a) 및 광섬유(2)와 대응된다.
또, 상기 장력 인가부(19)는 이동축(191), 자석감지부(193), 슬라이드 가이드(195), 탄성 부재(197) 및 인장강도 변경부재(199)를 포함하며, 여기서, 이동축(191)는 실시 예 1의 이동축(91)에, 자석감지부(193)는 실시 예 1의 자석 감지부(93)에, 슬라이드 가이드(195)는 실시 예 1의 슬라이드 가이드(95)에, 탄성 부재(197)는 실시 예 1의 탄성 부재(97)에, 인장강도 변경부재(199)는 실시 예 1의 인장강도 변경부재(99)에 각각 대응한다.
또, 티핑 버킷(11)은 비가 내릴 때 티핑 버킷(11) 자체에 형성된 공간에 빗물을 모으며, 상기 티핑 버킷(11)의 공간 내에 일정한 양의 빗물이 모이면 이 빗물의 무게에 의해 티핑 버킷(11)은 예를 들어 도 3 (a)와 같이 일정 각도만큼 기울어지도록 회동하여 공간 내에 채워진 빗물을 버리고, 물을 버려서 가벼워지면 다시 도 3 (b)와 같은 위치로 회동하여 빗물을 채우는 동작을 반복하도록 구성된다.
이어서, 본 실시 예 2의 동작에 대해서 설명한다.
먼저, 초기상태에서는 티핑 버킷(11)은 도 3 (b)의 상태, 즉, 회동 축(13)과 회동체(15) 및 이동 축(191)이 일직선상에 위치하는 상태에 있고, 회동 축(13)은 탄성 부재(197)의 탄성력을 이기고 회동 축(13) 쪽으로 끌려간 위치에 있으며, 이에 의해 인장강도 변경부재(199)도 회동 축(3) 쪽으로 이동하여 광섬유 브래그 격자(210)에는 장력이 가해진 상태가 된다.
이 상태에서, 비가 내리면 빗물은 티핑 버킷(11)의 공간 내에 채워지며, 11의 공간 내에 일정한 양의 빗물이 모이면 빗물의 무게에 의해서 도 3 (a)와 같이 일정 각도 기울어지도록 회동 축(13)을 중심으로 반시계방향으로 회동하며, 이에 의해 티핑 버킷(11) 내에 채워진 빗물을 외부로 버린다.
이때, 도 3 (a)에서는 자석(17)과 장력 인가부(19)의 자석 감지부(193) 사이의 거리가 도 3 (b)에 비해서 멀어져 있고, 또, 실시 예 1에서와 마찬가지로 자석(17)이 자석 감지부(193)를 끌어당기는 흡인력보다 장력 인가부(19)의 탄성 부재(197)가 이동 축(191)을 끌어당기는 힘이 더 크게 자석(17)의 흡인력과 탄성 부재(197)의 장력이 조정되어 있으므로, 탄성 부재(197)의 힘에 의해 이동 축(191)은 회동 축(13)으로부터 멀어지는 방향으로 이동하고 있고, 광섬유 브래그 격자(210)에는 인장강도 변경부재(199)에 의한 장력이 인가되지 않은 상태가 된다.
또, 티핑 버킷(11)의 위치가 도 3 (a)의 상태가 되어서 티핑 버킷(11) 내에 채원진 빗물이 모두 외부로 배출되면 티핑 버킷(11)은 다시 도 3 (b)의 위치로 되돌아가서 앞의 동작을 반복하며, 단위시간당 상기 동작의 반복 횟수는 단위시간당 티핑 버킷(11) 빗물이 채워지는 양, 즉, 단위시간당 강수량에 비례하여 정해진다.
또, 실시 예 1에서와 마찬가지로, 도 3의 (a)의 상태와 (b)의 상태에서 광섬유(20)를 통과하는 광의 강도의 변화가 발생하며, 이와 같은 광의 강의 변화 횟수 등을 카운트함으로써 강수량을 측정할 수 있다.
본 발명자의 확인에 의하면 광섬유 브래그 격자 기반 센서에 의한 강수량 측정의 정확도는 20㎜/h ~ 50㎜/h의 강우강도에서 ±3% 이내의 오차범위 정확도를 가지며, 분해능은 0.4㎜ ~ 0.6㎜이다.
<실시 예 3>
이하에서는 실시 예 3에 따른 광섬유 격자 기반센서를 이용하는 풍향/풍속 측정장치에 대하여 상세히 설명한다.
도 4는 실시 예 3에 따른 광섬유 브래그 격자 기반 센서를 이용하는 풍향/풍속 측정장치을 나타낸 개략도이고, 도 5는 실시 예 3에 따른 광섬유 브래그 격자 기반 센서를 이용하는 풍향/풍속 측정장치에 포함된 원형 고리형 평형 추를 나타낸 평면도이다. 그리고 도 6은 도 4의 풍향을 센싱 하는 실시 예 3에 따른 광섬유 브래그 격자 기반 센서를 나타낸 평면도이고, 도 7은 도 4의 풍속을 센싱 하는 실시 예 3에 따른 광섬유 브래그 격자 기반 센서를 나타낸 평면도이다.
도 4 내지 도 7에 도시된 바와 같이, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서를 이용하는 풍향/풍속 측정장치은 풍향 깃(311) 및 풍배 부재(313)가 구비되어 풍향/풍속에 의해 회전하는 풍향/풍속회전부(31), 풍향 깃(311)의 하부에 배치되어 풍향 깃(311)과 연동하여 회전하는 풍향 회전기둥(33), 풍배 부재(313)의 하부에 배치되어 풍배 부재(313)와 연동하여 동일하게 회전하는 풍속회전기둥(34), 풍향 회전기둥(33)의 일측에 수직으로 고정된 제1 지지대(35), 풍향 회전기둥(33)의 타측에 수직으로 고정된 제2 지지대(35'), 풍속회전기둥(34)의 일측에 수직으로 고정된 제3 지지대(36), 풍속회전기둥(34)의 타측에 수직으로 고정된 제4 지지대(36'), 제1 지지대(35) 및 제3 지지대(36) 각각의 단부에 고정된 자석(37), 제2 지지대(35') 및 제4 지지대(36') 각각에 설치된 평형 추(38), 자석(37)의 자기력 변화에 따라 직선 왕복운동되는 장력 인가부(39) 및 장력 인가부(39)의 직선 왕복운동에 따라 연동 되는 광섬유 브래그 격자(410)가 형성된 광섬유(41)를 포함한다.
여기서, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서는 자석(37), 장력 인가부(39) 및 광섬유 브래그 격자(410)가 형성된 광섬유(41)를 포함하여 장력 인가부(39)의 직선 왕복운동과 비례하여 가변 되는 광섬유 브래그 격자(410)의 인장 정도에 따라 발생 되는 파장 변이를 센싱한다. 또한, 자석부는 자석(37)과 장력 인가부(39)를 포함한다.
상기 풍향 깃(311)은 풍력에 의해 풍향 회전기둥(33)을 바람이 불어오는 방향으로 회전시킨다.
상기 풍배 부재(313)는 복수의 풍배(風杯)가 방사상으로 일체 설치되어 풍력에 의해 풍배의 회전 시 바람의 방향에 무관하고 미세한 바람에도 회전가능하다. 여기서, 상기 각 풍배는 그 형상이 일 측으로 배가 불룩한 반구형으로 형성하며 내부를 오목하게 잔(盞)처럼 형성될 수 있다.
상기 자석(37)은 제1 지지대(35) 및 제2 지지대(36) 각각의 단부에 고정되기 때문에, 제1 지지대(35) 또는 제2 지지대(36)의 회전 동작에 따라 회전(회동(回動)) 된다. 상기 자석(37)은 영구자석일 수 있다.
상기 평형 추(38)는 작은 크기의 풍력 및 풍속에도 풍향 회전기둥(33) 및 풍속회전기둥(34)이 풍력 및 풍속에 비례하여 회전(회동(回動))되도록 하기 위해 설치된다. 즉, 작은 크기의 풍력 및 풍속일 경우에는 자석(37)이 자기력에 의해 장력 인가부(39)와 고정되기 때문에, 풍향 회전기둥(33) 및 풍속회전기둥(34)이 작은 크기의 풍력 및 풍속에 비례하여 자유롭게 회전(회동(回動))되지 않을 수 있다. 이러한 악영향을 막기 위해서 평형 추(38)는 토크(Torque)를 이용한 관성모멘트가 발생 되도록 설치된다. 또한, 상기 평형 추(38)는 도 5에 도시된 바와 같이, 반지모양의 원형고리형으로 설치될 수 있다.
상기 장력 인가부(39)는 이동축(391), 자석감지부(393) 및 슬라이드 가이드(395), 탄성 부재(397) 및 인장강도 변경부재(399)를 포함한다. 예를 들어, 상기 장력 인가부(39)는 동(E), 서(W), 남(S), 북(N)과 동북, 동남, 북서, 남서 각각의 방향에 배치된 8개의 장력 인가부(39)로 구성될 수 있다. 또한, 도 6에 도시된 바와 같이, 상기 장력 인가부(39)는 동(E), 서(W), 남(S), 북(N) 각각의 방향에 배치된 4개의 장력 인가부(39)로 구성될 수 있다.
상기 이동축(391)는 자석(37)과 이격되어 배치된다. 예를 들어, 도 5에 도시된 바와 같이, 상기 이동축(391)는 자석(37)이 회전(회동(回動)) 중 동(E), 서(W), 남(S) 및 북(N) 중 어느 하나에 위치된 경우의 자석(37)과 대향 하는 위치에 있고 이격되어 배치된다.
상기 자석감지부(393)는 이동축(391)의 상단부에 고정되며 자석(37)의 자기력을 감지한다. 여기서, 상기 자석감지부(393)는 금속막대 일 수 있다.
또한, 상기 이동축(391) 및 자석감지부(393)는 자석(37)의 회전(회동(回動)) 중 자석(37)이 이동축(391)와 대향 되는 위치에 이르는 경우에 자석(37)의 자기력에 의하여 영향을 받아 끌어 올려진다. 여기서, 상기 자석(37)에 의하여 생성되는 자기력은 시스템의 설계 특징에 따라서 변경될 수 있지만, 이동축(391) 및 자석감지부(393)를 상향 이동하기에 충분히 강할 수 있다. 이에 따라 상기 이동축(391)는 자석(37)에 의하여 생성된 자기력을 통해 자석(37)을 향하여 상향 이동되어 끌어 올려진다.
상기 슬라이드 가이드(395)는 이동축(391)의 일측 하부부위에 배치되어 이동축(391)의 상하이동이 가능하게 가이드 한다.
상기 탄성 부재(397)는 이동축(391)의 하부에 배치되어 자석(37)과 자석감지부(393)가 접촉하는 것을 방지하도록 구성된다. 즉, 상기 탄성 부재(397)는 자석(37)의 회전(회동(回動)) 중 내내 자석(37)과 자석감지부(393) 사이에 간극이 있도록 구성된다. 또한, 상기 탄성 부재(397)는 자석(37)이 이동축(391)와 대향 되지 않은 위치로 회전(회동(回動))되어 자석감지부(393)에 인가된 자기력이 사라질 때 이동축(391)를 끌어내려 처음 위치로 이동시킬 수 있다. 여기서, 상기 탄성 부재(397)는 스프링일 수 있다.
상기 인장강도 변경부재(399)는 광섬유 브래그 격자(410)의 안착부위로써, 이동축(391)의 측면에 배치된다. 예를 들어 상기 인장강도 변경부재(399)는 이동축(391)의 일측에 반대측인 이동축(191)의 타측 상부부위에 배치된다. 또한, 상기 인장강도 변경부재(399)는 이동축(391)의 일측 상부부위에 배치될 수도 있다. 여기서, 상기 인장강도 변경부재(199)는 고리형 밴드 등의 연결수단에 의해 광섬유 브래그 격자(210)와 연결될 수 있다. 그리고 상기 인장강도 변경부재(399)는 광섬유 브래그 격자(410)의 인장 정도를 더 크게 하기 위하여 아아치형의 브라켓일 수 있다.
도 8은 도 6의 자석 위치에 따라 광섬유를 통과하는 빛의 파장 변화를 나타낸 그래프이다.
상술한 바와 같이 구성된 풍향/풍속 측정장치은 풍향 깃(311)이 바람이 불어오는 방향으로 회전되고 그 회전과 연동 되어 풍향 회전기둥(33)이 회전되며, 바람이 불면 풍배 부재(313)가 회전되고 그 회전과 연동 되어 풍속회전기둥(34)이 회전된다. 이때, 상기 풍향 회전기둥(33) 및 풍속회전기둥(34)의 회전 동작을 실시 예 3에 따른 광섬유 브래그 격자 기반 센서가 센싱하게 된다. 여기서, 상기 광섬유 브래그 격자 기반 센서는 측정범위가 0°~ 360°이고, 정확도가 5°이내이며, 분해능이 4°~ 6°이다.
즉, 상기 제1 지지대(35)의 단부에 고정된 자석(37)은 풍향 회전기둥(33)의 회전 동작에 연동하여 회전(회동(回動)) 되고, 상기 제3 지지대(36)의 단부에 고정된 자석(37)은 풍속회전기둥(34)의 회전 동작에 연동하여 회전(회동(回動)) 된다.
그리고 상기 회전(회동(回動))에 의한 자석(37)의 자기력 변화에 따라 장력 인가부(39)는 직선 왕복운동한다.
이때, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서는 상기 장력 인가부(39)의 직선 왕복운동과 비례하여 가변 되는 광섬유 브래그 격자(410)의 인장 정도에 따라 발생 되는 파장 변이를 센싱함으로써, 풍향 회전기둥(33) 및 풍속회전기둥(34)의 회전 동작을 센싱하게 된다. 예를 들어, λ4 및 λ5 각각이 Δλ4 및 Δλ5로 파장 변이가 발생 된 도 8과 같이, 파장 변이를 센싱함으로써, 풍향 회전기둥(33)의 회전 동작을 센싱하게 된다.
여기서, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서는 도 6와 같이, 자석(37) 위치가 서로 다른 방향의 사이에 위치해 있는 경우 양방향의 벡터(Vector) 크기 값으로 환산하여 풍향을 측정할 수 있다.
또한, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서는 자석(37)에 가장 근접한 광섬유 브래그 격자가 가장 크게 변화하기 때문에, 파장이동 크기를 상대비교 값으로 위치파악 측정이 가능하다. 예를 들어, 풍향은 상기 파장이동 데이터만 있어도 측정이 가능할 수 있다.
이와 같이 상기 풍향/풍속 측정장치은 제1 지지대(35)의 단부에 고정된 자석(37)의 위치에 의해 풍향을 측정하게 되고, 풍속회전기둥(34)의 회전을 카운트하여 풍속을 측정하게 된다.
상기에서 살펴본 바와 같이, 실시 예 3에 따른 광섬유 브래그 격자 기반 센서 및 이를 이용하는 측정장치은 광섬유 브래그 격자의 인장 정도를 가변시키는 자석부를 포함함으로써, 자석부의 자기력 변화로 가변하는 광섬유 브래그 격자의 인장 정도에 따라 광섬유를 통과하는 빛의 파장 변화를 센싱하여 강수량, 풍향, 풍속 등 기상을 관측하기 때문에, 관측현장에 전원 공급 장치 등이 필요치 않아 전력 공급이 어려운 현장에 설치가 용이하고, 소비전력 절감효과가 커 경제성이 향상될 수 있다.
이상 본 발명의 바람직한 실시 예에 대해 설명하였으나, 본 발명은 상기 실시 예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 다양한 변경이나 변형 및 치환이 가능하다.
{부호의 설명}
1 자석부 2,21,41 광섬유
2a 광섬유 브래그 격자 3,13 회동 축
5 회동체 7,17,37 자석
9,19,39 장력 인가부 11 티핑 버킷
10 광섬유 브래그 격자 기반 센서
31 풍향/풍속회전부 33 풍향회전기둥
34 풍속회전기둥 38 평형 추
91,191,391 이동축 93,193,393 자석감지부
95,195,395 슬라이드 가이드 97,197,397 탄성 부재
99,199,399 인장강도 변경부재
Claims (6)
- 광섬유와,상기 광섬유의 일부에 형성된 광섬유 브래그 격자와,상기 광섬유 브래그 격자에 장력을 인가하도록 배치되는 장력 인가수단과,상기 장력 인가수단을 구동하는 자석부를 포함하며,상기 장력 인가수단은 상기 자석부와의 거리가 미리 정해진 거리 이내이면 구동하여 상기 광섬유 브래그 격자에 장력을 인가함으로써 당해 광섬유 브래그 격자를 변형시켜서 상기 광섬유를 통과하는 광의 파장을 변화시키는 광섬유 브래그 격자 기반 센서.
- 청구항 1에 있어서,상기 자석부는,회동 축과,상기 회동 축을 중심으로 회동하는 회동체와,상기 회동체의 상기 회동 축의 반대쪽 단부에 배치된 자석을 포함하며,상기 회동체가 상기 회동 축을 중심으로 회동함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 미리 정해진 거리 이내로 가까워지거나 또는 멀어지는 것을 특징으로 하는 광섬유 브래그 격자 기반 센서.
- 청구항 2에 있어서,상기 장력 인가수단은,상기 장력 인가수단과 상기 자석부 사이의 거리가 미리 정해진 거리 이내로 가까워지면 상기 회동 축 방향으로 이동하는 이동 축과,상기 이동 축과 연동하면서 상기 광섬유 브래그 격자에 상기 장력을 인가하는 인장강도 변경부재와,상기 이동 축의 상기 회동 축 방향으로의 이동거리가 일정 거리 이내가 되도록 규제하는 탄성 부재를 포함하는 광섬유 브래그 격자 기반 센서.
- 강수량 측정장치로,단위 시간당 내리는 강우량에 대응하여 시소동작을 티핑 버킷과,상기 티핑 버킷의 상기 시소동작을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고,상기 광섬유 브래그 격자 기반 센서는 청구항 1 내지 3 중 어느 한 항에 기재된 광섬유 브래그 격자 기반 센서이며,상기 자석부가 상기 티핑 버킷의 상기 시소동작에 연동하여 회동함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동되는 강수량 측정장치.
- 풍향 측정장치로,바람이 불어오는 방향으로 회전하는 풍향 깃과,상기 풍향 깃의 회전을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고,상기 광섬유 브래그 격자 기반 센서는 청구항 1 내지 3 중 어느 한 항에 기재된 광섬유 브래그 격자 기반 센서이며,상기 자석부가 상기 풍향 깃의 회전에 연동하여 회전함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동되는 풍향 측정장치.
- 풍속 측정장치로,바람의 속도에 따라서 회전하는 풍배 부재와,상기 풍배 부재의 회전을 감지하는 광섬유 브래그 격자 기반 센서를 포함하고,상기 광섬유 브래그 격자 기반 센서는 청구항 1 내지 3 중 어느 한 항에 기재된 광섬유 브래그 격자 기반 센서이며,상기 자석부가 상기 풍배 부재의 회전에 연동하여 회전함으로써 상기 장력 인가수단과 상기 자석부 사이의 거리가 변동되는 풍속 측정장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140131010A KR101600573B1 (ko) | 2014-09-30 | 2014-09-30 | 광섬유 브래그 격자 기반 센서 및 이를 이용하는 관측 시스템 |
KR10-2014-0131010 | 2014-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052974A1 true WO2016052974A1 (ko) | 2016-04-07 |
Family
ID=55540410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010276 WO2016052974A1 (ko) | 2014-09-30 | 2015-09-30 | 광섬유 브래그 격자 기반 센서 및 이를 이용한 측정장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101600573B1 (ko) |
WO (1) | WO2016052974A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030863A (zh) * | 2018-09-04 | 2018-12-18 | 刘绍波 | 一种光纤光栅风速监测传感器 |
CN110988388A (zh) * | 2019-12-24 | 2020-04-10 | 石家庄铁道大学 | 一种光纤光栅风速风向传感器 |
CN111781397A (zh) * | 2020-06-08 | 2020-10-16 | 湖北工程学院 | 一种风向检测器 |
CN112485874A (zh) * | 2020-12-07 | 2021-03-12 | 武汉理工大学 | 用于有轨运动体测速定位的线型磁感应光缆及制备方法 |
EP3974874A1 (en) * | 2020-09-24 | 2022-03-30 | FBG Korea Inc. | Rainfall measuring apparatus using fiber bragg grating sensor |
CN115656552A (zh) * | 2022-12-05 | 2023-01-31 | 北京精诚恒创科技有限公司 | 一种基于光纤光栅的风向传感器及风向测量方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106290973A (zh) * | 2016-09-29 | 2017-01-04 | 国家电网公司 | 一种光纤无源式风速测量装置 |
KR101813144B1 (ko) | 2016-12-09 | 2018-01-30 | 호남대학교 산학협력단 | 광섬유 격자를 이용한 2차원 변위 측정센서 |
KR102443507B1 (ko) | 2020-11-09 | 2022-09-16 | 한국광기술원 | Fbg 센서를 이용한 풍향 및 풍속 측정장치 |
KR102551271B1 (ko) * | 2022-11-09 | 2023-07-05 | (주)에프비지코리아 | 광섬유 격자센서에서 출력되는 광량 변화를 이용한 강수량 측정장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296307A (ja) * | 2000-04-14 | 2001-10-26 | Foundation Of River & Basin Integrated Communications Japan | 光式流向センサ |
JP2003139790A (ja) * | 2001-11-02 | 2003-05-14 | Hitachi Cable Ltd | 光式流向センサ |
JP2004109003A (ja) * | 2002-09-19 | 2004-04-08 | Sumitomo Electric Ind Ltd | 光式雨量計測装置 |
JP2004361322A (ja) * | 2003-06-06 | 2004-12-24 | Hitachi Cable Ltd | 光ファイバセンサを用いた流向計及び流速・流向計 |
KR20090132188A (ko) * | 2008-06-20 | 2009-12-30 | 한국철도기술연구원 | 레일 침수 관측 시스템 및 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101478693B1 (ko) * | 2012-11-16 | 2015-01-07 | 에스제이포토닉스 주식회사 | 광섬유격자를 이용한 배전선로의 비정상전류 및 단선 위치 검출장치 |
-
2014
- 2014-09-30 KR KR1020140131010A patent/KR101600573B1/ko active IP Right Grant
-
2015
- 2015-09-30 WO PCT/KR2015/010276 patent/WO2016052974A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296307A (ja) * | 2000-04-14 | 2001-10-26 | Foundation Of River & Basin Integrated Communications Japan | 光式流向センサ |
JP2003139790A (ja) * | 2001-11-02 | 2003-05-14 | Hitachi Cable Ltd | 光式流向センサ |
JP2004109003A (ja) * | 2002-09-19 | 2004-04-08 | Sumitomo Electric Ind Ltd | 光式雨量計測装置 |
JP2004361322A (ja) * | 2003-06-06 | 2004-12-24 | Hitachi Cable Ltd | 光ファイバセンサを用いた流向計及び流速・流向計 |
KR20090132188A (ko) * | 2008-06-20 | 2009-12-30 | 한국철도기술연구원 | 레일 침수 관측 시스템 및 방법 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030863A (zh) * | 2018-09-04 | 2018-12-18 | 刘绍波 | 一种光纤光栅风速监测传感器 |
CN109030863B (zh) * | 2018-09-04 | 2023-11-10 | 刘绍波 | 一种光纤光栅风速监测传感器 |
CN110988388A (zh) * | 2019-12-24 | 2020-04-10 | 石家庄铁道大学 | 一种光纤光栅风速风向传感器 |
CN111781397A (zh) * | 2020-06-08 | 2020-10-16 | 湖北工程学院 | 一种风向检测器 |
EP3974874A1 (en) * | 2020-09-24 | 2022-03-30 | FBG Korea Inc. | Rainfall measuring apparatus using fiber bragg grating sensor |
KR20220040905A (ko) * | 2020-09-24 | 2022-03-31 | (주)에프비지코리아 | 광섬유 격자센서를 이용한 강수량 측정장치 |
KR102480716B1 (ko) | 2020-09-24 | 2022-12-27 | (주)에프비지코리아 | 광섬유 격자센서를 이용한 강수량 측정장치 |
CN112485874A (zh) * | 2020-12-07 | 2021-03-12 | 武汉理工大学 | 用于有轨运动体测速定位的线型磁感应光缆及制备方法 |
CN115656552A (zh) * | 2022-12-05 | 2023-01-31 | 北京精诚恒创科技有限公司 | 一种基于光纤光栅的风向传感器及风向测量方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101600573B1 (ko) | 2016-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016052974A1 (ko) | 광섬유 브래그 격자 기반 센서 및 이를 이용한 측정장치 | |
US20110226051A1 (en) | Illuminated directional wind speed indicator | |
KR101421237B1 (ko) | 수위연동형 모니터링 장치 | |
CN201222069Y (zh) | 风速风向仪用传感装置及风速仪和风向仪 | |
US5117690A (en) | Wind speed and wind direction indicator | |
CN112730879A (zh) | 一种智能河道流速测量装置及测量方法 | |
CN210626506U (zh) | 风向风速测量仪 | |
CN105222716B (zh) | 直线杆塔架空线弧垂测量装置 | |
EP2255208A1 (en) | Device measuring the wind speed and the wind direction | |
WO2017082456A1 (ko) | 풍향/풍속 측정 장치 | |
JP3245741B2 (ja) | 簡易地殻変位検知装置 | |
CN208238782U (zh) | 塔架偏移自动测量报警系统 | |
KR100656072B1 (ko) | 엔코더를 이용한 플로트식 수위계 | |
CN102419170A (zh) | 一种倾角测量装置、方法及处理器 | |
CN111413131A (zh) | 悬浮隧道锚索失效及连续倒塌动力响应试验装置 | |
CN103569322B (zh) | 一种水文测洪缆道浮标定位自动投放装置 | |
CN207636086U (zh) | 一种自主式闸门开度仪 | |
CN216669076U (zh) | 一种基于无线遥测雷达的索力测量装置 | |
CN216447055U (zh) | 一种风力发电机的风力检测装置 | |
CN211855880U (zh) | 悬浮隧道锚索失效及连续倒塌动力响应试验装置 | |
CN104535790B (zh) | 一种风速风向检测装置 | |
CN110161277A (zh) | 一种河流流速测量装置及方法 | |
CN218848315U (zh) | 缆道测速雷达用安装机构及水文缆道 | |
CN109186912A (zh) | 基于摄像头的机械臂减振试验装置 | |
KR20220063779A (ko) | Fbg 센서를 이용한 풍향 및 풍속 측정장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847690 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847690 Country of ref document: EP Kind code of ref document: A1 |