Nothing Special   »   [go: up one dir, main page]

WO2016052374A1 - Liquefied hydrogen transport system - Google Patents

Liquefied hydrogen transport system Download PDF

Info

Publication number
WO2016052374A1
WO2016052374A1 PCT/JP2015/077256 JP2015077256W WO2016052374A1 WO 2016052374 A1 WO2016052374 A1 WO 2016052374A1 JP 2015077256 W JP2015077256 W JP 2015077256W WO 2016052374 A1 WO2016052374 A1 WO 2016052374A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
transfer system
tank
liquefied hydrogen
liquefied
Prior art date
Application number
PCT/JP2015/077256
Other languages
French (fr)
Japanese (ja)
Inventor
峻太郎 海野
智教 高瀬
友章 梅村
英司 川越
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to AU2015325623A priority Critical patent/AU2015325623B2/en
Priority to CN201580053110.7A priority patent/CN106715997B/en
Publication of WO2016052374A1 publication Critical patent/WO2016052374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank, and in particular, in the vicinity of its tip including a loading arm.
  • the present invention relates to a liquefied hydrogen transfer system that can be pre-cooled to a level and can prevent generation of solid nitrogen inside an on-off valve.
  • a liquefied gas transfer system that transfers liquefied gas between a liquefied gas transport ship that transports liquefied gas such as LNG to the sea and a liquefied gas storage tank on land has been put to practical use.
  • an underground tank and a ground tank are provided on the land side, and a loading arm that transfers the LNG from the ship side LNG tank to the land side tank in a state where the LNG transport ship is attached to the pier
  • the LNG transfer system including the LNG is connected, the gas transfer system for transferring the LNG vapor (natural gas) is connected, and when unloading the LNG, the vaporized gas generated from the LNG by the vaporizer is used.
  • the LNG is unloaded from the ship side LNG tank to the land side tank while being supplied to the ship side LNG tank.
  • FIG. 5 shows a state immediately before connecting a joint portion of the LNG system 100 that transports LNG and a joint portion of the gas system 200 that transports LNG vaporized gas (natural gas).
  • the land-side LNG system and gas system are provided with loading arms 101 and 201, blind flange cocks 102 and 202, arm lower drain valves 103 and 203, air motor valves 104 and 204, and the like.
  • An operation emergency shutoff valve / high liquid level automatic closing valve 105, a blow-off valve 106, and the like are provided.
  • the ship-side gas system is provided with a remote-operated emergency shut-off valve 205, a blow-off valve 206, and the like.
  • nitrogen gas is purged up to the blind flange cocks 102 and 202 by supplying nitrogen gas from the lower arm drain valves 103 and 203 in the LNG system and gas system on the land side. Thereafter, the joints at the ends of the loading arms 101 and 201 are connected, and nitrogen gas is purged by supplying nitrogen gas from the lower arm drain valves 103 and 203 and discharging the gas from the blow-off valves 106 and 206 on the ship side.
  • the liquefied hydrogen transfer system for transferring liquefied hydrogen between the first tank on the land side and the second tank on the ship side via the loading arm is similar to the above liquefied gas transfer system, but transfers liquefied hydrogen.
  • Most of the liquefied hydrogen transfer system is composed of a vacuum insulated double pipe and is provided with a bayonet joint that connects the tip of the loading arm to the manifold on the ship side.
  • an inert gas purge is performed to purge the liquefied hydrogen in the liquefied hydrogen transfer system with an inert gas, and then the bayonet joint is divided.
  • the bayonet joint is divided, air is mixed into the system, so a blind flange cock is attached, and then a nitrogen gas purge is performed again.
  • the liquefied hydrogen transfer system absorbs the heat in the atmosphere until the next loading or unloading, and is brought to an almost normal temperature state.
  • the liquefied hydrogen transfer system is connected between the land side and the ship side and the liquefied hydrogen is allowed to flow in this room temperature state, the liquefied hydrogen rapidly evaporates and a large amount of hydrogen gas is generated.
  • the liquefied hydrogen transfer system is pre-cooled using liquefied hydrogen.
  • the on-off valve at the end of the liquefied hydrogen filling region is in contact with liquefied hydrogen and nitrogen gas. Therefore, solid nitrogen is generated inside the on-off valve, and the on-off valve becomes in a fixed state and does not function normally.
  • the LNG temperature is -162 ° C, which is a relatively high temperature
  • the amount of LNG evaporated at the start of transfer does not increase. Therefore, it is not necessary to pre-cool the loading arm and its surroundings prior to loading or unloading of LNG. Therefore, when a liquefied hydrogen transfer system similar to the LNG transfer system is employed, a part of the liquefied hydrogen transfer system can be precooled, but the inside of the loading arm cannot be precooled.
  • An object of the present invention is to provide a liquefied hydrogen transfer system that can be pre-cooled to the vicinity of its tip including the loading arm of the liquefied hydrogen transfer system, and can prevent generation of solid nitrogen inside the on-off valve. is there.
  • the liquefied hydrogen transfer system of the present invention is a liquefied hydrogen for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen.
  • liquefied hydrogen can be transferred between the first tank and the second tank via a loading arm, and a liquefied hydrogen transfer system composed mostly of vacuum insulated double tubes, and the liquefied hydrogen transfer
  • the first is disposed between the outboard arm and the blind flange of the loading arm in order from the blind flange side.
  • a second on-off valve a nitrogen gas filling means capable of filling a first passage portion between the blind flange and the first on-off valve with nitrogen gas, and a second passage portion between the first and second on-off valves
  • Hydrogen gas filling means capable of filling hydrogen gas
  • liquefied hydrogen filling means capable of filling liquefied hydrogen in a third passage portion between the second on-off valve and the first tank for pre-cooling the land-side transfer system
  • nitrogen gas can be filled in the first passage portion between the blind flange and the first on-off valve by the nitrogen gas filling means, and between the first and second on-off valves by the hydrogen gas filling means.
  • the second passage portion can be filled with hydrogen gas.
  • liquefied hydrogen is added to the third passage portion between the second on-off valve and the first tank for precooling by the liquefied hydrogen filling means.
  • the temperature of the hydrogen gas in the second passage portion is maintained at a temperature higher than the melting point of nitrogen ( ⁇ 210 ° C.)
  • the nitrogen gas in the first passage portion does not solidify.
  • the function of the on-off valve can be maintained without being fixed by nitrogen.
  • the second on-off valve is in contact with the liquefied hydrogen in the third passage portion and the hydrogen gas in the second passage portion, the function of the second on-off valve is maintained because no solid hydrogen is generated inside the second on-off valve. can do.
  • liquefied hydrogen can be filled in the third passage portion between the second on-off valve and the first tank by the liquefied hydrogen filling means, so that most of the loading arm can be precooled.
  • the hydrogen gas filling means may include a hydrogen gas tank provided in the loading arm, a connection passage connecting the hydrogen gas tank to the second passage portion, and an on-off valve interposed in the connection passage. According to this configuration, it is possible to fill the second passage portion with hydrogen gas by the hydrogen gas filling means while discharging the nitrogen gas in the second passage portion through the third passage portion.
  • a hydrogen gas transfer system for transferring hydrogen gas between the first tank and the second tank, an inter-system connection passage connecting the second passage portion to the hydrogen gas transfer system, and an inter-system connection passage;
  • the hydrogen gas filling means fills the second passage portion with hydrogen gas supplied from the first tank via the hydrogen gas transfer system through the inter-system connection passage.
  • the hydrogen gas filling means fills the second passage portion with the hydrogen gas supplied from the first tank via the hydrogen gas transfer system through the inter-system connection passage. Therefore, the second passage portion can be filled with hydrogen gas with a simple configuration.
  • the present invention it is possible to pre-cool to the vicinity of its tip including the loading arm of the liquefied hydrogen transfer system, and it is possible to prevent solid nitrogen from being generated inside the on-off valve.
  • Example 1 It is a block diagram of the liquefied hydrogen transfer system of Example 1 of this invention. It is a block diagram of the liquefied hydrogen transfer system of Example 2. It is explanatory drawing explaining the positional relationship of the 1st, 2nd on-off valve of FIG. It is explanatory drawing explaining the nitrogen gas purge with respect to the LNG transfer system by the side of the LNG transport ship which concerns on a prior art, and the LNG transfer system by the side of a land.
  • FIG. 1 shows a liquefied hydrogen transfer system 1 according to the first embodiment.
  • the liquefied hydrogen transfer system 1 includes a land-side first tank 2 capable of storing liquefied hydrogen and a liquefied liquid capable of storing liquefied hydrogen. This is a liquefied hydrogen transfer system for transferring liquefied hydrogen to and from the second tank 3 on the hydrogen transport ship side.
  • the liquefied hydrogen transfer system 1 includes a liquefied hydrogen transfer system 4, a hydrogen gas transfer system 5, a land-side flexible connection passage 6, a ship-side connection passage 7, a hydrogen gas filling means 8, and a nitrogen gas filling means. 10, a liquefied hydrogen filling means 12, a gas processing device 13, and the like.
  • the liquefied hydrogen transfer system 4 is capable of transferring liquefied hydrogen between the first tank 2 and the second tank 3 via the loading arm 14, and most of the liquefied hydrogen transfer system 4 is constituted by a vacuum heat insulating double tube. Is connected to the first tank 2, and the other end is connected to the second tank 3. A loading arm 14 is interposed in the middle of the liquefied hydrogen transfer system 4, and a boundary between the land side and the ship side of the liquefied hydrogen transfer system 4 can be connected by a bayonet joint 17.
  • the loading arm 14 includes an inboard arm 14a, an outboard arm 14b, an emergency release device 14c equipped on the outboard arm 14b, first and second on-off valves 15a and 15b, and the hydrogen gas filling means 8. And a blind flange 16 and a cock 16a for closing the open end of the bayonet joint 17 in the separated state.
  • the various on-off valves described in the present embodiment are automatic on-off valves in principle, but manual on-off valves may be adopted for some of the on-off valves.
  • the land-side transfer system 4 ⁇ / b> A from the first tank 2 to the blind flange 16 includes a check valve 20, an air motor valve 21, a bypass passage 22 that bypasses these, and a bypass passage 22.
  • first and second on-off valves 15a and 15b that are sequentially spaced from the blind flange 16 side.
  • the nitrogen gas filling means 10 capable of filling the first passage portion 4a between the blind flange 16 and the first on-off valve 15a of the land-side transfer system 4A with the nitrogen gas, the first and second on-off valves 15a,
  • the hydrogen gas filling means 8 capable of filling the second passage portion 4b between 15b with hydrogen gas, and the third passage portion between the second on-off valve 15b and the first tank 2 for precooling the land-side transfer system 4A
  • the liquefied hydrogen filling means 12 capable of filling liquefied hydrogen into 4c is also provided.
  • the liquefied hydrogen filling means 12 includes the first tank 2 and the land-side transfer system 4A.
  • the hydrogen gas filling means 8 is provided in a passage portion extending from the tip of the outboard arm 14b of the loading arm 14.
  • the hydrogen gas filling means 8 includes a hydrogen gas tank 8a that stores pressurized hydrogen gas, a filling passage 8b that connects the hydrogen gas tank 8a to the second passage portion 4b, and an open / close interposed in the filling passage 8b.
  • a valve 8c and a pressure gauge and a temperature detector capable of detecting the pressure and temperature of the hydrogen gas in the filling passage 8b are provided.
  • the ship side transfer system 4B of the liquefied hydrogen transfer system 4 is provided with a remote operation emergency shut-off / high liquid level automatic closing valve 26, a bypass passage 27 for bypassing the automatic closing valve 26, and a bypass passage 27.
  • the open / close valve 28, a blind flange 29 for closing the open end of the separated bayonet joint 17, and an open / close valve 30 interposed in the vicinity of the blind flange 29 are provided.
  • the hydrogen gas transfer system 5 is capable of transferring hydrogen gas between the first tank 2 and the second tank 3 via the loading arm 34, most of which is composed of, for example, a single tube made of stainless steel, One end is connected to the first tank 2 and the other end is connected to the second tank 3.
  • the boundary between the land side and the ship side of the hydrogen gas transfer system 5 can be connected by a flange joint 35.
  • a loading arm 34 is interposed in the middle of the hydrogen gas transfer system 5.
  • the loading arm 34 includes an inboard arm 34a, an outboard arm 34b, and an emergency release device 34c.
  • the land-side transfer system 5A of the hydrogen gas transfer system 5 includes a check valve 36, an air motor valve 37, a bypass passage 38 for bypassing these, a switching valve 39 interposed in the bypass passage 38, a bypass A drain cock 40 branched from the passage 38, a drain cock 41 branched from the vicinity of the proximal end portion of the inboard arm 34a of the loading arm 34, the loading arm 34, and a blind flange for closing the open end of the flange joint 35 in a separated state 42 and an on-off valve 43 provided in the vicinity of the blind flange 42 is provided.
  • the ship side transfer system 5B of the hydrogen gas transfer system 5 includes a remote-operated emergency shut-off valve 44, a blind flange 45 that closes the open end of the separated flange joint 35, and an open / close provided near the blind flange 45.
  • a valve 46 is provided.
  • the flexible connection passage 6 is an inter-system connection passage that connects the liquefied hydrogen transfer system 4 and the hydrogen gas transfer system 5 on the land side, and is made of, for example, a flexible tube made of stainless steel. One end of the flexible connection passage 6 is connected to a portion of the liquefied hydrogen transfer system 4 between the emergency release device 14 c and the second on-off valve 15 b, and the other end is an emergency release device 34 c of the hydrogen gas transfer system 5. And a portion between the on-off valve 43.
  • the flexible connection passage 6 is provided with an on-off valve 6a.
  • connection passage 7 connects the liquefied hydrogen transfer system 4 and the hydrogen gas transfer system 5 on the liquefied hydrogen transport ship side, and an open / close valve 7a is interposed in the connection passage 7.
  • One end of the connection passage 7 is connected to a portion of the liquefied hydrogen transfer system 4 between the opening / closing valve 30 and the automatic closing valve 26, and the other end is connected to the opening / closing valve 46 of the hydrogen gas transfer system 5 and a remote operation emergency cutoff valve. 44 is connected to the part between 44.
  • a nitrogen gas purge is performed to replace the hydrogen gas in the land-side transfer systems 4A and 5A with nitrogen gas, and most of the land-side transfer systems 4A and 5A have nitrogen.
  • Gas is filled, and the first and second on-off valves 15a. 15b is a valve closing state, and the inside of the 1st channel
  • the nitrogen gas in the second and third passage portions 4b and 4c is replaced with hydrogen gas while the first passage portion 4a is filled and held with nitrogen gas.
  • the hydrogen gas supplied from the first tank 2 to the third passage portion 4c is discharged to the gas processing device 13 through the flexible connection passage 6, the loading arm 34, and the gas passage 13a.
  • the second on-off valve 15b is opened, hydrogen gas is supplied from the hydrogen gas filling means 8 to the second passage portion 4b, and the nitrogen gas in the second passage portion 4b is supplied to the third passage portion 4c.
  • the second on-off valve 15b is closed.
  • the nitrogen gas in the second and third passage portions 4b and 4c can be replaced with hydrogen gas.
  • the third passage portion 4c is filled with liquefied hydrogen.
  • liquefied hydrogen is metered from the first tank 2 and supplied to the third passage portion 4c.
  • the supply is stopped and the on-off valve 6a is closed.
  • the hydrogen gas in the third passage portion 4c is discharged to the gas processing device 13 through the flexible connection passage 6, the loading arm 34, and the gas passage 13a, and is largely discharged in the third passage portion 4c. It can be precooled by filling with liquefied hydrogen.
  • One side of the first on-off valve 15a is in contact with the hydrogen gas in the second passage portion 4b, and the other side is in contact with the nitrogen gas in the first passage portion 4a. Since the temperature of the hydrogen gas in the second passage portion 4b is sufficiently higher than the freezing point (-210 ° C.) of the nitrogen gas, solid nitrogen is not generated on the other side of the first on-off valve 15a, and the first on-off The function of the valve 15a can be maintained.
  • the land-side transfer system 4A is filled with hydrogen gas.
  • hydrogen gas is supplied from the first tank 2 to the flexible connection passage 6 via the land-side transfer system 5A, and the liquefied hydrogen in the third passage portion 4c of the land-side transfer system 4A is returned to the first tank 2. .
  • the second and third passage portions 4b and 4c of the land-side transfer system 4A and the inside of the land-side transfer system 5A are filled with hydrogen gas.
  • the bayonet joint 17 and the flange joint 35 are connected via movement by the loading arms 14 and 34, and then the liquefied hydrogen transport system 4 and the hydrogen gas transport system 5 are connected.
  • the nitrogen gas inside is replaced with hydrogen gas.
  • the nitrogen gas in the liquefied hydrogen transfer system 4 is discharged together with the hydrogen gas to the gas processing device 13, and the nitrogen gas in the hydrogen gas transfer system 5 is discharged together with the hydrogen gas to the gas processing device 13. Thereafter, loading or unloading of liquefied hydrogen is performed.
  • the liquefied hydrogen transfer system 1 hydrogen gas is filled between the liquefied hydrogen in the third passage portion 4c and the nitrogen gas in the first passage portion 4a by filling the second passage portion 4b with hydrogen gas.
  • the function of the first and second on-off valves 15a and 15b can be maintained by preventing the generation of solid nitrogen inside the first and second on-off valves 15a and 15b.
  • liquefied hydrogen can be filled into the loading arm 14 during pre-cooling, and the amount of liquefied hydrogen evaporated during loading or unloading of liquefied hydrogen is remarkably increased. Can be reduced.
  • liquefied hydrogen transfer system 1A of the second embodiment shown in FIG. 2 is the same as the liquefied hydrogen transfer system 1 of the first embodiment. Different components will be described.
  • the hydrogen gas filling means 8 is changed, the hydrogen gas tank 8a is omitted, and in the land-side transfer system 4A, the filling passage 8b is connected to the land-side transfer system 5A side rather than the on-off valve 6a in the flexible connection passage 6. Has been. Therefore, the hydrogen gas supplied from the first tank 2 to the third passage portion 4c of the land-side transfer system 4A can be filled into the second passage portion 4b via the flexible connection passage 6 and the filling passage 8b.
  • the second passage portion 4b can be filled with hydrogen gas by holding the on-off valve 8c in the closed state later.
  • the operation and effect of the liquefied hydrogen transfer system 1A are the same as the operation and effect of the liquefied hydrogen transfer system 1, description thereof will be omitted.
  • the first passage portion 4a is filled with nitrogen gas (GN 2 )
  • the second passage portion 4b is filled with hydrogen gas (GH 2 )
  • the third passage portion 4c is filled with liquefied hydrogen (LH 2). ) Is filled.
  • the temperature of the blind flange 16 is normal temperature (300K)
  • the second on-off valve 15b is in contact with liquefied hydrogen, the temperature is 20K
  • the temperature of the first on-off valve 15a is T.
  • the bayonet joint 17 is merely an example, and other low-temperature fluid joints may be employed.
  • the arrangement of the various on-off valves provided in the liquefied hydrogen transfer system 1, 1A is merely an example, and the on-off valves may be provided in an arrangement different from this arrangement. 3) Besides, it goes without saying that those skilled in the art can implement the present invention in various modifications.
  • the present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a first tank on the land side capable of storing liquefied hydrogen and a second tank on the liquefied hydrogen transport ship side, particularly including a loading arm.
  • a liquefied hydrogen transfer system that can be pre-cooled to the vicinity of the tip and prevent generation of solid nitrogen inside an on-off valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

A liquefied hydrogen transport system (1) for transporting liquefied hydrogen between a land-side first tank (2) and a liquefied hydrogen transport ship-side second tank (3) is equipped with: a liquefied hydrogen transport system (4A) capable of transporting liquefied hydrogen between a first tank (2) and a second tank (3) via a loading arm (14); first and second opening/closing valves (15a, 15b) positioned in a dispersed pattern between a blind flange (16) on the tip-end side of the loading arm (14) and the outboard arm (14b) of the loading arm (14), in order from the blind-flange (16) side, in a section of the land-side transport system (4A) in the liquefied hydrogen transport system (4) between the first tank (2) and the blind flange (16); a nitrogen-gas filling means (10) capable of filling a first channel (4a) between the blind flange (16) and the first opening/closing valve (15a) with nitrogen gas; a hydrogen-gas filling means (8) capable of filling a second channel (4b) between the first and second opening/closing valves (15a, 15b) with hydrogen gas; and a liquefied hydrogen filling means (12) capable of filling a third channel (4c) between the second opening/closing valve (15b) and the first tank (2) with liquefied hydrogen, in order to preliminarily cool the land-side transport system (4A).

Description

液化水素移送システムLiquid hydrogen transfer system
 本発明は、液化水素を貯留可能な陸側の第1タンクと、液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムに関し、特にローディングアームを含めてその先端付近まで予冷可能で、開閉弁の内部に固体窒素が生成されるのを防止可能にした液化水素移送システムに関する。 The present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank, and in particular, in the vicinity of its tip including a loading arm. The present invention relates to a liquefied hydrogen transfer system that can be pre-cooled to a level and can prevent generation of solid nitrogen inside an on-off valve.
 LNG等の液化ガスを海上輸送する液化ガス輸送船と、陸上の液化ガス貯蔵タンクとの間で、液化ガスを移送する液化ガス移送システムは実用に供されている。
 特許文献1に記載のLNG受入れ装置においては、陸側に地下タンクと地上タンクとが設けられ、LNG輸送船が桟橋に接岸した状態で、船側LNGタンクから陸側タンクにLNGを移送するローディングアームを含むLNG移送系統が接続状態とされ、LNGの気化ガス(天然ガス)を移送するガス移送系統が接続状態とされ、LNGをアンローディングする際には、気化器でLNGから生成した気化ガスを船側LNGタンクへ供給しながら、船側LNGタンクからLNGを陸側タンクにアンローディングする。
A liquefied gas transfer system that transfers liquefied gas between a liquefied gas transport ship that transports liquefied gas such as LNG to the sea and a liquefied gas storage tank on land has been put to practical use.
In the LNG receiving apparatus described in Patent Literature 1, an underground tank and a ground tank are provided on the land side, and a loading arm that transfers the LNG from the ship side LNG tank to the land side tank in a state where the LNG transport ship is attached to the pier The LNG transfer system including the LNG is connected, the gas transfer system for transferring the LNG vapor (natural gas) is connected, and when unloading the LNG, the vaporized gas generated from the LNG by the vaporizer is used. The LNG is unloaded from the ship side LNG tank to the land side tank while being supplied to the ship side LNG tank.
 図5は、LNGを移送するLNG系統100の継手部と、LNGの気化ガス(天然ガス)を移送するガス系統200の継手部とを接続する直前状態を示すものである。
 陸側のLNG系統とガス系統には、ローディングアーム101,201、盲フランジコック102,202、アーム下ドレン弁103,203、エアモータ弁104,204等が設けられ、船側のLNG系統には、遠隔操作緊急遮断弁兼高液面自動閉鎖弁105、ブローオフ弁106等が設けられている。船側のガス系統には、遠隔操作緊急遮断弁205、ブローオフ弁206等が設けられている。
FIG. 5 shows a state immediately before connecting a joint portion of the LNG system 100 that transports LNG and a joint portion of the gas system 200 that transports LNG vaporized gas (natural gas).
The land-side LNG system and gas system are provided with loading arms 101 and 201, blind flange cocks 102 and 202, arm lower drain valves 103 and 203, air motor valves 104 and 204, and the like. An operation emergency shutoff valve / high liquid level automatic closing valve 105, a blow-off valve 106, and the like are provided. The ship-side gas system is provided with a remote-operated emergency shut-off valve 205, a blow-off valve 206, and the like.
 LNG輸送船の着桟時には、陸側のLNG系統とガス系統において、アーム下ドレン弁103,203から窒素ガスを供給して盲フランジコック102,202までの窒素ガスパージを行う。その後ローディングアーム101,201の先端の継手部を接続し、アーム下ドレン弁103,203から窒素ガスを供給して船側のブローオフ弁106,206からガスを排出することにより窒素ガスパージを行う。 When the LNG transport ship arrives, nitrogen gas is purged up to the blind flange cocks 102 and 202 by supplying nitrogen gas from the lower arm drain valves 103 and 203 in the LNG system and gas system on the land side. Thereafter, the joints at the ends of the loading arms 101 and 201 are connected, and nitrogen gas is purged by supplying nitrogen gas from the lower arm drain valves 103 and 203 and discharging the gas from the blow-off valves 106 and 206 on the ship side.
 液化水素を陸側の第1タンクと船側の第2タンクとの間でローディングアームを介して移送する液化水素移送系統は、上記の液化ガス移送システムと類似するものになるが、液化水素を移送する液化水素移送系統の大部分は、真空断熱二重管で構成され、ローディングアームの先端部を船側のマニホールドに接続するバイヨネット継手が設けられる。
 液化水素のローディング又はアンローディングの終了時には、液化水素移送系統内の液化水素を排出する為に不活性ガスでパージする不活性ガスパージが実行され、その後バイヨネット継手を分断する。そのバイヨネット継手の分断時に、系統内に空気が混入するため盲フランジコックを取り付けてから再度窒素ガスパージを実行する。このことは、水素ガス移送系統についても同様である。
The liquefied hydrogen transfer system for transferring liquefied hydrogen between the first tank on the land side and the second tank on the ship side via the loading arm is similar to the above liquefied gas transfer system, but transfers liquefied hydrogen. Most of the liquefied hydrogen transfer system is composed of a vacuum insulated double pipe and is provided with a bayonet joint that connects the tip of the loading arm to the manifold on the ship side.
At the end of loading or unloading of liquefied hydrogen, an inert gas purge is performed to purge the liquefied hydrogen in the liquefied hydrogen transfer system with an inert gas, and then the bayonet joint is divided. When the bayonet joint is divided, air is mixed into the system, so a blind flange cock is attached, and then a nitrogen gas purge is performed again. The same applies to the hydrogen gas transfer system.
 ところで、液化水素移送系統は、次回のローディング又はアンローディングまでに、大気中の熱を吸収してほぼ常温状態になる。この常温状態のまま、液化水素移送系統を陸側と船側とで接続して液化水素を流す場合には、液化水素が急速に蒸発して多量の水素ガスが発生するため、液化水素移送系統の輸送能力が低下するうえ、エネルギー的にも不利である。そこで、液化水素のローディング又はアンローディングに先立って液化水素移送系統を液化水素を用いて予冷することになる。 By the way, the liquefied hydrogen transfer system absorbs the heat in the atmosphere until the next loading or unloading, and is brought to an almost normal temperature state. When the liquefied hydrogen transfer system is connected between the land side and the ship side and the liquefied hydrogen is allowed to flow in this room temperature state, the liquefied hydrogen rapidly evaporates and a large amount of hydrogen gas is generated. In addition to the reduced transport capacity, it is also disadvantageous in terms of energy. Therefore, prior to loading or unloading of liquefied hydrogen, the liquefied hydrogen transfer system is pre-cooled using liquefied hydrogen.
特開平11-210990号公報JP-A-11-210990
 例えば、陸側の液化水素移送系統のうち、液化水素を充填可能な領域に液化水素を充填して予冷する場合、液化水素充填領域の終端の開閉弁は、液化水素と窒素ガスに接することになるため、その開閉弁の内部に固体窒素が生成されて開閉弁が固着状態になり、正常に機能しなくなる。 For example, in the land-side liquefied hydrogen transfer system, when the liquefied hydrogen is filled in a region where liquefied hydrogen can be filled and precooled, the on-off valve at the end of the liquefied hydrogen filling region is in contact with liquefied hydrogen and nitrogen gas. Therefore, solid nitrogen is generated inside the on-off valve, and the on-off valve becomes in a fixed state and does not function normally.
 LNG移送系統の場合、LNGの温度が-162℃で比較的高い温度であるため、移送開始時のLNGの蒸発量も多くならない。そのため、LNGのローディング又はアンローディングに先立ってローディングアームやその周辺を予冷する必要がない。それ故、LNG移送系統と同様の液化水素移送系統を採用する場合には、液化水素移送系統の一部は予冷可能であるが、ローディングアーム内を予冷することができない。 In the case of the LNG transfer system, since the LNG temperature is -162 ° C, which is a relatively high temperature, the amount of LNG evaporated at the start of transfer does not increase. Therefore, it is not necessary to pre-cool the loading arm and its surroundings prior to loading or unloading of LNG. Therefore, when a liquefied hydrogen transfer system similar to the LNG transfer system is employed, a part of the liquefied hydrogen transfer system can be precooled, but the inside of the loading arm cannot be precooled.
 本発明の目的は、液化水素移送系統のローディングアームを含めてその先端付近まで予冷可能で、開閉弁の内部に固体窒素が生成されるのを防止可能にした液化水素移送システムを提供することである。 An object of the present invention is to provide a liquefied hydrogen transfer system that can be pre-cooled to the vicinity of its tip including the loading arm of the liquefied hydrogen transfer system, and can prevent generation of solid nitrogen inside the on-off valve. is there.
 本発明の液化水素移送システムは、液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する為の液化水素移送システムにおいて、前記第1タンクと第2タンクとの間でローディングアームを介して液化水素を移送可能で、大部分が真空断熱二重管で構成される液化水素移送系統と、前記液化水素移送系統のうちの前記第1タンクからローディングアームの先端側の盲フランジまでの陸側移送系統において前記ローディングアームのアウトボードアームと盲フランジ間に前記盲フランジ側から順に離隔状に配設された第1,第2開閉弁と、前記盲フランジと第1開閉弁間の第1通路部に窒素ガスを充填可能な窒素ガス充填手段と、前記第1,第2開閉弁の間の第2通路部に水素ガスを充填可能な水素ガス充填手段と、前記陸側移送系統の予冷の為に、前記第2開閉弁と第1タンク間の第3通路部に液化水素を充填可能な液化水素充填手段とを備えたことを特徴としている。 The liquefied hydrogen transfer system of the present invention is a liquefied hydrogen for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen. In the transfer system, liquefied hydrogen can be transferred between the first tank and the second tank via a loading arm, and a liquefied hydrogen transfer system composed mostly of vacuum insulated double tubes, and the liquefied hydrogen transfer In the land-side transfer system from the first tank of the system to the blind flange on the tip end side of the loading arm, the first is disposed between the outboard arm and the blind flange of the loading arm in order from the blind flange side. 1, a second on-off valve, a nitrogen gas filling means capable of filling a first passage portion between the blind flange and the first on-off valve with nitrogen gas, and a second passage portion between the first and second on-off valves Hydrogen gas filling means capable of filling hydrogen gas, and liquefied hydrogen filling means capable of filling liquefied hydrogen in a third passage portion between the second on-off valve and the first tank for pre-cooling the land-side transfer system, It is characterized by having.
 上記の構成によれば、窒素ガス充填手段により盲フランジと第1開閉弁間の第1通路部に窒素ガスを充填可能であり、また、水素ガス充填手段により第1,第2開閉弁間の第2通路部に水素ガスを充填可能である。 According to the above configuration, nitrogen gas can be filled in the first passage portion between the blind flange and the first on-off valve by the nitrogen gas filling means, and between the first and second on-off valves by the hydrogen gas filling means. The second passage portion can be filled with hydrogen gas.
 第1通路部に窒素ガスを充填し、第2通路部に水素ガスを充填した状態で、液化水素充填手段により、予冷のため第2開閉弁と第1タンク間の第3通路部に液化水素を充填した場合、第2通路部内の水素ガスの温度を窒素の融点(-210℃)より高い温度に保持する限り、第1通路部内の窒素ガスが固体化しないので、第1開閉弁が固体窒素で固着状態になることはなく、開閉弁の機能を維持することができる。第2開閉弁は第3通路部の液化水素と第2通路部の水素ガスに接触するけれども、第2開閉弁の内部に固体水素が生成されることはないから第2開閉弁の機能を維持することができる。 With the first passage portion filled with nitrogen gas and the second passage portion filled with hydrogen gas, liquefied hydrogen is added to the third passage portion between the second on-off valve and the first tank for precooling by the liquefied hydrogen filling means. As long as the temperature of the hydrogen gas in the second passage portion is maintained at a temperature higher than the melting point of nitrogen (−210 ° C.), the nitrogen gas in the first passage portion does not solidify. The function of the on-off valve can be maintained without being fixed by nitrogen. Although the second on-off valve is in contact with the liquefied hydrogen in the third passage portion and the hydrogen gas in the second passage portion, the function of the second on-off valve is maintained because no solid hydrogen is generated inside the second on-off valve. can do.
 予冷の際、液化水素充填手段により、第2開閉弁と第1タンク間の第3通路部に液化水素を充填することができるため、ローディングアームの大部分を予冷することができる。 During the precooling, liquefied hydrogen can be filled in the third passage portion between the second on-off valve and the first tank by the liquefied hydrogen filling means, so that most of the loading arm can be precooled.
 前記水素ガス充填手段は、前記ローディングアームに装備された水素ガスタンクと、この水素ガスタンクを第2通路部に接続する接続通路と、この接続通路に介装された開閉弁とを備えてもよい。この構成によれば、第2通路部の窒素ガスを第3通路部を介して排出しながら、水素ガス充填手段により第2通路部に水素ガスを充填することができる。 The hydrogen gas filling means may include a hydrogen gas tank provided in the loading arm, a connection passage connecting the hydrogen gas tank to the second passage portion, and an on-off valve interposed in the connection passage. According to this configuration, it is possible to fill the second passage portion with hydrogen gas by the hydrogen gas filling means while discharging the nitrogen gas in the second passage portion through the third passage portion.
 前記第1タンクと第2タンクとの間で水素ガスを移送する為の水素ガス移送系統と、前記第2通路部を水素ガス移送系統に接続する系統間接続通路と、この系統間接続通路に介装された開閉弁とを備え、前記水素ガス充填手段は、前記第1タンクから前記水素ガス移送系統を介して供給する水素ガスを前記系統間接続通路により前記第2通路部に充填するように構成してもよい。 A hydrogen gas transfer system for transferring hydrogen gas between the first tank and the second tank, an inter-system connection passage connecting the second passage portion to the hydrogen gas transfer system, and an inter-system connection passage; The hydrogen gas filling means fills the second passage portion with hydrogen gas supplied from the first tank via the hydrogen gas transfer system through the inter-system connection passage. You may comprise.
 この構成によれば、前記水素ガス充填手段は、前記第1タンクから前記水素ガス移送系統を介して供給する水素ガスを前記系統間接続通路により前記第2通路部に充填する。それ故、簡単な構成で第2通路部に水素ガスを充填することができる。 According to this configuration, the hydrogen gas filling means fills the second passage portion with the hydrogen gas supplied from the first tank via the hydrogen gas transfer system through the inter-system connection passage. Therefore, the second passage portion can be filled with hydrogen gas with a simple configuration.
 本発明によれば、液化水素移送系統のローディングアームを含めてその先端付近まで予冷可能で、開閉弁の内部に固体窒素が生成されるのを防止可能にすることができる。 According to the present invention, it is possible to pre-cool to the vicinity of its tip including the loading arm of the liquefied hydrogen transfer system, and it is possible to prevent solid nitrogen from being generated inside the on-off valve.
本発明の実施例1の液化水素移送システムの構成図である。It is a block diagram of the liquefied hydrogen transfer system of Example 1 of this invention. 実施例2の液化水素移送システムの構成図である。It is a block diagram of the liquefied hydrogen transfer system of Example 2. 図2の第1,第2開閉弁の位置関係を説明する説明図である。It is explanatory drawing explaining the positional relationship of the 1st, 2nd on-off valve of FIG. 従来技術に係るLNG輸送船側のLNG移送系統と陸側のLNG移送系統に対する窒素ガスパージを説明する説明図である。It is explanatory drawing explaining the nitrogen gas purge with respect to the LNG transfer system by the side of the LNG transport ship which concerns on a prior art, and the LNG transfer system by the side of a land.
 以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
 図1は、実施例1に係る液化水素移送システム1を示すものであり、この液化水素移送システム1は、液化水素を貯留可能な陸側の第1タンク2と、液化水素を貯留可能な液化水素輸送船側の第2タンク3との間で液化水素を移送する液化水素移送システムである。 FIG. 1 shows a liquefied hydrogen transfer system 1 according to the first embodiment. The liquefied hydrogen transfer system 1 includes a land-side first tank 2 capable of storing liquefied hydrogen and a liquefied liquid capable of storing liquefied hydrogen. This is a liquefied hydrogen transfer system for transferring liquefied hydrogen to and from the second tank 3 on the hydrogen transport ship side.
 この液化水素移送システム1は、液化水素移送系統4と、水素ガス移送系統5と、陸側の可撓接続通路6と、船側の接続通路7と、水素ガス充填手段8と、窒素ガス充填手段10と、液化水素充填手段12と、ガス処理装置13等を備えている。 The liquefied hydrogen transfer system 1 includes a liquefied hydrogen transfer system 4, a hydrogen gas transfer system 5, a land-side flexible connection passage 6, a ship-side connection passage 7, a hydrogen gas filling means 8, and a nitrogen gas filling means. 10, a liquefied hydrogen filling means 12, a gas processing device 13, and the like.
 液化水素移送系統4は、第1タンク2と第2タンク3との間でローディングアーム14を介して液化水素を移送可能なものであり、その大部分が真空断熱二重管で構成され、一端が第1タンク2に接続され、他端が第2タンク3に接続されている。液化水素移送系統4の途中部にはローディングアーム14が介装され、液化水素移送系統4の陸側と船側の境界部はバヨネット継手17で接続可能である。 The liquefied hydrogen transfer system 4 is capable of transferring liquefied hydrogen between the first tank 2 and the second tank 3 via the loading arm 14, and most of the liquefied hydrogen transfer system 4 is constituted by a vacuum heat insulating double tube. Is connected to the first tank 2, and the other end is connected to the second tank 3. A loading arm 14 is interposed in the middle of the liquefied hydrogen transfer system 4, and a boundary between the land side and the ship side of the liquefied hydrogen transfer system 4 can be connected by a bayonet joint 17.
 ローディングアーム14は、インボードアーム14aと、アウトボードアーム14bと、アウトボードアーム14bに装備された緊急離脱装置14cと、第1,第2開閉弁15a,15bと、前記水素ガス充填手段8とを備え、ローディングアーム14の先端部には、分離状態のバヨネット継手17の開放端を閉じる盲フランジ16及びコック16aとを備えている。尚、本実施例に記載の種々の開閉弁は、原則として自動開閉弁であるが、一部の開閉弁に手動開閉弁を採用する場合もある。 The loading arm 14 includes an inboard arm 14a, an outboard arm 14b, an emergency release device 14c equipped on the outboard arm 14b, first and second on-off valves 15a and 15b, and the hydrogen gas filling means 8. And a blind flange 16 and a cock 16a for closing the open end of the bayonet joint 17 in the separated state. The various on-off valves described in the present embodiment are automatic on-off valves in principle, but manual on-off valves may be adopted for some of the on-off valves.
 液化水素移送系統4のうち第1タンク2から盲フランジ16までの陸側移送系統4Aには、逆止弁20と、エアモータ弁21と、これらをバイパスするバイパス通路22と、バイパス通路22に介装された開閉弁23と、バイパス通路22から分岐したドレンコック24と、ローディングアーム14のインボードアーム14aの基端部付近から分岐したドレンコック25と、ローディングアーム14と、ローディングアーム14のアウトボードアーム14bと盲フランジ16の間に盲フランジ16側から順に離隔状に配設された第1,第2開閉弁15a,15bとが設けられている。 In the liquefied hydrogen transfer system 4, the land-side transfer system 4 </ b> A from the first tank 2 to the blind flange 16 includes a check valve 20, an air motor valve 21, a bypass passage 22 that bypasses these, and a bypass passage 22. The mounted on-off valve 23, the drain cock 24 branched from the bypass passage 22, the drain cock 25 branched from the vicinity of the proximal end of the inboard arm 14a of the loading arm 14, the loading arm 14, and the loading arm 14 out Between the board arm 14b and the blind flange 16, there are provided first and second on-off valves 15a and 15b that are sequentially spaced from the blind flange 16 side.
 さらに、陸側移送系統4Aのうちの盲フランジ16と第1開閉弁15a間の第1通路部4aに窒素ガスを充填可能な前記窒素ガス充填手段10と、第1,第2開閉弁15a,15b間の第2通路部4bに水素ガスを充填可能な前記水素ガス充填手段8と、陸側移送系統4Aの予冷のために第2開閉弁15bと第1タンク2の間の第3通路部4cに液化水素を充填可能な前記液化水素充填手段12も設けられている。尚、この液化水素充填手段12は第1タンク2と陸側移送系統4A等で構成されている。 Further, the nitrogen gas filling means 10 capable of filling the first passage portion 4a between the blind flange 16 and the first on-off valve 15a of the land-side transfer system 4A with the nitrogen gas, the first and second on-off valves 15a, The hydrogen gas filling means 8 capable of filling the second passage portion 4b between 15b with hydrogen gas, and the third passage portion between the second on-off valve 15b and the first tank 2 for precooling the land-side transfer system 4A The liquefied hydrogen filling means 12 capable of filling liquefied hydrogen into 4c is also provided. The liquefied hydrogen filling means 12 includes the first tank 2 and the land-side transfer system 4A.
 前記水素ガス充填手段8は、ローディングアーム14のアウトボードアーム14bの先端から延びる通路部分に装備されている。この水素ガス充填手段8は、加圧状態の水素ガスを貯留した水素ガスタンク8aと、この水素ガスタンク8aを第2通路部4bに接続する充填通路8bと、この充填通路8bに介装された開閉弁8cと、充填通路8bの水素ガスの圧力と温度を夫々検出可能な圧力計及び温度検出器とを備えている。 The hydrogen gas filling means 8 is provided in a passage portion extending from the tip of the outboard arm 14b of the loading arm 14. The hydrogen gas filling means 8 includes a hydrogen gas tank 8a that stores pressurized hydrogen gas, a filling passage 8b that connects the hydrogen gas tank 8a to the second passage portion 4b, and an open / close interposed in the filling passage 8b. A valve 8c and a pressure gauge and a temperature detector capable of detecting the pressure and temperature of the hydrogen gas in the filling passage 8b are provided.
前記液化水素移送系統4のうちの船側移送系統4Bには、遠隔操作緊急遮断兼高液面自動閉鎖弁26と、この自動閉鎖弁26をバイパスするバイパス通路27と、バイパス通路27に介装された開閉弁28と、分離状態のバヨネット継手17の開放端を閉じる盲フランジ29と、盲フランジ29の付近に介装された開閉弁30とが設けられている。 The ship side transfer system 4B of the liquefied hydrogen transfer system 4 is provided with a remote operation emergency shut-off / high liquid level automatic closing valve 26, a bypass passage 27 for bypassing the automatic closing valve 26, and a bypass passage 27. The open / close valve 28, a blind flange 29 for closing the open end of the separated bayonet joint 17, and an open / close valve 30 interposed in the vicinity of the blind flange 29 are provided.
 水素ガス移送系統5は、第1タンク2と第2タンク3との間でローディングアーム34を介して水素ガスを移送可能なものであり、その大部分が例えばステンレス製の一重管で構成され、一端が第1タンク2に接続され、他端が第2タンク3に接続されている。水素ガス移送系統5の陸側と船側の境界部はフランジ継手35で接続可能である。水素ガス移送系統5の途中部にはローディングアーム34が介装されている。ローディングアーム34は、インボードアーム34aと、アウトボードアーム34bと、緊急離脱装置34cとを備えている。 The hydrogen gas transfer system 5 is capable of transferring hydrogen gas between the first tank 2 and the second tank 3 via the loading arm 34, most of which is composed of, for example, a single tube made of stainless steel, One end is connected to the first tank 2 and the other end is connected to the second tank 3. The boundary between the land side and the ship side of the hydrogen gas transfer system 5 can be connected by a flange joint 35. A loading arm 34 is interposed in the middle of the hydrogen gas transfer system 5. The loading arm 34 includes an inboard arm 34a, an outboard arm 34b, and an emergency release device 34c.
 水素ガス移送系統5のうちの陸側移送系統5Aには、逆止弁36と、エアモータ弁37と、これらをバイパスするバイパス通路38と、バイパス通路38に介装された開閉弁39と、バイパス通路38から分岐したドレンコック40と、ローディングアーム34のインボードアーム34aの基端部付近から分岐したドレンコック41と、前記ローディングアーム34と、分離状態のフランジ継手35の開放端を塞ぐ盲フランジ42と、この盲フランジ42の付近に設けられた開閉弁43とが設けられている。 The land-side transfer system 5A of the hydrogen gas transfer system 5 includes a check valve 36, an air motor valve 37, a bypass passage 38 for bypassing these, a switching valve 39 interposed in the bypass passage 38, a bypass A drain cock 40 branched from the passage 38, a drain cock 41 branched from the vicinity of the proximal end portion of the inboard arm 34a of the loading arm 34, the loading arm 34, and a blind flange for closing the open end of the flange joint 35 in a separated state 42 and an on-off valve 43 provided in the vicinity of the blind flange 42 is provided.
 水素ガス移送系統5のうちの船側移送系統5Bには、遠隔操作緊急遮断弁44と、分離状態のフランジ継手35の開放端を塞ぐ盲フランジ45と、この盲フランジ45の付近に設けられた開閉弁46とが設けられている。 The ship side transfer system 5B of the hydrogen gas transfer system 5 includes a remote-operated emergency shut-off valve 44, a blind flange 45 that closes the open end of the separated flange joint 35, and an open / close provided near the blind flange 45. A valve 46 is provided.
 前記可撓接続通路6は、陸側において液化水素移送系統4と水素ガス移送系統5を接続する系統間接続通路であり、例えばステンレス製のフレキシブルチューブで構成されている。可撓接続通路6の一端は、液化水素移送系統4のうちの緊急離脱装置14cと第2開閉弁15bの間の部位に接続され、他端は水素ガス移送系統5のうちの緊急離脱装置34cと開閉弁43の間の部位に接続されている。可撓接続通路6には開閉弁6aが設けられている。 The flexible connection passage 6 is an inter-system connection passage that connects the liquefied hydrogen transfer system 4 and the hydrogen gas transfer system 5 on the land side, and is made of, for example, a flexible tube made of stainless steel. One end of the flexible connection passage 6 is connected to a portion of the liquefied hydrogen transfer system 4 between the emergency release device 14 c and the second on-off valve 15 b, and the other end is an emergency release device 34 c of the hydrogen gas transfer system 5. And a portion between the on-off valve 43. The flexible connection passage 6 is provided with an on-off valve 6a.
 前記接続通路7は、液化水素輸送船側において液化水素移送系統4と水素ガス移送系統5を接続するもので、この接続通路7には開閉弁7aが介装されている。接続通路7の一端は液化水素移送系統4のうちの開閉弁30と自動閉鎖弁26の間の部位に接続され、他端は水素ガス移送系統5のうちの開閉弁46と遠隔操作緊急遮断弁44の間の部位に接続されている。 The connection passage 7 connects the liquefied hydrogen transfer system 4 and the hydrogen gas transfer system 5 on the liquefied hydrogen transport ship side, and an open / close valve 7a is interposed in the connection passage 7. One end of the connection passage 7 is connected to a portion of the liquefied hydrogen transfer system 4 between the opening / closing valve 30 and the automatic closing valve 26, and the other end is connected to the opening / closing valve 46 of the hydrogen gas transfer system 5 and a remote operation emergency cutoff valve. 44 is connected to the part between 44.
 次に、前記液化水素移送システム1の作用、効果について説明する。
 前回の液化水素のローディング又はアンローディング終了直後に、陸側移送系統4A,5A内の水素ガスを窒素ガスで置換する窒素ガスパージが実行され、陸側移送系統4A,5A内の大部分には窒素ガスが充填されており、第1,第2開閉弁15a.15bは閉弁状態で、第1通路部4aの内部にも窒素ガスが充填されている。このことは、船側移送系統4B,5Bについても同様であり、船側移送系統4B,5Bの内部にも窒素ガスが充填されている。
Next, the operation and effect of the liquefied hydrogen transfer system 1 will be described.
Immediately after the end of the previous loading or unloading of liquefied hydrogen, a nitrogen gas purge is performed to replace the hydrogen gas in the land- side transfer systems 4A and 5A with nitrogen gas, and most of the land- side transfer systems 4A and 5A have nitrogen. Gas is filled, and the first and second on-off valves 15a. 15b is a valve closing state, and the inside of the 1st channel | path part 4a is also filled with nitrogen gas. The same applies to the ship side transfer systems 4B and 5B, and the inside of the ship side transfer systems 4B and 5B is also filled with nitrogen gas.
 次に、次回の液化水素のローディング又はアンローディングに先行して、液化水素移送系統4の陸側移送系統4Aを予冷する技術について説明する。この予冷は、次回の液化水素のローディング又はアンローディング時の液化水素の蒸発量を極力少なくするために行うものである。 Next, a technique for precooling the land-side transfer system 4A of the liquefied hydrogen transfer system 4 prior to the next loading or unloading of liquefied hydrogen will be described. This pre-cooling is performed in order to minimize the amount of evaporation of liquefied hydrogen at the next loading or unloading of liquefied hydrogen.
 最初に、第1通路部4a内に窒素ガスを充填保持したまま、第2,第3通路部4b,4c内の窒素ガスを水素ガスで置換する。この場合、第1タンク2から第3通路部4cに供給する水素ガスを、可撓接続通路6と、ローディングアーム34と、ガス通路13aとを介してガス処理装置13へ排出する。 First, the nitrogen gas in the second and third passage portions 4b and 4c is replaced with hydrogen gas while the first passage portion 4a is filled and held with nitrogen gas. In this case, the hydrogen gas supplied from the first tank 2 to the third passage portion 4c is discharged to the gas processing device 13 through the flexible connection passage 6, the loading arm 34, and the gas passage 13a.
 これと並行して、第2開閉弁15bを開弁状態にして水素ガス充填手段8から第2通路部4bに水素ガスを供給し、第2通路部4b内の窒素ガスを第3通路部4cを介して可撓接続通路6へ排出し、ローディングアーム34と、ガス通路13aとを介してガス処理装置13へ排出する。水素ガス充填手段8から所定時間水素ガスを充填後に第2開閉弁15bを閉弁する。こうして、第2,第3通路部4b,4c内の窒素ガスを水素ガスで置換することができる。 In parallel with this, the second on-off valve 15b is opened, hydrogen gas is supplied from the hydrogen gas filling means 8 to the second passage portion 4b, and the nitrogen gas in the second passage portion 4b is supplied to the third passage portion 4c. To the flexible connection passage 6 and to the gas processing device 13 through the loading arm 34 and the gas passage 13a. After filling hydrogen gas from the hydrogen gas filling means 8 for a predetermined time, the second on-off valve 15b is closed. Thus, the nitrogen gas in the second and third passage portions 4b and 4c can be replaced with hydrogen gas.
 次に、陸側移送系統4Aを予冷するため、第3通路部4cに液化水素を充填する。
 この場合、第1タンク2から液化水素を計量しながら第3通路部4cに供給し、第3通路部4cの容積とほぼ等しい量の液化水素を供給後に供給停止すると共に開閉弁6aを閉弁する。こうして、第3通路部4c内の水素ガスを、可撓接続通路6と、ローディングアーム34と、ガス通路13aとを介してガス処理装置13へ排出し、第3通路部4c内の大部分に液化水素を充填して予冷することができる。
Next, in order to pre-cool the land-side transfer system 4A, the third passage portion 4c is filled with liquefied hydrogen.
In this case, liquefied hydrogen is metered from the first tank 2 and supplied to the third passage portion 4c. After supplying liquefied hydrogen in an amount substantially equal to the volume of the third passage portion 4c, the supply is stopped and the on-off valve 6a is closed. To do. In this way, the hydrogen gas in the third passage portion 4c is discharged to the gas processing device 13 through the flexible connection passage 6, the loading arm 34, and the gas passage 13a, and is largely discharged in the third passage portion 4c. It can be precooled by filling with liquefied hydrogen.
 この予冷の際、第2開閉弁15bの片側は第3通路部4c内の液化水素に接触し、他側は第2通路部4b内の水素ガスに接触することになるが、水素ガスが固体化することはないから、第2開閉弁15bの機能を維持することができる。 During this pre-cooling, one side of the second on-off valve 15b comes into contact with liquefied hydrogen in the third passage portion 4c, and the other side comes into contact with hydrogen gas in the second passage portion 4b. Therefore, the function of the second on-off valve 15b can be maintained.
 第1開閉弁15aの片側は第2通路部4b内の水素ガスに接触し、他側は第1通路部4a内の窒素ガスに接触することになる。第2通路部4b内の水素ガスの温度が、窒素ガスの凝固点(-210℃)よりも十分高いため、第1開閉弁15aの他側に固体窒素が生成されることはなく、第1開閉弁15aの機能を維持することができる。 One side of the first on-off valve 15a is in contact with the hydrogen gas in the second passage portion 4b, and the other side is in contact with the nitrogen gas in the first passage portion 4a. Since the temperature of the hydrogen gas in the second passage portion 4b is sufficiently higher than the freezing point (-210 ° C.) of the nitrogen gas, solid nitrogen is not generated on the other side of the first on-off valve 15a, and the first on-off The function of the valve 15a can be maintained.
 次に、液化水素のローディング又はアンローディングの直前(バヨネット継手17の接続前)に、陸側移送系統4Aの内部に水素ガスを充填する。この場合、水素ガスを第1タンク2から陸側移送系統5Aを介して可撓接続通路6へ供給し、陸側移送系統4Aの第3通路部4c内の液化水素を第1タンク2へ戻す。この状態において、陸側移送系統4Aの第2,第3通路部4b,4cと陸側移送系統5Aの内部には、水素ガスが充填されている。 Next, immediately before loading or unloading of liquefied hydrogen (before connection of the bayonet joint 17), the land-side transfer system 4A is filled with hydrogen gas. In this case, hydrogen gas is supplied from the first tank 2 to the flexible connection passage 6 via the land-side transfer system 5A, and the liquefied hydrogen in the third passage portion 4c of the land-side transfer system 4A is returned to the first tank 2. . In this state, the second and third passage portions 4b and 4c of the land-side transfer system 4A and the inside of the land-side transfer system 5A are filled with hydrogen gas.
 次に、液化水素輸送船が桟橋に着桟した際に、ローディングアーム14,34による移動を介してバヨネット継手17とフランジ継手35を接続してから、液化水素移送系統4と水素ガス移送系統5内の窒素ガスを水素ガスで置換する。このとき、液化水素移送系統4内の窒素ガスを水素ガスと共にガス処理装置13へ排出し、水素ガス移送系統5内の窒素ガスを水素ガスと共にガス処理装置13へ排出する。その後、液化水素のローディング又はアンローディングを行うことになる。 Next, when the liquefied hydrogen transport ship arrives at the pier, the bayonet joint 17 and the flange joint 35 are connected via movement by the loading arms 14 and 34, and then the liquefied hydrogen transport system 4 and the hydrogen gas transport system 5 are connected. The nitrogen gas inside is replaced with hydrogen gas. At this time, the nitrogen gas in the liquefied hydrogen transfer system 4 is discharged together with the hydrogen gas to the gas processing device 13, and the nitrogen gas in the hydrogen gas transfer system 5 is discharged together with the hydrogen gas to the gas processing device 13. Thereafter, loading or unloading of liquefied hydrogen is performed.
 この液化水素移送システム1によれば、第2通路部4bに水素ガスを充填することで、第3通路部4cの液化水素と、第1通路部4aの窒素ガスとの間に水素ガスを充填した緩衝領域を設け、第1,第2開閉弁15a,15bの内部での固体窒素の生成を防止して第1,第2開閉弁15a,15bの機能を維持することができる。 According to the liquefied hydrogen transfer system 1, hydrogen gas is filled between the liquefied hydrogen in the third passage portion 4c and the nitrogen gas in the first passage portion 4a by filling the second passage portion 4b with hydrogen gas. Thus, the function of the first and second on-off valves 15a and 15b can be maintained by preventing the generation of solid nitrogen inside the first and second on-off valves 15a and 15b.
 しかも、可撓接続通路6及び開閉弁6aを設けたため、予冷の際にローディングアーム14の内部まで液化水素を充填することができ、液化水素のローディング又はアンローディング時の液化水素の蒸発量を著しく低減することができる。 In addition, since the flexible connection passage 6 and the on-off valve 6a are provided, liquefied hydrogen can be filled into the loading arm 14 during pre-cooling, and the amount of liquefied hydrogen evaporated during loading or unloading of liquefied hydrogen is remarkably increased. Can be reduced.
 図2に示す実施例2の液化水素移送システム1Aは、大部分が実施例1の液化水素移送システム1と同様であるので、同じ構成要素に同じ符号を付して説明を省略し、主に異なる構成要素について説明する。 Most of the liquefied hydrogen transfer system 1A of the second embodiment shown in FIG. 2 is the same as the liquefied hydrogen transfer system 1 of the first embodiment. Different components will be described.
 前記水素ガス充填手段8が変更され、水素ガスタンク8aが省略され、陸側移送系統4Aにおいては、充填通路8bが可撓接続通路6のうちの開閉弁6aよりも陸側移送系統5A側に接続されている。それ故、第1タンク2から陸側移送系統4Aの第3通路部4cに供給する水素ガスを可撓接続通路6と充填通路8bを介して第2通路部4bに充填することができ、充填後に開閉弁8cを閉弁状態に保持することで第2通路部4bに水素ガスを充填しておくことができる。その他、この液化水素移送システム1Aの作用、効果については前記液化水素移送システム1の作用、効果と同様であるので、その説明は省略する。 The hydrogen gas filling means 8 is changed, the hydrogen gas tank 8a is omitted, and in the land-side transfer system 4A, the filling passage 8b is connected to the land-side transfer system 5A side rather than the on-off valve 6a in the flexible connection passage 6. Has been. Therefore, the hydrogen gas supplied from the first tank 2 to the third passage portion 4c of the land-side transfer system 4A can be filled into the second passage portion 4b via the flexible connection passage 6 and the filling passage 8b. The second passage portion 4b can be filled with hydrogen gas by holding the on-off valve 8c in the closed state later. In addition, since the operation and effect of the liquefied hydrogen transfer system 1A are the same as the operation and effect of the liquefied hydrogen transfer system 1, description thereof will be omitted.
 次に、図3に基づいて、予冷状態における、盲フランジ16と第1,第2開閉弁15a,15bの望ましい位置関係について説明する。
 この予冷状態では、第1通路部4aには窒素ガス(GN2)が充填され、第2通路部4bに水素ガス(GH2)が充填され、第3通路部4cには液化水素(LH2)が充填されている。盲フランジ16の温度は常温(300K)であり、第2開閉弁15bは液化水素に接触しているためその温度は20Kであり、第1開閉弁15aの温度をTとする。
Next, a desirable positional relationship between the blind flange 16 and the first and second on-off valves 15a and 15b in the precooled state will be described with reference to FIG.
In this precooled state, the first passage portion 4a is filled with nitrogen gas (GN 2 ), the second passage portion 4b is filled with hydrogen gas (GH 2 ), and the third passage portion 4c is filled with liquefied hydrogen (LH 2). ) Is filled. The temperature of the blind flange 16 is normal temperature (300K), and since the second on-off valve 15b is in contact with liquefied hydrogen, the temperature is 20K, and the temperature of the first on-off valve 15a is T.
 伝熱断面積が一定であるとして、熱平衡計算に基づいて次式が得られる。
  (T-20)/D1=(300-T)/D2
  D2=1.0mとし、T=100Kとすると、上式よりD1=0.4mが得られる。
 つまり、第1通路部4aの長さを適切に設定し、第2通路部4bの長さを第1通路部4aの長さの約40%程度以上に設定することで、第1開閉弁15aが過度に低温になるのを防止することができる。
Assuming that the heat transfer cross section is constant, the following equation is obtained based on the thermal equilibrium calculation.
(T-20) / D1 = (300-T) / D2
When D2 = 1.0 m and T = 100K, D1 = 0.4 m is obtained from the above equation.
That is, by appropriately setting the length of the first passage portion 4a and setting the length of the second passage portion 4b to about 40% or more of the length of the first passage portion 4a, the first on-off valve 15a. Can be prevented from becoming too cold.
 次に、前記実施例を部分的に変更する例について説明する。
 1)バヨネット継手17は、一例を示すものに過ぎず、これ以外の低温流体用継手を採用する場合もある。
 2)液化水素移送システム1,1Aに装備する種々の開閉弁の配置は一例にすぎず、この配置と異なる配置にて開閉弁を設ける場合もある。
 3)その他、当業者ならば、前記実施例に種々の変更を付加した形態で実施可能であることは勿論である。
Next, an example in which the above embodiment is partially changed will be described.
1) The bayonet joint 17 is merely an example, and other low-temperature fluid joints may be employed.
2) The arrangement of the various on-off valves provided in the liquefied hydrogen transfer system 1, 1A is merely an example, and the on-off valves may be provided in an arrangement different from this arrangement.
3) Besides, it goes without saying that those skilled in the art can implement the present invention in various modifications.
 本発明は、液化水素を貯留可能な陸側の第1タンクと、液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムであって、特にローディングアームを含めてその先端付近まで予冷可能で、開閉弁の内部に固体窒素が生成されるのを防止可能にした液化水素移送システムを提供する。 The present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a first tank on the land side capable of storing liquefied hydrogen and a second tank on the liquefied hydrogen transport ship side, particularly including a loading arm. Provided is a liquefied hydrogen transfer system that can be pre-cooled to the vicinity of the tip and prevent generation of solid nitrogen inside an on-off valve.
1,1A   液化水素移送システム
2   第1タンク
3   第2タンク
4   液化水素移送系統
4A  陸側移送系統
4a  第1通路部
4b  第2通路部
4c  第3通路部
5   水素ガス移送系統
6   可撓接続通路(系統間接続通路)
6a  開閉弁
8   水素ガス充填手段
8a  水素ガスタンク
8b  充填通路
8c  開閉弁
12  液化水素充填手段
14  ローディングアーム
14b アウトボードアーム
15a,15b   第1,第2開閉弁
DESCRIPTION OF SYMBOLS 1,1A Liquefied hydrogen transfer system 2 1st tank 3 2nd tank 4 Liquefied hydrogen transfer system 4A Land side transfer system 4a 1st channel | path part 4b 2nd channel | path part 4c 3rd channel | path part 5 Hydrogen gas transfer system 6 Flexible connection channel | path (Connection path between systems)
6a On-off valve 8 Hydrogen gas filling means 8a Hydrogen gas tank 8b Filling passage 8c On-off valve 12 Liquefied hydrogen filling means 14 Loading arm 14b Outboard arms 15a, 15b First and second on-off valves

Claims (3)

  1.  液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する為の液化水素移送システムにおいて、
     前記第1タンクと第2タンクとの間でローディングアームを介して液化水素を移送可能で、大部分が真空断熱二重管で構成される液化水素移送系統と、
     前記液化水素移送系統のうちの前記第1タンクからローディングアームの先端側の盲フランジまでの陸側移送系統において前記ローディングアームのアウトボードアームと盲フランジ間に前記盲フランジ側から順に離隔状に配設された第1,第2開閉弁と、
     前記盲フランジと第1開閉弁間の第1通路部に窒素ガスを充填可能な窒素ガス充填手段と、
     前記第1,第2開閉弁の間の第2通路部に水素ガスを充填可能な水素ガス充填手段と、
     前記陸側移送系統の予冷の為に、前記第2開閉弁と第1タンク間の第3通路部に液化水素を充填可能な液化水素充填手段とを備えたことを特徴とする液化水素移送システム。
    In a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen,
    A liquefied hydrogen transfer system capable of transferring liquefied hydrogen between the first tank and the second tank via a loading arm, most of which comprises a vacuum insulated double pipe;
    In the land-side transfer system from the first tank of the liquefied hydrogen transfer system to the blind flange on the tip end side of the loading arm, the load arm is spaced apart from the blind flange side in order from the blind flange side. First and second on-off valves provided;
    Nitrogen gas filling means capable of filling the first passage portion between the blind flange and the first on-off valve with nitrogen gas;
    Hydrogen gas filling means capable of filling the second passage portion between the first and second on-off valves with hydrogen gas;
    A liquefied hydrogen transfer system comprising liquefied hydrogen filling means capable of filling liquefied hydrogen in a third passage between the second on-off valve and the first tank for pre-cooling the land-side transfer system. .
  2.  前記水素ガス充填手段は、前記ローディングアームに装備された水素ガスタンクと、この水素ガスタンクを第2通路部に接続する接続通路と、この接続通路に介装された開閉弁とを備えたことを特徴とする請求項1に記載の液化水素移送システム。 The hydrogen gas filling means includes a hydrogen gas tank provided in the loading arm, a connection passage for connecting the hydrogen gas tank to the second passage portion, and an on-off valve interposed in the connection passage. The liquefied hydrogen transfer system according to claim 1.
  3.  前記第1タンクと第2タンクとの間で水素ガスを移送する為の水素ガス移送系統と、前記第2通路部を水素ガス移送系統に接続する系統間接続通路と、この系統間接続通路に介装された開閉弁とを備え、
     前記水素ガス充填手段は、前記第1タンクから前記水素ガス移送系統を介して供給する水素ガスを前記系統間接続通路により前記第2通路部に充填することを特徴とする請求項1に記載の液化水素移送システム。
    A hydrogen gas transfer system for transferring hydrogen gas between the first tank and the second tank, an inter-system connection passage connecting the second passage portion to the hydrogen gas transfer system, and an inter-system connection passage; With an installed on-off valve,
    2. The hydrogen gas filling means fills the second passage portion with hydrogen gas supplied from the first tank via the hydrogen gas transfer system through the inter-system connection passage. Liquid hydrogen transfer system.
PCT/JP2015/077256 2014-09-30 2015-09-28 Liquefied hydrogen transport system WO2016052374A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015325623A AU2015325623B2 (en) 2014-09-30 2015-09-28 Liquefied hydrogen transport system
CN201580053110.7A CN106715997B (en) 2014-09-30 2015-09-28 Liquefy hydrogen delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200619 2014-09-30
JP2014200619A JP6418680B2 (en) 2014-09-30 2014-09-30 Liquid hydrogen transfer system

Publications (1)

Publication Number Publication Date
WO2016052374A1 true WO2016052374A1 (en) 2016-04-07

Family

ID=55630410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077256 WO2016052374A1 (en) 2014-09-30 2015-09-28 Liquefied hydrogen transport system

Country Status (4)

Country Link
JP (1) JP6418680B2 (en)
CN (1) CN106715997B (en)
AU (1) AU2015325623B2 (en)
WO (1) WO2016052374A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20181164A1 (en) * 2017-09-06 2019-03-07 Connect Lng As Tie-in system and fluid transfer system comprising such a tie-in system
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method
WO2022138723A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen
US11499676B2 (en) * 2020-07-21 2022-11-15 L'air Liquide, Société Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for filling a tank with liquefied gas
WO2023182365A1 (en) * 2022-03-23 2023-09-28 川崎重工業株式会社 Cool-down method for liquefied gas storage tank
WO2023182366A1 (en) * 2022-03-23 2023-09-28 川崎重工業株式会社 Cool-down method for liquefied gas storage tank

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083791B1 (en) * 2018-07-12 2020-08-28 Gaztransport Et Technigaz LIQUEFIED GAS TRANSFER SYSTEM
US20230032503A1 (en) * 2020-03-13 2023-02-02 Chiyoda Corporation System for transferring fluid and fluid transfer method
JP2022101284A (en) * 2020-12-24 2022-07-06 川崎重工業株式会社 Vacuum heat insulating pipe unit for liquefied gas, and damage detection method for vacuum heat insulating pipe for liquefied gas
JP2023144623A (en) * 2022-03-28 2023-10-11 川崎重工業株式会社 Maintenance method for device
JP7412625B1 (en) 2023-06-16 2024-01-12 岩谷産業株式会社 Method for handling cryogenic liquefied gas, cargo handling equipment for cryogenic liquefied gas, and temperature confirmation method in cargo handling equipment for cryogenic liquefied gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997399A (en) * 1982-11-24 1984-06-05 Mitsubishi Heavy Ind Ltd Liquid feed line pre-cooling method for lng storage apparatus
JP2007303605A (en) * 2006-05-12 2007-11-22 Ihi Corp Liquefied gas receiving pipe cooling method and device
JP2008519221A (en) * 2004-11-08 2008-06-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Liquefied natural gas floating storage regasifier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE559891A (en) * 1956-08-07
JPS6088298A (en) * 1983-10-21 1985-05-18 Niigata Eng Co Ltd Fluid loading method
JP2005155668A (en) * 2003-11-20 2005-06-16 Jgc Corp Cryogenic liquid shipping piping line
KR101245644B1 (en) * 2011-05-04 2013-03-20 대우조선해양 주식회사 Pump connecting structure of a natural gas supply system for a marine structure
CN102322567B (en) * 2011-09-09 2013-01-16 中国寰球工程公司 Liquefied natural gas ship-unloading and ship-loading system and ship-loading method
JP2013199982A (en) * 2012-03-24 2013-10-03 Aim Tech:Kk Filling and recovery system for gas
CN203395571U (en) * 2013-06-25 2014-01-15 上海佳豪船舶工程设计股份有限公司 Fuel adding device applicable for small LNG (liquefied natural gas) power driving vessel
CN104061757B (en) * 2014-07-07 2016-09-07 开封空分集团有限公司 A kind of liquid oxygen and liquid nitrogen device for making and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997399A (en) * 1982-11-24 1984-06-05 Mitsubishi Heavy Ind Ltd Liquid feed line pre-cooling method for lng storage apparatus
JP2008519221A (en) * 2004-11-08 2008-06-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Liquefied natural gas floating storage regasifier
JP2007303605A (en) * 2006-05-12 2007-11-22 Ihi Corp Liquefied gas receiving pipe cooling method and device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279449B2 (en) 2017-09-06 2022-03-22 Connect Lng As Process system and a fluid transfer system comprising such a process system
WO2019048543A1 (en) * 2017-09-06 2019-03-14 Connect Lng As A process system and a fluid transfer system comprising such a process system
NO20181164A1 (en) * 2017-09-06 2019-03-07 Connect Lng As Tie-in system and fluid transfer system comprising such a tie-in system
US11878774B2 (en) 2017-09-06 2024-01-23 Econnect Energy As Tie-in system and fluid transfer system comprising such a tie-in system
AU2018330638B2 (en) * 2017-09-06 2021-03-04 Connect Lng As Tie-in system and fluid transfer system comprising such a tie-in system
AU2018330635B2 (en) * 2017-09-06 2021-04-01 Connect Lng As A process system and a fluid transfer system comprising such a process system
NO345782B1 (en) * 2017-09-06 2021-08-09 Connect Lng As Tie-in system and fluid transfer system comprising such a tie-in system
NO345783B1 (en) * 2017-09-06 2021-08-09 Connect Lng As A process system and a fluid transfer system comprising such a process system
WO2019048546A1 (en) * 2017-09-06 2019-03-14 Connect Lng As Tie-in system and fluid transfer system comprising such a tie-in system
NO20181161A1 (en) * 2017-09-06 2019-03-07 Connect Lng As A process system and a fluid transfer system comprising such a process system
US11499676B2 (en) * 2020-07-21 2022-11-15 L'air Liquide, Société Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for filling a tank with liquefied gas
JP7579702B2 (en) 2020-12-25 2024-11-08 川崎重工業株式会社 Portable loading and unloading equipment for liquid hydrogen
WO2022138723A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen
US20240052977A1 (en) * 2020-12-25 2024-02-15 Kawasaki Jukogyo Kabushiki Kaisha Portable cargo handling equipment for liquid hydrogen and emergency release method
JP7569683B2 (en) 2020-12-25 2024-10-18 川崎重工業株式会社 Portable loading and unloading equipment for liquid hydrogen
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method
WO2023182365A1 (en) * 2022-03-23 2023-09-28 川崎重工業株式会社 Cool-down method for liquefied gas storage tank
WO2023182366A1 (en) * 2022-03-23 2023-09-28 川崎重工業株式会社 Cool-down method for liquefied gas storage tank

Also Published As

Publication number Publication date
AU2015325623B2 (en) 2018-02-08
CN106715997B (en) 2019-05-28
CN106715997A (en) 2017-05-24
JP6418680B2 (en) 2018-11-07
AU2015325623A1 (en) 2017-04-20
JP2016070377A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6418680B2 (en) Liquid hydrogen transfer system
CA2928566C (en) Liquid natural gas transfer
US10421657B2 (en) Reduced boil-off thermal conditioning system
US20200224824A1 (en) Device and process for filling a mobile refrigerant tank with a cryogenic refrigerant
KR20200067208A (en) Indoor safety devices, liquefied fuel gas systems and vehicles
JP5894097B2 (en) Connection mechanism for liquefied gas supply
KR101599312B1 (en) Liquefied natural gas regasification apparatus
KR101584566B1 (en) Gas filling system and method for lng storage tank
JP7569683B2 (en) Portable loading and unloading equipment for liquid hydrogen
WO2016051768A1 (en) Liquefied hydrogen transport system
JP6489633B2 (en) Liquid hydrogen transfer system
KR101751841B1 (en) Leakage Liquefied Gas of Storage Tank Treatment System and Method
WO2016056414A1 (en) Liquefied hydrogen transferring system
KR101945387B1 (en) Vessel with piping for injecting liquid hydrogen
JP2023016974A (en) Cargo facility for liquefied cryogenic fluid
JP2010196823A (en) Low temperature liquefied gas delivery device
JP6423230B2 (en) Emergency release system for loading arm
US20180195671A1 (en) Emergency release system for liquefied hydrogen
JP2013170648A (en) Tank mounted vehicle
JP6215985B2 (en) Connection mechanism for liquefied gas supply
JP2003014197A (en) Receiving piping cooling down method for lng satellite equipment
JP7545611B1 (en) Vehicles for transporting low-temperature liquefied gas
KR102130720B1 (en) Cool down system and method of cargo tank in offshore structure
KR20230044874A (en) Transfer System of Liquid Carbon Dioxide and Vessel comprising the same
JPH08178496A (en) Squid magnetometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015325623

Country of ref document: AU

Date of ref document: 20150928

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846794

Country of ref document: EP

Kind code of ref document: A1