Nothing Special   »   [go: up one dir, main page]

WO2016052084A1 - Dynamometer system control device - Google Patents

Dynamometer system control device Download PDF

Info

Publication number
WO2016052084A1
WO2016052084A1 PCT/JP2015/075355 JP2015075355W WO2016052084A1 WO 2016052084 A1 WO2016052084 A1 WO 2016052084A1 JP 2015075355 W JP2015075355 W JP 2015075355W WO 2016052084 A1 WO2016052084 A1 WO 2016052084A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
torque
dynamometer
speed
controller
Prior art date
Application number
PCT/JP2015/075355
Other languages
French (fr)
Japanese (ja)
Inventor
利道 高橋
礼二 古賀
裕介 鬼塚
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN201580052970.9A priority Critical patent/CN107076643B/en
Priority to KR1020177010594A priority patent/KR101784716B1/en
Publication of WO2016052084A1 publication Critical patent/WO2016052084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/16Rotary-absorption dynamometers, e.g. of brake type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present invention relates to a control device for a dynamometer system. More specifically, the present invention relates to a control device for a dynamometer system including an oscillating dynamometer, a load cell, and an acceleration sensor.
  • load cells are used as sensors for detecting torque related to control and measurement.
  • the load cell detects the torque acting on the dynamometer rocker through a torque arm extending from the rocker (see Patent Document 1). Due to such a structure, the output signal of the load cell is not the torque actually detected by the dynamometer, but the torque fluctuation component accompanying the natural vibration of the oscillator is superimposed. It is a component that is essentially unnecessary in the control and measurement.
  • Patent Document 1 describes a control method for suppressing natural vibration of a rocker by giving damping to a controlled object using a natural vibration suppressing circuit. Since the natural vibration of the oscillator is suppressed by using the natural vibration suppression circuit of Patent Document 1, a stable detection signal in which the natural vibration is suppressed is obtained in the load cell.
  • the detection signal of the load cell provided in the oscillating dynamometer includes various torque pulsations (variations) in addition to the natural vibration of the oscillating element as described above. Specifically, for example, torque ripple caused by an inverter can be mentioned.
  • the natural vibration suppression circuit of Patent Document 1 is used, as a result of suppressing the natural vibration of the oscillator, the load cell can detect even a very small torque ripple as compared with the natural vibration of the oscillator. .
  • An object of the present invention is to provide a control device for a dynamometer system capable of controlling the influence of both the natural vibration of the oscillator and the torque pulsation different from the natural vibration.
  • a dynamometer system (for example, a dynamometer system 1 described later) includes an oscillating dynamometer (for example, a dynamometer 2 described later) connected to a load, and an inverter that supplies power to the dynamometer (for example, an inverter 3) to be described later and a torque arm (for example, a torque arm 26 to be described later) extending from the oscillator to generate torque generated in a swinger (for example, a swinger 23 to be described later) of the dynamometer. And an acceleration sensor (for example, an acceleration sensor 30 described later) for detecting the acceleration of the torque arm along the load direction of the load cell.
  • an oscillating dynamometer for example, a dynamometer 2 described later
  • an inverter that supplies power to the dynamometer
  • a torque arm for example, a torque arm 26 to be described later
  • an acceleration sensor for example, an acceleration sensor 30 described later
  • a control device for example, control devices 4, 4A, 4B described later
  • a control signal for example, described later
  • a natural vibration suppression circuit for example, natural vibration suppression circuit 6 described later
  • a natural vibration suppression circuit 6 that generates a correction signal and a detection signal of the acceleration sensor are inverted, and the inverted signal is used to remove an AC component from the detection signal of the load cell.
  • a circuit for example, a correction circuit 7 to be described later
  • a detection signal of the load cell that has passed through the correction circuit is input to the controller, and the natural vibration suppression circuit It is characterized by inputting a detection signal of the load cell that has not undergone the correction circuit and the control signal of the controller that the correction signal is summed.
  • the dynamometer system includes a speed detection device (for example, an encoder 29 described later) that detects the speed of the dynamometer, and the controller receives a detection signal of the load cell that has passed through the correction circuit and a predetermined signal.
  • a torque controller for example, a torque controller 5 described later
  • a command generation device for example, a command described later
  • the command generating device generates a running resistance command signal based on a detection signal of the speed detecting device (for example, a running resistance setting unit 91 described later), and Electric inertia command calculation for generating an electric inertia command signal based on the detection signal of the load cell and the detection signal of the speed detection device that have passed through a correction circuit (For example, a driving force observer 92, a subtraction unit 93, and an electric inertia ratio setting unit 94, which will be described later), and a combination of the running resistance command signal and the electric inertia command signal is a torque command signal to the torque controller.
  • a summing unit for example, an adding unit 96 described later).
  • the command generation device sets the speed of the dynamometer to a predetermined target speed based on the detection signal of the speed detection device, the travel resistance command signal, and the detection signal of the load cell that has passed through the correction circuit.
  • a speed controller (for example, a speed controller 95 to be described later) that generates a torque correction signal for matching the driving resistance command signal, the electric inertia command signal, and the torque correction signal. It is preferable to use a combined torque command signal to the torque controller.
  • the dynamometer system includes a speed detection device (for example, an encoder 29 described later) that detects the speed of the dynamometer, and the controller detects a detection signal of the speed detection device and a predetermined speed command.
  • a speed controller for example, a speed controller 5B described later
  • a command generation apparatus for example, a command generation apparatus described later
  • the command generation device generates a travel resistance command signal (for example, a travel resistance setting unit 91 to be described later) that generates a travel resistance command signal based on the detection signal of the speed detection device, and the speed detection.
  • a disturbance torque signal corresponding to the driving force applied to the dynamometer is generated based on the detection signal of the device and the detection signal of the load cell that has passed through the correction circuit.
  • a driving force observer e.g., driving force observer 92 described later
  • an integrator e.g., an integration described later
  • the controller generates a control signal (for example, a torque controller 5 described later) that eliminates a deviation between the detection signal of the load cell that has passed through the correction circuit and a predetermined torque command signal. ).
  • a control signal for example, a torque controller 5 described later
  • the dynamometer system includes a speed detection device that detects the speed of the shaft of the dynamometer, and the controller generates a speed command signal generated based on the detection signal of the load cell that has passed through the correction circuit. And a speed controller (for example, a speed controller 5B described later) that generates a control signal that eliminates a deviation from the detection signal of the speed detection device.
  • a speed controller for example, a speed controller 5B described later
  • the dynamometer system includes a position detection device that detects the position of the shaft of the dynamometer, and the controller generates a position command signal generated based on the detection signal of the load cell that has passed through the correction circuit. And a position controller that generates a control signal that eliminates a deviation from the detection signal of the position detection device.
  • a natural vibration suppression circuit for suppressing the natural vibration of the oscillator and a correction circuit for removing an AC component from the detection signal of the load cell are provided.
  • the control of the dynamometer by the controller is a major loop
  • the natural vibration suppression control by the natural vibration suppression circuit is a minor loop
  • the detection signal of the load cell that has not passed through the correction circuit is used for the minor loop control.
  • the detection signal of the load cell from which the AC component is removed through the correction circuit is used.
  • the torque control by the torque controller is a major loop
  • the natural vibration suppression control by the natural vibration suppression circuit is a minor loop.
  • the detection signal of the load cell that has not passed through the correction circuit is used for the natural vibration suppression control
  • the detection signal of the load cell that has passed through the correction circuit is used for the torque control, and the detection signal of the load cell that has passed this correction circuit.
  • the calculated torque command signal is used.
  • a torque correction signal for matching the speed of the dynamometer to a predetermined target speed is generated based on the detection signal of the speed detection device, the running resistance command signal, and the detection signal of the load cell that has passed through the correction circuit. This is used to generate a torque command signal to the torque controller.
  • the torque control by the torque controller is a major loop
  • the natural vibration suppression control by the natural vibration suppression circuit is a minor loop.
  • the detection signal of the load cell that has not passed through the correction circuit is used for the natural vibration suppression control
  • the detection signal of the load cell that has passed through the correction circuit is used for the torque control.
  • an effect equivalent to that of the above invention (5) can be obtained in a system using position control by a position controller as a major loop.
  • FIG. 3 is a block diagram illustrating a configuration of a control device according to the first embodiment. It is a block diagram which shows the structure of the control apparatus of Example 2. It is a figure which shows the result of the electric inertia control by the conventional control apparatus. It is a figure which shows the result of the electric inertia control by the control apparatus of Example 2. FIG. It is a block diagram which shows the structure of the control apparatus of Example 3.
  • FIG. 1 is a diagram showing a configuration of a rocking dynamometer system 1.
  • the oscillating dynamometer system 1 includes an oscillating dynamometer 2, an inverter 3 that supplies electric power to the dynamometer 2, and a control device 4 that controls the dynamometer 2.
  • the dynamometer 2 has a cylindrical stator 21, a rotor 22 rotatably supported in the stator 21, and an oscillator 23 composed of the rotor 22 and the stator 21 fixed to an installation surface G.
  • a pedestal 25 that is swingably supported along the circumferential direction on the base 24, a roller 27 that rotates coaxially with the rotor 22, a load cell 28 as a load detector that detects torque generated in the stator 21, and a rotor And an encoder 29 that detects the number of rotations 22.
  • a specimen (not shown) to be tested is connected to the rotor 22.
  • a torque arm 26 extending outward in the radial direction is provided on a side portion of the stator 21.
  • the load cell 28 is provided between the tip end portion of the torque arm 26 and the installation surface G. The load cell 28 detects a load (output torque of the dynamometer 2) acting between the torque arm 26 and the installation surface G, and transmits a signal substantially proportional to the detected value to the control device 4.
  • an acceleration sensor 30 for detecting the acceleration of the torque arm 26 is provided at the tip of the torque arm 26.
  • the acceleration sensor 30 detects the acceleration of the torque arm 26 along the load direction of the load cell 28 and transmits a signal substantially proportional to the detected value to the control device 4.
  • Encoder 29 generates a pulse signal according to the rotation of rotor 22 and transmits it to control device 4.
  • the angular velocity (speed) and angle (position) of the rotor 22 are calculated by the control device 4 based on the pulse signal from the encoder 29.
  • a signal proportional to the angular velocity generated based on the pulse signal of the encoder 29 is referred to as a velocity detection signal, and a signal proportional to the angle is referred to as a position detection signal.
  • control device 4 applies an inertia equivalent to that of the actual vehicle to the vehicle mounted on the roller 27, and simulates the actual road running while performing an exhaust gas test and a fuel consumption test.
  • Various tests such as
  • FIG. 2 is a block diagram illustrating a configuration of the control device 4 of the dynamometer system according to the first embodiment.
  • the control target P is configured to include the inverter, dynamometer, load cell, acceleration sensor, and the like described with reference to FIG.
  • the control device 4 includes a torque controller 5 that generates a control signal for controlling the torque of the dynamometer, a natural vibration suppression circuit 6 that generates a correction signal for correcting the control signal of the torque controller 5, and detection of a load cell.
  • a correction circuit 7 that corrects a signal (hereinafter referred to as a “load cell torque signal”) and a subtraction unit 8 are provided.
  • the torque controller 5 transmits a control signal that eliminates a deviation between a load cell torque signal from which torque pulsation and noise have been removed through a correction circuit 7 described later and a torque command signal determined by a process (not shown), Generate based on a known feedback algorithm.
  • the subtraction unit 8 subtracts the correction signal generated by the natural vibration suppression circuit 6 from the control signal generated by the torque controller 5 to generate a control signal for the inverter.
  • the natural vibration suppression circuit 6 corrects the control signal of the torque controller 5 based on the control signal to the inverter and the load cell torque signal that has not passed through the correction circuit 7 described later so that the natural vibration of the oscillator is suppressed.
  • a correction signal to be generated is generated. More specifically, the natural vibration suppression circuit 6 generates an approximate signal of the load cell by using an arithmetic expression characterized by a predetermined damping coefficient and the natural frequency of the oscillator, A correction signal is generated so that the deviation between the signal delayed by the dead time and the load cell torque signal is minimized.
  • a specific configuration for generating a correction signal having such a function is described in, for example, Japanese Patent Application Laid-Open No. 2013-246152 filed by the applicant of the present application, and thus detailed description thereof is omitted here.
  • the correction circuit 7 reverses the phase of the acceleration sensor detection signal that has passed through the DC component removal unit 71 with respect to the load cell torque signal by 180 degrees from the detection signal of the acceleration sensor.
  • An addition unit 74 that removes torque pulsation components from the load cell torque signal, and a low-pass filter 75 that removes harmonic noise from the load cell torque signal that has passed through the addition unit 74 are provided.
  • a load cell torque signal that has not passed through the correction circuit 7 is input to the natural vibration suppression circuit 6 that constitutes the minor loop, and a torque controller that constitutes the major loop.
  • a load cell torque signal from which torque pulsation and harmonic noise have been removed is input to 5.
  • FIG. 3 is a block diagram illustrating a configuration of the control device 4A of the dynamometer system according to the second embodiment.
  • the control device 4A of this embodiment is different from the control device 4 of the first embodiment (see FIG. 2) in that it further includes a command generation device 9A and a feedforward controller 10A.
  • the control device 4A of the second embodiment is different from the control device 4 of the first embodiment in that the detection signal of the encoder is further used.
  • symbol is attached
  • the command generation device 9A includes a running resistance setting unit 91, a driving force observer 92, a subtraction unit 93, an electric inertia ratio setting unit 94, a speed controller 95, and an addition unit 96.
  • the command generation device 9 ⁇ / b> A includes a travel resistance command signal generated by the travel resistance setting unit 91, an electric inertia command signal generated by the electric inertia ratio setting unit 94, and a correction signal generated by the speed controller 95.
  • a torque command signal to the torque controller 5 is generated by combining the two signals by the adder 96.
  • the traveling resistance setting unit 91 generates a traveling resistance command signal corresponding to the speed detection signal from the encoder by searching a predetermined traveling resistance table.
  • This running resistance command signal is a signal corresponding to the resistance that the running vehicle receives from the road surface and the atmosphere.
  • the running resistance table a table determined by performing a test using an actual vehicle is used.
  • the driving force observer 92 generates a disturbance torque signal corresponding to the driving force applied to the dynamometer based on the load cell torque signal passed through the correction circuit 7 and the speed detection signal from the encoder. More specifically, the driving force observer 92 combines the signal obtained by multiplying the value obtained by differentiating the speed detection signal with the value of a predetermined fixed inertia mass and the load cell torque signal that has passed through the correction circuit 7 to thereby generate disturbance torque. Generate a signal.
  • the fixed inertia mass means an inertia mass inherent to the dynamometer system, and corresponds to a fixed inertia component automatically added to a vehicle traveling on a roller.
  • the subtracting unit 93 subtracts the traveling resistance command signal generated by the traveling resistance setting unit 91 from the disturbance torque signal generated by the driving force observer 92.
  • the electric inertia ratio setting unit 94 multiplies the signal generated by the subtracting unit 93 by a ratio (electric inertia mass value / set inertia mass value) of a predetermined electric inertia mass value and a predetermined set inertia mass value.
  • an electric inertia command signal is generated.
  • the set inertial mass is an inertial mass determined according to the weight of the vehicle to be tested. As shown in the following formula, the set inertia mass is defined as a combination of the fixed inertia mass and the electric inertia mass.
  • Set inertia mass Fixed inertia mass + Electric inertia mass
  • the speed controller 95 generates a correction signal for correcting the torque command signal so that the difference between the predetermined target speed and the actual speed obtained based on the speed detection signal becomes zero.
  • the target speed is calculated based on the speed detection signal from the encoder, the travel resistance command signal from the travel resistance setting unit 91, and the load cell torque signal that has passed through the correction circuit 7.
  • the feedforward controller 10A generates a feedforward signal corresponding to the torque command signal by performing a predetermined calculation.
  • the subtracting unit 8A subtracts the correction signal generated by the natural vibration suppression circuit 6 from the signal obtained by combining the control signal generated by the torque controller 5 and the feedforward signal generated by the feedforward controller 10A. Generate a control signal to the inverter.
  • FIG. 4 is a diagram showing a result of the electric inertia control by the conventional control device
  • FIG. 5 is a diagram showing a result of the electric inertia control by the control device of the present embodiment.
  • the conventional control device corresponds to the control device of FIG. 3 excluding the natural vibration suppression circuit 6.
  • 4 and 5 show changes in the vehicle speed, the load cell torque signal, and the vehicle speed deviation when the vehicle placed on the roller is accelerated under a constant acceleration.
  • the vehicle speed a signal obtained by converting the speed detection signal from the encoder into the speed of the vehicle was used.
  • the vehicle speed deviation the deviation between the speed detection signal and the target speed is converted into the vehicle speed.
  • the natural vibration of the oscillator appears in the load cell torque signal.
  • the control device of the present embodiment uses the load cell torque signal that has not passed through the correction circuit for the natural vibration suppression control by the natural vibration suppression circuit, and the load cell torque signal that has passed through the correction circuit for the torque control by the torque controller. According to the above, the natural vibration of the oscillator that appeared in the load cell torque signal was suppressed, and the response of the dynamometer at the rising of the vehicle speed was also improved.
  • FIG. 6 is a block diagram illustrating the configuration of the control device 4B of the dynamometer system according to the third embodiment.
  • the control device 4B according to the present embodiment is different from the control device 4A according to the second embodiment (see FIG. 3) in that the control signal input to the inverter is generated by the speed controller 5B.
  • symbol is attached
  • the speed controller 5B is a known control signal that eliminates the deviation between the speed command signal generated by the command generation device 9B described later based on the load cell torque signal that has passed through the correction circuit 7 and the speed detection signal from the encoder. Generate based on feedback algorithm.
  • the command generation device 9B includes a running resistance setting unit 91, a driving force observer 92, a subtraction unit 93, an electric inertia ratio setting unit 94, an addition unit 96, a set inertia division unit 97B, and an integrator 98B.
  • a running resistance setting unit 91 a driving force observer 92
  • a subtraction unit 93 an electric inertia ratio setting unit 94
  • an addition unit 96 a set inertia division unit 97B
  • integrator 98B an integrator 98B.
  • the set inertia division unit 97B generates a signal having a dimension of acceleration by dividing a value obtained by subtracting the running resistance command signal from the disturbance torque signal generated by the driving force observer 92 by the set inertia mass value.
  • the integrator 98B integrates the signal generated by the set inertia division unit 97B to generate a signal having a speed dimension, which is used as a speed command signal for the speed controller 5B.
  • control device 4B of the present embodiment similarly to the control device 4A of the second embodiment, the influence of both the natural vibration and torque pulsation of the oscillator is reduced, and highly responsive and stable electric inertia control is performed. be able to.
  • the present invention is not limited thereto.
  • the present invention can also be applied to a test system such as an engine dynamometer system or a powertrain system as long as it includes a oscillating dynamometer.
  • torque control by the torque controller (see Examples 1 and 2) or speed control by the speed controller (see Example 3) is a major loop, and natural vibration suppression control by the natural vibration suppression circuit is minor.
  • the present invention can also be applied to a control device using position control by a position controller as a major loop.
  • the load cell torque signal that has not passed through the correction circuit is input to the natural vibration suppression circuit that forms the minor loop, and the position controller that forms the major loop has a position generated based on the load cell torque signal that has passed through the correction circuit.
  • Input a command signal.
  • the position controller may generate a control signal that eliminates the deviation between the position command signal and the position detection signal from the encoder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Provided is a dynamometer system control device capable of control that suppresses the influence of both the natural oscillation of a rocker and torque pulsation separate from this natural oscillation. A dynamometer system is provided with a rocking dynamometer, a load cell for detecting the torque applied to a rocker, and an acceleration sensor for detecting acceleration along the load direction of the load cell. A control device 4 is provided with a torque controller 5 for generating a control signal for controlling the torque of the dynamometer, a natural oscillation suppression circuit 6 for generating a correction signal for correcting the control signal so that the natural oscillation of the rocker is suppressed on the basis of a prescribed input signal, and a correction circuit 7 for reversing the detection signal of the acceleration sensor and using the reversed signal to remove an AC component from the load cell torque signal. The load cell torque signal is applied to the torque controller 5 after passing through the correction circuit 7 and is applied to the natural oscillation suppression circuit 6 without passing through the correction circuit 7.

Description

ダイナモメータシステムの制御装置Control device for dynamometer system
 本発明は、ダイナモメータシステムの制御装置に関する。より詳しくは、揺動式のダイナモメータとロードセルと加速度センサとを備えたダイナモメータシステムの制御装置に関する。 The present invention relates to a control device for a dynamometer system. More specifically, the present invention relates to a control device for a dynamometer system including an oscillating dynamometer, a load cell, and an acceleration sensor.
 揺動式のダイナモメータを搭載したエンジンダイナモメータシステム、シャシダイナモメータシステム、及びパワートレインシステム等の試験システムでは、その制御及び計測に係るトルクを検出するためのセンサとしてロードセルが用いられる。ロードセルは、ダイナモメータの揺動子に作用するトルクを、揺動子から延びるトルクアームを介して検出する(特許文献1参照)。このような構造上、ロードセルの出力信号は、実際にダイナモメータで検出されるトルク以外に、揺動子の固有振動に伴うトルク変動成分が重畳されたものとなるが、この変動成分は、システムの制御や計測において本来は不要な成分である。 In test systems such as engine dynamometer systems, chassis dynamometer systems, and powertrain systems equipped with oscillating dynamometers, load cells are used as sensors for detecting torque related to control and measurement. The load cell detects the torque acting on the dynamometer rocker through a torque arm extending from the rocker (see Patent Document 1). Due to such a structure, the output signal of the load cell is not the torque actually detected by the dynamometer, but the torque fluctuation component accompanying the natural vibration of the oscillator is superimposed. It is a component that is essentially unnecessary in the control and measurement.
 特許文献1には、固有振動抑制回路を用いて制御対象にダンピングを与えることにより、揺動子の固有振動を抑制する制御方法が記載されている。特許文献1の固有振動抑制回路を用いることにより、揺動子の固有振動が抑制されるので、ロードセルでは固有振動が抑制された安定した検出信号が得られる。 Patent Document 1 describes a control method for suppressing natural vibration of a rocker by giving damping to a controlled object using a natural vibration suppressing circuit. Since the natural vibration of the oscillator is suppressed by using the natural vibration suppression circuit of Patent Document 1, a stable detection signal in which the natural vibration is suppressed is obtained in the load cell.
特開2013-246152号公報JP 2013-246152 A
 ところで揺動式のダイナモメータに設けられたロードセルの検出信号には、上述のような揺動子の固有振動の他にも様々なトルク脈動(変動)が含まれる。具体的には、例えばインバータに起因するトルクリプルが挙げられる。特許文献1の固有振動抑制回路を用いると、揺動子の固有振動が抑制される結果として、ロードセルでは揺動子の固有振動に比べると非常に小さなトルクリプルまで検出することが可能となってしまう。 Incidentally, the detection signal of the load cell provided in the oscillating dynamometer includes various torque pulsations (variations) in addition to the natural vibration of the oscillating element as described above. Specifically, for example, torque ripple caused by an inverter can be mentioned. When the natural vibration suppression circuit of Patent Document 1 is used, as a result of suppressing the natural vibration of the oscillator, the load cell can detect even a very small torque ripple as compared with the natural vibration of the oscillator. .
 このため、特許文献1に示されているように、固有振動抑制回路を備えた制御装置においてロードセルの検出信号をメジャーループのトルク制御装置のフィードバック信号とすると、トルク制御装置の制御帯域にトルク脈動が生じた場合にはこれを増幅してしまい、結果としてダイナモメータシステムの計測精度に悪影響を及ぼす場合がある。 For this reason, as shown in Patent Document 1, when a load cell detection signal is used as a feedback signal of a major loop torque control device in a control device having a natural vibration suppression circuit, torque pulsation is generated in the control band of the torque control device. If this occurs, it may be amplified, resulting in an adverse effect on the measurement accuracy of the dynamometer system.
 本発明は、揺動子の固有振動とこの固有振動とは別のトルク脈動との両方の影響を抑制した制御が可能なダイナモメータシステムの制御装置を提供することを目的とする。 An object of the present invention is to provide a control device for a dynamometer system capable of controlling the influence of both the natural vibration of the oscillator and the torque pulsation different from the natural vibration.
 (1)ダイナモメータシステム(例えば、後述のダイナモメータシステム1)は、負荷に接続された揺動式のダイナモメータ(例えば、後述のダイナモメータ2)と、当該ダイナモメータに電力を供給するインバータ(例えば、後述のインバータ3)と、前記ダイナモメータの揺動子(例えば、後述の揺動子23)に発生するトルクを、当該揺動子から延びるトルクアーム(例えば、後述のトルクアーム26)を介して検出するロードセル(例えば、後述のロードセル28)と、前記ロードセルの荷重方向に沿った前記トルクアームの加速度を検出する加速度センサ(例えば、後述の加速度センサ30)と、を備える。本発明に係るダイナモメータシステムの制御装置(例えば、後述の制御装置4,4A,4B)は、所定の入力信号に基づいて前記ダイナモメータを制御するための制御信号を生成するコントローラ(例えば、後述のトルク制御器5、指令生成装置9A、速度制御器5B、指令生成装置9B等)と、所定の入力信号に基づいて前記揺動子の固有振動が抑制されるように前記制御信号を補正する補正信号を生成する固有振動抑制回路(例えば、後述の固有振動抑制回路6)と、前記加速度センサの検出信号を反転し、当該反転した信号を用いて前記ロードセルの検出信号から交流成分を除く補正回路(例えば、後述の補正回路7)と、を備え、前記コントローラには前記補正回路を経た前記ロードセルの検出信号を入力し、前記固有振動抑制回路には前記補正信号が合算された前記コントローラの制御信号と前記補正回路を経ていない前記ロードセルの検出信号を入力することを特徴とする。 (1) A dynamometer system (for example, a dynamometer system 1 described later) includes an oscillating dynamometer (for example, a dynamometer 2 described later) connected to a load, and an inverter that supplies power to the dynamometer ( For example, an inverter 3) to be described later and a torque arm (for example, a torque arm 26 to be described later) extending from the oscillator to generate torque generated in a swinger (for example, a swinger 23 to be described later) of the dynamometer. And an acceleration sensor (for example, an acceleration sensor 30 described later) for detecting the acceleration of the torque arm along the load direction of the load cell. A control device (for example, control devices 4, 4A, 4B described later) of the dynamometer system according to the present invention generates a control signal (for example, described later) for controlling the dynamometer based on a predetermined input signal. Torque controller 5, command generator 9A, speed controller 5B, command generator 9B, etc.) and the control signal is corrected so that the natural vibration of the oscillator is suppressed based on a predetermined input signal. A natural vibration suppression circuit (for example, natural vibration suppression circuit 6 described later) that generates a correction signal and a detection signal of the acceleration sensor are inverted, and the inverted signal is used to remove an AC component from the detection signal of the load cell. A circuit (for example, a correction circuit 7 to be described later), and a detection signal of the load cell that has passed through the correction circuit is input to the controller, and the natural vibration suppression circuit It is characterized by inputting a detection signal of the load cell that has not undergone the correction circuit and the control signal of the controller that the correction signal is summed.
 (2)この場合、前記ダイナモメータシステムは、前記ダイナモメータの速度を検出する速度検出装置(例えば、後述のエンコーダ29)を備え、前記コントローラは、前記補正回路を経た前記ロードセルの検出信号と所定の指令信号との偏差を無くすような制御信号を生成するトルク制御器(例えば、後述のトルク制御器5)と、前記トルク制御器に対するトルク指令信号を生成する指令生成装置(例えば、後述の指令生成装置9A)と、を備え、前記指令生成装置は、前記速度検出装置の検出信号に基づいて走行抵抗指令信号を生成する走行抵抗設定部(例えば、後述の走行抵抗設定部91)と、前記補正回路を経た前記ロードセルの検出信号と前記速度検出装置の検出信号とに基づいて電気慣性指令信号を生成する電気慣性指令演算部(例えば、後述の駆動力オブザーバ92、減算部93、及び電気慣性比率設定部94)と、前記走行抵抗指令信号と前記電気慣性指令信号とを合わせたものを前記トルク制御器へのトルク指令信号とする合算部(例えば、後述の加算部96)と、を備えることが好ましい。 (2) In this case, the dynamometer system includes a speed detection device (for example, an encoder 29 described later) that detects the speed of the dynamometer, and the controller receives a detection signal of the load cell that has passed through the correction circuit and a predetermined signal. A torque controller (for example, a torque controller 5 described later) that generates a control signal that eliminates a deviation from the command signal of the motor, and a command generation device (for example, a command described later) that generates a torque command signal for the torque controller. Generating device 9A), and the command generating device generates a running resistance command signal based on a detection signal of the speed detecting device (for example, a running resistance setting unit 91 described later), and Electric inertia command calculation for generating an electric inertia command signal based on the detection signal of the load cell and the detection signal of the speed detection device that have passed through a correction circuit (For example, a driving force observer 92, a subtraction unit 93, and an electric inertia ratio setting unit 94, which will be described later), and a combination of the running resistance command signal and the electric inertia command signal is a torque command signal to the torque controller. And a summing unit (for example, an adding unit 96 described later).
 (3)この場合、前記指令生成装置は、前記速度検出装置の検出信号と前記走行抵抗指令信号と前記補正回路を経た前記ロードセルの検出信号とに基づいて前記ダイナモメータの速度を所定の目標速度に一致させるためのトルク補正信号を生成する速度制御器(例えば、後述の速度制御器95)をさらに備え、前記合算部は前記走行抵抗指令信号と前記電気慣性指令信号と前記トルク補正信号とを合わせたものを前記トルク制御器へのトルク指令信号とすることが好ましい。 (3) In this case, the command generation device sets the speed of the dynamometer to a predetermined target speed based on the detection signal of the speed detection device, the travel resistance command signal, and the detection signal of the load cell that has passed through the correction circuit. A speed controller (for example, a speed controller 95 to be described later) that generates a torque correction signal for matching the driving resistance command signal, the electric inertia command signal, and the torque correction signal. It is preferable to use a combined torque command signal to the torque controller.
 (4)この場合、前記ダイナモメータシステムは、前記ダイナモメータの速度を検出する速度検出装置(例えば、後述のエンコーダ29)を備え、前記コントローラは、前記速度検出装置の検出信号と所定の速度指令信号との偏差を無くすような制御信号を生成する速度制御器(例えば、後述の速度制御器5B)と、前記速度制御器に対する速度指令信号を生成する指令生成装置(例えば、後述の指令生成装置9B)と、を備え、前記指令生成装置は、前記速度検出装置の検出信号に基づいて走行抵抗指令信号を生成する走行抵抗設定部(例えば、後述の走行抵抗設定部91)と、前記速度検出装置の検出信号及び前記補正回路を経た前記ロードセルの検出信号に基づいて前記ダイナモメータに加わる駆動力相当する外乱トルク信号を生成する駆動力オブザーバ(例えば、後述の駆動力オブザーバ92)と、前記外乱トルク信号から前記走行抵抗指令信号を減算したものを積分することによって前記速度指令信号を生成する積分器(例えば、後述の積分器98B)と、を備えることが好ましい。 (4) In this case, the dynamometer system includes a speed detection device (for example, an encoder 29 described later) that detects the speed of the dynamometer, and the controller detects a detection signal of the speed detection device and a predetermined speed command. A speed controller (for example, a speed controller 5B described later) that generates a control signal that eliminates a deviation from the signal, and a command generation apparatus (for example, a command generation apparatus described later) that generates a speed command signal for the speed controller. 9B), and the command generation device generates a travel resistance command signal (for example, a travel resistance setting unit 91 to be described later) that generates a travel resistance command signal based on the detection signal of the speed detection device, and the speed detection. A disturbance torque signal corresponding to the driving force applied to the dynamometer is generated based on the detection signal of the device and the detection signal of the load cell that has passed through the correction circuit. A driving force observer (e.g., driving force observer 92 described later) and an integrator (e.g., an integration described later) that integrates a value obtained by subtracting the running resistance command signal from the disturbance torque signal. 98B).
 (5)この場合、前記コントローラは、前記補正回路を経た前記ロードセルの検出信号と所定のトルク指令信号との偏差を無くすような制御信号を生成するトルク制御器(例えば、後述のトルク制御器5)を備えることが好ましい。 (5) In this case, the controller generates a control signal (for example, a torque controller 5 described later) that eliminates a deviation between the detection signal of the load cell that has passed through the correction circuit and a predetermined torque command signal. ).
 (6)この場合、前記ダイナモメータシステムは、前記ダイナモメータの軸の速度を検出する速度検出装置を備え、前記コントローラは、前記補正回路を経た前記ロードセルの検出信号に基づいて生成した速度指令信号と、前記速度検出装置の検出信号との偏差を無くすような制御信号を生成する速度制御器(例えば、後述の速度制御器5B)を備えることが好ましい。 (6) In this case, the dynamometer system includes a speed detection device that detects the speed of the shaft of the dynamometer, and the controller generates a speed command signal generated based on the detection signal of the load cell that has passed through the correction circuit. And a speed controller (for example, a speed controller 5B described later) that generates a control signal that eliminates a deviation from the detection signal of the speed detection device.
 (7)この場合、前記ダイナモメータシステムは、前記ダイナモメータの軸の位置を検出する位置検出装置を備え、前記コントローラは、前記補正回路を経た前記ロードセルの検出信号に基づいて生成した位置指令信号と、前記位置検出装置の検出信号との偏差を無くすような制御信号を生成する位置制御器を備えることが好ましい。 (7) In this case, the dynamometer system includes a position detection device that detects the position of the shaft of the dynamometer, and the controller generates a position command signal generated based on the detection signal of the load cell that has passed through the correction circuit. And a position controller that generates a control signal that eliminates a deviation from the detection signal of the position detection device.
 (1)本発明では、揺動式のダイナモメータを備えたシステムにおいて、揺動子の固有振動を抑制するための固有振動抑制回路と、ロードセルの検出信号から交流成分を除く補正回路とを設ける。そして本発明では、コントローラによるダイナモメータの制御をメジャーループとし、固有振動抑制回路による固有振動抑制制御をマイナーループとし、マイナーループの制御には補正回路を経ていないロードセルの検出信号を用い、メジャーループの制御には補正回路を経て交流成分が除かれたロードセルの検出信号を用いる。これにより、揺動子の固有振動とこの固有振動とは別のトルク脈動との両方の影響を低減した制御を実現できるため、ダイナモメータシステムによる試験の計測精度を向上できる。 (1) In the present invention, in a system including an oscillating dynamometer, a natural vibration suppression circuit for suppressing the natural vibration of the oscillator and a correction circuit for removing an AC component from the detection signal of the load cell are provided. . In the present invention, the control of the dynamometer by the controller is a major loop, the natural vibration suppression control by the natural vibration suppression circuit is a minor loop, and the detection signal of the load cell that has not passed through the correction circuit is used for the minor loop control. For this control, the detection signal of the load cell from which the AC component is removed through the correction circuit is used. As a result, it is possible to realize control in which the influence of both the natural vibration of the oscillator and the torque pulsation different from the natural vibration is reduced, so that the measurement accuracy of the test by the dynamometer system can be improved.
 (2)本発明では、トルク制御器によるトルク制御をメジャーループとし、固有振動抑制回路による固有振動抑制制御をマイナーループとする。そして、上述のように固有振動抑制制御には補正回路を経ていないロードセルの検出信号を用い、トルク制御には補正回路を経たロードセルの検出信号と、この補正回路を経たロードセルの検出信号を用いて算出されたトルク指令信号とを用いる。これにより、揺動子の固有振動とトルク脈動との両方の影響を低減し、高応答かつ安定した電気慣性制御が可能となる。 (2) In the present invention, the torque control by the torque controller is a major loop, and the natural vibration suppression control by the natural vibration suppression circuit is a minor loop. As described above, the detection signal of the load cell that has not passed through the correction circuit is used for the natural vibration suppression control, and the detection signal of the load cell that has passed through the correction circuit is used for the torque control, and the detection signal of the load cell that has passed this correction circuit. The calculated torque command signal is used. As a result, the influence of both the natural vibration and torque pulsation of the oscillator is reduced, and highly responsive and stable electric inertia control is possible.
 (3)本発明では、速度検出装置の検出信号と走行抵抗指令信号と補正回路を経たロードセルの検出信号とに基づいてダイナモメータの速度を所定の目標速度に一致させるためのトルク補正信号を生成し、これを用いてトルク制御器へのトルク指令信号を生成する。これにより、揺動子の固有振動とこの固有振動とは別のトルク脈動との両方の影響を低減し、高応答かつ安定した電気慣性制御が可能となる。 (3) In the present invention, a torque correction signal for matching the speed of the dynamometer to a predetermined target speed is generated based on the detection signal of the speed detection device, the running resistance command signal, and the detection signal of the load cell that has passed through the correction circuit. This is used to generate a torque command signal to the torque controller. As a result, the influence of both the natural vibration of the oscillator and the torque pulsation different from the natural vibration is reduced, and highly responsive and stable electric inertia control is possible.
 (4)本発明によれば、(2)と同様に揺動子の固有振動とトルク脈動との両方の影響を低減し、高応答かつ安定した電気慣性制御が可能となる。 (4) According to the present invention, similarly to (2), the influence of both the natural vibration and torque pulsation of the oscillator is reduced, and highly responsive and stable electric inertia control becomes possible.
 (5)本発明では、トルク制御器によるトルク制御をメジャーループとし、固有振動抑制回路による固有振動抑制制御をマイナーループとする。そして、固有振動抑制制御には補正回路を経ていないロードセルの検出信号を用い、トルク制御には補正回路を経たロードセルの検出信号を用いる。これにより、揺動子の固有振動とトルク脈動との両方の影響を抑制した制御が可能となる。 (5) In the present invention, the torque control by the torque controller is a major loop, and the natural vibration suppression control by the natural vibration suppression circuit is a minor loop. The detection signal of the load cell that has not passed through the correction circuit is used for the natural vibration suppression control, and the detection signal of the load cell that has passed through the correction circuit is used for the torque control. As a result, it is possible to perform control while suppressing the influence of both the natural vibration and torque pulsation of the oscillator.
 (6)本発明によれば、速度制御器による速度制御をメジャーループとしたシステムにおいて、上記(5)の発明と同等の効果を奏する。 (6) According to the present invention, in a system in which the speed control by the speed controller is a major loop, the same effect as the invention of the above (5) is obtained.
 (7)本発明によれば、位置制御器による位置制御をメジャーループとしたシステムにおいて、上記(5)の発明と同等の効果を奏する。 (7) According to the present invention, an effect equivalent to that of the above invention (5) can be obtained in a system using position control by a position controller as a major loop.
本発明の一実施形態に係る揺動式のダイナモメータシステムの構成を示す図である。It is a figure which shows the structure of the rocking | swiveling dynamometer system which concerns on one Embodiment of this invention. 実施例1の制御装置の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a control device according to the first embodiment. 実施例2の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of Example 2. 従来の制御装置による電気慣性制御の結果を示す図である。It is a figure which shows the result of the electric inertia control by the conventional control apparatus. 実施例2の制御装置による電気慣性制御の結果を示す図である。It is a figure which shows the result of the electric inertia control by the control apparatus of Example 2. FIG. 実施例3の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of Example 3.
 以下、本発明の一実施形態について図面を参照しながら説明する。
 図1は、揺動式ダイナモメータシステム1の構成を示す図である。
 揺動式ダイナモメータシステム1は、揺動式のダイナモメータ2と、ダイナモメータ2に電力を供給するインバータ3と、ダイナモメータ2を制御する制御装置4と、を備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a rocking dynamometer system 1.
The oscillating dynamometer system 1 includes an oscillating dynamometer 2, an inverter 3 that supplies electric power to the dynamometer 2, and a control device 4 that controls the dynamometer 2.
 ダイナモメータ2は、円筒状のステータ21と、このステータ21内に回転可能に支持されたロータ22と、これらロータ22及びステータ21で構成される揺動子23を、設置面Gに固定された基台24上で周方向に沿って揺動可能に支持するペデスタル25と、ロータ22と同軸で回転するローラ27と、ステータ21に発生するトルクを検出する荷重検出器としてのロードセル28と、ロータ22の回転数を検出するエンコーダ29と、を備える。 The dynamometer 2 has a cylindrical stator 21, a rotor 22 rotatably supported in the stator 21, and an oscillator 23 composed of the rotor 22 and the stator 21 fixed to an installation surface G. A pedestal 25 that is swingably supported along the circumferential direction on the base 24, a roller 27 that rotates coaxially with the rotor 22, a load cell 28 as a load detector that detects torque generated in the stator 21, and a rotor And an encoder 29 that detects the number of rotations 22.
 ロータ22には、試験対象である供試体(図示せず)が接続される。ステータ21の側部には、径方向に沿って外側へ延びるトルクアーム26が設けられている。ロードセル28は、トルクアーム26の先端部と設置面Gとの間に設けられる。ロードセル28は、トルクアーム26と設置面Gとの間に作用する荷重(ダイナモメータ2の出力トルク)を検出し、検出値に略比例した信号を制御装置4に送信する。 A specimen (not shown) to be tested is connected to the rotor 22. A torque arm 26 extending outward in the radial direction is provided on a side portion of the stator 21. The load cell 28 is provided between the tip end portion of the torque arm 26 and the installation surface G. The load cell 28 detects a load (output torque of the dynamometer 2) acting between the torque arm 26 and the installation surface G, and transmits a signal substantially proportional to the detected value to the control device 4.
 また、このトルクアーム26の先端部には、トルクアーム26の加速度を検出する加速度センサ30が設けられている。加速度センサ30は、ロードセル28の荷重方向に沿ったトルクアーム26の加速度を検出し、検出値に略比例した信号を制御装置4に送信する。 Further, an acceleration sensor 30 for detecting the acceleration of the torque arm 26 is provided at the tip of the torque arm 26. The acceleration sensor 30 detects the acceleration of the torque arm 26 along the load direction of the load cell 28 and transmits a signal substantially proportional to the detected value to the control device 4.
 エンコーダ29は、ロータ22の回転に応じてパルス信号を発生し、制御装置4に送信する。ロータ22の角速度(速度)及び角度(位置)は、このエンコーダ29からのパルス信号に基づいて、制御装置4によって算出される。なお以下では、エンコーダ29のパルス信号に基づいて生成される角速度に比例した信号を速度検出信号といい、角度に比例した信号を位置検出信号という。 Encoder 29 generates a pulse signal according to the rotation of rotor 22 and transmits it to control device 4. The angular velocity (speed) and angle (position) of the rotor 22 are calculated by the control device 4 based on the pulse signal from the encoder 29. In the following, a signal proportional to the angular velocity generated based on the pulse signal of the encoder 29 is referred to as a velocity detection signal, and a signal proportional to the angle is referred to as a position detection signal.
 ローラ27には、ダイナモメータシステム1による試験対象としての車両の駆動輪(図示せず)が載置される。制御装置4は、以下で説明するような制御回路を用いることによって、ローラ27に載置された車両に実車と等価な慣性を負荷し、実路走行を模擬しながら、その排ガス試験や燃費試験などの各種試験を行う。 On the roller 27, drive wheels (not shown) of a vehicle as a test object by the dynamometer system 1 are placed. By using a control circuit as described below, the control device 4 applies an inertia equivalent to that of the actual vehicle to the vehicle mounted on the roller 27, and simulates the actual road running while performing an exhaust gas test and a fuel consumption test. Various tests such as
 以下、以上のような揺動式のダイナモメータシステム1の制御装置4の構成について、実施例ごとに説明する。 Hereinafter, the configuration of the control device 4 of the oscillating dynamometer system 1 as described above will be described for each embodiment.
 図2は、実施例1のダイナモメータシステムの制御装置4の構成を示すブロック図である。図2において、制御対象Pは、図1を参照して説明したインバータ、ダイナモメータ、ロードセル、及び加速度センサ等を含んで構成される。制御装置4は、ダイナモメータのトルクを制御するための制御信号を生成するトルク制御器5と、トルク制御器5の制御信号を補正する補正信号を生成する固有振動抑制回路6と、ロードセルの検出信号(以下、「ロードセルトルク信号」という)を補正する補正回路7と、減算部8と、を備える。 FIG. 2 is a block diagram illustrating a configuration of the control device 4 of the dynamometer system according to the first embodiment. In FIG. 2, the control target P is configured to include the inverter, dynamometer, load cell, acceleration sensor, and the like described with reference to FIG. The control device 4 includes a torque controller 5 that generates a control signal for controlling the torque of the dynamometer, a natural vibration suppression circuit 6 that generates a correction signal for correcting the control signal of the torque controller 5, and detection of a load cell. A correction circuit 7 that corrects a signal (hereinafter referred to as a “load cell torque signal”) and a subtraction unit 8 are provided.
 トルク制御器5は、後述の補正回路7を経ることによってトルク脈動やノイズ等が除かれたロードセルトルク信号と、図示しない処理によって定められたトルク指令信号との偏差を無くすような制御信号を、既知のフィードバックアルゴリズムに基づいて生成する。減算部8は、トルク制御器5によって生成された制御信号から固有振動抑制回路6によって生成された補正信号を減算し、インバータへの制御信号を生成する。 The torque controller 5 transmits a control signal that eliminates a deviation between a load cell torque signal from which torque pulsation and noise have been removed through a correction circuit 7 described later and a torque command signal determined by a process (not shown), Generate based on a known feedback algorithm. The subtraction unit 8 subtracts the correction signal generated by the natural vibration suppression circuit 6 from the control signal generated by the torque controller 5 to generate a control signal for the inverter.
 固有振動抑制回路6は、インバータへの制御信号と後述の補正回路7を経ていないロードセルトルク信号とに基づいて、揺動子の固有振動が抑制されるようにトルク制御器5の制御信号を補正する補正信号を生成する。より具体的には、固有振動抑制回路6は、所定のダンピング係数及び揺動子の固有振動数によって特徴付けられた演算式を用いることによってロードセルの近似信号を生成し、この近似信号を所定の無駄時間だけ遅らせた信号とロードセルトルク信号との偏差が最小になるように補正信号を生成する。なお、このような機能を有する補正信号を生成するための具体的な構成については、例えば本願出願人による特開2013-246152号公報に記載されているので、ここでは詳細な説明を省略する。 The natural vibration suppression circuit 6 corrects the control signal of the torque controller 5 based on the control signal to the inverter and the load cell torque signal that has not passed through the correction circuit 7 described later so that the natural vibration of the oscillator is suppressed. A correction signal to be generated is generated. More specifically, the natural vibration suppression circuit 6 generates an approximate signal of the load cell by using an arithmetic expression characterized by a predetermined damping coefficient and the natural frequency of the oscillator, A correction signal is generated so that the deviation between the signal delayed by the dead time and the load cell torque signal is minimized. A specific configuration for generating a correction signal having such a function is described in, for example, Japanese Patent Application Laid-Open No. 2013-246152 filed by the applicant of the present application, and thus detailed description thereof is omitted here.
 補正回路7は、加速度センサの検出信号から所定の周波数以下の直流成分を除く直流成分除去部71と、この直流成分除去部71を経た加速度センサの検出信号のロードセルトルク信号に対する位相を180度反転させる位相反転部72と、この位相反転部72を経た信号に所定の係数を乗算しトルク信号に変換するトルク変換部73と、ロードセルトルク信号にトルク変換部73を経た信号を加算することにより、ロードセルトルク信号からトルク脈動成分を除去する加算部74と、加算部74を経たロードセルトルク信号から高調波のノイズを除去するローパスフィルタ75と、を備える。 The correction circuit 7 reverses the phase of the acceleration sensor detection signal that has passed through the DC component removal unit 71 with respect to the load cell torque signal by 180 degrees from the detection signal of the acceleration sensor. A phase inversion unit 72 to be applied, a torque conversion unit 73 that multiplies a signal that has passed through the phase inversion unit 72 by a predetermined coefficient and converts the signal into a torque signal, and a signal that has passed through the torque conversion unit 73 is added to the load cell torque signal. An addition unit 74 that removes torque pulsation components from the load cell torque signal, and a low-pass filter 75 that removes harmonic noise from the load cell torque signal that has passed through the addition unit 74 are provided.
 本実施例の制御装置4によれば、以下の効果を奏する。
 本実施例の制御装置4では、図2に示すように、マイナーループを構成する固有振動抑制回路6には補正回路7を経ていないロードセルトルク信号を入力し、かたやメジャーループを構成するトルク制御器5には補正回路7を経ておりトルク脈動や高調波ノイズが除かれたロードセルトルク信号を入力する。これにより、揺動子の固有振動とこの固有振動とは別のトルク脈動との両方の影響を低減した制御を実現できるため、ダイナモメータシステムによる試験の計測精度を向上できる。
According to the control device 4 of the present embodiment, the following effects can be obtained.
In the control device 4 of the present embodiment, as shown in FIG. 2, a load cell torque signal that has not passed through the correction circuit 7 is input to the natural vibration suppression circuit 6 that constitutes the minor loop, and a torque controller that constitutes the major loop. A load cell torque signal from which torque pulsation and harmonic noise have been removed is input to 5. As a result, it is possible to realize control in which the influence of both the natural vibration of the oscillator and the torque pulsation different from the natural vibration is reduced, so that the measurement accuracy of the test by the dynamometer system can be improved.
 図3は、実施例2のダイナモメータシステムの制御装置4Aの構成を示すブロック図である。本実施例の制御装置4Aは、指令生成装置9Aと、フィードフォワード制御器10Aとをさらに備える点が上記実施例1の制御装置4(図2参照)と異なる。また実施例2の制御装置4Aは、エンコーダの検出信号をさらに用いる点が上記実施例1の制御装置4と異なる。以下では、実施例1の制御装置4と同じ構成については同じ符号を付し、その説明を省略する。 FIG. 3 is a block diagram illustrating a configuration of the control device 4A of the dynamometer system according to the second embodiment. The control device 4A of this embodiment is different from the control device 4 of the first embodiment (see FIG. 2) in that it further includes a command generation device 9A and a feedforward controller 10A. The control device 4A of the second embodiment is different from the control device 4 of the first embodiment in that the detection signal of the encoder is further used. Below, the same code | symbol is attached | subjected about the same structure as the control apparatus 4 of Example 1, and the description is abbreviate | omitted.
 指令生成装置9Aは、走行抵抗設定部91と、駆動力オブザーバ92と、減算部93と、電気慣性比率設定部94と、速度制御器95と、加算部96と、を備える。指令生成装置9Aは、走行抵抗設定部91によって生成された走行抵抗指令信号と、電気慣性比率設定部94によって生成された電気慣性指令信号と、速度制御器95によって生成された補正信号との3つの信号を加算部96によって合わせることによってトルク制御器5へのトルク指令信号を生成する。 The command generation device 9A includes a running resistance setting unit 91, a driving force observer 92, a subtraction unit 93, an electric inertia ratio setting unit 94, a speed controller 95, and an addition unit 96. The command generation device 9 </ b> A includes a travel resistance command signal generated by the travel resistance setting unit 91, an electric inertia command signal generated by the electric inertia ratio setting unit 94, and a correction signal generated by the speed controller 95. A torque command signal to the torque controller 5 is generated by combining the two signals by the adder 96.
 走行抵抗設定部91は、所定の走行抵抗テーブルを検索することによって、エンコーダによる速度検出信号に応じた走行抵抗指令信号を生成する。この走行抵抗指令信号は、走行中の車両が路面及び大気から受ける抵抗に相当する信号である。この走行抵抗テーブルは、実車による試験を行うことによって定められたものが用いられる。 The traveling resistance setting unit 91 generates a traveling resistance command signal corresponding to the speed detection signal from the encoder by searching a predetermined traveling resistance table. This running resistance command signal is a signal corresponding to the resistance that the running vehicle receives from the road surface and the atmosphere. As the running resistance table, a table determined by performing a test using an actual vehicle is used.
 駆動力オブザーバ92は、補正回路7を経たロードセルトルク信号とエンコーダによる速度検出信号とに基づいてダイナモメータに加わる駆動力に相当する外乱トルク信号を生成する。より具体的には、駆動力オブザーバ92は、速度検出信号を微分したものに所定の固定慣性質量の値を乗じて得られる信号と、補正回路7を経たロードセルトルク信号とを合わせることによって外乱トルク信号を生成する。ここで固定慣性質量とは、ダイナモメータシステム固有の慣性質量をいい、ローラ上で走行する車両に自動的に付加される固定慣性分に相当する。 The driving force observer 92 generates a disturbance torque signal corresponding to the driving force applied to the dynamometer based on the load cell torque signal passed through the correction circuit 7 and the speed detection signal from the encoder. More specifically, the driving force observer 92 combines the signal obtained by multiplying the value obtained by differentiating the speed detection signal with the value of a predetermined fixed inertia mass and the load cell torque signal that has passed through the correction circuit 7 to thereby generate disturbance torque. Generate a signal. Here, the fixed inertia mass means an inertia mass inherent to the dynamometer system, and corresponds to a fixed inertia component automatically added to a vehicle traveling on a roller.
 減算部93は、駆動力オブザーバ92によって生成された外乱トルク信号から走行抵抗設定部91によって生成された走行抵抗指令信号を減算する。電気慣性比率設定部94は、減算部93によって生成された信号に、所定の電気慣性質量の値と所定の設定慣性質量の値との比(電気慣性質量値/設定慣性質量値)を乗算することにより電気慣性指令信号を生成する。ここで、設定慣性質量とは、試験対象となる車両の重量に応じて定められる慣性質量である。下記式に示すように、設定慣性質量は、固定慣性質量及び電気慣性質量を合わせたもので定義される。
 設定慣性質量=固定慣性質量+電気慣性質量
The subtracting unit 93 subtracts the traveling resistance command signal generated by the traveling resistance setting unit 91 from the disturbance torque signal generated by the driving force observer 92. The electric inertia ratio setting unit 94 multiplies the signal generated by the subtracting unit 93 by a ratio (electric inertia mass value / set inertia mass value) of a predetermined electric inertia mass value and a predetermined set inertia mass value. Thus, an electric inertia command signal is generated. Here, the set inertial mass is an inertial mass determined according to the weight of the vehicle to be tested. As shown in the following formula, the set inertia mass is defined as a combination of the fixed inertia mass and the electric inertia mass.
Set inertia mass = Fixed inertia mass + Electric inertia mass
 速度制御器95は、所定の目標速度と速度検出信号に基づいて得られる実速度との差が0となるようにトルク指令信号を補正するための補正信号を生成する。ここで、目標速度は、エンコーダからの速度検出信号と、走行抵抗設定部91による走行抵抗指令信号と、補正回路7を経たロードセルトルク信号とに基づいて算出される。 The speed controller 95 generates a correction signal for correcting the torque command signal so that the difference between the predetermined target speed and the actual speed obtained based on the speed detection signal becomes zero. Here, the target speed is calculated based on the speed detection signal from the encoder, the travel resistance command signal from the travel resistance setting unit 91, and the load cell torque signal that has passed through the correction circuit 7.
 フィードフォワード制御器10Aは、所定の演算を行うことによってトルク指令信号に応じたフィードフォワード信号を生成する。減算部8Aは、トルク制御器5によって生成された制御信号とフィードフォワード制御器10Aによって生成されたフィードフォワード信号とを合わせた信号から固有振動抑制回路6によって生成された補正信号を減算することによって、インバータへの制御信号を生成する。 The feedforward controller 10A generates a feedforward signal corresponding to the torque command signal by performing a predetermined calculation. The subtracting unit 8A subtracts the correction signal generated by the natural vibration suppression circuit 6 from the signal obtained by combining the control signal generated by the torque controller 5 and the feedforward signal generated by the feedforward controller 10A. Generate a control signal to the inverter.
 本実施例の制御装置4Aが奏する効果について、図4及び図5を参照して説明する。
 図4は、従来の制御装置による電気慣性制御の結果を示す図であり、図5は本実施例の制御装置による電気慣性制御の結果を示す図である。ここで従来の制御装置とは、図3の制御装置から固有振動抑制回路6を除いたものに相当する。また、図4及び図5には、ローラに載置された車両を一定の加速度の下で加速させたときにおける車速、ロードセルトルク信号、及び車速偏差の変化を示す。ここで車速には、エンコーダによる速度検出信号を車両の速度に換算したものを用いた。また、車速偏差は、速度検出信号と目標速度との偏差を車両の速度に換算したものを用いた。
The effect which 4A of control apparatuses of a present Example show | play is demonstrated with reference to FIG.4 and FIG.5.
FIG. 4 is a diagram showing a result of the electric inertia control by the conventional control device, and FIG. 5 is a diagram showing a result of the electric inertia control by the control device of the present embodiment. Here, the conventional control device corresponds to the control device of FIG. 3 excluding the natural vibration suppression circuit 6. 4 and 5 show changes in the vehicle speed, the load cell torque signal, and the vehicle speed deviation when the vehicle placed on the roller is accelerated under a constant acceleration. Here, as the vehicle speed, a signal obtained by converting the speed detection signal from the encoder into the speed of the vehicle was used. As the vehicle speed deviation, the deviation between the speed detection signal and the target speed is converted into the vehicle speed.
 図4と図5を比較して明らかなように、固有振動抑制制御を伴わない従来の制御装置では、ロードセルトルク信号に揺動子の固有振動が現れる。また従来の制御装置では、車両の加速を開始してから車速偏差が収束するまでにかかる時間も長い。これに対し、固有振動抑制回路による固有振動抑制制御には補正回路を経ていないロードセルトルク信号を用い、トルク制御器によるトルク制御には補正回路を経たロードセルトルク信号を用いた本実施例の制御装置によれば、ロードセルトルク信号に表れていた揺動子の固有振動が抑制され、さらに車速の立ち上がりにおけるダイナモメータの応答も向上した。 As is clear from comparison between FIG. 4 and FIG. 5, in the conventional control device that does not involve the natural vibration suppression control, the natural vibration of the oscillator appears in the load cell torque signal. In the conventional control device, it takes a long time until the vehicle speed deviation converges after the acceleration of the vehicle is started. On the other hand, the control device of the present embodiment uses the load cell torque signal that has not passed through the correction circuit for the natural vibration suppression control by the natural vibration suppression circuit, and the load cell torque signal that has passed through the correction circuit for the torque control by the torque controller. According to the above, the natural vibration of the oscillator that appeared in the load cell torque signal was suppressed, and the response of the dynamometer at the rising of the vehicle speed was also improved.
 図6は、実施例3のダイナモメータシステムの制御装置4Bの構成を示すブロック図である。本実施例の制御装置4Bは、インバータへ入力する制御信号を速度制御器5Bによって生成する点が実施例2の制御装置4A(図3参照)と異なる。以下では、実施例2の制御装置4Aと同じ構成については同じ符号を付し、その説明を省略する。 FIG. 6 is a block diagram illustrating the configuration of the control device 4B of the dynamometer system according to the third embodiment. The control device 4B according to the present embodiment is different from the control device 4A according to the second embodiment (see FIG. 3) in that the control signal input to the inverter is generated by the speed controller 5B. Below, the same code | symbol is attached | subjected about the same structure as 4 A of control apparatuses of Example 2, and the description is abbreviate | omitted.
 速度制御器5Bは、補正回路7を経たロードセルトルク信号に基づいて後述の指令生成装置9Bによって生成された速度指令信号と、エンコーダによる速度検出信号との偏差を無くすような制御信号を、既知のフィードバックアルゴリズムに基づいて生成する。 The speed controller 5B is a known control signal that eliminates the deviation between the speed command signal generated by the command generation device 9B described later based on the load cell torque signal that has passed through the correction circuit 7 and the speed detection signal from the encoder. Generate based on feedback algorithm.
 指令生成装置9Bは、走行抵抗設定部91と、駆動力オブザーバ92と、減算部93と、電気慣性比率設定部94と、加算部96と、設定慣性除算部97Bと、積分器98Bと、を備える。この指令生成装置9Bのうち、走行抵抗設定部91、駆動力オブザーバ92、減算部93、電気慣性比率設定部94、及び加算部96の構成については実施例2の制御装置4Aと同じであるので説明を省略する。 The command generation device 9B includes a running resistance setting unit 91, a driving force observer 92, a subtraction unit 93, an electric inertia ratio setting unit 94, an addition unit 96, a set inertia division unit 97B, and an integrator 98B. Prepare. In this command generation device 9B, the configuration of the running resistance setting unit 91, the driving force observer 92, the subtraction unit 93, the electric inertia ratio setting unit 94, and the addition unit 96 is the same as that of the control device 4A of the second embodiment. Description is omitted.
 設定慣性除算部97Bは、駆動力オブザーバ92によって生成された外乱トルク信号から走行抵抗指令信号を減算したものを設定慣性質量の値で除算することにより、加速度の次元を有する信号を生成する。積分器98Bは、設定慣性除算部97Bによって生成された信号を積分することによって、速度の次元を有する信号を生成し、これを速度制御器5Bに対する速度指令信号とする。 The set inertia division unit 97B generates a signal having a dimension of acceleration by dividing a value obtained by subtracting the running resistance command signal from the disturbance torque signal generated by the driving force observer 92 by the set inertia mass value. The integrator 98B integrates the signal generated by the set inertia division unit 97B to generate a signal having a speed dimension, which is used as a speed command signal for the speed controller 5B.
 本実施例の制御装置4Bによれば、実施例2の制御装置4Aと同様に、揺動子の固有振動とトルク脈動との両方の影響を低減し、高応答かつ安定した電気慣性制御を行うことができる。 According to the control device 4B of the present embodiment, similarly to the control device 4A of the second embodiment, the influence of both the natural vibration and torque pulsation of the oscillator is reduced, and highly responsive and stable electric inertia control is performed. be able to.
 以上、本発明の一実施形態について説明したが、本発明はこれに限るものではない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to this. Within the scope of the gist of the present invention, the detailed configuration may be changed as appropriate.
 例えば、上記実施例では、揺動式のダイナモメータを備えた試験システムの中でもローラを備えた所謂シャシダイナモメータシステムに本発明を適用した場合について説明したが、本発明はこれに限らない。本発明は、揺動式のダイナモメータを備えるものであればエンジンダイナモメータシステムやパワートレインシステム等の試験システムであっても適用できる。 For example, in the above-described embodiment, the case where the present invention is applied to a so-called chassis dynamometer system including a roller among test systems including a swinging dynamometer has been described, but the present invention is not limited thereto. The present invention can also be applied to a test system such as an engine dynamometer system or a powertrain system as long as it includes a oscillating dynamometer.
 例えば、上記実施例では、トルク制御器によるトルク制御(実施例1,2参照)又は速度制御器による速度制御(実施例3参照)をメジャーループとし、固有振動抑制回路による固有振動抑制制御をマイナーループとした場合について説明したが、本発明はこれらに限らない。例えば、位置制御器による位置制御をメジャーループとした制御装置に対しても本発明を適用することができる。この場合、マイナーループを構成する固有振動抑制回路には補正回路を経ていないロードセルトルク信号を入力し、メジャーループを構成する位置制御器には、補正回路を経たロードセルトルク信号に基づいて生成した位置指令信号を入力する。そして位置制御器では、上記位置指令信号とエンコーダによる位置検出信号との偏差を無くすような制御信号を生成するようにしてもよい。 For example, in the above embodiment, torque control by the torque controller (see Examples 1 and 2) or speed control by the speed controller (see Example 3) is a major loop, and natural vibration suppression control by the natural vibration suppression circuit is minor. Although the case of using a loop has been described, the present invention is not limited thereto. For example, the present invention can also be applied to a control device using position control by a position controller as a major loop. In this case, the load cell torque signal that has not passed through the correction circuit is input to the natural vibration suppression circuit that forms the minor loop, and the position controller that forms the major loop has a position generated based on the load cell torque signal that has passed through the correction circuit. Input a command signal. The position controller may generate a control signal that eliminates the deviation between the position command signal and the position detection signal from the encoder.
 1…ダイナモメータシステム、2…ダイナモメータ、23…揺動子、26…トルクアーム、28…ロードセル、29…エンコーダ(速度検出装置、位置検出装置)、3…インバータ、30…加速度センサ、4,4A,4B…制御装置、5…トルク制御器(コントローラ)、5B…速度制御器(コントローラ)、6…固有振動抑制回路、7…補正回路、9A,9B…指令生成装置(コントローラ)、91…走行抵抗設定部、92…駆動力オブザーバ(電気慣性指令演算部)、93…減算部(電気慣性指令演算部)、94…電気慣性比率設定部(電気慣性指令演算部)、96…加算部(合算部)、98B…積分器 DESCRIPTION OF SYMBOLS 1 ... Dynamometer system, 2 ... Dynamometer, 23 ... Oscillator, 26 ... Torque arm, 28 ... Load cell, 29 ... Encoder (speed detector, position detector), 3 ... Inverter, 30 ... Accelerometer, 4, 4A, 4B ... control device, 5 ... torque controller (controller), 5B ... speed controller (controller), 6 ... natural vibration suppression circuit, 7 ... correction circuit, 9A, 9B ... command generation device (controller), 91 ... Traveling resistance setting unit, 92 ... Driving force observer (electric inertia command calculation unit), 93 ... Subtraction unit (electric inertia command calculation unit), 94 ... Electric inertia ratio setting unit (electric inertia command calculation unit), 96 ... Addition unit ( Summing unit), 98B ... Integrator

Claims (7)

  1.  負荷に接続された揺動式のダイナモメータと、
     前記ダイナモメータの揺動子に発生するトルクを、当該揺動子から延びるトルクアームを介して検出するロードセルと、
     前記ロードセルの荷重方向に沿った前記トルクアームの加速度を検出する加速度センサと、を備えたダイナモメータシステムの制御装置であって、
     所定の入力信号に基づいて前記ダイナモメータを制御するための制御信号を生成するコントローラと、
     所定の入力信号に基づいて前記揺動子の固有振動が抑制されるように前記制御信号を補正する補正信号を生成する固有振動抑制回路と、
     前記加速度センサの検出信号を反転し、当該反転した信号を用いて前記ロードセルの検出信号から交流成分を除く補正回路と、を備え、
     前記コントローラには前記補正回路を経た前記ロードセルの検出信号を入力し、前記固有振動抑制回路には前記補正信号が合算された前記コントローラの制御信号と前記補正回路を経ていない前記ロードセルの検出信号を入力することを特徴とするダイナモメータシステムの制御装置。
    An oscillating dynamometer connected to a load;
    A load cell that detects a torque generated in the oscillator of the dynamometer via a torque arm extending from the oscillator;
    An acceleration sensor that detects an acceleration of the torque arm along a load direction of the load cell, and a controller for a dynamometer system comprising:
    A controller that generates a control signal for controlling the dynamometer based on a predetermined input signal;
    A natural vibration suppression circuit that generates a correction signal for correcting the control signal so that the natural vibration of the oscillator is suppressed based on a predetermined input signal;
    A correction circuit that inverts the detection signal of the acceleration sensor and removes an alternating current component from the detection signal of the load cell using the inverted signal, and
    The controller receives the load cell detection signal passed through the correction circuit, and the natural vibration suppression circuit adds the correction signal to the controller control signal and the load cell detection signal not passed through the correction circuit. A control device for a dynamometer system characterized by inputting.
  2.  前記ダイナモメータシステムは、前記ダイナモメータの速度を検出する速度検出装置を備え、
     前記コントローラは、前記補正回路を経た前記ロードセルの検出信号と所定の指令信号との偏差を無くすような制御信号を生成するトルク制御器と、前記トルク制御器に対するトルク指令信号を生成する指令生成装置と、を備え、
     前記指令生成装置は、前記速度検出装置の検出信号に基づいて走行抵抗指令信号を生成する走行抵抗設定部と、前記補正回路を経た前記ロードセルの検出信号と前記速度検出装置の検出信号とに基づいて電気慣性指令信号を生成する電気慣性指令演算部と、前記走行抵抗指令信号と前記電気慣性指令信号とを合わせたものを前記トルク制御器へのトルク指令信号とする合算部と、を備えることを特徴とする請求項1に記載のダイナモメータシステムの制御装置。
    The dynamometer system includes a speed detection device that detects the speed of the dynamometer,
    The controller includes a torque controller that generates a control signal that eliminates a deviation between the detection signal of the load cell that has passed through the correction circuit and a predetermined command signal, and a command generation device that generates a torque command signal for the torque controller. And comprising
    The command generation device is based on a travel resistance setting unit that generates a travel resistance command signal based on a detection signal of the speed detection device, a detection signal of the load cell that has passed through the correction circuit, and a detection signal of the speed detection device. An electric inertia command calculation unit that generates an electric inertia command signal, and a summation unit that uses a combination of the running resistance command signal and the electric inertia command signal as a torque command signal to the torque controller. The dynamometer system control device according to claim 1.
  3.  前記指令生成装置は、前記速度検出装置の検出信号と前記走行抵抗指令信号と前記補正回路を経た前記ロードセルの検出信号とに基づいて前記ダイナモメータの速度を所定の目標速度に一致させるためのトルク補正信号を生成する速度制御器をさらに備え、
     前記合算部は前記走行抵抗指令信号と前記電気慣性指令信号と前記トルク補正信号とを合わせたものを前記トルク制御器へのトルク指令信号とすることを特徴とする請求項2に記載のダイナモメータシステムの制御装置。
    The command generator generates torque for matching the speed of the dynamometer to a predetermined target speed based on the detection signal of the speed detection device, the running resistance command signal, and the detection signal of the load cell that has passed through the correction circuit. A speed controller for generating a correction signal;
    3. The dynamometer according to claim 2, wherein the summing unit uses a sum of the running resistance command signal, the electric inertia command signal, and the torque correction signal as a torque command signal to the torque controller. 4. System control unit.
  4.  前記ダイナモメータシステムは、前記ダイナモメータの速度を検出する速度検出装置を備え、
     前記コントローラは、前記速度検出装置の検出信号と所定の速度指令信号との偏差を無くすような制御信号を生成する速度制御器と、前記速度制御器に対する速度指令信号を生成する指令生成装置と、を備え、
     前記指令生成装置は、前記速度検出装置の検出信号に基づいて走行抵抗指令信号を生成する走行抵抗設定部と、前記速度検出装置の検出信号及び前記補正回路を経た前記ロードセルの検出信号に基づいて前記ダイナモメータに加わる駆動力相当する外乱トルク信号を生成する駆動力オブザーバと、前記外乱トルク信号から前記走行抵抗指令信号を減算したものを積分することによって前記速度指令信号を生成する積分器と、を備えることを特徴とする請求項1に記載のダイナモメータシステムの制御装置。
    The dynamometer system includes a speed detection device that detects the speed of the dynamometer,
    The controller includes a speed controller that generates a control signal that eliminates a deviation between the detection signal of the speed detection device and a predetermined speed command signal, and a command generation device that generates a speed command signal for the speed controller; With
    The command generation device is based on a travel resistance setting unit that generates a travel resistance command signal based on a detection signal of the speed detection device, a detection signal of the speed detection device, and a detection signal of the load cell that has passed through the correction circuit. A driving force observer that generates a disturbance torque signal corresponding to the driving force applied to the dynamometer, an integrator that generates the speed command signal by integrating a value obtained by subtracting the running resistance command signal from the disturbance torque signal; The control apparatus of the dynamometer system of Claim 1 characterized by the above-mentioned.
  5.  前記コントローラは、前記補正回路を経た前記ロードセルの検出信号と所定のトルク指令信号との偏差を無くすような制御信号を生成するトルク制御器を備えることを特徴とする請求項1に記載のダイナモメータシステムの制御装置。 The dynamometer according to claim 1, wherein the controller includes a torque controller that generates a control signal that eliminates a deviation between a detection signal of the load cell that has passed through the correction circuit and a predetermined torque command signal. System control unit.
  6.  前記ダイナモメータシステムは、前記ダイナモメータの軸の速度を検出する速度検出装置を備え、
     前記コントローラは、前記補正回路を経た前記ロードセルの検出信号に基づいて生成した速度指令信号と、前記速度検出装置の検出信号との偏差を無くすような制御信号を生成する速度制御器を備えることを特徴とする請求項1に記載のダイナモメータシステムの制御装置。
    The dynamometer system includes a speed detection device that detects a speed of an axis of the dynamometer,
    The controller includes a speed controller that generates a control signal that eliminates a deviation between the speed command signal generated based on the detection signal of the load cell that has passed through the correction circuit and the detection signal of the speed detection device. The control apparatus of the dynamometer system of Claim 1 characterized by the above-mentioned.
  7.  前記ダイナモメータシステムは、前記ダイナモメータの軸の位置を検出する位置検出装置を備え、
     前記コントローラは、前記補正回路を経た前記ロードセルの検出信号に基づいて生成した位置指令信号と、前記位置検出装置の検出信号との偏差を無くすような制御信号を生成する位置制御器を備えること特徴とする請求項1に記載のダイナモメータシステムの制御装置。
    The dynamometer system includes a position detection device that detects a position of an axis of the dynamometer,
    The controller includes a position controller that generates a control signal that eliminates a deviation between the position command signal generated based on the detection signal of the load cell that has passed through the correction circuit and the detection signal of the position detection device. The control device of a dynamometer system according to claim 1.
PCT/JP2015/075355 2014-09-30 2015-09-07 Dynamometer system control device WO2016052084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580052970.9A CN107076643B (en) 2014-09-30 2015-09-07 The control device of dynamometer system
KR1020177010594A KR101784716B1 (en) 2014-09-30 2015-09-07 Dynamometer system control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200450 2014-09-30
JP2014200450A JP5935853B2 (en) 2014-09-30 2014-09-30 Control device for dynamometer system

Publications (1)

Publication Number Publication Date
WO2016052084A1 true WO2016052084A1 (en) 2016-04-07

Family

ID=55630127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075355 WO2016052084A1 (en) 2014-09-30 2015-09-07 Dynamometer system control device

Country Status (4)

Country Link
JP (1) JP5935853B2 (en)
KR (1) KR101784716B1 (en)
CN (1) CN107076643B (en)
WO (1) WO2016052084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871381A (en) * 2017-04-27 2018-11-23 罗德施瓦兹两合股份有限公司 Signal calibration method, the purposes of method, the system and oscillograph of correction measuring signal
JP7371730B1 (en) 2022-06-15 2023-10-31 株式会社明電舎 dynamometer system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497408B2 (en) * 2017-04-14 2019-04-10 株式会社明電舎 Electric inertia control device
KR102256390B1 (en) * 2018-09-07 2021-05-26 메이덴샤 코포레이션 Dynamometer control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825217B2 (en) * 1977-07-28 1983-05-26 株式会社明電舎 Electric dynamometer torque measurement method
JPS5890135A (en) * 1981-11-26 1983-05-28 Meidensha Electric Mfg Co Ltd Detector for torque of dynamometer
JPH0339632A (en) * 1989-07-06 1991-02-20 Hitachi Ltd Controller for chassis dynamometer
JP4788656B2 (en) * 2007-05-16 2011-10-05 株式会社明電舎 Power test system
JP5145830B2 (en) * 2007-09-12 2013-02-20 株式会社明電舎 Dynamometer control device
JP2013246152A (en) * 2012-05-29 2013-12-09 Meidensha Corp Dynamometer control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508473B2 (en) 1997-06-23 2004-03-22 株式会社明電舎 Running resistance control device for chassis dynamometer
JP4340299B2 (en) * 2007-03-08 2009-10-07 株式会社日立産機システム Motor control device and motor control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825217B2 (en) * 1977-07-28 1983-05-26 株式会社明電舎 Electric dynamometer torque measurement method
JPS5890135A (en) * 1981-11-26 1983-05-28 Meidensha Electric Mfg Co Ltd Detector for torque of dynamometer
JPH0339632A (en) * 1989-07-06 1991-02-20 Hitachi Ltd Controller for chassis dynamometer
JP4788656B2 (en) * 2007-05-16 2011-10-05 株式会社明電舎 Power test system
JP5145830B2 (en) * 2007-09-12 2013-02-20 株式会社明電舎 Dynamometer control device
JP2013246152A (en) * 2012-05-29 2013-12-09 Meidensha Corp Dynamometer control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871381A (en) * 2017-04-27 2018-11-23 罗德施瓦兹两合股份有限公司 Signal calibration method, the purposes of method, the system and oscillograph of correction measuring signal
JP7371730B1 (en) 2022-06-15 2023-10-31 株式会社明電舎 dynamometer system
WO2023243638A1 (en) * 2022-06-15 2023-12-21 株式会社明電舎 Dynamometer system
JP2023183279A (en) * 2022-06-15 2023-12-27 株式会社明電舎 dynamometer system

Also Published As

Publication number Publication date
CN107076643B (en) 2018-12-07
CN107076643A (en) 2017-08-18
KR101784716B1 (en) 2017-10-12
JP2016070786A (en) 2016-05-09
JP5935853B2 (en) 2016-06-15
KR20170046801A (en) 2017-05-02

Similar Documents

Publication Publication Date Title
KR101521487B1 (en) Dynamometer system
WO2016052084A1 (en) Dynamometer system control device
JP6044647B2 (en) Dynamometer control device and inertia moment estimation method using the same
US7357041B2 (en) Rotation detection device
RU2661239C1 (en) Control device for rotating electric machines
KR101997227B1 (en) Motor drive system
JP2012068199A (en) Axial torque control device
US20180031448A1 (en) Engine test apparatus
WO2018207832A1 (en) Dynamometer system control device
JP2018179802A (en) Electric inertia control device
JP2014174107A (en) Power system testing device
JP2016070786A5 (en)
JP5406238B2 (en) Vehicle motor control device
JP5790339B2 (en) Power transmission system test equipment
JP7317597B2 (en) Control device
JP5888371B2 (en) Oscillating dynamometer system and control method thereof
JP7371730B1 (en) dynamometer system
JP2014142317A (en) Testing device for power system
JP2013053977A (en) Control device of engine bench system
JP2004045392A (en) Apparatus for measuring rotation balance of rotor and method therefor
JP2009288036A (en) Estimation method and its device of roller surface drive force
JP5200713B2 (en) Speed control method and apparatus for power measurement system
JP2011128111A (en) Unbalance measuring device and method
JP2016016909A (en) Elevator control device
JP2011038910A (en) Chassis dynamometer system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177010594

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846565

Country of ref document: EP

Kind code of ref document: A1