WO2016051789A1 - 空気調和装置の室内ユニット - Google Patents
空気調和装置の室内ユニット Download PDFInfo
- Publication number
- WO2016051789A1 WO2016051789A1 PCT/JP2015/004965 JP2015004965W WO2016051789A1 WO 2016051789 A1 WO2016051789 A1 WO 2016051789A1 JP 2015004965 W JP2015004965 W JP 2015004965W WO 2016051789 A1 WO2016051789 A1 WO 2016051789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- blowing
- indoor
- conditioned
- directions
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
- F24F1/0014—Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/76—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0022—Centrifugal or radial fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/0047—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/79—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
- F24F13/1413—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using more than one tilting member, e.g. with several pivoting blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/20—Casings or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/54—Heating and cooling, simultaneously or alternatively
Definitions
- the present invention relates to an indoor unit of an air conditioner, and more particularly to a technique for controlling a blown air flow of an indoor unit installed on a ceiling.
- Patent Document 1 in an indoor unit having an upper outlet opening at the top and a lower outlet opening at the bottom, an upper unit is provided according to the perimeter load (load near the window) during heating operation.
- An air conditioner configured to change a diversion ratio between an upper blow-out from a blow-out port and a lower blow-out from a lower blow-out port is disclosed.
- air flow control is performed to warm the indoor interior zone by blowing down warm air during heating operation and supply the warm air to the indoor perimeter zone. It is common. However, in such airflow control, part of the warm air blown downward from the indoor unit rises until it reaches the perimeter zone, and the warm air reaching the perimeter zone is reduced, resulting in uneven temperature in the room. There is a fear.
- the present invention has been made in view of such a point, and an object thereof is to suppress temperature unevenness of the air-conditioning target space during heating operation.
- the operation control unit (70) suppresses the blowing of conditioned air to a part of the plurality of blowing directions in the heating operation, thereby remaining blowing directions.
- the air volume adjustment operation for increasing the blowing air speed is performed while periodically changing the blowing direction for suppressing the blowing of conditioned air.
- a 1st aspect is equipped with the casing (20) installed in the ceiling (U) of air-conditioning object space (R), and the blower outlet which can blow out conditioned air to this casing (20) in several different blowing directions ( This applies to indoor units of air conditioners equipped with 26).
- the air flow adjustment operation for increasing the air speed to blow out in the remaining air blowing direction by suppressing the air blowing out of the conditioned air to a part of the plurality of air blowing directions is performed.
- An operation control unit for controlling the flow of the conditioned air so that the conditioned air is blown out in the horizontal blowing mode in the rising blowing direction and periodically changing the blowing direction for suppressing the blowing of the conditioned air ( 70).
- the blower outlet (26) which can blow off conditioned air to several mutually different blowing directions Is provided.
- the operation control unit (70) of the indoor unit adjusts the air volume to increase the blowing air speed in the remaining blowing direction by suppressing the blowing of conditioned air to some of the plurality of blowing directions in the heating operation. Do the driving.
- the operation control unit (70) controls the flow of the conditioned air so that the conditioned air is blown out in the horizontal blowing mode in the blowing direction in which the blowing wind speed is increased by the air volume adjustment operation.
- the operation control unit (70) periodically changes the blowing direction for suppressing the blowing of conditioned air when performing the air volume adjustment operation described above, the blowing direction in which the blowing wind speed is increased and the blowing direction is also periodic.
- the second mode is configured to be able to blow out conditioned air in four blowing directions different from each other by 90 ° in the first mode
- the operation control unit (70) is configured to perform the four blowing directions in the air volume adjustment operation. Among these, by suppressing the blowing of conditioned air in two blowing directions, the blowing wind speed in the remaining two blowing directions is increased.
- the indoor unit is configured to be able to blow out conditioned air in four blowing directions that are different by 90 °.
- an operation control part (70) performs the air volume adjustment driving
- a third aspect is the above-described first or second aspect, in the perimeter zone of the air-conditioning target space (R), a high-load area having a relatively large air-conditioning load, and an air-conditioning load smaller than the high-load area.
- a load detection unit (71) for detecting a low load area for each blowing direction is provided, and the operation control unit (70) performs the air volume adjustment operation for a predetermined reference time of the blowing air volume to the high load area. It is performed while periodically changing the blowing direction for suppressing the blowing of the conditioned air so that the integrated value per hit becomes larger than the integrated value per the reference time of the amount of blown air to the low load area. To do.
- the load detection part (71) of an indoor unit WHEREIN Among the perimeter zones of the air-conditioning object space (R), an air-conditioning load rather than the high-load area where air-conditioning load is relatively large, and the high-load area Detects a small low-load area for each direction of blowing conditioned air. Further, when the operation control unit (70) performs the air volume adjustment operation described above, the integrated value per predetermined reference time of the blown air volume to the high load area is equal to the reference time of the blown air volume to the low load area. The blowing direction for suppressing the blowing of conditioned air is periodically changed so as to be larger than the integrated value of. Thereby, in the air conditioning target space (R), the amount of blown air to the high load area increases and the amount of blown air to the low load area decreases, so that temperature unevenness in the air conditioned space (R) can be further suppressed.
- the air outlet (26) includes a plurality of main air outlets (24) that blow out conditioned air in different directions
- the casing (20) is provided with a suction port (23) that is disposed adjacent to the plurality of main air outlets (24) and sucks indoor air
- the operation control unit (70) is harmonized in the air volume adjustment operation.
- the conditioned air blown from the main outlet (24) corresponding to the blowing direction that suppresses the blowing of air is blown toward the inlet (23) and sucked into the inlet (23). It is controlled to be controlled.
- the air outlet (26) includes a plurality of main air outlets (24) that blow out conditioned air in different directions
- the casing (20) of the indoor unit includes a plurality of main air outlets (24).
- a suction port (23) for sucking room air.
- the operation control unit (70) adjusts the flow of the conditioned air blown out from the main outlet (24) corresponding to the blowing direction that suppresses the blowing of the conditioned air.
- the suction port (23) is controlled to be sucked into the suction port (23). Therefore, at the main outlet (24) corresponding to the outlet direction that suppresses the conditioned air, the conditioned air is sucked into the adjacent inlet (23) without being blown into the air-conditioned space (R).
- the short circuit can be generated.
- the fifth aspect is characterized in that, in the second aspect, the two blowing directions for suppressing the blowing of the conditioned air are different from each other by 180 °.
- the conditioned air whose blowing wind speed is increased by the air volume adjustment operation is different from the blowing port (26) by 180 ° from each other. Will be blown out.
- the operation control unit (70) increases the blowing wind speed in the remaining blowing direction by suppressing the blowing of conditioned air to some of the plurality of blowing directions in the heating operation. Since the air volume adjustment operation is performed while periodically changing the blowing direction for suppressing the blowing of conditioned air, temperature unevenness in the air-conditioning target space (R) during the heating operation can be suppressed.
- FIG. 1 is a refrigerant circuit figure of the air harmony device concerning an embodiment.
- FIG. 2 is a perspective view of the indoor unit of the air conditioner of FIG.
- FIG. 3 is a schematic plan view of the indoor unit viewed from above with the top plate removed.
- FIG. 4 is a schematic cross-sectional view of the indoor unit taken along line IV-IV in FIG.
- FIG. 5 is a schematic bottom view of the indoor unit.
- FIG. 6A is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the horizontal blowing position.
- FIG. 6B is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the lower blowing position.
- FIG. 6A is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the horizontal blowing position.
- FIG. 6B is a partial cross-sectional view of the indoor unit in a state where
- FIG. 6C is a partial cross-sectional view of the indoor unit in a state where the airflow direction adjusting blade is set at the blowout restriction position.
- FIG. 7 is a perspective view showing an arrangement example of indoor units in a room.
- FIG. 8A is a schematic diagram showing simultaneous blowing in four directions.
- FIG. 8B is a schematic diagram illustrating alternate blowing in two directions.
- FIG. 9 is a schematic diagram illustrating a first load arrangement pattern in a high load area and a low load area in a detection area detected by the load detection unit of the indoor unit.
- FIG. 10 is a schematic diagram for explaining the air volume adjustment operation in the first load arrangement pattern of FIG. 9.
- FIG. 11 is a schematic diagram showing a second load arrangement pattern in the high load area and the low load area in the detection area detected by the load detection unit of the indoor unit.
- FIG. 12 is a schematic diagram for explaining the air volume adjustment operation in the second load arrangement pattern of FIG. 11.
- FIG. 13 is a schematic diagram showing a third load arrangement pattern in the high load area and the low load area in the detection area detected by the load detection unit of the indoor unit.
- FIG. 14 is a schematic diagram for explaining the air volume adjustment operation in the third load arrangement pattern of FIG. 13.
- FIG. 15 is a schematic diagram illustrating a fourth load arrangement pattern in the high load area and the low load area in the detection area detected by the load detection unit of the indoor unit.
- FIG. 16 is a schematic diagram illustrating the air volume adjustment operation in the fourth load arrangement pattern of FIG. 15.
- FIG. 17 is a graph showing the temperature change in the room in the case of alternate blowing in two directions.
- FIG. 18 is a graph showing a temperature change in the room in the case of simultaneous blowing in four directions.
- the air conditioner (1) includes an outdoor unit (10) installed outside and an indoor unit (11) installed indoors.
- the outdoor unit (10) and the indoor unit (11) are connected to each other by two connecting pipes (2, 3).
- the refrigerant circuit (C) is comprised in the air conditioning apparatus (1).
- a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
- the outdoor unit (10) is provided with a compressor (12), an outdoor heat exchanger (13), an outdoor expansion valve (14), and a four-way switching valve (15).
- the compressor (12) compresses the low-pressure refrigerant and discharges the compressed high-pressure refrigerant.
- a scroll type or rotary type compression mechanism is driven by the compressor motor (12a).
- the rotation speed (operation frequency) of the compressor motor (12a) is variable by an inverter device.
- the outdoor heat exchanger (13) is a fin-and-tube heat exchanger.
- An outdoor fan (16) is installed in the vicinity of the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the air conveyed by the outdoor fan (16) and the refrigerant exchange heat.
- the outdoor fan (16) is configured by a propeller fan driven by an outdoor fan motor (16a).
- the outdoor fan motor (16a) is configured such that its rotational speed is variable by an inverter device.
- the outdoor expansion valve (14) is an electronic expansion valve having a variable opening.
- the four-way switching valve (15) has first to fourth ports.
- the first port is connected to the discharge side of the compressor (12)
- the second port is connected to the suction side of the compressor (12)
- the third port is the outdoor heat exchanger (13 )
- the fourth port is connected to the gas-side stop valve (5).
- the four-way selector valve (15) switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1).
- the first port and the third port communicate with each other
- the second port and the fourth port communicate with each other.
- the four-way selector valve (15) in the second state the first port communicates with the fourth port, and the second port communicates with the third port.
- the two connecting pipes (2, 3) are composed of a liquid communication pipe (2) and a gas communication pipe (3).
- the liquid communication pipe (2) has one end connected to the liquid side shut-off valve (4) and the other end connected to the liquid side end of the indoor heat exchanger (32).
- One end of the gas communication pipe (3) is connected to the gas side shut-off valve (5), and the other end is connected to the gas side end of the indoor heat exchanger (32).
- the indoor unit (11) is provided with an indoor heat exchanger (32) and an indoor expansion valve (39).
- the indoor heat exchanger (32) is a fin-and-tube heat exchanger.
- An indoor fan (31) is installed in the vicinity of the indoor heat exchanger (32).
- the indoor fan (31) is a centrifugal blower driven by an indoor fan motor (31a) as will be described later.
- the indoor fan motor (31a) is configured to have a variable rotational speed by an inverter device.
- the indoor expansion valve (39) is connected to the liquid end of the indoor heat exchanger (32) in the refrigerant circuit (C).
- the indoor expansion valve (39) is an electronic expansion valve having a variable opening.
- [Indoor unit] 2 to 5 show configuration examples of the indoor unit (11).
- the indoor unit (11) is connected to the outdoor unit (10) installed outside the indoor space (R), which is the air-conditioning space, via the connection pipes (2, 3), so that the outdoor unit (10) Together with this, an air conditioner (1) is configured.
- the air conditioner (1) performs a cooling operation and a heating operation in the indoor space (R).
- the indoor unit (11) is configured as a ceiling-embedded type, and includes an indoor casing (20), an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), And Bellmouth (34).
- the indoor casing (20) is installed on the ceiling (U) of the indoor space (R), and is composed of a casing body (21) and a decorative panel (22).
- FIG. 2 is a schematic perspective view of the indoor unit (11) when viewed from obliquely below
- FIG. 3 is a schematic plan view of the indoor unit (11) viewed from above with the top plate (21a) removed.
- 4 is a schematic sectional view of the indoor unit (11) taken along the line IV-IV in FIG. 3
- FIG. 5 is a schematic bottom view of the indoor unit (11).
- the casing body (21) is inserted into an opening formed in the ceiling (U) of the indoor space (R).
- the casing body (21) is formed in a substantially rectangular parallelepiped box shape having an open bottom surface, and has a substantially square plate-like top plate (21a) and a substantially rectangular plate-like shape extending downward from the peripheral edge of the top plate (21a). And four side plates (21b).
- the casing body (21) accommodates an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), and a bell mouth (34).
- an indoor refrigerant pipe (P) for connecting the indoor heat exchanger (32) and the connecting pipe (2, 3) is inserted into one of the four side plates (21b). Possible through holes (H) are formed.
- the indoor fan (31) is arranged at the center inside the casing body (21), and blows out air sucked from below toward the outside in the radial direction.
- the indoor fan (31) is constituted by a centrifugal blower and is driven by an indoor fan motor (31a) located at the center of the top plate (21a) of the casing body (21).
- the indoor heat exchanger (32) is arranged in a state where the refrigerant pipe (heat transfer pipe) is bent so as to surround the indoor fan (31), and flows through the heat transfer pipe (not shown) provided therein. Heat exchange is performed between the refrigerant and the air sucked into the casing body (21).
- the indoor heat exchanger (32) is a fin-and-tube heat exchanger.
- the indoor heat exchanger (32) cools the air by functioning as a refrigerant evaporator during the cooling operation, and heats the air by functioning as a refrigerant condenser (radiator) during the heating operation.
- the drain pan (33) is formed in a substantially rectangular parallelepiped shape with a small thickness in the vertical direction, and is disposed below the indoor heat exchanger (32).
- a suction passage (33a) is formed at the center of the drain pan (33)
- a water receiving groove (33b) is formed on the upper surface of the drain pan (33)
- an outer peripheral portion of the drain pan (33) Four first blowing passages (33c) and four second blowing passages (33d) are formed.
- the suction passage (33a) penetrates the drain pan (33) in the vertical direction.
- the water receiving groove (33b) extends in an annular shape so as to surround the suction passage (33a) in plan view.
- the four first outlet passages (33c) extend along the four sides of the drain pan (33) so as to surround the water receiving groove (33b) in a plan view, and penetrate the drain pan (33) in the vertical direction. is doing.
- the four second outlet passages (33d) are respectively positioned at four corners of the drain pan (33) in plan view, and penetrate the drain pan (33) in the vertical direction.
- the bell mouth (34) is formed in a cylindrical shape whose opening area increases from the upper end to the lower end.
- the bell mouth (34) has an upper end of the opening inserted into a suction port (lower end of the opening) of the indoor fan (31) and is accommodated in the suction passage (33a) of the drain pan (33). With such a configuration, the air sucked from the lower opening end of the bell mouth (34) is guided to the suction port of the indoor fan (31).
- the decorative panel (22) is formed in a substantially cubic shape with a thin thickness in the vertical direction.
- a suction port (23) is formed in the central portion of the decorative panel (22), and an air outlet (26 for blowing conditioned air in a plurality of different blowing directions from the outer peripheral portion of the decorative panel (22). ) Is formed.
- the decorative panel (22) has four first outlets (24) as the main outlets and four second outlets (25) as the auxiliary outlets as the outlets (26). Has been.
- the suction port (23) penetrates the decorative panel (22) in the vertical direction and communicates with the internal space of the bell mouth (34).
- the suction port (23) is disposed adjacent to the four first air outlets (24) and configured to suck room air.
- the suction port (23) is formed in a substantially square shape in plan view.
- the suction port (23) is provided with a suction grill (41) and a suction filter (42).
- the suction grill (41) is formed in a substantially square shape, and a plurality of through holes are formed in the center thereof.
- the suction grill (41) is attached to the suction port (23) of the decorative panel (22) and covers the suction port (23).
- the suction filter (42) captures dust in the air sucked from the suction grille (41).
- the four first air outlets (24) are straight air outlets extending along the four sides of the decorative panel (22) so as to surround the periphery of the inlet (23) in plan view. Each first outlet (24) passes through the decorative panel (22) in the vertical direction and communicates with the corresponding first outlet passage (33c) of the drain pan (33).
- the 1st blower outlet (24) is formed in the substantially rectangular shape in planar view.
- the four first outlets (24) are configured to blow conditioned air in different directions.
- the four second air outlets (25) are curved air outlets that are respectively located at four corners of the decorative panel (22) in plan view. Each second outlet (25) penetrates the decorative panel (22) in the vertical direction and communicates with the corresponding second outlet passage (33d) of the drain pan (33).
- the air passing through the indoor heat exchanger (32) is cooled when the indoor heat exchanger (32) functions as an evaporator (that is, in the cooling operation), and the indoor heat exchanger ( When 32) functions as a condenser (that is, in the case of heating operation), it will be heated.
- the conditioned air that has passed through the indoor heat exchanger (32) is divided into the four first outlet passages (33c) and the four second outlet passages (33d) of the drain pan (33), and then the decorative panel (22)
- the four first outlets (24) and the four second outlets (25) are blown into the indoor space (R).
- Each first outlet (24) is provided with a wind direction adjusting blade (51) for adjusting the wind direction of the conditioned air flowing through each first outlet passage (33c).
- the wind direction adjusting blade (51) is formed in a flat plate shape extending from one end to the other end in the longitudinal direction of the first outlet (24) of the decorative panel (22).
- the wind direction adjusting blade (51) is supported by the support member (52) with a central axis (53) extending in the longitudinal direction as an axis, and is configured to be rotatable.
- the wind direction adjusting blade (51) is formed in an arc shape in which the shape of its transverse cross section (cross section orthogonal to the longitudinal direction) is convex in the direction away from the central axis (53) of the oscillating motion.
- the wind direction adjusting blade (51) is a movable blade, and the horizontal blowing position in FIG. 6A, which is in a horizontal blowing mode in which conditioned air is blown in the horizontal direction from the first blowing port (24), and the first blowing port (24 ) To the lower blowing position in FIG. 6B in which the air is blown downward, and the blowing restriction position in FIG. 6C to be the wind block mode for suppressing the blowing of conditioned air from the first blowing outlet (24).
- the position can be set.
- the horizontal blowing mode described above is a mode in which conditioned air blows out in a direction that reaches the perimeter zone of the indoor space (R).
- the wind direction adjusting blade (51) is positioned most upward in the normal adjustment range.
- the angle at which conditioned air is blown out from the first outlet (24) in the horizontal blowing mode is, for example, 20 ° downward with respect to the horizontal plane.
- the position of the wind direction adjusting blade (51) is controlled by the air flow control unit of the operation control unit (70) configured by the control board, whereby each first air outlet ( In 24), the horizontal balloon mode, the lower balloon mode, and the wind block mode can be selected.
- the air flow control unit of the operation control unit (70) sets the horizontal blowing mode performed by setting the wind direction adjusting blade (51) at the horizontal blowing position, and sets the wind direction adjusting blade (51) at the lower blowing position.
- the wind direction adjusting blades (51) can be individually controlled by the air flow control unit of the operation control unit (70), which are provided at the four first outlets (24). And if at least one of the four first air outlets (24) sets the wind direction adjusting blade (51) to the blowing restriction position, it is between the first air outlet (24) and the air direction adjusting blade (51). Since the gap becomes small and it becomes difficult for air to be blown out from the first air outlet (24), the blowing speed of the conditioned air blown out from the other first air outlet (24) becomes high.
- the airflow control unit of the operation control unit (70) controls the angle of the wind direction adjusting blade (51), thereby controlling a part of the plurality of blowing directions (four blowing directions in the present embodiment). In the embodiment, it is configured to perform an air volume adjustment operation that increases the blowing air speed in the remaining blowing directions (in this embodiment, two blowing directions) by suppressing the blowing of conditioned air in two blowing directions. ing.
- the air flow control unit of the operation control unit (70) is configured to control the flow of the conditioned air so that the conditioned air is blown out in the horizontal blowing mode in the blowing direction in which the blowing wind speed is increased by the air volume adjustment operation. . Further, the air flow control unit of the operation control unit (70) controls the angle of the wind direction adjusting blade (51) to perform the air volume adjustment operation while periodically changing the blowing direction for suppressing the blowing of conditioned air. It is configured.
- the conditioned air blown out from the first air outlet (24) with the airflow direction adjusting blade (51) in the air outlet restricting position is a small amount and low speed, and does not flow into the air-conditioning target space (R), but the air inlet ( 23) A short circuit is drawn into. That is, the air flow control unit of the operation control unit (70) converts the flow of conditioned air blown from the first outlet (24) corresponding to the blowing direction that suppresses blowing of conditioned air in the air volume adjustment operation into the conditioned air. Is configured to be blown out toward the suction port (23) and sucked into the suction port (23).
- the wind direction adjusting blade (51) is provided only at the first air outlet (24) and is not provided at the second air outlet (25).
- the casing (20) of the indoor unit (11) has a single ceiling (U) or floor (F) arranged in the center of a square room.
- the casing (20) of the indoor unit (11) has four first outlets (24), and conditioned air is supplied in four directions in the horizontal blowing mode as shown in FIG. 8A.
- the conditioned air is blown only in two directions opposite to each other in the horizontal blowing mode as shown in FIG. 8B, or the conditioned air is blown in the horizontal blowing mode as will be described later with reference to FIGS. It is possible to blow out only in two predetermined directions.
- the indoor unit (11) includes a high load area (Ac) that has a relatively large air conditioning load during heating operation and a high load area among the perimeter zones that exist in the periphery of the indoor space (R) that is the air conditioning target space.
- a load detection unit (71) is provided for detecting a low load area (Ah) having a smaller air conditioning load than (Ac) for each conditioned air blowing direction.
- the load detection part (71) is provided in one place of the lower surface of the decorative panel (22), as shown in FIG.
- the load detector (71) is a surface temperature (for example, an infrared sensor or the like) of the first to fourth detection areas (Sa to Sd, see FIGS. 9, 11, 13, and 15) of the indoor space (R).
- the load detection unit (71) includes a sensor unit (71a) and a load determination unit provided in the operation control unit (70).
- the sensor unit (71a) outputs the measured temperature.
- the load determination unit of the operation control unit (70) compares the temperature measured by the sensor unit (71a) with a predetermined threshold temperature, and has four detection areas corresponding to the blowing direction of each first outlet (24).
- Sa ⁇ Sd is divided into high load area (Ac) and low load area (Ah). 9, 11, 13, and 15, the high load area (Ac) is indicated by an area with relatively low density dots, and the low load area (Ah) is relatively high density dots. This is indicated by the area marked with.
- the air flow control unit of the operation control unit (70) controls the angle of the wind direction adjusting blade (51) of each first outlet (24) in the horizontal blowing mode based on the detection result of the load detection unit (71).
- the above-mentioned air volume adjustment operation is performed so that the integrated value per predetermined time of the blown air volume to the high load area (Ac) is higher than the integrated value per standard time of the blown air volume to the low load area (Ah). It is configured so as to be increased while periodically changing the blowing direction for suppressing the blowing of conditioned air.
- the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a solid line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state.
- the refrigerant circuit (C) a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a condenser and the indoor heat exchanger (32) serves as an evaporator.
- the high-pressure refrigerant compressed by the compressor (12) flows through the outdoor heat exchanger (13) and exchanges heat with outdoor air.
- the outdoor heat exchanger (13) the high-pressure refrigerant dissipates heat to the outdoor air and condenses.
- the refrigerant condensed in the outdoor heat exchanger (13) is sent to the indoor unit (11).
- the indoor unit (11) the refrigerant flows through the indoor heat exchanger (32) after being decompressed by the indoor expansion valve (39).
- room air flows upward through the internal space of the suction port (23) and the bell mouth (34) in order, and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant. In the indoor heat exchanger (32), the refrigerant absorbs heat from the indoor air and evaporates, and the air is cooled by the refrigerant.
- the conditioned air cooled by the indoor heat exchanger (32) is diverted to the outlet passage (33c, 33d) and flows downward, and is supplied to the indoor space (R) from the outlet (24, 25).
- the refrigerant evaporated in the indoor heat exchanger (32) is sucked into the compressor (12) and compressed again.
- the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a broken line, and the compressor (12), the indoor fan (31), and the outdoor fan (16) are in an operating state.
- the refrigerant circuit (C) a refrigeration cycle is performed in which the indoor heat exchanger (32) serves as a condenser and the outdoor heat exchanger (13) serves as an evaporator.
- the high-pressure refrigerant compressed by the compressor (12) flows through the indoor heat exchanger (32) of the indoor unit (11).
- indoor air sequentially flows upward through the internal space of the suction port (23) and the bell mouth (34) and is sucked into the indoor fan (31). Air is blown out radially outward from the indoor fan (31). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant.
- the refrigerant dissipates heat to the indoor air and condenses, and the air is heated by the refrigerant.
- the conditioned air heated by the indoor heat exchanger (32) is diverted to the outlet passage (33c, 33d), flows downward, and is supplied to the indoor space (R) from the outlet (24, 25).
- the refrigerant condensed in the indoor heat exchanger (32) is depressurized by the outdoor expansion valve (14) and then flows through the outdoor heat exchanger (13).
- the outdoor heat exchanger (13) the refrigerant absorbs heat from the outdoor air and evaporates.
- the refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the compressor (12) and compressed again.
- the load detection unit (71) provided in the indoor unit (11) allows a relatively large high load area (Ac) and a low load with a smaller air conditioning load than the high load area (Ac).
- the area (Ah) is detected for each blowing direction of conditioned air, and the air volume adjustment operation described above is performed. Specifically, the air volume adjustment operation is performed assuming the following four cases.
- the four first outlets (24) of the indoor unit (11) are connected to the first outlet (24a on the upper side in FIGS. 10, 12, 14, and 16).
- the conditioned air from the first outlet (24a) is in the first detection area (Sa)
- the first detection area (Sb) is in the first detection area (Sb).
- the conditioned air from the outlet (24b) is in the third detection area (Sc)
- the conditioned air from the first outlet (24c) is in the fourth detection area (Sd)
- the first outlet (24d ) From each conditioned air.
- the wind direction adjusting blades (51) of the two first outlets (24b, 24d) are in the blowing restriction position, and the remaining two first outlets (24a, 24c).
- the wind direction adjusting blade (51) becomes the horizontal blowing position.
- the wind direction adjusting blades (51) of the two first blowout ports (24a, 24c) are in the blowout restriction position, and the remaining two first blowout ports (24b, 24d).
- the wind direction adjusting blade (51) is in the horizontal blowing position.
- the temperature measurement value of the sensor unit (71a) for the first detection area (Sa) of the indoor space (R) is higher than the threshold temperature
- the second to fourth detection areas (Sb to Sd) When the temperature measurement value of the sensor part (71a) is lower than the threshold temperature, the first detection area (Sa) is the low load area (Ah) and the second to fourth detection areas (Sb to Sd) are high.
- Load area (Ac) Load area (Ac).
- the balloon pattern (I), the balloon pattern (II), and the balloon pattern (III) are repeated in order, for example, every 120 seconds.
- the wind direction adjusting blades (51) of the two first blowout ports (24a, 24d) are in the blowout restriction position, and the remaining two first blowout ports (24b, 24c).
- the wind direction adjusting blade (51) becomes the horizontal blowing position.
- the airflow direction adjusting blades (51) of the two first outlets (24a, 24c) are in the blowing restriction position, and the remaining two first outlets (24b, 24d)
- the wind direction adjusting blade (51) is in the horizontal blowing position.
- the wind direction adjusting blades (51) of the two first blowout ports (24a, 24b) are in the blowout restriction position, and the remaining two first blowout ports (24c, 24d).
- the wind direction adjusting blade (51) is in the horizontal blowing position.
- one low load area (Ah) and three high load areas (Ac) when there is one low load area (Ah) and three high load areas (Ac), one low load area (Ah) and three high load areas (Ac ) Is suppressed from blowing out conditioned air to one of them.
- one blowing direction in which the blowing of conditioned air to one low load area (Ah) is always suppressed and the blowing of conditioned air is suppressed among three high load areas (Ac) is cycled. Change.
- the integrated value of the blowing air volume per reference time is increased uniformly.
- the temperature measurement value of the sensor part (71a) for the first and second detection areas (Sa, Sb) of the indoor space (R) is higher than the threshold temperature, and the third and fourth detection areas.
- the first and second detection areas (Sa, Sb) become the low load areas (Ah), and the third, The four detection areas (Sc, Sd) are high load areas (Ac).
- the balloon pattern (I) is repeated as shown in FIG.
- the wind direction adjusting blades (51) of the two first blowout ports (24a, 24b) are in the blowout restriction position, and the remaining two first blowout ports (24c, 24d).
- the wind direction adjusting blade (51) becomes the horizontal blowing position. In this case, the blowing of conditioned air to the two low load areas (Ah) is always suppressed.
- the measured temperature value of the sensor unit (71a) for the first to third detection areas (Sa to Sc) of the indoor space (R) is higher than the threshold temperature
- the fourth detection area (Sd) When the measured temperature value of the sensor part (71a) is lower than the threshold temperature, the first to third detection areas (Sa to Sc) are low load areas (Ah) and the fourth detection area (Sd) is high Load area (Ac).
- the balloon pattern (I), the balloon pattern (II), and the balloon pattern (III) are repeated in order, for example, every 60 seconds.
- the wind direction adjusting blades (51) of the two first blowout ports (24b, 24c) are in the blowout restriction position, and the remaining two first blowout ports (24a, 24d).
- the wind direction adjusting blade (51) becomes the horizontal blowing position.
- the airflow direction adjusting blades (51) of the two first outlets (24a, 24c) are in the blowing restriction position, and the remaining two first outlets (24b, 24d)
- the wind direction adjusting blade (51) is in the horizontal blowing position.
- the wind direction adjusting blades (51) of the two first blowout ports (24a, 24b) are in the blowout restriction position, and the remaining two first blowout ports (24c, 24d).
- the wind direction adjusting blade (51) is in the horizontal blowing position.
- an operation control part (70) changes one blowing load by changing periodically two blowing directions in which blowing of conditioned air is controlled among three low load areas (Ah) in air volume adjustment operation. Always keep the blowing speed to the area (Ac) high.
- the integrated value of the blowout air volume per reference time is uniformly reduced.
- FIG. 17 is a graph showing the temperature change in the room when the alternate blowing in two directions is performed in the example.
- FIG. 18 is a graph which shows the temperature change in the room
- a thick solid line a is an average temperature at a height of 0.6 m from the floor surface
- a broken line b is a maximum temperature at a height of 0.6 m from the floor surface. Is the minimum temperature at a height of 0.6 m from the floor
- the thin solid line d is the suction temperature of the indoor unit.
- the indoor area of the air-conditioning target space was 9.9 m in length, 9.9 m in width, 2.6 m in height, all outdoor temperatures were 10 ° C, and the initial indoor temperature was 10 ° C.
- conditioned air having a blowing angle of 20 ° below the horizontal surface and a temperature of 40 ° C. was alternately blown in two directions for 60 seconds in two directions as shown in FIG. 10 at a blowing air volume of 24 m 3 / min.
- conditioned air having a blowing angle of 30 ° below the horizontal plane and a temperature of 40 ° C. is blown evenly in four directions as shown in FIG. 8A at a blowing air volume of 36.5 m 3 / min. It was.
- the change of the indoor temperature and the change of the suction temperature of an indoor unit were confirmed.
- the temperature unevenness in the room was suppressed and efficient heating operation was possible compared to the comparative example.
- the comparative example warm air stays on the ceiling side of the room and the floor surface side of the room is hard to warm. Therefore, the temperature difference in the height direction is relatively large, and in the example, warm air stays on the ceiling side of the room.
- the temperature difference in the height direction is relatively small because the indoor floor side is easily warmed.
- the casing (20) of the indoor unit (11) installed on the ceiling (U) of the indoor space (R). Is provided with an outlet (26) through which conditioned air can be blown out in a plurality of different blowing directions.
- the air flow control unit of the operation control unit (70) of the indoor unit (11) suppresses the blowing of conditioned air to a part of the plurality of blowing directions, thereby reducing the blowing air velocity in the remaining blowing directions. Increase air volume adjustment.
- the conditioned air blown out from the blowing outlet (26) with the blowing air speed increased is the indoor space (R).
- the reach distance becomes longer, and it becomes easier to reach the perimeter zone of the indoor space (R).
- the airflow control unit of the operation control unit (70) periodically changes the blowing direction for suppressing the blowing of conditioned air when performing the air volume adjustment operation, the blowing direction in which the blowing wind speed increases and the blowing direction is also blown out. Changed periodically. Thereby, the conditioned air blown out from the outlet (26) can easily reach the perimeter zone of the indoor space (R), so that temperature unevenness in the indoor space (R) can be suppressed.
- the load detection unit (71) of the indoor unit (11) has an air conditioning load in the perimeter zone of the indoor space (R).
- a relatively large high-load area (Ac) and a low-load area (Ah) having a smaller air conditioning load than the high-load area (Ac) are detected for each blowing direction of conditioned air.
- the air flow control unit of the operation control unit (70) performs the air volume adjustment operation, the integrated value per predetermined reference time of the blown air volume to the high load area (Ac) is reduced to the low load area (Ah).
- the blowing direction for suppressing the blowing of conditioned air is periodically changed so that the blowing air volume of the air becomes larger than the integrated value per reference time.
- the air-conditioning target space (R) the amount of air blown to the high load area (Ac) increases and the amount of air blown to the low load area (Ah) decreases. Can be suppressed.
- the air flow control unit of the operation control unit (70) causes the conditioned air to flow horizontally in the blowing direction in which the blowing wind speed increases by the air volume adjustment operation.
- the flow of conditioned air is controlled so as to be blown out in the blowing mode. Therefore, after the conditioned air blown from the outlet (26) of the indoor unit (11) installed on the ceiling (U) hits the wall surface of the air-conditioning target space (R), for example, the wall surface and floor surface ( A flow of conditioned air that circulates through the indoor space (R) can be formed so as to flow in order in F) and be sucked into the indoor unit (11).
- the air outlet (26) includes a plurality of first air outlets (24) that blow out conditioned air in different directions
- the casing (20) of the unit (11) is provided with a suction port (23) that is disposed adjacent to the plurality of first air outlets (24) and sucks room air.
- the air flow control unit of the operation control unit (70) converts the flow of the conditioned air blown from the first air outlet (24) corresponding to the blowing direction that suppresses the blowing of the conditioned air in the air volume adjustment operation into the conditioned air. Is controlled to be blown out toward the suction port (23) and sucked into the suction port (23).
- the conditioned air in the 1st blower outlet (24) corresponding to the blowing direction which suppresses the blowing of conditioned air, in the wind block mode, the conditioned air is not blown into the indoor space (R), but is directly adjacent to the suction port (23). A short circuit of airflow that can be sucked into can be generated.
- the air volume adjustment which raises the blowing wind speed to the remaining blowing direction by suppressing the blowing of the conditioned air to some of several blowing directions at the time of the heating operation of the indoor unit (11).
- the same air volume adjustment operation may be performed during the cooling operation.
- the indoor unit (11) in which the casing (20) is provided with the load detection unit (71) for detecting the high load area (Ac) and the low load area (Ah) is illustrated.
- the load detection unit (71) is omitted, it is possible to suppress the blowing of conditioned air to some of the plurality of blowing directions without considering the integrated value of the blowing volume in each blowing direction.
- the air volume adjustment operation for increasing the blowing air speed in the remaining blowing direction is performed while periodically changing the blowing direction for suppressing the blowing of conditioned air.
- the indoor unit (11) of the air conditioner (1) is configured to be embedded in a ceiling that is fitted into an opening of the ceiling (U).
- the indoor unit (11) may be a ceiling-suspended indoor unit in which the casing (20) is suspended from the ceiling and disposed in the indoor space (R).
- the blowing direction of the indoor unit (11) is not limited to four directions or eight directions as long as it corresponds to the high load area and the low load area of the perimeter zone.
- the indoor unit capable of the horizontal blowing mode and the downward blowing mode is illustrated, but the blowing mode of the indoor unit is not limited to the horizontal blowing mode and the lower blowing mode.
- the indoor unit of the present embodiment may be capable of selectively executing, for example, a blowing mode in which the wind direction adjusting blade (51) swings and a horizontal blowing mode, or only the horizontal blowing mode. May be.
- the indoor unit (11) which makes the air volume to a load area (Ac) different from the air volume to a low load area (Ah) with the wind direction adjustment blade (51) was illustrated,
- the indoor unit may be configured to vary the air volume to the load area (Ac) and the air volume to the low load area (Ah) with a configuration other than the wind direction adjusting blade (51).
- the said embodiment is an essentially preferable illustration, Comprising: It does not intend restrict
- the present invention is useful for a technique for controlling an air flow during heating operation in an indoor unit of an air conditioner installed on a ceiling.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
室外ユニット(10)には、圧縮機(12)、室外熱交換器(13)、室外膨張弁(14)、及び四方切換弁(15)が設けられている。圧縮機(12)は、低圧の冷媒を圧縮し、圧縮後の高圧の冷媒を吐出する。圧縮機(12)では、スクロール式やロータリ式等の圧縮機構が圧縮機モータ(12a)によって駆動される。圧縮機モータ(12a)は、インバータ装置によって、その回転数(運転周波数)が可変に構成されている。
図2~図5は、室内ユニット(11)の構成例を示している。室内ユニット(11)は、空調対象空間である室内空間(R)の外に設置された室外ユニット(10)と連絡配管(2,3)を介して接続されることによって、室外ユニット(10)とともに空気調和装置(1)を構成している。空気調和装置(1)は、室内空間(R)内の冷房運転および暖房運転を行うものである。この例では、室内ユニット(11)は、天井埋込型に構成されており、室内ケーシング(20)と、室内ファン(31)と、室内熱交換器(32)と、ドレンパン(33)と、ベルマウス(34)とを備えている。室内ケーシング(20)は、室内空間(R)の天井(U)に設置されており、ケーシング本体(21)と化粧パネル(22)とによって構成されている。
ケーシング本体(21)は、室内空間(R)の天井(U)に形成された開口に挿入されて配置されている。ケーシング本体(21)は、下面が開口する略直方体状の箱形に形成され、略正方形板状の天板(21a)と、天板(21a)の周縁部から下方に延びる略矩形板状の4枚の側板(21b)とを有している。また、ケーシング本体(21)は、室内ファン(31)と室内熱交換器(32)とドレンパン(33)とベルマウス(34)とを収容している。さらに、4枚の側板(21b)のうち1枚の側板(21b)には、室内熱交換器(32)と連絡配管(2,3)とを接続するための室内冷媒管(P)を挿通可能な貫通孔(H)が形成されている。
室内ファン(31)は、ケーシング本体(21)の内部中央に配置され、下方から吸い込んだ空気を径方向の外側に向けて吹き出す。この例では、室内ファン(31)は、遠心送風機によって構成され、ケーシング本体(21)の天板(21a)の中央に位置する室内ファンモータ(31a)によって駆動される。
室内熱交換器(32)は、室内ファン(31)の周囲を囲むように冷媒配管(伝熱管)が曲げられた状態で配置され、その内部に設けられた伝熱管(図示を省略)を流れる冷媒とケーシング本体(21)内に吸い込まれた空気とを熱交換させる。例えば、室内熱交換器(32)は、フィン・アンド・チューブ型の熱交換器によって構成されている。また、室内熱交換器(32)は、冷房運転時には冷媒の蒸発器として機能することにより空気を冷却し、暖房運転時には冷媒の凝縮器(放熱器)として機能することにより空気を加熱する。
ドレンパン(33)は、上下方向の厚みの薄い略直方体状に形成され、室内熱交換器(32)の下方に配置されている。また、ドレンパン(33)の中央部には、吸込通路(33a)が形成され、ドレンパン(33)の上面には、水受溝(33b)が形成され、ドレンパン(33)の外周部には、4つの第1吹出通路(33c)および4つの第2吹出通路(33d)が形成されている。吸込通路(33a)は、ドレンパン(33)を上下方向に貫通している。水受溝(33b)は、平面視において吸込通路(33a)の周囲を囲うように環状に延びている。4つの第1吹出通路(33c)は、平面視において水受溝(33b)の周囲を囲うようにドレンパン(33)の4つの辺部に沿ってそれぞれ延び、ドレンパン(33)を上下方向に貫通している。4つの第2吹出通路(33d)は、平面視においてドレンパン(33)の4つの角部にそれぞれ位置し、ドレンパン(33)を上下方向に貫通している。
ベルマウス(34)は、上端から下端へ向かうに連れて開口面積が拡大する円筒状に形成されている。また、ベルマウス(34)は、その開口上端が室内ファン(31)の吸込口(開口下端)に挿入されてドレンパン(33)の吸込通路(33a)に収容されている。このような構成により、ベルマウス(34)の開口下端から吸い込まれた空気は、室内ファン(31)の吸込口に導かれる。
化粧パネル(22)は、上下方向の厚みの薄い略立方体状に形成されている。また、化粧パネル(22)の中央部には、吸込口(23)が形成され、化粧パネル(22)の外周部には、互いに異なる複数の吹き出し方向へ調和空気を吹き出すための吹出口(26)が形成されている。具体的に化粧パネル(22)には、吹出口(26)として、主吹出口である第1吹出口(24)と、副吹出口である第2吹出口(25)とが4つずつ形成されている。
吸込口(23)は、化粧パネル(22)を上下方向に貫通してベルマウス(34)の内部空間と連通している。吸込口(23)は、4つの第1吹出口(24)に隣接して配置されて室内空気を吸い込むように構成されている。本実施形態では、吸込口(23)は、平面視において略正方形状に形成されている。また、吸込口(23)には、吸込グリル(41)と吸込フィルタ(42)とが設けられている。吸込グリル(41)は、略正方形状に形成され、その中央部に多数の貫通孔が形成されている。そして、吸込グリル(41)は、化粧パネル(22)の吸込口(23)に取り付けられて吸込口(23)を覆っている。吸込フィルタ(42)は、吸込グリル(41)から吸い込んだ空気の中の塵埃を捕捉する。
4つの第1吹出口(24)は、平面視において吸込口(23)の周囲を囲うように化粧パネル(22)の4つの辺部に沿ってそれぞれ延びるまっすぐな吹出口である。各第1吹出口(24)は、化粧パネル(22)を上下方向に貫通してドレンパン(33)の対応する第1吹出通路(33c)と連通している。本実施形態では、第1吹出口(24)は、平面視において略矩形状に形成されている。4つの第1吹出口(24)は、互いに異なる方向へ調和空気を吹き出すように構成されている。4つの第2吹出口(25)は、平面視において化粧パネル(22)の4つの角部にそれぞれ位置する湾曲した吹出口である。各第2吹出口(25)は、化粧パネル(22)を上下方向に貫通してドレンパン(33)の対応する第2吹出通路(33d)と連通している。
次に、図4を参照して、室内ユニット(11)内における空気の流れについて説明する。まず、室内ファン(31)が運転状態となると、室内空間(R)から化粧パネル(22)の吸込口(23)に設けられた吸込グリル(41)および吸込フィルタ(42)とベルマウス(34)の内部空間とを順に通過して、室内空気が室内ファン(31)に吸い込まれる。室内ファン(31)に吸い込まれた空気は、室内ファン(31)の側方に吹き出され、室内熱交換器(32)を通過する際に室内熱交換器(32)を流れる冷媒と熱交換する。これにより、室内熱交換器(32)を通過する空気は、室内熱交換器(32)が蒸発器として機能している場合(すなわち、冷房運転の場合)には冷却され、室内熱交換器(32)が凝縮器として機能している場合(すなわち、暖房運転の場合)には加熱されることになる。そして、室内熱交換器(32)を通過した調和空気は、ドレンパン(33)の4つの第1吹出通路(33c)及び4つの第2吹出通路(33d)に分流した後に、化粧パネル(22)の4つの第1吹出口(24)及び4つの第2吹出口(25)から室内空間(R)に吹き出される。
各第1吹出口(24)には、各第1吹出通路(33c)を流れる調和空気の風向を調節するための風向調節羽根(51)が設けられている。風向調節羽根(51)は、化粧パネル(22)の第1吹出口(24)の長手方向の一端から他端に亘って延びる平板状に形成されている。風向調節羽根(51)は、その長手方向に延びる中心軸(53)を軸心として支持部材(52)に支持され、回動自在に構成されている。風向調節羽根(51)は、その横断面(長手方向と直交する断面)の形状が揺動運動の中心軸(53)から遠ざかる方向に凸となる円弧状に形成されている。
室内ユニット(11)には、空調対象空間である室内空間(R)の周縁に存在するペリメータゾーンのうち、暖房運転時の空調負荷が相対的に大きな高負荷エリア(Ac)と、高負荷エリア(Ac)よりも空調負荷が小さな低負荷エリア(Ah)とを調和空気の各吹き出し方向毎に検知する負荷検知部(71)が設けられている。負荷検知部(71)は、図2に示すように、化粧パネル(22)の下面の1カ所に設けられている。負荷検知部(71)は、例えば、赤外線センサなどで室内空間(R)の第1~第4検知エリア(Sa~Sd、図9、図11、図13及び図15参照)の表面温度(例えば、床面の温度や、床に置かれた机などの温度)を測定し、所定の閾値温度と比較して、高負荷エリア(Ac)及び低負荷エリア(Ah)を検知する。具体的に、負荷検知部(71)は、センサ部(71a)と、運転制御部(70)に設けられた負荷判定部とを備えている。ここで、センサ部(71a)は、測定した温度を出力する。また、運転制御部(70)の負荷判定部は、センサ部(71a)で測定した温度を所定の閾値温度と比較し、各第1吹出口(24)の吹き出し方向に対応する4つの検知エリア(Sa~Sd)を高負荷エリア(Ac)と低負荷エリア(Ah)とに区分する。なお、図9、図11、図13及び図15では、高負荷エリア(Ac)を相対的に低密度のドットを付したエリアで示し、低負荷エリア(Ah)を相対的に高密度のドットを付したエリアで示している。
次いで、本実施形態に係る空気調和装置(1)の運転動作について説明する。空気調和装置(1)では、冷房運転と暖房運転とが切り換えて行われる。
冷房運転では、図1に示す四方切換弁(15)が実線で示す状態となり、圧縮機(12)、室内ファン(31)及び室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室外熱交換器(13)が凝縮器となり、室内熱交換器(32)が蒸発器となる冷凍サイクルが行われる。
暖房運転では、図1に示す四方切換弁(15)が破線で示す状態となり、圧縮機(12)、室内ファン(31)及び室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室内熱交換器(32)が凝縮器となり、室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
暖房運転の際には、室内ユニット(11)に設けられた負荷検知部(71)によって、相対的に大きな高負荷エリア(Ac)と、高負荷エリア(Ac)よりも空調負荷が小さな低負荷エリア(Ah)とを調和空気の各吹き出し方向毎に検知して、上述した風量調整運転が行われる。具体的には、以下の4つの場合を想定して、風量調整運転が行われる。ここで、本気流制御の説明では、室内ユニット(11)の4つの第1吹出口(24)を、図10、図12、図14及び図16において、図中上側の第1吹出口(24a)と、図中右側の第1吹出口(24b)と、図中下側の第1吹出口(24c)と、図中左側の第1吹出口(24d)とに区別する。なお、図9、図11、図13及び図15において、第1検知エリア(Sa)には、第1吹出口(24a)からの調和空気が、第2検知エリア(Sb)には、第1吹出口(24b)からの調和空気が、第3検知エリア(Sc)には、第1吹出口(24c)からの調和空気が、第4検知エリア(Sd)には、第1吹出口(24d)からの調和空気がそれぞれ吹き出される。
図9に示すように、室内空間(R)の全ての検知エリア(Sa~Sd)についてのセンサ部(71a)の温度測定値が閾値温度よりも低い場合は、全ての検知エリア(Sa~Sd)が高負荷エリア(Ac)となる。この場合には、図10に示すように、吹き出しパターン(I)と、吹き出しパターン(II)とを、例えば、60秒ずつ交互に繰り返す。
図11に示すように、室内空間(R)の第1検知エリア(Sa)についてのセンサ部(71a)の温度測定値が閾値温度よりも高く、第2~第4検知エリア(Sb~Sd)についてのセンサ部(71a)の温度測定値が閾値温度よりも低い場合は、第1検知エリア(Sa)が低負荷エリア(Ah)となり、第2~第4検知エリア(Sb~Sd)が高負荷エリア(Ac)となる。この場合には、図12に示すように、吹き出しパターン(I)と、吹き出しパターン(II)と、吹き出しパターン(III)とを、例えば、120秒ずつ順に繰り返す。
図13に示すように、室内空間(R)の第1、第2検知エリア(Sa,Sb)についてのセンサ部(71a)の温度測定値が閾値温度よりも高く、第3、第4検知エリア(Sc,Sd)についてのセンサ部(71a)の温度測定値が閾値温度よりも低い場合は、第1、第2検知エリア(Sa,Sb)が低負荷エリア(Ah)となり、第3、第4検知エリア(Sc,Sd)が高負荷エリア(Ac)となる。この場合には、図14に示すように、吹き出しパターン(I)を繰り返す。
図15に示すように、室内空間(R)の第1~第3検知エリア(Sa~Sc)についてのセンサ部(71a)の温度測定値が閾値温度よりも高く、第4検知エリア(Sd)についてのセンサ部(71a)の温度測定値が閾値温度よりも低い場合は、第1~第3検知エリア(Sa~Sc)が低負荷エリア(Ah)となり、第4検知エリア(Sd)が高負荷エリア(Ac)となる。この場合には、図16に示すように、吹き出しパターン(I)と、吹き出しパターン(II)と、吹き出しパターン(III)とを、例えば、60秒ずつ順に繰り返す。
上記4方向が高負荷エリアの場合を想定して行ったシミュレーションの結果を説明する。ここで、図17は、実施例において、2方向への交互吹き出しを行った場合の室内の温度変化を示すグラフである。また、図18は、比較例において、4方向への同時吹き出しを行った場合の室内の温度変化を示すグラフである。なお、図17及び図18において、太実線aは、床面から高さ0.6mでの平均温度であり、破線bは、床面から高さ0.6mでの最高温度である、破線cは、床面から高さ0.6mでの最低温度であり、細実線dは、室内ユニットの吸い込み温度である。
以上説明したように、本実施形態の空気調和装置(1)の室内ユニット(11)によれば、室内空間(R)の天井(U)に設置される室内ユニット(11)のケーシング(20)には、互いに異なる複数の吹き出し方向へ調和空気を吹き出し可能な吹出口(26)が設けられている。ここで、室内ユニット(11)の運転制御部(70)の気流制御部は、複数の吹き出し方向のうちの一部への調和空気の吹き出しを抑制することによって残りの吹き出し方向への吹き出し風速を高める風量調整運転を行う。この風量調整運転では、調和空気の吹き出しを抑制する吹き出し方向以外の吹き出し方向への吹き出し風速が高まるので、吹出口(26)から吹き出し風速が高まって吹き出される調和空気は、室内空間(R)における到達距離が長くなり、室内空間(R)のペリメータゾーンまで到達し易くなる。また、運転制御部(70)の気流制御部は、風量調整運転を行う際に、調和空気の吹き出しを抑制する吹き出し方向を周期的に変更するので、吹き出し風速が高まって吹き出される吹き出し方向も周期的に変更される。これにより、吹出口(26)から吹き出される調和空気が室内空間(R)のペリメータゾーンまで到達し易くなるので、室内空間(R)の温度ムラを抑制することができる。
上記実施形態では、調和空気を吹き出す4つの吹き出し方向のうち、2つの吹き出し方向への調和空気の吹き出しを抑制する室内ユニット(11)を例示したが、本実施形態の室内ユニットは、調和空気を吹き出す4つの吹き出し方向のうち、1つ又は3つの吹き出し方向への調和空気の吹き出しを抑制するものであってもよい。
U 天井
1 空気調和装置
11 室内ユニット
20 ケーシング
23 吸込口
24 第1吹出口(主吹出口)
26 吹出口
70 運転制御部
71 負荷検知部
Claims (5)
- 空調対象空間(R)の天井(U)に設置されるケーシング(20)を備え、該ケーシング(20)に互いに異なる複数の吹き出し方向に調和空気を吹き出し可能な吹出口(26)が設けられた空気調和装置の室内ユニットであって、
暖房運転において、上記複数の吹き出し方向のうちの一部への調和空気の吹き出しを抑制することによって残りの吹き出し方向への吹き出す風速を高める風量調整運転を、該風量調整運転によって吹き出し風速が高くなる吹き出し方向へ調和空気が水平吹き出しモードで吹き出されるように該調和空気の流れを制御し、上記調和空気の吹き出しを抑制する吹き出し方向を周期的に変更しながら行うための運転制御部(70)を備えていることを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
90°ずつ異なる4つの送風方向へ調和空気を吹き出し可能に構成され、
上記運転制御部(70)は、上記風量調整運転において上記4つの吹き出し方向のうち2つの吹き出し方向への調和空気の吹き出しを抑制することによって残りの2つの吹き出し方向への吹き出し風速を高めることを特徴とする空気調和装置の室内ユニット。 - 請求項1又は2において、
空調対象空間(R)のペリメータゾーンのうち、空調負荷が相対的に大きな高負荷エリアと、該高負荷エリアよりも空調負荷が小さな低負荷エリアとを上記各吹き出し方向毎に検知する負荷検知部(71)を備え、
上記運転制御部(70)は、上記風量調整運転を、上記高負荷エリアへの吹き出し風量の所定の基準時間当たりの積算値が上記低負荷エリアへの吹き出し風量の上記基準時間当たりの積算値よりも大きくなるように、上記調和空気の吹き出しを抑制する吹き出し方向を周期的に変更しながら行うことを特徴とする空気調和装置の室内ユニット。 - 請求項1~3の何れか1つにおいて、
上記吹出口(26)は、互いに異なる方向へ調和空気を吹き出す複数の主吹出口(24)を備え、
上記ケーシング(20)には、上記複数の主吹出口(24)に隣接して配置されて室内空気を吸い込む吸込口(23)が設けられ、
上記運転制御部(70)は、上記風量調整運転において調和空気の吹き出しを抑制する吹き出し方向に対応する主吹出口(24)から吹き出される調和空気の流れを、該調和空気が上記吸込口(23)へ向かって吹き出され該吸込口(23)へ吸い込まれるように制御することを特徴とする空気調和装置の室内ユニット。 - 請求項2において、
上記調和空気の吹き出しを抑制する2つの吹き出し方向は、互いに180°異なっていることを特徴とする空気調和装置の室内ユニット。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES15845774T ES2856836T3 (es) | 2014-09-30 | 2015-09-30 | Unidad interior para dispositivo de acondicionamiento de aire |
EP15845774.7A EP3187791B1 (en) | 2014-09-30 | 2015-09-30 | Indoor unit for air conditioning device |
US15/512,438 US10760812B2 (en) | 2014-09-30 | 2015-09-30 | Indoor unit for air conditioning device |
CN201580050681.5A CN107076447B (zh) | 2014-09-30 | 2015-09-30 | 空调装置的室内机组 |
AU2015326157A AU2015326157A1 (en) | 2014-09-30 | 2015-09-30 | Indoor unit for air conditioning device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014201168A JP5987882B2 (ja) | 2014-09-30 | 2014-09-30 | 空気調和装置の室内ユニット |
JP2014-201168 | 2014-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051789A1 true WO2016051789A1 (ja) | 2016-04-07 |
Family
ID=55629856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004965 WO2016051789A1 (ja) | 2014-09-30 | 2015-09-30 | 空気調和装置の室内ユニット |
Country Status (7)
Country | Link |
---|---|
US (1) | US10760812B2 (ja) |
EP (1) | EP3187791B1 (ja) |
JP (1) | JP5987882B2 (ja) |
CN (1) | CN107076447B (ja) |
AU (1) | AU2015326157A1 (ja) |
ES (1) | ES2856836T3 (ja) |
WO (1) | WO2016051789A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230064532A1 (en) * | 2020-02-19 | 2023-03-02 | Lg Electronics Inc. | Air purifier |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6135734B2 (ja) | 2015-09-29 | 2017-05-31 | ダイキン工業株式会社 | 空気調和装置の室内ユニット |
JP6213539B2 (ja) * | 2015-09-29 | 2017-10-18 | ダイキン工業株式会社 | 空気調和装置の室内ユニット |
JP6719975B2 (ja) * | 2016-05-19 | 2020-07-08 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和装置及び空気調和装置の制御方法 |
CN110709645B (zh) * | 2017-06-15 | 2021-03-23 | 三菱电机株式会社 | 空调机的室内机 |
CN109539494B (zh) * | 2018-09-06 | 2020-10-23 | 珠海格力电器股份有限公司 | 获得空调位置关系的方法、装置及空调 |
KR102697590B1 (ko) | 2018-12-18 | 2024-08-21 | 엘지전자 주식회사 | 공기조화기의 천장형 실내기 |
KR102639774B1 (ko) * | 2018-12-18 | 2024-02-21 | 엘지전자 주식회사 | 공기조화기의 천장형 실내기 |
CN110716375B (zh) * | 2019-10-28 | 2025-01-28 | 成都九天画芯科技有限公司 | 一种具有高散热能力屏框的投影机 |
US20230258357A1 (en) * | 2020-01-14 | 2023-08-17 | Mitsubishi Electric Corporation | Control device and control method |
CN114183827B (zh) * | 2021-12-17 | 2022-12-16 | 珠海格力电器股份有限公司 | 室内机出风控制装置及方法、室内机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002098397A (ja) * | 2000-09-22 | 2002-04-05 | Daikin Ind Ltd | 天井埋込式室内機 |
JP2009264607A (ja) * | 2008-04-22 | 2009-11-12 | Hitachi Appliances Inc | 空気調和システム |
JP2011052958A (ja) * | 2010-12-16 | 2011-03-17 | Daikin Industries Ltd | 空調システム |
JP2011099613A (ja) * | 2009-11-05 | 2011-05-19 | Daikin Industries Ltd | 空気調和装置の室内機 |
US20120174608A1 (en) * | 2009-09-28 | 2012-07-12 | Daikin Industries, Ltd. | Control device |
JP2012132610A (ja) * | 2010-11-30 | 2012-07-12 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2012184868A (ja) * | 2011-03-04 | 2012-09-27 | Hitachi Appliances Inc | 空調システム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0428946A (ja) | 1990-05-23 | 1992-01-31 | Matsushita Refrig Co Ltd | 空気調和機 |
JP4803296B2 (ja) * | 2009-10-30 | 2011-10-26 | ダイキン工業株式会社 | 室内機及びそれを備えた空気調和機 |
JP4924697B2 (ja) | 2009-11-05 | 2012-04-25 | ダイキン工業株式会社 | 空気調和装置の室内機 |
ES2558321T3 (es) * | 2010-01-26 | 2016-02-03 | Daikin Industries, Ltd. | Unidad de interior montada en el techo para dispositivo de aire acondicionado |
JP2011185591A (ja) | 2010-02-15 | 2011-09-22 | Daikin Industries Ltd | 空気調和装置の室内ユニット |
-
2014
- 2014-09-30 JP JP2014201168A patent/JP5987882B2/ja not_active Expired - Fee Related
-
2015
- 2015-09-30 AU AU2015326157A patent/AU2015326157A1/en not_active Withdrawn
- 2015-09-30 ES ES15845774T patent/ES2856836T3/es active Active
- 2015-09-30 CN CN201580050681.5A patent/CN107076447B/zh active Active
- 2015-09-30 US US15/512,438 patent/US10760812B2/en active Active
- 2015-09-30 EP EP15845774.7A patent/EP3187791B1/en active Active
- 2015-09-30 WO PCT/JP2015/004965 patent/WO2016051789A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002098397A (ja) * | 2000-09-22 | 2002-04-05 | Daikin Ind Ltd | 天井埋込式室内機 |
JP2009264607A (ja) * | 2008-04-22 | 2009-11-12 | Hitachi Appliances Inc | 空気調和システム |
US20120174608A1 (en) * | 2009-09-28 | 2012-07-12 | Daikin Industries, Ltd. | Control device |
JP2011099613A (ja) * | 2009-11-05 | 2011-05-19 | Daikin Industries Ltd | 空気調和装置の室内機 |
JP2012132610A (ja) * | 2010-11-30 | 2012-07-12 | Sanyo Electric Co Ltd | 空気調和装置 |
JP2011052958A (ja) * | 2010-12-16 | 2011-03-17 | Daikin Industries Ltd | 空調システム |
JP2012184868A (ja) * | 2011-03-04 | 2012-09-27 | Hitachi Appliances Inc | 空調システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230064532A1 (en) * | 2020-02-19 | 2023-03-02 | Lg Electronics Inc. | Air purifier |
Also Published As
Publication number | Publication date |
---|---|
ES2856836T3 (es) | 2021-09-28 |
CN107076447A (zh) | 2017-08-18 |
EP3187791A4 (en) | 2018-05-02 |
AU2015326157A1 (en) | 2017-04-20 |
US10760812B2 (en) | 2020-09-01 |
JP2016070604A (ja) | 2016-05-09 |
CN107076447B (zh) | 2021-02-19 |
EP3187791B1 (en) | 2020-12-30 |
EP3187791A1 (en) | 2017-07-05 |
US20170276392A1 (en) | 2017-09-28 |
JP5987882B2 (ja) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5987882B2 (ja) | 空気調和装置の室内ユニット | |
WO2016051637A1 (ja) | 空気調和装置の室内ユニット | |
CN109891155B (zh) | 室内机及空调装置 | |
JP6463478B2 (ja) | 空気調和装置 | |
JP6213539B2 (ja) | 空気調和装置の室内ユニット | |
CN203771556U (zh) | 室内机和空气调节装置 | |
CN109073266B (zh) | 空气调节机 | |
KR20190026325A (ko) | 공기조화기 | |
WO2018043745A1 (ja) | 室内ユニット | |
CN108474581B (zh) | 空调系统 | |
JP6956594B2 (ja) | 空気調和装置 | |
JP6592884B2 (ja) | 空気調和装置の室内ユニット | |
CN211041167U (zh) | 空调装置的室内机 | |
CN108474582B (zh) | 空调系统 | |
JP6847328B1 (ja) | 空気調和装置の室内ユニット、および、空気調和装置 | |
JP2022050948A (ja) | 空調換気システム | |
JP2016099034A (ja) | 空気調和装置、空気調和装置の調整方法及び空気調和設備の製造方法 | |
JP6682292B2 (ja) | 空気調和装置 | |
JP6728814B2 (ja) | 空気調和装置の室内ユニット | |
JP7097973B2 (ja) | 室内機及び冷凍サイクル装置 | |
JP2017133805A (ja) | 空気調和装置の室内ユニット | |
WO2021024317A1 (ja) | 吹出グリル、室内機及び空気調和装置 | |
JP5589538B2 (ja) | 空気調和装置の室内ユニット | |
JPWO2020240620A1 (ja) | 吹出グリル、室内機及び空気調和装置 | |
JP2010243049A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845774 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512438 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015845774 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015845774 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015326157 Country of ref document: AU Date of ref document: 20150930 Kind code of ref document: A |