Nothing Special   »   [go: up one dir, main page]

WO2016050611A1 - Amortisseur de torsion a lame - Google Patents

Amortisseur de torsion a lame Download PDF

Info

Publication number
WO2016050611A1
WO2016050611A1 PCT/EP2015/072018 EP2015072018W WO2016050611A1 WO 2016050611 A1 WO2016050611 A1 WO 2016050611A1 EP 2015072018 W EP2015072018 W EP 2015072018W WO 2016050611 A1 WO2016050611 A1 WO 2016050611A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
torsion damper
elements
damper according
blades
Prior art date
Application number
PCT/EP2015/072018
Other languages
English (en)
Inventor
Daniel Fenioux
Hervé MAUREL
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Priority to EP15770510.4A priority Critical patent/EP3201489A1/fr
Priority to US15/514,978 priority patent/US20180231097A1/en
Priority to CN201580053763.5A priority patent/CN106715956B/zh
Priority to JP2017517737A priority patent/JP6630352B2/ja
Publication of WO2016050611A1 publication Critical patent/WO2016050611A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1333Spiral springs, e.g. lying in one plane, around axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/1338Motion-limiting means, e.g. means for locking the spring unit in pre-defined positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • F16F2230/0064Physically guiding or influencing using a cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/02Rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/06Shape plane or flat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/08Torsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/024Springs torsional

Definitions

  • the invention relates to a torsion damper for equipping a torque transmission device.
  • the invention relates more particularly to the field of transmissions for a motor vehicle.
  • the torsion dampers comprise an input member and an output member rotatable about a common axis of rotation and resilient damping means for transmitting the torque and damping rotational acyclisms between the input member. and the output element.
  • Such torsion dampers equip including double damping flywheels (DVA) and / or friction clutch, in the case of a manual or robotic transmission, or locking clutches, also called “lock-up” clutches, equipping hydraulic coupling devices, in the case of an automatic transmission.
  • DVA double damping flywheels
  • locking clutches also called “lock-up” clutches
  • equipping hydraulic coupling devices in the case of an automatic transmission.
  • the document FR3000155 illustrates a torsion damper comprising elastic damping means each formed of two resilient blades mounted on the input element and each cooperating with a respective cam follower mounted on the output element.
  • the blades and cam followers are arranged such that, for angular displacement between the input member and the output member, on either side of a relative angular position of rest, the follower of cam moves along the blade and, in doing so, exerts a bending force on the resilient blade.
  • the resilient blade exerts on the cam follower a restoring force which tends to bring the input and output elements to their angular position of rest. The bending of the resilient blade thus makes it possible to damp the vibrations and irregularities of rotation between the input element and the output element while ensuring the transmission of torque.
  • One aspect of the invention is based on the idea of solving the drawbacks of the prior art by proposing an elastic blade torsion damper which is particularly effective and in which the elastic blade is subjected to weaker forces. constraints.
  • the invention provides a torsion damper for a torque transmission device comprising:
  • blade damping means for transmitting torque and damping rotational acyclisms between the first member and the second member, the blade damping means comprising:
  • the blade damping means comprises two flexible blade regions radially offset from one another in a radial direction, a free space radially separating said two regions of flexible blade.
  • such a blade arrangement is likely to provide a blade surface with which the bearing element with a larger circumferential length cooperates.
  • This additional circumferential length of the surface of the blade with which the support element cooperates allows a greater angular displacement between the elements, which allows a decrease in the stiffness of the blade and consequently a better damping of the motor acyclisms. .
  • such a torsion damper may have one or more of the following characteristics:
  • the blade is arranged to deform in a plane perpendicular to the axis of rotation X.
  • one of the flexible blade regions is located between the axis of rotation and the other of the flexible blade regions.
  • said at least one blade has a radially movable free distal end such that the radial distance between the axis of rotation of said free distal end varies as a function of the angular displacement between the first and second members.
  • the angular sector along which the two flexible blade regions are radially offset from each other extends over at least 1 °, for example over at least 5 °, preferably at least 10 °, in particular at least 30 ° °.
  • said at least one blade comprises a portion for fixing the blade on said first or second element and an elastic portion, the elastic portion comprising the free distal end of said at least one blade, said at least one support element being arranged to cooperate with the elastic portion of said at least one blade.
  • the elastic portion has an inner and outer strand connected by a bend, the inner strand developing from the attachment portion to the elbow and the outer strand developing circumferentially from the elbow to the free distal end, the internal strand having one of the two blade regions flexibly and radially offset from the damping means and the outer strand having the other of the two blade regions flexible and radially offset from the damping means.
  • the fixing portion develops circumferentially and has a thickness in a radial direction less than the thickness of the outer strand of the elastic portion.
  • the fixing portion develops circumferentially over a length less than the length of the outer strand of the elastic portion.
  • the fixing portion develops circumferentially over a length less than 50% of the length of the outer strand, preferably less than 30%.
  • said at least one support element is arranged radially outside the outer strand of said at least one blade.
  • the outer strand extends circumferentially over at least 45 ° and can extend circumferentially up to 180 ° in a bent state of the blade corresponding to a maximum angular displacement between the first element and the second element °.
  • the blade damping means comprises two elastically deformable blades integral with one of said first and second elements and two bearing elements carried by the other of said first and second elements, the support elements being respectively arranged to cooperate with one and the other of the two elastically deformable blades,
  • each blade has two flexible blade regions radially offset from each other, a free space radially separating said flexible blade regions from each of the blades.
  • the blade damping means comprises two elastically deformable blades integral with one of said first and second elements and two bearing elements carried by the other of said first and second elements, the bearing elements being respectively arranged to cooperate with one and the other of the two elastically deformable blades and each blade comprises one of the two flexible blade regions radially offset from one another.
  • the elastically deformable blades are symmetrical with respect to the axis of rotation X.
  • each elastically deformable blade has an internal clearance, the clearance of a blade having a radius of curvature greater than the radius of curvature of an outer surface of the other blade so that said outer surface of the other blade can fit into the clearance.
  • the elastically deformable blades are attached independently to the first or second element.
  • the elastic portion comprises a cam surface and said at least one support member comprises a cam follower arranged to cooperate with the cam surface.
  • the cam follower is a roller rotatably mounted on the respective first or second element by means of a rolling bearing.
  • the invention also relates to a torque transmission element, in particular for a motor vehicle, comprising a torsion damper mentioned above.
  • such a transmission element may have one or more of the following characteristics: the transmission element comprises two aforementioned torsion dampers arranged in series.
  • the transmission element comprises two aforementioned torsion dampers arranged in parallel.
  • One aspect of the invention is based on the idea of reducing the stiffness of the damping means in order to allow better damping of the acyclisms.
  • One aspect of the invention is based on the idea of increasing the maximum angular deflection between the input element and the output element.
  • One aspect of the invention starts from the idea to reduce stress concentration areas on a spring blade.
  • One aspect of the invention is to provide a blade torsion damper subject to acceptable stresses when transmitting high torque.
  • An object of the invention is to provide a torsion damper for filtering quality acyclisms.
  • An object of the invention is to provide an elastic blade having a large length.
  • An object of the invention is to provide a blade having a cam surface of great length.
  • FIG. 1 is a front view of a double damping flywheel illustrating the general operation of a torsion damper, in which the secondary flywheel is shown, in a transparent manner, so as to display the damping means.
  • Figure 2 is a sectional view of the double damping flywheel of Figure 1, according 11-ll.
  • Figure 3 is a perspective view of the double damping flywheel of Figure 1.
  • Figure 4 is a perspective view of the dual damping flywheel of Figures 1 to 3, wherein the secondary flywheel is shown, partially broken away and disassembled from the primary flywheel.
  • Figure 5 is a schematic view of an elastically deformable blade illustrating the deflection of the blade during an angular deflection between a first element and a second element in a direct direction.
  • Figure 6 is a schematic view of an elastically deformable blade illustrating the deflection of the blade during an angular movement between a first element and a second element in a retro direction.
  • Figure 7 is a schematic view of a torsion damper in the rest position comprising a damping means according to one embodiment of the invention.
  • Figure 8 is a schematic view of the torsion damper of Figure 7 in an angular displacement position between the first member and the second member.
  • the terms "external” and “internal” as well as the “axial” and “radial” orientations will be used to designate, according to the definitions given in the description, elements of the torsion damper.
  • the "radial” orientation is directed orthogonally to the axis (X) of rotation of the elements of the torsion damper determining the "axial” orientation and, from the inside towards the outside while moving away of said axis, the "circumferential” orientation is directed orthogonally to the axis of rotation of the torsion damper and orthogonal to the radial direction.
  • an element described as circumferentially developing is an element whose component develops in a circumferential direction.
  • the double damping flywheel 1 comprises a primary flywheel 2, intended to be fixed at the end of a crankshaft of an internal combustion engine, not shown, and a secondary flywheel 3 which is centered and guided on the primary flywheel 2 by means of a rolling ball bearing 4.
  • the secondary flywheel 3 is intended to form the reaction plate of a clutch, not shown, connected to the input shaft of a gearbox.
  • the primary flywheels 2 and secondary 3 are intended to be mounted movable about an axis of rotation X and are, moreover, rotatable relative to each other about said axis X.
  • the primary flywheel 2 comprises a radially inner hub 5 supporting the rolling bearing 4, an annular portion 6 extending radially from the hub 5 and a cylindrical portion 7 extending axially, on the opposite side to the motor, from the outer periphery of the annular portion 6.
  • the annular portion 6 is provided, on the one hand, with screw holes 8 for fixing , intended for fixing the primary flywheel 2 on the crankshaft of the engine and, secondly, for passing rivets 9 for fixing a damping means on the primary flywheel 2.
  • the primary flywheel 2 door , on its outer periphery, a ring gear 10 for driving in rotation of the primary flywheel 2, using a starter.
  • the hub 5 of the primary flywheel has a shoulder 1 1 serving to support an inner ring of the rolling bearing 4 and which retains said inner ring towards the motor.
  • the secondary flywheel 3 has on its inner periphery a shoulder 12 serving to support an outer ring of the rolling bearing 4 and retaining said outer ring in the opposite direction to the motor.
  • the secondary flywheel 3 comprises a flat annular surface 13, turned on the opposite side to the primary flywheel 2, forming a bearing surface for a friction lining of a clutch disc, not shown.
  • the secondary flywheel 3 has, close to its outer edge, pads 14 and orifices 15 for mounting a clutch cover.
  • the secondary flywheel 3 further comprises orifices 16, arranged vis-à-vis the orifices formed in the primary flywheel 2, and for the passage of the screws 8, when mounting the double damping flywheel 1 on the crankshaft.
  • the primary flywheels 2 and secondary 3 are coupled in rotation by a damping means.
  • this damping means comprises two resilient blades 17a, 17b mounted integral in rotation with the primary flywheel 2.
  • the elastic blades 17a, 17b are carried by a ring body 18 provided with holes for the passage of the fastening rivets 9 to the primary flywheel 2.
  • the annular body 18 further comprises orifices 19 for the passage of the screws 8 for fixing the double damping flywheel 1 to the nose of the crankshaft.
  • the two resilient blades 17a, 17b are symmetrical with respect to the axis of rotation X of the clutch disc.
  • the elastic blades 17a, 17b have a cam surface 20 which is arranged to cooperate with a cam follower, carried by the secondary flywheel 3.
  • the resilient blades 17a, 17b have a curved portion extending substantially circumferentially. The radius of curvature of the curved portion and the length of this curved portion are determined according to the desired stiffness of the elastic blade 17a, 17b.
  • the elastic blade 17a, 17b may, as desired, be made in one piece or be composed of a plurality of lamellae arranged axially against each other.
  • the cam followers are rollers 21 carried by cylindrical rods 22 fixed on the one hand to the secondary flywheel 3 and on the other hand to a web 23.
  • the rollers 21 are rotatably mounted on the cylindrical rods 22 around a axis of rotation parallel to the axis of rotation X.
  • the rollers 21 are held in abutment against their respective cam surface 20 and are arranged to roll against said cam surface 20 during a relative movement between the primary and secondary 2 flywheels 3.
  • the rollers 21 are radially disposed outside their respective cam surface 20 so as to radially maintain the resilient blades 17a, 17b when subjected to centrifugal force.
  • the rollers 21 are advantageously mounted in rotation on the cylindrical rods by means of a rolling bearing.
  • the rolling bearing may be a ball bearing or roller.
  • the rollers 21 have an anti-friction coating.
  • the cam surface 20 is arranged such that, for an angular displacement between the primary flywheel 2 and the secondary flywheel 3, relative to a relative angular position of rest, the roller 21 moves on the cam surface 20 and, in doing so, exerts a bending force on the elastic blade 17a, 17b.
  • the elastic blade 17a, 17b exerts on the roller 21 a return force which tends to bring the primary flywheels 2 and secondary 3 to their relative angular position of rest.
  • the resilient blades 17a, 17b are able to transmit a driving torque from the primary flywheel 2 to the secondary flywheel 3 (forward direction) and a resistant torque of the secondary flywheel 3 to the primary flywheel 2 (retro direction).
  • FIGS. 5 and 6 The operating principle of a damping means with elastic blades 17a, 17b is detailed in relation with FIGS. 5 and 6.
  • a driving motor torque is transmitted from the primary flywheel 2 to the secondary flywheel 3 (forward direction)
  • the torque to be transmitted causes a relative movement between the primary flywheel 2 and the secondary flywheel 3 in a first direction (see Figure 5).
  • the roller 21 is then moved by an angle with respect to the elastic blade 17a.
  • the displacement of the roller 21 on the cam surface 20 causes a flexion of the elastic blade 17a along an arrow ⁇ .
  • the elastic blade 17a is shown in solid lines in its angular position of rest and in dashed lines during an angular movement.
  • the bending force P depends in particular on the geometry of the elastic blade 17a and its material, in particular its transverse modulus of elasticity.
  • the bending force P is decomposed into a radial component Pr and a tangential component Pt.
  • the tangential component Pt allows the transmission of the engine torque.
  • the elastic blade 17a exerts on the roller 21 a reaction force whose tangential component constitutes a restoring force which tends to bring the primary flywheels 2 and secondary 3 to their relative angular position of rest.
  • FIG. 7 represents a schematic view of a torsion damper in the rest position comprising damping means according to one embodiment of the invention.
  • the resilient blades 17a, 17b are fastened independently of each other on the secondary flywheel 103.
  • the cam followers 121 are fixed on the primary flywheel 102.
  • Each blade 17a , 1 17b has a fastening portion 1 18 fixed relative to the secondary flywheel 103 to enable the rotation of the resilient blades 1 17a, 1 17b with the secondary flywheel 103.
  • a rolling bearing 104 is mounted between the primary flywheel 102 and the secondary flywheel 103.
  • This rolling bearing 104 has an outer ring 127 carried by the secondary flywheel 103 which cooperates with an inner ring 128 carried by the primary flywheel 102.
  • the fixing portion 1 18 of the blades 1 17a, 1 17b develops circumferentially around the outer ring 127.
  • the inner ring 128 of the rolling bearing ball 104 is carried by the hub 105 of the primary flywheel 102.
  • each elastic blade 1 17a, 1 17b is fixed to the secondary flywheel 103 by three rivets 129.
  • the three rivets 129 are not aligned. on the same axis. Attaching an elastic blade 1 17a, 1 17b with less than three rivets 129 would not provide a good fixation.
  • the fixing of an elastic blade 1 17a, 1 17b with a larger number of rivets 129 would generate either, in the case of rivets 129 of the same dimensions, a problem of space, or, in the case of rivets 129 of lower dimensions, a problem of mechanical resistance.
  • the fixing portion 1 18 fixed to the secondary flywheel 103 is extended by an elastic portion 130.
  • the elastically deformable portion 130 of the blade 11a is schematically represented by a dotted curve 131 in FIG. 7.
  • the elastic portion 130 bears on a radially outer face the cam surface 120 cooperating with the cam follower 121.
  • the elastic portion 130 of each elastic blade 1 17a, 1 17b comprises an internal strand 132, a bend 133 and an outer strand 134.
  • the inner strand 132 of a blade 1 17a, 1 17b extends the fixing portion 1 18.
  • the elbow 133 extends inner strand 132 and outer strand 134 extends elbow 133.
  • Internal strand 132 develops circumferentially around outer ring 127 from attachment portion 1 to elbow 133.
  • Internal strand 132 being not fixed with the rivets 129 on the secondary flywheel 103, it deforms during an angular displacement between the primary flywheel 102 and the secondary flywheel 103. Thus, the internal strand 133 absorbs a portion of the stresses experienced by the resilient blade 1 17a, 1 17b during this angular deflection.
  • the elbow 133 forms an angle of approximately 180 ° so that a first end 135 of the contiguous elbow 133 of the inner strand 132 is located radially between the axis of rotation X and a second end 136 of the contiguous elbow 133 of the outer strand 134
  • the elastic blade 1 17a, 1 17b thus has a general shape of a hairpin, one branch of which is formed by the outer strand 134 and the other branch is formed jointly by the fixing portion 1 18 and the internal strand 132.
  • the elastic portion 130 has two flexible blade regions radially offset from each other and separated by a void space.
  • the outer strand 134 develops circumferentially from the elbow 133 to the free end 137 of the spring blade 17a, 17b.
  • the outer strand 134 develops over a circumference of at least 45 ° and up to 180 ° in the bent state of the resilient blade 17a, 17b.
  • the cam surface 120 develops on an outer face of the outer strand 134.
  • the cam surface 120 develops circumferentially at an angle of about 125 ° to 130 °.
  • the cam surface 120 develops circumferentially according to a radius of curvature determined according to the desired stiffness of the resilient blades 11a, 17b. This cam surface 120 may have different radii of curvature depending on the desired point stiffness, in order to allow slope variations of the characteristic curve of the torsion damper, representing the torque transmitted as a function of the angular displacement.
  • FIG. 7 The elastic blades 1 17a, 1 17b shown diagrammatically in FIG. 7 are symmetrical with respect to the axis of rotation X.
  • Figure 8 is a schematic view of the torsion damper of Figure 7 in an angular displacement position between the primary flywheel and the secondary flywheel.
  • the torque to be transmitted causes a relative movement between the primary flywheel 102 and the secondary flywheel 103 in a first direction.
  • the rollers 121 are then moved by an angle ⁇ with respect to the elastic blades 1 17a, 1 17b.
  • the displacement of the rollers 121 on the cam surfaces 120 causes the resilient blades 17a, 17b to bend.
  • the flexion of the resilient blades 17a, 17b causes the approximation on the one hand of the outer strands 134 of the blade 17a, 17b with its attachment portion 18 and, on the other hand, the approach of the free end 137 of one of the blades 1 17a, 1 17b with the elbow 133 of the other of the blades 1 17b, 1 17a.
  • these connections must not cause contacts between the outer strand 134 and the fixing portion 1 18 of the blade 1 17a, 1 17b, such contacts generating disturbances in the damping of acyclisms and vibrations.
  • the circumferential length of the fixing portion 1 18 is limited so that, in the rest position shown in Figure 7, the fixing portion 1 18 does not develop circumferentially beyond the axis formed by the alignment between the cam follower 121 and the axis of rotation X.
  • an end 138 of the fastening portion 1 18 opposite the elastic portion 130 of a blade 1 17a, 1 17b is located between the cam follower 121 corresponding and the axis of rotation X during a maximum angular displacement in the retro direction between the primary flywheel 102 and the secondary flywheel 103, as represented by the axis 143.
  • Such a maximum angular movement is for example limited by an end stop having a stop 139 on the primary flywheel 102 facing circumferentially a stop 140 on the secondary flywheel 103.
  • the thickness of the fixing portion 1 18 is reduced relative to the thickness of the elastic portion 130, and more particularly to the minus the thickness of the end 138 of the fixing portion 1 18 is reduced relative to the thickness of the elastic portion 130.
  • the free end 137 of the blades 1 17a, 1 17b comprises a clearance 141.
  • This clearance 141 is formed on an inner face of the outer strand 134.
  • the clearance 141 advantageously has a radius of curvature identical or close to the radius of curvature of a portion 142 of the outer face of the elbow 133 of the blades 1 17a, 1 17b.
  • each blade 1 17a, 1 17b is close to the elbow 133 of the other blade 1 17b, 1 17a, and the portion 142 of the outer surface of the elbow 133 of each blade 1 17b, 1 17a is housed in the clearance 141 of the other blade 1 17a, 1 17b to delay or even avoid contact.
  • the length of the elastic blade 1 17a, 1 17b and the arrangement of the outer strand 134, the elbow 133 and the inner strand 132 of an elastic blade 1 17a, 1 17b allows the transmission of a high torque without risk of degradation of the resilient blades 17a, 17b or loss of cooperation between the cam followers 121 and the cam surfaces 120.
  • the blades of the damping means may be independent of one another or linked to one another by a central section.
  • torsion damper in the context of a double damping flywheel, but such a torsion damper can be installed on any suitable device.
  • torsion dampers can equip the clutch friction, in the case of a manual or robotic transmission, or the locking clutches, also called “lock-up” clutches, equipping hydraulic coupling devices, in the case of an automatic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Amortisseur de torsion pour dispositif de transmission de couple comportant : un premier élément (102) et un second élément (103) mobiles en rotation; et une lame élastiquement (117a, 117b) déformable solidaire de l'un desdits premier et second éléments, un élément d'appui (121 ) porté par l'autre desdits premier et second éléments et agencé pour coopérer avec la lame de telle sorte que, pour un débattement angulaire entre les premier et second éléments par rapport à une position angulaire de repos, l'élément d'appui exerce un effort de flexion sur la lame produisant conjointement une force de réaction apte à rappeler les premier et second éléments vers ladite position angulaire de repos, ledit amortisseur étant caractérisé en ce que la lame comporte un brin interne (132) et un brin externe (134) reliés par un coude (133), le brin interne étant situé radialement entre le brin externe et un axe de rotation.

Description

AMORTISSEUR DE TORSION A LAME
Domaine technique de l'invention
L'invention se rapporte à un amortisseur de torsion destiné à équiper un dispositif de transmission de couple. L'invention se rapporte plus particulièrement au domaine des transmissions pour véhicule automobile.
Etat de la technique
Dans le domaine des transmissions automobiles, il est connu de munir les dispositifs de transmission de couple d'amortisseurs de torsion permettant d'absorber et d'amortir les vibrations et acyclismes générés par un moteur à combustion interne.
Les amortisseurs de torsion comportent un élément d'entrée et un élément de sortie mobiles en rotation autour d'un axe de rotation commun et des moyens élastiques d'amortissement pour transmettre le couple et amortir les acyclismes de rotation entre l'élément d'entrée et l'élément de sortie. De tels amortisseurs de torsion équipent notamment les doubles volants amortisseurs (DVA) et/ou les frictions d'embrayage, dans le cas d'une transmission manuelle ou robotisée, ou les embrayages de verrouillage, également appelés embrayages « lock-up », équipant les dispositifs d'accouplement hydraulique, dans le cas d'une transmission automatique. Le document FR3000155 illustre un amortisseur de torsion comportant des moyens élastiques d'amortissement formés chacun de deux lames élastiques montées sur l'élément d'entrée et coopérant chacune avec un suiveur de came respectif monté sur l'élément de sortie.
Les lames et les suiveurs de came sont agencés de telle sorte que, pour un débattement angulaire entre l'élément d'entrée et l'élément de sortie, de part et d'autre d'une position angulaire relative de repos, le suiveur de came se déplace le long de la lame et, ce faisant, exerce un effort de flexion sur la lame élastique. Par réaction, la lame élastique exerce sur le suiveur de came une force de rappel qui tend à ramener les éléments d'entrée et de sortie vers leur position angulaire de repos. La flexion de la lame élastique permet ainsi d'amortir les vibrations et irrégularités de rotation entre l'élément d'entrée et l'élément de sortie tout en assurant la transmission de couple.
Cependant, de telles lames sont soumises à des contraintes trop importantes lorsque le couple à transmettre est élevé et ne sont donc pas adaptés pour la transmission de couples élevés.
Objet de l'invention Un aspect de l'invention part de l'idée de résoudre les inconvénients de l'art antérieur en proposant un amortisseur de torsion à lame élastique qui soit particulièrement efficace et dans lequel la lame élastique est soumise à de plus faibles contraintes.
Selon un mode de réalisation, l'invention fournit un amortisseur de torsion pour dispositif de transmission de couple comportant :
un premier élément et un second élément mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; et
un moyen d'amortissement à lame pour transmettre un couple et amortir les acyclismes de rotation entre le premier élément et le second élément, le moyen d'amortissement à lame comportant :
o au moins une lame élastiquement déformable solidaire de l'un desdits premier et second éléments ; et
o au moins un élément d'appui porté par l'autre desdits premier et second éléments et agencé pour coopérer avec ladite au moins une lame, ladite au moins une lame étant agencée de telle sorte que, pour un débattement angulaire entre les premier et second éléments par rapport à une position angulaire de repos, ledit au moins un élément d'appui exerce un effort de flexion sur ladite au moins une lame produisant conjointement une force de réaction apte à rappeler les premier et second éléments vers ladite position angulaire de repos, ledit amortisseur étant caractérisé en ce que, pour un secteur angulaire prédéterminé, le moyen d'amortissement à lame comporte deux régions de lame flexibles décalées radialement l'une de l'autre selon une direction radiale, un espace libre séparant radialement lesdites deux régions de lame flexibles. Ainsi, la superposition des régions de lame flexibles permet le développement des lames sur de plus grandes longueurs. De telles lames de plus grandes longueurs sont soumises à des contraintes moins importantes, ce qui permet la transmission de couples élevés.
De plus, un tel agencement de lame est susceptible d'offrir une surface de lame avec laquelle coopère l'élément d'appui présentant une longueur circonférentielle plus importante. Cette longueur circonférentielle supplémentaire de la surface de la lame avec laquelle coopère l'élément d'appui permet un plus grand débattement angulaire entre les éléments, ce qui permet une diminution de la raideur de la lame et par conséquent un meilleur amortissement des acyclismes du moteur.
Selon d'autres modes de réalisation avantageux, un tel amortisseur à torsion peut présenter une ou plusieurs des caractéristiques suivantes :
la lame est agencée pour se déformer dans un plan perpendiculaire à l'axe de rotation X.
- l'une des régions de lame flexibles est située entre l'axe de rotation et l'autre des régions de lame flexibles.
ladite au moins une lame comporte une extrémité distale libre mobile radialement de telle sorte que la distance radiale séparant l'axe de rotation de ladite extrémité distale libre varie en fonction du débattement angulaire entre le premier et le second éléments.
le secteur angulaire le long duquel les deux régions de lame flexibles sont décalées radialement l'une de l'autre s'étend sur au moins 1 °, par exemple sur au moins 5°, de préférence au moins 10°, notamment au moins 30°. ladite au moins une lame comporte une portion de fixation de la lame sur ledit premier ou second élément et une portion élastique, la portion élastique comportant l'extrémité distale libre de ladite au moins une lame, ledit au moins un élément d'appui étant agencé pour coopérer avec la portion élastique de ladite au moins une lame.
la portion élastique comporte un brin interne et un brin externe reliés par un coude, le brin interne se développant depuis la portion de fixation jusqu'au coude et le brin externe se développant circonférentiellement depuis le coude jusqu'à l'extrémité distale libre, le brin interne comportant l'une des deux régions de lame flexibles et radialement décalées du moyen d'amortissement et le brin externe comportant l'autre des deux régions de lame flexibles et radialement décalées du moyen d'amortissement.
- la portion de fixation se développe circonférentiellement et présente une épaisseur selon une direction radiale inférieure à l'épaisseur du brin externe de la portion élastique.
la portion de fixation se développe circonférentiellement sur une longueur inférieure à la longueur du brin externe de la portion élastique.
- la portion de fixation se développe circonférentiellement sur une longueur inférieure à 50% de la longueur du brin externe, de préférence inférieure à 30 %.
ledit au moins un élément d'appui est disposé radialement à l'extérieur du brin externe de ladite au moins une lame.
- le brin externe s'étend circonférentiellement sur au moins 45° et peut s'étendre circonférentiellement jusqu'à 180° dans un état fléchi de la lame correspondant à un débattement angulaire maximal entre le premier élément et le second élément °.
le moyen d'amortissement à lame comporte deux lames élastiquement déformables solidaires de l'un desdits premier et second éléments et deux éléments d'appui portés par l'autre desdits premier et second éléments, les éléments d'appui étant respectivement agencés pour coopérer avec l'une et l'autre des deux lames élastiquement déformables,
et chaque lame comporte deux régions de lame flexibles décalées radialement l'une de l'autre, un espace libre séparant radialement lesdites régions de lame flexibles de chacune des lames.
le moyen d'amortissement à lame comporte deux lames élastiquement déformables solidaires de l'un desdits premier et second éléments et deux éléments d'appui portés par l'autre desdits premier et second éléments, les éléments d'appui étant respectivement agencés pour coopérer avec l'une et l'autre des deux lames élastiquement déformables et chaque lame comporte l'une des deux régions de lame flexibles décalées radialement l'une de l'autre.
- les lames élastiquement déformables sont symétriques par rapport à l'axe de rotation X.
l'extrémité distale de chaque lame élastiquement déformable comporte un dégagement interne, le dégagement d'une lame présentant un rayon de courbure supérieur au rayon de courbure d'une surface externe de l'autre lame de sorte que ladite surface externe de l'autre lame puisse s'insérer dans le dégagement.
les lames élastiquement déformables sont fixées de manière indépendante au premier ou second élément.
la portion élastique comporte une surface de came et ledit au moins un élément d'appui comporte un suiveur de came agencé pour coopérer avec la surface de came.
le suiveur de came est un galet monté mobile en rotation sur le premier ou second élément respectif par l'intermédiaire d'un palier à roulement.
L'invention porte également sur un élément de transmission de couple, notamment pour véhicule automobile, comportant un amortisseur de torsion précité.
Selon d'autres modes de réalisation avantageux, un tel élément de transmission peut présenter une ou plusieurs des caractéristiques suivantes : l'élément de transmission comporte deux amortisseurs de torsion précités disposés en série.
l'élément de transmission comporte deux amortisseurs de torsion précités disposés en parallèle.
Un aspect de l'invention part de l'idée de réduire la raideur du moyen d'amortissement afin de permettre un meilleur amortissement des acyclismes. Un aspect de l'invention part de l'idée d'augmenter le débattement angulaire maximal entre l'élément d'entrée et l'élément de sortie. Un aspect de l'invention part de l'idée de réduire les zones de concentration des contraintes sur une lame ressort. Un aspect de l'invention est de proposer un amortisseur de torsion à lames soumis à des contraintes acceptables lors de la transmission d'un couple élevé. Un objet de l'invention est de fournir un amortisseur de torsion permettant une filtration des acyclismes de qualité. Un objet de l'invention est de fournir une lame élastique présentant une longueur importante. Un objet de l'invention est de fournir une lame présentant une surface de came de grande longueur.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux figures annexées.
Sur ces figures :
La figure 1 est une vue de face d'un double volant amortisseur illustrant le fonctionnement général d'un amortisseur de torsion, dans laquelle le volant d'inertie secondaire est représenté, de manière transparente, de sorte à visualiser le moyen d'amortissement.
La figure 2 est une vue en coupe du double volant amortisseur de la figure 1 , selon ll-ll.
La figure 3 est une vue en perspective du double volant amortisseur de la figure 1 .
La figure 4 est une vue en perspective du double volant amortisseur des figures 1 à 3, dans laquelle le volant d'inertie secondaire est représenté, partiellement arraché, et désassemblé du volant d'inertie primaire.
La figure 5 est une vue schématique d'une lame élastiquement déformable illustrant le fléchissement de la lame lors d'un débattement angulaire entre un premier élément et un second élément dans un sens direct.
La figure 6 est une vue schématique d'une lame élastiquement déformable illustrant le fléchissement de la lame lors d'un débattement angulaire entre un premier élément et un second élément dans un sens rétro.
- La figure 7 est une vue schématique d'un amortisseur de torsion en position de repos comportant un moyen d'amortissement selon un mode de réalisation de l'invention. La figure 8 est une vue schématique de l'amortisseur de torsion de la figure 7 dans une position de débattement angulaire entre le premier élément et le second élément.
Dans la description et les revendications, on utilisera, les termes "externe" et "interne" ainsi que les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments de l'amortisseur de torsion. Par convention, l'orientation "radiale" est dirigée orthogonalement à l'axe (X) de rotation des éléments de l'amortisseur de torsion déterminant l'orientation "axiale" et, de l'intérieur vers l'extérieur en s'éloignant dudit axe, l'orientation "circonférentielle" est dirigée orthogonalement à l'axe de rotation de l'amortisseur de torsion et orthogonalement à la direction radiale. Ainsi, un élément décrit comme se développant circonférentiellement est un élément dont une composante se développe selon une direction circonférentielle. De même, l'indication d'un angle s'interprète comme délimité par deux droites d'un plan perpendiculaire à l'axe de rotation X et sécante au niveau dudit axe de rotation X. Les termes "externe" et "interne" sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'axe de rotation de l'amortisseur de torsion, un élément proche de l'axe est ainsi qualifié d'interne par opposition à un élément externe situé radialement en périphérie. On se réfère d'abord aux figures 1 à 4 qui illustrent le fonctionnement général d'un amortisseur de torsion à lames élastiquement déformables équipant un double volant amortisseur 1 . Le double volant amortisseur 1 comprend un volant d'inertie primaire 2, destiné à être fixé en bout d'un vilebrequin d'un moteur à combustion interne, non représenté, et un volant d'inertie secondaire 3 qui est centré et guidé sur le volant primaire 2 au moyen d'un palier à roulement à billes 4. Le volant secondaire 3 est destiné à former le plateau de réaction d'un embrayage, non représenté, relié à l'arbre d'entrée d'une boîte de vitesse. Les volants d'inertie primaire 2 et secondaire 3 sont destinés à être montés mobiles autour d'un axe de rotation X et sont, en outre, mobiles en rotation l'un par rapport à l'autre autour dudit axe X.
Le volant primaire 2 comporte un moyeu 5 radialement interne supportant le palier à roulement 4, une portion annulaire 6 s'étendant radialement depuis le moyeu 5 et une portion cylindrique 7 s'étendant axialement, du côté opposé au moteur, depuis la périphérie externe de la portion annulaire 6. La portion annulaire 6 est pourvue, d'une part, d'orifices de passage de vis 8 de fixation, destinés à la fixation du volant primaire 2 sur le vilebrequin du moteur et, d'autre part, d'orifices de passage de rivets 9 pour la fixation d'un moyen d'amortissement sur le volant primaire 2. Le volant primaire 2 porte, sur sa périphérie extérieure, une couronne dentée 10 pour l'entraînement en rotation du volant primaire 2, à l'aide d'un démarreur.
Le moyeu 5 du volant primaire comporte un épaulement 1 1 servant à l'appui d'une bague interne du palier à roulement 4 et qui retient ladite bague interne en direction du moteur. De même, le volant secondaire 3 comporte sur sa périphérie interne un épaulement 12 servant à l'appui d'une bague externe du palier à roulement 4 et retenant ladite bague externe en direction opposée au moteur.
Le volant secondaire 3 comporte une surface annulaire plane 13, tournée du côté opposé au volant primaire 2, formant une surface d'appui pour une garniture de friction d'un disque d'embrayage, non représenté. Le volant secondaire 3 comporte, à proximité de son bord externe, des plots 14 et des orifices 15 servant au montage d'un couvercle d'embrayage. Le volant secondaire 3 comporte en outre des orifices 16, disposés en vis-à-vis des orifices formés dans le volant primaire 2, et destinés au passage des vis 8, lors du montage du double volant amortisseur 1 sur le vilebrequin.
Les volants primaire 2 et secondaire 3 sont couplés en rotation par un moyen d'amortissement. Dans le mode de réalisation représenté sur les figures 1 à 4, ce moyen d'amortissement comporte deux lames élastiques 17a, 17b montées solidaires en rotation du volant primaire 2. Pour ce faire, les lames élastiques 17a, 17b sont portées par un corps annulaire 18 pourvu d'orifices permettant le passage des rivets 9 de fixation au volant primaire 2. Le corps annulaire 18 comporte en outre des orifices 19 pour le passage des vis 8 de fixation du double volant amortisseur 1 au nez du vilebrequin. Les deux lames élastiques 17a, 17b sont symétriques par rapport à l'axe de rotation X du disque d'embrayage.
Les lames élastiques 17a, 17b présentent une surface de came 20 qui est agencée pour coopérer avec un suiveur de came, porté par le volant secondaire 3. Les lames élastiques 17a, 17b comportent une portion courbe s'étendant de manière sensiblement circonférentielle. Le rayon de courbure de la portion courbe ainsi que la longueur de cette portion courbe sont déterminés en fonction de la raideur souhaité de la lame élastique 17a, 17b. La lame élastique 17a, 17b peut, au choix, être réalisée d'un seul tenant ou être composée d'une pluralité de lamelles disposées axialement les unes contre les autres.
Les suiveurs de came sont des galets 21 portés par des tiges cylindriques 22 fixées d'une part au volant secondaire 3 et d'autre part à un voile 23. Les galets 21 sont montés mobiles en rotation sur les tiges cylindriques 22 autour d'un axe de rotation parallèle à l'axe de rotation X. Les galets 21 sont maintenus en appui contre leur surface de came 20 respective et sont agencés pour rouler contre ladite surface de came 20 lors d'un mouvement relatif entre les volants primaire 2 et secondaire 3. Les galets 21 sont disposés radialement à l'extérieur de leur surface de came 20 respective de sorte à maintenir radialement les lames élastiques 17a, 17b lorsqu'elles sont soumises à la force centrifuge. De façon à réduire les frottements parasitaires susceptibles d'affecter la fonction d'amortissement, les galets 21 sont avantageusement montés en rotation sur les tiges cylindriques par l'intermédiaire d'un palier à roulement. A titre d'exemple, le palier à roulement pourra être un roulement à billes ou à rouleaux. Dans un mode de réalisation, les galets 21 présentent un revêtement anti-friction.
La surface de came 20 est agencée de telle sorte que, pour un débattement angulaire entre le volant primaire 2 et le volant secondaire 3, par rapport à une position angulaire relative de repos, le galet 21 se déplace sur la surface de came 20 et, ce faisant, exerce un effort de flexion sur la lame élastique 17a, 17b. Par réaction, la lame élastique 17a, 17b exerce sur le galet 21 une force de rappel qui tend à ramener les volants primaire 2 et secondaire 3 vers leur position angulaire relative de repos. Ainsi, les lames élastiques 17a, 17b sont aptes à transmettre un couple entraînant du volant primaire 2 vers le volant secondaire 3 (sens direct) et un couple résistant du volant secondaire 3 vers le volant primaire 2 (sens rétro).
Le principe de fonctionnement d'un moyen d'amortissement à lames élastiques 17a, 17b est détaillé en relation avec les figures 5 et 6. Lorsqu'un couple moteur entraînant est transmis du volant primaire 2 vers le volant secondaire 3 (sens direct), le couple à transmettre entraîne un débattement relatif entre le volant primaire 2 et le volant secondaire 3 selon une première direction (voir figure 5). Le galet 21 est alors déplacé d'un angle a par rapport à la lame élastique 17a. Le déplacement du galet 21 sur la surface de came 20 entraîne une flexion de la lame élastique 17a selon une flèche Δ. Pour illustrer la flexion de la lame élastique 17a, la lame élastique 17a est représentée en traits pleins dans sa position angulaire de repos et en traits pointillés lors d'un débattement angulaire. L'effort de flexion P dépend notamment de la géométrie de la lame élastique 17a et de sa matière, en particulier de son module d'élasticité transversal. L'effort de flexion P se décompose en une composante radiale Pr et en une composante tangentielle Pt. La composante tangentielle Pt permet la transmission du couple moteur. En réaction, la lame élastique 17a exerce sur le galet 21 une force de réaction dont la composante tangentielle constitue une force de rappel qui tend à ramener les volants primaire 2 et secondaire 3 vers leur position angulaire relative de repos.
Lorsqu'un couple résistant est transmis du volant secondaire 3 vers le volant primaire 2 (sens rétro), le couple à transmettre entraîne un débattement relatif entre le volant primaire 2 et le volant secondaire 3 selon une seconde direction opposée (voir figure 6). Le galet 21 est alors déplacé d'un angle β par rapport à la lame élastique 17a. Dans ce cas, la composante tangentielle Pt de l'effort de flexion présente une direction opposée à la composante tangentielle de l'effort de flexion illustré sur la figure 5. De même, la lame élastique 17a exerce une force de réaction, de direction contraire à celle illustrée sur la figure 5, de sorte à ramener les volants primaire 2 et secondaire 3 vers leur position angulaire relative de repos.
Les vibrations de torsion et les irrégularités de couple qui sont produites par le moteur à combustion interne sont transmises par l'arbre de vilebrequin au volant primaire 2 et génèrent des rotations relatives entre les volants primaire 2 et secondaire 3. Ces vibrations et irrégularités sont amorties par la flexion de la lame élastique 17a. La figure 7 représente une vue schématique d'un amortisseur de torsion en position de repos comportant un moyen d'amortissement selon un mode de réalisation de l'invention. En regard des figures 7 et 8, les éléments identiques ou analogues aux éléments des figures 1 à 6, c'est-à-dire remplissant la même fonction, portent le même chiffre de référence augmenté de 100
Sur les figures 7 et 8, les lames élastiques 1 17a, 1 17b sont fixées de manière indépendante l'une de l'autre sur le volant secondaire 103. Les suiveurs de came 121 sont fixés sur le volant primaire 102. Chaque lame 1 17a, 1 17b présente une portion de fixation 1 18 fixe par rapport au volant secondaire 103 afin de permettre la solidarisation en rotation des lames élastiques 1 17a, 1 17b avec le volant secondaire 103.
Un palier à roulement à bille 104 est monté entre le volant primaire 102 et le volant secondaire 103. Ce palier à roulement à bille 104 comporte une bague externe 127 portée par le volant secondaire 103 qui coopère avec une bague interne 128 portée par le volant primaire 102. La portion de fixation 1 18 des lames 1 17a, 1 17b se développe circonférentiellement autour de la bague externe 127. La bague interne 128 du palier à roulement à bille 104 est portée par le moyeu 105 du volant primaire 102.
La portion de fixation 1 18 de chaque lame élastique 1 17a, 1 17b est fixée au volant secondaire 103 par trois rivets 129. Afin d'assurer une bonne fixation des lames élastiques 1 17a, 1 17b, les trois rivets 129 ne sont pas alignés sur le même axe. La fixation d'une lame élastique 1 17a, 1 17b avec moins de trois rivets 129 n'assurerait pas une bonne fixation. De plus, la fixation d'une lame élastique 1 17a, 1 17b avec un plus grand nombre de rivets 129 engendrerait soit, dans le cas de rivets 129 de même dimensions, un problème de place, soit, dans le cas de rivets 129 de dimensions inférieures, un problème de résistance mécanique.
La portion de fixation 1 18 fixée sur le volant secondaire 103 est prolongée par une portion élastique 130. La portion élastiquement déformable 130 de la lame 1 17a est représentée schématiquement par une courbe pointillée 131 sur la figure 7. La portion élastique 130 porte sur une face radialement externe la surface de came 120 coopérant avec le suiveur de came 121. La portion élastique 130 de chaque lame élastique 1 17a, 1 17b comporte un brin interne 132, un coude 133 et un brin externe 134. Le brin interne 132 d'une lame 1 17a, 1 17b prolonge la portion de fixation 1 18. Le coude 133 prolonge le brin interne 132 et le brin externe 134 prolonge le coude 133. Le brin interne 132 se développe de façon circonférentielle autour de la bague externe 127 depuis la portion de fixation 1 18 jusqu'au coude 133. Le brin interne 132 n'étant pas fixé à l'aide des rivets 129 sur le volant secondaire 103 il se déforme lors d'un débattement angulaire entre le volant primaire 102 et le volant secondaire103. Ainsi, le brin interne 133 absorbe une partie des contraintes subies par la lame élastique 1 17a, 1 17b lors de ce débattement angulaire.
Le coude 133 forme un angle d'environ 180° de sorte qu'une première extrémité 135 du coude 133 jointive du brin interne 132 est située radialement entre l'axe de rotation X et une seconde extrémité 136 du coude 133 jointive du brin externe 134. La lame élastique 1 17a, 1 17b présente ainsi une forme générale d'épingle à cheveux dont une branche est formée par le brin externe 134 et l'autre branche est formée conjointement par la portion de fixation 1 18 et le brin interne 132. En d'autre terme, la portion élastique 130 comporte deux régions de lame flexible radialement décalées l'une de l'autre et séparées par un espace vide.
Le brin externe 134 se développe circonférentiellement depuis le coude 133 jusqu'à l'extrémité libre 137 de la lame élastique 1 17a, 1 17b. Le brin externe 134 se développe sur une circonférence d'au moins 45° et pouvant aller jusqu'à 180° à l'état fléchi de la lame élastique 1 17a, 1 17b. La surface de came 120 se développe sur une face externe du brin externe 134. Avantageusement, la surface de came 120 se développe circonférentiellement sur un angle d'environ 125° à 130°. La surface de came 120 se développe circonférentiellement selon un rayon de courbure déterminé en fonction de la raideur souhaitée des lames élastiques 1 17a, 1 17b. Cette surface de came 120 peut présenter des rayons de courbure différents selon les raideurs ponctuelles souhaitées, afin de permettre des variations de pente de la courbe caractéristique de l'amortisseur de torsion, représentant le couple transmis en fonction du débattement angulaire.
Les lames élastiques 1 17a, 1 17b représentées schématiquement sur la figure 7 sont symétriques par rapport à l'axe de rotation X. La figure 8 est une vue schématique de l'amortisseur de torsion de la figure 7 dans une position de débattement angulaire entre le volant primaire et le volant secondaire.
Lorsqu'un couple entraînant est transmis du volant primaire 102 vers le volant secondaire 103 (sens direct), le couple à transmettre entraîne un débattement relatif entre le volant primaire 102 et le volant secondaire 103 selon une première direction. Les galets 121 sont alors déplacés d'un angle Ω par rapport aux lames élastiques 1 17a, 1 17b. Le déplacement des galets 121 sur les surfaces de came 120 entraînent une flexion des lames élastique 1 17a, 1 17b. La flexion des lames élastique 1 17a, 1 17b entraine le rapprochement d'une part des brins externes 134 de la lame 1 17a, 1 17b avec sa portion de fixation 1 18 et, d'autre part, le rapprochement de l'extrémité libre 137 d'une des lames 1 17a, 1 17b avec le coude 133 de l'autre des lames 1 17b, 1 17a. De préférence, ces rapprochements ne doivent pas occasionner de contacts entre le brin externe 134 et la portion de fixation 1 18 de la lame 1 17a, 1 17b, de tels contacts générant des perturbations dans l'amortissement des acyclismes et des vibrations.
Pour éviter de tels contacts, la longueur circonférentielle de la portion de fixation 1 18 est limitée de sorte que, en position de repos illustrée sur la figure 7, la portion de fixation 1 18 ne se développe pas circonférentiellement au-delà de l'axe formé par l'alignement entre le suiveur de came 121 et l'axe de rotation X. De préférence, une extrémité 138 de la portion de fixation 1 18 opposée à la portion élastique 130 d'une lame 1 17a, 1 17b est située entre le suiveur de came 121 correspondant et l'axe de rotation X lors d'un débattement angulaire maximal en sens rétro entre le volant primaire 102 et le volant secondaire 103, comme représenté par l'axe 143. Un tel débattement angulaire maximal est par exemple limité par une butée de fin de course comportant une butée 139 sur le volant primaire 102 en vis-à-vis circonférentiel d'une butée 140 sur le volant secondaire 103. Dans un autre mode de réalisation, non représenté, pour éviter le contact entre le brin externe 134 d'une lame élastique 1 17a, 1 17b et sa portion de fixation 1 18, l'épaisseur de la portion de fixation 1 18 est réduite par rapport à l'épaisseur de la portion élastique 130, et plus particulièrement au moins l'épaisseur de l'extrémité 138 de la portion de fixation 1 18 est réduite par rapport à l'épaisseur de la portion élastique 130.
Pour éviter le contact entre l'extrémité libre 137 d'une des lames 1 17a, 1 17b et le coude 133 de l'autre des lames 1 17b, 1 17a, l'extrémité libre 137 des lames 1 17a, 1 17b comporte un dégagement 141 . Ce dégagement 141 est formé sur une face interne du brin externe 134. Le dégagement 141 présente avantageusement un rayon de courbure identique ou proche au rayon de courbure d'une portion 142 de la face externe du coude 133 des lames 1 17a, 1 17b. Ainsi, lors d'une flexion des lames 1 17a, 1 17b, l'extrémité libre 137 de chaque lame 1 17a, 1 17b se rapproche du coude 133 de l'autre lame 1 17b, 1 17a, et la portion 142 de la surface externe du coude 133 de chaque lame 1 17b, 1 17a se loge dans le dégagement 141 de l'autre lame 1 17a, 1 17b pour retarder voire éviter le contact .
La longueur de la lame élastique 1 17a, 1 17b ainsi que l'agencement du brin externe 134, du coude 133 et du brin interne 132 d'une lame élastique 1 17a, 1 17b permet la transmission d'un couple élevé sans risque de dégradation des lames élastiques 1 17a, 1 17b ou de perte de coopération entre les suiveurs de came 121 et les surfaces de came 120.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
En particulier, les lames du moyen d'amortissement peuvent être indépendantes l'une de l'autre ou liées l'une à l'autre par un tronçon central. De même, il est possible de solidariser l'une des lames du moyen d'amortissement à l'un des éléments et l'autre des lames du moyen d'amortissement à l'autre des éléments.
Par ailleurs, les figures illustrent un amortisseur de torsion dans le cadre d'un double volant amortisseur mais un tel amortisseur de torsion peut être installé sur tout dispositif adapté. Ainsi, de tels amortisseurs de torsion peuvent équiper les frictions d'embrayage, dans le cas d'une transmission manuelle ou robotisée, ou les embrayages de verrouillage, également appelés embrayages « lock-up », équipant les dispositifs d'accouplement hydraulique, dans le cas d'une transmission automatique.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1 . Amortisseur de torsion pour dispositif de transmission de couple comportant :
- un premier élément (102) et un second élément (103) mobiles en rotation l'un par rapport à l'autre autour d'un axe de rotation X ; et
un moyen d'amortissement à lame pour transmettre un couple et amortir les acyclismes de rotation entre le premier élément et le second élément, le moyen d'amortissement à lame comportant :
o au moins une lame (1 17a, 1 17b) élastiquement déformable solidaire de l'un desdits premier et second éléments ; et
o au moins un élément d'appui (121 ) porté par l'autre desdits premier et second éléments et agencé pour coopérer avec ladite au moins une lame, ladite au moins une lame étant agencée de telle sorte que, pour un débattement angulaire entre les premier et second éléments par rapport à une position angulaire de repos, ledit au moins un élément d'appui exerce un effort de flexion sur ladite au moins une lame produisant conjointement une force de réaction apte à rappeler les premier et second éléments vers ladite position angulaire de repos,
ledit amortisseur étant caractérisé en ce que, pour un secteur angulaire prédéterminé, le moyen d'amortissement à lame comporte deux régions de lame flexibles (132, 134) décalées radialement l'une de l'autre selon une direction radiale, un espace libre séparant radialement lesdites deux régions de lame flexibles.
2. Amortisseur de torsion selon la revendication 1 , dans lequel ladite au moins une lame comporte une extrémité distale libre (137) mobile radialement de telle sorte que la distance radiale séparant l'axe de rotation de ladite extrémité distale libre varie en fonction du débattement angulaire entre le premier et le second éléments.
3. Amortisseur de torsion selon l'une des revendications 1 à 2, dans lequel le secteur angulaire le long duquel les deux régions de lame flexibles sont décalées radialement l'une de l'autre s'étend sur au moins 1 °, par exemple sur au moins 5°, de préférence au moins 10°, notamment au moins 30°.
4. Amortisseur de torsion selon l'une des revendications 1 à 3, dans lequel ladite au moins une lame comporte une portion de fixation (1 18) de la lame sur ledit premier ou second élément et une portion élastique (130), la portion élastique comportant l'extrémité distale libre (137) de ladite au moins une lame, ledit au moins un élément d'appui étant agencé pour coopérer avec la portion élastique de ladite au moins une lame,
et dans lequel la portion élastique comporte un brin interne (132) et un brin externe (134) reliés par un coude (133), le brin interne se développant depuis la portion de fixation jusqu'au coude et le brin externe se développant circonférentiellement depuis le coude jusqu'à l'extrémité distale libre, le brin interne comportant l'une des deux régions de lame flexibles et radialement décalées du moyen d'amortissement et le brin externe comportant l'autre des deux régions de lame flexibles et radialement décalées du moyen d'amortissement.
5. Amortisseur de torsion selon la revendication 4, dans lequel la portion de fixation se développe circonférentiellement et présente une épaisseur selon une direction radiale inférieure à l'épaisseur du brin externe de la portion élastique.
6. Amortisseur de torsion selon la revendication 4 ou 5, dans lequel la portion de fixation se développe circonférentiellement sur une longueur inférieure à la longueur du brin externe de la portion élastique.
7. Amortisseur de torsion selon l'une des revendications 4 à 6, dans lequel ledit au moins un élément d'appui est disposé radialement à l'extérieur du brin externe de ladite au moins une lame.
8. Amortisseur de torsion selon l'une quelconque des revendications 4 à 7, dans lequel le brin externe s'étend circonférentiellement sur au moins 45° et peut s'étendre circonférentiellement jusqu'à 180° dans un état fléchi de la lame correspondant à un débattement angulaire maximal entre le premier élément et le second élément.
9. Amortisseur de torsion selon l'une des revendications 4 à 8, dans lequel le moyen d'amortissement à lame comporte deux lames élastiquement déformables solidaires de l'un desdits premier et second éléments et deux éléments d'appui portés par l'autre desdits premier et second éléments, les éléments d'appui étant respectivement agencés pour coopérer avec l'une et l'autre des deux lames élastiquement déformables, et dans lequel chaque lame comporte deux régions de lame flexibles décalées radialement l'une de l'autre, un espace libre séparant radialement lesdites régions de lame flexibles de chacune des lames.
10. Amortisseur de torsion selon la revendication 9, dans lequel les lames élastiquement déformables sont symétriques par rapport à l'axe de rotation X.
1 1 . Amortisseur de torsion selon la revendication 9 ou 10, dans lequel l'extrémité distale de chaque lame élastiquement déformable comporte un dégagement interne (141 ), le dégagement d'une lame présentant un rayon de courbure supérieur au rayon de courbure d'une surface externe (142) de l'autre lame de sorte que ladite surface externe (142) de l'autre lame puisse s'insérer dans le dégagement.
12. Amortisseur de torsion selon l'une des revendications 9 à 1 1 , dans lequel les lames élastiquement déformables sont fixées de manière indépendante au premier ou second élément.
13. Amortisseur de torsion selon l'une des revendications 4 à 12, dans lequel la portion élastique comporte une surface de came (120) et dans lequel ledit au moins un élément d'appui comporte un suiveur de came (121 ) agencé pour coopérer avec la surface de came.
14. Amortisseur de torsion selon la revendication 13, dans lequel le suiveur de came est un galet monté mobile en rotation sur le premier ou second élément respectif par l'intermédiaire d'un palier à roulement.
15. Elément de transmission de couple, notamment pour véhicule automobile, comportant un amortisseur de torsion selon l'une des revendications 1 à 14.
PCT/EP2015/072018 2014-10-01 2015-09-24 Amortisseur de torsion a lame WO2016050611A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15770510.4A EP3201489A1 (fr) 2014-10-01 2015-09-24 Amortisseur de torsion a lame
US15/514,978 US20180231097A1 (en) 2014-10-01 2015-09-24 Blade-type torsional damper
CN201580053763.5A CN106715956B (zh) 2014-10-01 2015-09-24 板片式扭转减振器
JP2017517737A JP6630352B2 (ja) 2014-10-01 2015-09-24 ブレード付きトーショナルダンパ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459347 2014-10-01
FR1459347A FR3026802B1 (fr) 2014-10-01 2014-10-01 Amortisseur de torsion a lame

Publications (1)

Publication Number Publication Date
WO2016050611A1 true WO2016050611A1 (fr) 2016-04-07

Family

ID=51932496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/072018 WO2016050611A1 (fr) 2014-10-01 2015-09-24 Amortisseur de torsion a lame

Country Status (6)

Country Link
US (1) US20180231097A1 (fr)
EP (1) EP3201489A1 (fr)
JP (1) JP6630352B2 (fr)
CN (1) CN106715956B (fr)
FR (1) FR3026802B1 (fr)
WO (1) WO2016050611A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020155A1 (fr) 2016-07-28 2018-02-01 Valeo Embrayages Systeme d'amortissement des vibrations pour une chaine de transmission de vehicule automobile
US9903456B1 (en) 2016-08-24 2018-02-27 Valeo Embrayages Torque converter with lock-up clutch bias spring
FR3058492A1 (fr) * 2016-11-09 2018-05-11 Valeo Embrayages Amortisseur de torsion a lames
CN109312816A (zh) * 2016-04-19 2019-02-05 法雷奥离合器公司 扭转阻尼器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114469A1 (de) * 2017-06-29 2019-01-03 Schaeffler Technologies AG & Co. KG Drehschwingungstilger
DE102017114446A1 (de) * 2017-06-29 2019-01-03 Schaeffler Technologies AG & Co. KG Drehschwingungstilger
US20190072165A1 (en) * 2017-09-06 2019-03-07 Valeo Embrayages Torsional vibration damper with multi-piece radially elastic output member, and method for making the same
US12110936B2 (en) * 2020-08-18 2024-10-08 Illinois Tool Works Inc. Silicone free rotational spring hinge dampener

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628804A1 (fr) * 1988-03-17 1989-09-22 Fichtel & Sachs Ag Amortisseur de vibrations de torsion
GB2283558A (en) * 1993-11-05 1995-05-10 Luk Lamellen & Kupplungsbau Rotary vibration damper
FR3000155A1 (fr) 2012-12-21 2014-06-27 Valeo Embrayages Amortisseur de torsion pour un dispositif de transmission de couple d'un vehicule automobile
WO2014128380A1 (fr) * 2013-02-22 2014-08-28 Valeo Embrayages Amortisseur de torsion pour disque de friction d'embrayage d'un véhicule automobile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW218408B (fr) * 1991-12-27 1994-01-01 Dana Corp
GB9511080D0 (en) * 1995-06-01 1995-07-26 Automotive Products Plc Twin mass flywheel
US5893355A (en) * 1996-12-26 1999-04-13 Eaton Corporation Supercharger pulley isolator
DE19919449B4 (de) * 1998-05-04 2015-10-15 Schaeffler Technologies AG & Co. KG Triebscheibe
DE102006047006A1 (de) * 2005-10-11 2007-05-24 OGURA CLUTCH CO., LTD., Kiryu Kraftübertragungseinrichtung
FR2900704B1 (fr) * 2006-05-03 2009-06-05 Valeo Embrayages Embrayage a friction perfectionne, en particulier pour vehicule automobile, rondelle de guidage d'amortisseur d'embrayage a friction, et procede de montage d'un embrayage a friction
CN201228736Y (zh) * 2008-07-08 2009-04-29 杭州发达齿轮箱集团有限公司 弹性联轴器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628804A1 (fr) * 1988-03-17 1989-09-22 Fichtel & Sachs Ag Amortisseur de vibrations de torsion
GB2283558A (en) * 1993-11-05 1995-05-10 Luk Lamellen & Kupplungsbau Rotary vibration damper
FR3000155A1 (fr) 2012-12-21 2014-06-27 Valeo Embrayages Amortisseur de torsion pour un dispositif de transmission de couple d'un vehicule automobile
WO2014128380A1 (fr) * 2013-02-22 2014-08-28 Valeo Embrayages Amortisseur de torsion pour disque de friction d'embrayage d'un véhicule automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312816A (zh) * 2016-04-19 2019-02-05 法雷奥离合器公司 扭转阻尼器
CN109312816B (zh) * 2016-04-19 2021-12-03 法雷奥离合器公司 扭转阻尼器
WO2018020155A1 (fr) 2016-07-28 2018-02-01 Valeo Embrayages Systeme d'amortissement des vibrations pour une chaine de transmission de vehicule automobile
US9903456B1 (en) 2016-08-24 2018-02-27 Valeo Embrayages Torque converter with lock-up clutch bias spring
WO2018037179A1 (fr) * 2016-08-24 2018-03-01 Valeo Embrayages Dispositif de transmission de couple
FR3058492A1 (fr) * 2016-11-09 2018-05-11 Valeo Embrayages Amortisseur de torsion a lames

Also Published As

Publication number Publication date
FR3026802B1 (fr) 2017-02-17
JP2017530317A (ja) 2017-10-12
CN106715956B (zh) 2020-08-14
CN106715956A (zh) 2017-05-24
FR3026802A1 (fr) 2016-04-08
EP3201489A1 (fr) 2017-08-09
US20180231097A1 (en) 2018-08-16
JP6630352B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
EP2824361B1 (fr) Double volant amortisseur à moyens d'amortissements perfectionnés
EP2935935B1 (fr) Amortisseur de torsion pour un dispositif de transmission de couple d'un vehicule automobile
EP2959181B1 (fr) Amortisseur de torsion pour disque de friction d'embrayage d'un véhicule automobile
EP3201489A1 (fr) Amortisseur de torsion a lame
EP3201490B1 (fr) Amortisseur de torsion a lame
FR3027986A1 (fr) Amortisseur de torsion comportant des moyens d'amortissement a lame
EP2678583B1 (fr) Amortisseur de torsion pour un embrayage
WO2016020585A1 (fr) Amortisseur, notamment pour un embrayage d'automobile
FR3027988A1 (fr) Amortisseur, notamment pour un embrayage d'automobile
WO2016050593A1 (fr) Amortisseur, notamment pour un embrayage d'automobile
FR3057323A1 (fr) Amortisseur de torsion a lames
FR3031365A1 (fr) Amortisseur, notamment pour un embrayage d'un vehicule automobile
WO2016146415A1 (fr) Amortisseur de torsion
EP2954224B1 (fr) Dispositif de transmission de couple pour un véhicule automobile
WO2016198452A1 (fr) Amortisseur de torsion
FR3036759A1 (fr) Amortisseur de torsion a double lame
FR3053087B1 (fr) Amortisseur de torsion a lame
EP3205901B1 (fr) Amortisseur de torsion
WO2016050592A1 (fr) Amortisseur, notamment pour un embrayage d'automobile
EP2492539B1 (fr) Amortisseur de torsion pour un embrayage
FR3069601B1 (fr) Dispositif de fin de course pour un amortisseur de torsion
WO2017102622A1 (fr) Amortisseur de vibrations a lame flexible
FR3058492A1 (fr) Amortisseur de torsion a lames

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770510

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015770510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15514978

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017517737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE