WO2016048048A1 - Method for preparing ε-caprolactam by using novel caprolactam converting enzyme - Google Patents
Method for preparing ε-caprolactam by using novel caprolactam converting enzyme Download PDFInfo
- Publication number
- WO2016048048A1 WO2016048048A1 PCT/KR2015/010043 KR2015010043W WO2016048048A1 WO 2016048048 A1 WO2016048048 A1 WO 2016048048A1 KR 2015010043 W KR2015010043 W KR 2015010043W WO 2016048048 A1 WO2016048048 A1 WO 2016048048A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- caprolactam
- converting enzyme
- present
- gene
- enzyme
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/10—Nitrogen as only ring hetero atom
Definitions
- the present invention relates to a novel caprolactam converting enzyme, and more particularly, to a novel caprolactam converting enzyme for converting aminocapronic acid into ⁇ -caprolactam and to a gene encoding the caprolactam converting enzyme or the caprolactam converting enzyme. It relates to a method for producing caprolactam using the microorganisms.
- ⁇ -caprolactam is a precursor for synthetic polymer nylon 6, synthetic leather and polyurethane linkers, and is a monomer that is in the spotlight in the world market for $ 2,700 to 3,300.
- (epsilon) -caprolactam is a lactam type organic compound of 6-aminohexanoic acid ( ⁇ -aminohexanoic acid, 6-aminocapronic acid), and nylon-6 is produced by a ring-opening polymerization reaction of an ⁇ -caprolactam monomer.
- the starting compound for producing ⁇ -caprolactam is benzene, benzene is converted to cyclohexane or phenol, and the cyclohexane or phenol is subjected to cyclohexanone to cyclohexanone oxime), which intermediate is heated under sulfuric acid.
- This chemical reaction is known as the Beckman rearrangement.
- the starting compound benzene is produced through the purification of petroleum compounds.
- the process of producing ⁇ -caprolactam through a chemical reaction is increasing the need for bioprocessing technology research due to problems such as the use of benzene toxic substances, the generation of environmental pollution by-products and the use of strong oxidizing agents.
- the present invention provides a novel enzyme having an activity of converting aminocapronic acid into ⁇ -caprolactam.
- Another object of the present invention is to provide a method for preparing ⁇ -caprolactam using an enzyme having an activity of converting the aminocapronic acid into ⁇ -caprolactam.
- the present invention provides a caprolactam converting enzyme having an amino acid sequence having at least 90% homology with SEQ ID NO: 1.
- the present invention also provides a gene encoding the caprolactam converting enzyme and a recombinant vector containing the gene.
- the present invention also provides a recombinant microorganism into which the gene or the recombinant vector is introduced.
- the present invention also comprises the steps of converting aminocapronic acid into ⁇ -caprolactam using the caprolactam converting enzyme; And it provides a method for producing a method for producing ⁇ -caprolactam comprising the step of recovering the generated ⁇ -caprolactam.
- the present invention also comprises the steps of culturing the recombinant microorganisms in aminocapronic acid-containing medium to produce caprolactam; And it provides a method for producing ⁇ -caprolactam comprising the step of obtaining the produced caprolactam.
- aminocapronic acid can be efficiently converted into ⁇ -caprolactam through a bio biosynthesis process without using an organic solvent, thereby producing ⁇ -caprolactam in an environmentally friendly manner without generating toxic substances or byproducts of environmental pollution. can do.
- FIG. 1 shows an SDS PAGE gel of caprolactam converting enzyme according to the present invention.
- Figure 4 shows the comparison of the enzyme activity according to the temperature of the caprolactam converting enzyme according to the present invention.
- Figure 5 shows a comparison of the enzyme activity according to the pH of the caprolactam converting enzyme according to the present invention.
- pH indicates the activity in PIPES buffer solution
- ⁇ indicates enzyme activity in the HEPPS buffer solution.
- FIG. 6 is a schematic diagram of a CL-GESS gene circuit capable of detecting ⁇ -caprolactam.
- ⁇ -caprolactam has been synthesized from benzene through conventional chemical reactions, development of synthetic methods through bio biosynthesis has been required due to problems such as the use of benzene, a toxic substance, the generation of environmental pollution by-products, and the use of strong oxidizers.
- the present inventors developed a genetic circuit using a regulator capable of detecting ⁇ -caprolactam (Korean Patent Publication No. 2015-0056072), and discovered a caprolactam converting enzyme from metagenome using the gene circuit.
- One aspect of the invention relates to a caprolactam converting enzyme having an amino acid sequence having at least 90% homology with SEQ ID NO: 1 and a gene encoding the caprolactam converting enzyme.
- the gene encoding the caprolactam converting enzyme has a nucleotide sequence of SEQ ID NO: 2.
- the epsilon caprolactam converting enzyme of the present invention comprises the amino acid sequence of SEQ ID NO: 1, wherein the epsilon caprolactam converting enzyme deletes, inserts, substitutes, or substitutes for amino acid residues within a range that does not affect the function of the protein. May be variants, or fragments of amino acids having different sequences. Amino acid exchange at the protein and peptide levels that does not alter the activity of the ⁇ -caprolactam converting enzyme as a whole is known in the art. In some cases, it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, and the like.
- the present invention includes a protein having an amino acid sequence substantially identical to a protein comprising the amino acid sequence of SEQ ID NO: 1, and a variant thereof or an active fragment thereof.
- the substantially identical protein means those having homology of at least 80%, preferably at least 90%, most preferably at least 95% of amino acid sequences, but are not limited thereto, and have homology of at least 80% amino acid sequence and the same. If it has enzyme activity, it is included in the scope of the present invention.
- Gene of the epsilon caprolactam converting enzyme is preferably composed of the nucleotide sequence of SEQ ID NO: 2.
- the gene encoding the ⁇ -caprolactam converting enzyme and variants or active fragments thereof of the present invention may be modified in the coding region within a range not changing the amino acid sequence of the enzyme and its variants or active fragments expressed from the coding region. Modifications may be made, and various mutations may be made within a range that does not affect the expression of genes in parts other than coding regions, and such mutation genes are also included in the scope of the present invention. Therefore, the present invention includes a gene consisting of a base sequence substantially the same as the gene of SEQ ID NO: 2 and fragments of the gene.
- Genes consisting of the same base sequence means those having sequence homology of at least 80%, preferably at least 90%, most preferably at least 95%, but are not limited thereto, and at least 80% sequence homology. And encoded proteins are included in the present invention if they have the same enzymatic activity. As described above, as long as the gene of the ⁇ -caprolactam converting enzyme of the present invention encodes a protein having equivalent activity, one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof. It is included in the scope of the present invention.
- the amino acid sequence of SEQ ID NO: 1 contained in the ⁇ -caprolactam converting enzyme is preferably encoded by a gene consisting of the nucleotide sequence of SEQ ID NO: 2, but the present invention is not limited thereto, and the present invention has the same amino acid sequence.
- the protein may be encoded by a gene consisting of another base sequence which is substantially the same as the base sequence of SEQ ID NO: 2.
- Such base sequences may be single stranded or double stranded, and may be DNA molecules or RNA molecules.
- a meta-genome library derived from a tidal flat and a transformant co-transformed into E. coli were cultured in an aminocaproic acid-containing solid medium using a CL-GESS gene circuit using a regulator capable of detecting ⁇ -caprolactam.
- a colony expressing a fluorescent gene, which is a reporter gene was selected, and the colonies were cultured to separate and amplify the separated gene to obtain a caprolactam converting enzyme gene.
- Another aspect of the invention relates to a recombinant vector containing a gene encoding said caprolactam converting enzyme and a recombinant microorganism into which said gene or said recombinant vector is introduced.
- the recombinant vector includes, but is not limited to, plasmid vector, cosmid vector, bacteriophage vector, viral vector, and the like.
- the recombinant vector is an expression control sequence such as a promoter, a terminator, an enhancer, or a sequence for secretion, etc., depending on the type of host cell to produce the ⁇ -caprolactam converting enzyme of the present invention. Can be combined as appropriate for the purpose.
- the recombinant vector may further include a selection marker for selecting a host cell into which the vector has been introduced, and, in the case of a replicable expression vector, may include a replication origin.
- the recombinant vector may include a sequence for facilitating the purification of the expression protein, specifically, the gene encoding the separation and purification tag to be operable to the gene encoding the ⁇ -caprolactam converting enzyme of the present invention Can be connected.
- the separation and purification tag may be used alone, or GST, poly-Arg, FLAG, histidine-tag (His-tag) and c-myc, or two or more of them may be sequentially connected.
- the gene encoding the epsilon caprolactam converting enzyme may be cloned through a restriction enzyme cleavage site.
- a gene of the epsilon caprolactam converting enzyme may be used. Linked in frame, the enzyme can be obtained and then cleaved with protein cleavage enzymes to produce the original form of ⁇ -caprolactam converting enzyme.
- a recombinant expression vector comprising a gene encoding an epsilon caprolactam converting enzyme is introduced into the recombinant microorganism of the present invention.
- a transformant may be prepared by transforming the recombinant vector according to the present invention into any one suitable host cell selected from the group consisting of bacteria, yeast, E. coli, fungi, plant cells and animal cells according to expression purposes.
- the host cell may be Escherichia coli ( E. coli BL21 (DE3), DH5 ⁇ , etc.) or yeast cells (Saccharomyces genus, Pichia genus, etc.).
- Escherichia coli E. coli BL21 (DE3), DH5 ⁇ , etc.
- yeast cells Sacharomyces genus, Pichia genus, etc.
- appropriate culture methods, media conditions and the like can be easily selected by those skilled in the art according to the type of host cell.
- a known technique that is, a heat shock method, an electric shock method, or the like may be used.
- a caprolactam converting enzyme gene screened in a metagenome library is inserted into a pET 28 (+) (Novagen, USA) vector to prepare a recombinant vector containing a caprolactam converting enzyme gene and the vector is expressed in E. coli ER2566. Strain (Novagen, USA) was transformed to obtain a transformant.
- Another aspect of the present invention relates to a method for producing caprolactam converting enzyme by culturing and purifying recombinant E. coli introduced with a recombinant vector containing a caprolactam converting enzyme gene.
- the method for producing ⁇ -caprolactam converting enzyme of the present invention comprises the steps of: 1) culturing a transformant into which a recombinant expression vector containing a gene encoding the ⁇ -caprolactam converting enzyme of the present invention is introduced; 2) inducing expression of a gene encoding the ⁇ -caprolactam converting enzyme in the transformant cultured in step 1); And 3) separating the epsilon caprolactam converting enzyme from the culture of the transformant in which the expression of the epsilon caprolactam converting enzyme gene is induced in step 2).
- the N-terminus of the gene encoding the epsilon caprolactam converting enzyme of step 1) may be further linked to a gene or protein cleavage cleavage site encoding the tag for separation and purification, thereby resulting in a recombinant epsilon caprolactam converting enzyme. It may be possible to purify or to obtain the ⁇ -caprolactam converting enzyme in its original form.
- Cultivation of the transformant of step 1) may be performed according to a known method, and conditions such as culture temperature, incubation time and pH of the medium may be appropriately adjusted.
- the culture method may include batch culture, continuous culture and fed-batch culture.
- the culture medium used should suitably meet the requirements of the particular strain.
- Separation of ⁇ -caprolactam converting enzyme from the culture produced by the culture of step 3) can be carried out in a conventional method in the art, such as centrifugation, filtration.
- the ⁇ -caprolactam converting enzyme isolated by the above method can be purified in a conventional manner, for example, using salting out (eg, ammonium sulfate precipitation, sodium phosphate precipitation), solvent precipitation (acetone, ethanol, etc.). Protein fraction precipitation), dialysis, gel filtration, ion exchange, chromatography such as reversed phase column chromatography, and ultrafiltration and the like can be used alone or in combination to purify the enzyme of the present invention.
- salting out eg, ammonium sulfate precipitation, sodium phosphate precipitation
- solvent precipitation acetone, ethanol, etc.
- Protein fraction precipitation dialysis, gel filtration, ion exchange, chromatography such as reversed phase column chromatography, and ultrafiltration and the like can be used alone
- Another aspect of the invention is the step of converting aminocapronic acid to ⁇ -caprolactam using a caprolactam converting enzyme; And it relates to a method for producing ⁇ -caprolactam comprising the step of recovering the generated ⁇ -caprolactam.
- the production method may include the product for producing ⁇ -caprolactam used in the production of ⁇ -caprolactam.
- the method for producing ⁇ -caprolactam of the present invention comprises the steps of 1) reacting the ⁇ -caprolactam converting enzyme of the present invention with aminocapronic acid; And 2) recovering ⁇ -caprolactam from the reaction product resulting from the reaction in step 1).
- the method for producing ⁇ -caprolactam and the composition for preparing ⁇ -caprolactam is to use the enzymatic activity of the ⁇ -caprolactam converting enzyme of the present invention in vitro .
- [epsilon] -caprolactam conversion enzyme is used to generate [epsilon] -caprolactam from its substrate, aminocapronic acid.
- the reaction of step 1) may be performed at a temperature range of 30 ° C. to 50 ° C., preferably at a temperature range of 35 ° C. to 45 ° C., more preferably at a temperature of about 37 ° C., but is not limited thereto.
- the reaction of step 1) may be performed at a pH range of 6.5 to 8.5, preferably at a pH range of 7 to 8, more preferably at a pH of 7.5, but is not limited thereto.
- reaction of step 1) may include coenzymes such as NAD, NADH, and FDH together with the ⁇ -caprolactam converting enzyme in order to enhance the activity of the ⁇ -caprolactam converting enzyme, in particular FDH together. It is preferred to be included.
- the aminocapronic acid is preferably injected from the outside, the aminocapronic acid should be injected in a sufficient amount in accordance with the desired amount of ⁇ -caprolactam.
- the injection of the aminocaproic acid may be performed continuously. In particular, when the aminocapronic acid is continuously injected, it is possible to continuously produce ⁇ -caprolactam by the ⁇ -caprolactam converting enzyme.
- the purified caprolactam converting enzyme was reacted in an aminocapronic acid containing solution to obtain ⁇ -caprolactam (FIG. 2).
- the present invention comprises the steps of culturing the recombinant microorganism in an aminocapronic acid containing medium to produce caprolactam; And it relates to a method for producing ⁇ -caprolactam comprising the step of obtaining the produced caprolactam.
- DE3 was inserted into chromosomal DNA of E. coli EPI300 (EPicentre, USA) using a DE3 Lysogenization Kit (Novagen, USA). EPI300 (DE3) was prepared.
- E. coli EPI300 (DE3) prepared as described above, co-transformed the metagenome library derived from the mud flat and CL-GESS prepared in Example 1, transformants were 50 mM aminocapronic acid, 100 ⁇ g / ml ampicillin , LB solid medium containing 34 ⁇ g / ml chloramphenicol was plated and incubated at 37 ° C. for 24 hours to induce fluorescence. The degree of fluorescence of the single colonies on the solid medium was observed with a fluorescence microscope (Nicon AZ100-M, Japan) to select single colonies with the fluorescence expression within the top 5%.
- the metagenomic gene was isolated from the single colony, and the nucleotide sequence was analyzed. As a result, the metagenomic gene introduced into the single colony was sequenced. It was confirmed that it has the nucleotide sequence of No. 3 (Macrogen, Korea).
- the primers were designed with NdeI and XhoI restriction enzyme cleavage portions, respectively, and amplified the nucleotide sequence of the gene by PCR using the primers.
- the PCR product containing the amplified caprolactam converting enzyme gene was inserted into the plasmid vector pET28 (+) (Novagen, USA) using restriction enzymes NdeI and XhoI to construct a pET28 (+) / caprolactam converting enzyme expression vector.
- the recombinant expression vector thus obtained was transformed into E. coli ER2566 strain (Novagen, USA) by a conventional transformation method to prepare a 'recombinant ER2566 strain'.
- transformants were stored frozen before incubation for the production of caprolactam by addition of 20% glycerin solution.
- the recombinant ER2566 strain prepared in Example 3 was inoculated into a test tube containing 3 ml of LB medium, followed by incubation with a shake incubator at 37 ° C. until absorbance was 2.0 at 600 nm.
- the culture was carried out by adding the culture medium to a 2,000 ml flask containing 500 ml of LB medium.
- IPTG was added to a final concentration of 0.1 mM to induce overexpression of caprolactam converting enzyme.
- Stirring rate was adjusted to 200rpm, the culture temperature was maintained at 37 °C, after the addition of IPTG was incubated by adjusting the stirring speed to 150rpm, the culture temperature to 16 °C.
- the culture medium of the recombinant ER2566 strain induced overexpression of caprolactam converting enzyme was centrifuged at 6,000 g for 30 minutes at 4 ° C., washed twice with 0.85% sodium chloride (NaCl), and then 50 mM sodium phosphate and 300 mM Sodium chloride, 10 mM immidazole and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride) were added to disrupt the cell solution with a sonicator.
- the cell lysate was again centrifuged at 13,000 ⁇ g, 4 ° C. for 20 minutes to take only the supernatant, followed by His-tag in a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA).
- An IMAC adsorption column was used to isolate only the caprolactam converting enzyme, and the enzyme isolated as described above was confirmed by SDS-PAGE.
- Example 4 In order to measure the activity of the caprolactam converting enzyme isolated in Example 4, the reaction was performed for 10 minutes using 50 mM pH 7.5 HEPES buffer solution containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme. After the reaction, the reaction was stopped by adding hydrogen chloride (HCl) to a final concentration of 200 mM.
- HCl hydrogen chloride
- the concentration of precursor aminocapronic acid and product caprolactam were measured by high pressure liquid chromatography equipped with LC-Mass detector and ZORBAX ECLIPSE XDB-C18 (Agilent, USA) column.
- the ZORBAX ECLIPSE XDB-C18 (Agilent, USA) column was used at 10 ° C. at 0.4 mL / min, using solvent A (0.1% formic acid; formic acid) and solvent B (100% acetonitrile; acetonitrile). -90% acetonitrile was allowed to pass sequentially.
- NMR analysis of the reaction solution in which caprolactam converting enzyme and aminocaproic acid reacted was requested to the Basic Science Research Institute (Ochang) to confirm the degree of conversion of aminocapronic acid to caprolactam.
- caprolactam converting enzyme As a result, it was confirmed that aminocapronic acid is converted to caprolactam by caprolactam converting enzyme (FIGS. 2 and 3), and the specific activity of caprolactam converting enzyme is 20 ⁇ 1.2 nmole / min as shown in Table 2. / mg.
- Caprolactam converting enzyme was reacted with 50 mM pH 7.5 HEPES buffer solution containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme at a temperature ranging from 25 to 50 ° C. for 10 minutes, followed by a final concentration of 200 mM. Hydrogen chloride (HCl) was added to stop the reaction.
- HCl Hydrogen chloride
- the optimum temperature of the caprolactam converting enzyme was confirmed to be 40 °C (Fig. 4).
- PH ranges from 6.5 to 7.5 using 50 mM piperazine-N, N'-bis (2-ethane sulfonic acid) (PIPES) buffer containing 1 mM aminocapronic acid (substrate) and 10 units / ml caprolactam converting enzyme
- PPES piperazine-N, N'-bis (2-ethane sulfonic acid)
- the enzyme reaction was carried out until, and the enzyme reaction was carried out using a 50 mM HEPES buffer containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme from pH 7.5 to 8.5.
- the enzymatic reaction was performed at 40 ° C. for 10 minutes, and the reaction was stopped again by adding a final concentration of 200 mM hydrogen chloride (HCl).
- the novel ⁇ -caprolactam converting enzyme according to the present invention has excellent activity for converting aminocapronic acid into ⁇ -caprolactam
- the ⁇ -caprolactam converting enzyme of the present invention is useful in a field requiring ⁇ -caprolactam. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to a novel ε-caprolactam converting enzyme and, more specifically, to: a novel ε-caprolactam converting enzyme for converting aminocaproic acid into ε-caprolactam; and a method for preparing ε-caprolactam by using the ε-caprolactam converting enzyme or a microorganism having been transformed by a gene encoding the ε-caprolactam converting enzyme. According to the present invention, aminocaproic acid can be efficiently converted into ε-caprolactam through a biosynthetic process without using an organic solvent, and thus ε-caprolactam can be prepared in an environmentally friendly manner without producing a toxic material or an environmentally pollutive byproduct.
Description
본 발명은 신규 카프로락탐 전환 효소에 관한 것으로, 더욱 자세하게는 아미노카프론산을 ε-카프로락탐으로 전환하는 신규 카프로락탐 전환 효소 및 상기 카프로락탐 전환 효소 또는 상기 카프로락탐 전환 효소를 코딩하는 유전자로 형질 전환된 미생물을 이용한 카프로락탐의 제조 방법에 관한 것이다.The present invention relates to a novel caprolactam converting enzyme, and more particularly, to a novel caprolactam converting enzyme for converting aminocapronic acid into ε-caprolactam and to a gene encoding the caprolactam converting enzyme or the caprolactam converting enzyme. It relates to a method for producing caprolactam using the microorganisms.
ε-카프로락탐(ε-caprolactam)은 합성 폴리머 나일론 6, 합성 가죽, 폴리우레탄 링커의 전구체로 활용되는 물질로서 세계 시장에서 톤당 $2,700 ~ 3,300으로 각광받고 있는 모노머이다. ε-카프로락탐은 6-아미노헥산산(ε-아미노헥산산, 6-아미노카프론산)의 락탐형 유기 화합물로, ε-카프로락탐 단량체의 개환 중합 반응에 의해 나일론-6가 생산된다. ε-카프로락탐을 생산하기 위한 출발 화합물은 벤젠으로, 벤젠은 시클로헥산(cyclohexane) 또는 페놀(phenol)로 전환되고, 상기 시클로헥산 또는 페놀은 시클로헥사논(cyclohexanone)을 거쳐 시클로헥사논 옥심(cyclohexanone oxime)이 되고, 이 중간체는 황산 하에서 가열된다. 이 화학 반응은 베크만 전위(Beckman rearrangement)라고 알려져 있다. 상기 출발 화합물인 벤젠은 석유 화합물들의 정제를 통해 생산된다. 하지만, 화학반응을 통해 ε-카프로락탐을 생산하는 공정은 독성물질인 벤젠의 사용, 환경오염 부산물의 생성 및 강산화제 사용 등의 문제점으로 인해 바이오공정 기술연구에 대한 필요성이 증가하고 있는 추세이다. ε-caprolactam is a precursor for synthetic polymer nylon 6, synthetic leather and polyurethane linkers, and is a monomer that is in the spotlight in the world market for $ 2,700 to 3,300. (epsilon) -caprolactam is a lactam type organic compound of 6-aminohexanoic acid (ε-aminohexanoic acid, 6-aminocapronic acid), and nylon-6 is produced by a ring-opening polymerization reaction of an ε-caprolactam monomer. The starting compound for producing ε-caprolactam is benzene, benzene is converted to cyclohexane or phenol, and the cyclohexane or phenol is subjected to cyclohexanone to cyclohexanone oxime), which intermediate is heated under sulfuric acid. This chemical reaction is known as the Beckman rearrangement. The starting compound benzene is produced through the purification of petroleum compounds. However, the process of producing ε-caprolactam through a chemical reaction is increasing the need for bioprocessing technology research due to problems such as the use of benzene toxic substances, the generation of environmental pollution by-products and the use of strong oxidizing agents.
현재, 다른 방법으로서 바이오 생합성 과정을 통해 ε-카프로락탐의 전구체인 6-아미노헥사에노익산을 효소적 방법으로 전환하는 방법(미국 공개특허공보 제2009-0137759호), 6-아미노카프론산, ε-카프로락탐, 헥사메틸렌디아민 또는 레불린산 경로를 가지는 비-천연 미생물 유기체(미국 공개특허공보 제2010-0317069호), 아디페이트, 6-아미노카프론산 또는 ε-카프로락탐 통로를 가지는 비-천연 미생물 유기체(미국 등록특허공보 제7799545호)에 관해 연구가 이루어지고 있다. 최근에 유기용매 내에서 효소를 이용하여 아미노카프론산으로부터 ε-카프로락탐 전환에 관한 연구가 보고되어 있긴 하지만(Tetrahedron Letters, 54:370-372, 2013), 수계에서 효소 혹은 미생물을 이용하여, 아미노카프론산으로부터 ε-카프로락탐 전환에 관한 결과는 아직 보고된 바가 없다. Currently, as another method, a method of converting 6-aminohexaenoic acid, which is a precursor of ε-caprolactam, to an enzymatic method through a bio biosynthesis process (US Patent Publication No. 2009-0137759), 6-aminocaproic acid, non-naturally occurring microbial organisms having ε-caprolactam, hexamethylenediamine or levulinic acid pathways (US Patent Publication No. 2010-0317069), adipates, 6-aminocapronic acid or non-having ε-caprolactam pathways Research is being done on natural microbial organisms (US Pat. No. 7799545). Although studies have recently been reported on the conversion of ε-caprolactam from aminocaproic acid using enzymes in organic solvents (Tetrahedron Letters, 54: 370-372, 2013), the use of enzymes or microorganisms in water No results have been reported for ε-caprolactam conversion from capronic acid.
최근에 세포내에서 ε-카프로락탐을 감지할 수 있는 조절인자를 이용한 유전자 회로에 관한 연구가 보고되었다(한국 공개특허공보 제2015-0056072호). 이를 통해 미생물 내의 소량의 ε-카프로락탐도 감지 및 정량할 수 있고, 그에 따른 신규 효소 탐색 방법이 연구되었다. 또한 유전자 회로를 이용한 효소 탐색 방법을 이용하게 되면, 환경이나 메타게놈 라이브러리를 비롯한 다양한 유전자 집단에서 유용유전자를 감지 할 수 있고, 화합물에 대한 민감도와 발현조절을 이용하여 다양한 효소 활성을 고감도로 빠르게 감지 및 정량할 수 있다. Recently, a study on a gene circuit using a regulator capable of detecting ε-caprolactam in a cell has been reported (Korea Patent Publication No. 2015-0056072). Through this, a small amount of ε-caprolactam can be detected and quantified in microorganisms, and a new enzyme search method has been studied. In addition, by using the enzyme search method using a gene circuit, it is possible to detect useful genes in various gene populations including the environment or metagenomic library, and to quickly detect various enzyme activities with sensitivity and expression control of compounds with high sensitivity. And quantification.
이에, 본 발명자들은 아미노카프론산으로부터ε-카프로락탐을 생성시키는 새로운 효소를 개발하고자 예의 노력한 결과, ε-카프로락탐의 감지 재설계 유전자 회로를 이용하여, 메타게놈으로부터 스크리닝된 신규 효소가 아미노카프론산을 ε-카프로락탐으로 전환하는 활성이 우수하다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive efforts to develop a new enzyme for generating ε-caprolactam from aminocapronic acid. As a result, a novel enzyme screened from metagenome is prepared using aminosenmic acid. It confirmed that the activity which converts into (epsilon) -caprolactam is excellent, and completed this invention.
본 발명은 아미노카프론산을ε-카프로락탐으로 전환하는 활성을 가지는 신규 효소를 제공하는데 있다. The present invention provides a novel enzyme having an activity of converting aminocapronic acid into ε-caprolactam.
본 발명의 다른 목적은 상기 아미노카프론산을ε-카프로락탐으로 전환하는 활성을 가지는 효소를 이용한 ε-카프로락탐의 제조 방법을 제공하는데 있다. Another object of the present invention is to provide a method for preparing ε-caprolactam using an enzyme having an activity of converting the aminocapronic acid into ε-caprolactam.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 1과 90% 이상의 상동성을 가지는 아미노산 서열을 가지는 카프로락탐 전환 효소를 제공한다.In order to achieve the above object, the present invention provides a caprolactam converting enzyme having an amino acid sequence having at least 90% homology with SEQ ID NO: 1.
본 발명은 또한, 상기 카프로락탐 전환 효소를 코딩하는 유전자 및 상기 유전자를 함유하는 재조합 벡터를 제공한다.The present invention also provides a gene encoding the caprolactam converting enzyme and a recombinant vector containing the gene.
본 발명은 또한, 상기 유전자 또는 상기 재조합 벡터가 도입된 재조합 미생물을 제공한다. The present invention also provides a recombinant microorganism into which the gene or the recombinant vector is introduced.
본 발명은 또한, 상기 카프로락탐 전환 효소를 이용하여 아미노카프론산을 ε-카프로락탐으로 전환시키는 단계; 및 상기 생성된 ε-카프로락탐을 회수하는 단계를 포함하는 ε-카프로락탐의 제조 방법의 제조 방법을 제공한다.The present invention also comprises the steps of converting aminocapronic acid into ε-caprolactam using the caprolactam converting enzyme; And it provides a method for producing a method for producing ε-caprolactam comprising the step of recovering the generated ε-caprolactam.
본 발명은 또한, 상기 재조합 미생물을 아미노카프론산 함유 배지에서 배양하여 카프로락탐을 생성시키는 단계; 및 상기 생성된 카프로락탐을 수득하는 단계를 포함하는 ε-카프로락탐의 제조 방법을 제공한다. The present invention also comprises the steps of culturing the recombinant microorganisms in aminocapronic acid-containing medium to produce caprolactam; And it provides a method for producing ε-caprolactam comprising the step of obtaining the produced caprolactam.
본 발명에 따르면, 유기용매를 사용하지 않고 바이오 생합성 과정을 통하여 아미노카프론산을 ε-카프로락탐으로 효율적으로 전환할 수 있어, 독성물질이나, 환경오염 부산물의 생성없이 친환경적으로 ε-카프로락탐을 제조할 수 있다. According to the present invention, aminocapronic acid can be efficiently converted into ε-caprolactam through a bio biosynthesis process without using an organic solvent, thereby producing ε-caprolactam in an environmentally friendly manner without generating toxic substances or byproducts of environmental pollution. can do.
도 1은 본 발명에 따른 카프로락탐 전환 효소의 SDS PAGE 겔을 나타낸 것이다.1 shows an SDS PAGE gel of caprolactam converting enzyme according to the present invention.
도 2 및 도 3은 본 발명에 따른 카프로락탐 전환 효소를 이용하여 아미노카프론산으로부터 카프로락탐을 전환하는 것을 증명하는 LC-MS 분석 및 NMR 분석 결과를 나타낸 것이다.2 and 3 show the results of LC-MS analysis and NMR analysis demonstrating the conversion of caprolactam from aminocapronic acid using the caprolactam converting enzyme according to the present invention.
도 4는 본 발명에 따른 카프로락탐 전환 효소의 온도에 따른 효소 활성도를 비교하여 나타낸 것이다.Figure 4 shows the comparison of the enzyme activity according to the temperature of the caprolactam converting enzyme according to the present invention.
도 5는 본 발명에 따른 카프로락탐 전환 효소의 pH에 따른 효소 활성도를 비교하여 나타낸 것이다. 도 5에서 pH에 따른 ●는 PIPES 완충용액에서의 활성도를 나타낸 것이고, ○는 HEPPS 완충용액에서의 효소활성도를 나타낸 것이다. Figure 5 shows a comparison of the enzyme activity according to the pH of the caprolactam converting enzyme according to the present invention. In Figure 5 according to the pH indicates the activity in PIPES buffer solution, ○ indicates enzyme activity in the HEPPS buffer solution.
도 6은 ε-카프로락탐을 감지할 수 있는 CL-GESS 유전자 회로의 모식도이다.6 is a schematic diagram of a CL-GESS gene circuit capable of detecting ε-caprolactam.
ε-카프로락탐은 종래 화학반응을 통해 벤젠으로부터 합성되어 왔으나, 독성물질인 벤젠의 사용, 환경오염 부산물의 생성 및 강산화제 사용 등의 문제점으로 인해 바이오 생합성을 통한 합성방법의 개발이 요구되어 왔으며, 본 발명자들은 ε-카프로락탐을 감지할 수 있는 조절인자를 이용한 유전자 회로를 개발하고(한국 공개특허공보 제2015-0056072호), 상기 유전자 회로를 이용하여 메타게놈으로부터 카프로락탐 전환 효소를 발굴하였다. Although ε-caprolactam has been synthesized from benzene through conventional chemical reactions, development of synthetic methods through bio biosynthesis has been required due to problems such as the use of benzene, a toxic substance, the generation of environmental pollution by-products, and the use of strong oxidizers. The present inventors developed a genetic circuit using a regulator capable of detecting ε-caprolactam (Korean Patent Publication No. 2015-0056072), and discovered a caprolactam converting enzyme from metagenome using the gene circuit.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
1. ε-카프로락탐 전환 효소 및 그 유전자1. ε-Caprolactam Converting Enzyme and Its Genes
본 발명의 일 측면은 서열번호 1과 90% 이상의 상동성을 가지는 아미노산 서열을 가지는 카프로락탐 전환 효소 및 상기 카프로락탐 전환 효소를 코딩하는 유전자에 관한 것이다. 상기 카프로락탐 전환 효소를 코딩하는 유전자는 서열번호 2의 염기서열을 가지는 것이다.One aspect of the invention relates to a caprolactam converting enzyme having an amino acid sequence having at least 90% homology with SEQ ID NO: 1 and a gene encoding the caprolactam converting enzyme. The gene encoding the caprolactam converting enzyme has a nucleotide sequence of SEQ ID NO: 2.
본 발명의 ε-카프로락탐 전환 효소는 서열번호 1의 아미노산 서열을 포함하고, 상기 ε-카프로락탐 전환 효소는 단백질의 기능에 영향을 미치지 않는 범위 내에서, 아미노산 잔기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체들, 또는 단편들일 수 있다. 상기 ε-카프로락탐 전환 효소의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드 수준에서의 아미노산 교환은 당해 분야에 공지되어 있다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 변형될 수 있다. 따라서 본 발명은 서열번호 1의 아미노산 서열을 포함하는 단백질과 실질적으로 동일한 아미노산 서열을 갖는 단백질 및 이의 변이체 또는 이의 활성 단편을 포함한다. 상기 실질적으로 동일한 단백질이란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 아미노산 서열의 상동성을 갖는 것들을 의미하나 이에 한정되지 않으며, 80% 이상의 아미노산 서열의 상동성을 가지며 동일한 효소 활성을 가진다면 본 발명의 범위에 포함된다.The epsilon caprolactam converting enzyme of the present invention comprises the amino acid sequence of SEQ ID NO: 1, wherein the epsilon caprolactam converting enzyme deletes, inserts, substitutes, or substitutes for amino acid residues within a range that does not affect the function of the protein. May be variants, or fragments of amino acids having different sequences. Amino acid exchange at the protein and peptide levels that does not alter the activity of the ε-caprolactam converting enzyme as a whole is known in the art. In some cases, it may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, and the like. Accordingly, the present invention includes a protein having an amino acid sequence substantially identical to a protein comprising the amino acid sequence of SEQ ID NO: 1, and a variant thereof or an active fragment thereof. The substantially identical protein means those having homology of at least 80%, preferably at least 90%, most preferably at least 95% of amino acid sequences, but are not limited thereto, and have homology of at least 80% amino acid sequence and the same. If it has enzyme activity, it is included in the scope of the present invention.
상기 ε-카프로락탐 전환 효소의 유전자는 서열번호 2의 염기 서열로 이루어진 것이 바람직하다. 그러나 본 발명의 ε-카프로락탐 전환 효소 및 이의 변이체 또는 이의 활성 단편을 암호화하는 유전자는 암호화 영역으로부터 발현되는 상기 효소 및 이의 변이체 또는 이의 활성 단편의 아미노산 서열을 변화시키지 않는 범위 내에서 암호화 영역에 다양한 변형이 이루어질 수 있고, 암호화 영역을 제외한 부분에서도 유전자의 발현에 영향을 미치지 않는 범위 내에서 다양한 변이가 이루어질 수 있으며, 이러한 변이 유전자 역시 본 발명의 범위에 포함된다. 따라서 본 발명은 서열번호 2의 유전자와 실질적으로 동일한 염기 서열로 이루어진 유전자 및 상기 유전자의 단편을 포함한다. 상기 실질적으로 동일한 염기서열로 이루어진 유전자란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 갖는 것들을 의미하나, 이에 한정되는 것은 아니며, 80% 이상의 서열 상동성을 가지며 암호화된 단백질이 동일한 효소 활성을 가진다면 본 발명에 포함된다. 상기와 같이, 본 발명의 ε-카프로락탐 전환 효소의 유전자는 이와 동등한 활성을 갖는 단백질을 암호화하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함된다. Gene of the epsilon caprolactam converting enzyme is preferably composed of the nucleotide sequence of SEQ ID NO: 2. However, the gene encoding the ε-caprolactam converting enzyme and variants or active fragments thereof of the present invention may be modified in the coding region within a range not changing the amino acid sequence of the enzyme and its variants or active fragments expressed from the coding region. Modifications may be made, and various mutations may be made within a range that does not affect the expression of genes in parts other than coding regions, and such mutation genes are also included in the scope of the present invention. Therefore, the present invention includes a gene consisting of a base sequence substantially the same as the gene of SEQ ID NO: 2 and fragments of the gene. Genes consisting of the same base sequence means those having sequence homology of at least 80%, preferably at least 90%, most preferably at least 95%, but are not limited thereto, and at least 80% sequence homology. And encoded proteins are included in the present invention if they have the same enzymatic activity. As described above, as long as the gene of the ε-caprolactam converting enzyme of the present invention encodes a protein having equivalent activity, one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof. It is included in the scope of the present invention.
상기 ε-카프로락탐 전환 효소에 포함되는 서열번호 1의 아미노산 서열은 바람직하게는 서열번호 2의 염기 서열로 이루어진 유전자에 의해 암호화되나, 본 발명은 이에 한정되지 않고, 동일 아미노산 서열을 갖는 본 발명의 단백질을 암호화할 수 있는 한, 서열번호 2의 염기 서열과 실질적으로 동일한 다른 염기 서열로 이루어진 유전자에 의해 암호화될 수도 있다. 이러한 염기 서열은 단일 가닥 또는 이중 가닥일 수 있으며, DNA 분자 또는 RNA 분자일 수 있다.The amino acid sequence of SEQ ID NO: 1 contained in the ε-caprolactam converting enzyme is preferably encoded by a gene consisting of the nucleotide sequence of SEQ ID NO: 2, but the present invention is not limited thereto, and the present invention has the same amino acid sequence. As long as the protein can be encoded, it may be encoded by a gene consisting of another base sequence which is substantially the same as the base sequence of SEQ ID NO: 2. Such base sequences may be single stranded or double stranded, and may be DNA molecules or RNA molecules.
본 발명의 일 양태에서는 ε-카프로락탐을 감지할 수 있는 조절인자를 이용한 CL-GESS 유전자 회로를 갯벌 유래의 메타게놈 라이브러리와 대장균에 공동 형질 전환한 형질전환체를 아미노카프론산 함유 고체배지에서 배양하여, 생성된 ε-카프로락탐에 의하여 리포터 유전자인 형광유전자가 발현된 콜로니를 선별하고, 상기 콜로니를 배양하여, 분리된 유전자를 분리 및 증폭하여 카프로락탐 전환 효소 유전자를 수득하였다. In one aspect of the present invention, a meta-genome library derived from a tidal flat and a transformant co-transformed into E. coli were cultured in an aminocaproic acid-containing solid medium using a CL-GESS gene circuit using a regulator capable of detecting ε-caprolactam. By using the generated epsilon caprolactam, a colony expressing a fluorescent gene, which is a reporter gene, was selected, and the colonies were cultured to separate and amplify the separated gene to obtain a caprolactam converting enzyme gene.
2. ε-카프로락탐 전환 효소의 재조합 벡터 및 형질전환체2. Recombinant Vectors and Transformants of ε-Caprolactam Converting Enzymes
본 발명의 다른 측면은 상기 카프로락탐 전환 효소를 코딩하는 유전자를 함유하는 재조합 벡터 및 상기 유전자 또는 상기 재조합 벡터가 도입되어 있는 재조합 미생물에 관한 것이다. Another aspect of the invention relates to a recombinant vector containing a gene encoding said caprolactam converting enzyme and a recombinant microorganism into which said gene or said recombinant vector is introduced.
상기 재조합 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파이지 벡터 및 바이러스 벡터 등을 포함하나 이에 한정되지 않는다. The recombinant vector includes, but is not limited to, plasmid vector, cosmid vector, bacteriophage vector, viral vector, and the like.
상기 재조합 벡터는 본 발명의 ε-카프로락탐 전환 효소를 생산하고자하는 숙주 세포의 종류에 따라 프로모터(promoter), 터미네이터(terminator), 엔핸서(enhancer) 등과 같은 발현조절서열, 또는 분비를 위한 서열 등을 적절히 목적에 따라 조합할 수 있다.The recombinant vector is an expression control sequence such as a promoter, a terminator, an enhancer, or a sequence for secretion, etc., depending on the type of host cell to produce the ε-caprolactam converting enzyme of the present invention. Can be combined as appropriate for the purpose.
상기 재조합 벡터는 벡터가 도입된 숙주 세포를 선택하기 위한 선택 마커를 추가로 포함할 수 있고, 복제 가능한 발현 벡터인 경우 복제 기원을 포함할 수 있다. The recombinant vector may further include a selection marker for selecting a host cell into which the vector has been introduced, and, in the case of a replicable expression vector, may include a replication origin.
또한, 상기 재조합 벡터는 발현 단백질의 정제를 용이하게 하기 위한 서열을 포함할 수 있으며, 구체적으로 본 발명의 ε-카프로락탐 전환 효소를 암호화하는 유전자에 작동 가능하도록 분리정제용 태그를 암호화하는 유전자가 연결될 수 있다. 이때, 상기 분리정제용 태그는 GST, poly-Arg, FLAG, 히스티딘-태그(His-tag) 및 c-myc 등이 단독으로 사용되거나 이들 중 두 개 이상을 순차적으로 연결하여 사용할 수도 있다.In addition, the recombinant vector may include a sequence for facilitating the purification of the expression protein, specifically, the gene encoding the separation and purification tag to be operable to the gene encoding the ε-caprolactam converting enzyme of the present invention Can be connected. In this case, the separation and purification tag may be used alone, or GST, poly-Arg, FLAG, histidine-tag (His-tag) and c-myc, or two or more of them may be sequentially connected.
상기 ε-카프로락탐 전환 효소를 암호화하는 유전자는 제한효소 절단위치를 통해 클로닝될 수 있으며, 상기 벡터에 단백질 절단효소 인식부위를 암호화하는 유전자가 사용된 경우에는 상기 ε-카프로락탐 전환 효소의 유전자와 틀이 맞도록(in frame) 연결되어, 상기 효소를 수득한 후 단백질 절단효소로 절단 시, 원래 형태의 ε-카프로락탐 전환 효소가 생산될 수 있도록 할 수 있다.The gene encoding the epsilon caprolactam converting enzyme may be cloned through a restriction enzyme cleavage site. When a gene encoding a protein cleavage recognition site is used in the vector, a gene of the epsilon caprolactam converting enzyme may be used. Linked in frame, the enzyme can be obtained and then cleaved with protein cleavage enzymes to produce the original form of ε-caprolactam converting enzyme.
또한, 본 발명의 재조합 미생물에는 ε-카프로락탐 전환 효소를 암호화하는 유전자를 포함하는 재조합 발현 벡터가 도입된다.In addition, a recombinant expression vector comprising a gene encoding an epsilon caprolactam converting enzyme is introduced into the recombinant microorganism of the present invention.
본 발명에 따른 상기 재조합 벡터를 발현 목적에 따라 박테리아, 효모, 대장균, 진균류, 식물 세포 및 동물 세포로 구성된 군으로부터 선택되는 어느 하나의 적절한 숙주 세포에 형질전환시킴으로써 형질전환체를 제조할 수 있다. 예컨대, 상기 숙주 세포는 대장균(E.
coli BL21(DE3), DH5α등) 또는 효모 세포 (Saccharomyces 속, Pichia 속 등) 등 일 수 있다. 이때, 숙주 세포의 종류에 따라 적절한 배양 방법 및 배지 조건 등은 당해 분야의 공지 기술로부터 당업자가 용이하게 선택할 수 있다. A transformant may be prepared by transforming the recombinant vector according to the present invention into any one suitable host cell selected from the group consisting of bacteria, yeast, E. coli, fungi, plant cells and animal cells according to expression purposes. For example, the host cell may be Escherichia coli ( E. coli BL21 (DE3), DH5α, etc.) or yeast cells (Saccharomyces genus, Pichia genus, etc.). In this case, appropriate culture methods, media conditions and the like can be easily selected by those skilled in the art according to the type of host cell.
본 발명의 형질전환체의 제조를 위한 재조합 발현 벡터의 도입 방법은 공지의 기술, 즉 열 충격법, 전기충격법 등을 사용할 수 있다.As a method of introducing a recombinant expression vector for producing a transformant of the present invention, a known technique, that is, a heat shock method, an electric shock method, or the like may be used.
본 발명의 구체적인 실시예에서는 메타게놈 라이브러리에서 스크리닝된 카프로락탐 전환 효소 유전자를 pET 28(+)(Novagen, 미국) 벡터에 삽입하여, 카프로락탐 전환 효소 유전자 함유 재조합 벡터를 제작하고 상기 벡터를 대장균 ER2566 균주(Novagen, 미국)에 형질 전환하여 형질전환체를 얻었다. In a specific embodiment of the present invention, a caprolactam converting enzyme gene screened in a metagenome library is inserted into a pET 28 (+) (Novagen, USA) vector to prepare a recombinant vector containing a caprolactam converting enzyme gene and the vector is expressed in E. coli ER2566. Strain (Novagen, USA) was transformed to obtain a transformant.
3. ε-카프로락탐 전환 효소의 생산 방법3. Production method of ε-caprolactam converting enzyme
본 발명의 또 다른 측면은 카프로락탐 전환 효소 유전자 함유 재조합 벡터가 도입된 재조합 대장균을 배양한 후 분리 정제하여 카프로락탐 전환 효소를 생산하는 방법에 관한 것이다.Another aspect of the present invention relates to a method for producing caprolactam converting enzyme by culturing and purifying recombinant E. coli introduced with a recombinant vector containing a caprolactam converting enzyme gene.
본 발명의 ε-카프로락탐 전환 효소 생산 방법은 1) 본 발명의 ε-카프로락탐 전환 효소를 암호화하는 유전자를 포함하는 재조합 발현 벡터가 도입된 형질전환체를 배양하는 단계; 2) 상기 단계 1)에서 배양된 형질전환체에서 상기 ε-카프로락탐 전환 효소를 암호화하는 유전자의 발현을 유도하는 단계; 및 3) 상기 단계 2)에서 ε-카프로락탐 전환 효소 유전자의 발현이 유도된 형질전환체의 배양물로부터 ε-카프로락탐 전환 효소를 분리하는 단계를 포함한다. The method for producing ε-caprolactam converting enzyme of the present invention comprises the steps of: 1) culturing a transformant into which a recombinant expression vector containing a gene encoding the ε-caprolactam converting enzyme of the present invention is introduced; 2) inducing expression of a gene encoding the ε-caprolactam converting enzyme in the transformant cultured in step 1); And 3) separating the epsilon caprolactam converting enzyme from the culture of the transformant in which the expression of the epsilon caprolactam converting enzyme gene is induced in step 2).
상기 단계 1)의 ε-카프로락탐 전환 효소를 암호화하는 유전자의 N-말단에는 분리정제용 태그를 암호화하는 유전자 또는 단백질 절단효소 절단위치가 추가로 연결될 수 있고, 이로 인해 재조합 ε-카프로락탐 전환 효소의 정제 또는 원래 형태의 ε-카프로락탐 전환 효소의 수득이 가능할 수 있다.The N-terminus of the gene encoding the epsilon caprolactam converting enzyme of step 1) may be further linked to a gene or protein cleavage cleavage site encoding the tag for separation and purification, thereby resulting in a recombinant epsilon caprolactam converting enzyme. It may be possible to purify or to obtain the ε-caprolactam converting enzyme in its original form.
상기 단계 1)의 형질전환체의 배양은 공지된 방법에 따라서 수행될 수 있고, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(continuous culture) 및 유가식 배양(fed-batch culture)이 포함될 수 있다. 사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. Cultivation of the transformant of step 1) may be performed according to a known method, and conditions such as culture temperature, incubation time and pH of the medium may be appropriately adjusted. In addition, the culture method may include batch culture, continuous culture and fed-batch culture. The culture medium used should suitably meet the requirements of the particular strain.
상기 단계 3)의 상기 배양에 의해 생성된 배양물로부터 ε-카프로락탐 전환 효소의 분리는 원심분리, 여과 등 당해 분야에서 통상적으로 수행되는 방법을 실시할 수 있다. 또한, 상기 방법으로 분리된 ε-카프로락탐 전환 효소는 통상의 방식으로 정제될 수 있으며, 예를 들어, 염석(예를 들어 황산암모늄 침전, 인산나트륨 침전), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전), 투석, 겔 여과, 이온 교환, 역상 칼럼 크로마토그래피와 같은 크로마토그래피 및 한외여과 등의 기법을 단독 또는 조합하여 본 발명의 효소를 정제할 수 있다.Separation of ε-caprolactam converting enzyme from the culture produced by the culture of step 3) can be carried out in a conventional method in the art, such as centrifugation, filtration. In addition, the ε-caprolactam converting enzyme isolated by the above method can be purified in a conventional manner, for example, using salting out (eg, ammonium sulfate precipitation, sodium phosphate precipitation), solvent precipitation (acetone, ethanol, etc.). Protein fraction precipitation), dialysis, gel filtration, ion exchange, chromatography such as reversed phase column chromatography, and ultrafiltration and the like can be used alone or in combination to purify the enzyme of the present invention.
본 발명의 구체적인 실시예에서는 상기와 같이 정제된 단백질이 ε-카프로락탐 전환 효소의 활성을 나타냄을 확인하였다(도 4 및 도 5 참고). 상기와 같은 결과로부터, 본 발명의 생산 방법에 따라 ε-카프로락탐 전환 효소의 대량 생산이 가능함을 알 수 있다.In a specific embodiment of the present invention, it was confirmed that the protein purified as described above exhibits the activity of the ε-caprolactam converting enzyme (see FIGS. 4 and 5). From the above results, it can be seen that the mass production of ε-caprolactam converting enzyme is possible according to the production method of the present invention.
4. ε-카프로락탐의 제조 방법 및 ε-카프로락탐 제조용 조성물4. Preparation method of epsilon caprolactam and composition for preparation of epsilon caprolactam
본 발명의 또 다른 측면은 카프로락탐 전환 효소를 이용하여 아미노카프론산을 ε-카프로락탐으로 전환시키는 단계; 및 상기 생성된 ε-카프로락탐을 회수하는 단계를 포함하는 ε-카프로락탐의 제조 방법에 관한 것이다. 상기 제조 방법에는 ε-카프로락탐의 제조에 이용되는 ε-카프로락탐 제조용 생산물이 포함될 수 있다. Another aspect of the invention is the step of converting aminocapronic acid to ε-caprolactam using a caprolactam converting enzyme; And it relates to a method for producing ε-caprolactam comprising the step of recovering the generated ε-caprolactam. The production method may include the product for producing ε-caprolactam used in the production of ε-caprolactam.
또한, 본 발명의 ε-카프로락탐의 제조 방법은 1) 본 발명의 ε-카프로락탐 전환 효소를 아미노카프론산과 반응시키는 단계; 및 2) 상기 단계 1)에서의 반응 결과 생성된 반응 생성물로부터 ε-카프로락탐을 회수하는 단계를 포함한다. 상기 ε-카프로락탐의 제조 방법 및 ε-카프로락탐 제조용 조성물은 인 비트로(in vitro)에서 본 발명의 ε-카프로락탐 전환 효소의 효소 활성을 이용하는 것이다. 다시 말해서, 상기 ε-카프로락탐 전환 효소를 이용하여 그 기질인 아미노카프론산으로부터 ε-카프로락탐을 생성하는 것이다.In addition, the method for producing ε-caprolactam of the present invention comprises the steps of 1) reacting the ε-caprolactam converting enzyme of the present invention with aminocapronic acid; And 2) recovering ε-caprolactam from the reaction product resulting from the reaction in step 1). The method for producing ε-caprolactam and the composition for preparing ε-caprolactam is to use the enzymatic activity of the ε-caprolactam converting enzyme of the present invention in vitro . In other words, [epsilon] -caprolactam conversion enzyme is used to generate [epsilon] -caprolactam from its substrate, aminocapronic acid.
상기 단계 1)의 반응은 30℃ 내지 50℃의 온도 범위, 바람직하게는 35℃ 내지 45℃의 온도 범위, 더욱 바람직하게는 약 37℃의 온도에서 수행될 수 있으나, 이에 한정되지 아니한다. 또한, 상기 단계 1)의 반응은 6.5 내지 8.5의 pH 범위, 바람직하게는 7 내지 8의 pH 범위, 더욱 바람직하게는 7.5의 pH에서 수행될 수 있으나, 이에 한정되지 아니한다.The reaction of step 1) may be performed at a temperature range of 30 ° C. to 50 ° C., preferably at a temperature range of 35 ° C. to 45 ° C., more preferably at a temperature of about 37 ° C., but is not limited thereto. In addition, the reaction of step 1) may be performed at a pH range of 6.5 to 8.5, preferably at a pH range of 7 to 8, more preferably at a pH of 7.5, but is not limited thereto.
또한, 상기 단계 1)의 반응에는 상기 ε-카프로락탐 전환 효소의 활성을 향상시키기 위하여 상기 ε-카프로락탐 전환 효소와 함께, NAD, NADH, FDH 등의 조효소가 함께 포함될 수 있고, 특히 FDH가 함께 포함되는 것이 바람직하다.In addition, the reaction of step 1) may include coenzymes such as NAD, NADH, and FDH together with the ε-caprolactam converting enzyme in order to enhance the activity of the ε-caprolactam converting enzyme, in particular FDH together. It is preferred to be included.
상기 단계 1)의 반응에서, 상기 아미노카프론산은 외부에서 주입되는 것이 바람직하고, 상기 아미노카프론산은 목적하는 ε-카프로락탐의 양에 맞추어 충분한 양이 주입되어야 한다. 또한, 상기 아미노카프론산의 주입은 연속적으로 수행될 수 있다. 특히 상기 아미노카프론산이 연속적으로 주입되는 경우, 상기 ε-카프로락탐 전환 효소에 의하여 ε-카프로락탐을 지속적으로 생성할 수 있다.In the reaction of step 1), the aminocapronic acid is preferably injected from the outside, the aminocapronic acid should be injected in a sufficient amount in accordance with the desired amount of ε-caprolactam. In addition, the injection of the aminocaproic acid may be performed continuously. In particular, when the aminocapronic acid is continuously injected, it is possible to continuously produce ε-caprolactam by the ε-caprolactam converting enzyme.
본 발명의 구체적인 실시예에서는, 정제된 카프로락탐 전환 효소를 아미노카프론산 함유 용액에서 반응시켜 ε-카프로락탐을 수득하였다(도 2).In a specific embodiment of the present invention, the purified caprolactam converting enzyme was reacted in an aminocapronic acid containing solution to obtain ε-caprolactam (FIG. 2).
또 다른 관점에서, 본 발명은 상기 재조합 미생물을 아미노카프론산 함유 배지에서 배양하여 카프로락탐을 생성시키는 단계; 및 상기 생성된 카프로락탐을 수득하는 단계를 포함하는 ε-카프로락탐의 제조 방법에 관한 것이다. In another aspect, the present invention comprises the steps of culturing the recombinant microorganism in an aminocapronic acid containing medium to produce caprolactam; And it relates to a method for producing ε-caprolactam comprising the step of obtaining the produced caprolactam.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
[[
실시예Example
1] One]
카프로락탐 검출용 재설계 유전자 회로(CL-Redesigned Genetic Circuits for Caprolactam Detection (CL-
GESSGESS
)의 제조Manufacturing
한국 공개특허공보 제2015-0056072호에 개시된 내용에 따라, 도 6과 같이 작용하여 ε-카프로락탐을 감지할 수 있는 CL-GESS 유전자 회로를 준비하였다.In accordance with the contents disclosed in Korean Patent Laid-Open No. 2015-0056072, a CL-GESS gene circuit capable of detecting ε-caprolactam was prepared as shown in FIG. 6.
상기와 같이 제조된 CL-GESS 유전자 회로의 경우, NitR 단백질이 ε-카프로락탐과 결합하여 nitA 프로모터를 활성화시키므로, ε-카프로락탐이 존재하는 환경에서 형광 단백질의 발현이 유도된다. 따라서 상기 CL-GESS는 카프로락탐의 존재를 확인하는데 이용될 수 있다. In the CL-GESS gene circuit prepared as described above, since the NitR protein binds with ε-caprolactam to activate the nitA promoter, expression of fluorescent protein is induced in the presence of ε-caprolactam. Thus the CL-GESS can be used to confirm the presence of caprolactam.
[[
실시예Example
2] 2]
CL-CL-
GESS를GESS
이용한 카프로락탐 전환 효소의 발굴 Discovery of Caprolactam Converting Enzyme
상기 실시예 1에서 제조된 CL-GESS를 이용하여 카프로락탐 전환 효소를 발굴하기 위해, DE3 Lysogenization Kit(Novagen, 미국)을 이용하여 DE3를 대장균 EPI300(EPicentre, 미국)의 chromosomal DNA에 삽입하여, 대장균 EPI300(DE3)를 제조하였다.In order to discover caprolactam converting enzyme using CL-GESS prepared in Example 1, DE3 was inserted into chromosomal DNA of E. coli EPI300 (EPicentre, USA) using a DE3 Lysogenization Kit (Novagen, USA). EPI300 (DE3) was prepared.
상기와 같이 제조된 대장균 EPI300(DE3)에, 갯벌 유래의 메타게놈 라이브러리와 실시예 1에서 제조된 CL-GESS를 공동 형질전환하고, 형질전환체를 50 mM 아미노카프론산, 100 ㎍/㎖ 앰피실린, 34 ㎍/㎖ 클로람페니콜이 포함된 LB 고체 배지에 도말하여 37℃에서 24시간 배양하여 형광발현을 유도하였다. 그리고 상기 고체 배지 상의 단일 콜로니의 형광 정도를 형광현미경(Nicon AZ100-M, 일본)으로 관찰하여 형광 발현 정도가 상위 5% 내인 단일 콜로니를 선별하였다.E. coli EPI300 (DE3) prepared as described above, co-transformed the metagenome library derived from the mud flat and CL-GESS prepared in Example 1, transformants were 50 mM aminocapronic acid, 100 ㎍ / ㎖ ampicillin , LB solid medium containing 34 μg / ml chloramphenicol was plated and incubated at 37 ° C. for 24 hours to induce fluorescence. The degree of fluorescence of the single colonies on the solid medium was observed with a fluorescence microscope (Nicon AZ100-M, Japan) to select single colonies with the fluorescence expression within the top 5%.
상기와 같이 선별된 단일 콜로니를 100 ㎍/㎖ 앰피실린, 34 ㎍/㎖ 클로람페니콜이 포함된 LB 액체 배지에 접종하여 37℃에서 12시간 진탕 배양한 다음, 상기 배양액을 50 mM 아미노카프론산,100 ㎍/㎖ 앰피실린, 34 ㎍/㎖ 클로람페니콜이 포함된 LB 액체 배지(실험군)와 100 ㎍/㎖ 앰피실린, 34 ㎍/㎖ 클로람페니콜이 포함된 LB 액체 배지(대조군)에 각각 접종한 후, 24시간 동안 37℃에서 진탕 배양하여 형광발현을 유도하였고, FACS Calibur system(Becton Dickinson, 미국)을 이용하여 상기 세포 내의 형광발현량을 분석하였다. 검출기(Detector)는 FSC, SSC, FL1-H(excitation = 488nm, emission = 530/30nm)를 감지하도록 세팅하였고, 10,000개의 표본 세포를 관찰한 데이터를 FlowJo(Tree Star, Inc. 미국)로 분석하였다. Single colonies selected as described above were inoculated in LB liquid medium containing 100 μg / ml ampicillin and 34 μg / ml chloramphenicol, followed by shaking culture at 37 ° C. for 12 hours, followed by 50 mM aminocaproic acid, 100 μg. Inoculated in LB liquid medium containing a / ml ampicillin, 34 μg / ml chloramphenicol (experimental group) and LB liquid medium containing 100 μg / ml ampicillin, 34 μg / ml chloramphenicol (control), for 24 hours. Fluorescence was induced by shaking culture at 37 ° C., and fluorescence expression in the cells was analyzed using the FACS Calibur system (Becton Dickinson, USA). The detector was set to detect FSC, SSC, and FL1-H (excitation = 488 nm, emission = 530/30 nm), and the data of 10,000 sample cells were analyzed by FlowJo (Tree Star, Inc., USA). .
그 결과, 1개의 단일 콜로니에서 대조군과 비교하여 형광이 증가되는 것을 확인하였고, 상기 단일 콜로니로부터 메타게놈 유전자를 분리하여 그 염기 서열을 분석하였고, 그 결과 상기 단일 콜로니에 도입된 메타게놈 유전자가 서열번호 3의 염기서열을 가짐을 확인하였다(마크로젠, 한국).As a result, it was confirmed that the fluorescence was increased in one single colony compared to the control group, the metagenomic gene was isolated from the single colony, and the nucleotide sequence was analyzed. As a result, the metagenomic gene introduced into the single colony was sequenced. It was confirmed that it has the nucleotide sequence of No. 3 (Macrogen, Korea).
상기와 같은 서열번호 3의 염기서열을 ORF finder로 분석한 결과, 상기 서열번호 3의 염기서열에는 13개의 ORF가 존재함을 확인하였고, 상기 13개의 ORF를 각각 클로닝 및 발현시켜, 아미노카프론산을 ε-카프로락탐으로 전환시키는 활성을 나타내는 카프로락탐 전환 효소의 ORF를 도출하였다. 상기와 같은 카프로락탐 전환 효소의 ORF를 분리하고, 그 염기서열을 분석한 결과 상기 카프로락탐 전환 효소의 ORF는 서열번호 2의 염기서열 및 서열번호 1의 아미노산 서열을 가짐이 확인되었다. As a result of analyzing the nucleotide sequence of SEQ ID NO: 3 with an ORF finder, it was confirmed that 13 ORFs were present in the nucleotide sequence of SEQ ID NO: 3, and the aminocapronic acid was cloned and expressed by the 13 ORFs, respectively. The ORF of the caprolactam converting enzyme showing the activity of converting to epsilon -caprolactam was derived. The ORF of the caprolactam converting enzyme as described above was isolated and the nucleotide sequence was analyzed. As a result, it was confirmed that the ORF of the caprolactam converting enzyme had the nucleotide sequence of SEQ ID NO: 2 and the amino acid sequence of SEQ ID NO: 1.
[[
실시예Example
3] 3]
카프로락탐 전환 효소 유전자를 포함하는 재조합 발현 벡터 및 형질전환체의 제조Preparation of Recombinant Expression Vectors and Transformants Comprising Caprolactam Converting Enzyme Genes
상기 실시예 2에서 확인된 서열번호 2의 염기서열을 갖는 카프로락탐 전환 효소를 제조하기 위해 서열번호 4, 5의 프라이머 쌍을 고안하였다.To prepare a caprolactam converting enzyme having a nucleotide sequence of SEQ ID NO: 2 identified in Example 2, primer pairs of SEQ ID NOs: 4 and 5 were designed.
서열번호SEQ ID NO: | 서열order |
4(정방향 프라이머)4 (forward primer) | 5'-TTTCATATGAACTTAACGGGAAAA-3'5'-TTTCATATGAACTTAACGGGAAAA-3 ' |
5(역방향 프라이머)5 (reverse primer) | 5'-TTTCTCGAGTTATTGCGCTACCCAAC-3'5'-TTTCTCGAGTTATTGCGCTACCCAAC-3 ' |
상기 프라이머는 각각 NdeI 과 XhoI 제한효소 절단부분으로 설계하였으며, 상기 프라이머를 이용한 PCR을 실시하여 해당 유전자의 염기서열을 증폭하였다. The primers were designed with NdeI and XhoI restriction enzyme cleavage portions, respectively, and amplified the nucleotide sequence of the gene by PCR using the primers.
증폭된 카프로락탐 전환 효소 유전자를 포함하는 PCR 산물은 제한효소 NdeI 및 XhoI을 사용하여 플라스미드 벡터 pET28(+)(Novagen, 미국)에 삽입하여 pET28(+)/카프로락탐 전환 효소 발현벡터를 제작하였다. The PCR product containing the amplified caprolactam converting enzyme gene was inserted into the plasmid vector pET28 (+) (Novagen, USA) using restriction enzymes NdeI and XhoI to construct a pET28 (+) / caprolactam converting enzyme expression vector.
상기와 같이 얻은 재조합 발현 벡터는 통상적인 형질전환 방법으로 대장균 ER2566 균주(Novagen, 미국)에 형질전환하여 '재조합 ER2566 균주'를 제조하였다.The recombinant expression vector thus obtained was transformed into E. coli ER2566 strain (Novagen, USA) by a conventional transformation method to prepare a 'recombinant ER2566 strain'.
또한, 상기 형질전환체는 20% 글리세린 용액을 첨가하여 카프로락탐의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.In addition, the transformants were stored frozen before incubation for the production of caprolactam by addition of 20% glycerin solution.
[[
실시예Example
4] 4]
카프로락탐 전환 효소의 생산Production of Caprolactam Converting Enzyme
상기 실시예 3에서 제조한 재조합 ER2566 균주를 LB 배지 3 ㎖이 들어있는 시험관(test tube)에 접종하고 600㎚에서 흡광도가 2.0이 될 때까지 37℃의 진탕 배양기로 종균 배양을 실시하고, 상기 종균 배양된 배양액을 LB 배지 500 ㎖이 들어있는 2,000㎖ 플라스크에 첨가하여 본 배양을 실시하였다. 그리고 상기와 같은 본 배양 과정에서 600㎚에서의 흡광도가 0.6이 될 때, 최종농도 0.1 mM이 되도록 IPTG를 첨가하여 카프로락탐 전환 효소의 과발현을 유도하였다. 상기 과정 중 교반 속도는 200rpm, 배양 온도는 37℃가 유지하도록 조절하였고, IPTG를 첨가한 후에는 교반 속도를 150rpm, 배양 온도를 16℃로 조절하여 배양하였다.The recombinant ER2566 strain prepared in Example 3 was inoculated into a test tube containing 3 ml of LB medium, followed by incubation with a shake incubator at 37 ° C. until absorbance was 2.0 at 600 nm. The culture was carried out by adding the culture medium to a 2,000 ml flask containing 500 ml of LB medium. When the absorbance at 600 nm was 0.6 in the above culturing, IPTG was added to a final concentration of 0.1 mM to induce overexpression of caprolactam converting enzyme. Stirring rate was adjusted to 200rpm, the culture temperature was maintained at 37 ℃, after the addition of IPTG was incubated by adjusting the stirring speed to 150rpm, the culture temperature to 16 ℃.
상기와 같이 카프로락탐 전환 효소의 과발현이 유도된 재조합 ER2566 균주의 배양액을 6,000g, 4℃에서 30분 동안 원심분리하고, 0.85% 염화나트륨(NaCl)으로 두 번 세척한 다음, 50mM 제일인산나트륨과 300mM 염화나트륨, 10mM 이미다졸(immidazole) 및 0.1mM 단백질분해효소 저해제(phenylmethylsulfonyl fluoride)를 첨가하여, 상기 세포 용액을 파쇄기(sonicator)로 파쇄하였다. As described above, the culture medium of the recombinant ER2566 strain induced overexpression of caprolactam converting enzyme was centrifuged at 6,000 g for 30 minutes at 4 ° C., washed twice with 0.85% sodium chloride (NaCl), and then 50 mM sodium phosphate and 300 mM Sodium chloride, 10 mM immidazole and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride) were added to disrupt the cell solution with a sonicator.
상기 세포 파쇄물은 다시 13,000xg, 4℃에서 20분 동안 원심분리하여 상등액만을 취한 다음, 고속 단백질 액체 크로마토그라피(fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA))에 His-tag을 이용한 IMAC 흡착 컬럼을 장착하여, 상기 카프로락탐 전환 효소만을 분리하였고, SDS-PAGE를 통해 상기와 같이 분리된 효소를 확인하였다. The cell lysate was again centrifuged at 13,000 × g, 4 ° C. for 20 minutes to take only the supernatant, followed by His-tag in a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA). An IMAC adsorption column was used to isolate only the caprolactam converting enzyme, and the enzyme isolated as described above was confirmed by SDS-PAGE.
그 결과, 도 1에 나타난 바와 같이, 카프로락탐 전환 효소가 분리되었음을 확인할 수 있었다(도 1). As a result, as shown in Figure 1, it was confirmed that the caprolactam converting enzyme was isolated (Fig. 1).
[[
실시예Example
5] 5]
카프로락탐 전환 효소의 활성 확인Confirmation of Caprolactam Converting Enzyme Activity
상기 실시예 4에서 분리한 카프로락탐 전환 효소의 활성을 측정하기 위하여, 1 mM 아미노카프론산과 10 단위/㎖ 카프로락탐 전환 효소가 포함된 50 mM pH 7.5 HEPES 완충용액을 사용하여 각각 10분 동안 반응시킨 후, 최종 농도 200mM가 되도록 염화수소(HCl)를 첨가하여 반응을 정지시켰다. In order to measure the activity of the caprolactam converting enzyme isolated in Example 4, the reaction was performed for 10 minutes using 50 mM pH 7.5 HEPES buffer solution containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme. After the reaction, the reaction was stopped by adding hydrogen chloride (HCl) to a final concentration of 200 mM.
또한, 효소 활성의 측정 시, 전구체인 아미노카프론산의 농도와 생성물인 카프로락탐의 농도는 LC-Mass 검출기 및 ZORBAX ECLIPSE XDB-C18(Agilent, 미국) 칼럼이 장착된 고압 액체 크로마토그래피를 이용하여 측정하였고, 상기 ZORBAX ECLIPSE XDB-C18(Agilent, 미국) 칼럼은 25℃에서 0.4 ㎖/분 속도로 A 용매(0.1 % 포름산; formic acid), B 용매(100 % 아세토니트릴; acetonitrile)를 이용하여, 10-90% 아세토니트릴(acetonitrile)을 순차적으로 통과시키도록 하였다. 또한, 기초과학지원연구소(오창)에 카프로락탐 전환 효소와 아미노카프론산이 반응된 반응액의 NMR 분석을 의뢰하여, 아미노카프론산이 카프로락탐으로 전환되는 정도를 확인하였다.In addition, in the measurement of enzyme activity, the concentration of precursor aminocapronic acid and product caprolactam were measured by high pressure liquid chromatography equipped with LC-Mass detector and ZORBAX ECLIPSE XDB-C18 (Agilent, USA) column. The ZORBAX ECLIPSE XDB-C18 (Agilent, USA) column was used at 10 ° C. at 0.4 mL / min, using solvent A (0.1% formic acid; formic acid) and solvent B (100% acetonitrile; acetonitrile). -90% acetonitrile was allowed to pass sequentially. In addition, NMR analysis of the reaction solution in which caprolactam converting enzyme and aminocaproic acid reacted was requested to the Basic Science Research Institute (Ochang) to confirm the degree of conversion of aminocapronic acid to caprolactam.
그 결과, 아미노카프론산이 카프로락탐 전환 효소에 의해 카프로락탐으로 전환하는 것을 확인할 수 있었고(도 2 및 도 3), 카프로락탐 전환 효소의 특이 활성도는 표 2에 나타난 바와 같이 20±1.2 nmole/min/mg 이었다. As a result, it was confirmed that aminocapronic acid is converted to caprolactam by caprolactam converting enzyme (FIGS. 2 and 3), and the specific activity of caprolactam converting enzyme is 20 ± 1.2 nmole / min as shown in Table 2. / mg.
Specific activity(nmole/min/mg)Specific activity (nmole / min / mg) | |
실시예 4에서 분리한 카프로락탐 전환 효소Caprolactam Converting Enzyme Isolated from Example 4 | 20 ± 1.220 ± 1.2 |
[[
실시예Example
6] 6]
카프로락탐 전환 효소 활성에 미치는 pH 및 온도 효과 조사Investigation of pH and Temperature Effects on Caprolactam Converting Enzyme Activity
상기 실시예 4에서 분리한 카프로락탐 전환 효소에 대하여, pH 및 온도 변화에 따른 활성도를 확인하였다.With respect to the caprolactam converting enzyme isolated in Example 4, activity according to pH and temperature changes was confirmed.
6-1. 온도에 따른 카프로락탐 전환 효소의 활성 확인6-1. Confirmation of Caprolactam Converting Enzyme Activity According to Temperature
카프로락탐 전환 효소를 온도 25~ 50℃ 범위에서 1 mM 아미노카프론산과 10 단위/㎖ 카프로락탐 전환 효소가 포함된 50 mM pH 7.5 HEPES 완충용액을 사용하여 각각 10분 동안 반응시킨 후, 최종 농도 200mM가 되도록 염화수소(HCl)를 첨가하여 반응을 정지시켰다. Caprolactam converting enzyme was reacted with 50 mM pH 7.5 HEPES buffer solution containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme at a temperature ranging from 25 to 50 ° C. for 10 minutes, followed by a final concentration of 200 mM. Hydrogen chloride (HCl) was added to stop the reaction.
그 결과, 카프로락탐 전환 효소의 최적온도는 40℃인 것으로 확인되었다(도 4). As a result, the optimum temperature of the caprolactam converting enzyme was confirmed to be 40 ℃ (Fig. 4).
6-2. pH에 따른 카프로락탐 전환 효소의 활성 확인6-2. Confirmation of Caprolactam Converting Enzyme Activity According to pH
1mM의 아미노카프론산(기질)과 10 단위/㎖ 카프로락탐 전환 효소가 포함된 50 mM piperazine-N,N'-bis(2-ethane sulfonic acid) (PIPES) 완충용액을 사용하여 pH 6.5에서부터 7.5 범위까지 효소 반응을 실시하고, 1mM의 아미노카프론산과 10 단위/㎖ 카프로락탐 전환 효소가 포함된 50 mM HEPES 완충용액을 사용하여 pH 7.5에서부터 8.5 범위까지 효소 반응을 실시하였다. 구체적으로, 효소반응은 40℃에서 10분 동안 수행하고, 다시 최종 농도 200 mM 염화수소(HCl)를 첨가하여 반응을 정지시켰다. PH ranges from 6.5 to 7.5 using 50 mM piperazine-N, N'-bis (2-ethane sulfonic acid) (PIPES) buffer containing 1 mM aminocapronic acid (substrate) and 10 units / ml caprolactam converting enzyme The enzyme reaction was carried out until, and the enzyme reaction was carried out using a 50 mM HEPES buffer containing 1 mM aminocapronic acid and 10 units / ml caprolactam converting enzyme from pH 7.5 to 8.5. Specifically, the enzymatic reaction was performed at 40 ° C. for 10 minutes, and the reaction was stopped again by adding a final concentration of 200 mM hydrogen chloride (HCl).
그 결과, ε-카프로락탐 전환 효소의 최적 pH는 7.5인 것을 확인할 수 있었다(도 5). As a result, it was confirmed that the optimum pH of the epsilon caprolactam converting enzyme was 7.5 (FIG. 5).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명에 따른 신규 ε-카프로락탐 전환 효소는 아미노카프론산을 ε-카프로락탐으로 전환하는 활성이 우수하므로, 본 발명의 ε-카프로락탐 전환 효소는 ε-카프로락탐을 필요로 하는 분야에서 유용하게 쓰일 수 있다.Since the novel ε-caprolactam converting enzyme according to the present invention has excellent activity for converting aminocapronic acid into ε-caprolactam, the ε-caprolactam converting enzyme of the present invention is useful in a field requiring ε-caprolactam. Can be used.
Claims (7)
- 서열번호 1과 80% 이상의 상동성을 가지는 아미노산 서열을 포함하는 ε-카프로락탐 전환 효소.Ε-caprolactam converting enzyme comprising an amino acid sequence having at least 80% homology with SEQ ID NO: 1.
- 청구항 1의 ε-카프로락탐 전환 효소를 코딩하는 유전자.Gene encoding the epsilon -caprolactam converting enzyme of claim 1.
- 청구항 2에 있어서,The method according to claim 2,상기 유전자는 서열번호 2의 염기 서열로 이루어지는 유전자.The gene is a gene consisting of the nucleotide sequence of SEQ ID NO: 2.
- 청구항 2의 유전자를 함유하는 재조합 발현벡터.Recombinant expression vector containing the gene of claim 2.
- 청구항 4의 재조합 발현벡터가 숙주세포에 도입된 형질전환체.A transformant wherein the recombinant expression vector of claim 4 is introduced into a host cell.
- 청구항 1의 ε-카프로락탐 전환 효소를 이용하여 아미노카프론산을 ε-카프로락탐으로 전환시키는 단계; 및Converting aminocaproic acid to ε-caprolactam using the ε-caprolactam converting enzyme of claim 1; And상기 생성된 ε-카프로락탐을 회수하는 단계;Recovering the generated ε-caprolactam;를 포함하는 ε-카프로락탐의 제조 방법.Method for producing ε-caprolactam comprising a.
- 청구항 5의 형질전환체를 배양하는 단계; 및Culturing the transformant of claim 5; And상기 형질전환체의 배양물로부터 ε-카프로락탐을 회수하는 단계;Recovering ε-caprolactam from the culture of the transformant;를 포함하는 ε-카프로락탐의 제조 방법.Method for producing ε-caprolactam comprising a.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20140127145 | 2014-09-23 | ||
KR10-2014-0127145 | 2014-09-23 | ||
KR10-2015-0134940 | 2015-09-23 | ||
KR1020150134940A KR101833427B1 (en) | 2014-09-23 | 2015-09-23 | Method for Preparing ε-Caprolactam Using a Novel Caprolactam producing enzyme |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016048048A1 true WO2016048048A1 (en) | 2016-03-31 |
Family
ID=55581478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010043 WO2016048048A1 (en) | 2014-09-23 | 2015-09-23 | Method for preparing ε-caprolactam by using novel caprolactam converting enzyme |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016048048A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090137759A1 (en) * | 2004-01-19 | 2009-05-28 | Dsm Ip Assets B.V. | Biochemical synthesis of 6-amino caproic acid |
US20110257358A1 (en) * | 2008-10-09 | 2011-10-20 | Daniel Mink | Method for preparing e-caprolactam from n-acyl-6-aminocaproic acid |
KR101222056B1 (en) * | 2009-06-08 | 2013-01-14 | 한국생명공학연구원 | Novel Method for Detecting and Quantitating Target Enzyme Activity Using Artificial Genetic Circuitry |
US20130030146A1 (en) * | 2009-12-22 | 2013-01-31 | Dsm Ip Assets B.V. | Preparation of caprolactam from 6-amino caproic acid obtained in a fermentation process |
US20130095540A1 (en) * | 2008-03-27 | 2013-04-18 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
WO2015072776A1 (en) * | 2013-11-14 | 2015-05-21 | 한국생명공학연구원 | Method for sensing and quantifying ε-caprolactam by using redesigned gene circuit |
-
2015
- 2015-09-23 WO PCT/KR2015/010043 patent/WO2016048048A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090137759A1 (en) * | 2004-01-19 | 2009-05-28 | Dsm Ip Assets B.V. | Biochemical synthesis of 6-amino caproic acid |
US20130095540A1 (en) * | 2008-03-27 | 2013-04-18 | Genomatica, Inc. | Microorganisms for the production of adipic acid and other compounds |
US20110257358A1 (en) * | 2008-10-09 | 2011-10-20 | Daniel Mink | Method for preparing e-caprolactam from n-acyl-6-aminocaproic acid |
KR101222056B1 (en) * | 2009-06-08 | 2013-01-14 | 한국생명공학연구원 | Novel Method for Detecting and Quantitating Target Enzyme Activity Using Artificial Genetic Circuitry |
US20130030146A1 (en) * | 2009-12-22 | 2013-01-31 | Dsm Ip Assets B.V. | Preparation of caprolactam from 6-amino caproic acid obtained in a fermentation process |
WO2015072776A1 (en) * | 2013-11-14 | 2015-05-21 | 한국생명공학연구원 | Method for sensing and quantifying ε-caprolactam by using redesigned gene circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lautru et al. | Discovery of a new peptide natural product by Streptomyces coelicolor genome mining | |
Bode et al. | Structure Elucidation and Activity of Kolossin A, the D‐/L‐Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase | |
Wang et al. | Discovery and biosynthetic investigation of a new antibacterial dehydrated non‐ribosomal tripeptide | |
Xi et al. | Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis | |
JP5506668B2 (en) | Method for producing cis-4-hydroxy-L-proline | |
Zhong et al. | Discovery and Biosynthesis of Ureidopeptide Natural Products Macrocyclized via Indole N‐acylation in Marine Microbulbifer spp. Bacteria | |
WO2016048048A1 (en) | Method for preparing ε-caprolactam by using novel caprolactam converting enzyme | |
CN107881205A (en) | The function of oxidizing ferment and its application in bicyclomycin biosynthesis | |
Fang et al. | Genomic scanning enabling discovery of a new antibacterial bicyclic carbamate-containing alkaloid | |
CN111019948A (en) | A FenSr3 Gene FenSr3 and Its Application | |
WO2015072776A1 (en) | Method for sensing and quantifying ε-caprolactam by using redesigned gene circuit | |
CN107541503B (en) | Methyltransferase GenL, coding gene genL thereof and application | |
WO2012033382A2 (en) | Novel rna-binding protein and label-free detection method for detecting microrna using same | |
CN103275976B (en) | Biosynthetic gene cluster of marine carboline alkaloid and its application | |
CN111518779B (en) | Oxazole cyclase gene and coding protein and application thereof | |
WO2017003104A1 (en) | Novel transaminase and method, for deamidating amino compound, using same | |
KR101833427B1 (en) | Method for Preparing ε-Caprolactam Using a Novel Caprolactam producing enzyme | |
WO2015190633A1 (en) | Mutant sugar isomerase with improved activity, derived from e. coli, and production of l-gulose using same | |
WO2020122429A1 (en) | Hyaluronic acid synthase mutant protein and hyaluronic acid production method using same | |
CN109180691A (en) | A kind of C3- aroma type pyrrolo-indole Alkaloid and its synthetic method | |
JP5697327B2 (en) | Method for producing cis-hydroxy-L-proline | |
WO2013095009A1 (en) | Recombinant microorganisms for producing 3-hydroxypropionic acid, and method for producing 3-hydroxypropionic acid using the recombinant microorganisms | |
Thetsana et al. | Isolation and structure determination of a new antibacterial lanthipeptide derived from the marine derived bacterium Lysinibacillus sp. CTST325 | |
Ióca et al. | A novel family of nonribosomal peptides modulate collective behavior in Pseudovibrio bacteria isolated from marine sponges | |
CN105755076A (en) | Method for synthesizing and obtaining SANSANMYCIN structural analogue by utilizing mutation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845040 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845040 Country of ref document: EP Kind code of ref document: A1 |