Nothing Special   »   [go: up one dir, main page]

WO2015135188A1 - 一种天线及终端 - Google Patents

一种天线及终端 Download PDF

Info

Publication number
WO2015135188A1
WO2015135188A1 PCT/CN2014/073408 CN2014073408W WO2015135188A1 WO 2015135188 A1 WO2015135188 A1 WO 2015135188A1 CN 2014073408 W CN2014073408 W CN 2014073408W WO 2015135188 A1 WO2015135188 A1 WO 2015135188A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
branch
circuit board
sub
resonant frequency
Prior art date
Application number
PCT/CN2014/073408
Other languages
English (en)
French (fr)
Inventor
徐慧梁
王汉阳
孙树辉
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to JP2016506763A priority Critical patent/JP6032515B2/ja
Priority to US15/034,825 priority patent/US20160294048A1/en
Priority to EP14814657.4A priority patent/EP3001503B1/en
Priority to PCT/CN2014/073408 priority patent/WO2015135188A1/zh
Priority to CN201480077144.5A priority patent/CN106463827B/zh
Publication of WO2015135188A1 publication Critical patent/WO2015135188A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna and a terminal. Background technique
  • RF Radio Frequency
  • the IEEE 802.11 standard defines the working frequency bands for wireless local area networks (WLANs: Wireless Local Area Networks) to be 2.4G (2400MHz ⁇ 2500MHz) and 5G (4900MHz ⁇ 5900MHz). Different product forms, there are many WiFi antennas that can cover these two working frequency bands. For gateways, customer terminal equipment (CPE: Customer Premise Equipment), there are wall-mounted dipoles or IFA, Loop, etc. printed on the PCB. Antenna form; For mobile wifi hotspot products, there are antennas such as Loop, monopole, and IF A.
  • the WiFi antenna size of these products is generally too large. Take a mobile hotspot product with a size of about 100mm*64mm* 14mm as an example.
  • the space size of the WiFi antenna is about 25mm*5mm*5mm.
  • the WiFi ceramic antenna is a better miniaturization solution, which can occupy a small size level of about 10mm*5mm of PCB board clearance space, but currently it is limited to the 2.4G frequency band and cannot be extended to the 5G frequency band.
  • WiFi antennas usually require a quarter-wavelength resonant length requirement.
  • the antenna space is required to be about 25mm*5mm*5mm, and some can be optimized to 20mm*5mm*5mm. If the size is further shortened, the performance of the antenna will be affected. .
  • Embodiments of the present invention provide an antenna and a terminal, which can ensure that an antenna covers multiple frequency bands while reducing an antenna size.
  • an embodiment of the present invention provides an antenna, including: a first antenna branch, printed on a first side of a circuit board, the first antenna branch includes a first sub-segment; and a grounding branch printed on the a first side, the grounding branch includes a grounding subsection, the first subsection and the ground subsection are staggered to form a slot, and the first antenna branch and the grounding branch are coupled to each other through a slot; the second antenna branch And printed on the second side of the circuit board, the second surface and the first surface are two opposite sides of the circuit board; a first feed source electrically connecting the first antenna branch;
  • the second antenna branch is electrically connected to a metal via on the circuit board, the metal via is electrically connected to the first feed, the first antenna branch, the ground branch, and the first A feed forms a first antenna for generating a first resonant frequency; the first antenna stub, the second antenna stub and the first feed form a second antenna for generating a second resonant frequency.
  • the cross-index of the first sub-segment is inversely proportional to the length of the antenna.
  • the antenna further includes: a first capacitor electrically connecting the end of the first antenna node and the circuit a grounding end of the board, configured to reduce an electrical length of the first antenna branch; and/or a second capacitor electrically connected to the second antenna branch end and the ground end of the circuit board, for reducing the number The electrical length of the two antenna branches.
  • the present invention provides a terminal, comprising: a housing; a circuit board disposed on a surface or an inner portion of the housing; a first antenna disposed on a first side of the circuit board; a processor, an electrical connection
  • the first antenna is configured to process the transceiver signal of the first antenna, where the first antenna includes: a first antenna segment printed on a first side of the circuit board, where the first antenna segment includes a first sub-section; a grounding branch, printed on the first side, the grounding branch includes a grounding sub-section, the first sub-section and the ground sub-section are staggered to form a gap, and the first antenna branch
  • the grounding branches are coupled to each other through a slot; the second antenna branch is printed on the second surface of the circuit board, and the second surface and the first surface are opposite sides of the circuit board;
  • the second antenna branch is electrically connected to the metal via of the circuit board, and the metal via is electrically connected to the first feed, a first antenna branch, the grounding branch, and the
  • the cross-index of the first sub-segment is inversely proportional to the length of the antenna.
  • the first antenna further includes: a first capacitor electrically connecting the end of the first antenna node and the a ground end of the circuit board for reducing an electrical length of the first antenna branch; and/or a second capacitor electrically connected to the end of the second antenna branch and the ground of the circuit board for reducing The electrical length of the second antenna branch is described.
  • the terminal further includes: a second antenna, configured to The second side of the circuit board, the second side is the opposite side of the first side.
  • the terminal further includes: a third antenna, configured to be a third side of the circuit board, the third side is adjacent to the first side, the third antenna is configured to generate a third resonant frequency, and a fourth antenna is disposed on the third side, a fourth antenna is configured to generate a first sub-resonant frequency of the third resonant frequency; a fifth antenna is disposed on a fourth side of the circuit board, the fourth side is opposite to the third side, a fifth antenna is configured to generate the third resonant frequency; a sixth antenna is disposed on the fourth side, and the sixth antenna is configured to generate the first sub-resonant frequency in the third resonant frequency.
  • the terminal further includes: a first resonant branch, disposed on the third side, between the third antenna and the fourth antenna, the size of the first resonant branch is the first sub-resonant frequency a fourth wavelength; and/or a second resonant branch, disposed on the fourth side, between the fifth antenna and the sixth antenna, the size of the second resonant branch is the first sub One quarter wavelength of the resonant frequency.
  • the terminal is a mobile phone or a wearable device.
  • an antenna including: a first antenna node, a ground node and a second antenna node, a first feed, a first antenna node, the ground node, and the first feed Forming a first antenna for generating a first resonant frequency; the first antenna branch, the second antenna branch, and the first feed forming a second antenna for generating a second resonant frequency, so the antenna can
  • the covering includes a first resonant frequency and a second resonant frequency, and the first sub-segment of the first antenna branch is staggered with the ground sub-segment of the grounding branch to form a gap, so that a capacitive effect can be formed, and the first antenna branch forms a LC with the ground branch
  • the LC circuit exhibits a left-hand transmission line effect, thereby reducing the length of the first antenna branch and the ground branch, thereby ensuring that the overall size of the antenna is reduced when the antenna covers multiple frequency bands.
  • FIG. 1 is a schematic structural diagram of a first antenna branch and a ground branch of a first antenna on a first side of a circuit board according to an embodiment of the present invention
  • FIG. 1b is a schematic structural diagram of a second antenna branch of a first antenna located on a second side of the circuit board according to an embodiment of the present invention
  • Figure lc is a schematic structural diagram of a second antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna including a first capacitor and a second capacitor according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an antenna according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of return loss of an antenna according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of an antenna according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of return loss of an antenna according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic structural diagram of an antenna according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of an index of return loss and isolation of an antenna according to Embodiment 3 of the present invention
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a circuit board of a terminal with a WiFi antenna and an LTE antenna according to an embodiment of the present invention. detailed description
  • the present invention provides an antenna, which includes: a first antenna branch, a ground branch, and a second antenna branch, and a first feed, in the prior art, where the antenna size is too large when the antenna covers multiple frequency bands at the same time.
  • a first antenna branch, the ground branch, and the first feed forming a first antenna for generating a first resonant frequency; the first antenna stub, the second antenna stub, and the first feed
  • the source forms a second antenna for generating a second resonant frequency, so that the antenna can cover the first resonant frequency and the second resonant frequency, and the first sub-segment of the first antenna branch and the ground sub-section of the ground branch are alternately arranged.
  • the LC circuit exhibits a left-hand transmission line effect, thereby reducing the length of the first antenna branch and the ground branch, thereby ensuring coverage of multiple bands in the antenna At the time, the overall size of the antenna is reduced.
  • the terminal herein may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) or with a mobile terminal Computer, for example, can be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device, They exchange language and/or data with the wireless access network.
  • a radio access network eg, RAN, Radio Access Network
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • an embodiment of the present invention provides an antenna.
  • the antenna may have multiple structures.
  • the following two types are introduced. Of course, in the specific implementation process, the following two situations are not limited.
  • FIG. 1 and FIG. 1b where FIG. la is a schematic structural diagram of a first antenna branch and a ground branch, and FIG. 1b is a schematic structural diagram of a second antenna branch.
  • the antenna includes:
  • the first antenna branch 10 printed on the first side 20a of the circuit board 20, the first antenna branch 10 includes a first sub-segment 10a;
  • the grounding branch 11 is printed on the first surface 20a, the grounding branch 11 includes a grounding sub-segment 11a, and the first sub-segment 10a and the grounding sub-segment 11a are staggered to form a slot, the first antenna
  • the branch node 10 and the grounding branch 11 are coupled to each other through a gap, so that the first antenna branch 10 and the grounding branch 11 form a coupling capacitance effect, so that the first antenna branch 10 and the grounding branch 11 form an LC circuit, and the LC circuit exhibits a left-hand transmission line effect. , can reduce the size of the antenna.
  • the first antenna branch 10 may be: an IFA antenna, a monopole antenna or a loop antenna (loop antenna), and the like.
  • the first antenna branch 10 is an IFA antenna or a loop antenna
  • the first antenna branch 10 is electrically connected to the ground of the PCB
  • the ground branch 11 is electrically connected to the ground of the PCB.
  • the first sub-section 10a and the ground sub-section 11a are staggered, there is no electrical connection between the first sub-section 10a and the ground sub-section 11a, and there is a gap, so that the first antenna branch 10 and the ground branch 11 form a slot coupling.
  • the size of the gap ranges from about 0.1 mm to about 0.5 mm.
  • the second antenna branch 12 is printed on the second surface 20b of the circuit board 20, wherein the first surface 20a and the second surface 20b are opposite sides of the circuit board 20.
  • the second antenna branch 12 can be: an IFA antenna, a monopole antenna, a loop antenna (ring antenna), and the like.
  • the second antenna branch 12 is electrically connected to the ground of the PCB.
  • the second antenna branch 12 is electrically connected to the metal via 20c on the circuit board, and the metal via 20c is electrically connected to the first feed 13, the first antenna branch 10, the ground branch 11 and The first feed 13 forms a first antenna for generating a first resonant frequency, and the first antenna branch 10, the second antenna branch 12 and the first feed 13 form a second antenna for A second resonant frequency is generated; for example, the first resonant frequency is, for example, 2.4 GHz to 2.5 GHz, and the second resonant frequency is, for example, 4.9 GHz to 5.9 GHz.
  • FIG. 1b shows a schematic diagram of the antenna layout of the second surface 20b of the circuit board.
  • the second antenna branch 12 is printed on the second surface 20b of the circuit board 20, and the second surface 20b. A face opposite to the first surface 20a.
  • the dotted line in Figure 1b shows the antenna layout of the first side 20a of the board, and the second side 20b does not have an antenna.
  • the antenna includes the following structure:
  • the first antenna branch 10 is printed on the first side 20a of the circuit board 20, and the first antenna branch 10 Including a first sub-section 10a;
  • the grounding branch 11 is printed on the first surface 20a, the grounding branch 11 includes a grounding sub-segment 11a, and the first sub-segment 10a and the grounding sub-segment 11a are staggered to form a gap, and the first antenna branch 10 and the grounding branch 11 are coupled to each other through a slit;
  • a second antenna stub 12 is printed on the circuit board 20.
  • the second antenna branch 12 may be printed on the first surface 20a or the second surface 20b of the circuit board 20, and the second antenna branch 12 is printed on the first surface 20a in FIG.
  • the first feed 14 is electrically connected to the first antenna segment 10 , the first antenna segment 10 , the ground branch 11 and the first feed 14 form a first antenna, and is used for forming a first antenna Generating a first resonant frequency;
  • a second feed 15 is electrically connected to the grounding branch 11 , and the second antenna branch 12 and the second feed 15 form a second antenna for generating a second resonant frequency.
  • the signals of the first resonant frequency and the second resonant frequency are transmitted through different feeds, and the antenna traces of the first resonant frequency and the second resonant frequency can be separately debugged, thereby preventing the first resonance.
  • the traces of the frequency and the second resonant frequency interact with each other.
  • the signals of the first resonant frequency and the second resonant frequency are transmitted through different feeds, which can save the combiner in the circuit system of the antenna, thereby bringing about a reduction in device cost.
  • the number of intersections of the first antenna sub-sections is inversely proportional to the length of the antenna.
  • the number of the first sub-sections 10a is the same as the number of the ground sub-sections 11a, and the number of inter-joints of the first sub-sections 10a may be any number, for example: 1, 3, 4, etc., where the first The more the number of fingers of the sub-segment 10a, the higher the intensity of the coupling capacitance effect between the first sub-segment 10a and the ground sub-segment 11a, and the length of the antenna, that is, the intersection of the first sub-section 10a, can be further reduced.
  • the number of fingers is inversely proportional to the length of the antenna. The inverse relationship means that the length of the antenna becomes shorter as the number of fingers of the first sub-section 10a increases.
  • the antenna further includes:
  • a first capacitor 16 electrically connecting the end of the first antenna segment 10 and the ground of the circuit board 20 End 20d, for reducing the electrical length of the first antenna segment 10;
  • the second capacitor 17 is electrically connected to the end of the second antenna branch 12 and the ground end 20d of the circuit board 20 for reducing the electrical length of the second antenna branch 12.
  • the effective electrical length of the antenna branch can be reduced, so that the low-frequency resonance point of the antenna branch is shifted to a high degree, thereby shortening the length of the antenna branch.
  • the first capacitor 16 is, for example, 2pF, 1.5pF, and the like
  • the second capacitor 17 is, for example, 2pF or 1.3pF, which may be the same or different, and is not limited in the embodiment of the present application.
  • the first antenna branch 10, the grounding branch 11 and the second antenna branch 12 may be arranged on the edge of the circuit board 20, that is, the first antenna branch 10 may be arranged on one side of the circuit board 20, the grounding branch 11 may be disposed on the other side of the circuit board 20 adjacent to one side, and the second antenna branch 12 may be disposed on the other side of the circuit board 20 adjacent to the other side, since the three sides thereof are the metal ground of the circuit board 20d, the structure formed by the first antenna branch 10, the grounding branch 11 and the second antenna branch 12 is embedded in the circuit board, which can improve the utilization of the circuit board.
  • the antenna in the present invention will be described below through several specific embodiments.
  • the following embodiments mainly introduce several possible implementation structures of the antenna. It should be noted that the examples in the present invention are only for explaining the present invention and are not intended to limit the present invention. All the embodiments in accordance with the idea of the present invention are within the scope of the present invention, and those skilled in the art will naturally know how to make modifications according to the idea of the present invention.
  • the antenna introduced in this embodiment includes:
  • the first antenna branch 10, printed on the front surface 20a of the circuit board 20, the first antenna branch 10 may be an IFA antenna, having a length of about 7 mm, including two first sub-sections 10a;
  • the grounding branch 11 is printed on the front surface 20a of the circuit board 20 and has a "U" shape, including two ground sub-sections 11a, and the grounding branch 11 is removed from the ground sub-section 11a by a length of 7.5 mm;
  • the second antenna branch 12 is printed on the reverse side 20b of the circuit board 20, and the second antenna branch 12 is electrically connected
  • the metal vias 20c on the circuit board 20 are electrically connected;
  • the first feed 13 is electrically connected to the first antenna branch 10, and the first feed 13 is electrically connected to the metal via 20c;
  • the first antenna branch 10, the grounding branch 11 and the feed 13 form a first antenna for generating a frequency of 2.4 GHz to 2.5 GHz; the first antenna branch 10, the second antenna branch 12 and The first feed 13 forms a second antenna for generating a frequency of 4.9 GHz to 5.9 GHz.
  • the length L of the antenna is the length from the leftmost end of the first antenna branch 10 to the rightmost end of the ground branch 11 , which is 15 mm in total; and the antenna width W is 3 mm to 4.5 mm.
  • the return loss curve obtained by simulating the antenna shows that the return loss at 2.4 GHz is -10.9510 dB (ie: ml) at 2.5 GHz.
  • the return loss is -7.6803dB (ie: m2;), and the return loss between 2.4GHz and 2.5GHz is between -7.6803dB and 10.9510dB, which is less than -5dB;
  • the return loss at GHz is -6.9961dB (ie: at m3)
  • the return loss at 5.9GHz is -5.7666dB (ie: at m4)
  • the return loss is between 4.9GHz and 5.9GHz. It lies between -5.7666dB and 6.9961dB, so it is also less than -5dB.
  • the antenna can ensure the length reduction while covering 2.4 GHz. 2.5GHz and 4.9GHz ⁇ 5.9GHz.
  • the efficiency between the 2.4 GHz and 2.5 GHz bands basically exceeds 50% to meet the demand; and between 4.9 GHz and 5.9 GHz, the efficiency is higher than 2.4 GHz to 2.5. GHz is low, but most of it is more than 50%, so data transmission is also possible. It can be seen that the antenna can cover the 2.4GHz ⁇ 2.5GHz and 4.9GHz ⁇ 5.9GHz frequency bands at the same time.
  • the antenna described in the embodiment of the present application includes the following structure: a first antenna branch 10, printed on the front surface 20a of the circuit board 20, which is an IFA antenna, including three first sub-sections 10a;
  • the grounding branch 11 is printed on the front surface 20a of the circuit board 20 and includes three grounding subsections 11a; the second antenna branch 12 is printed on the back surface 20b of the circuit board 20, and the second antenna branch 12 and the metal on the circuit board 20
  • the via hole 20c is electrically connected;
  • the first feed source 13 is electrically connected to the first antenna branch 10, and the metal via 20c is electrically connected to the first feed 13;
  • the first antenna branch 10, the grounding branch 11 and the first feed 13 form a first antenna for generating a frequency of 2.4 GHz to 2.5 GHz;
  • the first antenna branch 10 and the second antenna branch 12 and the first feed 13 form a second antenna for generating a frequency of 4.9 GHz to 5.9 GHz.
  • the length L of the antenna is the length from the leftmost end of the first antenna branch 10 to the rightmost end of the ground branch 11 , which is 12 mm in total; the antenna width w is 4.5 mm, and thus, the first sub-port is added with respect to the first embodiment. At the same time as the number of branches 10a, the length L of the antenna is lowered.
  • the return loss curve obtained by simulating the antenna shows that the return loss at 2.4 GHz is -8.6975 dB (that is, at ml), at 2.5 GHz.
  • the return loss is -7.2387dB (ie: m2), and the return loss between 2.4GHz and 2.5GHz is between -7.2387dB and 8.6975dB, which is less than -5dB; at 4.92GHz
  • the return loss is -6.9330dB (ie: at m3), the return loss at 5.89GHz is -6.9363dB (ie: at m4), and the return loss between 4.92GHz and 5.89GHz is located.
  • the antenna can guarantee the length reduction while covering the two frequency bands of 2.4 GHz to 2.5 GHz and 4.9 GHz to 5.9 GHz.
  • the antenna introduced in this embodiment of the present application includes:
  • the first antenna branch 10, printed on the front side 20a of the circuit board 20, the first antenna branch 10 may include three first sub-sections 10a;
  • the grounding section 11 is printed on the front surface 20a of the circuit board 20, and includes three grounding sub-sections 11a; wherein the length L1 of the leftmost end of the first antenna branch 10 to the rightmost end of the grounding branch 11 is 10 mm;
  • the second antenna branch 12, printed on the front surface 20a of the circuit board 20, is a LOOP antenna having a length L2 of about 5 mm, and the second antenna branch 12 is electrically connected to the ground of the PCB board;
  • the first antenna 14 is connected to the first antenna segment 10, and the first antenna segment 10, the ground node 11 and the first feed 14 form a first antenna for generating a frequency of 2.4 GHz to 2.5 GHz;
  • the second feed 15 is connected to the second antenna branch 12, and the second antenna branch 12 and the second feed 14 form a second antenna for generating a frequency of 4.9 GHz to 5.9 GHz.
  • the first capacitor 16 is electrically connected to the end of the first antenna branch 10 and the ground end 20d of the circuit board 20 for reducing the electrical length of the first antenna branch 10;
  • the second capacitor 17 is electrically connected to the end of the second antenna branch 12 and the ground end 20d of the circuit board 20 for reducing the electrical length of the second antenna branch 12.
  • the length L of the antenna is the length from the leftmost end of the first antenna branch 10 to the rightmost end of the second antenna branch 12, that is, 16 mm.
  • the return loss at 4.91GHz is -6.3334dB (ie: ml), at 5.9GHz
  • the return loss is -6.3991dB (ie: m2), and the return loss between 4.91GHz and 5.9GHz is between -6.3334dB and 6.3991dB, so the return loss in the 4.9GHz ⁇ 5.9GHz band Also less than -5dB.
  • the return loss in the 2.4 GHz to 2.5 GHz and 4.9 GHz to 5.9 GHz frequency bands is satisfactory, and the isolation of each frequency point in the isolation curve 82 is less than -10 dB, so the isolation is good, so the antenna can
  • the guaranteed length is reduced to cover the two frequency bands of 2.4 GHz to 2.5 GHz and 4.9 GHz to 5.9 GHz, and the two frequency bands of 2.4 GHz to 2.5 GHz and 4.9 GHz to 5.9 GHz can be separately debugged, so that debugging is more convenient.
  • the embodiment of the present invention provides a terminal, where the terminal is, for example, a mobile phone, a wearable device, or the like.
  • circuit board 20 disposed on a surface or an interior of the housing 90;
  • the first antenna 91 is disposed on the first side 91a of the circuit board 20;
  • the processor 92 is electrically connected to the first antenna 91 for processing the transceiving signal of the first antenna 91.
  • the first antenna 91 includes:
  • the first antenna branch 10 printed on the first side 20a of the circuit board 20, the first antenna branch 10 includes a first sub-segment 10a;
  • the grounding branch 11 is printed on the first surface 20a, the grounding branch 11 includes a grounding sub-segment 11a, and the first sub-segment 10a and the grounding sub-segment 11a are staggered to form a gap, and the first antenna branch 10 and the grounding branch 11 are coupled to each other through a slit;
  • the second antenna branch 12 is printed on the second surface 20b of the circuit board 20, and the second surface 20b and the first surface 20a are opposite sides of the circuit board 20;
  • the second antenna branch 12 is electrically connected to the metal via 20c on the circuit board 20, and the metal via 20c is electrically connected to the first feed 13, the first antenna branch 10,
  • the grounding branch 11 and the first feed 13 form a first antenna for generating a first resonant frequency; the first antenna branch 10, the second antenna branch 12 and the first feed 13 form a first Two antennas for generating a second resonant frequency.
  • the number of intersections of the first sub-segment 10a is inversely proportional to the length of the antenna.
  • the first antenna further includes:
  • a first capacitor 16 electrically connecting the end of the first antenna segment 10 and the ground end 20d of the circuit board 20 for reducing the electrical length of the first antenna segment 10;
  • the second capacitor 17 is electrically connected to the end of the second antenna branch 12 and the ground end 20d of the circuit board 20 for reducing the electrical length of the second antenna branch 12.
  • the antenna further includes:
  • the second antenna 93 is disposed on the second side 91b of the circuit board, and the second side 91b is opposite to the first side 91a.
  • Figure 10 also includes:
  • a third antenna 94a is disposed on the third side 91c of the circuit board 20, the third side 91c is adjacent to the first side 91a, and the third antenna 94a is configured to generate a third resonant frequency;
  • the resonant frequency is, for example, at least one of 815 MHz to 960 MHz, 1420 MHz to 1520 MHz, 1710 MHz to 2170 MHz, and 2490 MHz to 2700 MHz;
  • the fourth antenna 94b is disposed on the third side 91c, and the fourth antenna 94b is configured to generate a first sub-resonant frequency in the third resonant frequency, where the first sub-resonant frequency is, for example:
  • a fifth antenna 94c is disposed on the fourth side 91d of the circuit board 20, the fourth side 91d is opposite to the third side 91c, and the fifth antenna 94c is configured to generate a third resonant frequency, wherein a normal situation
  • the fifth antenna 94c is a diversity transmitting and receiving antenna of the third antenna 94a. Therefore, generally, the fifth antenna 94c operates only in the receiving frequency band of the third resonant frequency, for example, 860 MHz to 960 MHz.
  • a sixth antenna 94d is disposed on the fourth side 91d, and the sixth antenna 94d is configured to generate a first sub-resonant frequency in the third resonant frequency.
  • the second sub-resonant frequency is, for example:
  • LTE Long Term Evolution
  • WiFi antenna layout scheme the first antenna 91 and the second antenna 93 are arranged on the opposite side of the circuit board to achieve omnidirectional coverage of the WiFi antenna.
  • the omnidirectional coverage of the LTE antenna is achieved by the third antenna 94a, the fourth antenna 94b, the fifth antenna 94c, and the sixth antenna 94d.
  • the antenna includes:
  • a first resonant branch 95a is disposed on the third side 91c, and a first resonant branch 95a is located between the third antenna 94a and the fourth antenna 94b, and the size of the first resonant branch 95a is a quarter wavelength of a sub-resonant frequency;
  • a second resonant branch 95a is disposed on the fourth side 91d, a second resonant branch 95a is located between the fifth antenna 94c and the sixth antenna 94d, and the size of the second resonant branch 95a is the first sub One quarter wavelength of the resonant frequency.
  • the length of the first resonant branch 95a is a quarter wavelength of 2490MHz ⁇ 2700MHz; if the antenna exists In the case of the second resonance branch 95b, the length of the second resonance branch 95b is about a quarter wavelength of 2490 MHz to 2700 MHz.
  • the current distribution of the third antenna 94a and the fourth antenna 94b on the PCB can be changed by the first resonance branch 95a provided on the circuit board 20, thereby improving the isolation between the third antenna 94a and the fourth antenna 94b, and preventing Mutual interference between the third antenna 94a and the fourth antenna 94b; the current distribution of the fifth antenna 94c and the sixth antenna 94d can be changed by the second resonance branch 95b provided on the circuit board 91, thereby improving the fifth antenna 94c and The isolation of the sixth antenna 94d prevents mutual interference between the fifth antenna 94c and the sixth antenna 94d.
  • an antenna and a terminal are provided.
  • the antenna includes: a first antenna branch, a ground branch and a second antenna branch, a first feed, or a second feed, a first antenna branch,
  • the grounding branch and the first feed form a first antenna for generating a first resonant frequency;
  • the first antenna branch, the second antenna branch, and the first feed form a second antenna, Generating a second resonant frequency; or, the first antenna branch, the ground branch, and the first feed form a first antenna for generating a first resonant frequency;
  • the second antenna branch and the first The two feeds form a second antenna for generating a second resonant frequency.
  • the antenna can cover a plurality of frequency bands including the first resonant frequency and the second resonant frequency, and the first sub-section of the first antenna branch and the ground sub-section of the ground branch can be staggered to form a capacitive effect, and the first antenna
  • the branch node and the grounding branch form an LC circuit, and the LC circuit exhibits a left-hand transmission line effect, thereby reducing the sum of the lengths of the first antenna branch and the grounding branch, thereby ensuring that while the antenna covers multiple frequency bands, Reduce the overall size of the antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Telephone Set Structure (AREA)

Abstract

本发明公开了一种天线及终端,该天线包括:第一天线枝节,印制于电路板的第一面,所述第一天线枝节包括第一子枝节;接地枝节,印制于所述第一面,所述接地枝节包括接地子枝节,所述第一子枝节和所述接地子枝节交错排列形成缝隙,所述第一天线枝节与所述接地枝节通过缝隙相互耦合;第二天线枝节,印制于所述电路板的第二面,所述第二面与所述第一面为所述电路板相对的两个面;第一馈源,电连接所述第一天线枝节;其中,所述第二天线枝节与所述电路板上的金属过孔电连接,所述金属过孔与所述第一馈源电连接,所述第一天线枝节、所述接地枝节和所述第一馈源形成第一天线,用于产生第一谐振频率;所述第一天线枝节、所述第二天线枝节和所述第一馈源形成第二天线,用于产生第二谐振频率。

Description

一种天线及终端 技术领域
本发明涉及通信技术领域, 尤其是涉及一种天线及终端。 背景技术
当前, 移动终端的发展趋势是小型化、 高性能, 这就导致了应用于无线 通讯系统的射频 (RF: Radio Frequency ) 器件设计重点集中在器件的小型化 (紧凑尺寸) 、 低成本以及易集成等领域。
IEEE 802.11标准制定了服务于无线局域网( WLAN : Wireless Local Area Networks ) 的 工 作 频 段 为 2.4G ( 2400MHz~2500MHz ) 和 5G ( 4900MHz~5900MHz )频段。 不同产品形态, 能覆盖这两个工作频段的 WiFi 天线有艮多,针对网关、客户终端设备 ( CPE: Customer Premise Equipment ) , 有壁挂式偶极子或印制在 PCB板上的 IFA、 Loop等天线形式; 针对移动 wifi热 点产品, 有 Loop, monopole, IF A等天线形式。
目前, 这些产品的 WiFi天线尺寸普遍偏大, 以一个整机尺寸约为 100mm*64mm* 14mm的移动热点产品为例, WiFi天线空间尺寸大约是 25mm*5mm*5mm。 随着产品的小型化趋势, 需要压缩 WiFi天线的空间, 同时 保证 WiFi天线的性能良好。 WiFi陶瓷天线是一个比较好的小型化方案, 能够 做到占用 PCB板净空尺寸约 10mm*5mm的小尺寸水平, 但目前仅仅限于 2.4G 频段, 还不能拓展到 5G频段。
WiFi天线通常需要四分之一波长的谐振长度要求, 一般需要天线空间约 为 25mm* 5mm* 5mm,部分能优化到到 20mm* 5mm* 5mm, 而如果进一步的缩短 尺寸的话, 将影响天线的性能。
由此可见, 现有技术中存在着天线同时覆盖多个频段, 天线尺寸较大技 术问题。 发明内容
本发明实施例提供了一种天线及终端, 能够在降低天线尺寸的同时保证 天线覆盖多个频段。
第一方面, 本发明实施例提供一种天线, 包括: 第一天线枝节, 印制于 电路板的第一面, 所述第一天线枝节包括第一子枝节; 接地枝节, 印制于所 述第一面, 所述接地枝节包括接地子枝节, 所述第一子枝节和所述接地子枝 节交错排列形成缝隙, 所述第一天线枝节与所述接地枝节通过缝隙相互耦合; 第二天线枝节, 印制于所述电路板的第二面, 所述第二面与所述第一面为所 述电路板相对的两个面; 第一馈源, 电连接所述第一天线枝节; 其中, 所述 第二天线枝节与所述电路板上的金属过孔电连接, 所述金属过孔与所述第一 馈源电连接, 所述第一天线枝节、 所述接地枝节和所述第一馈源形成第一天 线, 用于产生第一谐振频率; 所述第一天线枝节、 所述第二天线枝节和所述 第一馈源形成第二天线, 用于产生第二谐振频率。
结合第一方面, 在第一种可能的实现方式中, 所述第一子枝节的交指数 量与所述天线的长度呈反比关系。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述天线还包括: 第一电容, 电连接所述第一天线枝节末端和所 述电路板的接地端, 用于降低所述第一天线枝节的电长度; 和 /或第二电容, 电连接于所述第二天线枝节末端和所述电路板的接地端, 用于降低所述第二 天线枝节的电长度。
第二方面, 本发明提供一种终端, 包括: 壳体; 电路板, 设置于所述壳 体表面或者内部; 第一天线, 设置于所述电路板的第一侧; 处理器, 电连接 所述第一天线, 用于对所述第一天线的收发信号进行处理; 其中, 所述第一 天线包括: 第一天线枝节, 印制于电路板的第一面, 所述第一天线枝节包括 第一子枝节; 接地枝节, 印制于所述第一面, 所述接地枝节包括接地子枝节, 所述第一子枝节和所述接地子枝节交错排列形成缝隙, 所述第一天线枝节与 所述接地枝节通过缝隙相互耦合; 第二天线枝节, 印制于所述电路板的第二 面, 所述第二面与所述第一面为所述电路板相对的两个面; 第一馈源, 电连 接所述第一天线枝节; 其中, 所述第二天线枝节与所述电路板上的金属过孔 电连接, 所述金属过孔与所述第一馈源电连接, 所述第一天线枝节、 所述接 地枝节和所述第一馈源形成第一天线, 用于产生第一谐振频率; 所述第一天 线枝节、 所述第二天线枝节和所述第一馈源形成第二天线, 用于产生第二谐 振频率。
结合第二方面, 在第一种可能的实现方式中, 所述第一子枝节的交指数 量与所述天线的长度呈反比关系。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线还包括: 第一电容, 电连接所述第一天线枝节末端 和所述电路板的接地端, 用于降低所述第一天线枝节的电长度; 和 /或第二电 容, 电连接于所述第二天线枝节末端和所述电路板的接地端, 用于降低所述 第二天线枝节的电长度。
结合第二方面或第二方面的第一至二种可能的实现方式中的任意一种可 能的实现方式, 在第三种可能的实现方式中, 所述终端还包括: 第二天线, 设置于所述电路板的第二侧, 所述第二侧为所述第一侧的对侧。
结合第二方面或第二方面的第一至三种可能的实现方式中的任意一种可 能的实现方式, 在第四种可能的实现方式中, 所述终端还包括: 第三天线, 设置于所述电路板的第三侧, 所述第三侧与所述第一侧相邻, 所述第三天线 用于产生第三谐振频率; 第四天线, 设置于所述第三侧, 所述第四天线用于 产生所述第三谐振频率中的第一子谐振频率; 第五天线, 设置于所述电路板 的第四侧, 所述第四侧与所述第三侧相对, 所述第五天线用于产生所述第三 谐振频率; 第六天线, 设置于所述第四侧, 所述第六天线用于产生所述第三 谐振频率中的所述第子谐振频率。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述终端还包括: 第一谐振枝节, 设置于所述第三侧, 所述第三天线和所述 第四天线之间, 所述第一谐振枝节的尺寸为所述第一子谐振频率的四分之一 波长; 和 /或第二谐振枝节, 设置于所述第四侧, 所述第五天线和所述第六天 线之间, 所述第二谐振枝节的尺寸为所述第一子谐振频率的四分之一波长。
结合第二方面或第二方面的第一至五种可能的实现方式中的任意一种可 能的实现方式, 在第六种可能的实现方式中, 所述终端为手机或穿戴式设备。
本发明有益效果如下:
由于在本发明实施例中, 提供了一种天线, 包括: 第一天线枝节、 接地 枝节和第二天线枝节、 第一馈源, 第一天线枝节、 所述接地枝节和所述第一 馈源形成第一天线, 用于产生第一谐振频率; 所述第一天线枝节、 所述第二 天线枝节和所述第一馈源形成第二天线, 用于产生第二谐振频率, 故而该天 线能够覆盖包括第一谐振频率和第二谐振频率, 并且第一天线枝节的第一子 枝节与接地枝节的接地子枝节交错排列形成缝隙, 这样可以形成电容效应, 进而第一天线枝节与接地枝节形成 LC电路,该 LC电路呈现左手传输线效应, 进而降低了第一天线枝节和接地枝节的长度, 从而保证了在天线覆盖多个频 段时, 降低了天线的整体尺寸。 附图说明
图 la为本发明实施例中, 第一种天线的位于电路板的第一面的第一天线 枝节和接地枝节的结构示意图;
图 lb为本发明实施例中, 第一种天线的位于电路板的第二面的第二天线 枝节的结构示意图;
图 lc为本发明实施例中, 第二种天线的结构示意图;
图 2为本发明实施例中, 包含第一电容和第二电容的天线的结构示意图; 图 3为本发明实施例一中, 天线的结构示意图;
图 4为本发明实施例一中, 天线的回波损耗示意图;
图 5为本发明实施例二中, 天线的结构示意图; 图 6为本发明实施例二中, 天线的回波损耗示意图;
图 7为本发明实施例三中, 天线的结构示意图;
图 8为本发明实施例三中, 天线的回波损耗和隔离度指标示意图; 图 9为本发明实施例中的终端的结构示意图;
图 10为本发明实施例中终端的电路板设置有 WiFi天线和 LTE天线的结 构示意图。 具体实施方式
针对现有技术中在天线同时覆盖多个频段时, 天线尺寸过大的技术问题, 本发明实施例这里提出一种天线, 包括: 第一天线枝节、 接地枝节和第二天 线枝节、 第一馈源, 第一天线枝节、 所述接地枝节和所述第一馈源形成第一 天线, 用于产生第一谐振频率; 所述第一天线枝节、 所述第二天线枝节和所 述第一馈源形成第二天线, 用于产生第二谐振频率, 故而该天线能够覆盖包 括第一谐振频率和第二谐振频率, 并且第一天线枝节的第一子枝节与接地枝 节的接地子枝节交错排列形成缝隙, 这样可以形成电容效应, 进而第一天线 枝节与接地枝节形成 LC电路, 该 LC电路呈现左手传输线效应, 进而降低了 第一天线枝节和接地枝节的长度, 从而保证了在天线覆盖多个频段时, 降低 了天线的整体尺寸。
下面将结合各个附图对本发明实施例技术方案、 具体实施方式及其对应 能够达到的有益效果进行详细地阐述。
本文中的终端, 可以是无线终端也可以是有线终端, 无线终端可以是指 向用户提供语音和 /或数据连通性的设备, 具有无线连接功能的手持式设备、 或连接到无线调制解调器的其他处理设备。 无线终端可以经无线接入网 (例 如, RAN, Radio Access Network )与一个或多个核心网进行通信, 无线终端 可以是移动终端,如移动电话(或称为"蜂窝"电话)或具有移动终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交换语言和 /或数据。 例如, 个人通信业务(PCS, Personal Communication Service ) 电话、 无绳电话、 会话发起协议(SIP )话机、 无线 本地环路( WLL, Wireless Local Loop )站、个人数字助理( PDA, Personal Digital Assistant )等设备。 无线终端也可以称为系统、 订户单元( Subscriber Unit )、 订户站( Subscriber Station ), 移动站( Mobile Station )、 移动台 ( Mobile )、 远 程站( Remote Station )、接入点( Access Point )、远程终端( Remote Terminal )、 接入终端( Access Terminal )、用户终端( User Terminal )、用户代理( User Agent )、 用户设备 ( User Device )、 或用户装备 ( User Equipment )。
本文中术语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存 在三种关系, 例如, A和 /或 B , 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B 这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是 一种 "或" 的关系。
第一方面, 本发明实施例提供一种天线, 该天线可以有多种结构, 下面 列举其中的两种进行介绍, 当然, 在具体实施过程中, 不限于以下两种情况。
第一种, 请参考图 la和图 lb , 其中, 图 la为第一天线枝节和接地枝节 的结构示意图, 图 lb为第二天线枝节的结构示意图, 该天线包括:
第一天线枝节 10, 印制于电路板 20的第一面 20a, 所述第一天线枝节 10 包括第一子枝节 10a;
接地枝节 11 , 印制于所述第一面 20a, 所述接地枝节 11包括接地子枝节 11a, 通过所述第一子枝节 10a和所述接地子枝节 11a交错排列形成缝隙, 所 述第一天线枝节 10与所述接地枝节 11通过缝隙相互耦合, 使第一天线枝节 10与接地枝节 11形成耦合电容效应, 从而使第一天线枝节 10与接地枝节 11 形成 LC电路, 这个 LC电路呈现左手传输线效应, 可以减小天线的尺寸。
举例来说, 现有技术中, 假设 2.5G谐振的一个 IFA天线, 印制在 PCB 板上, 其电长度大概是 (300/2.5)/4=30mm, 考虑板材的介电常数的影响, 实际 尺寸小于 30mm, 大概在 20mm~25mm左右。 如果釆用左手传输线效应来设 计这个天线, 其电长度约是右手概念天线的 1/2, 即为 10mm~12.5mm左右。 其中, 第一天线枝节 10可以为: IFA天线、 单极子天线或 Loop天线(环 天线)等等。
当第一天线枝节 10为 IFA天线或 Loop天线时,第一天线枝节 10与 PCB 板的接地端电连接, 接地枝节 11与 PCB板的接地端电连接。
其中第一子枝节 10a和接地子枝节 11a交错排列时,第一子枝节 10a和接 地子枝节 11a之间没有电连接, 存在缝隙, 进而使第一天线枝节 10和接地枝 节 11形成缝隙耦合。 缝隙的尺寸范围约在 0.1mm~0.5mm之间。
第二天线枝节 12, 印制于所述电路板 20的第二面 20b, 其中第一面 20a 与所述第二面 20b为所述电路板 20相对的两个面。
其中, 第二天线枝节 12可以为: IFA天线、 单极子天线、 Loop天线(环 天线)等。 当第二天线枝节 12为 IFA天线或 Loop天线时, 第二天线枝节 12 与 PCB板接地端电连接。
第一馈源 13 , 电连接第一天线枝节 10;
其中, 第二天线枝节 12与所述电路板上的金属过孔 20c电连接, 所述金 属过孔 20c与第一馈源 13电连接, 所述第一天线枝节 10、 所述接地枝节 11 和所述第一馈源 13形成第一天线, 用于产生第一谐振频率, 所述第一天线枝 节 10、 所述第二天线枝节 12和所述第一馈源 13形成第二天线, 用于产生第 二谐振频率; 举例来说, 第一谐振频率例如为: 2.4GHz~2.5GHz, 第二谐振频 率例如为: 4.9GHz~5.9GHz。
进一步的,请继续参考图 lb, 图 lb表示电路板的第二面 20b的天线布局 示意图, 所述第二天线枝节 12印制于所述电路板 20第二面 20b, 所述第二面 20b与所述第一面 20a为相对的面。 图 lb中的虚线表示电路板第一面 20a的 的天线布局, 第二面 20b对应位置并未布局天线。
第二种, 请参考图 lc, 该天线包括以下结构:
第一天线枝节 10, 印制于电路板 20的第一面 20a, 所述第一天线枝节 10 包括第一子枝节 10a;
接地枝节 11 , 印制于所述第一面 20a, 所述接地枝节 11包括接地子枝节 11a, 所述第一子枝节 10a和所述接地子枝节 11a交错排列形成缝隙, 所述第 一天线枝节 10与所述接地枝节 11通过缝隙相互耦合;
第二天线枝节 12, 印制于所述电路板 20。
其中, 第二天线枝节 12可以印制于电路板 20的第一面 20a或者第二面 20b, 图 lc中为第二天线枝节 12印制于第一面 20a的示意图;
第一馈源 14, 所述第一馈源 14电连接于第一天线枝节 10, 所述第一天 线枝节 10、 所述接地枝节 11和所述第一馈源 14形成第一天线, 用于产生第 一谐振频率;
第二馈源 15 , 电连接于所述接地枝节 11 , 所述第二天线枝节 12和所述 第二馈源 15形成第二天线, 用于产生第二谐振频率。
由上可以看出, 第一谐振频率和第二谐振频率的信号通过不同的馈源进 行发送, 能够对第一谐振频率和第二谐振频率的天线走线分开进行调试, 这 样可以防止第一谐振频率和第二谐振频率的走线互相影响。
另, 第一谐振频率和第二谐振频率的信号通过不同的馈源发送, 可以在 天线的电路系统中节省合路器, 进而带来器件成本上的缩减优势。
可选的, 所述第一天线子枝节的交指数量与所述天线的长度呈反比关系。 在具体实施过程中,第一子枝节 10a的数量与接地子枝节 11a的数量相同, 而第一子枝节 10a的交指数量可以为任意数量, 例如: 1、 3、 4等等, 其中第 一子枝节 10a的交指数量越多,第一子枝节 10a与接地子枝节 11a之间形成耦 合电容效应的强度也越高, 进而能够进一步的降低天线的长度, 也即第一子 枝节 10a的交指数量与天线的长度呈反比关系, 该呈反比关系指的是随着第 一子枝节 10a的交指数量的增长, 天线的长度变短。
可选的, 请参考图 2 , 所述天线还包括:
第一电容 16 , 电连接所述第一天线枝节 10末端和所述电路板 20的接地 端 20d, 用于降低所述第一天线枝节 10的电长度; 和 /或
第二电容 17 , 电连接于所述第二天线枝节 12末端和所述电路板 20的接 地端 20d, 用于降低所述第二天线枝节 12的电长度。
在具体实施过程中, 相同尺寸条件下, 如果在天线枝节末端串联电容, 则可以降低天线枝节的有效电长度, 从而使天线枝节的低频谐振点往高偏移, 从而缩短天线枝节的长度。 其中, 第一电容 16例如为: 2pF、 1.5pF等等, 第 二电容 17例如为: 2pF、 1.3pF, 这两者可以相同, 也可以不同, 本申请实施 例不作限制。
作为进一步的优选实施例, 第一天线枝节 10、 接地枝节 11、 第二天线枝 节 12皆可以布局于电路板 20的边缘, 即第一天线枝节 10可以布局在电路板 20的一侧, 接地枝节 11可以布局在电路板 20与一侧相邻的另一侧, 第二天 线枝节 12可以布局在电路板 20与另一侧相邻的另一侧, 由于其三侧是电路 板的金属接地端 20d, 相当于第一天线枝节 10、 接地枝节 11和第二天线枝节 12形成的结构内嵌在电路板, 这样可以提高电路板的利用率。
以下通过几个具体的实施例来介绍本发明中的天线, 下面的实施例主要 介绍了该天线的几个可能的实现结构。 需要说明的是, 本发明中的实施例只 用于解释本发明, 而不能用于限制本发明。 一切符合本发明思想的实施例均 在本发明的保护范围之内, 本领域技术人员自然知道应该如何根据本发明的 思想进行变形。
实施例一
请参考图 3和图 lb, 本实施例所介绍的天线包括:
第一天线枝节 10, 印制于电路板 20的正面 20a, 第一天线枝节 10可以 为 IFA天线, 长度约为 7mm, 包括两个第一子枝节 10a;
接地枝节 11 , 印制于电路板 20的正面 20a, 呈 "U" 字形, 包括两个接 地子枝节 11a, 接地枝节 11去除接地子枝节 11a的长度为 7.5mm;
第二天线枝节 12, 印制于电路板 20的反面 20b, 第二天线枝节 12与电 路板 20上的金属过孔 20c电连接;
第一馈源 13 , 电连接连接第一天线枝节 10, 第一馈源 13与金属过孔 20c 电连接;
所述第一天线枝节 10、 所述接地枝节 11和所述馈源 13形成第一天线, 用于产生 2.4GHz~2.5GHz频率; 所述第一天线枝节 10、所述第二天线枝节 12 和所述第一馈源 13形成第二天线, 用于产生 4.9GHz~5.9GHz频率。
其中, 天线长度 L为第一天线枝节 10最左端至接地枝节 11最右端的长 度, 共 15mm; 天线宽度 W为 3mm~4.5mm。
如图 4所示, 为对该天线进行仿真所获得的回波损耗曲线图, 从图中可 以看出在 2.4GHz处的回波损耗为 -10.9510dB (也即: ml处), 在 2.5GHz时 的回波损耗为 -7.6803dB (也即: m2处;), 而在 2.4GHz~2.5GHz之间的回波损 耗在 -7.6803dB— 10.9510dB之间, 也即都小于 -5dB; 在 4.9GHz处的回波损耗 为 -6.9961dB (也即: m3处), 在 5.9GHz处的回波损耗为 -5.7666dB (也即: m4处), 而 4.9GHz~5.9GHz之间的回波损耗位于 -5.7666dB— 6.9961dB之间, 故而也都小于 -5dB。故而说明在 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz频段的 回波损耗满足要求, 并且, 这两个频段的效率也都高于 50%, 故而该天线能 够保证长度降低的同时覆盖 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz这两个频 段。
如表 1所示, 为该天线的实验测试的效率数据:
表 1
Figure imgf000012_0001
2470 -2.4 57.7 4.5
2480 -2.4 57.7 4.7
2490 -2.7 54.2 4.4
2500 -2.9 51.8 4.1
4900 -4.8 32.9 0.8
5000 -4.3 37.3 0.7
5100 -3.3 46.9 2.2
5200 -3.2 47.4 1.6
5300 -3.3 47.1 2.0
5400 -3.1 49.1 2.4
5500 -2.7 54.1 3.1
5600 -2.9 51.0 2.8
5700 -2.9 51.9 2.7
5800 -2.8 52.4 2.4
5900 -2.8 52.3 1.7 从表 1可以看出,在 2.4GHz~2.5GHz频段之间的效率基本上都超过 50%, 满足需求; 而在 4.9GHz~5.9GHz频段之间, 效率较 2.4GHz~2.5GHz低, 但是 也大部分达到了 50%以上, 故而也能够进行数据传输。 由此可见, 该天线能 够同时覆盖 2.4GHz~2.5GHz、 4.9GHz~5.9GHz频段。
实施例二
请参考图 5和图 lb, 本申请实施例所介绍的天线包括以下结构: 第一天线枝节 10, 印制于电路板 20的正面 20a, 为 IFA天线, 包括三个 第一子枝节 10a;
接地枝节 11 , 印制于电路板 20的正面 20a, 包括三个接地子枝节 11a; 第二天线枝节 12, 印制于电路板 20的背面 20b, 第二天线枝节 12与电 路板 20上的金属过孔 20c电连接;
第一馈源 13 , 电连接第一天线枝节 10 , 金属过孔 20c与第一馈源 13电 连接; 所述第一天线枝节 10、 所述接地枝节 11和所述第一馈源 13形成第一天 线, 用于产生 2.4GHz~2.5GHz频率; 所述第一天线枝节 10、 所述第二天线枝 节 12和所述第一馈源 13形成第二天线, 用于产生 4.9GHz~5.9GHz频率。 其 中, 天线长度 L为第一天线枝节 10最左端至接地枝节 11最右端的长度, 共 12mm; 天线宽度 w为 4.5mm, 由此可见, 相对于实施例一而言, 在增加了第 一子枝节 10a的数量的同时, 降低了天线的长度 L。
如图 6所示, 为对该天线进行仿真所获得的回波损耗曲线图, 从图中可 以看出在 2.4GHz处的回波损耗为 -8.6975dB (也即: ml处), 在 2.5GHz时的 回波损耗为 -7.2387dB (也即: m2处 ), 而在 2.4GHz~2.5GHz之间的回波损耗 在 -7.2387dB— 8.6975dB之间, 也即都小于 -5dB; 在 4.92GHz处的回波损耗为 -6.9330dB (也即: m3处), 在 5.89GHz处的回波损耗为 -6.9363dB (也即: m4处),而 4.92GHz~5.89GHz之间的回波损耗位于 -6.9330dB— 6.9363dB之间 , 故而 4.9G 5.9G频段范围的回波损耗皆小于 -5dB。故而说明在 2.4GHz~2.5GHz 以及 4.9GHz~5.9GHz频段的回波损耗满足要求。
由此可见, 该天线能够保证长度降低的同时覆盖 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz这两个频段。
实施例三
请参考图 7, 本申请实施例所介绍的天线包括:
第一天线枝节 10, 印制于电路板 20的正面 20a, 第一天线枝节 10可以 包括三个第一子枝节 10a;
接地枝节 11 , 印制于电路板 20的正面 20a, 包括三个接地子枝节 11a; 其中第一天线枝节 10最左端至接地枝节 11最右端的长度 L1为 10mm;
第二天线枝节 12, 印制于电路板 20的正面 20a, 为 LOOP天线, 长度 L2约为 5mm, 第二天线枝节 12与 PCB板接地端电连接;
第一馈源 14, 连接于第一天线枝节 10, 所述第一天线枝节 10、 所述接地 枝节 11和所述第一馈源 14形成第一天线, 用于产生 2.4GHz~2.5GHz频率; 第二馈源 15 , 连接于第二天线枝节 12, 所述第二天线枝节 12和所述第 二馈源 14形成第二天线, 用于产生 4.9GHz~5.9GHz频率。
第一电容 16, 电连接第一天线枝节 10末端和电路板 20的接地端 20d, 用于降低第一天线枝节 10的电长度;
第二电容 17 , 电连接第二天线枝节 12末端和电路板 20的接地端 20d, 用于降低第二天线枝节 12的电长度。
其中, 天线的长度 L为第一天线枝节 10最左端至第二天线枝节 12最右 端的长度, 也即: 16mm。
请参考图 8, 为对该天线的回波损耗和隔离度仿真的示意图, 从图中可以 看出包含两条回波损耗曲线, 2.4GHz~2.5GHz频段的曲线 80中, 在 2.4GHz 处的回波损耗为 -7.3652dB(也即: m3处),在 2.5GHz时的回波损耗为 -7.5289dB (也即: m4处 ) , 2.4GHz~2.5GHz之间的回波损耗在 -7.3652dB〜- 7.5289dB之 间, 也即都小于 -5dB; 4.9GHz~5.9GHz频段的曲线 81中, 在 4.91GHz处的回 波损耗为 -6.3334dB (也即: ml处),在 5.9GHz处的回波损耗为 -6.3991dB (也 即: m2处), 而 4.91GHz~5.9GHz之间的回波损耗位于 -6.3334dB— 6.3991dB 之间, 故而 4.9GHz~5.9GHz的频段中的回波损耗也都小于 -5dB。 故而说明在 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz频段的回波损耗满足要求, 而隔离度曲 线 82中每一个频点的隔离度都小于 -10dB, 故而隔离度较好, 故而该天线能 够保证长度降低的同时覆盖 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz这两个频 段,并且能够对 2.4GHz~2.5GHz以及 4.9GHz~5.9GHz这两个频段进行分开调 试, 故而调试更加方便。
第二方面, 本发明实施例提供一种终端, 该终端例如为: 手机、 穿戴式 设备等等, 请参考图 9, 具体包括:
壳体 90;
电路板 20, 设置于所述壳体 90表面或者内部;
第一天线 91 , 设置于所述电路板 20的第一侧 91a; 处理器 92, 电连接所述第一天线 91 , 用于对所述第一天线 91 的收发信 号进行处理;
其中, 请继续参考图 1 , 所述第一天线 91包括:
第一天线枝节 10, 印制于电路板 20的第一面 20a, 所述第一天线枝节 10 包括第一子枝节 10a;
接地枝节 11 , 印制于所述第一面 20a, 所述接地枝节 11包括接地子枝节 11a, 所述第一子枝节 10a和所述接地子枝节 11a交错排列形成缝隙, 所述第 一天线枝节 10与所述接地枝节 11通过缝隙相互耦合;
第二天线枝节 12, 印制于所述电路板 20的第二面 20b, 所述第二面 20b 与所述第一面 20a为所述电路板 20相对的两个面;
第一馈源 13 , 电连接所述第一天线枝节 10;
其中, 所述第二天线枝节 12与所述电路板 20上的金属过孔 20c电连接, 所述金属过孔 20c与所述第一馈源 13电连接, 所述第一天线枝节 10、 所述接 地枝节 11和所述第一馈源 13形成第一天线, 用于产生第一谐振频率; 所述 第一天线枝节 10、 所述第二天线枝节 12和所述第一馈源 13形成第二天线, 用于产生第二谐振频率。
可选的, 所述第一子枝节 10a的交指数量与所述天线的长度呈反比关系。 可选的, 请继续参考图 2, 第一天线还包括:
第一电容 16 , 电连接所述第一天线枝节 10末端和所述电路板 20的接地 端 20d, 用于降低所述第一天线枝节 10的电长度; 和 /或
第二电容 17 , 电连接于所述第二天线枝节 12末端和所述电路板 20的接 地端 20d, 用于降低所述第二天线枝节 12的电长度。
可选的, 请参考图 10 , 该天线还包括:
第二天线 93 , 设置于所述电路板的第二侧 91b, 所述第二侧 91b为所述 第一侧 91a的对侧。
在这种情况下, 能够保证第一天线 91和第二天线 93的方向图覆盖能够 达到全向覆盖。
可选的, 请继续参考图 10, 还包括:
第三天线 94a,设置于所述电路板 20的第三侧 91c, 所述第三侧 91c与所 述第一侧 91a相邻,所述第三天线 94a用于产生第三谐振频率; 第三谐振频率 例如为: 815MHz~960MHz、 1420MHz~ 1520MHz, 1710MHz~2170MHz, 2490MHz~2700MHz中的至少一个频段;
第四天线 94b, 设置于所述第三侧 91c, 所述第四天线 94b用于产生所述 第三谐振频率中的第一子谐振频率, 第一子谐振频率例如为:
2490MHz~2700MHz;
第五天线 94c, 设置于所述电路板 20的第四侧 91d, 所述第四侧 91d与 所述第三侧 91c相对,所述第五天线 94c用于产生第三谐振频率,其中通常情 况下, 第五天线 94c为第三天线 94a的分集收发天线, 故而通常第五天线 94c 只工作于第三谐振频率的接收频段, 例如: 860MHz~960MHz、
1470MHz~1520MHz、 1700MHz~2170MHz、 2490MHz~2700MHz中的至少一 个频段;
第六天线 94d, 设置于所述第四侧 91d, 所述第六天线 94d用于产生所述 第三谐振频率中的第一子谐振频率。 第二子谐振频率例如为:
2490MHz~2700MHzo
通过上述方案提供了一种新型的 4x4多输入多输出 ( MIMO:
Multiple-Input Multiple-Output ) 系统长期演进 ( LTE: Long Term Evolution ) 天线和 WiFi天线的布局方案, 通过第一天线 91和第二天线 93布局于电路板 对侧来实现 WiFi天线的全向覆盖, 通过第三天线 94a、 第四天线 94b、 第五 天线 94c、 第六天线 94d来实现 LTE天线的全向覆盖。
可选的, 请继续参考图 10, 该天线包括:
第一谐振枝节 95a, 设置于所述第三侧 91c, 第一谐振枝节 95a位于所 述第三天线 94a和所述第四天线 94b之间,所述第一谐振枝节 95a的尺寸为第 一子谐振频率的四分之一波长; 和 /或
第二谐振枝节 95a, 设置于所述第四侧 91d, 第二谐振枝节 95a位于所述 第五天线 94c和所述第六天线 94d之间 ,所述第二谐振枝节 95a的尺寸为第一 子谐振频率的四分之一波长。
以第一子谐振频率为 2490MHz~2700MHz为例, 那么, 如果该天线存在 第一谐振枝节 95a的话,那么第一谐振枝节 95a的长度为 2490MHz~2700MHz 的四分之一波长; 如果该天线存在第二谐振枝节 95b的话, 那么第二谐振枝 节 95b的长度约为 2490MHz~2700MHz的四分之一波长。
通过设置于电路板 20上的第一谐振枝节 95a能够改变第三天线 94a和第 四天线 94b在 PCB板上的电流分布, 从而改善第三天线 94a、 第四天线 94b 之间的隔离度, 防止第三天线 94a与第四天线 94b之间的相互干扰; 通过设 置于电路板 91上的第二谐振枝节 95b能够改变第五天线 94c和第六天线 94d 的电流分布, 从而改善第五天线 94c与第六天线 94d的隔离度, 防止第五天 线 94c与第六天线 94d之间的相互干扰。
本发明的一个或多个实施例, 至少具有以下有益效果:
由于在本发明实施例中, 提供了一种天线和终端, 天线包括: 第一天线 枝节、 接地枝节和第二天线枝节、 第一馈源, 或者还包括第二馈源, 第一天 线枝节、 所述接地枝节和所述第一馈源形成第一天线, 用于产生第一谐振频 率; 所述第一天线枝节、 所述第二天线枝节和所述第一馈源形成第二天线, 用于产生第二谐振频率; 或者, 所述第一天线枝节、 所述接地枝节和所述第 一馈源形成第一天线, 用于产生第一谐振频率; 所述第二天线枝节和所述第 二馈源形成第二天线, 用于产生第二谐振频率。 故而该天线能够覆盖包括第 一谐振频率和第二谐振频率在内的多个频段, 并且第一天线枝节的第一子枝 节与接地枝节的接地子枝节交错排列能够形成电容效应, 进而第一天线枝节 与接地枝节形成 LC电路, 该 LC电路呈现左手传输线效应, 进而降低了第一 天线枝节和接地枝节的长度之和, 从而保证了在天线覆盖多个频段的同时, 降低了天线的整体尺寸。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种天线, 其特征在于, 包括:
第一天线枝节, 印制于电路板的第一面, 所述第一天线枝节包括第一子 枝节;
接地枝节, 印制于所述第一面, 所述接地枝节包括接地子枝节, 所述第 一子枝节和所述接地子枝节交错排列形成缝隙, 所述第一天线枝节与所述接 地枝节通过缝隙相互耦合;
第二天线枝节, 印制于所述电路板的第二面, 所述第二面与所述第一面 为所述电路板相对的两个面;
第一馈源, 电连接所述第一天线枝节;
其中, 所述第二天线枝节与所述电路板上的金属过孔电连接, 所述金属 过孔与所述第一馈源电连接, 所述第一天线枝节、 所述接地枝节和所述第一 馈源形成第一天线, 用于产生第一谐振频率; 所述第一天线枝节、 所述第二 天线枝节和所述第一馈源形成第二天线, 用于产生第二谐振频率。
2、 如权利要求 1所述的天线, 其特征在于, 所述第一子枝节的交指数量 与所述天线的长度呈反比关系。
3、 如权利要求 1或 2所述的天线, 其特征在于, 所述天线还包括: 第一电容, 电连接所述第一天线枝节末端和所述电路板的接地端, 用于 降低所述第一天线枝节的电长度; 和 /或
第二电容, 电连接于所述第二天线枝节末端和所述电路板的接地端, 用 于降低所述第二天线枝节的电长度。
4、 一种终端, 其特征在于, 包括:
壳体;
电路板, 设置于所述壳体表面或者内部;
第一天线, 设置于所述电路板的第一侧;
处理器, 电连接所述第一天线, 用于对所述第一天线的收发信号进行处 理;
其中, 所述第一天线包括:
第一天线枝节, 印制于电路板的第一面, 所述第一天线枝节包括第一子 枝节;
接地枝节, 印制于所述第一面, 所述接地枝节包括接地子枝节, 所述第 一子枝节和所述接地子枝节交错排列形成缝隙, 所述第一天线枝节与所述接 地枝节通过缝隙相互耦合;
第二天线枝节, 印制于所述电路板的第二面, 所述第二面与所述第一面 为所述电路板相对的两个面;
第一馈源, 电连接所述第一天线枝节;
其中, 所述第二天线枝节与所述电路板上的金属过孔电连接, 所述金属 过孔与所述第一馈源电连接, 所述第一天线枝节、 所述接地枝节和所述第一 馈源形成第一天线, 用于产生第一谐振频率; 所述第一天线枝节、 所述第二 天线枝节和所述第一馈源形成第二天线, 用于产生第二谐振频率。
5、 如权利要求 4所述的终端, 其特征在于, 所述第一子枝节的交指数量 与所述天线的长度呈反比关系。
6、 如权利要求 4或 5所述的终端, 其特征在于, 所述第一天线还包括: 第一电容, 电连接所述第一天线枝节末端和所述电路板的接地端, 用于 降低所述第一天线枝节的电长度; 和 /或
第二电容, 电连接于所述第二天线枝节末端和所述电路板的接地端, 用 于降低所述第二天线枝节的电长度。
7、 如权利要求 4-6任一所述的终端, 其特征在于, 所述终端还包括: 第二天线, 设置于所述电路板的第二侧, 所述第二侧为所述第一侧的对 侧。
8、 如权利要求 4-7任一所述的终端, 其特征在于, 所述终端还包括: 第三天线, 设置于所述电路板的第三侧, 所述第三侧与所述第一侧相邻, 所述第三天线用于产生第三谐振频率;
第四天线, 设置于所述第三侧, 所述第四天线用于产生所述第三谐振频 率中的第一子谐振频率;
第五天线, 设置于所述电路板的第四侧, 所述第四侧与所述第三侧相对, 所述第五天线用于产生所述第三谐振频率;
第六天线, 设置于所述第四侧, 所述第六天线用于产生所述第三谐振频 率中的所述第子谐振频率。
9、 如权利要求 8所述的终端, 其特征在于, 所述终端还包括:
第一谐振枝节, 设置于所述第三侧, 所述第三天线和所述第四天线之间, 所述第一谐振枝节的尺寸为所述第一子谐振频率的四分之一波长; 和 /或
第二谐振枝节, 设置于所述第四侧, 所述第五天线和所述第六天线之间, 所述第二谐振枝节的尺寸为所述第一子谐振频率的四分之一波长。
10、 如权利要求 4-9任一所述的终端, 其特征在于, 所述终端为手机或穿 戴式设备。
PCT/CN2014/073408 2014-03-13 2014-03-13 一种天线及终端 WO2015135188A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016506763A JP6032515B2 (ja) 2014-03-13 2014-03-13 アンテナ及び端末
US15/034,825 US20160294048A1 (en) 2014-03-13 2014-03-13 Antenna and Terminal
EP14814657.4A EP3001503B1 (en) 2014-03-13 2014-03-13 Antenna and terminal
PCT/CN2014/073408 WO2015135188A1 (zh) 2014-03-13 2014-03-13 一种天线及终端
CN201480077144.5A CN106463827B (zh) 2014-03-13 2014-03-13 一种天线及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073408 WO2015135188A1 (zh) 2014-03-13 2014-03-13 一种天线及终端

Publications (1)

Publication Number Publication Date
WO2015135188A1 true WO2015135188A1 (zh) 2015-09-17

Family

ID=54070817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073408 WO2015135188A1 (zh) 2014-03-13 2014-03-13 一种天线及终端

Country Status (5)

Country Link
US (1) US20160294048A1 (zh)
EP (1) EP3001503B1 (zh)
JP (1) JP6032515B2 (zh)
CN (1) CN106463827B (zh)
WO (1) WO2015135188A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847527A (zh) * 2018-06-20 2018-11-20 袁涛 基于串联反加载的iot天线
CN110783706A (zh) * 2019-12-06 2020-02-11 惠州硕贝德无线科技股份有限公司 一种同频一体化天线及客户前置设备
CN111668587A (zh) * 2019-03-05 2020-09-15 日本航空电子工业株式会社 天线
CN112201951A (zh) * 2020-09-28 2021-01-08 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端
CN112751202A (zh) * 2019-10-29 2021-05-04 日本航空电子工业株式会社 一种天线

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706303B (zh) 2014-08-28 2019-06-28 华为技术有限公司 一种天线装置及设备
US10333201B2 (en) * 2016-08-09 2019-06-25 Verily Life Sciences Llc Multi-antenna wearable device
CN106602218B (zh) * 2017-01-24 2024-05-10 国网冀北电力有限公司电力科学研究院 一种抗金属表面的有源射频识别标签天线
CN106876904B (zh) * 2017-04-17 2023-03-24 金益星 一种多功能天线
JP6495985B2 (ja) * 2017-09-05 2019-04-03 株式会社ヨコオ 車載用アンテナ装置
TWI643400B (zh) * 2017-10-16 2018-12-01 和碩聯合科技股份有限公司 雙頻天線模組
WO2019205029A1 (zh) * 2018-04-25 2019-10-31 华为技术有限公司 一种天线及移动终端
WO2019235297A1 (ja) * 2018-06-04 2019-12-12 日本電気株式会社 スプリットリング共振器および基板
US11862877B2 (en) 2018-12-27 2024-01-02 Japan Aviation Electronics Industry, Limited Antenna, board and communication device
JP7216577B2 (ja) * 2019-03-05 2023-02-01 日本航空電子工業株式会社 アンテナ
JP7196007B2 (ja) 2019-04-17 2022-12-26 日本航空電子工業株式会社 アンテナ
JP7196008B2 (ja) 2019-04-17 2022-12-26 日本航空電子工業株式会社 アンテナ
JP7414414B2 (ja) 2019-06-27 2024-01-16 日本航空電子工業株式会社 アンテナ
JP7414415B2 (ja) 2019-06-27 2024-01-16 日本航空電子工業株式会社 アンテナ及びそれに用いられる対向部の中間製品
JP7475126B2 (ja) 2019-10-29 2024-04-26 日本航空電子工業株式会社 アンテナ
JP7437143B2 (ja) 2019-12-05 2024-02-22 日本航空電子工業株式会社 アンテナ
US11881618B2 (en) * 2020-07-10 2024-01-23 KYOCERA AVX Components (San Diego), Inc. Antenna system with coupled region
TWI757091B (zh) * 2021-02-09 2022-03-01 緯創資通股份有限公司 天線結構
TWI783716B (zh) * 2021-10-07 2022-11-11 緯創資通股份有限公司 天線結構和電子裝置
CN116031612A (zh) * 2021-10-27 2023-04-28 荣耀终端有限公司 一种终端天线及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874062A (zh) * 2005-05-30 2006-12-06 三星电子株式会社 内置天线设备
CN101207233A (zh) * 2006-12-22 2008-06-25 鸿富锦精密工业(深圳)有限公司 印刷式天线
CN102694246A (zh) * 2012-02-23 2012-09-26 香港应用科技研究院有限公司 用于双通信系统的采用单天线元件的高隔离度天线系统
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062422A1 (en) * 2003-12-23 2005-07-07 Macquarie University Multi-band, broadband, fully-planar antennas
KR100810384B1 (ko) * 2006-12-05 2008-03-04 삼성전자주식회사 휴대 단말기의 내장형 안테나 장치
JP5777885B2 (ja) * 2008-01-08 2015-09-09 エース テクノロジーズ コーポレーション 多重帯域内蔵型アンテナ
TWI427858B (zh) * 2009-04-10 2014-02-21 Advanced Connectek Inc Digital TV antenna
JP2014523163A (ja) * 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 電気的に小型の垂直スプリットリング共振器アンテナ
CN105896093B (zh) * 2011-08-24 2019-10-18 日本电气株式会社 天线和电子装置
KR101874892B1 (ko) * 2012-01-13 2018-07-05 삼성전자 주식회사 소형 안테나 장치 및 그 제어방법
TWI505566B (zh) * 2012-03-22 2015-10-21 Wistron Neweb Corp 寬頻天線及其相關射頻裝置
WO2013183473A1 (ja) * 2012-06-08 2013-12-12 株式会社村田製作所 アンテナおよび無線通信装置
KR102017491B1 (ko) * 2013-08-01 2019-09-04 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 기기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874062A (zh) * 2005-05-30 2006-12-06 三星电子株式会社 内置天线设备
CN101207233A (zh) * 2006-12-22 2008-06-25 鸿富锦精密工业(深圳)有限公司 印刷式天线
CN102694246A (zh) * 2012-02-23 2012-09-26 香港应用科技研究院有限公司 用于双通信系统的采用单天线元件的高隔离度天线系统
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001503A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847527A (zh) * 2018-06-20 2018-11-20 袁涛 基于串联反加载的iot天线
CN111668587A (zh) * 2019-03-05 2020-09-15 日本航空电子工业株式会社 天线
CN111668587B (zh) * 2019-03-05 2022-01-25 日本航空电子工业株式会社 天线
CN112751202A (zh) * 2019-10-29 2021-05-04 日本航空电子工业株式会社 一种天线
CN112751202B (zh) * 2019-10-29 2024-06-18 日本航空电子工业株式会社 一种天线
CN110783706A (zh) * 2019-12-06 2020-02-11 惠州硕贝德无线科技股份有限公司 一种同频一体化天线及客户前置设备
CN112201951A (zh) * 2020-09-28 2021-01-08 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端
CN112201951B (zh) * 2020-09-28 2023-03-10 上海摩勤智能技术有限公司 一种天线支架的多天线布局结构及移动终端

Also Published As

Publication number Publication date
CN106463827B (zh) 2019-11-01
CN106463827A (zh) 2017-02-22
EP3001503A4 (en) 2016-03-30
US20160294048A1 (en) 2016-10-06
JP6032515B2 (ja) 2016-11-30
EP3001503A1 (en) 2016-03-30
EP3001503B1 (en) 2017-01-25
JP2016518779A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2015135188A1 (zh) 一种天线及终端
US10819031B2 (en) Printed circuit board antenna and terminal
Wong et al. High‐isolation conjoined loop multi‐input multi‐output antennas for the fifth‐generation tablet device
US11038257B2 (en) Antenna structure and communications terminal
US11342651B2 (en) Antenna apparatus and terminal device
WO2011116575A1 (zh) 一种无线设备
CN109659686B (zh) 一种高隔离度mimo天线
EP3300170B1 (en) Antenna and user equipment
US10498033B2 (en) Communications device
US8144060B2 (en) Multiple feedpoint antenna
WO2011116707A1 (zh) 移动通信天线设备及移动通信终端设备
CN109904628B (zh) 一种智能终端天线阵列
US20170194694A1 (en) Dual-band wi-fi antenna and mobile terminal
CN107851895B (zh) 终端天线和终端
CN110224216A (zh) 基于crlh-tl结构的mimo阵列5g手机天线
WO2017117944A1 (zh) 双频wi-fi天线以及移动终端
TWI521796B (zh) 提升天線隔離度之射頻裝置及無線通訊裝置
CN216015704U (zh) 一种用于5g移动通信的紧凑去耦mimo终端天线
CN103915685A (zh) 一种基于印刷电路板的小尺寸宽带宽的四单元mimo天线
WO2022121501A1 (zh) 一种天线
CN202395148U (zh) 2.4GHz/5.8GHz双频无线通讯装置
CN103022650A (zh) 2.4GHz/5.8GHz双频无线通讯装置
CN114824768A (zh) 回路天线及tws耳机
CN102931473A (zh) 2.4GHz/5.8GHz双频无线通讯装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014814657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014814657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016506763

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15034825

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE