Nothing Special   »   [go: up one dir, main page]

WO2015133517A1 - Coating agent, cured film, laminate, molded product - Google Patents

Coating agent, cured film, laminate, molded product Download PDF

Info

Publication number
WO2015133517A1
WO2015133517A1 PCT/JP2015/056344 JP2015056344W WO2015133517A1 WO 2015133517 A1 WO2015133517 A1 WO 2015133517A1 JP 2015056344 W JP2015056344 W JP 2015056344W WO 2015133517 A1 WO2015133517 A1 WO 2015133517A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
meth
cured film
acrylate
resin
Prior art date
Application number
PCT/JP2015/056344
Other languages
French (fr)
Japanese (ja)
Inventor
夕佳 高橋
伊藤 賢哉
山廣 幹夫
真範 石川
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2015133517A1 publication Critical patent/WO2015133517A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to a coating agent.
  • the present invention relates to a coating agent that can form a cured film that relieves stress, and that can impart flexibility to a material having poor flexibility by the cured film.
  • Substrates serving as bases for flexible devices, transparent electrodes, and the like are required to have not only high heat resistance but also excellent properties such as low retardation and high transmittance.
  • a base material an optical transparent film formed from a resin and having properties close to glass is used as a base material for thin film transistors and next-generation transparent electrodes, instead of easily broken glass.
  • the film is easily broken or damaged, which is a major obstacle to commercialization.
  • a base material having low elasticity, brittleness, and poor flexibility is caused by being easily cracked or cracked by applying an external force such as roll or cutting.
  • Patent Document 1 discloses a laminated sheet in which a transparent crosslinked film is laminated on at least one of thin film glasses and the thin film glass has excellent handling properties (paragraph 0013). However, there is still room for improvement with respect to bendability, and a sheet having bendability that can be adapted to a roll-to-roll process is desired.
  • Patent Document 2 has a hard coat layer formed of an ionizing radiation curable resin on at least one surface of a cyclic olefin film, and a thermoplastic resin between the hard coat layer and the cyclic olefin film.
  • a hard coat film that provides an elastomer layer formed of an elastomer and suppresses cracking is disclosed (paragraph 0008). However, a cyclic olefin film / elastomer layer / hard coat layer and at least three layers are required, resulting in a multilayer structure.
  • JP 2009-202456 A Japanese Patent No. 4803888
  • an object of the present invention is to provide a coating agent that can relieve stress.
  • the coating agent of the present application By applying the coating agent of the present application, the coated laminate can be easily prevented from breaking as produced in the product production process, and the scratch resistance is improved.
  • the present inventors have intensively studied to solve the above problems. As a result, it has been found that a coating agent using a specific urethane acrylate resin and a polyfunctional acrylate resin can form a cured film having excellent flexibility. Furthermore, the base material etc. which apply
  • the coating agent according to the first aspect of the present invention includes a urethane skeleton, a urethane acrylate resin (A) having a bi- or higher functional (meth) acryloyl group; a tri- or higher functional polymerization that does not include a urethane skeleton in the main chain.
  • the “acrylate resin” may be an acrylate polymer, an acrylate prepolymer, or an acrylate oligomer.
  • the cured film formed from the coating agent by including a urethane acrylate resin (A) and a polyfunctional acrylate resin (B) will have flexibility, impact resistance, cutting property, and scratch resistance. Can have wear resistance and moderate hardness.
  • the coating agent according to the second aspect of the present invention is the coating agent according to the first aspect of the present invention, wherein the polyfunctional acrylate resin (B) is obtained by polymerizing a (meth) acrylic monomer.
  • This is an active energy ray-curable acrylate resin which is a coalescence and has a polymerizable functional group having three or more functional groups in the side chain.
  • the “(meth) acrylic monomer” may be (meth) acrylic acid or (meth) acrylic acid ester. If comprised in this way, a polyfunctional acrylate resin (B) can be formed from a particularly preferable monomer.
  • the coating agent according to the third aspect of the present invention further includes a silicon compound (D) in the coating agent according to the first aspect or the second aspect of the present invention. If comprised in this way, a cured film can have the surface modification effect (Abrasion resistance, blocking resistance, tackiness improvement, etc.) by including a silicon compound.
  • the coating agent according to a fourth aspect of the present invention is the coating agent according to the third aspect of the present invention, wherein the silicon compound (D) is a fluorosilsesquioxane compound or a fluorosilsesquioxane polymer. is there. If comprised in this way, the compound especially preferable as a silicon compound can be contained in a coating agent.
  • the fluorofluorosilsesquioxane-containing compound accumulates on the surface of the cured film and imparts excellent surface antifouling properties, scratch resistance and blocking resistance to the cured film.
  • the cured film according to the fifth aspect of the present invention is obtained by irradiating the coating film of the coating agent according to any one of the first to fourth aspects of the present invention with active energy rays. . If comprised in this way, the cured film which has a flexibility, impact resistance, a cutting property, scratch resistance, abrasion resistance, and moderate hardness can be formed.
  • a laminate according to a sixth aspect of the present invention includes the cured film according to the fifth aspect of the present invention; and a base material coated on at least one side with the cured film.
  • the “single side” includes not only the case of being directly laminated on one side of the base material but also the case of being indirectly laminated via another layer. If comprised in this way, the stress of the whole laminated body will be relieve
  • a molded product according to a seventh aspect of the present invention includes the cured film according to the fifth aspect of the present invention; and a molded body coated on the cured film. If comprised in this way, impact resistance, abrasion resistance, abrasion resistance, and moderate hardness can be provided to the surface of a molded object with a cured film.
  • the laminated body after coating can suppress breakage that occurs in the process of commercialization and improve scratch resistance. be able to. Therefore, even if it is a base material with poor flexibility, flexibility can be improved. Furthermore, after coating, the effect of preventing the mutual adhesion (anti-blocking property) of the laminate can be enhanced, and the resistance for preventing breakage due to external force can also be enhanced.
  • FIG. 1 It is a figure which shows the laminated body which laminated
  • FIG. 1 shows the laminated body which laminated
  • the coating agent according to the first embodiment of the present invention includes a urethane acrylate resin (A), a polyfunctional acrylate resin (B), and a polymerization initiator (C).
  • A urethane acrylate resin
  • B polyfunctional acrylate resin
  • C polymerization initiator
  • Urethane acrylate resin (A) is an active energy ray curable resin having a bifunctional or higher (meth) acryloyl group and having a urethane skeleton, and examples thereof include an ultraviolet curable resin.
  • the urethane acrylate resin (A) imparts flexibility to the cured film.
  • urethane (meth) acrylate resin can be mentioned as urethane acrylate resin (A).
  • Urethane (meth) acrylate resin contains a radical polymerizable unsaturated group that can be obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol and then further reacting with a hydroxyl group-containing (meth) acryl compound. It may be an oligomer, a prepolymer or a polymer. In particular, polycarbonate urethane acrylates using polycarbonate polyols as polyhydric alcohols are preferred. By using polycarbonate urethane acrylate, the formed cured film can provide excellent stretchability and toughness.
  • polyisocyanate examples include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, Phenylmethane triisocyanate, Vernock D-750, Crisbon NK (trade name; manufactured by Dainippon Ink & Chemicals, Inc.), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Japan) Polyurethane Industry Co., Ltd.), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
  • polyhydroxy compound examples include polyester polyol, polyether polyol, and the like.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Butanediol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4 -Cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, 2,7-decalin glycol and the like.
  • the hydroxyl group-containing (meth) acrylic compound is not particularly limited, but is preferably a hydroxyl group-containing (meth) acrylic acid ester, specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) ) Acrylate and the like.
  • a hydroxyl group-containing (meth) acrylic acid ester specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (me
  • Urethane acrylate resin (A) for example, urethane (meth) acrylate resin can be synthesized by a known method.
  • a predetermined amount of the organic polyisocyanate (a) and the polycarbonate polyol (b) are reacted under the conditions of 70 ° C. to 80 ° C. until the residual isocyanate concentration reaches a predetermined amount.
  • (Meth) acrylate (c) containing at least one hydroxyl group is added, and the residual isocyanate concentration is 0.1% by weight or less at 70 ° C. to 80 ° C. in the presence of a polymerization inhibitor (eg, hydroquinone monomethyl ether). It can obtain by making it react until it becomes.
  • a polymerization inhibitor eg, hydroquinone monomethyl ether
  • the urethane acrylate resin (A) is blended in the range of 10 wt% to 90 wt%, preferably 30 wt% to 70 wt%. By setting it as the range, the extensibility and the flexibility of the cured film formed from the coating agent can be maintained.
  • the said ratio is a ratio when the resin composition which forms curable resin film is 100 wt%.
  • the weight average molecular weight (Mw) of the urethane acrylate resin (A) is in the range of 3,000 to 500,000, preferably 5,000 to 200,000. By setting it as this range, a softness
  • the polyfunctional acrylate resin (B) is an active energy ray-curable resin having a trifunctional or higher functional group that does not contain a urethane skeleton in the main chain.
  • the side chain of the polyfunctional acrylate resin (B) may include a urethane bond.
  • the polyfunctional acrylate resin (B) imparts scratch resistance, abrasion resistance and the like to the cured film.
  • a photocurable resin, especially an ultraviolet curable resin having a tri- or higher functional (meth) acryloyl group can be mentioned.
  • the polyfunctional acrylate resin (B) may be a polymer obtained by polymerizing a (meth) acrylic monomer.
  • a method for obtaining a “polymer obtained by polymerizing a (meth) acrylic monomer” will be described.
  • a polymer is obtained by addition polymerization of single or different (meth) acrylic monomers.
  • the one or more (meth) acrylic monomers are selected from monomers having reactive groups. Moreover, you may combine with the monomer which does not have a reactive group.
  • a polymer obtained by reacting the polymer with a compound having an acryloyl group that reacts with a reactive group for example, epoxy group, carboxylic acid, hydroxyl group, glycidyl group
  • a reactive group for example, epoxy group, carboxylic acid, hydroxyl group, glycidyl group
  • a resin having a polymerizable functional group can be obtained.
  • the monomer that reacts with the precursor can be selected from monomers that react with the reactive group and have one or more (meth) acryloyl groups.
  • Examples of (meth) acrylic monomers having a reactive group constituting the precursor include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycidyl methacrylate, light ester P-2M (2-metac leuoxyethyl acid phosphate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO-MS (N) (2-methacryloyloxyethyl succinic acid / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO- HH (N) (2-Metalliloyloxyethyl hexahydrophthalic acid / manufactured by Kyoeisha Chemical Co., Ltd.), light ester EG (ethylene glycol dimethacrylate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester 9EG (PEG # 400 dimethacrylate) / Kyoeisha Chemical Co
  • Examples of (meth) acrylic monomers having no reactive group constituting the precursor include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, and Acrix C- 1 (manufactured by Toagosei Co., Ltd.), Acrix CHA (manufactured by Toagosei Co., Ltd.), Aron DA (manufactured by Toagosei Co., Ltd.), A-LEN-10 (ethoxylated phenylphenol acrylate / Shin Nakamura Chemical Co., Ltd.) AM90-G (Methoxypolyethylene acrylate / Shin Nakamura Chemical Co., Ltd.), S-1800A (Isosterial acrylate / Shin Nakamura Scientific Co., Ltd.), AMP-20GY (Phenoxypolyethylene glycol acrylate) / Shin-Nakamura Chemical Co., Ltd.
  • the fluorosilsesquioxane which has one (meth) acryloyl group is mentioned as a (meth) acrylic-type monomer which does not have a reactive group.
  • the fluorosilsesquioxane having a (meth) acryloyl group include a compound of the following formula (1).
  • Rf in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6, 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2,2 -Tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or ⁇ , ⁇ , ⁇ -trifluoromethylphenyl Is included.
  • Examples of monomers that react with the precursor include the following.
  • Examples of the carboxylic acid compound having a (meth) acryloyl group include acrylic acid, methacrylic acid, and vinyl benzoic acid.
  • a known esterification reaction can be used.
  • the esterification reaction is a dehydration condensation reaction between a carboxylic acid compound and a group having active hydrogen (preferably a hydroxyl group).
  • Examples of the carboxylic acid ester compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 1-propyl (meth) acrylate, 1-butyl (meth) acrylate, and t-butyl (meth). Examples include acrylate and 2-ethylhexyl (meth) acrylate.
  • a known esterification reaction can be used.
  • the esterification reaction is a transesterification reaction between a carboxylic acid ester compound and a group having active hydrogen (preferably a hydroxyl group).
  • the epoxy compound having a (meth) acryloyl group include glycidyl (meth) acrylate and 3,4-epoxycyclohexylmethyl (meth) acrylate.
  • a known epoxy ring-opening reaction between a cyclic ether and a hydroxyl group can be used. .
  • a part of the isocyanate group of a compound having a plurality of isocyanate groups such as isophorone diisocyanate is urethanated with a hydroxyl group-containing addition polymerizable monomer such as 2-hydroxyethyl acrylate to obtain an isocyanate compound having a polymerizable unsaturated bond.
  • the polymer of the present invention having a polymerizable unsaturated bond in the side chain can be obtained by utilizing a urethanization reaction between the isocyanate compound and a group having active hydrogen (preferably a hydroxyl group).
  • the polyfunctional acrylate resin (B) can be selected from various known polymerizable compounds.
  • the prepolymer and oligomer compound include polyester (meth) acrylate, silicone (meth) acrylate, and epoxy (meth) acrylate.
  • the polyfunctional polyester (meth) acrylate commercially available products include M-8030 (manufactured by Toa Gosei Co., Ltd.).
  • a polyfunctional acrylic polymer commercially available products include Hitaloid 7975D (Mw 15000 / Hitachi Chemical), Hitaloid 7988 (Mw 60000 / Hitachi Chemical), Hitaloid (Mw 78000 / Hitachi Chemical), Acryt 8kx-01 (manufactured by Taisei Fine Chemical Co., Ltd.) Etc.
  • the multifunctional acrylate resin (B) is blended in the coating agent in an amount of 5 wt% to 60 wt%, preferably 5 wt% to 30 wt%.
  • the said ratio is a ratio when the resin composition which forms curable resin film is 100 wt%.
  • the weight average molecular weight (Mw) of the polyfunctional acrylate resin (B) is 1,000 to 500,000, preferably 2,000 to 100,000. By setting the molecular weight to 1,000 or more, the film has good flexibility, further increases the crosslink density in the cured film, and can impart good scratch resistance, abrasion resistance, and tack resistance to the cured film.
  • the coating agent of the present application contains a polymerization initiator as a curing agent.
  • the polymerization initiator is not particularly limited.
  • a general polymerization initiator can be used.
  • the polymerization initiator may be an initiator that generates radicals with heat or active energy rays, and an active energy ray polymerization initiator that generates radicals with active energy rays is preferable.
  • the active energy ray refers to an energy ray that can decompose a compound that generates active species to generate active species.
  • active energy rays include optical energy rays such as visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • a specific example of the active energy ray polymerization initiator is not particularly limited as long as it is a compound that generates radicals upon irradiation with ultraviolet rays or visible rays.
  • Examples of the compound used as the active energy ray polymerization initiator include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropyl xanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2 -Hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2 , 2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropa -1-one, 2-benzyl-2
  • These compounds may be used alone or in combination of two or more. 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxy) Carbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone and the like.
  • the amount of the polymerization initiator (C) used may be 0.01 wt% to 20 wt% with respect to the resin composition forming the curable resin film.
  • Silicon compound (D) A silicon compound may be added to the coating agent as a surface modifying component.
  • a general surface modifier having a silicone compound as a main component can be used.
  • silicone compounds include BYK-UV3500, BYK-UV-3570 (all manufactured by Big Chemie Japan), TEGO Rad2100, 2200N, 2250, 2500, 2600, 2700 (all manufactured by Evonik Degussa Japan), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22-1603, X-22-1615, X- 22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201, X-22-2426, X-22-2 164A, X-22-164C (all manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • silicon compound (D) one or more compounds selected from the group consisting of fluorosilsesquioxane compounds and fluorosilsesquioxane polymers described in WO2008 / 072766 and WO2008 / 072765 may be used. .
  • fluorosilsesquioxane compound examples include a fluorosilsesquioxane compound having a molecular structure represented by the following formula (1).
  • a fluorosilsesquioxane polymer the polymer (homopolymer or copolymer) superposed
  • Rf in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6, 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2,2 -Tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or ⁇ , ⁇ , ⁇ -trifluoromethylphenyl Is included.
  • the fluorosilsesquioxane polymer is a structural unit a derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, a structural unit b derived from organopolysiloxane having an addition polymerizable functional group.
  • a structural unit derived from an addition polymerizable monomer and having a group having a polymerizable unsaturated bond in the side chain, and optionally a fluorosilsesquioxy having one addition polymerizable functional group in the molecule A structural unit d derived from an addition polymerizable monomer other than Sun, an organopolysiloxane having an addition polymerizable functional group, and an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond; It is a polymer containing. “Derived” means a polymerized residue when each monomer constitutes a fluorosilsesquioxane polymer.
  • the structural unit a is derived from fluorosilsesquioxane having a molecular structure represented by the above formula (1).
  • the structural unit b is derived from an organopolysiloxane having an addition polymerizable functional group having a molecular structure represented by the following formula (2).
  • the organopolysiloxane having an addition polymerizable functional group preferably has a molecular structure represented by the following formula (2).
  • n is an integer of 1 to 1,000;
  • R 1 , R 2 , R 3 , R 4 , and R 5 are each independently hydrogen, carbon number
  • An arylalkyl composed of 1-30 alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted aryl and alkylene, in R 1 , R 2 , R 3 , R 4 , and R 5 , At least one hydrogen may be replaced by fluorine and at least one —CH 2 — may be replaced by —O— or cycloalkylene;
  • a 2 is an addition polymerizable functional group.
  • R 1 , R 2 , R 3 and R 4 are preferably methyl at the same time.
  • a 2 in the above formula (2) is a radical polymerizable functional group, more preferably the A 2 contains a (meth) acrylic or styryl, A 2 is represented by the following formula (3), (4 ) Or (5) is more preferred.
  • Y 1 is alkylene having 2 to 10 carbons
  • R 6 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons.
  • R 7 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons
  • X 1 is alkylene having 2 to 20 carbons
  • Y is —OCH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, or —OCH 2 CH (CH 3 ) —
  • p is an integer of 0 to 3.
  • Y 2 is a single bond or alkylene having 1 to 10 carbon atoms.
  • the alkyl having 1 to 5 carbon atoms may be linear or branched.
  • Y 1 is alkylene having 2 to 6 carbon atoms
  • R 6 is hydrogen or methyl.
  • X 1 is —CH 2 CH 2 CH 2 —
  • Y is —OCH 2 CH 2 —
  • p is 0 or 1
  • R 7 is hydrogen or methyl.
  • Y 2 is preferably a single bond or alkylene having 1 or 2 carbon atoms.
  • organopolysiloxanes preferably used include Silaplane FM0711 (trade name; manufactured by JNC Corporation), Silaplane FM0721 (trade name; manufactured by JNC Corporation), Silaplane FM0725 (trade name; JNC) Co., Ltd.), Silaplane TM0701 (trade name; manufactured by JNC Corporation), Silaplane TM0701T (trade name; manufactured by JNC Corporation), and the like.
  • the structural unit c is a structural unit derived from an addition polymerizable monomer and derived from a monomer having a group having a polymerizable unsaturated bond in the side chain.
  • an addition polymerizable monomer containing a structural unit a, a structural unit b, and a monovalent functional group containing a group having active hydrogen described below a precursor obtained using a hydroxyl group-containing vinyl monomer, By reacting with an isocyanate compound having a polymerizable unsaturated bond, a polymer containing a structural unit c (fluorosilsesquioxane polymer) is obtained.
  • the structural unit c is obtained from an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond. That is, the fluorosilsesquioxane polymer containing a group having a polymerizable unsaturated bond in the side chain can be obtained by using a polymer having a functional group capable of introducing a group having a polymerizable unsaturated bond as a precursor.
  • the functional group into which such a group having a polymerizable unsaturated bond can be introduced include a group having active hydrogen and a monovalent functional group containing a cyclic ether.
  • Active hydrogen is hydrogen bonded to an atom (eg, nitrogen atom, sulfur atom, oxygen atom) whose electronegativity value is greater than or equal to carbon among hydrogen atoms existing in the molecule of an organic compound. It is. Therefore, a preferred precursor for obtaining a fluorosilsesquioxane polymer is a polymer containing a group having active hydrogen, and a fluorosilsesquioxane having one addition polymerizable functional group in the molecule, addition polymerization.
  • an atom eg, nitrogen atom, sulfur atom, oxygen atom
  • a fluorosilsesquioxane polymer precursor is obtained using an addition-polymerizable monomer containing an active hydrogen-containing group and a monovalent functional group containing a cyclic ether together with an organopolysiloxane having a functional functional group. be able to.
  • Examples of the group having active hydrogen include —OH, —SH, —COOH, —NH, —NH 2 , —CONH 2 , —NHCONH—, —NHCOO—, Na + [CH (COOC 2 H 5 )], —CH 2 NO 2 , OOH, —SiOH, —B (OH) 2 , —PH 3 , —SH and the like. Carboxyl, amino and hydroxyl are preferred, and hydroxyl is more preferred.
  • the addition polymerizable monomer (c) containing a group having active hydrogen may be a compound having a group having active hydrogen and an addition polymerizable double bond in the molecule, and includes a group having active hydrogen. Any of vinyl compounds, vinylidene compounds, and vinylene compounds may be used. An acrylic acid derivative or a styrene derivative containing a group having active hydrogen is preferable.
  • Examples of the addition polymerizable monomer containing a group having active hydrogen include monomers disclosed in JP-A-9-208681, JP-A-2002-348344, and JP-A-2006-158961. Can do. Specific examples include the following monomers.
  • Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, and itacone.
  • Examples include acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, hexamethan (meth) acrylate and cinnamic acid.
  • Examples of the hydroxyl group-containing vinyl monomer include a hydroxyl group-containing monofunctional vinyl monomer and a hydroxyl group-containing polyfunctional vinyl monomer. As the hydroxyl group-containing monofunctional vinyl monomer, a vinyl monomer having one vinyl group is used.
  • hydroxystyrene N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2-butene- 1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether (2-propenoxyethanol), 16-hydroxyhexadecane methacrylate Such as microcrystalline sucrose allyl ether.
  • a hydroxyl group-containing monofunctional vinyl monomer is preferable, and hydroxyethyl (meth) acrylate is more preferable.
  • the group having a polymerizable unsaturated bond includes a precursor of a fluorosilsesquioxane polymer and a functional group (active hydrogen that can introduce a group having a polymerizable unsaturated bond). And a compound having a group having a polymerizable unsaturated bond in the same molecule can be introduced.
  • the compound having a functional group that reacts with a group having active hydrogen and a group having a polymerizable unsaturated bond in the same molecule include, for example, an isocyanate compound having a polymerizable unsaturated bond, and a polymerizable unsaturated bond.
  • the acid halide which has, the carboxylic acid compound which has a polymerizable unsaturated bond, the carboxylic acid ester compound which has a polymerizable unsaturated bond, and an epoxy compound can be mentioned.
  • the group having such a polymerizable unsaturated bond is preferably a radical polymerizable group, and examples thereof include (meth) acryl, allyl, and styryl.
  • R 8 and R 9 are hydrogen or methyl
  • B is oxygen, alkylene having 1 to 3 carbon atoms, or —OR 10 —
  • R 10 is alkylene having 2 to 12 carbon atoms, carbon number 2 Represents an oxyalkylene having ⁇ 12 or arylene having 6 to 12 carbon atoms.
  • the silicon compound as the surface modifying component is in the range of 0.01 wt% to 20 wt% in the resin (urethane acrylate resin (A), polyfunctional acrylate resin (B) and other resin (E) added as necessary). Blend in.
  • the surface modifying component slip property can be imparted to the surface of the cured film formed from the coating agent, and the tack resistance of the cured film can be improved. Therefore, it is possible to prevent the films from sticking to each other and the metal rolls from being stuck to each other during the roll-to-roll coating.
  • the fluorosilsesquioxane polymer can be synthesized by a method described in International Publication No. 2008/072765 or International Publication No. 2008/072766.
  • the effect of surface modification is achieved on the cured film formed from the coating agent. Can be granted.
  • thermosetting resin a thermoplastic resin, rubber, etc.
  • the substrate adhesion can be increased by adding to a glass substrate.
  • the heat resistance of a cured film can be improved more by adding.
  • thermoplastic resin or rubber the impact resistance of the molded article coated with the coating agent can be further increased by adding it.
  • thermosetting resin examples include phenol resin, alkyd resin, melamine resin, epoxy resin, urea resin, unsaturated polyester resin, urethane resin, thermosetting polyimide, and silicone resin. These resins may be used alone, or a plurality of resins may be used in combination. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional epoxy resin, flexible epoxy resin, brominated epoxy resin, glycidyl ester type epoxy resin, polymer type epoxy resin, biphenyl type epoxy resin, etc.
  • Epoxy resins are heat-resistant, adhesive and chemical resistant, melamine-based resins are heat-resistant, hard and transparent, and urethane-based resins are excellent in adhesion and low-temperature curability, and can be selected and used as appropriate. .
  • the coating agent When other resin (E) is added to the coating agent, it is blended in an amount of 0.1 wt% to 50 wt%, preferably 1 wt% to 30 wt%.
  • the said ratio is a ratio when the total weight of the resin composition which forms curable resin film is 100 wt%.
  • Solvent (F) The resin used for the coating agent of the present application may be dissolved in a solvent such as an organic solvent.
  • the solvent is not particularly limited. Common organic solvents can be used. It selects suitably by solvent resistance of the base material etc. which apply
  • solvents include hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene, etc.) ), Ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), alcohol solvents (methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.), nitrile solvents (acetonitrile, propionitrile, benzonitrile) Etc.), ester solvents (ethyl acetate, butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, etc.), amide solvents (N, N-dimethyl) (Lumamide, N, amide
  • additives may be added to the coating agent.
  • a filler may be added to impart film hardness and scratch resistance.
  • a leveling agent may be added.
  • additives such as weathering agents and antifoaming agents may be added.
  • an active energy ray sensitizer a polymerization inhibitor, a polymerization initiation assistant, a leveling agent, a wettability improver, Surfactants, plasticizers, UV absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers typified by silica and alumina, and organic fillers may be added to the coating agent. Good.
  • leveling agents include commercially available acrylic surface conditioners BYK-350, BYK-352, BYK-354, BYK-356, BYK-381, BYK-392, BYK-394, BYK-3441, BYK-3440, BYK-3550, etc. (all trade names; manufactured by Big Chemie Japan Co., Ltd.).
  • weathering agents include benzotriazoles, hydroxyphenyltriazines, benzophenones, salicylates, cyanoacrylates, triazines, or dibenzoylresorcinols.
  • ultraviolet absorbers may be used alone, or a plurality of ultraviolet absorbers may be used in combination. It is preferable to appropriately select the type and combination of ultraviolet absorbers based on the wavelength of ultraviolet rays to be absorbed.
  • the cured film which concerns on the 2nd Embodiment of this invention is obtained by the process of forming a coating film from the coating agent which concerns on 1st Embodiment, and the process of hardening this coating film.
  • the coating film can be formed by, for example, coating.
  • the coating film can be cured, for example, by irradiation with active energy rays after drying or heating.
  • the method for applying the coating agent is not particularly limited. For example, spin coating, roll coating, slit coating, dipping, spray coating, gravure coating, reverse coating, rod coating, bar coating, die coating, kiss coating, reverse kiss coating, air knife coating Law and curtain coat method.
  • the applied coating liquid can be dried in an environment of room temperature to about 200 ° C.
  • an active energy ray polymerization initiator When an active energy ray polymerization initiator is used, it can be cured by irradiating a photoactive energy ray or an electron beam with an active energy ray source after coating and drying.
  • an active energy ray source There are no particular restrictions on the active energy ray source, but depending on the nature of the active energy ray polymerization initiator used, for example, low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, metal halide lamp, carbon arc, xenon arc, gas laser, solid state laser And an electron beam irradiation apparatus.
  • the thickness of the cured film is 1 ⁇ m to 30 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m.
  • the thickness is 1 ⁇ m or more, it is possible to avoid that the effect of flexibility and impact resistance is reduced due to being too thin.
  • the thickness is 30 ⁇ m or less, it can be avoided that the optical properties (transparency, color) cannot be maintained due to being too thick.
  • it may cause poor drying of the solvent, cause poor curing, and the adhesiveness may deteriorate due to the residual solvent.
  • the cured film formed from the coating agent of the present invention is excellent in flexibility and scratch resistance. Therefore, by laminating the coating agent on a base material having poor flexibility, the base material can be prevented from cracking and the impact resistance can be improved. For example, by applying a coating agent, it is possible to suppress cracks and scratches that occur in a film or the like during a roll-to-roll wet process or dry process, punching process, slit process, and the like.
  • the laminate according to the third embodiment of the present invention has a base material to be coated and a cured film according to the second embodiment laminated on one or both sides of the base material. That is, the cured film may be directly laminated on only one side of the substrate, or may be laminated directly on both sides so that the substrate is sandwiched between the cured films. Or it may be laminated indirectly only on one side through another layer, or it may be laminated on both sides so that the substrate is sandwiched between other layers, and further laminated so that both sides are sandwiched between cured films. Also good.
  • FIG. 1 shows a state in which a cured film 12 is directly laminated on both surfaces of a substrate 11.
  • the substrate 11 examples include transparent glass substrates such as white plate glass, blue plate glass, and silica-coated blue plate glass; polycarbonate, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, triacetate, diacetate, and the like.
  • the thickness of the substrate is not particularly limited. Any thickness suitable for the application may be used.
  • the thin glass may be about 10 ⁇ m to about 100 ⁇ m
  • the film may be about 10 ⁇ m to about 1 mm
  • the substrate may be about 100 ⁇ m to about 10 mm.
  • the molded product according to the fourth embodiment of the present invention has a molded body that is a coating target and a cured film according to the second embodiment laminated on the surface of the molded body.
  • the stress is relieved by the cured film, so that flexibility, scratch resistance, and impact resistance can be improved.
  • a scattering prevention effect can be imparted.
  • the molded body include lenses such as glass lenses, plastic lenses, and polycarbonate lenses, camera cover glasses, and the like.
  • the surface By coating the surface with a cured film, it is possible to prevent breakage of a glass lens that is easily broken, or to improve the scratch resistance and impact resistance of a plastic lens or cover glass that is easily damaged. Furthermore, since the cured film has high transparency, it can be coated without impairing the optical characteristics of the polycarbonate lens, which is said to have a slight decrease in optical performance.
  • Multifunctional acrylate resin (B) In a 200 mL four-necked flask equipped with a reflux condenser, thermometer and dropping funnel, 25.00 g of methyl methacrylate (MMA), 25.00 g of glycidyl methacrylate (GMA), and 2-butanone (MEK) 50.00 g was introduced and sealed with nitrogen. It was set in an oil bath maintained at 80 ° C. and refluxed, and deoxygenated for 10 minutes.
  • MMA methyl methacrylate
  • GMA glycidyl methacrylate
  • MEK 2-butanone
  • Fluorosilsesquioxane-containing compound as silicon compound (D) Synthesis example of fluorosilsesquioxane polymer (D-1) Synthesis of polymer having hydroxyl group (precursor) (d-1) To a 200 mL four-necked flask equipped with a reflux condenser, thermometer and dropping funnel, 36.65 g of compound (d1), 3.37 g of methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA) were added.
  • Preparation Example 1 Preparation of Coating Agent A 15.16 g (100% solid content) of the polycarbonate-based urethane acrylate (A-1) obtained in Production Example 1, and the acryloyl group as the polyfunctional acrylate resin (B) obtained in Production Example 2 12.64 g of polymer (B-1) having a solid content of 30% MEK and 70.93 g of 2-butanone (MEK) were introduced into a light-shielded plastic bottle and stirred and mixed.
  • Coating agents B to G were obtained by the method of Preparation Example 1 except that the formulations shown in Table 1 were used.
  • the coating agent G uses dipentaerythritol hexaacrylate (B-2) (trade name: A-DPH, manufactured by Shin Chemical Industry Co., Ltd.), which is a polyfunctional acrylate monomer, instead of the polyfunctional acrylate resin (B). It was.
  • B-2 dipentaerythritol hexaacrylate
  • D-2 a silicone-based surface conditioner (trade name: BYK-3500, manufactured by Big Chemie Japan Co., Ltd.) (D-2) was used as a surface modifying component.
  • Example 1 Production and evaluation of coat film A as a laminate (formation of coating film (cured film) on PET) Using the coating agent A, the coating rod No. 1 was coated on the upper surface of a polyethylene terephthalate (PET) film (Cosmo Shashin A4300, manufactured by Toyobo Co., Ltd., 125 ⁇ m thick, double-sided easy adhesion treatment). A wet film was formed by 22 (RDS Webster Co., Ltd.) and dried under the conditions of 80 ° C. ⁇ 2 minutes.
  • PET polyethylene terephthalate
  • Examples 2 to 4 Preparation and evaluation of coated films B to G as laminates (formation of coating film (cured film) on PET) Using the coating agents B to G, coating was performed in the same manner as in Example 1 to obtain coated films B to G.
  • Table 2 shows the measurement results of the total light transmittance, haze, pencil hardness, tackiness, and mandrel test of the obtained coated films B to G.
  • Example 11 Production and Evaluation of Coated Glass A as Laminate Using coating agent A, coating rod No. 1 was formed on thin film glass (OA-10G, Matsunami Glass Industry Co., Ltd., 0.1 mm thickness). 30 (RDS Webster Co., Ltd.) was used to form a wet film, which was then dried at 80 ° C. for 2 minutes. Thereafter, photocuring was performed using a conveyor type ultraviolet irradiation device equipped with a high-pressure mercury lamp (integrated light amount: 400 mJ / cm 2 ). Subsequently, the same operation was performed on the back surface to form a cured film, and a coated glass A in which a cured film having a thickness of 10 ⁇ m was laminated on both surfaces was obtained. Table 3 shows the evaluation results of the total light transmittance, haze, falling ball impact test, and bending test of the obtained coated glass A.
  • Table 3 shows the evaluation results of the total light transmittance, haze, falling ball impact test, and bending test of the obtained
  • Example 12 and 13 Comparative Example 12
  • Table 3 shows the measurement results of the total light transmittance, haze, falling ball impact test, and bending test of the obtained coated glasses B, C, and E.
  • Example 21 Preparation of coating agent A1 A coating agent was prepared in the same manner as in Preparation Example 1, except that 2-butanone (MEK), which is a diluent solvent for coating agent A, was changed to methoxypropanol propylene glycol monomethyl ether (PGM). A1 was obtained.
  • MEK 2-butanone
  • PGM methoxypropanol propylene glycol monomethyl ether
  • A1 was obtained.
  • dip coating was applied to a polycarbonate plate (Panlite PC-1151, manufactured by Teijin Chemicals Ltd., 2.0 mm thickness) (pickup speed 6.0 mm) / Min) A wet film was formed and dried under conditions of 80 ° C. ⁇ 2 minutes.
  • the blending ratio of coating agents A to G is shown (expressed as a weight ratio of the solid content).
  • the coated films of Examples 1 to 4 are excellent in transparency and bending resistance. Furthermore, Examples 1 to 3 to which a surface modifying component is added also have excellent tackiness (easy to peel). The tackiness was particularly excellent when (D-1) was added as a surface modifying component rather than (D-2). In addition, as shown in Table 2, the coated films of Example 4 and Comparative Example 3 showed similar measurement results. However, although the coated film of Comparative Example 3 contained the surface modifying component (D-1), the surface modifying effect was not obtained. From the above, as is clear from the results of Table 2, Table 3 and Table 4, the cured product formed from the coating agent (curable resin composition) of the present invention has transparency, tackiness and bending resistance. Excellent, especially when it is laminated on a film, a base material (glass or the like) and a molded body, and improved flex resistance and impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention is a coating agent that can ease stress. The coating agent of the present application includes: a urethane acrylate resin (A) that has a urethane skeleton and an at least difunctional (meth)acryloyl group; a polyfunctional acrylate resin (B) that does not include a urethane skeleton in the main chain and has an at least trifunctional polymerizable functional group; and a polymerization initiator (C). Furthermore, the "acrylate resin" may be an acrylate polymer, an acrylate prepolymer, or an acrylate oligomer.

Description

コーティング剤、硬化膜、積層体、成形物Coating agent, cured film, laminate, molded product
 本発明は、コーティング剤に関する。特に、応力を緩和する硬化膜を形成可能なコーティング剤であって、当該硬化膜により屈曲性に乏しい材料に屈曲性を付与できるコーティング剤に関する。 The present invention relates to a coating agent. In particular, the present invention relates to a coating agent that can form a cured film that relieves stress, and that can impart flexibility to a material having poor flexibility by the cured film.
 フレキシブルデバイス、透明電極等のベースとなる基材には、高耐熱性だけでなく低レタデーション、高透過率等の優れた特性が求められる。
 基材として、容易に破損するガラスに代わり、樹脂から形成された、ガラスに近い特性を有する光学透明フィルムが、薄膜トランジスターや次世代透明電極のベース基材として有望視されている。しかし、薄膜トランジスターの回路形成時や透明電極形成時には、破断や傷つきが起こり易く、製品化の大きな障害になっている。弾性が低く、脆く、屈曲性に乏しい基材は、ロールや断裁など、外部からの力が与えられることによって、割れやひびが入り易いことに起因する。
Substrates serving as bases for flexible devices, transparent electrodes, and the like are required to have not only high heat resistance but also excellent properties such as low retardation and high transmittance.
As a base material, an optical transparent film formed from a resin and having properties close to glass is used as a base material for thin film transistors and next-generation transparent electrodes, instead of easily broken glass. However, when a thin film transistor circuit is formed or a transparent electrode is formed, the film is easily broken or damaged, which is a major obstacle to commercialization. A base material having low elasticity, brittleness, and poor flexibility is caused by being easily cracked or cracked by applying an external force such as roll or cutting.
 傷つき防止効果を向上させるために、ハードコート層の積層が検討されているが、ベース基材よりも硬い被膜を形成することにより、より割れやすくなる等の問題が発生している。
 また、ガラス基材や透明樹脂基板にハードコート層が積層された構成では、外部からの力でハードコート層のみならず、該基材や基板が破壊されることがあるため、ハードコート層がより優れた耐衝撃性を持つ事が求められる。
In order to improve the effect of preventing scratches, the lamination of hard coat layers has been studied. However, the formation of a film harder than the base substrate has caused problems such as easier cracking.
In addition, in the configuration in which the hard coat layer is laminated on the glass base material or the transparent resin substrate, not only the hard coat layer but also the base material and the substrate may be destroyed by an external force. It is required to have better impact resistance.
 特許文献1には、薄膜ガラスの少なくとも一方に透明架橋フィルムを積層し、薄膜ガラスのハンドリング性に優れた積層シートが開示されている(段落0013)。
 しかし、折り曲げ性に対してはまだまだ改善の余地があり、ロールツーロールプロセスにも対応できる折り曲げ性能をもつシートが望まれている。
 特許文献2には、環状オレフィン系フィルムの少なくとも一方の表面に電離放射線硬化型樹脂から形成されてなるハードコート層を有し、前記ハードコート層と前記環状オレフィン系フィルムとの間に、熱可塑性エラストマーから形成されたエラストマー層を設け、割れを抑制するハードコートフィルムが開示されている(段落0008)。
 しかし、環状オレフィン系フィルム/エラストマー層/ハードコート層と、少なくとも3層が必要となり、多層構造となる。
Patent Document 1 discloses a laminated sheet in which a transparent crosslinked film is laminated on at least one of thin film glasses and the thin film glass has excellent handling properties (paragraph 0013).
However, there is still room for improvement with respect to bendability, and a sheet having bendability that can be adapted to a roll-to-roll process is desired.
Patent Document 2 has a hard coat layer formed of an ionizing radiation curable resin on at least one surface of a cyclic olefin film, and a thermoplastic resin between the hard coat layer and the cyclic olefin film. A hard coat film that provides an elastomer layer formed of an elastomer and suppresses cracking is disclosed (paragraph 0008).
However, a cyclic olefin film / elastomer layer / hard coat layer and at least three layers are required, resulting in a multilayer structure.
 このように、製品化の際の、例えばロールツーロールプロセス時に発生する破断を抑制し、かつ、耐擦傷性を向上させることが必要とされているが、より少ない層構成で実現できることが望ましい。 As described above, it is necessary to suppress breakage that occurs, for example, during the roll-to-roll process and to improve the scratch resistance at the time of commercialization, but it is desirable that it can be realized with a smaller layer structure.
特開2009-202456号公報JP 2009-202456 A 特許第4803888号公報Japanese Patent No. 4803888
 そこで本発明は、応力を緩和することが可能なコーティング剤を提供することを課題とする。本願のコーティング剤を塗布することで、容易に、コーティングされた積層体は、製品化の工程で生じるような破断を抑制でき、かつ、耐擦傷性が向上する。 Therefore, an object of the present invention is to provide a coating agent that can relieve stress. By applying the coating agent of the present application, the coated laminate can be easily prevented from breaking as produced in the product production process, and the scratch resistance is improved.
 本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、特定のウレタンアクリレート樹脂および多官能アクリレート樹脂を用いたコーティング剤は、屈曲性に優れた硬化膜を形成できることを見出した。さらに、当該コーティング剤を塗布した基材等は、塗布前よりも破断が抑制され、かつ、耐擦傷性が向上していることを見出し、本発明を完成させた。 The present inventors have intensively studied to solve the above problems. As a result, it has been found that a coating agent using a specific urethane acrylate resin and a polyfunctional acrylate resin can form a cured film having excellent flexibility. Furthermore, the base material etc. which apply | coated the said coating agent discovered that a fracture | rupture was suppressed compared with before application | coating, and the abrasion resistance improved, and completed this invention.
 本発明の第1の態様に係るコーティング剤は、ウレタン骨格と、2官能以上の(メタ)アクリロイル基を有するウレタンアクリレート樹脂(A)と;主鎖にウレタン骨格を含まない、3官能以上の重合性官能基を有する多官能アクリレート樹脂(B)と;重合開始剤(C)を含む。なお、「アクリレート樹脂」とは、アクリレートポリマー、アクリレートプレポリマーまたはアクリレートオリゴマーであってもよい。
 このように構成すると、ウレタンアクリレート樹脂(A)と多官能アクリレート樹脂(B)を含むことにより、コーティング剤から形成された硬化膜は屈曲性、耐衝撃性、裁断性、さらには、耐擦傷性、耐磨耗性、適度な硬度を有することができる。
The coating agent according to the first aspect of the present invention includes a urethane skeleton, a urethane acrylate resin (A) having a bi- or higher functional (meth) acryloyl group; a tri- or higher functional polymerization that does not include a urethane skeleton in the main chain. A polyfunctional acrylate resin (B) having a functional functional group; and a polymerization initiator (C). The “acrylate resin” may be an acrylate polymer, an acrylate prepolymer, or an acrylate oligomer.
If comprised in this way, the cured film formed from the coating agent by including a urethane acrylate resin (A) and a polyfunctional acrylate resin (B) will have flexibility, impact resistance, cutting property, and scratch resistance. Can have wear resistance and moderate hardness.
 本発明の第2の態様に係るコーティング剤は、上記本発明の第1の態様に係るコーティング剤において、前記多官能アクリレート樹脂(B)が、(メタ)アクリル系モノマーを重合して得られる重合体であり、側鎖に前記3官能以上の重合性官能基を持つ活性エネルギー線硬化性アクリレート樹脂である。なお、「(メタ)アクリル系モノマー」とは、(メタ)アクリル酸または(メタ)アクリル酸エステルであってもよい。
 このように構成すると、多官能アクリレート樹脂(B)を特に好ましいモノマーから形成することができる。
The coating agent according to the second aspect of the present invention is the coating agent according to the first aspect of the present invention, wherein the polyfunctional acrylate resin (B) is obtained by polymerizing a (meth) acrylic monomer. This is an active energy ray-curable acrylate resin which is a coalescence and has a polymerizable functional group having three or more functional groups in the side chain. The “(meth) acrylic monomer” may be (meth) acrylic acid or (meth) acrylic acid ester.
If comprised in this way, a polyfunctional acrylate resin (B) can be formed from a particularly preferable monomer.
 本発明の第3の態様に係るコーティング剤は、上記本発明の第1の態様または第2の態様に係るコーティング剤において、ケイ素化合物(D)をさらに含む。
 このように構成すると、ケイ素化合物を含むことにより、硬化膜は表面改質効果(耐擦傷性、耐ブロッキング性、タック性改善等)を有することができる。
The coating agent according to the third aspect of the present invention further includes a silicon compound (D) in the coating agent according to the first aspect or the second aspect of the present invention.
If comprised in this way, a cured film can have the surface modification effect (Abrasion resistance, blocking resistance, tackiness improvement, etc.) by including a silicon compound.
 本発明の第4の態様に係るコーティング剤は、上記本発明の第3の態様に係るコーティング剤において、前記ケイ素化合物(D)が、フルオロシルセスキオキサン化合物またはフルオロシルセスキオキサン重合体である。
 このように構成すると、ケイ素化合物として特に好ましい化合物をコーティング剤に含有させることができる。特にフッ素フルオロシルセスキオキサン含有化合物は、硬化膜表面に集積し、優れた表面防汚性、耐擦傷性、耐ブロッキング性を硬化膜に付与する。
The coating agent according to a fourth aspect of the present invention is the coating agent according to the third aspect of the present invention, wherein the silicon compound (D) is a fluorosilsesquioxane compound or a fluorosilsesquioxane polymer. is there.
If comprised in this way, the compound especially preferable as a silicon compound can be contained in a coating agent. In particular, the fluorofluorosilsesquioxane-containing compound accumulates on the surface of the cured film and imparts excellent surface antifouling properties, scratch resistance and blocking resistance to the cured film.
 本発明の第5の態様に係る硬化膜は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係るコーティング剤の塗膜に、活性エネルギー線を照射して得られる。
 このように構成すると、屈曲性、耐衝撃性、裁断性、耐擦傷性、耐磨耗性、適度な硬度を有する硬化膜を形成することができる。
The cured film according to the fifth aspect of the present invention is obtained by irradiating the coating film of the coating agent according to any one of the first to fourth aspects of the present invention with active energy rays. .
If comprised in this way, the cured film which has a flexibility, impact resistance, a cutting property, scratch resistance, abrasion resistance, and moderate hardness can be formed.
 本発明の第6の態様に係る積層体は、上記本発明の第5の態様に係る硬化膜と;前記硬化膜により少なくとも片面側が被膜された基材を備える。なお、「片面側」とは、基材の片面に直接積層された場合だけでなく、他の層を介して間接的に積層された場合をも含む。
 このように構成すると、硬化膜により積層体全体の応力が緩和される。その結果、製品化の工程において、積層体に破断が生じるのを抑制でき、かつ、積層体表面に耐衝撃性、耐擦傷性、耐磨耗性、適度な硬度を付与することができる。
A laminate according to a sixth aspect of the present invention includes the cured film according to the fifth aspect of the present invention; and a base material coated on at least one side with the cured film. The “single side” includes not only the case of being directly laminated on one side of the base material but also the case of being indirectly laminated via another layer.
If comprised in this way, the stress of the whole laminated body will be relieve | moderated by a cured film. As a result, it is possible to suppress breakage of the laminate in the product production process, and to impart impact resistance, scratch resistance, wear resistance, and appropriate hardness to the surface of the laminate.
 本発明の第7の態様に係る成形物は、上記本発明の第5の態様に係る硬化膜と;前記硬化膜に被膜された成形体を備える。
 このように構成すると、硬化膜により成形体の表面に、耐衝撃性、耐擦傷性、耐磨耗性、適度な硬度を付与することができる。
A molded product according to a seventh aspect of the present invention includes the cured film according to the fifth aspect of the present invention; and a molded body coated on the cured film.
If comprised in this way, impact resistance, abrasion resistance, abrasion resistance, and moderate hardness can be provided to the surface of a molded object with a cured film.
 本願発明の、応力を緩和する硬化膜を形成可能なコーティング剤を提供することにより、コーティング後の積層体は、製品化の工程で生じるような破断を抑制でき、かつ、耐擦傷性を向上させることができる。したがって、屈曲性の乏しい基材であっても屈曲性を改善させることができる。さらに、コーティング後は、積層体の互着防止(アンチブロッキング性)の効果を高くでき、かつ外部の力による破壊を防ぐための耐性も高くすることができる。 By providing the coating agent of the present invention that can form a cured film that relieves stress, the laminated body after coating can suppress breakage that occurs in the process of commercialization and improve scratch resistance. be able to. Therefore, even if it is a base material with poor flexibility, flexibility can be improved. Furthermore, after coating, the effect of preventing the mutual adhesion (anti-blocking property) of the laminate can be enhanced, and the resistance for preventing breakage due to external force can also be enhanced.
基材11に、本発明のコーティング剤により形成された硬化膜12を積層した積層体を示す図である。It is a figure which shows the laminated body which laminated | stacked the cured film 12 formed with the coating agent of this invention on the base material 11. FIG.
 この出願は、日本国で2014年3月5日に出願された特願2014-042927号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。 This application is based on Japanese Patent Application No. 2014-042927 filed on March 5, 2014 in Japan, the contents of which form part of the present application. The present invention will be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited to the following embodiments.
[コーティング剤]
 本発明の第1の実施の形態に係るコーティング剤は、ウレタンアクリレート樹脂(A)、多官能アクリレート樹脂(B)、重合開始剤(C)を含む。なお、必要に応じてケイ素化合物(D)、その他樹脂(E)、溶剤(F)、添加剤(G)を含んでもよい。
[Coating agent]
The coating agent according to the first embodiment of the present invention includes a urethane acrylate resin (A), a polyfunctional acrylate resin (B), and a polymerization initiator (C). In addition, you may contain a silicon compound (D), other resin (E), a solvent (F), and an additive (G) as needed.
 ウレタンアクリレート樹脂(A)
 ウレタンアクリレート樹脂(A)は、2官能以上の(メタ)アクリロイル基を有し、かつ、ウレタン骨格をもつ活性エネルギー線硬化性樹脂であり、例えば、紫外線硬化性樹脂を挙げることができる。ウレタンアクリレート樹脂(A)は、硬化膜に屈曲性を付与する。
 例えば、ウレタンアクリレート樹脂(A)としては、ウレタン(メタ)アクリレート樹脂を挙げることができる。
 ウレタン(メタ)アクリレート樹脂は、ポリイソシアネートとポリヒドロキシ化合物あるいは多価アルコール類とを反応させた後、さらに水酸基含有(メタ)アクリル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマー、プレポリマー、ポリマーであってもよい。特に、多価アルコール類にポリカーボネート系ポリオール類を用いたポリカーボネート系ウレタンアクリレートが好ましい。ポリカーボネート系ウレタンアクリレートを用いることで、形成された硬化膜は優れた伸縮性と強靭性を供えることができる。
Urethane acrylate resin (A)
The urethane acrylate resin (A) is an active energy ray curable resin having a bifunctional or higher (meth) acryloyl group and having a urethane skeleton, and examples thereof include an ultraviolet curable resin. The urethane acrylate resin (A) imparts flexibility to the cured film.
For example, urethane (meth) acrylate resin can be mentioned as urethane acrylate resin (A).
Urethane (meth) acrylate resin contains a radical polymerizable unsaturated group that can be obtained by reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol and then further reacting with a hydroxyl group-containing (meth) acryl compound. It may be an oligomer, a prepolymer or a polymer. In particular, polycarbonate urethane acrylates using polycarbonate polyols as polyhydric alcohols are preferred. By using polycarbonate urethane acrylate, the formed cured film can provide excellent stretchability and toughness.
 前記ポリイソシアネートとしては、具体的には2,4-トリレンジイソシアネートおよびその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、バーノックD-750、クリスボンNK(商品名;大日本インキ化学工業(株)製)、デスモジュールL(商品名;住友バイエルウレタン(株)製)、コロネートL(商品名;日本ポリウレタン工業(株)製)、タケネートD102(商品名;三井武田ケミカル(株)製)、イソネート143L(商品名;三菱化学(株)製)などが挙げられる。
 前記ポリヒドロキシ化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられ、具体的にはグリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエリスリトール-エチレンオキシド付加物、ジペンタエリスリトール-プロピレンオキシド付加物、ジペンタエリスリトール-テトラヒドロフラン付加物、ジペンタエリスリトール-エチレンオキシド-プロピレンオキシド付加物などが挙げられる。
 前記多価アルコール類としては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコールなどが挙げられる。
 前記水酸基含有(メタ)アクリル化合物としては、特に限定されるものではないが、水酸基含有(メタ)アクリル酸エステルが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
Specific examples of the polyisocyanate include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, Phenylmethane triisocyanate, Vernock D-750, Crisbon NK (trade name; manufactured by Dainippon Ink & Chemicals, Inc.), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Japan) Polyurethane Industry Co., Ltd.), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
Examples of the polyhydroxy compound include polyester polyol, polyether polyol, and the like. Specifically, glycerin-ethylene oxide adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethylene oxide-propylene oxide adduct, Trimethylolpropane-ethylene oxide adduct, trimethylolpropane-propylene oxide adduct, trimethylolpropane-tetrahydrofuran adduct, trimethylolpropane-ethylene oxide-propylene oxide adduct, dipentaerythritol-ethylene oxide adduct, dipentaerythritol-propylene oxide Adduct, dipentaerythritol-tetrahydrofuran adduct, dipentaerythritol-ethyl N'okishido - propylene oxide adduct and the like.
Specific examples of the polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Butanediol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4 -Cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, 2,7-decalin glycol and the like.
The hydroxyl group-containing (meth) acrylic compound is not particularly limited, but is preferably a hydroxyl group-containing (meth) acrylic acid ester, specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) ) Acrylate and the like.
 ウレタンアクリレート樹脂(A)、例えばウレタン(メタ)アクリレート樹脂は公知の方法で合成することが可能である。一例として、所定量の有機ポリイソシアネート(a)およびポリカーボネートポリオール(b)を70℃~80℃の条件下で残存イソシアネート濃度が所定量になるまで反応させ、その後、さらに所定量の分子内に1個以上の水酸基を含有する(メタ)アクリレート(c)を添加して、重合禁止剤(例えば、ハイドロキノンモノメチルエーテルなど)の存在下、70℃~80℃で残存イソシアネート濃度が0.1重量%以下になるまで反応させることにより得ることができる。 Urethane acrylate resin (A), for example, urethane (meth) acrylate resin can be synthesized by a known method. As an example, a predetermined amount of the organic polyisocyanate (a) and the polycarbonate polyol (b) are reacted under the conditions of 70 ° C. to 80 ° C. until the residual isocyanate concentration reaches a predetermined amount. (Meth) acrylate (c) containing at least one hydroxyl group is added, and the residual isocyanate concentration is 0.1% by weight or less at 70 ° C. to 80 ° C. in the presence of a polymerization inhibitor (eg, hydroquinone monomethyl ether). It can obtain by making it react until it becomes.
 コーティング剤中にはウレタンアクリレート樹脂(A)を、10wt%~90wt%、好ましくは30wt%~70wt%の範囲で配合する。その範囲とすることで、コーティング剤から形成された硬化膜の伸張性や屈曲性を保持することができる。なお、上記割合は、硬化性樹脂膜を形成する樹脂組成物を100wt%とした場合の割合である。
 ウレタンアクリレート樹脂(A)の重量平均分子量(Mw)は3,000~500,000、好ましくは5,000~200,000の範囲である。この範囲とすることで、硬化膜に柔軟性を付与することができる。3,000以上の場合、硬化膜中の架橋密度が高くなりすぎることがない。
In the coating agent, the urethane acrylate resin (A) is blended in the range of 10 wt% to 90 wt%, preferably 30 wt% to 70 wt%. By setting it as the range, the extensibility and the flexibility of the cured film formed from the coating agent can be maintained. In addition, the said ratio is a ratio when the resin composition which forms curable resin film is 100 wt%.
The weight average molecular weight (Mw) of the urethane acrylate resin (A) is in the range of 3,000 to 500,000, preferably 5,000 to 200,000. By setting it as this range, a softness | flexibility can be provided to a cured film. In the case of 3,000 or more, the crosslinking density in the cured film does not become too high.
 多官能アクリレート樹脂(B)
 多官能アクリレート樹脂(B)は、主鎖にウレタン骨格を含まない、3官能以上の重合性官能基を有する活性エネルギー線硬化性樹脂である。なお、多官能アクリレート樹脂(B)の側鎖には、ウレタン結合を含んでも良い。多官能アクリレート樹脂(B)は、硬化膜に耐擦傷性、耐摩耗性等を付与する。例えば、光硬化性樹脂、中でも3官能以上の(メタ)アクリロイル基を有する紫外線硬化性樹脂を挙げることができる。3官能以上の重合性官能基を有することで、コーティング剤から形成された硬化膜中に架橋構造を形成し、膜の耐擦傷性、耐摩耗性を向上させることができる。
Multifunctional acrylate resin (B)
The polyfunctional acrylate resin (B) is an active energy ray-curable resin having a trifunctional or higher functional group that does not contain a urethane skeleton in the main chain. In addition, the side chain of the polyfunctional acrylate resin (B) may include a urethane bond. The polyfunctional acrylate resin (B) imparts scratch resistance, abrasion resistance and the like to the cured film. For example, a photocurable resin, especially an ultraviolet curable resin having a tri- or higher functional (meth) acryloyl group can be mentioned. By having a polymerizable functional group having three or more functional groups, a crosslinked structure can be formed in the cured film formed from the coating agent, and the scratch resistance and abrasion resistance of the film can be improved.
 多官能アクリレート樹脂(B)としては、(メタ)アクリル系モノマーを重合して得られる重合体であってもよい。
 「(メタ)アクリル系モノマーを重合して得られる重合体」を得る方法を説明する。まず単一または異なる(メタ)アクリル系モノマー同士の付加重合により重合体を得る。ただし、1以上の(メタ)アクリル系モノマーは、反応性基をもつモノマーから選択される。また、反応性基を持たないモノマーと組み合わせてもよい。次に前記重合体と、前記重合体の側鎖の反応性基(例えば、エポキシ基、カルボン酸、水酸基、グリシジル基)部分と反応しかつアクリロイル基を有する化合物とを反応させて得られる重合体を得る。この重合体をいう。
 このように、(メタ)アクリル系モノマー同士の付加重合により得られる重合体を前駆体とし、さらに前記重合体の側鎖の反応性基が反応することによって、他官能アクリレート樹脂(B)としての重合性官能基を有する樹脂を得ることができる。前駆体と反応するモノマーとしては、前記の反応性基と反応し、かつ、1以上の(メタ)アクリロイル基を有するモノマーから選択することができる。
The polyfunctional acrylate resin (B) may be a polymer obtained by polymerizing a (meth) acrylic monomer.
A method for obtaining a “polymer obtained by polymerizing a (meth) acrylic monomer” will be described. First, a polymer is obtained by addition polymerization of single or different (meth) acrylic monomers. However, the one or more (meth) acrylic monomers are selected from monomers having reactive groups. Moreover, you may combine with the monomer which does not have a reactive group. Next, a polymer obtained by reacting the polymer with a compound having an acryloyl group that reacts with a reactive group (for example, epoxy group, carboxylic acid, hydroxyl group, glycidyl group) in the side chain of the polymer. Get. This polymer is referred to.
In this way, a polymer obtained by addition polymerization of (meth) acrylic monomers is used as a precursor, and the reactive group on the side chain of the polymer further reacts to form the other functional acrylate resin (B). A resin having a polymerizable functional group can be obtained. The monomer that reacts with the precursor can be selected from monomers that react with the reactive group and have one or more (meth) acryloyl groups.
 前駆体を構成する反応性基をもつ(メタ)アクリル系モノマーの例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、グリシジルメタクリレート、ライトエステルP-2M(2-メタックロイロキシエチルアシッドフォスフェート/共栄社化学(株)製)、ライトエステルHO-MS(N)(2-メタクリロイロキシエチルコハク酸/共栄社化学(株)製)、ライトエステルHO-HH(N)(2-メタリロイロキシエチルヘキサヒドロフタル酸/共栄社化学(株)製)、ライトエステルEG(エチレングリコールジメタクリレート/共栄社化学(株)製)、ライトエステル9EG(PEG#400ジメタクリレート/共栄社化学(株)製)、ライトエステルG-101P(グリセリンジメタクリレート/共栄社化学(株)製)、ライトエステルM-3F(取りフロロエチルメタクリレート/共栄社化学(株)製)、HEA(東亜合成(株)製)、ATBS(2-アクリルアミド-2-メチルプロパンスルホン酸/東亜合成(株)製)、A-SA(2-アクリロイルオキシエチレンサクシネート/新中村化学工業(株)製)等が挙げられる。 Examples of (meth) acrylic monomers having a reactive group constituting the precursor include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, glycidyl methacrylate, light ester P-2M (2-metac leuoxyethyl acid phosphate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO-MS (N) (2-methacryloyloxyethyl succinic acid / manufactured by Kyoeisha Chemical Co., Ltd.), light ester HO- HH (N) (2-Metalliloyloxyethyl hexahydrophthalic acid / manufactured by Kyoeisha Chemical Co., Ltd.), light ester EG (ethylene glycol dimethacrylate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester 9EG (PEG # 400 dimethacrylate) / Kyoeisha Chemical Co., Ltd.), Light Steal G-101P (glycerin dimethacrylate / manufactured by Kyoeisha Chemical Co., Ltd.), light ester M-3F (taken fluoroethyl methacrylate / manufactured by Kyoeisha Chemical Co., Ltd.), HEA (manufactured by Toagosei Co., Ltd.), ATBS (2- Acrylamide-2-methylpropanesulfonic acid / manufactured by Toagosei Co., Ltd.), A-SA (2-acryloyloxyethylene succinate / manufactured by Shin-Nakamura Chemical Co., Ltd.) and the like.
 前駆体を構成する反応性基をもたない(メタ)アクリル系モノマーの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、アクリル酸2エチルヘキシル、アクリル酸イソブチル、アクリックスC-1(東亜合成(株)製)、アクリックスCHA(東亜合成(株)製)、アロンDA(東亜合成(株)製)、A-LEN-10(エトキシ化フェニルフェノールアクリレート/新中村化学工業(株)製)、AM90-G(メトキシポリエチレンアクリレート/新中村化学工業(株)製)、S-1800A(イソステリアルアクリレート/新中村科学工業(株)製)、AMP-20GY(フェノキシポリエチレングリコールアクリレート/新中村化学工業(株)製)、ライトエステルCH(シクロヘキシルメタクリレート/共栄社化学(株)製)、ライトエステルBZ(ベンジルメタクリレート/共栄社化学(株)製)、ライトエステルIB-X(イソボニルメタクリレート/共栄社化学(株)製)等が挙げられる。
 さらに、反応性基を持たない(メタ)アクリル系モノマーとして、1つの(メタ)アクリロイル基を有するフルオロシルセスキオキサンが挙げられる。(メタ)アクリロイル基を有するフルオロシルセスキオキサンの例として下記式(1)の化合物が挙げられる。
 式(1)におけるRfはそれぞれ独立して、3,3,3‐トリフルオロプロピル、3,3,4,4,4‐ペンタフルオロブチル、3,3,4,4,5,5,6,6,6‐ノナフルオロヘキシル、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチル、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシル、ヘンイコサフルオロ‐1,1,2,2‐テトラヒドロドデシル、ペンタコサフルオロ‐1,1,2,2‐テトラヒドロテトラデシル、(3‐ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニルまたはα,α,α‐トリフルオロメチルフェニルなどが含まれる。
Figure JPOXMLDOC01-appb-C000001
Examples of (meth) acrylic monomers having no reactive group constituting the precursor include methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, and Acrix C- 1 (manufactured by Toagosei Co., Ltd.), Acrix CHA (manufactured by Toagosei Co., Ltd.), Aron DA (manufactured by Toagosei Co., Ltd.), A-LEN-10 (ethoxylated phenylphenol acrylate / Shin Nakamura Chemical Co., Ltd.) AM90-G (Methoxypolyethylene acrylate / Shin Nakamura Chemical Co., Ltd.), S-1800A (Isosterial acrylate / Shin Nakamura Scientific Co., Ltd.), AMP-20GY (Phenoxypolyethylene glycol acrylate) / Shin-Nakamura Chemical Co., Ltd.), light ester CH (cyclohexyl methacrylate / Kyoeisha) Ltd.), made by Light Ester BZ (benzyl methacrylate / Kyoeisha Chemical Co.), Light manufactured esters IB-X (isobornyl methacrylate / Kyoeisha Chemical Co.) and the like.
Furthermore, the fluorosilsesquioxane which has one (meth) acryloyl group is mentioned as a (meth) acrylic-type monomer which does not have a reactive group. Examples of the fluorosilsesquioxane having a (meth) acryloyl group include a compound of the following formula (1).
Rf in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6, 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2,2 -Tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or α, α, α-trifluoromethylphenyl Is included.
Figure JPOXMLDOC01-appb-C000001
 前駆体と反応するモノマーの例としては、以下を挙げることができる。
 (メタ)アクリロイル基を有するカルボン酸化合物としては、例えば、アクリル酸、メタクリル酸、ビニル安息香酸などを挙げることができる。(メタ)アクリロイル基を有するカルボン酸化合物を用いて、側鎖に重合性不飽和結合を有する本発明の重合体を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸化合物と活性水素を有する基(好ましくは水酸基)との脱水縮合反応である。
 (メタ)アクリロイル基を有するカルボン酸エステル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、1-プロピル(メタ)アクリレート、1-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどを挙げることができる。(メタ)アクリロイル基を有するカルボン酸エステル化合物を用いて、側鎖に重合性不飽和結合を有する本発明の重合体を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸エステル化合物と活性水素を有する基(好ましくは水酸基)とのエステル交換反応である。
 (メタ)アクリロイル基を有するエポキシ化合物としては、例えば、グリシジル(メタ)クリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートなどを挙げることができる。(メタ)アクリロイル基を有する化合物を用いて、側鎖に重合性不飽和結合を有する本発明の重合体を得るには、環状エーテルと水酸基との公知のエポキシ開環反応を利用することができる。
 また、イソホロンジイソシアネートなどのイソシアネート基を複数個有する化合物のイソシアネート基の一部を2-ヒドロキシエチルアクリレートなどの水酸基含有付加重合性単量体とウレタン化させ、重合性不飽和結合を有するイソシアネート化合物とし、さらに、上記イソシアネート化合物と活性水素を有する基(好ましくは水酸基)とのウレタン化反応を利用し、側鎖に重合性不飽和結合を有する本発明の重合体を得ることができる。
Examples of monomers that react with the precursor include the following.
Examples of the carboxylic acid compound having a (meth) acryloyl group include acrylic acid, methacrylic acid, and vinyl benzoic acid. In order to obtain the polymer of the present invention having a polymerizable unsaturated bond in the side chain using a carboxylic acid compound having a (meth) acryloyl group, a known esterification reaction can be used. Here, the esterification reaction is a dehydration condensation reaction between a carboxylic acid compound and a group having active hydrogen (preferably a hydroxyl group).
Examples of the carboxylic acid ester compound having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 1-propyl (meth) acrylate, 1-butyl (meth) acrylate, and t-butyl (meth). Examples include acrylate and 2-ethylhexyl (meth) acrylate. In order to obtain the polymer of the present invention having a polymerizable unsaturated bond in the side chain using a carboxylic acid ester compound having a (meth) acryloyl group, a known esterification reaction can be used. Here, the esterification reaction is a transesterification reaction between a carboxylic acid ester compound and a group having active hydrogen (preferably a hydroxyl group).
Examples of the epoxy compound having a (meth) acryloyl group include glycidyl (meth) acrylate and 3,4-epoxycyclohexylmethyl (meth) acrylate. In order to obtain the polymer of the present invention having a polymerizable unsaturated bond in the side chain using a compound having a (meth) acryloyl group, a known epoxy ring-opening reaction between a cyclic ether and a hydroxyl group can be used. .
Further, a part of the isocyanate group of a compound having a plurality of isocyanate groups such as isophorone diisocyanate is urethanated with a hydroxyl group-containing addition polymerizable monomer such as 2-hydroxyethyl acrylate to obtain an isocyanate compound having a polymerizable unsaturated bond. Furthermore, the polymer of the present invention having a polymerizable unsaturated bond in the side chain can be obtained by utilizing a urethanization reaction between the isocyanate compound and a group having active hydrogen (preferably a hydroxyl group).
 さらに、多官能アクリレート樹脂(B)は、公知の各種重合性化合物から選択することができる。例えば、プレポリマー、オリゴマーの化合物としては、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、エポキシ(メタ)アクリレート等がある。
 多官能ポリエステル(メタ)アクリレートとして、市販品では、M-8030(東亜合成(株)製)等が挙げられる。
 さらに、多官能アクリルポリマーとして、市販品では、ヒタロイド7975D(Mw15000/日立ケミカル)、ヒタロイド7988(Mw60000/日立ケミカル)、ヒタロイド(Mw78000/日立ケミカル)、アクリット8kx-01(大成ファインケミカル(株)製)等が挙げられる。
Furthermore, the polyfunctional acrylate resin (B) can be selected from various known polymerizable compounds. Examples of the prepolymer and oligomer compound include polyester (meth) acrylate, silicone (meth) acrylate, and epoxy (meth) acrylate.
As the polyfunctional polyester (meth) acrylate, commercially available products include M-8030 (manufactured by Toa Gosei Co., Ltd.).
Furthermore, as a polyfunctional acrylic polymer, commercially available products include Hitaloid 7975D (Mw 15000 / Hitachi Chemical), Hitaloid 7988 (Mw 60000 / Hitachi Chemical), Hitaloid (Mw 78000 / Hitachi Chemical), Acryt 8kx-01 (manufactured by Taisei Fine Chemical Co., Ltd.) Etc.
 コーティング剤中に多官能アクリレート樹脂(B)を5wt%~60wt%、好ましくは5wt%~30wt%配合する。なお、上記割合は、硬化性樹脂膜を形成する樹脂組成物を100wt%とした場合の割合である。
 多官能アクリレート樹脂(B)の重量平均分子量(Mw)は、1,000~500,000、好ましくは、2,000~100,000である。分子量を1,000以上とすることで、良好な屈曲性を有し、さらに硬化膜内の架橋密度が大きくなり、良好な耐擦傷性、耐摩耗性、耐タック性を硬化膜に付与できる。
The multifunctional acrylate resin (B) is blended in the coating agent in an amount of 5 wt% to 60 wt%, preferably 5 wt% to 30 wt%. In addition, the said ratio is a ratio when the resin composition which forms curable resin film is 100 wt%.
The weight average molecular weight (Mw) of the polyfunctional acrylate resin (B) is 1,000 to 500,000, preferably 2,000 to 100,000. By setting the molecular weight to 1,000 or more, the film has good flexibility, further increases the crosslink density in the cured film, and can impart good scratch resistance, abrasion resistance, and tack resistance to the cured film.
 重合開始剤(C)
 本願のコーティング剤は、硬化剤として重合開始剤を含む。重合開始剤は、特に限定しない。一般的な重合開始剤を使用できる。例えば、重合開始剤としては熱、または活性エネルギー線でラジカルを発生する開始剤であればよく、活性エネルギー線でラジカルを発生する活性エネルギー線重合開始剤が好ましい。
Polymerization initiator (C)
The coating agent of the present application contains a polymerization initiator as a curing agent. The polymerization initiator is not particularly limited. A general polymerization initiator can be used. For example, the polymerization initiator may be an initiator that generates radicals with heat or active energy rays, and an active energy ray polymerization initiator that generates radicals with active energy rays is preferable.
 活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線をいう。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線、電子線などの光エネルギー線が挙げられる。
 活性エネルギー線重合開始剤の具体例としては、紫外線や可視光線の照射によりラジカルを発生する化合物であれば特に限定しない。活性エネルギー線重合開始剤として用いられる化合物としては、ベンゾフェノン、ミヒラーズケトン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4′-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4′-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4′-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2′-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4′-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3′-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラキス(4-エトキシカルボニルフェニル)-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジブロモフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、などである。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することも有効である。3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′,4,4′-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3′-ジ(メトキシカルボニル)-4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4′-ジ(メトキシカルボニル)-4,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4′-ジ(メトキシカルボニル)-3,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノンなどが挙げられる。
 用いられる重合開始剤(C)の量は、硬化性樹脂膜を形成する樹脂組成物に対して、0.01wt%~20wt%とすればよい。
The active energy ray refers to an energy ray that can decompose a compound that generates active species to generate active species. Examples of such active energy rays include optical energy rays such as visible light, ultraviolet rays, infrared rays, X-rays, α rays, β rays, γ rays, and electron beams.
A specific example of the active energy ray polymerization initiator is not particularly limited as long as it is a compound that generates radicals upon irradiation with ultraviolet rays or visible rays. Examples of the compound used as the active energy ray polymerization initiator include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropyl xanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2 -Hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2 , 2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropa -1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4′-di ( t-butylperoxycarbonyl) benzophenone, 3,4,4'-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4, 6-bis (trichloromethyl) -s-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) ) -4,6-bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bi (Trichloromethyl) -s-triazine, 2- (4′-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)] -2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5 (4'-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis ( 7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazo 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2 , 4-dichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4', 5,5 '-Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole 3- (2-methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (η5- , 4-cyclopentadiene-1-yl) - bis (2,6-difluoro-3-(1H-pyrrol-1-yl) - phenyl) titanium, and the like. These compounds may be used alone or in combination of two or more. 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxy) Carbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone and the like.
The amount of the polymerization initiator (C) used may be 0.01 wt% to 20 wt% with respect to the resin composition forming the curable resin film.
 ケイ素化合物(D)
 コーティング剤には、表面改質成分としてケイ素化合物を添加してもよい。
 例えば、シリコーン化合物を主成分とした一般的な表面改質剤などを用いることができる。シリコーン化合物としては、BYK-UV3500、BYK-UV-3570(いずれもビックケミー・ジャパン(株)製)、TEGO Rad2100、2200N、2250、2500、2600、2700(何れもエボニックデグサジャパン(株)製)、X-22-2445、X-22-2455、X-22-2457、X-22-2458、X-22-2459、X-22-1602、X-22-1603、X-22-1615、X-22-1616、X-22-1618、X-22-1619、X-22-2404、X-22-2474、X-22-174DX、X-22-8201、X-22-2426、X-22-164A、X-22-164C(いずれも信越化学工業(株)製)等を挙げることができる。
Silicon compound (D)
A silicon compound may be added to the coating agent as a surface modifying component.
For example, a general surface modifier having a silicone compound as a main component can be used. Examples of silicone compounds include BYK-UV3500, BYK-UV-3570 (all manufactured by Big Chemie Japan), TEGO Rad2100, 2200N, 2250, 2500, 2600, 2700 (all manufactured by Evonik Degussa Japan), X-22-2445, X-22-2455, X-22-2457, X-22-2458, X-22-2459, X-22-1602, X-22-1603, X-22-1615, X- 22-1616, X-22-1618, X-22-1619, X-22-2404, X-22-2474, X-22-174DX, X-22-8201, X-22-2426, X-22-2 164A, X-22-164C (all manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
 ケイ素化合物(D)として、フルオロシルセスキオキサン化合物、およびWO2008/072766およびWO2008/072765に記載されているフルオロシルセスキオキサン重合体からなる群から選ばれる1種以上の化合物を用いてもよい。 As the silicon compound (D), one or more compounds selected from the group consisting of fluorosilsesquioxane compounds and fluorosilsesquioxane polymers described in WO2008 / 072766 and WO2008 / 072765 may be used. .
 フルオロシルセスキオキサン化合物としては、下記式(1)に示される分子構造を有するフルオロシルセスキオキサン化合物を挙げることができる。
 また、フルオロシルセスキオキサン重合体としては、下記式(1)のフルオロシルセスキオキサン化合物を用いて重合された重合体(ホモポリマーまたはコポリマー)を挙げることができる。下記式(1)に示す化合物を用いて重合された重合体は、フッ素系のシリコーン化合物であるため、硬化膜表面にスリップ性とアンチブロッキング性を付与することができる。
 式(1)におけるRfはそれぞれ独立して、3,3,3‐トリフルオロプロピル、3,3,4,4,4‐ペンタフルオロブチル、3,3,4,4,5,5,6,6,6‐ノナフルオロヘキシル、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチル、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシル、ヘンイコサフルオロ‐1,1,2,2‐テトラヒドロドデシル、ペンタコサフルオロ‐1,1,2,2‐テトラヒドロテトラデシル、(3‐ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニルまたはα,α,α‐トリフルオロメチルフェニルなどが含まれる。
Figure JPOXMLDOC01-appb-C000002
Examples of the fluorosilsesquioxane compound include a fluorosilsesquioxane compound having a molecular structure represented by the following formula (1).
Moreover, as a fluorosilsesquioxane polymer, the polymer (homopolymer or copolymer) superposed | polymerized using the fluorosilsesquioxane compound of following formula (1) can be mentioned. Since the polymer polymerized using the compound represented by the following formula (1) is a fluorinated silicone compound, it can impart slip properties and anti-blocking properties to the surface of the cured film.
Rf in formula (1) is each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6, 6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1,1,2,2 -Tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl or α, α, α-trifluoromethylphenyl Is included.
Figure JPOXMLDOC01-appb-C000002
 フルオロシルセスキオキサン重合体とは、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位a、付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位b、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位cおよび任意に、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン、付加重合性官能基を有するオルガノポリシロキサン、および重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体以外の付加重合性単量体に由来する構成単位dを含む重合体である。なお、「由来する」とは、各モノマーがフルオロシルセスキオキサン重合体を構成したときの重合残基を意味する。 The fluorosilsesquioxane polymer is a structural unit a derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, a structural unit b derived from organopolysiloxane having an addition polymerizable functional group. , A structural unit derived from an addition polymerizable monomer and having a group having a polymerizable unsaturated bond in the side chain, and optionally a fluorosilsesquioxy having one addition polymerizable functional group in the molecule A structural unit d derived from an addition polymerizable monomer other than Sun, an organopolysiloxane having an addition polymerizable functional group, and an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond; It is a polymer containing. “Derived” means a polymerized residue when each monomer constitutes a fluorosilsesquioxane polymer.
 構成単位aは、上記式(1)に示される分子構造を有するフルオロシルセスキオキサンに由来する。 The structural unit a is derived from fluorosilsesquioxane having a molecular structure represented by the above formula (1).
 構成単位bは、下記式(2)に示される分子構造を有する付加重合性官能基を有するオルガノポリシロキサンに由来する。
 付加重合性官能基を有するオルガノポリシロキサンは、好ましくは下記式(2)に示される分子構造を有する。
Figure JPOXMLDOC01-appb-C000003
 オルガノポリシロキサンは、上記式(2)において、nは1~1,000の整数であり;R、R、R、R、およびRは、それぞれ独立して水素、炭素数が1~30であるアルキル、置換もしくは非置換のアリール、および置換もしくは非置換のアリールと、アルキレンとで構成されるアリールアルキルであり、R、R、R、R、およびRにおいて、少なくとも1つの水素はフッ素に置き換えられてもよく、少なくとも1つの-CH-は-O-またはシクロアルキレンで置き換えられてもよく;Aは付加重合性官能基である。
 さらに、付加重合性官能基を有するオルガノポリシロキサンは、上記式(2)において、R、R、RおよびRは、それぞれ同時にメチルであることが好ましい。また、上記式(2)においてAがラジカル重合性官能基であることが好ましく、Aが(メタ)アクリルまたはスチリルを含むことがより好ましく、Aが、下記式(3)、(4)または(5)で示されるいずれかであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記式(3)において、Yが炭素数2~10のアルキレンであり、Rが水素、または炭素数1~5のアルキル、または炭素数6~10のアリールである。上記式(4)において、Rは水素、または炭素数1~5のアルキル、または炭素数6~10のアリールであり、Xは炭素数が2~20のアルキレンであり、Yは-OCHCH-、-OCH(CH)CH-,または-OCHCH(CH)-であり、pは0~3の整数である。上記式(5)において、Yが単結合または炭素数1~10のアルキレンである。ここで、炭素数1~5のアルキルは、直鎖状または分岐鎖状のいずれでもよい。
 または、上記式(3)において、Yが炭素数2~6のアルキレンであり、Rが水素またはメチルである。上記式(4)において、Xは-CHCHCH-であり、Yは-OCHCH-であり、pは0または1であり、Rは水素またはメチルである。上記式(5)において、Yが単結合または炭素数1あるいは2のアルキレンであることが好ましい。
 または、好ましく用いられるオルガノポリシロキサンの例には、サイラプレーン FM0711(商品名;JNC(株)製)、サイラプレーン FM0721(商品名;JNC(株)製)、サイラプレーン FM0725 (商品名;JNC(株)製)、サイラプレーン TM0701(商品名;JNC(株)製)、サイラプレーン TM0701T(商品名;JNC(株)製)などが含まれる。
The structural unit b is derived from an organopolysiloxane having an addition polymerizable functional group having a molecular structure represented by the following formula (2).
The organopolysiloxane having an addition polymerizable functional group preferably has a molecular structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
In the organopolysiloxane, in the above formula (2), n is an integer of 1 to 1,000; R 1 , R 2 , R 3 , R 4 , and R 5 are each independently hydrogen, carbon number An arylalkyl composed of 1-30 alkyl, substituted or unsubstituted aryl, and substituted or unsubstituted aryl and alkylene, in R 1 , R 2 , R 3 , R 4 , and R 5 , At least one hydrogen may be replaced by fluorine and at least one —CH 2 — may be replaced by —O— or cycloalkylene; A 2 is an addition polymerizable functional group.
Further, in the organopolysiloxane having an addition polymerizable functional group, in the above formula (2), R 1 , R 2 , R 3 and R 4 are preferably methyl at the same time. Also preferably, A 2 in the above formula (2) is a radical polymerizable functional group, more preferably the A 2 contains a (meth) acrylic or styryl, A 2 is represented by the following formula (3), (4 ) Or (5) is more preferred.
Figure JPOXMLDOC01-appb-C000004
In the above formula (3), Y 1 is alkylene having 2 to 10 carbons, and R 6 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons. In the above formula (4), R 7 is hydrogen, alkyl having 1 to 5 carbons, or aryl having 6 to 10 carbons, X 1 is alkylene having 2 to 20 carbons, and Y is —OCH 2 CH 2 —, —OCH (CH 3 ) CH 2 —, or —OCH 2 CH (CH 3 ) —, and p is an integer of 0 to 3. In the above formula (5), Y 2 is a single bond or alkylene having 1 to 10 carbon atoms. Here, the alkyl having 1 to 5 carbon atoms may be linear or branched.
Alternatively, in the above formula (3), Y 1 is alkylene having 2 to 6 carbon atoms, and R 6 is hydrogen or methyl. In the above formula (4), X 1 is —CH 2 CH 2 CH 2 —, Y is —OCH 2 CH 2 —, p is 0 or 1, and R 7 is hydrogen or methyl. In the above formula (5), Y 2 is preferably a single bond or alkylene having 1 or 2 carbon atoms.
Alternatively, examples of organopolysiloxanes preferably used include Silaplane FM0711 (trade name; manufactured by JNC Corporation), Silaplane FM0721 (trade name; manufactured by JNC Corporation), Silaplane FM0725 (trade name; JNC) Co., Ltd.), Silaplane TM0701 (trade name; manufactured by JNC Corporation), Silaplane TM0701T (trade name; manufactured by JNC Corporation), and the like.
 構成単位cは、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する単量体に由来する。
 例えば、構成単位a、構成単位b、および下記の活性水素を有する基を含む一価の官能基を含む付加重合性単量体の成分として、水酸基含有ビニルモノマーを用いて得られる前駆体と、重合性不飽和結合を有するイソシアネート化合物とを反応して、構成単位cを含む重合体(フルオロシルセスキオキサン重合体)が得られる。
 このように、構成単位cは、重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体から得られる。
 すなわち、側鎖に重合性不飽和結合を有する基を含むフルオロシルセスキオキサン重合体は、重合性不飽和結合を有する基を導入できる官能基を有する重合体を前駆体として得ることができる。このような重合性不飽和結合を有する基を導入できる官能基としては、活性水素を有する基や環状エーテルを含む一価の官能基を挙げることができる。活性水素とは、有機化合物の分子内に存在している水素原子のうち、電気陰性度の値が炭素以上である原子(例えば窒素原子、硫黄原子、酸素原子)と結合している水素のことである。従って、フルオロシルセスキオキサン重合体を得るための好ましい前駆体は、活性水素を有する基を含む重合体であり、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン、付加重合性官能基を有するオルガノポリシロキサンと共に、活性水素を有する基や環状エーテルを含む一価の官能基を含む付加重合性単量体を必須成分として、フルオロシルセスキオキサン重合体の前駆体を得ることができる。
The structural unit c is a structural unit derived from an addition polymerizable monomer and derived from a monomer having a group having a polymerizable unsaturated bond in the side chain.
For example, as a component of an addition polymerizable monomer containing a structural unit a, a structural unit b, and a monovalent functional group containing a group having active hydrogen described below, a precursor obtained using a hydroxyl group-containing vinyl monomer, By reacting with an isocyanate compound having a polymerizable unsaturated bond, a polymer containing a structural unit c (fluorosilsesquioxane polymer) is obtained.
Thus, the structural unit c is obtained from an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond.
That is, the fluorosilsesquioxane polymer containing a group having a polymerizable unsaturated bond in the side chain can be obtained by using a polymer having a functional group capable of introducing a group having a polymerizable unsaturated bond as a precursor. Examples of the functional group into which such a group having a polymerizable unsaturated bond can be introduced include a group having active hydrogen and a monovalent functional group containing a cyclic ether. Active hydrogen is hydrogen bonded to an atom (eg, nitrogen atom, sulfur atom, oxygen atom) whose electronegativity value is greater than or equal to carbon among hydrogen atoms existing in the molecule of an organic compound. It is. Therefore, a preferred precursor for obtaining a fluorosilsesquioxane polymer is a polymer containing a group having active hydrogen, and a fluorosilsesquioxane having one addition polymerizable functional group in the molecule, addition polymerization. A fluorosilsesquioxane polymer precursor is obtained using an addition-polymerizable monomer containing an active hydrogen-containing group and a monovalent functional group containing a cyclic ether together with an organopolysiloxane having a functional functional group. be able to.
 活性水素を有する基としては、-OH、-SH、-COOH、-NH、-NH、-CONH、-NHCONH-、-NHCOO-、Na[CH(COOC)]、-CHNO、OOH、-SiOH、-B(OH)、-PH、-SHなどが挙げられる。カルボキシル、アミノ、ヒドロキシルが好ましく、ヒドロキシルがより好ましい。活性水素を有する基を含む付加重合性単量体(c)としては、分子内に活性水素を有する基と付加重合性二重結合とを有する化合物であればよく、活性水素を有する基を含む、ビニル化合物、ビニリデン化合物、ビニレン化合物のいずれでもよい。好ましくは、活性水素を有する基を含む、アクリル酸誘導体、またはスチレン誘導体である。 Examples of the group having active hydrogen include —OH, —SH, —COOH, —NH, —NH 2 , —CONH 2 , —NHCONH—, —NHCOO—, Na + [CH (COOC 2 H 5 )], —CH 2 NO 2 , OOH, —SiOH, —B (OH) 2 , —PH 3 , —SH and the like. Carboxyl, amino and hydroxyl are preferred, and hydroxyl is more preferred. The addition polymerizable monomer (c) containing a group having active hydrogen may be a compound having a group having active hydrogen and an addition polymerizable double bond in the molecule, and includes a group having active hydrogen. Any of vinyl compounds, vinylidene compounds, and vinylene compounds may be used. An acrylic acid derivative or a styrene derivative containing a group having active hydrogen is preferable.
 活性水素を有する基を含む付加重合性単量体としては、特開平9-208681号公報、特開2002-348344号公報、および特開2006-158961号公報に開示された単量体を挙げることができる。
 具体的には以下のような単量体が挙げられる。
 カルボキシル基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、(メタ)アクリル酸ヘキサデカンおよび桂皮酸などが挙げられる。
 水酸基含有ビニルモノマーとしては、ヒドロキシル基含有単官能ビニルモノマーおよびヒドロキシル基含有多官能ビニルモノマーなどが用いられる。ヒドロキシル基含有単官能ビニルモノマーとしては、ビニル基を一個有するビニルモノマーが用いられ、例えば、ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテル(2-プロペノキシエタノール)、16-ヒドロキシヘキサデカンメタアクリレートおよび庶糖アリルエーテルなどが挙げられる。
 活性水素基を含む付加重合性単量体としては、ヒドロキシル基含有単官能ビニルモノマーが好ましく、さらには、ヒドロキシエチル(メタ)アクリレートが好ましい。
Examples of the addition polymerizable monomer containing a group having active hydrogen include monomers disclosed in JP-A-9-208681, JP-A-2002-348344, and JP-A-2006-158961. Can do.
Specific examples include the following monomers.
Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, and itacone. Examples include acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, hexamethan (meth) acrylate and cinnamic acid.
Examples of the hydroxyl group-containing vinyl monomer include a hydroxyl group-containing monofunctional vinyl monomer and a hydroxyl group-containing polyfunctional vinyl monomer. As the hydroxyl group-containing monofunctional vinyl monomer, a vinyl monomer having one vinyl group is used. For example, hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4- Hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2-butene- 1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether (2-propenoxyethanol), 16-hydroxyhexadecane methacrylate Such as microcrystalline sucrose allyl ether.
As the addition polymerizable monomer containing an active hydrogen group, a hydroxyl group-containing monofunctional vinyl monomer is preferable, and hydroxyethyl (meth) acrylate is more preferable.
 フルオロシルセスキオキサン重合体
 重合性不飽和結合を有する基は、前述したように、フルオロシルセスキオキサン重合体の前駆体と、重合性不飽和結合を有する基を導入できる官能基(活性水素を有する基)と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物とを反応させることにより導入することができる。
 このような、活性水素を有する基と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物としては、例えば重合性不飽和結合を有するイソシアネート化合物、重合性不飽和結合を有する酸ハロゲン化物、重合性不飽和結合を有するカルボン酸化合物、重合性不飽和結合を有するカルボン酸エステル化合物およびエポキシ化合物を挙げることができる。このような重合性不飽和結合を有する基としては、ラジカル重合性基が好ましく、(メタ)アクリル、アリル、スチリルなどが挙げられる。
Fluorosilsesquioxane polymer As described above, the group having a polymerizable unsaturated bond includes a precursor of a fluorosilsesquioxane polymer and a functional group (active hydrogen that can introduce a group having a polymerizable unsaturated bond). And a compound having a group having a polymerizable unsaturated bond in the same molecule can be introduced.
Examples of the compound having a functional group that reacts with a group having active hydrogen and a group having a polymerizable unsaturated bond in the same molecule include, for example, an isocyanate compound having a polymerizable unsaturated bond, and a polymerizable unsaturated bond. The acid halide which has, the carboxylic acid compound which has a polymerizable unsaturated bond, the carboxylic acid ester compound which has a polymerizable unsaturated bond, and an epoxy compound can be mentioned. The group having such a polymerizable unsaturated bond is preferably a radical polymerizable group, and examples thereof include (meth) acryl, allyl, and styryl.
 (メタ)アクリルを有するイソシアネート化合物としては、以下の構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000005
 式中、R、Rは、水素またはメチルであり、Bは酸素、炭素数1~3のアルキレン、または-OR10-である;R10は炭素数2~12のアルキレン、炭素数2~12のオキシアルキレン、炭素数6~12のアリーレンを表す。
As an isocyanate compound having (meth) acryl, a compound having the following structure can be used.
Figure JPOXMLDOC01-appb-C000005
In the formula, R 8 and R 9 are hydrogen or methyl, B is oxygen, alkylene having 1 to 3 carbon atoms, or —OR 10 —; R 10 is alkylene having 2 to 12 carbon atoms, carbon number 2 Represents an oxyalkylene having ˜12 or arylene having 6 to 12 carbon atoms.
 表面改質成分としてのケイ素化合物は、樹脂(ウレタンアクリレート樹脂(A)、多官能アクリレート樹脂(B)および必要に応じて添加するその他樹脂(E))中に0.01wt%~20wt%の範囲で配合する。表面改質成分により、コーティング剤から形成された硬化膜の表面にスリップ性を付与でき、硬化膜の耐タック性を改善することができる。そのため、ロールtoロールでの塗工の際にフィルム同士のくっつきや、金属ロールへのくっつきを防止することができる。
 上記フルオロシルセスキオキサン重合体は、国際公開第2008/072765号または国際公開第2008/072766号に記載されている方法により合成することができる。
The silicon compound as the surface modifying component is in the range of 0.01 wt% to 20 wt% in the resin (urethane acrylate resin (A), polyfunctional acrylate resin (B) and other resin (E) added as necessary). Blend in. By the surface modifying component, slip property can be imparted to the surface of the cured film formed from the coating agent, and the tack resistance of the cured film can be improved. Therefore, it is possible to prevent the films from sticking to each other and the metal rolls from being stuck to each other during the roll-to-roll coating.
The fluorosilsesquioxane polymer can be synthesized by a method described in International Publication No. 2008/072765 or International Publication No. 2008/072766.
 本願のコーティング剤にさらにケイ素化合物(D)を加えることで、コーティング剤から形成された硬化膜に表面改質(耐擦傷性、耐ブロッキング性、タック性、レべリング性向上等)の効果を付与することができる。 By adding a silicon compound (D) to the coating agent of the present application, the effect of surface modification (scratch resistance, blocking resistance, tackiness, leveling improvement, etc.) is achieved on the cured film formed from the coating agent. Can be granted.
 その他の樹脂(E)
 コーティング剤には、その他の樹脂成分を添加しても良い。例えば、熱硬化性樹脂や熱可塑性樹脂、ゴムなどを挙げることができる。
 熱硬化樹脂の場合は、例えば、ガラス基材に添加することで基材密着性をあげることができる。また、添加することにより硬化膜の耐熱性をより向上させることができる。
 熱可塑性樹脂、ゴムの場合は、添加することにより、コーティング剤によりコーティングされた成形体の耐衝撃性をさらにあげることができる。
Other resins (E)
Other resin components may be added to the coating agent. For example, a thermosetting resin, a thermoplastic resin, rubber, etc. can be mentioned.
In the case of a thermosetting resin, for example, the substrate adhesion can be increased by adding to a glass substrate. Moreover, the heat resistance of a cured film can be improved more by adding.
In the case of a thermoplastic resin or rubber, the impact resistance of the molded article coated with the coating agent can be further increased by adding it.
 熱硬化性樹脂としては、例えば、フェノール樹脂、アルキド樹脂、メラミン系樹脂、エポキシ系樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂、熱硬化性ポリイミドおよびシリコーン樹脂などが挙げられる。これらの樹脂を単独で用いてもよいし、複数の樹脂を組み合わせて用いてもよい。
 具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂、可撓性エポキシ樹脂、臭素化エポキシ樹脂、グリシジルエステル型エポキシ樹脂、高分子型エポキシ樹脂、ビフェニル型エポキシ樹脂等のエポキシ系樹脂、メチル化メラミン樹脂、ブチル化メラミン樹脂、メチルエーテル化メラミン樹脂、ブチルエーテル化メラミン樹脂、メチルブチル混合エーテル化メラミン樹脂等のメラミン系樹脂、イソシアネート基を2個以上持ったポリイソシアネート化合物(O=C=N-R-N=C=O)と、水酸基を2個以上持ったポリオール化合物(HO-R'-OH)、ポリアミン(H2N-R"-NH2)、または水などの活性水素(-NH2,-NH,-CONH-など)を持った化合物などとの反応により得ることができるウレタン系樹脂等が加工適性上好ましい。
 エポキシ系樹脂は耐熱性、接着性、耐薬品性、メラミン系樹脂は耐熱性、硬度、透明性、ウレタン系樹脂は接着性、低温硬化性に優れており、適宜選択して使用することができる。
Examples of the thermosetting resin include phenol resin, alkyd resin, melamine resin, epoxy resin, urea resin, unsaturated polyester resin, urethane resin, thermosetting polyimide, and silicone resin. These resins may be used alone, or a plurality of resins may be used in combination.
Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional epoxy resin, flexible epoxy resin, brominated epoxy resin, glycidyl ester type epoxy resin, polymer type epoxy resin, biphenyl type epoxy resin, etc. Epoxy resins, methylated melamine resins, butylated melamine resins, methyl etherified melamine resins, butyl etherified melamine resins, methylbutyl mixed etherified melamine resins, and other polyisocyanate compounds having two or more isocyanate groups ( O = C = NRN = C = O) and polyol (HO-R'-OH), polyamine (H 2 NR "-NH 2 ), or active hydrogen such as water (-NH) 2, -NH, it urethane resin or the like is preferred over processing suitability that can be obtained by reaction with such compounds having a -CONH-, etc.)
Epoxy resins are heat-resistant, adhesive and chemical resistant, melamine-based resins are heat-resistant, hard and transparent, and urethane-based resins are excellent in adhesion and low-temperature curability, and can be selected and used as appropriate. .
 コーティング剤中にその他の樹脂(E)を添加する場合は、0.1wt%~50wt%、好ましくは1wt%~30wt%配合する。なお、上記割合は、硬化性樹脂膜を形成する樹脂組成物の総重量を100wt%とした場合の割合である。 When other resin (E) is added to the coating agent, it is blended in an amount of 0.1 wt% to 50 wt%, preferably 1 wt% to 30 wt%. In addition, the said ratio is a ratio when the total weight of the resin composition which forms curable resin film is 100 wt%.
 溶剤(F)
 本願のコーティング剤に用いる樹脂は、有機溶剤等の溶剤に溶解させて用いてもよい。溶剤は特に限定しない。一般的な有機溶剤等を使用できる。コーティング剤を塗布する基材等の耐溶剤性により適宜選択する。
 溶剤の具体例としては、炭化水素系溶媒(ベンゼン、トルエンなど)、エーテル系溶媒(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼンなど)、ハロゲン化炭化水素系溶媒(塩化メチレン、クロロホルム、クロロベンゼンなど)、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、アルコール系溶媒(メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、t-ブチルアルコールなど)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、エステル系溶媒(酢酸エチル、酢酸ブチルなど)、カーボネート系溶媒(エチレンカーボネート、プロピレンカーボネートなど)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶媒(HCFC-141b、HCFC-225)、ハイドロフルオロカーボン(HFCs)系溶媒(炭素数2~4、5および6以上のHFCs)、パーフルオロカーボン系溶媒(パーフルオロペンタン、パーフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶媒(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶媒(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、芳香族系フッ素溶媒(α,α,α-トリフルオロトルエン、ヘキサフルオロベンゼン)、水が含まれる。これらを単独で使用してもよく、二種以上を併用してもよい。
 用いられる溶媒の量は、硬化性樹脂膜を形成する樹脂組成物の総重量に対して約20wt%~90wt%であればよい。
Solvent (F)
The resin used for the coating agent of the present application may be dissolved in a solvent such as an organic solvent. The solvent is not particularly limited. Common organic solvents can be used. It selects suitably by solvent resistance of the base material etc. which apply | coat a coating agent.
Specific examples of solvents include hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene, etc.) ), Ketone solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), alcohol solvents (methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.), nitrile solvents (acetonitrile, propionitrile, benzonitrile) Etc.), ester solvents (ethyl acetate, butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, etc.), amide solvents (N, N-dimethyl) (Lumamide, N, N-dimethylacetamide), hydrochlorofluorocarbon solvents (HCFC-141b, HCFC-225), hydrofluorocarbon (HFCs) solvents (HFCs having 2 to 4, 5 and 6 or more carbon atoms), perfluorocarbon Solvents (perfluoropentane, perfluorohexane), alicyclic hydrofluorocarbon solvents (fluorocyclopentane, fluorocyclobutane), oxygen-containing fluorine solvents (fluoroether, fluoropolyether, fluoroketone, fluoroalcohol), aromatic Fluorine solvent (α, α, α-trifluorotoluene, hexafluorobenzene) and water are included. These may be used alone or in combination of two or more.
The amount of the solvent used may be about 20 wt% to 90 wt% with respect to the total weight of the resin composition forming the curable resin film.
 添加剤(G)
 コーティング剤には、上記の他に添加剤を添加しても良い。例えば、膜の硬度、耐擦傷性を付与するために、フィラーを添加してもよい。塗工性を上げるために、レベリング剤を添加してもよい。その他、耐候剤、消泡剤等の添加剤を添加してもよい。
 より詳細には、コーティング剤により形成される硬化膜が有する効果に悪影響をおよぼさない範囲において、活性エネルギー線増感剤、重合禁止剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、シリカやアルミナに代表される無機フィラー、有機フィラーなど、任意の成分をさらにコーティング剤に含有させてもよい。
Additive (G)
In addition to the above, additives may be added to the coating agent. For example, a filler may be added to impart film hardness and scratch resistance. In order to improve coatability, a leveling agent may be added. In addition, additives such as weathering agents and antifoaming agents may be added.
More specifically, as long as the effect of the cured film formed by the coating agent is not adversely affected, an active energy ray sensitizer, a polymerization inhibitor, a polymerization initiation assistant, a leveling agent, a wettability improver, Surfactants, plasticizers, UV absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers typified by silica and alumina, and organic fillers may be added to the coating agent. Good.
 レベリング剤の例として、市販品としてアクリル系表面調整剤BYK-350、BYK-352、BYK-354、BYK-356、BYK-381、BYK-392、BYK-394、BYK-3441、BYK-3440、BYK-3550等があげられる(いずれも商品名;ビックケミー・ジャパン(株)製)。
 耐候剤の例として、ベンゾトリアゾール類、ヒドロキシフェニルトリアジン類、ベンゾフェノン類、サリシレート類、シアノアクリレート類、トリアジン類、または、ジベンゾイルレゾルシノール類などが挙げられる。これらの紫外線吸収剤を単独で用いてもよいし、複数の紫外線吸収剤を組み合わせて用いてもよい。紫外線吸収剤は、吸収したい紫外線の波長に基づいて種類や組み合わせを適宜選択することが好ましい。
Examples of leveling agents include commercially available acrylic surface conditioners BYK-350, BYK-352, BYK-354, BYK-356, BYK-381, BYK-392, BYK-394, BYK-3441, BYK-3440, BYK-3550, etc. (all trade names; manufactured by Big Chemie Japan Co., Ltd.).
Examples of weathering agents include benzotriazoles, hydroxyphenyltriazines, benzophenones, salicylates, cyanoacrylates, triazines, or dibenzoylresorcinols. These ultraviolet absorbers may be used alone, or a plurality of ultraviolet absorbers may be used in combination. It is preferable to appropriately select the type and combination of ultraviolet absorbers based on the wavelength of ultraviolet rays to be absorbed.
[硬化膜]
 本発明の第2の実施の形態に係る硬化膜は、第1の実施の形態に係るコーティング剤から塗膜を形成する工程と、この塗膜を硬化させる工程とによって得られる。塗膜の形成は、例えば塗布によって行うことができる。塗膜の硬化は、例えば乾燥または加熱後の活性エネルギー線照射によって行うことができる。
[Curing film]
The cured film which concerns on the 2nd Embodiment of this invention is obtained by the process of forming a coating film from the coating agent which concerns on 1st Embodiment, and the process of hardening this coating film. The coating film can be formed by, for example, coating. The coating film can be cured, for example, by irradiation with active energy rays after drying or heating.
 コーティング剤を塗布する方法は、特に限定されない。例えば、スピンコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、グラビアコート法、リバースコート法、ロッドコート法、バーコート法、ダイコート法、キスコート法、リバースキスコート法、エアナイフコート法、カーテンコート法などがある。 The method for applying the coating agent is not particularly limited. For example, spin coating, roll coating, slit coating, dipping, spray coating, gravure coating, reverse coating, rod coating, bar coating, die coating, kiss coating, reverse kiss coating, air knife coating Law and curtain coat method.
 塗布されたコーティング液の乾燥は、室温~約200℃の環境下で行うことができる。
 活性エネルギー線重合開始剤を用いる場合は、塗布乾燥後に、活性エネルギー線源により、光活性エネルギー線または電子線を照射して硬化させることができる。
 活性エネルギー線源としては特に制限はないが、用いる活性エネルギー線重合開始剤の性質に応じて、例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、気体レーザー、固体レーザー、電子線照射装置などが挙げられる。
The applied coating liquid can be dried in an environment of room temperature to about 200 ° C.
When an active energy ray polymerization initiator is used, it can be cured by irradiating a photoactive energy ray or an electron beam with an active energy ray source after coating and drying.
There are no particular restrictions on the active energy ray source, but depending on the nature of the active energy ray polymerization initiator used, for example, low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, metal halide lamp, carbon arc, xenon arc, gas laser, solid state laser And an electron beam irradiation apparatus.
 硬化膜の膜厚は、1μm~30μm、さらに好ましくは、1μm~10μmである。1μm以上とすると、薄すぎて屈曲性、耐衝撃性の効果が小さくなることを回避できる。30μm以下とすると、厚くなりすぎて光学特性(透明性、色味)を維持できなくなることを回避できる。また、厚すぎる場合、溶剤の乾燥不良を引き起こし、硬化不良を引き起こし、残存溶剤により密着性が悪くなることがある。 The thickness of the cured film is 1 μm to 30 μm, more preferably 1 μm to 10 μm. When the thickness is 1 μm or more, it is possible to avoid that the effect of flexibility and impact resistance is reduced due to being too thin. When the thickness is 30 μm or less, it can be avoided that the optical properties (transparency, color) cannot be maintained due to being too thick. On the other hand, if it is too thick, it may cause poor drying of the solvent, cause poor curing, and the adhesiveness may deteriorate due to the residual solvent.
 本願発明のコーティング剤から形成された硬化膜は、屈曲性、耐擦傷性に優れる。よって、コーティング剤を、屈曲性の乏しい基材等に積層することで、基材の割れを防止し、耐衝撃性を向上させることができる。
 例えば、コーティング剤を塗布することにより、ロールツーロール方式のウェットプロセスあるいはドライプロセス、打ち抜き加工、スリット加工等の工程時にフィルム等に発生する割れや傷を抑制することが可能となる。
The cured film formed from the coating agent of the present invention is excellent in flexibility and scratch resistance. Therefore, by laminating the coating agent on a base material having poor flexibility, the base material can be prevented from cracking and the impact resistance can be improved.
For example, by applying a coating agent, it is possible to suppress cracks and scratches that occur in a film or the like during a roll-to-roll wet process or dry process, punching process, slit process, and the like.
[積層体]
 本発明の第3の実施の形態に係る積層体は、被膜対象である基材と、基材の片面側または両面側に積層された第2の実施の形態に係る硬化膜を有する。すなわち、硬化膜は、基材の片面にのみ直接積層してもよく、または、硬化膜で基材を挟むように両面に直接積層してもよい。または、他の層を介して片面側にのみ間接的に積層してもよく、または、他の層で基材を挟むように両面に積層し、さらに硬化膜で両面を挟むように積層してもよい。図1は、基材11の両面に直接硬化膜12が積層された状態を示す。
[Laminate]
The laminate according to the third embodiment of the present invention has a base material to be coated and a cured film according to the second embodiment laminated on one or both sides of the base material. That is, the cured film may be directly laminated on only one side of the substrate, or may be laminated directly on both sides so that the substrate is sandwiched between the cured films. Or it may be laminated indirectly only on one side through another layer, or it may be laminated on both sides so that the substrate is sandwiched between other layers, and further laminated so that both sides are sandwiched between cured films. Also good. FIG. 1 shows a state in which a cured film 12 is directly laminated on both surfaces of a substrate 11.
 基材11の例には、白板ガラス、青板ガラス、シリカコート青板ガラスなどの透明ガラス基板;ポリカーボネート、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド、トリアセテート、ジアセテートなどの合成樹脂製シート、フィルム;メタクリルスチレン、ポリサルフォン、ポリアリレートなどの光学用途に用いる透明樹脂基板;有機無機ハイブリッド樹脂から形成された、ケイ素系材料をベースとした透明フィルム基板(商品名;サイラデック、JNC(株)製)や高表面硬度透明基板(商品名;シルプラス、新日鉄住金化学(株)製);アルミニウム板、銅板、ニッケル板、ステンレス板などの金属基板;その他セラミック板、光電変換素子を有する半導体基板;シリコンウェーハ(P型、結晶方位:<100>、抵抗率:1~10Ω/cm、(株)SUMCO製)、ウレタンゴム、スチレンゴム;などが挙げられる。
 これらの基板は前処理をされていてもよい。前処理の例には、シランカップリング剤などによる薬品処理、サンドブラスト処理、コロナ放電処理、紫外線処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などが含まれる。
Examples of the substrate 11 include transparent glass substrates such as white plate glass, blue plate glass, and silica-coated blue plate glass; polycarbonate, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, triacetate, diacetate, and the like. Synthetic resin sheet, film; transparent resin substrate used for optical applications such as methacrylstyrene, polysulfone, polyarylate; transparent film substrate based on silicon-based material (trade name; Cyladek, JNC Co., Ltd.) and high surface hardness transparent substrate (trade name; Sylplus, Nippon Steel & Sumikin Chemical Co., Ltd.); Metal substrates such as aluminum plates, copper plates, nickel plates, stainless steel plates; Other ceramic plates, photoelectric conversion elements Semiconductor substrate having; silicon way (P-type, crystal orientation: <100>, resistivity: 1 ~ 10Ω / cm, (Ltd.) SUMCO), urethane rubber, styrene rubber; and the like.
These substrates may be pretreated. Examples of the pretreatment include chemical treatment with a silane coupling agent or the like, sandblast treatment, corona discharge treatment, ultraviolet treatment, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
 基材の厚さは特に限定されない。用途に適した厚さであればよい。例えば、薄膜ガラスは、約10μm~約100μm、フィルムは、約10μm~約1mm、基板は、約100μm~約10mmであってもよい。 The thickness of the substrate is not particularly limited. Any thickness suitable for the application may be used. For example, the thin glass may be about 10 μm to about 100 μm, the film may be about 10 μm to about 1 mm, and the substrate may be about 100 μm to about 10 mm.
[成形物]
 本発明の第4の実施の形態に係る成形物は、被膜対象である成形体と、成形体の表面に積層された第2の実施の形態に係る硬化膜を有する。成形体を硬化膜で被膜すると、硬化膜により応力が緩和されるため、屈曲性、耐擦傷性、耐衝撃性を向上させることができる。さらに、ガラス製の物品のような容易に破損する成形体においては、飛散防止効果を付与することができる。
 成形体としては、例えば、ガラスレンズ、プラスチックレンズ、ポリカーボネートレンズ等のレンズ類や、カメラのカバーガラス等を挙げることができる。硬化膜で表面を被膜することにより、割れ易いガラスレンズの割れを防止したり、傷がつきやすいプラスチックレンズやカバーガラスの耐擦傷性や耐衝撃性を向上させることができる。さらに、硬化膜は透明性が高いため、光学性能がやや落ちるといわれているポリカーボネートレンズの光学特性を損なうことなく被膜することができる。
[Molded product]
The molded product according to the fourth embodiment of the present invention has a molded body that is a coating target and a cured film according to the second embodiment laminated on the surface of the molded body. When the molded body is coated with a cured film, the stress is relieved by the cured film, so that flexibility, scratch resistance, and impact resistance can be improved. Furthermore, in a molded body that is easily damaged, such as a glass article, a scattering prevention effect can be imparted.
Examples of the molded body include lenses such as glass lenses, plastic lenses, and polycarbonate lenses, camera cover glasses, and the like. By coating the surface with a cured film, it is possible to prevent breakage of a glass lens that is easily broken, or to improve the scratch resistance and impact resistance of a plastic lens or cover glass that is easily damaged. Furthermore, since the cured film has high transparency, it can be coated without impairing the optical characteristics of the polycarbonate lens, which is said to have a slight decrease in optical performance.
[製造例1]
 ウレタンアクリレート樹脂(A)
 ポリカーボネート系ウレタンアクリレート(A-1)の製造例
 4,4’-ジシクロヘキシルメタンジイソシアネート(商品名:デスモジュール(登録商標)、住化バイエルウレタン(株)製)を305.7g(1.17モル)、1,4-シクロヘキサンジメタノールを用いたポリカーボネートポリオール(商品名:ETERNACOLL(登録商標)UC-100、宇部興産(株)製)を1000g(1モル)、2-ブタノン(MEK、メチルエチルケトン)1699.2gを仕込み、70℃~80℃の条件にて反応を行い、所定の残存イソシアネート濃度になるまで反応させた。次いで、2-ヒドロキシエチルアクリレート(商品名:BHEA、(株)日本触媒製)255.2g(2.2モル)および重合禁止剤としてハイドロキノンモノメチルエーテル(商品名:MQ、川口化学工業(株)製)0.85gを添加後、さらに70℃~80℃の条件にて残存イソシアネート濃度が0.1%になるまで反応させ、ポリカーボネート系ウレタンアクリレート(A-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は100,000であった。
[Production Example 1]
Urethane acrylate resin (A)
Production Example of Polycarbonate-Based Urethane Acrylate (A-1) 305.7 g (1.17 mol) of 4,4′-dicyclohexylmethane diisocyanate (trade name: Desmodur (registered trademark), manufactured by Sumika Bayer Urethane Co., Ltd.) 1,4-cyclohexanedimethanol polycarbonate polyol (trade name: ETERRNACOLL (registered trademark) UC-100, manufactured by Ube Industries, Ltd.) 1000 g (1 mol), 2-butanone (MEK, methyl ethyl ketone) 1699. 2 g was charged and reacted under the conditions of 70 ° C. to 80 ° C. until the predetermined residual isocyanate concentration was reached. Next, 255.2 g (2.2 mol) of 2-hydroxyethyl acrylate (trade name: BHEA, manufactured by Nippon Shokubai Co., Ltd.) and hydroquinone monomethyl ether (trade name: MQ, manufactured by Kawaguchi Chemical Industry Co., Ltd.) as a polymerization inhibitor After adding 0.85 g, the reaction was further continued under the conditions of 70 ° C. to 80 ° C. until the residual isocyanate concentration became 0.1%, to obtain polycarbonate urethane acrylate (A-1). The weight average molecular weight calculated | required by GPC analysis of the obtained polymer was 100,000.
[製造例2]
 多官能アクリレート樹脂(B)
 還流冷却器、温度計および滴下ロートを取り付けた内容積200mLの四つ口フラスコに、メチルメタクリレート(MMA)を25.00g、メタクリル酸グリシジル(GMA)を25.00g、2-ブタノン(MEK)を50.00g導入し、窒素シールした。80℃に保ったオイルバスにセットして還流させ、10分間脱酸素を行った。次いで0.70gの2,2'-アゾビスイソブチロニトリル(AIBN)と0.08gのメルカプト酢酸(AcSH)を7.00gのMEKに溶解させた溶液を導入し、還流温度に保ったまま重合を開始した。3時間重合した後、0.70gのAIBNを7.00gのMEKに溶解させた溶液を導入し、さらに5時間重合を継続した。重合終了後、重合液に変性アルコール(ソルミックスAP-1、日本アルコール販売(株)製)を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで重合体を析出させた。上澄みを除去し、減圧乾燥(40℃、3時間、70℃、3時間)させて40gのグリシジル基を有する重合体(b-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は31,200であった。また重合体(b-1)のH-NMR測定より求めたモノマー成分の組成モル分率はMMA:GMA=50:50であった。
[Production Example 2]
Multifunctional acrylate resin (B)
In a 200 mL four-necked flask equipped with a reflux condenser, thermometer and dropping funnel, 25.00 g of methyl methacrylate (MMA), 25.00 g of glycidyl methacrylate (GMA), and 2-butanone (MEK) 50.00 g was introduced and sealed with nitrogen. It was set in an oil bath maintained at 80 ° C. and refluxed, and deoxygenated for 10 minutes. Subsequently, a solution prepared by dissolving 0.70 g of 2,2′-azobisisobutyronitrile (AIBN) and 0.08 g of mercaptoacetic acid (AcSH) in 7.00 g of MEK was introduced and kept at the reflux temperature. Polymerization was started. After polymerization for 3 hours, a solution in which 0.70 g of AIBN was dissolved in 7.00 g of MEK was introduced, and the polymerization was further continued for 5 hours. After completion of the polymerization, 65 mL of denatured alcohol (Solmix AP-1, manufactured by Nippon Alcohol Sales Co., Ltd.) was added to the polymerization solution, and then poured into 1300 mL of Solmix AP-1, to precipitate a polymer. The supernatant was removed and dried under reduced pressure (40 ° C., 3 hours, 70 ° C., 3 hours) to obtain 40 g of a polymer (b-1) having a glycidyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 31,200. The composition molar fraction of the monomer component determined from 1 H-NMR measurement of the polymer (b-1) was MMA: GMA = 50: 50.
 ・側鎖にアクリロイル基の付加(エポキシ基反応)
 続いて、還流冷却器、温度計およびセプタムキャップを取り付けた内容積200mLの四つ口フラスコに、グリシジル基を有する重合体(b-1)を50.0g、アクリル酸(AA)を16.48g、MEHQを0.13g、テトラメチルアンモニウムクロライドを1.25g、2-ブタノン(MEK)を33.24g導入し、窒素シールした。80℃に保ったオイルバスにセットし、昇温し反応を開始した。10時間反応した後、室温まで冷却してMeOH10.0gを導入して反応を終了した。反応終了後、反応液にソルミックスAP-1を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで反応物を析出させた。上澄みを除去し、減圧乾燥(40℃、3時間、70℃、3時間)させてアクリロイル基を有する重合体(B-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は47,000であった。
・ Addition of acryloyl group to the side chain (epoxy group reaction)
Subsequently, 50.0 g of the polymer (b-1) having a glycidyl group and 16.48 g of acrylic acid (AA) were added to a 200 mL internal flask having a reflux condenser, a thermometer and a septum cap. Then, 0.13 g of MEHQ, 1.25 g of tetramethylammonium chloride, and 33.24 g of 2-butanone (MEK) were introduced and sealed with nitrogen. It set to the oil bath maintained at 80 degreeC, and it heated up and started reaction. After reacting for 10 hours, the reaction was terminated by cooling to room temperature and introducing 10.0 g of MeOH. After completion of the reaction, 65 mL of Solmix AP-1 was added to the reaction solution, and then poured into 1300 mL of Solmix AP-1 to precipitate the reaction product. The supernatant was removed and dried under reduced pressure (40 ° C., 3 hours, 70 ° C., 3 hours) to obtain a polymer (B-1) having an acryloyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 47,000.
[製造例3]
 ケイ素化合物(D)としてのフルオロシルセスキオキサン含有化合物
 フルオロシルセスキオキサン重合体(D-1)の合成例
 ・ヒドロキシル基を有する重合体(前駆体)(d-1)の合成
Figure JPOXMLDOC01-appb-C000006
 還流冷却器、温度計および滴下ロートを取り付けた内容積200mLの四つ口フラスコに、化合物(d1)を36.65g、メチルメタクリレート(MMA)を3.37g、2-ヒドロキシエチルメタクリレート(HEMA)を0.97g、片末端メタクリロキシ基変性ジメチルシリコーン(FM-0721、分子量約6,300)を24.00g、2-ブタノン(MEK)を64.45g導入し、窒素シールした。95℃に保ったオイルバスにセットして還流させ、10分間脱酸素を行った。次いで、0.35gの2,2'-アゾビスイソブチロニトリル(AIBN)と0.20gのメルカプト酢酸(AcSH)を4.94gのMEKに溶解させた溶液を導入し、還流温度に保ったまま重合を開始した。3時間重合した後、0.35gのAIBNを3.16gのMEKに溶解させた溶液を導入し、さらに5時間重合を継続した。重合終了後、重合液に変性アルコール(ソルミックスAP-1、日本アルコール販売(株)製)を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで重合体を析出させた。上澄みを除去し、減圧乾燥(40℃、3時間、70℃、3時間)させて40gのヒドロキシル基を有する重合体(前駆体)(d-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は31,200であった。また重合体(d-1)のH-NMR測定より求めたモノマー成分の組成モル分率は、化合物(d1):MMA:HEMA:FM-0721=41.7:42.8:10.1:5.4であった。ヒドロキシル基当量は9,400g/eqであった。
 ・側鎖にアクリロイル基を有する重合体(D-1)の合成
 還流冷却器、温度計およびセプタムキャップを取り付けた内容積200mLの四つ口フラスコに、ヒドロキシル基を有する重合体(d-1)を15.0g、MEHQを0.015g、DBTDLを0.0263g、酢酸エチルを130g導入し、窒素シールした。48℃に保ったオイルバスにセットし、昇温した。次いで液温が45℃になったところで、アクリロイルオキシエチルイソシアネート(AOI、昭和電工(株)製)2.35gを導入し、反応を開始した。6時間反応した後、室温まで冷却してMeOH10.0gを導入して反応を終了した。反応終了後、反応液にソルミックスAP-1を65mL加えた後、1300mLのソルミックスAP-1に注ぎ込んで反応物を析出させた。上澄みを除去し、減圧乾燥(40℃、3時間、70℃、3時間)させて11.8gのアクリロイル基を有する重合体(D-1)を得た。得られた重合体のGPC分析により求めた重量平均分子量は32,800、であった。また、重合体(D-1)のH-NMR測定より求めたアクリロイル基当量は6,900g/eqであった。
[Production Example 3]
Fluorosilsesquioxane-containing compound as silicon compound (D) Synthesis example of fluorosilsesquioxane polymer (D-1) Synthesis of polymer having hydroxyl group (precursor) (d-1)
Figure JPOXMLDOC01-appb-C000006
To a 200 mL four-necked flask equipped with a reflux condenser, thermometer and dropping funnel, 36.65 g of compound (d1), 3.37 g of methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA) were added. 0.97 g, 24.00 g of one-end methacryloxy group-modified dimethyl silicone (FM-0721, molecular weight of about 6,300) and 64.45 g of 2-butanone (MEK) were introduced and sealed with nitrogen. It was set in an oil bath maintained at 95 ° C. and refluxed, and deoxygenated for 10 minutes. Next, a solution prepared by dissolving 0.35 g of 2,2′-azobisisobutyronitrile (AIBN) and 0.20 g of mercaptoacetic acid (AcSH) in 4.94 g of MEK was introduced and maintained at the reflux temperature. Polymerization was started as it was. After polymerization for 3 hours, a solution prepared by dissolving 0.35 g of AIBN in 3.16 g of MEK was introduced, and polymerization was further continued for 5 hours. After completion of the polymerization, 65 mL of denatured alcohol (Solmix AP-1, manufactured by Nippon Alcohol Sales Co., Ltd.) was added to the polymerization solution, and then poured into 1300 mL of Solmix AP-1, to precipitate a polymer. The supernatant was removed and dried under reduced pressure (40 ° C., 3 hours, 70 ° C., 3 hours) to obtain 40 g of a polymer (precursor) (precursor) (d-1) having a hydroxyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 31,200. Further, the composition molar fraction of the monomer component determined from 1 H-NMR measurement of the polymer (d-1) was as follows: Compound (d1): MMA: HEMA: FM-0721 = 41.7: 42.8: 10.1 : 5.4. The hydroxyl group equivalent was 9,400 g / eq.
Synthesis of polymer (D-1) having acryloyl group in side chain Polymer (d-1) having hydroxyl group in a four-necked flask with an internal volume of 200 mL equipped with a reflux condenser, thermometer and septum cap 15.0 g, MEHQ 0.015 g, DBTDL 0.0263 g, and ethyl acetate 130 g were introduced and sealed with nitrogen. It set to the oil bath maintained at 48 degreeC, and heated up. Next, when the liquid temperature reached 45 ° C., 2.35 g of acryloyloxyethyl isocyanate (AOI, manufactured by Showa Denko KK) was introduced to start the reaction. After reacting for 6 hours, the reaction was terminated by cooling to room temperature and introducing 10.0 g of MeOH. After completion of the reaction, 65 mL of Solmix AP-1 was added to the reaction solution, and then poured into 1300 mL of Solmix AP-1 to precipitate the reaction product. The supernatant was removed and dried under reduced pressure (40 ° C., 3 hours, 70 ° C., 3 hours) to obtain 11.8 g of a polymer (D-1) having an acryloyl group. The weight average molecular weight determined by GPC analysis of the obtained polymer was 32,800. Further, the acryloyl group equivalent determined from 1 H-NMR measurement of the polymer (D-1) was 6,900 g / eq.
[調製例1]
 コーティング剤Aの調製
 製造例1により得られたポリカーボネート系ウレタンアクリレート(A-1)15.16g(固形分100%)、製造例2により得られた多官能アクリレート樹脂(B)としてのアクリロイル基を有する重合体(B-1)12.64g(固形分30%MEK溶液)、2-ブタノン(MEK)70.93gを遮光されたプラスチックボトルに導入し、攪拌・混合させた。透明な溶液になったのを確認した後、光重合開始剤(C)(商品名:イルガキュア184、BASF社製)0.95g、重合体(D-1)0.32g(固形分30%MEK溶液)を追加し、さらに攪拌・混合させたものをコーティング剤Aとした。
[調製例2~7]
 コーティング剤B~Gの調製
 表1に記載の配合とした以外は、調製例1の方法で調製を行い、コーティング剤B~Gを得た。コーティング剤Gは、多官能アクリレート樹脂(B)に変えて、多官能アクリレートモノマーであるジペンタエリスリトールヘキサアクリレート(B-2)(商品名:A-DPH、新化学工業(株)製)を用いた。コーティング剤Cは、表面改質成分としてシリコーン系表面調整剤(商品名:BYK-3500、ビックケミー・ジャパン(株)製)(D-2)を用いた。
[Preparation Example 1]
Preparation of Coating Agent A 15.16 g (100% solid content) of the polycarbonate-based urethane acrylate (A-1) obtained in Production Example 1, and the acryloyl group as the polyfunctional acrylate resin (B) obtained in Production Example 2 12.64 g of polymer (B-1) having a solid content of 30% MEK and 70.93 g of 2-butanone (MEK) were introduced into a light-shielded plastic bottle and stirred and mixed. After confirming that the solution was transparent, 0.95 g of photopolymerization initiator (C) (trade name: Irgacure 184, manufactured by BASF), 0.32 g of polymer (D-1) (30% solid content MEK) Solution) was added, and the mixture further stirred and mixed was used as coating agent A.
[Preparation Examples 2 to 7]
Preparation of Coating Agents B to G Coating agents B to G were obtained by the method of Preparation Example 1 except that the formulations shown in Table 1 were used. The coating agent G uses dipentaerythritol hexaacrylate (B-2) (trade name: A-DPH, manufactured by Shin Chemical Industry Co., Ltd.), which is a polyfunctional acrylate monomer, instead of the polyfunctional acrylate resin (B). It was. As the coating agent C, a silicone-based surface conditioner (trade name: BYK-3500, manufactured by Big Chemie Japan Co., Ltd.) (D-2) was used as a surface modifying component.
[実施例1]
 積層体としてのコートフィルムAの作製および評価
(PETに塗工膜(硬化膜)を形成)
 前記コーティング剤Aを用い、ポリエチレンテレフタレート(PET)フィルム(コスモシャシンA4300、東洋紡(株)製、125μm厚、両面易接着処理)の上面にコーティングロッドNo.22(R.D.S.Webster社製)によりウェット膜を形成し、80℃×2分の条件で乾燥に付した。その後、高圧水銀灯を備えたコンベアー式紫外線照射装置を用いて(積算光量:400mJ/cm)光硬化させて、片面に膜厚4μmが積層された透明なコートフィルムAを得た。
 得られたコートフィルムAの全光線透過率、ヘイズ、鉛筆硬度、タック性、マンドレル試験の測定結果は表2に示す通りであった。
[Example 1]
Production and evaluation of coat film A as a laminate (formation of coating film (cured film) on PET)
Using the coating agent A, the coating rod No. 1 was coated on the upper surface of a polyethylene terephthalate (PET) film (Cosmo Shashin A4300, manufactured by Toyobo Co., Ltd., 125 μm thick, double-sided easy adhesion treatment). A wet film was formed by 22 (RDS Webster Co., Ltd.) and dried under the conditions of 80 ° C. × 2 minutes. Then, it was photocured using a conveyor type ultraviolet irradiation device equipped with a high pressure mercury lamp (integrated light amount: 400 mJ / cm 2 ) to obtain a transparent coat film A having a film thickness of 4 μm laminated on one side.
Table 2 shows the measurement results of the total light transmittance, haze, pencil hardness, tackiness, and mandrel test of the obtained coated film A.
[全光線透過率、ヘイズ、鉛筆硬度、タック性、マンドレル試験の測定方法]
 全光線透過率およびヘイズは、日本電色工業(株)製ヘイズメーター「NDH5000」を用いて、JIS K7361に基づき、測定した。
 鉛筆硬度は、表面性試験機 HEIDON Type:14W(新東科学(株)製)を用いて、JIS K5600に準じて測定した。
 タック性は、コーティング膜同士を貼付け、剥がす際のタック感の有無を確認した。タック感のあるものを×、ないものを〇、特にないものを◎とした。
 マンドレル試験は、円筒形マンドレル法JIS K 5600-5-1に準拠し測定した。
[Measurement method of total light transmittance, haze, pencil hardness, tackiness, mandrel test]
The total light transmittance and haze were measured based on JIS K7361 using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH5000”.
The pencil hardness was measured according to JIS K5600 using a surface property tester HEIDON Type: 14W (manufactured by Shinto Kagaku Co., Ltd.).
Tack property confirmed the presence or absence of the tack feeling at the time of affixing and peeling off coating films. Those with a tacky feeling were marked with ×, those without were marked with ◯, and those with no particular feeling were marked with ◎.
The mandrel test was measured according to the cylindrical mandrel method JIS K 5600-5-1.
[実施例2~4、比較例1~3]
 積層体としてのコートフィルムB~Gの作製および評価
(PETに塗工膜(硬化膜)を形成)
 前記コーティング剤B~Gを用いて、実施例1と同様の方法でコーティングを行い、コートフィルムB~Gを得た。
 得られたコートフィルムB~Gの全光線透過率、ヘイズ、鉛筆硬度、タック性、マンドレル試験の測定結果は表2に示す通りであった。
[Examples 2 to 4, Comparative Examples 1 to 3]
Preparation and evaluation of coated films B to G as laminates (formation of coating film (cured film) on PET)
Using the coating agents B to G, coating was performed in the same manner as in Example 1 to obtain coated films B to G.
Table 2 shows the measurement results of the total light transmittance, haze, pencil hardness, tackiness, and mandrel test of the obtained coated films B to G.
[実施例11]
 積層体としてのコートガラスAの作製および評価
 前記コーティング剤Aを用い、薄膜ガラス(OA-10G、松浪硝子工業(株)製、0.1mm厚)上に、コーティングロッドNo.30(R.D.S.Webster社製)によりウェット膜を形成させ、80℃×2分の条件で乾燥に付した。その後、高圧水銀灯を備えたコンベアー式紫外線照射装置を用いて(積算光量:400mJ/cm)光硬化させた。ついで、裏面にも同様の操作を施して硬化膜を形成し、両面に膜厚10μmの硬化膜が積層されたコートガラスAを得た。
 得られたコートガラスAの全光線透過率、ヘイズ、落球衝撃試験、屈曲テストの評価結果は表3に示すとおりであった。
[Example 11]
Production and Evaluation of Coated Glass A as Laminate Using coating agent A, coating rod No. 1 was formed on thin film glass (OA-10G, Matsunami Glass Industry Co., Ltd., 0.1 mm thickness). 30 (RDS Webster Co., Ltd.) was used to form a wet film, which was then dried at 80 ° C. for 2 minutes. Thereafter, photocuring was performed using a conveyor type ultraviolet irradiation device equipped with a high-pressure mercury lamp (integrated light amount: 400 mJ / cm 2 ). Subsequently, the same operation was performed on the back surface to form a cured film, and a coated glass A in which a cured film having a thickness of 10 μm was laminated on both surfaces was obtained.
Table 3 shows the evaluation results of the total light transmittance, haze, falling ball impact test, and bending test of the obtained coated glass A.
[全光線透過率、ヘイズ、落球衝撃試験、屈曲テストの測定方法]
 全光線透過率およびヘイズは、日本電色工業(株)製ヘイズメーター「NDH5000」を用いて、JIS K7361に基づき、測定した。
 落球衝撃試験は、70mm×70mmの大きさのコートガラスに、直径10mmの鉛製ボール(6g)を60cmの高さから落として評価した。ガラスが割れた場合を×、割れなかった場合を〇とした。
 屈曲テストは、直径50mmの円筒形の支持体に、コートガラスを添うように巻きつけて評価した。ガラスが割れた場合は×、割れなかった場合は〇とした。
[Measurement method of total light transmittance, haze, falling ball impact test, bending test]
The total light transmittance and haze were measured based on JIS K7361 using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH5000”.
The falling ball impact test was performed by dropping a 10 mm diameter lead ball (6 g) from a height of 60 cm onto a 70 mm × 70 mm coated glass. The case where the glass was broken was marked as x, and the case where the glass was broken was marked as ◯.
The bending test was evaluated by winding a coated glass with a cylindrical support having a diameter of 50 mm. When the glass was broken, it was rated as x, and when it was not broken, it was marked as ◯.
[実施例12、13、比較例12]
 積層体としてのコートガラスB、CおよびEの作製および評価
 前記コーティング剤B、CおよびEを用いて、実施例11と同様の方法でコーティングを行い、コートガラスB、CおよびEを得た。
 得られたコートガラスB、CおよびEの全光線透過率、ヘイズ、落球衝撃試験、屈曲テストの測定結果は表3に示す通りであった。
[Examples 12 and 13, Comparative Example 12]
Preparation and Evaluation of Coated Glasses B, C, and E as Laminates Using the coating agents B, C, and E, coating was performed in the same manner as in Example 11 to obtain coated glasses B, C, and E.
Table 3 shows the measurement results of the total light transmittance, haze, falling ball impact test, and bending test of the obtained coated glasses B, C, and E.
[比較例11]
 未コートガラスの評価
 実施例11で用いた薄膜ガラス(OA-10G、松浪硝子工業(株)製、0.1mm厚)の未コートガラスの全光線透過率、ヘイズ、落球衝撃試験、屈曲テストの結果は表3に示す通りであった。
[Comparative Example 11]
Evaluation of Uncoated Glass The total light transmittance, haze, falling ball impact test, and bending test of the uncoated glass of the thin film glass (OA-10G, manufactured by Matsunami Glass Industry Co., Ltd., 0.1 mm thickness) used in Example 11 The results were as shown in Table 3.
[実施例21]
 コーティング剤A1の調製
 前記コーティング剤Aの希釈溶剤である2-ブタノン(MEK)を、メトキシプロパノールプロピレングリコールモノメチルエーテル(PGM)に変更した以外は、調製例1と同様の方法で調製し、コーティング剤A1を得た。
 積層体としてのコート板Aの作製および評価
 前記コーティング剤A1を用い、ポリカーボネート板(パンライトPC-1151、帝人化成(株)製、2.0mm厚)にディップコーティングを施し(引き上げ速度6.0mm/分)ウェット膜を形成し、80℃×2分の条件で乾燥に付した。その後、高圧水銀灯を備えたコンベアー式紫外線照射装置を用いて(積算光量:400mJ/cm)両側面を光硬化させて、膜厚7μmの透明コート板Aを得た。
 得られたコート板Aの全光線透過率、ヘイズ、落球衝撃試験の結果は、表4に示す通りであった。
[Example 21]
Preparation of coating agent A1 A coating agent was prepared in the same manner as in Preparation Example 1, except that 2-butanone (MEK), which is a diluent solvent for coating agent A, was changed to methoxypropanol propylene glycol monomethyl ether (PGM). A1 was obtained.
Preparation and Evaluation of Coated Plate A as Laminate Using the coating agent A1, dip coating was applied to a polycarbonate plate (Panlite PC-1151, manufactured by Teijin Chemicals Ltd., 2.0 mm thickness) (pickup speed 6.0 mm) / Min) A wet film was formed and dried under conditions of 80 ° C. × 2 minutes. Thereafter, both sides were photocured using a conveyor type ultraviolet irradiation device equipped with a high-pressure mercury lamp (integrated light amount: 400 mJ / cm 2 ) to obtain a transparent coated plate A having a thickness of 7 μm.
Table 4 shows the results of the total light transmittance, haze, and falling ball impact test of the obtained coated plate A.
[全光線透過率、ヘイズ、落球衝撃試験の測定方法]
 全光線透過率およびヘイズは、日本電色工業(株)製ヘイズメーター「NDH5000」を用いて、JIS K7361に基づき測定した。
 落球衝撃試験は、70mm×70mmの大きさのコート板に、直径30mmのSUS製ボール(200g)を90cmの高さから落として評価した。コート板にクラックがみられた場合は×、クラックがない場合は〇とした。
[Measurement method of total light transmittance, haze, falling ball impact test]
The total light transmittance and haze were measured based on JIS K7361 using a Nippon Denshoku Industries Co., Ltd. haze meter "NDH5000".
The falling ball impact test was performed by dropping a 30 mm diameter SUS ball (200 g) from a height of 90 cm on a coated plate having a size of 70 mm × 70 mm. When the crack was seen in the coated board, it was set as x, and when there was no crack, it was set as O.
[実施例22~24、比較例22]
 コーティング剤B1、C1、E1、F1の調製
 前記コーティング剤B、C、EおよびFの希釈溶剤である2-ブタノン(MEK)を、メトキシプロパノールプロピレングリコールモノメチルエーテル(PGM)に変更した以外は、調製例2~7と同様の方法で調製し、コーティング剤B1、C1、E1、F1を得た。
 積層体としてのコート板B、C、E、Fの作製および評価
 前記コーティング剤B1、C1、E1、F1を用いて、実施例21と同様の方法でコーティングを行い、コート板B、C、E、Fを得た。
 得られたコート板B、C、E、Fの全光線透過率、ヘイズ、落球衝撃試験の測定結果は表4に示す通りであった。
[Examples 22 to 24, Comparative Example 22]
Preparation of coating agents B1, C1, E1, F1 Preparations except that 2-butanone (MEK), which is a dilution solvent for the coating agents B, C, E and F, was changed to methoxypropanol propylene glycol monomethyl ether (PGM) Prepared in the same manner as in Examples 2 to 7 to obtain coating agents B1, C1, E1, and F1.
Production and Evaluation of Coated Plates B, C, E, and F as Laminates Using the coating agents B1, C1, E1, and F1, coating was performed in the same manner as in Example 21, and coated plates B, C, and E were coated. , F was obtained.
Table 4 shows the measurement results of the total light transmittance, haze, and falling ball impact test of the obtained coated plates B, C, E, and F.
[比較例21]
 未コート板の評価
 実施例21で用いたポリカーボネート板(パンライトPC-1151、帝人化成(株)製、2.0mm厚)の未コート板の全光線透過率、ヘイズ、落球衝撃試験の結果は表4に示す通りであった。
[Comparative Example 21]
Evaluation of Uncoated Plates The total light transmittance, haze, and falling ball impact test results for the uncoated plates of the polycarbonate plate (Panlite PC-1151, manufactured by Teijin Chemicals Ltd., 2.0 mm thickness) used in Example 21. It was as shown in Table 4.
 コーティング剤A~Gの配合比を示す(固形分の重量比で表記)。
Figure JPOXMLDOC01-appb-T000007
The blending ratio of coating agents A to G is shown (expressed as a weight ratio of the solid content).
Figure JPOXMLDOC01-appb-T000007
 コートフィルムA~Gの測定値を示す。
Figure JPOXMLDOC01-appb-T000008
The measured values of the coated films A to G are shown.
Figure JPOXMLDOC01-appb-T000008
 コートガラスA~C、E、未コートガラスの測定値を示す。
Figure JPOXMLDOC01-appb-T000009
The measured values of coated glass A to C, E and uncoated glass are shown.
Figure JPOXMLDOC01-appb-T000009
 コート板A~C、E~F、未コート板の測定値を示す。
Figure JPOXMLDOC01-appb-T000010
The measured values of coated plates A to C, E to F and uncoated plates are shown.
Figure JPOXMLDOC01-appb-T000010
 表2の結果からも明らかなように、実施例1~4のコートフィルムは、透明性、耐屈曲性に優れている。さらに表面改質成分を加えた実施例1~3は、優れたタック性(剥がれやすさ)をも有する。タック性は、表面改質成分として(D-2)よりも(D-1)を加えた場合に特に優れた効果が見られた。なお、実施例4と比較例3のコートフィルムは、表2に示すように、同様の測定結果を示した。しかし、比較例3のコートフィルムは、表面改質成分(D-1)を含んでいるにも関わらず、表面改質効果が得られなかった。
 以上より、表2、表3ならびに表4の結果からも明らかなように、本発明のコーティング剤(硬化性樹脂組成物)から形成された硬化物は、透明性、タック性、耐屈曲性に優れ、とりわけフィルムや基材(ガラス等)および成形体に積層した場合の耐屈曲性、耐衝撃性を改善する。
As is apparent from the results in Table 2, the coated films of Examples 1 to 4 are excellent in transparency and bending resistance. Furthermore, Examples 1 to 3 to which a surface modifying component is added also have excellent tackiness (easy to peel). The tackiness was particularly excellent when (D-1) was added as a surface modifying component rather than (D-2). In addition, as shown in Table 2, the coated films of Example 4 and Comparative Example 3 showed similar measurement results. However, although the coated film of Comparative Example 3 contained the surface modifying component (D-1), the surface modifying effect was not obtained.
From the above, as is clear from the results of Table 2, Table 3 and Table 4, the cured product formed from the coating agent (curable resin composition) of the present invention has transparency, tackiness and bending resistance. Excellent, especially when it is laminated on a film, a base material (glass or the like) and a molded body, and improved flex resistance and impact resistance.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All publications, including publications, patent applications and patents cited herein are specifically incorporated by reference with reference to each reference individually, and the entire contents thereof are described herein. To the same extent, reference here is incorporated.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to) unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予測しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の変更および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組み合わせも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The inventor anticipates that the skilled person will apply such variations as appropriate and intends to implement the invention in a manner other than that specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
11  基材
12  硬化膜
11 Substrate 12 Cured film

Claims (7)

  1.  ウレタン骨格と、2官能以上の(メタ)アクリロイル基を有するウレタンアクリレート樹脂(A)と;
     主鎖にウレタン骨格を含まない、3官能以上の重合性官能基を有する多官能アクリレート樹脂(B)と;
     重合開始剤(C)を含む;
     コーティング剤。
    A urethane acrylate resin (A) having a urethane skeleton and a bifunctional or higher-functional (meth) acryloyl group;
    A polyfunctional acrylate resin (B) having a polymerizable functional group having three or more functional groups that does not contain a urethane skeleton in the main chain;
    Including a polymerization initiator (C);
    Coating agent.
  2.  前記多官能アクリレート樹脂(B)が、(メタ)アクリル系モノマーを重合して得られる重合体であり、側鎖に前記3官能以上の重合性官能基を持つ活性エネルギー線硬化性アクリレート樹脂である、
     請求項1に記載のコーティング剤。
    The polyfunctional acrylate resin (B) is a polymer obtained by polymerizing a (meth) acrylic monomer, and is an active energy ray-curable acrylate resin having a polymerizable functional group having three or more functional groups in a side chain. ,
    The coating agent according to claim 1.
  3.  ケイ素化合物(D)をさらに含む;
     請求項1または請求項2に記載のコーティング剤。
    Further comprising a silicon compound (D);
    The coating agent according to claim 1 or 2.
  4.  前記ケイ素化合物(D)が、フルオロシルセスキオキサン化合物またはフルオロシルセスキオキサン重合体である、
     請求項3に記載のコーティング剤。
    The silicon compound (D) is a fluorosilsesquioxane compound or a fluorosilsesquioxane polymer.
    The coating agent according to claim 3.
  5.  請求項1~請求項4のいずれか1項に記載のコーティング剤の塗膜に、活性エネルギー線を照射して得られる、
     硬化膜。
    Obtained by irradiating the coating film of the coating agent according to any one of claims 1 to 4 with active energy rays,
    Cured film.
  6.  請求項5に記載の硬化膜と;
     前記硬化膜により少なくとも片面側が被膜された基材を備える;
     積層体。
    A cured film according to claim 5;
    Comprising a substrate coated on at least one side with the cured film;
    Laminated body.
  7.  請求項5に記載の硬化膜と;
     前記硬化膜に被膜された成形体を備える;
     成形物。
     
    A cured film according to claim 5;
    A molded body coated with the cured film;
    Moldings.
PCT/JP2015/056344 2014-03-05 2015-03-04 Coating agent, cured film, laminate, molded product WO2015133517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-042927 2014-03-05
JP2014042927 2014-03-05

Publications (1)

Publication Number Publication Date
WO2015133517A1 true WO2015133517A1 (en) 2015-09-11

Family

ID=54055319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056344 WO2015133517A1 (en) 2014-03-05 2015-03-04 Coating agent, cured film, laminate, molded product

Country Status (2)

Country Link
TW (1) TW201546219A (en)
WO (1) WO2015133517A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141051A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Functional composite film and quantum dot film
JP2017095617A (en) * 2015-11-25 2017-06-01 株式会社クラレ Active energy ray curable resin composition, laminate and molded body and manufacturing method therefor
US20180030269A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Self-healing polymer formulations, coating film, laminate, and electronic device
EP3312209A1 (en) * 2016-10-20 2018-04-25 Samsung Electronics Co., Ltd. Self-healing composition, self-healing film, and device including the self-healing film
JP2018083935A (en) * 2016-11-17 2018-05-31 信越化学工業株式会社 Elastic film and method of forming the same, and elastic wiring film and method for producing the same
WO2019073953A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modifying film for automobile interior/exterior components
WO2019073952A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modified film for automotive interior/exterior components
CN111548739A (en) * 2019-02-11 2020-08-18 3M创新有限公司 Ultraviolet light curing adhesive
US11479525B2 (en) 2016-08-22 2022-10-25 3M Innovative Properties Company Propenylamines and methods of making and using same
CN115362182A (en) * 2020-03-24 2022-11-18 住友化学株式会社 Hydrophilic oil-repellent polymers
EP3981832A4 (en) * 2019-06-07 2023-06-07 Sekisui Chemical Co., Ltd. Resin composition, resin film, and glass laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072766A1 (en) * 2006-12-15 2008-06-19 Chisso Corporation Fluorine-containing polymer and resin composition
JP2009024168A (en) * 2007-06-20 2009-02-05 Nippon Kayaku Co Ltd Ultraviolet-curable hardcoat resin composition
JP2009074079A (en) * 2007-08-31 2009-04-09 Sanyo Chem Ind Ltd Hard coat composition for plastic substrate covering metal film
JP2010053231A (en) * 2008-08-27 2010-03-11 Aica Kogyo Co Ltd Resin composition and molded product
JP2010280832A (en) * 2009-06-05 2010-12-16 Chisso Corp Curable resin composition and optical film
WO2011034035A1 (en) * 2009-09-18 2011-03-24 Dic株式会社 Actinic-radiation-curable resin composition, and cured products and films thereof
JP2011190343A (en) * 2010-03-15 2011-09-29 Kyoeisha Chem Co Ltd Composition for hard coat and molded product in which hard coat layer is formed
JP2012081742A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072766A1 (en) * 2006-12-15 2008-06-19 Chisso Corporation Fluorine-containing polymer and resin composition
JP2009024168A (en) * 2007-06-20 2009-02-05 Nippon Kayaku Co Ltd Ultraviolet-curable hardcoat resin composition
JP2009074079A (en) * 2007-08-31 2009-04-09 Sanyo Chem Ind Ltd Hard coat composition for plastic substrate covering metal film
JP2010053231A (en) * 2008-08-27 2010-03-11 Aica Kogyo Co Ltd Resin composition and molded product
JP2010280832A (en) * 2009-06-05 2010-12-16 Chisso Corp Curable resin composition and optical film
WO2011034035A1 (en) * 2009-09-18 2011-03-24 Dic株式会社 Actinic-radiation-curable resin composition, and cured products and films thereof
JP2011190343A (en) * 2010-03-15 2011-09-29 Kyoeisha Chem Co Ltd Composition for hard coat and molded product in which hard coat layer is formed
JP2012081742A (en) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp Laminate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125524A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Functional composite film and quantum dot film
JP2016141051A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Functional composite film and quantum dot film
JP2017095617A (en) * 2015-11-25 2017-06-01 株式会社クラレ Active energy ray curable resin composition, laminate and molded body and manufacturing method therefor
US20180030269A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Self-healing polymer formulations, coating film, laminate, and electronic device
US11858875B2 (en) 2016-08-22 2024-01-02 3M Innovative Properties Company Propenylamines and methods of making and using same
US11479525B2 (en) 2016-08-22 2022-10-25 3M Innovative Properties Company Propenylamines and methods of making and using same
US11041075B2 (en) 2016-10-20 2021-06-22 Samsung Electronics Co., Ltd. Self-healing composition, self-healing film, and device including the self-healing film
EP3312209A1 (en) * 2016-10-20 2018-04-25 Samsung Electronics Co., Ltd. Self-healing composition, self-healing film, and device including the self-healing film
CN108373844A (en) * 2016-10-20 2018-08-07 三星电子株式会社 Self-healing composition, self-healing film and the device for including the self-healing film
US10407574B2 (en) 2016-10-20 2019-09-10 Samsung Electronics Co., Ltd. Composition with self-healing property, film with self-healing property and device including the film
CN108373844B (en) * 2016-10-20 2021-07-20 三星电子株式会社 Self-healing composition, self-healing film, and device comprising same
JP2018083935A (en) * 2016-11-17 2018-05-31 信越化学工業株式会社 Elastic film and method of forming the same, and elastic wiring film and method for producing the same
WO2019073952A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modified film for automotive interior/exterior components
WO2019073953A1 (en) * 2017-10-11 2019-04-18 Jnc株式会社 Surface-modifying film for automobile interior/exterior components
WO2020165692A1 (en) 2019-02-11 2020-08-20 3M Innovative Properties Company Uv curable adhesive
CN111548739A (en) * 2019-02-11 2020-08-18 3M创新有限公司 Ultraviolet light curing adhesive
CN111548739B (en) * 2019-02-11 2022-03-01 3M创新有限公司 Ultraviolet light curing adhesive
US12116508B2 (en) 2019-02-11 2024-10-15 3M Innovative Properties Company UV curable adhesive
EP3981832A4 (en) * 2019-06-07 2023-06-07 Sekisui Chemical Co., Ltd. Resin composition, resin film, and glass laminate
CN115362182A (en) * 2020-03-24 2022-11-18 住友化学株式会社 Hydrophilic oil-repellent polymers

Also Published As

Publication number Publication date
TW201546219A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2015133517A1 (en) Coating agent, cured film, laminate, molded product
JP6241571B2 (en) Coating agent, film, laminate, surface protection article
TWI482791B (en) Urethane (metha) acrylate compound and resin composition containing such compound
WO2012176742A1 (en) Transfer film for in-mold molding and method for producing same
JP5909078B2 (en) UV curable resin composition, cured product and article
TWI679262B (en) UV-curable resin composition
JP6103480B2 (en) Multifunctional thio (meth) acrylate resin, active energy ray-curable hard coat resin composition containing the same, cured film obtained by curing the composition, plastic film in which the cured film is laminated, and plastic using the plastic film Injection molded products and processed products.
WO2015133535A1 (en) Laminate body
KR20170017719A (en) Method of producing heat-radiation insulating sheet, heat-radiation insulating sheet and heat spreader
JP6103477B2 (en) Multifunctional thio (meth) acrylate resin, active energy ray-curable hard coat resin composition containing the same, cured film obtained by curing the composition, plastic film in which the cured film is laminated, and plastic using the plastic film Injection molded products and processed products.
US20170015817A1 (en) Silicon compound, resin composition for coating agent, molded article, and image display device
US10189999B2 (en) Resin composition for coating agent, molded article, and image display device
KR20170020344A (en) Ultraviolet curable resin composition for touch panel, bonding method using same, and product
TW201602278A (en) Double-sided adhesive sheet for image display devices, and article
KR20170017914A (en) Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2015186717A1 (en) Hard coating agent, cured film, molded object
KR102141376B1 (en) Active energy ray-curable resin composition, cured product and lamination body
JP6075443B2 (en) Active energy ray-curable coating composition
JP6504528B2 (en) Active energy ray curable composition and coating film
JP2017002102A (en) Urethane (meth)acrylate resin and laminated film
JP6596941B2 (en) Film for processing, processed film, and production method thereof
CN113795375A (en) Laminated film
WO2016104770A1 (en) Laminate and display cover
JP2017008125A (en) Composition containing silicon compound and cured film thereof
JP6124379B2 (en) UV curable resin composition, cured product and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP