WO2015125851A1 - Development of ligand screening system for neurotransmitter receptors - Google Patents
Development of ligand screening system for neurotransmitter receptors Download PDFInfo
- Publication number
- WO2015125851A1 WO2015125851A1 PCT/JP2015/054558 JP2015054558W WO2015125851A1 WO 2015125851 A1 WO2015125851 A1 WO 2015125851A1 JP 2015054558 W JP2015054558 W JP 2015054558W WO 2015125851 A1 WO2015125851 A1 WO 2015125851A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receptor
- compound
- group
- mmol
- labeling
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/94—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
- G01N33/9406—Neurotransmitters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/06—Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
- C09B11/08—Phthaleins; Phenolphthaleins; Fluorescein
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/10—Amino derivatives of triarylmethanes
- C09B11/24—Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/28—Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/02—Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
Definitions
- the present invention relates to a fluorescently labeled neurotransmitter receptor, a method for producing a labeled neurotransmitter receptor, a neurotransmitter receptor labeling agent, a compound useful as the labeling agent, and a neurotransmitter receptor ligand.
- the present invention relates to a screening method.
- Receptors that receive neurotransmitters are proteins that are widely known as important drug targets.
- glutamate is widely accepted as one of important neurotransmitters, and its receptor glutamate receptor is a protein essential for neurotransmission.
- Glutamate receptors are classified into AMPA, NMDA, and kainate types based on the characteristics of agonists.
- AMPA receptors are proteins essential for neuronal activity, particularly memory and learning. Causes various diseases such as illness, stroke, and Alzheimer's disease. Therefore, AMPA type receptors have been positioned as important drug targets. So far, a plurality of selective agonists have been developed, but there are problems such as subtype selectivity.
- Non-patent Document 1 Non-patent Document 1
- Drug assays using full-length glutamate receptors typically involve evaluation of AMPA receptor activity (ion channel characteristics), but the evaluation method is complicated and has not been developed into a high-throughput evaluation method. Absent.
- An object of the present invention is to provide a technique for clarifying a function as a ligand by assaying a neurotransmitter receptor ligand (agonist, partial agonist, antagonist) at high throughput.
- the present invention relates to a fluorescently labeled neurotransmitter receptor, a method for producing a labeled neurotransmitter receptor, a neurotransmitter receptor labeling agent, a compound useful as the labeling agent, and a neurotransmitter receptor ligand.
- a screening method is provided. Item 1. The following formula (II)
- Rec-Nu represents a group in which a hydrogen atom has been eliminated from a neurotransmitter receptor (Rec-Nu-H).
- Nu represents a nucleophilic group (Nu-H) of the neurotransmitter receptor.
- a divalent group in which a hydrogen atom is eliminated from L 2 L 2 represents a divalent linking group, and Fl represents a labeling group. It is expected that the labeled neurotransmitter receptor interacts with the receptor, which has a basic structure represented by the formula and changes the fluorescence pattern between when the antagonist is bound and when the agonist is bound.
- a substance that binds to a neurotransmitter receptor characterized in that a candidate substance is allowed to act, and the binding mode of the candidate substance and the receptor is detected based on a change in a signal emitted by a label, and is performed based on the result.
- Screening method Item 2. Item 2. The screening method according to Item 1, wherein the candidate substance is allowed to act on cells having a labeled neurotransmitter receptor. Item 3. Item 3. The screening method according to Item 1 or 2, wherein the receptor is an AMPA receptor. Item 4. Formula (I) below
- L 1 and L 2 each independently represent a divalent linking group
- Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H).
- Fl represents a labeling group
- R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.
- L 1 and L 2 each independently represent a divalent linking group
- Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H).
- Fl represents a labeling group
- R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.
- L 1 and L 2 each independently represent a divalent linking group
- Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H).
- Fl represents a labeling group
- R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.
- the neurotransmitter receptor (Rec-Nu-H) is reacted with the compound represented by the following formula (II):
- Rec-Nu represents a group in which a hydrogen atom is eliminated from the neurotransmitter receptor (Rec-Nu-H).
- Nu represents a hydrogen atom from a nucleophilic group possessed by the neurotransmitter receptor.
- L 2 represents a divalent linking group, and Fl represents a labeling group.
- a method for producing a receptor is
- Receptor proteins that receive ligands such as neurotransmitters are important drug targets.
- glutamate is widely known as an important neurotransmitter, and its receptor glutamate receptor is an essential protein for neurotransmission.
- the present inventors have developed a technique for selectively labeling in the vicinity of a ligand binding site of a neurotransmitter receptor such as AMPA receptor which is a kind of glutamate receptor.
- a ligand of a neurotransmitter receptor whose structure is greatly changed by the binding of a ligand, an agonist that activates the receptor and an inactivatable antagonist, for example, a signal emitted by a label such as a fluorescence response is different, Agonists and antagonists can be distinguished, for example, as changes in fluorescence.
- this change can be used for a high-throughput detection system. From the above results, this research result means that a system capable of assaying agonists of any neurotransmitter receptor including, for example, AMPA receptor, at high throughput could be constructed. Even with ligands of neurotransmitter receptors other than AMPA receptors, the agonists that activate the receptors and the inactivatable antagonists differ in the signal emitted by a label such as a fluorescent response, and any neurotransmitter receptor agonist. Antagonists can be distinguished, for example, as fluorescence changes, and selective agonists can be screened at high throughput.
- LDAI LigandgDirected Acyl imidazole
- Ligand function analysis by labeled AMPAR-2 Agonist and Antagonist showed different response patterns, and it became clear that it functions as a biosensor that distinguishes Agonist and Antagonist.
- Evaluate responses to various ligands Ligand-responsive dye dependence. Alexa488 and Oregon green show similar responses regardless of the function of the ligand, making them suitable for binding rate quantification.
- Alexa568 and ATTO655 are suitable for categorizing ligands because they respond by distinguishing the function / action mechanism of the ligand.
- LDAI ligand-directed acylimidazole compound
- L 1 and L 2 each independently represent a divalent linking group
- Lg represents a ligand for a neurotransmitter receptor
- Fl represents a labeling group
- R 1 and R 2 are the same or different.
- the labeling reagent (labeling agent) of the present invention having an acylimidazole moiety binds to the neurotransmitter receptor (Rec-Nu-H) at the ligand (Lg) moiety, and in the receptor (Rec-Nu-H) Nucleophilic group (Nu-H) attacks the C atom of the carbonyl of acylimidazole, the N-CO bond is cleaved, the ligand having an imidazole group leaves the acceptor, and the labeling group (Fl) of the acceptor Nu and -CO-O- (L 2 ) linked via n2 group labeled receptor: Rec-Nu-CO-O- (L 2 ) n2 -Fl
- nucleophilic group examples include NH 2 group at the terminal of Lys contained in the amino acid constituting the receptor, phenolic OH group of Tyr, SH group of Cys, imidazole group of His, etc.
- NH 2 group at the terminal of Nu includes -NH-, -O-, -S-, etc., and -NH- is preferred.
- Preferred examples include Alexa-488, Oregon green, Alexa-546, Alexa-568, ATTO655, and CypHer5E.
- the interacting protein can be bound to the receptor by irradiating light when the interacting protein binds to the labeled neurotransmitter receptor. It is useful for detecting protein-protein interactions in receptors.
- the labeled neurotransmitter receptor on the membrane surface is useful for such functional modification because the function of the protein such as intracellular transport is modified.
- a water-soluble polymer such as PEG
- the labeled neurotransmitter receptor increases the stability of membrane proteins by increasing the blood half-life or increasing the degree of solubilization. Such an effect can be expected.
- photocrosslinking agent examples include aryl azides such as phenyl azide, highly reactive groups such as diazirine and benzophenone. Since these groups react rapidly with nearby compounds by light irradiation, they are useful for detecting protein-protein interactions between ligands and receptors.
- water-soluble polymer examples include polyethylene glycol (PEG).
- radioisotope examples include a radioisotope, preferably 3 H, 35 S and the like.
- peptides include membrane-permeable peptides such as tat peptides, various homing peptides, various peptide ligands, and the like.
- any neurotransmitter receptor is a target of labeling, and is not particularly limited. Examples include ligands: Glutamate receptor: binds glutamate as a neurotransmitter. Depending on the drug to be bound, it is divided into NMDA receptor, AMPA receptor and kainate receptor.
- Muscarinic acetylcholine receptor acetylcholine, muscarinic / adenosine receptor: adenosine, caffeine / adrenergic receptor: adrenaline, noradrenaline / GABA receptor: GABA Cannabinoid receptor: Cannabis component and anandamide Cholecystokinin receptor: Cholecystokinin Dopamine receptor: Dopamine histamine receptor: Histamine opioid receptor: Opium component such as cocaine, morphine, heroin and endogenous peptide Ligand (enkephalin, endorphins, etc.) Serotonin receptor: Serotonin Somatostatin receptor: Somatostatin Nicotinic acetylcholine receptor: Acetylcholine, Nicotine glycine receptor: Glycine as a neurotransmitter, strykinin
- receptor and ligand combinations are shown above, but the combination of the receptor to be labeled and the ligand that binds to the receptor is not limited to these, and the currently known neurotransmitter receptor and ligand combinations Either a combination or a combination of neurotransmitter receptors and ligands discovered in the future may be used.
- L1 and L2 may be the same or different, and examples thereof include a divalent linking group.
- the divalent linking group include —O—, —CO—, —COO—, —O—CO—, —NHCO—, —CONH—, — (CH 2 ) m1 — (m1 represents an integer of 1 to 6).
- Arylene groups (particularly phenylene such as ortho, meta, para), heteroarylene groups, —NH—, — (CH 2 CH 2 O) m2 — (m2 represents an integer of 1 to 10), — (CH 2 CH (CH 3 ) O) m2 — (m2 represents an integer of 1 to 10) and the like may be used, and these may be used alone or in combination of two or more of the same or different.
- the linking group may be constituted.
- (terminal) CO, COO, O—CO—, CONH, NHCO, NH, etc. of the divalent linking group are bonded to COOH, NH 2, etc. such as Lg, Fl, amide, urethane, urea, etc. Can be formed.
- Lg and Fl can be carried out by utilizing them when they have a functional group such as carboxylic acid (COOH) or an ester or active ester thereof, NH 2 , SH, OH or the like.
- a linking acid functional group such as carboxylic acid (COOH) or its ester or active ester, NH2, SH, OH, etc. is introduced at the terminal and this functional group is used.
- Lg and Fl can be introduced, for example, according to the following schemes 1 and 2.
- Schemes 1 and 2 are methods for introducing Lg and Fl using amide bonds (CONH, NHCO), but Lg and Fl are introduced according to known methods using ether bonds, thioether bonds, amino bonds, and the like. can do.
- R 1 , R 2 , L 1 , L 2 , Lg, Fl are as defined above.
- CONH-L 1a and NHCO-L 1a represent specific embodiments of L 1 , L 2a represents a divalent linking group
- Y 1 represents an activity such as OH, alkoxy, aryloxy, imidazolyl, 1-hydroxybenzotriazolyl (O-Bt), N-hydroxysuccinimidyl (OSu), etc. (Denotes a leaving group used as an ester. DSC stands for disuccinimidyl carbamate.)
- the amide bond (CONH, NHCO) is formed by using a raw material amino compound (compound having —NH 2 group) and carboxylic acid, ester or active ester compound (compound having —CO—Y1 group).
- the reaction proceeds advantageously by using about equimolar amounts and reacting at a temperature from room temperature to the boiling point of the solvent for 1 to 24 hours.
- the solvent include methanol, ethanol, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetone, methyl ethyl ketone, ether, tetrahydrofuran and the like.
- DSC is Fl-CONH-L 2a -OH or Fl-NHCO-L 2a -OH1 mol using excess from 1 mole excess of a base (triethylamine from a catalytic amount of pyridine, dimethylaminopyridine,
- the target compound (2) can be obtained by reacting in the presence of diisopropylethylamine, DBU, etc.) from room temperature to a temperature at which the solvent boils for 1 to 24 hours.
- AMPA receptor ligand AMPAR ligand
- NMDA receptor ligand NNDAR ligand
- GABA receptor ligand GABA receptor ligand
- mGluR1 ligand metabotropic glutamate receptor ligand
- the AMPA receptor ligand can be bound to L 1 by an amide bond, urethane bond or the like using a terminal amino group.
- the NMDA receptor ligand can be bound to L 1 by an amide bond, an ester bond or the like using a terminal ⁇ or ⁇ unsaturated carboxyl group.
- GABA receptor ligands can alkylate a 7-membered secondary amino group (NH) and bind to L 1 via an NC bond.
- the mGluR1 ligand described above is a pyrimidine ring having a halogen atom introduced therein.
- a divalent linking group L 1 such as NH—, O—, or S— can be introduced into this halogen atom position by nucleophilic substitution reaction.
- L 1 can also be bound at a position where the function of the ligand is not lost. Examples of combinations of two or more divalent linking groups include the following:
- terminal amino (NH) group exemplified above may form an amide bond with a COOH group such as Fl or Lg.
- R 1 to R 2 examples include alkyl, cycloalkyl, alkoxy, alkenyl, halogen atom, OH, CN, NO 2 , COOH, NH 2 , phenyl, benzyl, acetylamino, acetyl, acetyloxy, methoxycarbonyl, And ethoxycarbonyl, butoxycarbonyl, trifluoromethyl and the like.
- Alkyl includes linear or branched C 1-18 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl, preferably Examples thereof include C 1-6 alkyl, more preferably C 1-4 alkyl.
- Cycloalkyl includes C 3-10 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, preferably C 3-8 cycloalkyl, more preferably C 5-6 cycloalkyl. A part of the ring may be substituted with a hetero element or may have a substituent.
- Alkoxy includes linear or branched methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, hexyloxy, polyethylene glycol derivatives, etc.
- C 1-18 alkoxy preferably C 1-6 alkoxy, more preferably C 1-4 alkoxy.
- R 1 and R 2 are preferably hydrogen atoms.
- the compound of the present invention can be synthesized according to the following scheme 3.
- Solvents include chlorinated hydrocarbons such as methylene chloride, chloroform and dichloroethane, aromatic hydrocarbons such as benzene and toluene, esters such as ethyl acetate, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethers, diisopropyl Examples include ethers such as pyrether and tetrahydrofuran, aliphatic or alicyclic hydrocarbons such as hexane and cyclohexane, DMF, DMSO, dioxane, and N-methylpyrrolidone. Examples of the base include triethylamine, diisopropylethylamine, pyridine, dimethylaminopyridine, DBU and the like.
- the neurotransmitter receptor may be an isolated receptor, or compound (I) may be reacted directly with a membrane-bound receptor. Alternatively, cells expressing the receptor may be reacted with compound (I).
- receptor may include all of a receptor protein or a fragment thereof having a ligand binding site and a nucleophilic group, a fragment of a cell membrane containing the receptor, and a cell expressing the receptor. As the cell, a cell in which a receptor gene is introduced to highly express the receptor can be preferably used.
- the receptor When the receptor is composed of a plurality of proteins, not only a protein containing a ligand binding site but also a cell in which genes of all proteins constituting the receptor are introduced and highly expressed can be used.
- a cell in which the receptor is highly expressed is preferable because a signal (fluorescence intensity or a change thereof) increases during ligand screening.
- the reaction between the receptor and compound (I) can be carried out in a solvent, buffer solution or cell culture medium.
- Compound (I) is preferably used in excess relative to the receptor.
- Compound (I) labels the receptor when the receptor and the ligand (Lg) are bound, but non-specific labeling is suppressed.
- the compound (I) can be removed by washing, whereby excess compound (I) can be removed, and nonspecific fluorescent labeling can be suppressed.
- the reaction temperature is from room temperature to about 37 ° C., and the reaction time is about 30 minutes to 12 hours.
- the solvent is water or a solvent in which compound (I) is dissolved, for example, lower alcohols such as methanol, ethanol, propanol, acetone, tetrahydrofuran (THF), dioxane, N-methylpyrrolidone, dimethylformamide (DMF), acetonitrile, dimethylacetamide, dimethyl Water-miscible solvents such as sulfoxide (DMSO) can be mentioned.
- lower alcohols such as methanol, ethanol, propanol, acetone, tetrahydrofuran (THF), dioxane, N-methylpyrrolidone, dimethylformamide (DMF), acetonitrile, dimethylacetamide, dimethyl
- DMF dimethylformamide
- DMSO dimethyl Water-miscible solvents
- the buffer include HEPES buffer, phosphate buffer, Tris buffer, and the like.
- the cell expressing the receptor may be a cultured cell, and a solution of compound (I) is applied to the receptor-expressing cell (preferably human cell) in the tissue section or the receptor-expressing cell in the living body of a non-human mammal. It may be supplied and fluorescently labeled.
- both the agonist and the competitive antagonist have increased fluorescence ( ⁇ , FIG. 10), and when the labeling group is Alexa568, In the case of competitive antagonists, the fluorescence decreases ( ⁇ ), and in the case of agonists and antagonists, no change in fluorescence occurs. Furthermore, in the case of ATTO655, the fluorescence increases when the ligand is an agonist ( ⁇ ), the fluorescence is transiently increased after a competitive antagonist ( ⁇ ⁇ ), and the fluorescence decreases when a non-competitive antagonist is present ( ⁇ ⁇ ). ⁇ ).
- the labeled receptor of the present invention can be combined with several labeled receptors as necessary, for example, by changing the signal emitted by the label such as fluorescence, the ligand becomes an agonist, competitive antagonist, non-competitive.
- the ligand becomes an antagonist (agonist + antagonist) at high throughput, for example, select Alexa488 having a large fluorescence change.
- a fluorescently labeled receptor can be selected.
- Example 1 Materials and Methods All chemicals and biochemical reagents were purchased from commercial sources and used without further purification. Thin layer chromatography (TLC) was performed using aluminum sheets (Merck Inc.) pre-coated with silica gel 60 F 254, visualized by fluorescence quenching or ninhydrin stain. Purification by chromatography was performed using flash column chromatography on silica gel 60 N (neutral, 40-50 ⁇ m, Kanto Chemical Co.).
- Reverse phase HPLC was measured on a Hitachi Chromaster system equipped with a diode array and fluorescence detector and a YMC-Pack Triat C18 or ODS-A column. A linear gradient containing 0.1% TFA or 10 mM ammonium acetate (solvent A) and 0.1% aqueous TFA-containing acetonitrile or acetonitrile ((solvent B)) was used.
- Biochemical experiments SDS-PAGE and Western blotting were performed using a Bio-Rad Mini-Protean III electrophoresis apparatus. Fluorescence and chemiluminescence signals were detected with a ChemiDoc XRS system equipped with a 520DF30 filter (ChemiDoc, Bio-Rad laboratory) and Imagequant LAS 4000 (GE Healthcare). As the confocal laser microscope, FV1000 (Olympus) or LSM710 (Carl Zeiss) was used.
- HEK293T cells 10% FBS, penicillin (100 units / mL) and Dulbecco was added streptomycin (100 ⁇ g / mL)'s Modified Eagle Medium (DMEM, glucose 4.5 g / L) in a medium, in a humidified atmosphere of 5% CO 2
- DMEM Modified Eagle Medium
- GluR2 glutamate receptor
- GluR2 in HEK293T cells Labeling agent (2 ⁇ M) was added to HEK293T cells transfected with the above gene in the presence or absence of NBQX (50 ⁇ M) in DMEM medium (glutamax, 25 mM HEPES, FBS (-)). ) was added and incubated at 17 ° C. for 4 hours. Cells were washed twice with HBS and lysed on ice using RIPA (radioimmunoprecipitation assay) buffer containing 1% protease inhibitor cocktail set III (Calbiochem®).
- RIPA radioimmunoprecipitation assay
- the resulting solution was mixed with 2 ⁇ SDS-PAGE buffer (pH 6.8, 125 mM Tris ⁇ HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes.
- the obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad).
- the labeled product was detected with an anti-Fluorescein antibody (Invitrogen, ⁇ 2000) and an anti-rabbit IgG antibody-HRP complex (GE Healthcare, ⁇ 3000).
- Immunodetection of GluR2 was performed using anti-HA antibody (Abcam) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, ⁇ 5000).
- the HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
- the resulting solution was mixed with 2 ⁇ SDS-PAGE buffer (pH 6.8, 125 mM Tris ⁇ HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes.
- the obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad). Labeled products were detected with anti-Fluorescein antibody (Invitrogen, ⁇ 2000) or anti-Alexa488 antibody (Invitrogen, ⁇ 1000) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, ⁇ 3000).
- Immunodetection of GluR1 was performed using anti-GluR1 antibody (millipore) and anti-mouse IgG antibody-HRP complex (GE Healthcare, ⁇ 3000).
- the HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
- tert-Butyl (2- (2-(((perfluorophenoxy) carbonyl) oxy) ethoxy) ethyl) carbamate (2b) Bis (perfluorophenyl) carbonate (1.15 g, 2.93 mmol), TBAF (190 mg) in a stirred solution of tert-butyl (2- (2-hydroxyethoxy) ethyl) carbamate (500 mg, 2.44 mmol) in THF (24 ml) , 0.73 mmol). The reaction mixture was stirred for 24 hours at room temperature. The solution was diluted with CHCl 3 and washed with 1N NaOH. The organic layer was dried over Na 2 SO 4 , filtered and evaporated.
- reaction mixture was stirred at room temperature for 1 hour.
- Boc-Ape (5) -OH (215 mg, 0.99 mmol, 1.1 eq), HBTU (410 mg, 1.08 mmol, 1.0 eq), DIEA (744 ⁇ L, 4.50 mmol, 5.0 eq) in dry DMF (10 mL) And a mixture of histamine dihydrochloride (100 mg, 0.543 mmol, 0.60 eq) was stirred at room temperature for 3 hours and 25 minutes under a nitrogen atmosphere. The solvent was distilled off under reduced pressure. The residue was then extracted with CHCl 3 (30 mL), and the organic layer was washed with 0.1N NaOH (30 mL ⁇ 3) and 30 mL saturated brine, dried over Na 2 SO 4 and evaporated under reduced pressure. did. The residue was purified by silica gel column chromatography (CHCl 3 : methanol: NH 3 water 10: 1: 1%) to obtain Compound 14c.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Plural Heterocyclic Compounds (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicinal Preparation (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
Provided is a screening method for substances that bind to neurotransmitter receptors, have a group structure represented by formula (II) (in the formula, Rec-Nu represents a group obtained by separating a hydrogen atom from a neurotransmitter receptor (Rec-Nu-H). Nu represents a bivalent group obtained by separating a hydrogen atom from a nucleophile group (Nu-H) possessed by the neurotransmittor receptor. L2 represents a bilavent linking group and Fl represents a marker group). A candidate substance, the fluorescence patterns of which vary between when an antagonist is bound and when an agonist is bound, and which is expected to interact with a marked neurotransmitter receptor is made to act on the receptor, the binding mode of the candidate substance and the receptor is detected by variation in the signals emitted by a marker, and screening is carried out based on those results.
Description
本発明は、蛍光標識された神経伝達物質受容体及び標識された神経伝達物質受容体の製造方法、神経伝達物質受容体の標識剤及び前記標識剤として有用な化合物、神経伝達物質受容体リガンドのスクリーニング方法に関する。
The present invention relates to a fluorescently labeled neurotransmitter receptor, a method for producing a labeled neurotransmitter receptor, a neurotransmitter receptor labeling agent, a compound useful as the labeling agent, and a neurotransmitter receptor ligand. The present invention relates to a screening method.
神経伝達物質を受け取る受容体は、重要な薬剤標的として広く知られているタンパク質である。例えばグルタミン酸は重要な神経伝達物質の1つとして広く受け入れられており、その受容体であるグルタミン酸受容体は、神経伝達に必須なタンパク質である。グルタミン酸受容体は、アゴニストの特徴から、AMPA型、NMDA型、カイニン酸型に分類されるが、AMPA型受容体は神経活動、特に記憶や学習に必須なタンパク質であり、その異常は、統合失調症、脳卒中、アルツハイマー病など様々な疾患を引き起こす。そのため、AMPA型受容体は重要な薬剤標的として位置づけられてきた。これまでに、複数の選択的作用薬が開発されてきたが、サブタイプ選択性など課題を抱えた状態である。その原因として、AMPA受容体に対する薬剤の作用をハイスループットに評価できる方法は知られていないことが挙げられ、作用薬の高効率な開発方法が求められてきた。
例えばグルタミン酸受容体の部分配列であるリガンド結合部位を用いて、グルタミン酸に対する蛍光応答の検出が報告されている(非特許文献1)が、全長のグルタミン酸受容体を用いた蛍光応答システムは皆無である。全長のグルタミン酸受容体を用いての薬剤アッセイは、AMPA受容体の活性(イオンチャネル特性)評価が一般的であるが、その評価方法は煩雑であるため、ハイスループットな評価方法へは展開できていない。 Receptors that receive neurotransmitters are proteins that are widely known as important drug targets. For example, glutamate is widely accepted as one of important neurotransmitters, and its receptor glutamate receptor is a protein essential for neurotransmission. Glutamate receptors are classified into AMPA, NMDA, and kainate types based on the characteristics of agonists. AMPA receptors are proteins essential for neuronal activity, particularly memory and learning. Causes various diseases such as illness, stroke, and Alzheimer's disease. Therefore, AMPA type receptors have been positioned as important drug targets. So far, a plurality of selective agonists have been developed, but there are problems such as subtype selectivity. The reason is that there is no known method that can evaluate the action of a drug on AMPA receptors at high throughput, and a highly efficient method for developing an active drug has been demanded.
For example, detection of a fluorescence response to glutamate using a ligand binding site that is a partial sequence of glutamate receptor has been reported (Non-patent Document 1), but there is no fluorescence response system using a full-length glutamate receptor. . Drug assays using full-length glutamate receptors typically involve evaluation of AMPA receptor activity (ion channel characteristics), but the evaluation method is complicated and has not been developed into a high-throughput evaluation method. Absent.
例えばグルタミン酸受容体の部分配列であるリガンド結合部位を用いて、グルタミン酸に対する蛍光応答の検出が報告されている(非特許文献1)が、全長のグルタミン酸受容体を用いた蛍光応答システムは皆無である。全長のグルタミン酸受容体を用いての薬剤アッセイは、AMPA受容体の活性(イオンチャネル特性)評価が一般的であるが、その評価方法は煩雑であるため、ハイスループットな評価方法へは展開できていない。 Receptors that receive neurotransmitters are proteins that are widely known as important drug targets. For example, glutamate is widely accepted as one of important neurotransmitters, and its receptor glutamate receptor is a protein essential for neurotransmission. Glutamate receptors are classified into AMPA, NMDA, and kainate types based on the characteristics of agonists. AMPA receptors are proteins essential for neuronal activity, particularly memory and learning. Causes various diseases such as illness, stroke, and Alzheimer's disease. Therefore, AMPA type receptors have been positioned as important drug targets. So far, a plurality of selective agonists have been developed, but there are problems such as subtype selectivity. The reason is that there is no known method that can evaluate the action of a drug on AMPA receptors at high throughput, and a highly efficient method for developing an active drug has been demanded.
For example, detection of a fluorescence response to glutamate using a ligand binding site that is a partial sequence of glutamate receptor has been reported (Non-patent Document 1), but there is no fluorescence response system using a full-length glutamate receptor. . Drug assays using full-length glutamate receptors typically involve evaluation of AMPA receptor activity (ion channel characteristics), but the evaluation method is complicated and has not been developed into a high-throughput evaluation method. Absent.
本発明は、神経伝達物質受容体リガンド(アゴニスト、部分アゴニスト、アンタゴニスト)をハイスループットにアッセイしてそのリガンドとしての機能を明らかにする技術を提供することを目的とする。
An object of the present invention is to provide a technique for clarifying a function as a ligand by assaying a neurotransmitter receptor ligand (agonist, partial agonist, antagonist) at high throughput.
本発明は、蛍光標識された神経伝達物質受容体及び標識された神経伝達物質受容体の製造方法、神経伝達物質受容体の標識剤及び前記標識剤として有用な化合物、神経伝達物質受容体リガンドのスクリーニング方法を提供するものである。
項1. 下記式(II) The present invention relates to a fluorescently labeled neurotransmitter receptor, a method for producing a labeled neurotransmitter receptor, a neurotransmitter receptor labeling agent, a compound useful as the labeling agent, and a neurotransmitter receptor ligand. A screening method is provided.
Item 1. The following formula (II)
項1. 下記式(II) The present invention relates to a fluorescently labeled neurotransmitter receptor, a method for producing a labeled neurotransmitter receptor, a neurotransmitter receptor labeling agent, a compound useful as the labeling agent, and a neurotransmitter receptor ligand. A screening method is provided.
(式中、Rec-Nuは神経伝達物質受容体(Rec-Nu-H)から水素原子が脱離した基を示す。Nuは、当該神経伝達物質受容体が有する求核基(Nu-H) から水素原子が脱離した2価の基を示す。L2は2価の連結基を示し、Flは標識基を示す。)
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで蛍光のパターンが変化する、標識された神経伝達物質受容体に前記受容体との相互作用が期待される候補物質を作用させて、前記候補物質と前記受容体の結合様式を標識が発するシグナルの変化により検出し、その結果に基づいて行うことを特徴とする、当該神経伝達物質受容体に結合する物質のスクリーニング方法。
項2. 標識された神経伝達物質受容体を有する細胞に前記候補物質を作用させる、項1に記載のスクリーニング方法。
項3. 前記受容体がAMPA受容体である、項1又は2に記載のスクリーニング方法。
項4. 下記式(I) (In the formula, Rec-Nu represents a group in which a hydrogen atom has been eliminated from a neurotransmitter receptor (Rec-Nu-H). Nu represents a nucleophilic group (Nu-H) of the neurotransmitter receptor. A divalent group in which a hydrogen atom is eliminated from L 2, L 2 represents a divalent linking group, and Fl represents a labeling group.
It is expected that the labeled neurotransmitter receptor interacts with the receptor, which has a basic structure represented by the formula and changes the fluorescence pattern between when the antagonist is bound and when the agonist is bound. A substance that binds to a neurotransmitter receptor, characterized in that a candidate substance is allowed to act, and the binding mode of the candidate substance and the receptor is detected based on a change in a signal emitted by a label, and is performed based on the result. Screening method.
Item 2. Item 2. The screening method according to Item 1, wherein the candidate substance is allowed to act on cells having a labeled neurotransmitter receptor.
Item 3. Item 3. The screening method according to Item 1 or 2, wherein the receptor is an AMPA receptor.
Item 4. Formula (I) below
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで蛍光のパターンが変化する、標識された神経伝達物質受容体に前記受容体との相互作用が期待される候補物質を作用させて、前記候補物質と前記受容体の結合様式を標識が発するシグナルの変化により検出し、その結果に基づいて行うことを特徴とする、当該神経伝達物質受容体に結合する物質のスクリーニング方法。
項2. 標識された神経伝達物質受容体を有する細胞に前記候補物質を作用させる、項1に記載のスクリーニング方法。
項3. 前記受容体がAMPA受容体である、項1又は2に記載のスクリーニング方法。
項4. 下記式(I) (In the formula, Rec-Nu represents a group in which a hydrogen atom has been eliminated from a neurotransmitter receptor (Rec-Nu-H). Nu represents a nucleophilic group (Nu-H) of the neurotransmitter receptor. A divalent group in which a hydrogen atom is eliminated from L 2, L 2 represents a divalent linking group, and Fl represents a labeling group.
It is expected that the labeled neurotransmitter receptor interacts with the receptor, which has a basic structure represented by the formula and changes the fluorescence pattern between when the antagonist is bound and when the agonist is bound. A substance that binds to a neurotransmitter receptor, characterized in that a candidate substance is allowed to act, and the binding mode of the candidate substance and the receptor is detected based on a change in a signal emitted by a label, and is performed based on the result. Screening method.
(式中、L1、L2は各々独立して2価の連結基を示し、Lgは、求核基(Nu-H)を有する神経伝達物質受容体(Rec-Nu-H)に対するリガンドを示し、Flは標識基を示す。R1、R2は同一又は異なって水素原子又は置換基を示す。)
で表される化合物。
項5. 下記式(I) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
A compound represented by
Item 5. Formula (I)
で表される化合物。
項5. 下記式(I) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
A compound represented by
(式中、L1、L2は各々独立して2価の連結基を示し、Lgは、求核基(Nu-H)を有する神経伝達物質受容体(Rec-Nu-H)に対するリガンドを示し、Flは標識基を示す。R1、R2は同一又は異なって水素原子又は置換基を示す。)
で表される当該神経伝達物質受容体の標識剤。
項6. 下記式(I) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
A labeling agent for the neurotransmitter receptor represented by:
Item 6. Formula (I)
で表される当該神経伝達物質受容体の標識剤。
項6. 下記式(I) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
A labeling agent for the neurotransmitter receptor represented by:
(式中、L1、L2は各々独立して2価の連結基を示し、Lgは求核基(Nu-H)を有する神経伝達物質受容体(Rec-Nu-H)に対するリガンドを示し、Flは標識基を示す。R1、R2は同一又は異なって水素原子又は置換基を示す。)
で表される化合物と当該神経伝達物質受容体(Rec-Nu-H)を反応させて下記式(II) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
And the neurotransmitter receptor (Rec-Nu-H) is reacted with the compound represented by the following formula (II):
で表される化合物と当該神経伝達物質受容体(Rec-Nu-H)を反応させて下記式(II) (In the formula, L 1 and L 2 each independently represent a divalent linking group, and Lg represents a ligand for a neurotransmitter receptor (Rec-Nu-H) having a nucleophilic group (Nu-H). Fl represents a labeling group, and R 1 and R 2 are the same or different and represent a hydrogen atom or a substituent.)
And the neurotransmitter receptor (Rec-Nu-H) is reacted with the compound represented by the following formula (II):
(式中、Rec-Nuは当該神経伝達物質受容体(Rec-Nu-H)から水素原子が脱離した基を示す。Nuは、当該神経伝達物質受容体が有する求核基から水素原子が脱離した2価の基を示す。L2は2価の連結基を示し、Flは標識基を示す)
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで標識の発するシグナルのパターンが変化する、標識された神経伝達物質受容体を得ることを特徴とする、標識受容体の製造方法。 (In the formula, Rec-Nu represents a group in which a hydrogen atom is eliminated from the neurotransmitter receptor (Rec-Nu-H). Nu represents a hydrogen atom from a nucleophilic group possessed by the neurotransmitter receptor. (L 2 represents a divalent linking group, and Fl represents a labeling group.)
A labeled neurotransmitter receptor having a basic structure represented by the above, wherein the signal pattern emitted by the label changes between when an antagonist is bound and when an agonist is bound. A method for producing a receptor.
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで標識の発するシグナルのパターンが変化する、標識された神経伝達物質受容体を得ることを特徴とする、標識受容体の製造方法。 (In the formula, Rec-Nu represents a group in which a hydrogen atom is eliminated from the neurotransmitter receptor (Rec-Nu-H). Nu represents a hydrogen atom from a nucleophilic group possessed by the neurotransmitter receptor. (L 2 represents a divalent linking group, and Fl represents a labeling group.)
A labeled neurotransmitter receptor having a basic structure represented by the above, wherein the signal pattern emitted by the label changes between when an antagonist is bound and when an agonist is bound. A method for producing a receptor.
神経伝達物質などのリガンドを受け取る受容体タンパク質は、重要な薬剤標的である。例えばグルタミン酸は重要な神経伝達物質として広く知られており、その受容体であるグルタミン酸受容体は、神経伝達に必須なタンパク質である。本発明者らは、例えばグルタミン酸受容体の一種であるAMPA受容体などの神経伝達物質受容体のリガンド結合部位近傍に選択的に標識する技術を開発した。
Receptor proteins that receive ligands such as neurotransmitters are important drug targets. For example, glutamate is widely known as an important neurotransmitter, and its receptor glutamate receptor is an essential protein for neurotransmission. The present inventors have developed a technique for selectively labeling in the vicinity of a ligand binding site of a neurotransmitter receptor such as AMPA receptor which is a kind of glutamate receptor.
本発明の方法では、生きた細胞の細胞膜表層で発現している受容体を共有結合的に蛍光標識することが可能となる。受容体のリガンド結合部位近傍に例えば蛍光団等の標識をラベル化した結果、リガンドの結合応答を例えば蛍光等の標識の発するシグナルの変化として可視化することが可能となった。想定外の成果として、リガンドの結合によりその構造が大きく変わる神経伝達物質受容体のリガンドで、受容体を活性化するアゴニストと不活性化するアンタゴニストでは例えば蛍光応答等の標識の発するシグナルが異なり、アゴニストとアンタゴニストを例えば蛍光変化等として見分けることが可能となった。この変化は、ハイスループットな検出システムに利用できる。以上の結果から、本研究成果は、例えばAMPA受容体を含む任意の神経伝達物質受容体の作用薬をハイスループットにアッセイできるシステムを構築できたことを意味する。
AMPA受容体以外の神経伝達物質受容体のリガンドでも、受容体を活性化するアゴニストと不活性化するアンタゴニストでは例えば蛍光応答等の標識の発するシグナルが異なり、任意の神経伝達物質受容体のアゴニストとアンタゴニストを例えば蛍光変化等として見分けることが可能となり、選択的な作用薬をハイスループットにスクリーニングすることが可能になった。 In the method of the present invention, it is possible to covalently fluorescently label a receptor expressed on the surface layer of a living cell. As a result of labeling a label such as a fluorophore in the vicinity of the ligand binding site of the receptor, it became possible to visualize the binding response of the ligand as a change in the signal emitted by the label such as fluorescence. As an unexpected result, a ligand of a neurotransmitter receptor whose structure is greatly changed by the binding of a ligand, an agonist that activates the receptor and an inactivatable antagonist, for example, a signal emitted by a label such as a fluorescence response is different, Agonists and antagonists can be distinguished, for example, as changes in fluorescence. This change can be used for a high-throughput detection system. From the above results, this research result means that a system capable of assaying agonists of any neurotransmitter receptor including, for example, AMPA receptor, at high throughput could be constructed.
Even with ligands of neurotransmitter receptors other than AMPA receptors, the agonists that activate the receptors and the inactivatable antagonists differ in the signal emitted by a label such as a fluorescent response, and any neurotransmitter receptor agonist. Antagonists can be distinguished, for example, as fluorescence changes, and selective agonists can be screened at high throughput.
AMPA受容体以外の神経伝達物質受容体のリガンドでも、受容体を活性化するアゴニストと不活性化するアンタゴニストでは例えば蛍光応答等の標識の発するシグナルが異なり、任意の神経伝達物質受容体のアゴニストとアンタゴニストを例えば蛍光変化等として見分けることが可能となり、選択的な作用薬をハイスループットにスクリーニングすることが可能になった。 In the method of the present invention, it is possible to covalently fluorescently label a receptor expressed on the surface layer of a living cell. As a result of labeling a label such as a fluorophore in the vicinity of the ligand binding site of the receptor, it became possible to visualize the binding response of the ligand as a change in the signal emitted by the label such as fluorescence. As an unexpected result, a ligand of a neurotransmitter receptor whose structure is greatly changed by the binding of a ligand, an agonist that activates the receptor and an inactivatable antagonist, for example, a signal emitted by a label such as a fluorescence response is different, Agonists and antagonists can be distinguished, for example, as changes in fluorescence. This change can be used for a high-throughput detection system. From the above results, this research result means that a system capable of assaying agonists of any neurotransmitter receptor including, for example, AMPA receptor, at high throughput could be constructed.
Even with ligands of neurotransmitter receptors other than AMPA receptors, the agonists that activate the receptors and the inactivatable antagonists differ in the signal emitted by a label such as a fluorescent response, and any neurotransmitter receptor agonist. Antagonists can be distinguished, for example, as fluorescence changes, and selective agonists can be screened at high throughput.
本発明で使用する受容体の標識試薬であるリガンド指向性アシルイミダゾール化合物(LDAI)を以下に示す。
The ligand-directed acylimidazole compound (LDAI), which is a receptor labeling reagent used in the present invention, is shown below.
(式中、L1、L2は各々独立して2価の連結基を示し、Lgは神経伝達物質受容体に対するリガンドを示し、Flは標識基を示す。R1、R2は同一又は異なって水素原子又は置換基を示す。)
アシルイミダゾール部分を有する本発明の標識試薬(ラベル化剤)は、リガンド(Lg)の部分で神経伝達物質受容体(Rec-Nu-H)に結合し、受容体(Rec-Nu-H)中の求核基(Nu-H)がアシルイミダゾールのカルボニルのC原子を攻撃し、N-CO結合が切断されて、イミダゾール基を有するリガンドは受容体から離れ、標識基(Fl)が受容体のNuと-CO-O-(L2)n2基を介して連結されて標識受容体:Rec-Nu-CO-O-(L2)n2-Fl
(式中、Rec-Nuは神経伝達物質受容体(Rec-Nu-H)からHが脱離した基を示し、Nuは受容体の求核基(Nu-H)からHが脱離した基を示し、L2、n2、Flは前記に定義されるとおりである。)
が得られる。なお、複数の標識基(Fl)が受容体の複数のNuと-CO-O-(L2)n2基を介して連結されてもよい。 (Wherein L 1 and L 2 each independently represent a divalent linking group, Lg represents a ligand for a neurotransmitter receptor, Fl represents a labeling group, and R 1 and R 2 are the same or different. Represents a hydrogen atom or a substituent.)
The labeling reagent (labeling agent) of the present invention having an acylimidazole moiety binds to the neurotransmitter receptor (Rec-Nu-H) at the ligand (Lg) moiety, and in the receptor (Rec-Nu-H) Nucleophilic group (Nu-H) attacks the C atom of the carbonyl of acylimidazole, the N-CO bond is cleaved, the ligand having an imidazole group leaves the acceptor, and the labeling group (Fl) of the acceptor Nu and -CO-O- (L 2 ) linked via n2 group labeled receptor: Rec-Nu-CO-O- (L 2 ) n2 -Fl
(In the formula, Rec-Nu represents a group in which H is eliminated from the neurotransmitter receptor (Rec-Nu-H), and Nu is a group in which H is eliminated from the nucleophilic group (Nu-H) of the receptor. L 2 ,n 2 and Fl are as defined above.
Is obtained. A plurality of labeling groups (Fl) may be linked to a plurality of Nu of the acceptor via a —CO—O— (L 2 ) n2 group.
アシルイミダゾール部分を有する本発明の標識試薬(ラベル化剤)は、リガンド(Lg)の部分で神経伝達物質受容体(Rec-Nu-H)に結合し、受容体(Rec-Nu-H)中の求核基(Nu-H)がアシルイミダゾールのカルボニルのC原子を攻撃し、N-CO結合が切断されて、イミダゾール基を有するリガンドは受容体から離れ、標識基(Fl)が受容体のNuと-CO-O-(L2)n2基を介して連結されて標識受容体:Rec-Nu-CO-O-(L2)n2-Fl
(式中、Rec-Nuは神経伝達物質受容体(Rec-Nu-H)からHが脱離した基を示し、Nuは受容体の求核基(Nu-H)からHが脱離した基を示し、L2、n2、Flは前記に定義されるとおりである。)
が得られる。なお、複数の標識基(Fl)が受容体の複数のNuと-CO-O-(L2)n2基を介して連結されてもよい。 (Wherein L 1 and L 2 each independently represent a divalent linking group, Lg represents a ligand for a neurotransmitter receptor, Fl represents a labeling group, and R 1 and R 2 are the same or different. Represents a hydrogen atom or a substituent.)
The labeling reagent (labeling agent) of the present invention having an acylimidazole moiety binds to the neurotransmitter receptor (Rec-Nu-H) at the ligand (Lg) moiety, and in the receptor (Rec-Nu-H) Nucleophilic group (Nu-H) attacks the C atom of the carbonyl of acylimidazole, the N-CO bond is cleaved, the ligand having an imidazole group leaves the acceptor, and the labeling group (Fl) of the acceptor Nu and -CO-O- (L 2 ) linked via n2 group labeled receptor: Rec-Nu-CO-O- (L 2 ) n2 -Fl
(In the formula, Rec-Nu represents a group in which H is eliminated from the neurotransmitter receptor (Rec-Nu-H), and Nu is a group in which H is eliminated from the nucleophilic group (Nu-H) of the receptor. L 2 ,
Is obtained. A plurality of labeling groups (Fl) may be linked to a plurality of Nu of the acceptor via a —CO—O— (L 2 ) n2 group.
求核基(Nu-H)は、受容体を構成するアミノ酸に含まれるLysの末端のNH2基、Tyrのフェノール性OH基、CysのSH基、Hisのイミダゾール基などが挙げられ、特にLysの末端のNH2基である。Nuは、-NH-、-O-、-S-などが挙げられ、-NH-が好ましい。
Examples of the nucleophilic group (Nu-H) include NH 2 group at the terminal of Lys contained in the amino acid constituting the receptor, phenolic OH group of Tyr, SH group of Cys, imidazole group of His, etc. NH 2 group at the terminal of Nu includes -NH-, -O-, -S-, etc., and -NH- is preferred.
標識基(Fl)としては、Alexa-350、Alexa-430、Alexa-488、Alexa-532、Alexa-546、Alexa-555、Alexa-568、Alexa-594、Alexa-633、Alexa-647、Alexa-660、Alexa-680、Alexa-750、Cy2、Cy3、Cy3.5、Cy5、Cy5.5、Cy7、BODIPY 505/515、インチオシアン酸フルオレセイン(FITC)、Oregon green、イソチオシアン酸エオシン、PE、ATTO655、CypHer5E、Rhordamine B、BODIPY 580/605、Texas Red、APC、インドシアニングリーンなどの蛍光プローブ、ユウロピウムやサマリウムなどのランタノイド錯体、量子ドット、放射性同位体、光架橋剤、ペプチド、水溶性高分子などを挙げることができ、好ましくはAlexa-488、Oregon green、Alexa-546、Alexa-568、ATTO655、CypHer5Eが挙げられる。
As the labeling group (Fl), Alexa-350, Alexa-430, Alexa-488, Alexa-532, Alexa-546, Alexa-555, Alexa-568, Alexa-594, Alexa-633, Alexa-647, Alexa- 660, Alexa-680, Alexa-750, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, BODIPY 505/515, fluorescein inthiocyanate (FITC), Oregon green, eosin isothiocyanate, PE, ATTO655, CypHer5E, Rhodamine5B, BODIPY 580/605, Texas Red, APC, Indocyanine Green, etc. Preferred examples include Alexa-488, Oregon green, Alexa-546, Alexa-568, ATTO655, and CypHer5E.
光架橋剤を標識基として用いた場合、標識された神経伝達物質受容体に対して相互作用タンパク質が結合した際に光を照射することにより、相互作用タンパク質と受容体を結合させることができるので、受容体のタンパク質間相互作用の検出に有用である。
When a photocrosslinking agent is used as a labeling group, the interacting protein can be bound to the receptor by irradiating light when the interacting protein binds to the labeled neurotransmitter receptor. It is useful for detecting protein-protein interactions in receptors.
ペプチドを標識基として用いた場合、標識された、膜表面にある神経伝達物質受容体は細胞内輸送等のタンパク質の機能が改変されるので、このような機能改変に有用である。また、PEGなどの水溶性高分子を標識基として用いた場合、標識された神経伝達物質受容体は、血中半減期が増大したり、可溶化の度合いが高まることによる膜タンパク質の安定性向上といった効果が期待できる。
When a peptide is used as a labeling group, the labeled neurotransmitter receptor on the membrane surface is useful for such functional modification because the function of the protein such as intracellular transport is modified. In addition, when a water-soluble polymer such as PEG is used as a labeling group, the labeled neurotransmitter receptor increases the stability of membrane proteins by increasing the blood half-life or increasing the degree of solubilization. Such an effect can be expected.
光架橋剤としては、フェニルアジドなどのアリールアジド、ジアジリン、ベンゾフェノンなどの反応性の高い基が挙げられる。これらの基は光照射により近傍にある化合物と速やかに反応するので、リガンドと受容体のタンパク質間相互作用の検出に有用である。
水溶性高分子としてはポリエチレングリコール(PEG)などが挙げられる。 Examples of the photocrosslinking agent include aryl azides such as phenyl azide, highly reactive groups such as diazirine and benzophenone. Since these groups react rapidly with nearby compounds by light irradiation, they are useful for detecting protein-protein interactions between ligands and receptors.
Examples of the water-soluble polymer include polyethylene glycol (PEG).
水溶性高分子としてはポリエチレングリコール(PEG)などが挙げられる。 Examples of the photocrosslinking agent include aryl azides such as phenyl azide, highly reactive groups such as diazirine and benzophenone. Since these groups react rapidly with nearby compounds by light irradiation, they are useful for detecting protein-protein interactions between ligands and receptors.
Examples of the water-soluble polymer include polyethylene glycol (PEG).
放射性同位体としては、放射性同位体、好ましくは3H、35Sなどが挙げられる。
ペプチドとしては、tatペプチドなどの膜透過性ペプチド、各種ホーミングペプチド、各種ペプチドリガンド等が挙げられる。 Examples of the radioisotope include a radioisotope, preferably 3 H, 35 S and the like.
Examples of peptides include membrane-permeable peptides such as tat peptides, various homing peptides, various peptide ligands, and the like.
ペプチドとしては、tatペプチドなどの膜透過性ペプチド、各種ホーミングペプチド、各種ペプチドリガンド等が挙げられる。 Examples of the radioisotope include a radioisotope, preferably 3 H, 35 S and the like.
Examples of peptides include membrane-permeable peptides such as tat peptides, various homing peptides, various peptide ligands, and the like.
標識基で標識される神経伝達物質受容体(Rec-Nu-H)としては、任意の神経伝達物質受容体が標識の対象となり、特に限定されないが、具体的には、以下の受容体とそのリガンドが挙げられる:
・グルタミン酸受容体:神経伝達物質としてのグルタミン酸を結合する。結合する薬物によりNMDA受容体、AMPA受容体、カイニン酸受容体に分けられる。
・ムスカリン性アセチルコリン受容体:アセチルコリン、ムスカリン
・アデノシン受容体:アデノシン、カフェイン
・アドレナリン受容体:アドレナリン、ノルアドレナリン
・GABA受容体:GABA
・カンナビノイド受容体:大麻成分およびアナンダミド
・コレシストキニン受容体:コレシストキニン
・ドーパミン受容体:ドーパミン
・ヒスタミン受容体:ヒスタミン
・オピオイド受容体:コカイン、モルヒネ、ヘロインなどのアヘン成分および内在性ペプチド性リガンド(エンケファリン、エンドルフィン等)
・セロトニン受容体:セロトニン
・ソマトスタチン受容体:ソマトスタチン
・ニコチン性アセチルコリン受容体:アセチルコリン、ニコチン
・グリシン受容体:神経伝達物質としてのグリシン、ストリキニン As a neurotransmitter receptor (Rec-Nu-H) labeled with a labeling group, any neurotransmitter receptor is a target of labeling, and is not particularly limited. Examples include ligands:
Glutamate receptor: binds glutamate as a neurotransmitter. Depending on the drug to be bound, it is divided into NMDA receptor, AMPA receptor and kainate receptor.
・ Muscarinic acetylcholine receptor: acetylcholine, muscarinic / adenosine receptor: adenosine, caffeine / adrenergic receptor: adrenaline, noradrenaline / GABA receptor: GABA
Cannabinoid receptor: Cannabis component and anandamide Cholecystokinin receptor: Cholecystokinin Dopamine receptor: Dopamine histamine receptor: Histamine opioid receptor: Opium component such as cocaine, morphine, heroin and endogenous peptide Ligand (enkephalin, endorphins, etc.)
Serotonin receptor: Serotonin Somatostatin receptor: Somatostatin Nicotinic acetylcholine receptor: Acetylcholine, Nicotine glycine receptor: Glycine as a neurotransmitter, strykinin
・グルタミン酸受容体:神経伝達物質としてのグルタミン酸を結合する。結合する薬物によりNMDA受容体、AMPA受容体、カイニン酸受容体に分けられる。
・ムスカリン性アセチルコリン受容体:アセチルコリン、ムスカリン
・アデノシン受容体:アデノシン、カフェイン
・アドレナリン受容体:アドレナリン、ノルアドレナリン
・GABA受容体:GABA
・カンナビノイド受容体:大麻成分およびアナンダミド
・コレシストキニン受容体:コレシストキニン
・ドーパミン受容体:ドーパミン
・ヒスタミン受容体:ヒスタミン
・オピオイド受容体:コカイン、モルヒネ、ヘロインなどのアヘン成分および内在性ペプチド性リガンド(エンケファリン、エンドルフィン等)
・セロトニン受容体:セロトニン
・ソマトスタチン受容体:ソマトスタチン
・ニコチン性アセチルコリン受容体:アセチルコリン、ニコチン
・グリシン受容体:神経伝達物質としてのグリシン、ストリキニン As a neurotransmitter receptor (Rec-Nu-H) labeled with a labeling group, any neurotransmitter receptor is a target of labeling, and is not particularly limited. Examples include ligands:
Glutamate receptor: binds glutamate as a neurotransmitter. Depending on the drug to be bound, it is divided into NMDA receptor, AMPA receptor and kainate receptor.
・ Muscarinic acetylcholine receptor: acetylcholine, muscarinic / adenosine receptor: adenosine, caffeine / adrenergic receptor: adrenaline, noradrenaline / GABA receptor: GABA
Cannabinoid receptor: Cannabis component and anandamide Cholecystokinin receptor: Cholecystokinin Dopamine receptor: Dopamine histamine receptor: Histamine opioid receptor: Opium component such as cocaine, morphine, heroin and endogenous peptide Ligand (enkephalin, endorphins, etc.)
Serotonin receptor: Serotonin Somatostatin receptor: Somatostatin Nicotinic acetylcholine receptor: Acetylcholine, Nicotine glycine receptor: Glycine as a neurotransmitter, strykinin
受容体とリガンドの組み合わせの代表例を上記に示すが、標識対象の受容体と該受容体に結合するリガンドの組み合わせはこれらに限定されず、現在知られている神経伝達物質受容体とリガンドの組み合わせ、或いは将来発見される神経伝達物質受容体とリガンドの組み合わせのいずれを使用してもよい。
Representative examples of receptor and ligand combinations are shown above, but the combination of the receptor to be labeled and the ligand that binds to the receptor is not limited to these, and the currently known neurotransmitter receptor and ligand combinations Either a combination or a combination of neurotransmitter receptors and ligands discovered in the future may be used.
本発明の一般式(I)の化合物において、
L1、L2は同一であっても異なっていてもよく、2価の連結基が挙げられる。2価の連結基としては、-O-、-CO-、-COO-、-O-CO-、-NHCO-、-CONH-、-(CH2)m1-(m1は1~6の整数を示す)、アリーレン基(特に、オルト、メタ、パラなどのフェニレン)、ヘテロアリーレン基、-NH-、-(CH2CH2O)m2-(m2は1~10の整数を示す。)、-(CH2CH(CH3)O)m2-(m2は1~10の整数を示す。)などが挙げられ、これらは1種のみでもよく、同一又は異なる2種以上を組み合わせて1つの二価の連結基を構成してもよい。また、2価の連結基の(末端の)CO、COO、O-CO-、CONH、NHCO、NHなどは、Lg、FlなどのCOOH、NH2などと結合して、アミド、ウレタン、ウレアなどの結合を形成することができる。
Lg、Flの導入は、これらが末端にカルボン酸(COOH)、又はそのエステルもしくは活性エステル、NH2、SH、OHなどの官能基を有する場合にはそれらを利用して行うことができる。Lg、Flが適当な官能基を有しない場合には、カルボン酸(COOH)、又はそのエステルもしくは活性エステル、NH2、SH、OHなどの連結用官能基を末端に導入し、この官能基を利用して連結することができる。Lg、Flの導入は例えば以下のスキーム1,2に従いようにして行うことができる。スキーム(Scheme)1,2はアミド結合(CONH,NHCO)を用いてLg、Flを導入する方法であるが、エーテル結合、チオエーテル結合、アミノ結合などを用いて公知の方法に従いLg、Flを導入することができる。 In the compound of the general formula (I) of the present invention,
L1 and L2 may be the same or different, and examples thereof include a divalent linking group. Examples of the divalent linking group include —O—, —CO—, —COO—, —O—CO—, —NHCO—, —CONH—, — (CH 2 ) m1 — (m1 represents an integer of 1 to 6). ), Arylene groups (particularly phenylene such as ortho, meta, para), heteroarylene groups, —NH—, — (CH 2 CH 2 O) m2 — (m2 represents an integer of 1 to 10), — (CH 2 CH (CH 3 ) O) m2 — (m2 represents an integer of 1 to 10) and the like may be used, and these may be used alone or in combination of two or more of the same or different. The linking group may be constituted. In addition, (terminal) CO, COO, O—CO—, CONH, NHCO, NH, etc. of the divalent linking group are bonded to COOH, NH 2, etc. such as Lg, Fl, amide, urethane, urea, etc. Can be formed.
The introduction of Lg and Fl can be carried out by utilizing them when they have a functional group such as carboxylic acid (COOH) or an ester or active ester thereof, NH 2 , SH, OH or the like. When Lg and Fl do not have an appropriate functional group, a linking acid functional group such as carboxylic acid (COOH) or its ester or active ester, NH2, SH, OH, etc. is introduced at the terminal and this functional group is used. Can be connected. Lg and Fl can be introduced, for example, according to the following schemes 1 and 2. Schemes 1 and 2 are methods for introducing Lg and Fl using amide bonds (CONH, NHCO), but Lg and Fl are introduced according to known methods using ether bonds, thioether bonds, amino bonds, and the like. can do.
L1、L2は同一であっても異なっていてもよく、2価の連結基が挙げられる。2価の連結基としては、-O-、-CO-、-COO-、-O-CO-、-NHCO-、-CONH-、-(CH2)m1-(m1は1~6の整数を示す)、アリーレン基(特に、オルト、メタ、パラなどのフェニレン)、ヘテロアリーレン基、-NH-、-(CH2CH2O)m2-(m2は1~10の整数を示す。)、-(CH2CH(CH3)O)m2-(m2は1~10の整数を示す。)などが挙げられ、これらは1種のみでもよく、同一又は異なる2種以上を組み合わせて1つの二価の連結基を構成してもよい。また、2価の連結基の(末端の)CO、COO、O-CO-、CONH、NHCO、NHなどは、Lg、FlなどのCOOH、NH2などと結合して、アミド、ウレタン、ウレアなどの結合を形成することができる。
Lg、Flの導入は、これらが末端にカルボン酸(COOH)、又はそのエステルもしくは活性エステル、NH2、SH、OHなどの官能基を有する場合にはそれらを利用して行うことができる。Lg、Flが適当な官能基を有しない場合には、カルボン酸(COOH)、又はそのエステルもしくは活性エステル、NH2、SH、OHなどの連結用官能基を末端に導入し、この官能基を利用して連結することができる。Lg、Flの導入は例えば以下のスキーム1,2に従いようにして行うことができる。スキーム(Scheme)1,2はアミド結合(CONH,NHCO)を用いてLg、Flを導入する方法であるが、エーテル結合、チオエーテル結合、アミノ結合などを用いて公知の方法に従いLg、Flを導入することができる。 In the compound of the general formula (I) of the present invention,
L1 and L2 may be the same or different, and examples thereof include a divalent linking group. Examples of the divalent linking group include —O—, —CO—, —COO—, —O—CO—, —NHCO—, —CONH—, — (CH 2 ) m1 — (m1 represents an integer of 1 to 6). ), Arylene groups (particularly phenylene such as ortho, meta, para), heteroarylene groups, —NH—, — (CH 2 CH 2 O) m2 — (m2 represents an integer of 1 to 10), — (CH 2 CH (CH 3 ) O) m2 — (m2 represents an integer of 1 to 10) and the like may be used, and these may be used alone or in combination of two or more of the same or different. The linking group may be constituted. In addition, (terminal) CO, COO, O—CO—, CONH, NHCO, NH, etc. of the divalent linking group are bonded to COOH, NH 2, etc. such as Lg, Fl, amide, urethane, urea, etc. Can be formed.
The introduction of Lg and Fl can be carried out by utilizing them when they have a functional group such as carboxylic acid (COOH) or an ester or active ester thereof, NH 2 , SH, OH or the like. When Lg and Fl do not have an appropriate functional group, a linking acid functional group such as carboxylic acid (COOH) or its ester or active ester, NH2, SH, OH, etc. is introduced at the terminal and this functional group is used. Can be connected. Lg and Fl can be introduced, for example, according to the following
(式中、R1、R2、L1、L2、Lg、Flは、前記に定義されるとおりである。CONH-L1aとNHCO-L1aはL1の具体的な実施形態を示し、L2aは2価の連結基を示す。Y1はOH,アルコキシ、アリールオキシ、イミダゾリル、1-ヒドロキシベンゾトリアゾリル(O-Bt)、N-ヒドロキシスクシンイミジル(OSu)などの活性エステルとして利用される脱離基を示す。DSCはジスクシンイミジルカルバメートを示す。)
Wherein R 1 , R 2 , L 1 , L 2 , Lg, Fl are as defined above. CONH-L 1a and NHCO-L 1a represent specific embodiments of L 1 , L 2a represents a divalent linking group, Y 1 represents an activity such as OH, alkoxy, aryloxy, imidazolyl, 1-hydroxybenzotriazolyl (O-Bt), N-hydroxysuccinimidyl (OSu), etc. (Denotes a leaving group used as an ester. DSC stands for disuccinimidyl carbamate.)
スキーム1,2におけるアミド結合(CONH,NHCO)の形成は、原料となるアミノ化合物(-NH2基を有する化合物)とカルボン酸、エステル又は活性エステル化合物(-CO-Y1基を有する化合物)を等モル程度用い、室温から溶媒の沸騰する程度の温度下に1~24時間反応させることで有利に進行する。溶媒としては、メタノール、エタノール、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロルエタン、ベンゼン、トルエン、アセトン、メチルエチルケトン、エーテル、テトラヒドロフランなどが挙げられる。
In the schemes 1 and 2, the amide bond (CONH, NHCO) is formed by using a raw material amino compound (compound having —NH 2 group) and carboxylic acid, ester or active ester compound (compound having —CO—Y1 group). The reaction proceeds advantageously by using about equimolar amounts and reacting at a temperature from room temperature to the boiling point of the solvent for 1 to 24 hours. Examples of the solvent include methanol, ethanol, methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, benzene, toluene, acetone, methyl ethyl ketone, ether, tetrahydrofuran and the like.
スキーム2において、DSCはFl-CONH-L2a-OH又はFl-NHCO-L2a-OH1モルに対し1モルから過剰量使用し、触媒量から過剰量の塩基(トリエチルアミン、ピリジン、ジメチルアミノピリジン、ジイソプロピルエチルアミン、DBUなど)の存在下に室温から溶媒の沸騰する程度の温度下に1~24時間反応させることにより目的の化合物(2)を得ることができる。
In Scheme 2, DSC is Fl-CONH-L 2a -OH or Fl-NHCO-L 2a -OH1 mol using excess from 1 mole excess of a base (triethylamine from a catalytic amount of pyridine, dimethylaminopyridine, The target compound (2) can be obtained by reacting in the presence of diisopropylethylamine, DBU, etc.) from room temperature to a temperature at which the solvent boils for 1 to 24 hours.
AMPA受容体リガンド(AMPAR ligand)、NMDA受容体リガンド(NMDAR ligand)、GABA受容体リガンド(GABAR ligand)、代謝型グルタミン酸受容体リガンド(mGluR1 ligand)の構造を以下に示す。
The structures of AMPA receptor ligand (AMPAR ligand), NMDA receptor ligand (NMDAR ligand), GABA receptor ligand (GABAR ligand), and metabotropic glutamate receptor ligand (mGluR1 ligand) are shown below.
AMPA受容体リガンドは、末端のアミノ基を用いてアミド結合、ウレタン結合などによりL1と結合させることができる。
NMDA受容体リガンドは、末端のα、β不飽和カルボキシル基を用いてアミド結合、エステル結合などによりL1と結合させることができる。
GABA受容体リガンドは、7員環の二級アミノ基(NH)をアルキル化し、N-C結合によりL1と結合させることができる。 The AMPA receptor ligand can be bound to L 1 by an amide bond, urethane bond or the like using a terminal amino group.
The NMDA receptor ligand can be bound to L 1 by an amide bond, an ester bond or the like using a terminal α or β unsaturated carboxyl group.
GABA receptor ligands can alkylate a 7-membered secondary amino group (NH) and bind to L 1 via an NC bond.
NMDA受容体リガンドは、末端のα、β不飽和カルボキシル基を用いてアミド結合、エステル結合などによりL1と結合させることができる。
GABA受容体リガンドは、7員環の二級アミノ基(NH)をアルキル化し、N-C結合によりL1と結合させることができる。 The AMPA receptor ligand can be bound to L 1 by an amide bond, urethane bond or the like using a terminal amino group.
The NMDA receptor ligand can be bound to L 1 by an amide bond, an ester bond or the like using a terminal α or β unsaturated carboxyl group.
GABA receptor ligands can alkylate a 7-membered secondary amino group (NH) and bind to L 1 via an NC bond.
上記のmGluR1リガンドは、ピリミジン環にハロゲン原子を導入したものを示している。このハロゲン原子の位置に求核置換反応でNH-、O-、S-などの2価の連結基L1を導入することができる。
これら4つの受容体のリガンド以外にも、同様にリガンドの機能を失わない位置においてL1と結合させることができる。
2価の連結基の2種以上の組み合わせとしては、例えば以下のものが挙げられる: The mGluR1 ligand described above is a pyrimidine ring having a halogen atom introduced therein. A divalent linking group L 1 such as NH—, O—, or S— can be introduced into this halogen atom position by nucleophilic substitution reaction.
In addition to these four receptor ligands, L 1 can also be bound at a position where the function of the ligand is not lost.
Examples of combinations of two or more divalent linking groups include the following:
これら4つの受容体のリガンド以外にも、同様にリガンドの機能を失わない位置においてL1と結合させることができる。
2価の連結基の2種以上の組み合わせとしては、例えば以下のものが挙げられる: The mGluR1 ligand described above is a pyrimidine ring having a halogen atom introduced therein. A divalent linking group L 1 such as NH—, O—, or S— can be introduced into this halogen atom position by nucleophilic substitution reaction.
In addition to these four receptor ligands, L 1 can also be bound at a position where the function of the ligand is not lost.
Examples of combinations of two or more divalent linking groups include the following:
例えば、上記例示の末端アミノ(NH)基は、FlやLgなどのCOOH基とアミド結合を形成してもよい。
For example, the terminal amino (NH) group exemplified above may form an amide bond with a COOH group such as Fl or Lg.
R1~R2の置換基としては、アルキル、シクロアルキル、アルコキシ、アルケニル、ハロゲン原子、OH、CN、NO2、COOH、NH2、フェニル、ベンジル、アセチルアミノ、アセチル、アセチルオキシ、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル、トリフルオロメチルなどが挙げられる。
Examples of the substituent for R 1 to R 2 include alkyl, cycloalkyl, alkoxy, alkenyl, halogen atom, OH, CN, NO 2 , COOH, NH 2 , phenyl, benzyl, acetylamino, acetyl, acetyloxy, methoxycarbonyl, And ethoxycarbonyl, butoxycarbonyl, trifluoromethyl and the like.
アルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ヘキシルなどの直鎖状又は分枝鎖状のC1-18アルキル、好ましくはC1-6アルキル、より好ましくはC1-4アルキルが挙げられる。
Alkyl includes linear or branched C 1-18 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl, preferably Examples thereof include C 1-6 alkyl, more preferably C 1-4 alkyl.
シクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及びシクロヘプチルなどのC3-10シクロアルキル、好ましくはC3-8シクロアルキル、より好ましくはC5-6シクロアルキルが挙げられる。環の一部がヘテロ元素で置換されていたり、置換基を持っていてもよい。
アルコキシとしては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ、ポリエチレングリコール誘導体などの直鎖状又は分枝鎖状のC1-18アルコキシ、好ましくはC1-6アルコキシ、より好ましくはC1-4アルコキシが挙げられる。
R1、R2は水素原子が好ましい。 Cycloalkyl includes C 3-10 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, preferably C 3-8 cycloalkyl, more preferably C 5-6 cycloalkyl. A part of the ring may be substituted with a hetero element or may have a substituent.
Alkoxy includes linear or branched methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, hexyloxy, polyethylene glycol derivatives, etc. C 1-18 alkoxy, preferably C 1-6 alkoxy, more preferably C 1-4 alkoxy.
R 1 and R 2 are preferably hydrogen atoms.
アルコキシとしては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ、ポリエチレングリコール誘導体などの直鎖状又は分枝鎖状のC1-18アルコキシ、好ましくはC1-6アルコキシ、より好ましくはC1-4アルコキシが挙げられる。
R1、R2は水素原子が好ましい。 Cycloalkyl includes C 3-10 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, preferably C 3-8 cycloalkyl, more preferably C 5-6 cycloalkyl. A part of the ring may be substituted with a hetero element or may have a substituent.
Alkoxy includes linear or branched methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, hexyloxy, polyethylene glycol derivatives, etc. C 1-18 alkoxy, preferably C 1-6 alkoxy, more preferably C 1-4 alkoxy.
R 1 and R 2 are preferably hydrogen atoms.
本発明の化合物は、以下のスキーム3に従い合成することができる。
The compound of the present invention can be synthesized according to the following scheme 3.
(式中、R1、R2、L1、L2、Lg、Flは、前記に定義されるとおりである。)
反応は、化合物(1)1モルに対し、化合物(2)を1モルから過剰量、塩基(Base)を1モルから過剰量使用し、溶媒中で室温から溶媒の沸騰する温度下に1~24時間反応させることにより有利に進行する。溶媒としては、塩化メチレン、クロロホルム、ジクロルエタンなどの塩素化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、酢酸エチルなどのエステル、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、エーテル、ジイソプルイピルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、シクロヘキサンなどの脂肪族または脂環式炭化水素、DMF、DMSO、ジオキサン、N-メチルピロリドンなどが挙げられる。塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ジメチルアミノピリジン、DBUなどが挙げられる。 (Wherein R 1 , R 2 , L 1 , L 2 , Lg, and Fl are as defined above.)
In the reaction, 1 mole of compound (2) and 1 mole to excess of base (Base) are used with respect to 1 mole of compound (1), and 1 to 2 boiling points of the solvent in the solvent from room temperature to the boiling temperature of the solvent. It proceeds advantageously by reacting for 24 hours. Solvents include chlorinated hydrocarbons such as methylene chloride, chloroform and dichloroethane, aromatic hydrocarbons such as benzene and toluene, esters such as ethyl acetate, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethers, diisopropyl Examples include ethers such as pyrether and tetrahydrofuran, aliphatic or alicyclic hydrocarbons such as hexane and cyclohexane, DMF, DMSO, dioxane, and N-methylpyrrolidone. Examples of the base include triethylamine, diisopropylethylamine, pyridine, dimethylaminopyridine, DBU and the like.
反応は、化合物(1)1モルに対し、化合物(2)を1モルから過剰量、塩基(Base)を1モルから過剰量使用し、溶媒中で室温から溶媒の沸騰する温度下に1~24時間反応させることにより有利に進行する。溶媒としては、塩化メチレン、クロロホルム、ジクロルエタンなどの塩素化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、酢酸エチルなどのエステル、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、エーテル、ジイソプルイピルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、シクロヘキサンなどの脂肪族または脂環式炭化水素、DMF、DMSO、ジオキサン、N-メチルピロリドンなどが挙げられる。塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ジメチルアミノピリジン、DBUなどが挙げられる。 (Wherein R 1 , R 2 , L 1 , L 2 , Lg, and Fl are as defined above.)
In the reaction, 1 mole of compound (2) and 1 mole to excess of base (Base) are used with respect to 1 mole of compound (1), and 1 to 2 boiling points of the solvent in the solvent from room temperature to the boiling temperature of the solvent. It proceeds advantageously by reacting for 24 hours. Solvents include chlorinated hydrocarbons such as methylene chloride, chloroform and dichloroethane, aromatic hydrocarbons such as benzene and toluene, esters such as ethyl acetate, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethers, diisopropyl Examples include ethers such as pyrether and tetrahydrofuran, aliphatic or alicyclic hydrocarbons such as hexane and cyclohexane, DMF, DMSO, dioxane, and N-methylpyrrolidone. Examples of the base include triethylamine, diisopropylethylamine, pyridine, dimethylaminopyridine, DBU and the like.
(A)化合物(I)による受容体の標識方法
神経伝達物質受容体は、単離した受容体であってもよいが、膜結合型の受容体に直接化合物(I)を反応させてもよく、受容体を発現した細胞を化合物(I)と反応させてもよい。本明細書において、「受容体」とは、受容体タンパク質あるいはリガンド結合部位と求核基を有するその断片、受容体を含む細胞膜の断片、受容体を発現した細胞を全て含む場合がある。細胞は、受容体の遺伝子を導入して受容体を高発現させた細胞が好ましく使用できる。受容体が複数のタンパク質から構成されるとき、リガンド結合部位を含むタンパク質だけでなく受容体を構成する全てのタンパク質の遺伝子を導入して高発現させた細胞を使用することができる。受容体を高発現させた細胞は、リガンドスクリーニングの際にシグナル(蛍光強度あるいはその変化)が大きくなるので好ましい。 (A) Receptor labeling method with compound (I) The neurotransmitter receptor may be an isolated receptor, or compound (I) may be reacted directly with a membrane-bound receptor. Alternatively, cells expressing the receptor may be reacted with compound (I). In the present specification, “receptor” may include all of a receptor protein or a fragment thereof having a ligand binding site and a nucleophilic group, a fragment of a cell membrane containing the receptor, and a cell expressing the receptor. As the cell, a cell in which a receptor gene is introduced to highly express the receptor can be preferably used. When the receptor is composed of a plurality of proteins, not only a protein containing a ligand binding site but also a cell in which genes of all proteins constituting the receptor are introduced and highly expressed can be used. A cell in which the receptor is highly expressed is preferable because a signal (fluorescence intensity or a change thereof) increases during ligand screening.
神経伝達物質受容体は、単離した受容体であってもよいが、膜結合型の受容体に直接化合物(I)を反応させてもよく、受容体を発現した細胞を化合物(I)と反応させてもよい。本明細書において、「受容体」とは、受容体タンパク質あるいはリガンド結合部位と求核基を有するその断片、受容体を含む細胞膜の断片、受容体を発現した細胞を全て含む場合がある。細胞は、受容体の遺伝子を導入して受容体を高発現させた細胞が好ましく使用できる。受容体が複数のタンパク質から構成されるとき、リガンド結合部位を含むタンパク質だけでなく受容体を構成する全てのタンパク質の遺伝子を導入して高発現させた細胞を使用することができる。受容体を高発現させた細胞は、リガンドスクリーニングの際にシグナル(蛍光強度あるいはその変化)が大きくなるので好ましい。 (A) Receptor labeling method with compound (I) The neurotransmitter receptor may be an isolated receptor, or compound (I) may be reacted directly with a membrane-bound receptor. Alternatively, cells expressing the receptor may be reacted with compound (I). In the present specification, “receptor” may include all of a receptor protein or a fragment thereof having a ligand binding site and a nucleophilic group, a fragment of a cell membrane containing the receptor, and a cell expressing the receptor. As the cell, a cell in which a receptor gene is introduced to highly express the receptor can be preferably used. When the receptor is composed of a plurality of proteins, not only a protein containing a ligand binding site but also a cell in which genes of all proteins constituting the receptor are introduced and highly expressed can be used. A cell in which the receptor is highly expressed is preferable because a signal (fluorescence intensity or a change thereof) increases during ligand screening.
受容体と化合物(I)との反応は、溶媒、緩衝液又は細胞の培地中で行うことができる。化合物(I)は受容体に対し過剰量使用するのが好ましい。化合物(I)は、受容体とリガンド(Lg)が結合した場合に受容体を標識するが、非特異的な標識化は抑制されている。反応終了後は化合物(I)を洗浄により除去することで過剰な化合物(I)を除去することができ、非特異的な蛍光標識を抑制できる。反応温度は室温から37℃程度であり、反応時間は30分~12時間程度である。溶媒は水あるいは化合物(I)が溶解する溶媒、例えばメタノール、エタノール、プロパノールなどの低級アルコール、アセトン、テトラヒドロフラン(THF)、ジオキサン、N-メチルピロリドン、ジメチルホルムアミド(DMF)、アセトニトリル、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)などの水混和性溶媒が挙げられる。緩衝液としては、HEPES緩衝液、リン酸緩衝液、トリス緩衝液,などが挙げられる。
The reaction between the receptor and compound (I) can be carried out in a solvent, buffer solution or cell culture medium. Compound (I) is preferably used in excess relative to the receptor. Compound (I) labels the receptor when the receptor and the ligand (Lg) are bound, but non-specific labeling is suppressed. After completion of the reaction, the compound (I) can be removed by washing, whereby excess compound (I) can be removed, and nonspecific fluorescent labeling can be suppressed. The reaction temperature is from room temperature to about 37 ° C., and the reaction time is about 30 minutes to 12 hours. The solvent is water or a solvent in which compound (I) is dissolved, for example, lower alcohols such as methanol, ethanol, propanol, acetone, tetrahydrofuran (THF), dioxane, N-methylpyrrolidone, dimethylformamide (DMF), acetonitrile, dimethylacetamide, dimethyl Water-miscible solvents such as sulfoxide (DMSO) can be mentioned. Examples of the buffer include HEPES buffer, phosphate buffer, Tris buffer, and the like.
受容体を発現する細胞は、培養細胞でもよく、組織切片中の受容体発現細胞(好ましくはヒト細胞)、あるいは非ヒト哺乳動物の生体中の受容体発現細胞に対し化合物(I)の溶液を供給し、蛍光標識してもよい。
The cell expressing the receptor may be a cultured cell, and a solution of compound (I) is applied to the receptor-expressing cell (preferably human cell) in the tissue section or the receptor-expressing cell in the living body of a non-human mammal. It may be supplied and fluorescently labeled.
(B)受容体に結合する候補物質(リガンド)のスクリーニング方法
標識された受容体と受容体のリガンド(アゴニスト、アンタゴニスト、部分アゴニスト)を水などの溶媒あるいは細胞培養用の培地中に受容体に結合する候補物質を混合し、蛍光の変化を見ることで、候補物質が受容体とどのような様式で結合するかを評価することができる。 (B) Screening method for candidate substance (ligand) that binds to receptor Labeled receptor and receptor ligand (agonist, antagonist, partial agonist) are transferred to a receptor in a solvent such as water or a medium for cell culture. By mixing candidate substances to be bound and observing the change in fluorescence, it is possible to evaluate how the candidate substance binds to the receptor.
標識された受容体と受容体のリガンド(アゴニスト、アンタゴニスト、部分アゴニスト)を水などの溶媒あるいは細胞培養用の培地中に受容体に結合する候補物質を混合し、蛍光の変化を見ることで、候補物質が受容体とどのような様式で結合するかを評価することができる。 (B) Screening method for candidate substance (ligand) that binds to receptor Labeled receptor and receptor ligand (agonist, antagonist, partial agonist) are transferred to a receptor in a solvent such as water or a medium for cell culture. By mixing candidate substances to be bound and observing the change in fluorescence, it is possible to evaluate how the candidate substance binds to the receptor.
例えば、図13に示すように、標識基がAlexa488、OG(Oregon green)の場合、アゴニストと競合的アンタゴニストはいずれも蛍光が上昇し(↑、図10)、標識基がAlexa568の場合には、競合的アンタゴニストの場合に蛍光が低下し(↓)、アゴニストとアンタゴニストの場合には蛍光変化は生じない。さらに、ATTO655の場合には、リガンドがアゴニストでは蛍光が上昇し(↑)、競合的アンタゴニストでは蛍光が一過性に上昇した後に低下し(↑↓)、非競合的アンタゴニストでは蛍光が低下する(↓)。
For example, as shown in FIG. 13, when the labeling group is Alexa488 or OG (Oregon green), both the agonist and the competitive antagonist have increased fluorescence (↑, FIG. 10), and when the labeling group is Alexa568, In the case of competitive antagonists, the fluorescence decreases (↓), and in the case of agonists and antagonists, no change in fluorescence occurs. Furthermore, in the case of ATTO655, the fluorescence increases when the ligand is an agonist (↑), the fluorescence is transiently increased after a competitive antagonist (↑ ↓), and the fluorescence decreases when a non-competitive antagonist is present (↑ ↓). ↓).
このように、本発明の標識された受容体は、必要に応じていくつかの標識受容体を組み合わせることで、例えば蛍光等の標識の発するシグナルの変化によりリガンドがアゴニスト、競合的アンタゴニスト、非競合的アンタゴニストのいずれであるのかを検出することができ、リガンドである(アゴニスト+アンタゴニスト)ことをハイスループットで検出したい場合には、例えば蛍光変化の大きいAlexa488を選択するなど、用途に応じて適切な蛍光標識受容体を選択することができる。
As described above, the labeled receptor of the present invention can be combined with several labeled receptors as necessary, for example, by changing the signal emitted by the label such as fluorescence, the ligand becomes an agonist, competitive antagonist, non-competitive. When it is possible to detect whether a ligand is an antagonist (agonist + antagonist) at high throughput, for example, select Alexa488 having a large fluorescence change. A fluorescently labeled receptor can be selected.
以下、本発明を実施例を用いてより詳細に説明する。
実施例1
材料と方法
全ての化学物質及び生物化学的試薬は、市販品を購入し、さらに精製することなく使用した。薄層クロマトグラフィー(TLC)はシリカ ゲル 60 F254 をプレコートしたアルミニウムシート(Merck社)を用いて行い、蛍光クエンチング又はニンヒドリン染色により可視化した。クロマトグラフィーによる精製は、シリカゲル60 N (neutral, 40-50 μm, 関東化学社)上のフラッシュカラムクロマトグラフィーを用いて行った。 Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Materials and Methods All chemicals and biochemical reagents were purchased from commercial sources and used without further purification. Thin layer chromatography (TLC) was performed using aluminum sheets (Merck Inc.) pre-coated with silica gel 60 F 254, visualized by fluorescence quenching or ninhydrin stain. Purification by chromatography was performed using flash column chromatography on silica gel 60 N (neutral, 40-50 μm, Kanto Chemical Co.).
実施例1
材料と方法
全ての化学物質及び生物化学的試薬は、市販品を購入し、さらに精製することなく使用した。薄層クロマトグラフィー(TLC)はシリカ ゲル 60 F254 をプレコートしたアルミニウムシート(Merck社)を用いて行い、蛍光クエンチング又はニンヒドリン染色により可視化した。クロマトグラフィーによる精製は、シリカゲル60 N (neutral, 40-50 μm, 関東化学社)上のフラッシュカラムクロマトグラフィーを用いて行った。 Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Materials and Methods All chemicals and biochemical reagents were purchased from commercial sources and used without further purification. Thin layer chromatography (TLC) was performed using aluminum sheets (Merck Inc.) pre-coated with silica gel 60 F 254, visualized by fluorescence quenching or ninhydrin stain. Purification by chromatography was performed using flash column chromatography on silica gel 60 N (neutral, 40-50 μm, Kanto Chemical Co.).
物理化学的測定: 1H-NMR スペクトルは400 MHz Varian Mercury spectrometerで記録した。ケミカルシフトは、 残留溶媒ピーク又はテトラメチルシラン(δ = 0 ppm)により標準化した。MALDI-TOF MSスペクトルをマトリクスとしてα-シアノ-4-ヒドロキシ桂皮酸(CHCA)又はシナピン酸(SA)を用いてAutoflex III (Bruker Daltonics, Bremen, Germany) で記録した。高分解能マススペクトルをエレクトロスプレーイオン化(ESI)を備えたExactive (Thermo Scientific, CA, USA)で測定した。逆相HPLC (RP-HPLC)は、ダイオードアレイ及び蛍光検出器並びにYMC-Pack Triat C18又は ODS-Aカラムを備えたHitachi Chromaster systemで測定した。0.1% TFA、もしくは10 mM 酢酸アンモニウム (溶媒 A)及び0.1% 水性 TFA含有アセトニトリルあるいはアセトニトリル((溶媒 B))を含有する直線グラジエントで行った。
Physicochemical measurements: 1 H-NMR spectra were recorded on a 400 MHz Varian Mercury spectrometer. Chemical shifts were normalized by residual solvent peak or tetramethylsilane (δ = 0 ppm). MALDI-TOF MS spectra were recorded with Autoflex III (Bruker Daltonics, Bremen, Germany) using α-cyano-4-hydroxycinnamic acid (CHCA) or sinapinic acid (SA) as matrix. High resolution mass spectra were measured with Exactive (Thermo Scientific, CA, USA) equipped with electrospray ionization (ESI). Reverse phase HPLC (RP-HPLC) was measured on a Hitachi Chromaster system equipped with a diode array and fluorescence detector and a YMC-Pack Triat C18 or ODS-A column. A linear gradient containing 0.1% TFA or 10 mM ammonium acetate (solvent A) and 0.1% aqueous TFA-containing acetonitrile or acetonitrile ((solvent B)) was used.
化合物 4
窒素雰囲気下で、2-ニトロ-4-トリフルオロメチルアニリン (10.5 g, 50 mmol)、トリエチルアミン (9 ml, 64 mmol)、ジメチルアミノピリジン (20 mg)を乾燥THF 100mlに溶かした。氷浴下で、エチルオキサリルクロリド 8.88g (64 mmol)を滴下して、室温で5時間撹拌した。溶媒を留去後、残渣を酢酸エチルに溶かし、水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。エタノールで再結晶を行い、12.6 g(41.1 mmol, 82%)の薄黄色結晶の化合物4を得た。1H-NMR (400 MHz, CDCl3) δ 12.0 (s, 1H), 9.03 (d, J = 8.8 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J = 6.8 Hz, 1H), 4.49 (q, J = 7.2 Hz, 1H), 1.47 (t, J = 6.8 Hz, 3H).Compound 4
Under a nitrogen atmosphere, 2-nitro-4-trifluoromethylaniline (10.5 g, 50 mmol), triethylamine (9 ml, 64 mmol), and dimethylaminopyridine (20 mg) were dissolved in 100 ml of dry THF. In an ice bath, 8.88 g (64 mmol) of ethyl oxalyl chloride was added dropwise, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, the residue was dissolved in ethyl acetate and washed with water. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off. Recrystallization from ethanol gave 12.6 g (41.1 mmol, 82%) ofcompound 4 as pale yellow crystals. 1 H-NMR (400 MHz, CDCl 3 ) δ 12.0 (s, 1H), 9.03 (d, J = 8.8 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J = 6.8 Hz, 1H), 4.49 (q, J = 7.2 Hz, 1H), 1.47 (t, J = 6.8 Hz, 3H).
窒素雰囲気下で、2-ニトロ-4-トリフルオロメチルアニリン (10.5 g, 50 mmol)、トリエチルアミン (9 ml, 64 mmol)、ジメチルアミノピリジン (20 mg)を乾燥THF 100mlに溶かした。氷浴下で、エチルオキサリルクロリド 8.88g (64 mmol)を滴下して、室温で5時間撹拌した。溶媒を留去後、残渣を酢酸エチルに溶かし、水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。エタノールで再結晶を行い、12.6 g(41.1 mmol, 82%)の薄黄色結晶の化合物4を得た。1H-NMR (400 MHz, CDCl3) δ 12.0 (s, 1H), 9.03 (d, J = 8.8 Hz, 1H), 8.58 (s, 1H), 7.96 (d, J = 6.8 Hz, 1H), 4.49 (q, J = 7.2 Hz, 1H), 1.47 (t, J = 6.8 Hz, 3H).
Under a nitrogen atmosphere, 2-nitro-4-trifluoromethylaniline (10.5 g, 50 mmol), triethylamine (9 ml, 64 mmol), and dimethylaminopyridine (20 mg) were dissolved in 100 ml of dry THF. In an ice bath, 8.88 g (64 mmol) of ethyl oxalyl chloride was added dropwise, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, the residue was dissolved in ethyl acetate and washed with water. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off. Recrystallization from ethanol gave 12.6 g (41.1 mmol, 82%) of
化合物 5
窒素雰囲気下で、化合物4 (5.2 g, 17 mmol)を乾燥THF 75 mlに溶かした。tert-ブトキシカリウム 2.6 g (23 mmol)を少量ずつ加えて、室温で30分間撹拌した。その後に、ブロモ酢酸エチル 3.1g (25 mmol)を滴下し、室温で5時間撹拌し、さらに3時間加熱還流した。溶媒を留去後、残渣を酢酸エチルに溶かし、水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。カラムクロマトグラフィー(シリカ、ヘキサン / 酢酸エチル=6/1-5/1-4/1)で精製を行い、2.6 g (6.6 mmol 39%)の黄色油状の化合物5を得た。1H-NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 7.96-7.91 (m, 2H), 4.48 (d, , J = 17.6 Hz 1H), 4.27 (d, J = 6.8 Hz, 1H), 4.08 (d, J = 6.8 Hz, 1H), 1.32 (t, J = 6.8 Hz, 3H), 1.13 (t, J = 6.8 Hz, 3H).Compound 5
Under a nitrogen atmosphere, compound 4 (5.2 g, 17 mmol) was dissolved in 75 ml of dry THF. 2.6 g (23 mmol) of tert-butoxypotassium was added little by little, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 3.1 g (25 mmol) of ethyl bromoacetate was added dropwise, and the mixture was stirred at room temperature for 5 hours and further heated to reflux for 3 hours. After the solvent was distilled off, the residue was dissolved in ethyl acetate and washed with water. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off. Purification by column chromatography (silica, hexane / ethyl acetate = 6 / 1-5 / 1-4 / 1) gave 2.6 g (6.6 mmol 39%) of yellowoily compound 5. 1 H-NMR (400 MHz, CDCl 3 ) δ 8.31 (s, 1H), 7.96-7.91 (m, 2H), 4.48 (d,, J = 17.6 Hz 1H), 4.27 (d, J = 6.8 Hz, 1H ), 4.08 (d, J = 6.8 Hz, 1H), 1.32 (t, J = 6.8 Hz, 3H), 1.13 (t, J = 6.8 Hz, 3H).
窒素雰囲気下で、化合物4 (5.2 g, 17 mmol)を乾燥THF 75 mlに溶かした。tert-ブトキシカリウム 2.6 g (23 mmol)を少量ずつ加えて、室温で30分間撹拌した。その後に、ブロモ酢酸エチル 3.1g (25 mmol)を滴下し、室温で5時間撹拌し、さらに3時間加熱還流した。溶媒を留去後、残渣を酢酸エチルに溶かし、水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。カラムクロマトグラフィー(シリカ、ヘキサン / 酢酸エチル=6/1-5/1-4/1)で精製を行い、2.6 g (6.6 mmol 39%)の黄色油状の化合物5を得た。1H-NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 7.96-7.91 (m, 2H), 4.48 (d, , J = 17.6 Hz 1H), 4.27 (d, J = 6.8 Hz, 1H), 4.08 (d, J = 6.8 Hz, 1H), 1.32 (t, J = 6.8 Hz, 3H), 1.13 (t, J = 6.8 Hz, 3H).
Under a nitrogen atmosphere, compound 4 (5.2 g, 17 mmol) was dissolved in 75 ml of dry THF. 2.6 g (23 mmol) of tert-butoxypotassium was added little by little, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 3.1 g (25 mmol) of ethyl bromoacetate was added dropwise, and the mixture was stirred at room temperature for 5 hours and further heated to reflux for 3 hours. After the solvent was distilled off, the residue was dissolved in ethyl acetate and washed with water. The obtained organic layer was dried over sodium sulfate, and the solvent was distilled off. Purification by column chromatography (silica, hexane / ethyl acetate = 6 / 1-5 / 1-4 / 1) gave 2.6 g (6.6 mmol 39%) of yellow
化合物 6
化合物5 (0.2 g, 0.51 mmol)を酢酸 3 mlに溶かした。鉄粉末 0.17 g を加えて、1時間加熱還流した。反応溶液を空冷した後に溶媒を留去し、残渣に水を加えて固液洗浄を行い、得られた固体を回収した後に、エタノールから再結晶し、82.4 mg (0.26 mmol, 51%)の白色結晶の化合物6を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.4 (s, 1H), 7.45 (s, 3H), 5.00 (s, 2H), 4.16 (q, J = 6.8 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H).Compound 6
Compound 5 (0.2 g, 0.51 mmol) was dissolved in 3 ml of acetic acid. Iron powder 0.17 g was added and heated under reflux for 1 hour. The reaction solution was air-cooled, the solvent was distilled off, water was added to the residue, and the mixture was washed with solid.The resulting solid was recovered and then recrystallized from ethanol to give 82.4 mg (0.26 mmol, 51%) ofwhite Crystalline compound 6 was obtained. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 12.4 (s, 1H), 7.45 (s, 3H), 5.00 (s, 2H), 4.16 (q, J = 6.8 Hz, 2H), 1.20 (t , J = 7.2 Hz, 3H).
化合物5 (0.2 g, 0.51 mmol)を酢酸 3 mlに溶かした。鉄粉末 0.17 g を加えて、1時間加熱還流した。反応溶液を空冷した後に溶媒を留去し、残渣に水を加えて固液洗浄を行い、得られた固体を回収した後に、エタノールから再結晶し、82.4 mg (0.26 mmol, 51%)の白色結晶の化合物6を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.4 (s, 1H), 7.45 (s, 3H), 5.00 (s, 2H), 4.16 (q, J = 6.8 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H).
Compound 5 (0.2 g, 0.51 mmol) was dissolved in 3 ml of acetic acid. Iron powder 0.17 g was added and heated under reflux for 1 hour. The reaction solution was air-cooled, the solvent was distilled off, water was added to the residue, and the mixture was washed with solid.The resulting solid was recovered and then recrystallized from ethanol to give 82.4 mg (0.26 mmol, 51%) of
化合物 7
化合物6 (82.4 mg, 0.26 mmol)を濃硫酸 1 mlに溶かした。氷浴下で硝酸カリウム 26.3 mg (0.26 mmol)を加えて、1時間撹拌した。反応溶液を氷水に加え、析出した固体を酢酸エチルで抽出した。得られた有機層の溶媒を留去し、88.0 mg (0.21 mmol)の白色固体の粗化合物7を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.7 (s, 1H), 8.22 (s, 1H), 7.65 (s, 1H), 5.02 (s, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H).Compound 7
Compound 6 (82.4 mg, 0.26 mmol) was dissolved in 1 ml of concentrated sulfuric acid. Under an ice bath, 26.3 mg (0.26 mmol) of potassium nitrate was added and stirred for 1 hour. The reaction solution was added to ice water, and the precipitated solid was extracted with ethyl acetate. The solvent of the obtained organic layer was distilled off to obtain 88.0 mg (0.21 mmol) ofcrude compound 7 as a white solid. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 12.7 (s, 1H), 8.22 (s, 1H), 7.65 (s, 1H), 5.02 (s, 2H), 4.17 (q, J = 6.8 Hz , 2H), 1.21 (t, J = 7.2 Hz, 3H).
化合物6 (82.4 mg, 0.26 mmol)を濃硫酸 1 mlに溶かした。氷浴下で硝酸カリウム 26.3 mg (0.26 mmol)を加えて、1時間撹拌した。反応溶液を氷水に加え、析出した固体を酢酸エチルで抽出した。得られた有機層の溶媒を留去し、88.0 mg (0.21 mmol)の白色固体の粗化合物7を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.7 (s, 1H), 8.22 (s, 1H), 7.65 (s, 1H), 5.02 (s, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H).
Compound 6 (82.4 mg, 0.26 mmol) was dissolved in 1 ml of concentrated sulfuric acid. Under an ice bath, 26.3 mg (0.26 mmol) of potassium nitrate was added and stirred for 1 hour. The reaction solution was added to ice water, and the precipitated solid was extracted with ethyl acetate. The solvent of the obtained organic layer was distilled off to obtain 88.0 mg (0.21 mmol) of
化合物 8
粗化合物7 (88 mg, 0.21 mmol)をDMF 0.6 mlに溶かした。10% パラジウム炭素 9 mgを加えて、水素雰囲気下で1時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去した。残渣をエタノールで洗浄し、87.2 mg(0.22 mmol, 100%)の白色固体の粗化合物8を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.0 (s, 1H), 7.20 (s, 1H), 6.64 (s, 1H), 5.47 (s, 2H), 4.81 (s, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H).Compound 8
Crude compound 7 (88 mg, 0.21 mmol) was dissolved in 0.6 ml of DMF. 9% 10% palladium carbon was added and stirred for 1 hour under hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off. The residue was washed with ethanol to obtain 87.2 mg (0.22 mmol, 100%) ofcrude compound 8 as a white solid. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 12.0 (s, 1H), 7.20 (s, 1H), 6.64 (s, 1H), 5.47 (s, 2H), 4.81 (s, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H).
粗化合物7 (88 mg, 0.21 mmol)をDMF 0.6 mlに溶かした。10% パラジウム炭素 9 mgを加えて、水素雰囲気下で1時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去した。残渣をエタノールで洗浄し、87.2 mg(0.22 mmol, 100%)の白色固体の粗化合物8を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.0 (s, 1H), 7.20 (s, 1H), 6.64 (s, 1H), 5.47 (s, 2H), 4.81 (s, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H).
Crude compound 7 (88 mg, 0.21 mmol) was dissolved in 0.6 ml of DMF. 9% 10% palladium carbon was added and stirred for 1 hour under hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off. The residue was washed with ethanol to obtain 87.2 mg (0.22 mmol, 100%) of
化合物 9
粗化合物8 (87.2 mg, 0.22 mmol)と2,5-ジメトキシ-3-テトラヒドロフランカルバルデヒド35.2 mg (0.22 mol)を酢酸 1.5 mlに溶かした。20分間加熱還流を行った後に放冷し、溶媒留去した。メタノール0.5 mlに溶かした後に、クロロホルム 20 mlを加えて再沈殿させた。固体を濾過にて回収し、減圧乾燥後に、80.9 mg (0.17 mmol, 77%)の白色固体の化合物9を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.5 (s, 1H), 9.76 (s, 1H), 7.8-7.6 (m, 2H), 7.64 (s, 1H), 7.05 (s, 1H), 6.63 (s, 1H), 4.98 (s, 2H), 4.14 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H). Compound 9
Crude compound 8 (87.2 mg, 0.22 mmol) and 2,5-dimethoxy-3-tetrahydrofurancarbaldehyde 35.2 mg (0.22 mol) were dissolved in 1.5 ml of acetic acid. After heating and refluxing for 20 minutes, the mixture was allowed to cool and the solvent was distilled off. After dissolving in 0.5 ml of methanol, 20 ml of chloroform was added for reprecipitation. The solid was collected by filtration, and after drying under reduced pressure, 80.9 mg (0.17 mmol, 77%) of white solid compound 9 was obtained. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 12.5 (s, 1H), 9.76 (s, 1H), 7.8-7.6 (m, 2H), 7.64 (s, 1H), 7.05 (s, 1H) , 6.63 (s, 1H), 4.98 (s, 2H), 4.14 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H).
粗化合物8 (87.2 mg, 0.22 mmol)と2,5-ジメトキシ-3-テトラヒドロフランカルバルデヒド35.2 mg (0.22 mol)を酢酸 1.5 mlに溶かした。20分間加熱還流を行った後に放冷し、溶媒留去した。メタノール0.5 mlに溶かした後に、クロロホルム 20 mlを加えて再沈殿させた。固体を濾過にて回収し、減圧乾燥後に、80.9 mg (0.17 mmol, 77%)の白色固体の化合物9を得た。1H-NMR (400 MHz, DMSO-d6) δ 12.5 (s, 1H), 9.76 (s, 1H), 7.8-7.6 (m, 2H), 7.64 (s, 1H), 7.05 (s, 1H), 6.63 (s, 1H), 4.98 (s, 2H), 4.14 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H). Compound 9
Crude compound 8 (87.2 mg, 0.22 mmol) and 2,5-dimethoxy-3-tetrahydrofurancarbaldehyde 35.2 mg (0.22 mol) were dissolved in 1.5 ml of acetic acid. After heating and refluxing for 20 minutes, the mixture was allowed to cool and the solvent was distilled off. After dissolving in 0.5 ml of methanol, 20 ml of chloroform was added for reprecipitation. The solid was collected by filtration, and after drying under reduced pressure, 80.9 mg (0.17 mmol, 77%) of white solid compound 9 was obtained. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 12.5 (s, 1H), 9.76 (s, 1H), 7.8-7.6 (m, 2H), 7.64 (s, 1H), 7.05 (s, 1H) , 6.63 (s, 1H), 4.98 (s, 2H), 4.14 (q, J = 6.8 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H).
化合物 10
化合物9 (100 mg, 0.24 mmol)をエタノール 3 mlに溶かした。ヒドロキシアミン塩酸塩 34 mg (0.49 mmol)、酢酸ナトリウム 40 mg (0.48 mmol)を加えた後に、1.5時間加熱還流を行った。水で固液洗浄を行い、固体を濾過にて回収し、減圧乾燥後に、92 mg (0.22 mmol, 89%)の白色固体の化合物10を得た。1H-NMRより、シス体とトランス体の存在比は、22:78であった。Compound 10
Compound 9 (100 mg, 0.24 mmol) was dissolved in 3 ml of ethanol. Hydroxyamine hydrochloride 34 mg (0.49 mmol) andsodium acetate 40 mg (0.48 mmol) were added, followed by heating under reflux for 1.5 hours. The solid was washed with water, and the solid was collected by filtration. After drying under reduced pressure, 92 mg (0.22 mmol, 89%) of Compound 10 as a white solid was obtained. From 1 H-NMR, the abundance ratio of the cis form to the trans form was 22:78.
化合物9 (100 mg, 0.24 mmol)をエタノール 3 mlに溶かした。ヒドロキシアミン塩酸塩 34 mg (0.49 mmol)、酢酸ナトリウム 40 mg (0.48 mmol)を加えた後に、1.5時間加熱還流を行った。水で固液洗浄を行い、固体を濾過にて回収し、減圧乾燥後に、92 mg (0.22 mmol, 89%)の白色固体の化合物10を得た。1H-NMRより、シス体とトランス体の存在比は、22:78であった。
Compound 9 (100 mg, 0.24 mmol) was dissolved in 3 ml of ethanol. Hydroxyamine hydrochloride 34 mg (0.49 mmol) and
化合物 11
化合物10 (32 mg, 0.075 mmol)をエタノール 1 mlと濃塩酸 0.1 mlとの混合溶液に溶かした。10% パラジウム炭素 15 mgを加えて、水素雰囲気下で終夜撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、26 mg(0.64 mmol, 85%)の化合物11を得た。1H-NMR (400 MHz, DMSO-d6) δ 7.64 (s, 1H), 7.31 (s, 1H), 7.05 (s, 1H), 6.93 (s, 1H), 6.41 (s, 1H), 5.03 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 4.05 (s, 2H), 1.27 (t, J = 7.2 Hz, 3H). Compound 11
Compound 10 (32 mg, 0.075 mmol) was dissolved in a mixed solution ofethanol 1 ml and concentrated hydrochloric acid 0.1 ml. 10% palladium carbon (15 mg) was added, and the mixture was stirred overnight under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 26 mg (0.64 mmol, 85%) of Compound 11. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.64 (s, 1H), 7.31 (s, 1H), 7.05 (s, 1H), 6.93 (s, 1H), 6.41 (s, 1H), 5.03 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 4.05 (s, 2H), 1.27 (t, J = 7.2 Hz, 3H).
化合物10 (32 mg, 0.075 mmol)をエタノール 1 mlと濃塩酸 0.1 mlとの混合溶液に溶かした。10% パラジウム炭素 15 mgを加えて、水素雰囲気下で終夜撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、26 mg(0.64 mmol, 85%)の化合物11を得た。1H-NMR (400 MHz, DMSO-d6) δ 7.64 (s, 1H), 7.31 (s, 1H), 7.05 (s, 1H), 6.93 (s, 1H), 6.41 (s, 1H), 5.03 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 4.05 (s, 2H), 1.27 (t, J = 7.2 Hz, 3H). Compound 11
Compound 10 (32 mg, 0.075 mmol) was dissolved in a mixed solution of
化合物 12
イミダゾール酢酸塩酸塩 31 mg ( 0.19 mmol)を乾燥DMF 2 mlに溶解させた。WSC-HCl 45 mg (0.24 mmol)、HOBt-H2O 32 mg (0.24 mmol)、化合物 12 (70 mg, 0.16 mmol)、DIEA 164 μl (0.94 mmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、31 mg (61 μmol)の化合物12を得た。1H-NMR (400 MHz, DMSO-d6) δ 7.60 (s, 2H), 7.23 (s, 1H), 6.98 (s, 1H), 6.80-6.77 (s, 2H), 6.21 (s, 1H), 5.03 (s, 1H), 4.27-4.18 (m, 4H), 3.51 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H).Compound 12
Imidazole acetate hydrochloride 31 mg (0.19 mmol) was dissolved in 2 ml of dry DMF. WSC-HCl 45 mg (0.24 mmol), HOBt-H 2 O 32 mg (0.24 mmol), compound 12 (70 mg, 0.16 mmol), DIEA 164 μl (0.94 mmol) were added, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (NH 3 1%)) to obtain 31 mg (61 μmol) of Compound 12. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 7.60 (s, 2H), 7.23 (s, 1H), 6.98 (s, 1H), 6.80-6.77 (s, 2H), 6.21 (s, 1H) , 5.03 (s, 1H), 4.27-4.18 (m, 4H), 3.51 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H).
イミダゾール酢酸塩酸塩 31 mg ( 0.19 mmol)を乾燥DMF 2 mlに溶解させた。WSC-HCl 45 mg (0.24 mmol)、HOBt-H2O 32 mg (0.24 mmol)、化合物 12 (70 mg, 0.16 mmol)、DIEA 164 μl (0.94 mmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、31 mg (61 μmol)の化合物12を得た。1H-NMR (400 MHz, DMSO-d6) δ 7.60 (s, 2H), 7.23 (s, 1H), 6.98 (s, 1H), 6.80-6.77 (s, 2H), 6.21 (s, 1H), 5.03 (s, 1H), 4.27-4.18 (m, 4H), 3.51 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H).
Imidazole acetate hydrochloride 31 mg (0.19 mmol) was dissolved in 2 ml of dry DMF. WSC-HCl 45 mg (0.24 mmol), HOBt-H 2 O 32 mg (0.24 mmol), compound 12 (70 mg, 0.16 mmol), DIEA 164 μl (0.94 mmol) were added, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (
化合物 13
化合物12 (20 mg, 33 μmol)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 284 μl (142 μmol)を加えて室温で3時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固し、得られた粗生成物をそのまま次の反応に用いた。次の反応に用いた。 Compound 13
Compound 12 (20 mg, 33 μmol) was dissolved in 0.5 ml of methanol, 284 μl (142 μmol) of 0.5 M aqueous lithium hydroxide solution was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was neutralized by adding 1N hydrochloric acid and then dried under reduced pressure, and the obtained crude product was directly used in the next reaction. Used in the next reaction.
化合物12 (20 mg, 33 μmol)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 284 μl (142 μmol)を加えて室温で3時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固し、得られた粗生成物をそのまま次の反応に用いた。次の反応に用いた。 Compound 13
Compound 12 (20 mg, 33 μmol) was dissolved in 0.5 ml of methanol, 284 μl (142 μmol) of 0.5 M aqueous lithium hydroxide solution was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was neutralized by adding 1N hydrochloric acid and then dried under reduced pressure, and the obtained crude product was directly used in the next reaction. Used in the next reaction.
化合物 14
オレゴングリーン (300 mg, 0.73 mmol)を乾燥DMF 5 mlに溶解させ、HATU 540 mg (1.31 mmol)、DIEA 0.36 ml (2.2 mmol)を加えて、室温で4時間撹拌した。溶媒留去後、カラムクロマトグラフィー(シリカ、CHCl3/MeOH/AcOH = 100/10/1 → 100/25/1)で精製を行い、173 mg (0.35 mmol)の化合物14を得た。1H-NMR (400 MHz, DMSO-d6) δ 8.78 (m, 1H), 8.58 (m, 1H), 8.58 (m, 1H),8.06 (m, 1H), 7.36 (m, 1H), 6.32 (m, 4H),4.60 (m, 1H), 3.62-3.30 (m, 8H). Compound 14
Oregon green (300 mg, 0.73 mmol) was dissolved in 5 ml of dry DMF, HATU 540 mg (1.31 mmol) and DIEA 0.36 ml (2.2 mmol) were added, and the mixture was stirred at room temperature for 4 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH / AcOH = 100/10/1 → 100/25/1) to obtain 173 mg (0.35 mmol) of Compound 14. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 8.78 (m, 1H), 8.58 (m, 1H), 8.58 (m, 1H), 8.06 (m, 1H), 7.36 (m, 1H), 6.32 (m, 4H), 4.60 (m, 1H), 3.62-3.30 (m, 8H).
オレゴングリーン (300 mg, 0.73 mmol)を乾燥DMF 5 mlに溶解させ、HATU 540 mg (1.31 mmol)、DIEA 0.36 ml (2.2 mmol)を加えて、室温で4時間撹拌した。溶媒留去後、カラムクロマトグラフィー(シリカ、CHCl3/MeOH/AcOH = 100/10/1 → 100/25/1)で精製を行い、173 mg (0.35 mmol)の化合物14を得た。1H-NMR (400 MHz, DMSO-d6) δ 8.78 (m, 1H), 8.58 (m, 1H), 8.58 (m, 1H),8.06 (m, 1H), 7.36 (m, 1H), 6.32 (m, 4H),4.60 (m, 1H), 3.62-3.30 (m, 8H). Compound 14
Oregon green (300 mg, 0.73 mmol) was dissolved in 5 ml of dry DMF, HATU 540 mg (1.31 mmol) and DIEA 0.36 ml (2.2 mmol) were added, and the mixture was stirred at room temperature for 4 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH / AcOH = 100/10/1 → 100/25/1) to obtain 173 mg (0.35 mmol) of Compound 14. 1 H-NMR (400 MHz, DMSO-d 6 ) δ 8.78 (m, 1H), 8.58 (m, 1H), 8.58 (m, 1H), 8.06 (m, 1H), 7.36 (m, 1H), 6.32 (m, 4H), 4.60 (m, 1H), 3.62-3.30 (m, 8H).
化合物 15
化合物 14 (55 mg, 0.11 mmol)を乾燥DMF 1.5 mlに溶解させた。窒素雰囲気下で、ジスクシンイミジルカルバメート71 mg (0.28 mmol)、トリエチルアミン 38.6 μl (0.28 mmol)を加えて、室温で6時間撹拌した。溶媒留去した後に、ジクロロメタン 2 mlに溶解させ、ジエチルエーテル 2 mlを加えて再沈殿させた。得られた固体を減圧乾燥し、40 mgの粗化合物 15を得た。得られた粗生成物をそのまま次の反応に用いた。 Compound 15
Compound 14 (55 mg, 0.11 mmol) was dissolved in 1.5 ml of dry DMF. Under a nitrogen atmosphere, 71 mg (0.28 mmol) of disuccinimidyl carbamate and 38.6 μl (0.28 mmol) of triethylamine were added and stirred at room temperature for 6 hours. After the solvent was distilled off, the residue was dissolved in 2 ml of dichloromethane and reprecipitated by adding 2 ml of diethyl ether. The obtained solid was dried under reduced pressure to obtain 40 mg of crude compound 15. The obtained crude product was directly used in the next reaction.
化合物 14 (55 mg, 0.11 mmol)を乾燥DMF 1.5 mlに溶解させた。窒素雰囲気下で、ジスクシンイミジルカルバメート71 mg (0.28 mmol)、トリエチルアミン 38.6 μl (0.28 mmol)を加えて、室温で6時間撹拌した。溶媒留去した後に、ジクロロメタン 2 mlに溶解させ、ジエチルエーテル 2 mlを加えて再沈殿させた。得られた固体を減圧乾燥し、40 mgの粗化合物 15を得た。得られた粗生成物をそのまま次の反応に用いた。 Compound 15
Compound 14 (55 mg, 0.11 mmol) was dissolved in 1.5 ml of dry DMF. Under a nitrogen atmosphere, 71 mg (0.28 mmol) of disuccinimidyl carbamate and 38.6 μl (0.28 mmol) of triethylamine were added and stirred at room temperature for 6 hours. After the solvent was distilled off, the residue was dissolved in 2 ml of dichloromethane and reprecipitated by adding 2 ml of diethyl ether. The obtained solid was dried under reduced pressure to obtain 40 mg of crude compound 15. The obtained crude product was directly used in the next reaction.
化合物 1(Oregon Green)
化合物 13 (36 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、化合物15 (25 mg, 39 μmol)、ピリジン 11.4 μl (0.14 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物1(Oregon Green)を得た。MALDI-TOF-Mass ([M+H]=1014.38(obs.), 1015.21(calc.)) Compound 1 (Oregon Green)
Compound 13 (36 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (25 mg, 39 μmol) and 11.4 μl (0.14 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 1 (Oregon Green). MALDI-TOF-Mass ([M + H] = 1014.38 (obs.), 1015.21 (calc.))
化合物 13 (36 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、化合物15 (25 mg, 39 μmol)、ピリジン 11.4 μl (0.14 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物1(Oregon Green)を得た。MALDI-TOF-Mass ([M+H]=1014.38(obs.), 1015.21(calc.)) Compound 1 (Oregon Green)
Compound 13 (36 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (25 mg, 39 μmol) and 11.4 μl (0.14 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 1 (Oregon Green). MALDI-TOF-Mass ([M + H] = 1014.38 (obs.), 1015.21 (calc.))
化合物 16
化合物 11 (166 mg, 0.37 mmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、無水コハク酸 (45 mg, 0.45 mmol)、DIEA 130 μl (0.74 mmol)を加えて、室温で2.5時間撹拌した。溶媒を留去した後に、残渣を水で洗浄し、92 mg (0.18 mmol)の化合物16を得た。1H-NMR (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.28 (s, 1H), 6.81 (d, J = 7.2 Hz, 2H), 6.23 (s, 1H), 5.01 (s, 1H), 4.25-4.20 (m, 4H), 2.59-2.42 (m, 4H), 1.24 (t, J = 5.2 Hz, 3H). Compound 16
Compound 11 (166 mg, 0.37 mmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, succinic anhydride (45 mg, 0.45 mmol) and DIEA 130 μl (0.74 mmol) were added, and the mixture was stirred at room temperature for 2.5 hours. After the solvent was distilled off, the residue was washed with water to obtain 92 mg (0.18 mmol) of Compound 16. 1 H-NMR (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.28 (s, 1H), 6.81 (d, J = 7.2 Hz, 2H), 6.23 (s, 1H), 5.01 (s, 1H), 4.25-4.20 (m, 4H), 2.59-2.42 (m, 4H), 1.24 (t, J = 5.2 Hz, 3H).
化合物 11 (166 mg, 0.37 mmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、無水コハク酸 (45 mg, 0.45 mmol)、DIEA 130 μl (0.74 mmol)を加えて、室温で2.5時間撹拌した。溶媒を留去した後に、残渣を水で洗浄し、92 mg (0.18 mmol)の化合物16を得た。1H-NMR (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.28 (s, 1H), 6.81 (d, J = 7.2 Hz, 2H), 6.23 (s, 1H), 5.01 (s, 1H), 4.25-4.20 (m, 4H), 2.59-2.42 (m, 4H), 1.24 (t, J = 5.2 Hz, 3H). Compound 16
Compound 11 (166 mg, 0.37 mmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, succinic anhydride (45 mg, 0.45 mmol) and DIEA 130 μl (0.74 mmol) were added, and the mixture was stirred at room temperature for 2.5 hours. After the solvent was distilled off, the residue was washed with water to obtain 92 mg (0.18 mmol) of Compound 16. 1 H-NMR (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.28 (s, 1H), 6.81 (d, J = 7.2 Hz, 2H), 6.23 (s, 1H), 5.01 (s, 1H), 4.25-4.20 (m, 4H), 2.59-2.42 (m, 4H), 1.24 (t, J = 5.2 Hz, 3H).
化合物 17
化合物 16 (92 mg, 0.18 mmol)を乾燥DMF 5 mlに溶解させた。WSC-HCl 45 mg (0.24 mmol)、HOBt-H2O 32 mg (0.24 mmol)、ヒスタミン塩酸塩 43mg (0.24 mmol)、DIEA 158 μl (0.91 mmol)を加えて、室温で3時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、72 mg (0.12 mmol)の化合物17を得た。1H-NMR (400 MHz, CD3OD) δ 7.59 (s, 1H), 7.55 (s, 1H), 7.24 (s, 1H), 6.85-6.77 (m, 3H), 6.21 (t, J = 4.2 Hz, 1H), 5.02 (s, 1H), 4.29-4.20 (m, 4H), 2.77-2.42 (m, 8H), 1.25 (t, J = 5.4 Hz, 3H). Compound 17
Compound 16 (92 mg, 0.18 mmol) was dissolved in 5 ml of dry DMF. WSC-HCl 45 mg (0.24 mmol), HOBt-H 2 O 32 mg (0.24 mmol), histamine hydrochloride 43 mg (0.24 mmol) and DIEA 158 μl (0.91 mmol) were added, and the mixture was stirred at room temperature for 3 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (NH 3 1%)) to obtain 72 mg (0.12 mmol) of Compound 17. 1 H-NMR (400 MHz, CD 3 OD) δ 7.59 (s, 1H), 7.55 (s, 1H), 7.24 (s, 1H), 6.85-6.77 (m, 3H), 6.21 (t, J = 4.2 Hz, 1H), 5.02 (s, 1H), 4.29-4.20 (m, 4H), 2.77-2.42 (m, 8H), 1.25 (t, J = 5.4 Hz, 3H).
化合物 16 (92 mg, 0.18 mmol)を乾燥DMF 5 mlに溶解させた。WSC-HCl 45 mg (0.24 mmol)、HOBt-H2O 32 mg (0.24 mmol)、ヒスタミン塩酸塩 43mg (0.24 mmol)、DIEA 158 μl (0.91 mmol)を加えて、室温で3時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、72 mg (0.12 mmol)の化合物17を得た。1H-NMR (400 MHz, CD3OD) δ 7.59 (s, 1H), 7.55 (s, 1H), 7.24 (s, 1H), 6.85-6.77 (m, 3H), 6.21 (t, J = 4.2 Hz, 1H), 5.02 (s, 1H), 4.29-4.20 (m, 4H), 2.77-2.42 (m, 8H), 1.25 (t, J = 5.4 Hz, 3H). Compound 17
Compound 16 (92 mg, 0.18 mmol) was dissolved in 5 ml of dry DMF. WSC-HCl 45 mg (0.24 mmol), HOBt-H 2 O 32 mg (0.24 mmol), histamine hydrochloride 43 mg (0.24 mmol) and DIEA 158 μl (0.91 mmol) were added, and the mixture was stirred at room temperature for 3 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (
化合物 18
化合物17 (20 mg, 33 μmol)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 284 μl (142 μmol)を加えて室温で3時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固し、得られた粗生成物をそのまま次の反応に用いた。次の反応に用いた。
化合物 2(Oregon Green)
化合物 18 (33 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、化合物15 (21 mg, 33 μmol)、ピリジン 10.6 μl (0.13 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Oregon Green)を得た。ESI-Mass ([M+Na]=1123.2507(obs.), 1123.2504(calc.)) Compound 18
Compound 17 (20 mg, 33 μmol) was dissolved in 0.5 ml of methanol, 284 μl (142 μmol) of 0.5 M aqueous lithium hydroxide solution was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was neutralized by adding 1N hydrochloric acid and then dried under reduced pressure, and the obtained crude product was directly used in the next reaction. Used in the next reaction.
Compound 2 (Oregon Green)
Compound 18 (33 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (21 mg, 33 μmol) and 10.6 μl (0.13 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Oregon Green). ESI-Mass ([M + Na] = 1123.2507 (obs.), 1123.2504 (calc.))
化合物17 (20 mg, 33 μmol)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 284 μl (142 μmol)を加えて室温で3時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固し、得られた粗生成物をそのまま次の反応に用いた。次の反応に用いた。
化合物 2(Oregon Green)
化合物 18 (33 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、化合物15 (21 mg, 33 μmol)、ピリジン 10.6 μl (0.13 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Oregon Green)を得た。ESI-Mass ([M+Na]=1123.2507(obs.), 1123.2504(calc.)) Compound 18
Compound 17 (20 mg, 33 μmol) was dissolved in 0.5 ml of methanol, 284 μl (142 μmol) of 0.5 M aqueous lithium hydroxide solution was added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was neutralized by adding 1N hydrochloric acid and then dried under reduced pressure, and the obtained crude product was directly used in the next reaction. Used in the next reaction.
Compound 2 (Oregon Green)
Compound 18 (33 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (21 mg, 33 μmol) and 10.6 μl (0.13 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Oregon Green). ESI-Mass ([M + Na] = 1123.2507 (obs.), 1123.2504 (calc.))
化合物 19
化合物 11 (130 mg, 0.29 mmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、無水アジピン酸 (45 mg, 0.45 mmol)(ref.1)、DIEA 102 μl (0.58 mmol)を加えて、室温で3時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、137 mg (0.25 mmol)の化合物19を得た。1H-NMR (400 MHz, CD3OD) δ 7.90 (s, 1H), 7.28 (s, 1H), 6.82-6.73 (m, 2H), 6.20 (d, J = 7.2 Hz, 1H), 5.03 (s, 2H), 4.24-4.19 (m, 4H), 2.32-2.28 (m, 4H), 1.71-1.56 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H). Compound 19
Compound 11 (130 mg, 0.29 mmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, adipic anhydride (45 mg, 0.45 mmol) (ref. 1) and 102 μl (0.58 mmol) of DIEA were added, and the mixture was stirred at room temperature for 3 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (NH 3 1%)) to obtain 137 mg (0.25 mmol) of Compound 19. 1 H-NMR (400 MHz, CD 3 OD) δ 7.90 (s, 1H), 7.28 (s, 1H), 6.82-6.73 (m, 2H), 6.20 (d, J = 7.2 Hz, 1H), 5.03 ( s, 2H), 4.24-4.19 (m, 4H), 2.32-2.28 (m, 4H), 1.71-1.56 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H).
化合物 11 (130 mg, 0.29 mmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、無水アジピン酸 (45 mg, 0.45 mmol)(ref.1)、DIEA 102 μl (0.58 mmol)を加えて、室温で3時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、137 mg (0.25 mmol)の化合物19を得た。1H-NMR (400 MHz, CD3OD) δ 7.90 (s, 1H), 7.28 (s, 1H), 6.82-6.73 (m, 2H), 6.20 (d, J = 7.2 Hz, 1H), 5.03 (s, 2H), 4.24-4.19 (m, 4H), 2.32-2.28 (m, 4H), 1.71-1.56 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H). Compound 19
Compound 11 (130 mg, 0.29 mmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, adipic anhydride (45 mg, 0.45 mmol) (ref. 1) and 102 μl (0.58 mmol) of DIEA were added, and the mixture was stirred at room temperature for 3 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (
化合物 20
化合物 19 (137 mg, 0.25 mmol)を乾燥DMF 5 mlに溶解させた。WSC-HCl 63 mg (0.33 mmol)、HOBt-H2O 45 mg (0.33 mmol)、ヒスタミン塩酸塩 61 mg (0.33 mmol)、DIEA 221 μl (1.27 mmol)を加えて、室温で2時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、72 mg (0.12 mmol)の粗化合物20を得た。得られた粗生成物をそのまま次の反応に用いた。Compound 20
Compound 19 (137 mg, 0.25 mmol) was dissolved in 5 ml of dry DMF. WSC-HCl 63 mg (0.33 mmol), HOBt-H 2 O 45 mg (0.33 mmol), histamine hydrochloride 61 mg (0.33 mmol) and DIEA 221 μl (1.27 mmol) were added, and the mixture was stirred at room temperature for 2 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (NH 3 1%)) to obtain 72 mg (0.12 mmol) of crude compound 20. The obtained crude product was directly used in the next reaction.
化合物 19 (137 mg, 0.25 mmol)を乾燥DMF 5 mlに溶解させた。WSC-HCl 63 mg (0.33 mmol)、HOBt-H2O 45 mg (0.33 mmol)、ヒスタミン塩酸塩 61 mg (0.33 mmol)、DIEA 221 μl (1.27 mmol)を加えて、室温で2時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =5/1(NH3 1%))で精製を行い、72 mg (0.12 mmol)の粗化合物20を得た。得られた粗生成物をそのまま次の反応に用いた。
Compound 19 (137 mg, 0.25 mmol) was dissolved in 5 ml of dry DMF. WSC-HCl 63 mg (0.33 mmol), HOBt-H 2 O 45 mg (0.33 mmol), histamine hydrochloride 61 mg (0.33 mmol) and DIEA 221 μl (1.27 mmol) were added, and the mixture was stirred at room temperature for 2 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 5/1 (
化合物 21
粗化合物20 (33 mg)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 210 μl (105 μmol)を加えて室温で5時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固した。得られた固体をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、凍結乾燥して、化合物21を得た。1H-NMR (400 MHz, CD3OD) δ 8.80 (s, 1H), 7.60 (s, 1H), 7.38 (s, 1H), 7.23 (s, 1H), 6.82-6.78 (m, 2H), 6.21 (s, 1H), 5.01 (s, 2H), 4.24 (s, 2H), 3.47 (t, J = 5.4 Hz, 2H), 2.90 (t, J = 5.4 Hz, 2H), 2.22-2.14 (m, 4H), 1.62-1.55 (m, 4H). Compound 21
Crude compound 20 (33 mg) was dissolved in 0.5 ml of methanol, and 210 μl (105 μmol) of 0.5 M aqueous lithium hydroxide solution was added and stirred at room temperature for 5 hours. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. The obtained solid was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and lyophilized to obtain Compound 21. 1 H-NMR (400 MHz, CD 3 OD) δ 8.80 (s, 1H), 7.60 (s, 1H), 7.38 (s, 1H), 7.23 (s, 1H), 6.82-6.78 (m, 2H), 6.21 (s, 1H), 5.01 (s, 2H), 4.24 (s, 2H), 3.47 (t, J = 5.4 Hz, 2H), 2.90 (t, J = 5.4 Hz, 2H), 2.22-2.14 (m , 4H), 1.62-1.55 (m, 4H).
粗化合物20 (33 mg)をメタノール 0.5 mlに溶解させ、0.5 M 水酸化リチウム水溶液 210 μl (105 μmol)を加えて室温で5時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固した。得られた固体をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、凍結乾燥して、化合物21を得た。1H-NMR (400 MHz, CD3OD) δ 8.80 (s, 1H), 7.60 (s, 1H), 7.38 (s, 1H), 7.23 (s, 1H), 6.82-6.78 (m, 2H), 6.21 (s, 1H), 5.01 (s, 2H), 4.24 (s, 2H), 3.47 (t, J = 5.4 Hz, 2H), 2.90 (t, J = 5.4 Hz, 2H), 2.22-2.14 (m, 4H), 1.62-1.55 (m, 4H). Compound 21
Crude compound 20 (33 mg) was dissolved in 0.5 ml of methanol, and 210 μl (105 μmol) of 0.5 M aqueous lithium hydroxide solution was added and stirred at room temperature for 5 hours. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. The obtained solid was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and lyophilized to obtain Compound 21. 1 H-NMR (400 MHz, CD 3 OD) δ 8.80 (s, 1H), 7.60 (s, 1H), 7.38 (s, 1H), 7.23 (s, 1H), 6.82-6.78 (m, 2H), 6.21 (s, 1H), 5.01 (s, 2H), 4.24 (s, 2H), 3.47 (t, J = 5.4 Hz, 2H), 2.90 (t, J = 5.4 Hz, 2H), 2.22-2.14 (m , 4H), 1.62-1.55 (m, 4H).
化合物 3(Oregon Green)
化合物 21 (18 mg, 26 μmol)を乾燥DMF 0.5 mlに溶解させた。窒素雰囲気下で、化合物15 (17 mg, 26 μmol)、ピリジン 10.6 μl (0.13 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物3(Oregon Green)を得た。ESI-Mass ([M+Na]=1129.3009(obs.), 1129.2997(calc.)) Compound 3 (Oregon Green)
Compound 21 (18 mg, 26 μmol) was dissolved in 0.5 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (17 mg, 26 μmol) and 10.6 μl (0.13 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 3 (Oregon Green). ESI-Mass ([M + Na] = 1129.3009 (obs.), 1129.2997 (calc.))
化合物 21 (18 mg, 26 μmol)を乾燥DMF 0.5 mlに溶解させた。窒素雰囲気下で、化合物15 (17 mg, 26 μmol)、ピリジン 10.6 μl (0.13 mmol)を加えて、室温で6時間撹拌した。反応溶液にアセトニトリルを加えることで、再沈殿させ、得られた固体をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物3(Oregon Green)を得た。ESI-Mass ([M+Na]=1129.3009(obs.), 1129.2997(calc.)) Compound 3 (Oregon Green)
Compound 21 (18 mg, 26 μmol) was dissolved in 0.5 ml of dry DMF. Under a nitrogen atmosphere, Compound 15 (17 mg, 26 μmol) and 10.6 μl (0.13 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. Acetonitrile was added to the reaction solution for reprecipitation, and the obtained solid was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 3 (Oregon Green). ESI-Mass ([M + Na] = 1129.3009 (obs.), 1129.2997 (calc.))
化合物 23
化合物 17 (18 mg, 26 μmol)を乾燥DMF 0.5 mlに溶解させた。窒素雰囲気下で、化合物22 (15.6 mg, 45 μmol) (ref.2)、ピリジン 10 μl (0.12 mmol)を加えて、室温で6時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物23(5.73 mg, 7μmol)を得た。MALDI-TOF-Mass ([M+H]=807.326(obs.), 807.292(calc.)) Compound 23
Compound 17 (18 mg, 26 μmol) was dissolved in 0.5 ml of dry DMF. Under a nitrogen atmosphere, Compound 22 (15.6 mg, 45 μmol) (ref. 2) and 10 μl (0.12 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 23 (5.73 mg, 7 μmol). MALDI-TOF-Mass ([M + H] = 807.326 (obs.), 807.292 (calc.))
化合物 17 (18 mg, 26 μmol)を乾燥DMF 0.5 mlに溶解させた。窒素雰囲気下で、化合物22 (15.6 mg, 45 μmol) (ref.2)、ピリジン 10 μl (0.12 mmol)を加えて、室温で6時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物23(5.73 mg, 7μmol)を得た。MALDI-TOF-Mass ([M+H]=807.326(obs.), 807.292(calc.)) Compound 23
Compound 17 (18 mg, 26 μmol) was dissolved in 0.5 ml of dry DMF. Under a nitrogen atmosphere, Compound 22 (15.6 mg, 45 μmol) (ref. 2) and 10 μl (0.12 mmol) of pyridine were added, and the mixture was stirred at room temperature for 6 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 23 (5.73 mg, 7 μmol). MALDI-TOF-Mass ([M + H] = 807.326 (obs.), 807.292 (calc.))
化合物 24
化合物 23 (5.738 mg, 7 μmol)を乾燥ジクロロメタン 1.0 mlに懸濁させた。窒素雰囲気下で、TFA 0.5 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いて、粗化合物24を得た。得られた生成物は、そのまま次の反応に用いた。 Compound 24
Compound 23 (5.738 mg, 7 μmol) was suspended in 1.0 ml of dry dichloromethane. Under a nitrogen atmosphere, 0.5 ml of TFA was added and stirred at room temperature for 1 hour. After distilling off the solvent, TFA was carefully removed by azeotropy with toluene to obtain crude compound 24. The obtained product was directly used for the next reaction.
化合物 23 (5.738 mg, 7 μmol)を乾燥ジクロロメタン 1.0 mlに懸濁させた。窒素雰囲気下で、TFA 0.5 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いて、粗化合物24を得た。得られた生成物は、そのまま次の反応に用いた。 Compound 24
Compound 23 (5.738 mg, 7 μmol) was suspended in 1.0 ml of dry dichloromethane. Under a nitrogen atmosphere, 0.5 ml of TFA was added and stirred at room temperature for 1 hour. After distilling off the solvent, TFA was carefully removed by azeotropy with toluene to obtain crude compound 24. The obtained product was directly used for the next reaction.
化合物 2(Alexa488)
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa488-NHS-ester (1 mg)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa488)(1.0 mg)を得た。MALDI-TOF-Mass ([M-H]=1221.619(obs.), 1221.217(calc.)) Compound 2 (Alexa488)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa488-NHS-ester (1 mg) andDIEA 1 μl (6 μmol) were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Alexa488) (1.0 mg). MALDI-TOF-Mass ([MH] = 1221.619 (obs.), 1221.217 (calc.))
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa488-NHS-ester (1 mg)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa488)(1.0 mg)を得た。MALDI-TOF-Mass ([M-H]=1221.619(obs.), 1221.217(calc.)) Compound 2 (Alexa488)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa488-NHS-ester (1 mg) and
化合物 2(ATTO655)
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、ATTO655-NHS-ester (1 mg, 1 μmol)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(ATTO655) (1.0 mg)を得た。ESI-Mass ([M+H]=1216.4352(obs.), 1216.4380(calc.)) Compound 2 (ATTO655)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, ATTO655-NHS-ester (1 mg, 1 μmol) andDIEA 1 μl (6 μmol) were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (ATTO655) (1.0 mg). ESI-Mass ([M + H] = 1216.4352 (obs.), 1216.4380 (calc.))
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、ATTO655-NHS-ester (1 mg, 1 μmol)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(ATTO655) (1.0 mg)を得た。ESI-Mass ([M+H]=1216.4352(obs.), 1216.4380(calc.)) Compound 2 (ATTO655)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, ATTO655-NHS-ester (1 mg, 1 μmol) and
化合物 2(Alexa546)
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa546-NHS-ester (1 mg, 1 μmol)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa546) (0.92 mg)を得た。 Compound 2 (Alexa546)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa546-NHS-ester (1 mg, 1 μmol) andDIEA 1 μl (6 μmol) were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Alexa546) (0.92 mg).
粗化合物 24 (1.8 mg, 2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa546-NHS-ester (1 mg, 1 μmol)、DIEA 1 μl (6 μmol)を加えて、室温で2時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa546) (0.92 mg)を得た。 Compound 2 (Alexa546)
Crude compound 24 (1.8 mg, 2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa546-NHS-ester (1 mg, 1 μmol) and
化合物 2(Alexa568)
粗化合物 24 (0.88 mg, 1.24 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa568-NHS-ester (0.98 mg, 1.24 μmol)、DIEA 0.65 μl (3.72 μmol)を加えて、室温で5時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa568)を得た。MALDI-TOF-Mass ([M+H]=1383.7(obs.), 1383.4(calc.)) Compound 2 (Alexa568)
Crude compound 24 (0.88 mg, 1.24 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa568-NHS-ester (0.98 mg, 1.24 μmol) and DIEA 0.65 μl (3.72 μmol) were added, and the mixture was stirred at room temperature for 5 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Alexa568). MALDI-TOF-Mass ([M + H] = 1383.7 (obs.), 1383.4 (calc.))
粗化合物 24 (0.88 mg, 1.24 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、Alexa568-NHS-ester (0.98 mg, 1.24 μmol)、DIEA 0.65 μl (3.72 μmol)を加えて、室温で5時間撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(Alexa568)を得た。MALDI-TOF-Mass ([M+H]=1383.7(obs.), 1383.4(calc.)) Compound 2 (Alexa568)
Crude compound 24 (0.88 mg, 1.24 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, Alexa568-NHS-ester (0.98 mg, 1.24 μmol) and DIEA 0.65 μl (3.72 μmol) were added, and the mixture was stirred at room temperature for 5 hours. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (Alexa568). MALDI-TOF-Mass ([M + H] = 1383.7 (obs.), 1383.4 (calc.))
化合物 2(CypHer5E)
粗化合物 24 (0.88 mg, 1.24 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、CypHer5E-NHS-ester (2.0 mg, 2.0 μmol)、DIEA 2 μl (12 μmol)を加えて、室温で終夜撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(CypHer5E)を得た。ESI-Mass ([M+H]=1439.4249(obs.), 1439.4240(calc.)) Compound 2 (CypHer5E)
Crude compound 24 (0.88 mg, 1.24 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, CypHer5E-NHS-ester (2.0 mg, 2.0 μmol) andDIEA 2 μl (12 μmol) were added, and the mixture was stirred at room temperature overnight. The reaction solution was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 2 (CypHer5E). ESI-Mass ([M + H] = 1439.4249 (obs.), 1439.4240 (calc.))
粗化合物 24 (0.88 mg, 1.24 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、CypHer5E-NHS-ester (2.0 mg, 2.0 μmol)、DIEA 2 μl (12 μmol)を加えて、室温で終夜撹拌した。反応溶液をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物2(CypHer5E)を得た。ESI-Mass ([M+H]=1439.4249(obs.), 1439.4240(calc.)) Compound 2 (CypHer5E)
Crude compound 24 (0.88 mg, 1.24 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, CypHer5E-NHS-ester (2.0 mg, 2.0 μmol) and
生物化学実験: SDS-PAGE 及びウェスタンブロッティングをBio-Rad Mini-Protean III 電気泳動装置を用いて行った。蛍光及び化学発光シグナルを520DF30フィルター(ChemiDoc, Bio-Rad laboratory)及びImagequant LAS 4000 (GE Healthcare)を備えたChemiDoc XRS system で検出した。共焦点レーザー顕微鏡は、FV1000(オリンパス社)あるいはLSM710(カールツァイス社)を用いた。
Biochemical experiments: SDS-PAGE and Western blotting were performed using a Bio-Rad Mini-Protean III electrophoresis apparatus. Fluorescence and chemiluminescence signals were detected with a ChemiDoc XRS system equipped with a 520DF30 filter (ChemiDoc, Bio-Rad laboratory) and Imagequant LAS 4000 (GE Healthcare). As the confocal laser microscope, FV1000 (Olympus) or LSM710 (Carl Zeiss) was used.
AMPARリガンド結合ドメインS1S2の試験管内標識
AMPARリガンド結合ドメインS1S2 (3 μM) (ref.3)をHEPES バッファー (50 mM, pH 7.4, 100mM NaCl)中のNBQX (150 μM)の存在下又は非存在下にラベル化剤 (6 μM)を添加し、37 °Cでインキュベートした。任意の時間で採取し、その標識率をSDS-PAGEで決定した。 In vitro labeling of AMPAR ligand binding domain S1S2 AMPAR ligand binding domain S1S2 (3 μM) (ref. 3) in the presence or absence of NBQX (150 μM) in HEPES buffer (50 mM, pH 7.4, 100 mM NaCl) Labeling agent (6 μM) was added to and incubated at 37 ° C. The sample was collected at an arbitrary time, and the labeling rate was determined by SDS-PAGE.
AMPARリガンド結合ドメインS1S2 (3 μM) (ref.3)をHEPES バッファー (50 mM, pH 7.4, 100mM NaCl)中のNBQX (150 μM)の存在下又は非存在下にラベル化剤 (6 μM)を添加し、37 °Cでインキュベートした。任意の時間で採取し、その標識率をSDS-PAGEで決定した。 In vitro labeling of AMPAR ligand binding domain S1S2 AMPAR ligand binding domain S1S2 (3 μM) (ref. 3) in the presence or absence of NBQX (150 μM) in HEPES buffer (50 mM, pH 7.4, 100 mM NaCl) Labeling agent (6 μM) was added to and incubated at 37 ° C. The sample was collected at an arbitrary time, and the labeling rate was determined by SDS-PAGE.
細胞培養および遺伝子導入
HEK293T細胞は10% FBS、ペニシリン (100 units/mL) 及び ストレプトマイシン(100 μg/mL)を添加したDulbecco’s Modified Eagle Medium (DMEM, グルコース4.5 g/L)培地中で、5% CO2 の湿潤雰囲気下に培養した全ての実験について、細胞はサブコンフルエント(< 80%)からトリプシン-EDTA 溶液または細胞スクレーパー法で回収し、新鮮な培地に再懸濁した。継代培養は2-3日毎に行った。グルタミン酸受容体(GluR2)の遺伝子導入は、lipofectamine 2000(Invitrogen)を用い、添付のマニュアルに従って遺伝子導入した。ラベル化には、遺伝子導入36-48時間後の細胞を用いた。 Cell culture and gene transfer
HEK293T cells 10% FBS, penicillin (100 units / mL) and Dulbecco was added streptomycin (100 μg / mL)'s Modified Eagle Medium (DMEM, glucose 4.5 g / L) in a medium, in a humidified atmosphere of 5% CO 2 For all experiments cultured in, cells were harvested from subconfluent (<80%) with trypsin-EDTA solution or cell scraper method and resuspended in fresh medium. Subculture was performed every 2-3 days. The gene transfer of glutamate receptor (GluR2) was performed using lipofectamine 2000 (Invitrogen) according to the attached manual. For labeling, cells 36 to 48 hours after gene introduction were used.
HEK293T細胞は10% FBS、ペニシリン (100 units/mL) 及び ストレプトマイシン(100 μg/mL)を添加したDulbecco’s Modified Eagle Medium (DMEM, グルコース4.5 g/L)培地中で、5% CO2 の湿潤雰囲気下に培養した全ての実験について、細胞はサブコンフルエント(< 80%)からトリプシン-EDTA 溶液または細胞スクレーパー法で回収し、新鮮な培地に再懸濁した。継代培養は2-3日毎に行った。グルタミン酸受容体(GluR2)の遺伝子導入は、lipofectamine 2000(Invitrogen)を用い、添付のマニュアルに従って遺伝子導入した。ラベル化には、遺伝子導入36-48時間後の細胞を用いた。 Cell culture and gene transfer
HEK293T細胞におけるGluR2のラベル化
上記の遺伝子導入したHEK293T細胞に、DMEM培地(glutamax, 25mM HEPES, FBS(-))中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(2 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、氷上で1%プロテアーゼ阻害剤カクテルセット III (Calbiochem(登録商標))を含有するRIPA (放射免疫沈降アッセイ) バッファーを用いて溶解した。得られた溶液を2 × SDS-PAGEバッファー (pH 6.8, 125 mM トリス・HCl, 20% グリセロール, 4% SDS 及び 0.01% ブロモフェノールブルー, 100mM DTT) と混合し、室温で30分間ボルテックスした。得られたサンプルをSDS-PAGEで展開し、Immun-Blot PVDF 膜 (Bio-Rad)に転写した。標識生成物をanti-Fluorescein抗体 (Invitrogen社, ×2000) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×3000)で検出した。GluR2の免疫検出を抗-HA 抗体 (Abcam社) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×5000)を用いて行った。HRPシグナルを、ECLプライムウェスタンブロッティング検出試薬(GE Healthcare)を用いてLAS 4000 imaging system (FujiFilm社)で検出した。 Labeling of GluR2 in HEK293T cells Labeling agent (2 μM) was added to HEK293T cells transfected with the above gene in the presence or absence of NBQX (50 μM) in DMEM medium (glutamax, 25 mM HEPES, FBS (-)). ) Was added and incubated at 17 ° C. for 4 hours. Cells were washed twice with HBS and lysed on ice using RIPA (radioimmunoprecipitation assay) buffer containing 1% protease inhibitor cocktail set III (Calbiochem®). The resulting solution was mixed with 2 × SDS-PAGE buffer (pH 6.8, 125 mM Tris · HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes. The obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad). The labeled product was detected with an anti-Fluorescein antibody (Invitrogen, × 2000) and an anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 3000). Immunodetection of GluR2 was performed using anti-HA antibody (Abcam) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 5000). The HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
上記の遺伝子導入したHEK293T細胞に、DMEM培地(glutamax, 25mM HEPES, FBS(-))中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(2 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、氷上で1%プロテアーゼ阻害剤カクテルセット III (Calbiochem(登録商標))を含有するRIPA (放射免疫沈降アッセイ) バッファーを用いて溶解した。得られた溶液を2 × SDS-PAGEバッファー (pH 6.8, 125 mM トリス・HCl, 20% グリセロール, 4% SDS 及び 0.01% ブロモフェノールブルー, 100mM DTT) と混合し、室温で30分間ボルテックスした。得られたサンプルをSDS-PAGEで展開し、Immun-Blot PVDF 膜 (Bio-Rad)に転写した。標識生成物をanti-Fluorescein抗体 (Invitrogen社, ×2000) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×3000)で検出した。GluR2の免疫検出を抗-HA 抗体 (Abcam社) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×5000)を用いて行った。HRPシグナルを、ECLプライムウェスタンブロッティング検出試薬(GE Healthcare)を用いてLAS 4000 imaging system (FujiFilm社)で検出した。 Labeling of GluR2 in HEK293T cells Labeling agent (2 μM) was added to HEK293T cells transfected with the above gene in the presence or absence of NBQX (50 μM) in DMEM medium (glutamax, 25 mM HEPES, FBS (-)). ) Was added and incubated at 17 ° C. for 4 hours. Cells were washed twice with HBS and lysed on ice using RIPA (radioimmunoprecipitation assay) buffer containing 1% protease inhibitor cocktail set III (Calbiochem®). The resulting solution was mixed with 2 × SDS-PAGE buffer (pH 6.8, 125 mM Tris · HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes. The obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad). The labeled product was detected with an anti-Fluorescein antibody (Invitrogen, × 2000) and an anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 3000). Immunodetection of GluR2 was performed using anti-HA antibody (Abcam) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 5000). The HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
培養小脳顆粒細胞における内在性AMPA受容体のラベル化
生後7日目のラットから単離し11日間培養した小脳顆粒細胞由来の培養神経細胞(ref.4)に対して、Neurobasal培地(glutamax, 10 mM HEPES, FBS(-), 25 mM KCl)中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(0.3 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、氷上で1%プロテアーゼ阻害剤カクテルセット III (Calbiochem(登録商標))を含有するRIPA (放射免疫沈降アッセイ) バッファーを用いて溶解した。得られた溶液を2 × SDS-PAGEバッファー (pH 6.8, 125 mM トリス・HCl, 20% グリセロール, 4% SDS 及び 0.01% ブロモフェノールブルー, 100mM DTT) と混合し、室温で30分間ボルテックスした。得られたサンプルをSDS-PAGEで展開し、Immun-Blot PVDF 膜 (Bio-Rad)に転写した。標識生成物をanti-Fluorescein抗体 (Invitrogen社, ×2000)あるいはanti-Alexa488抗体 (Invitrogen社, ×1000) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×3000)で検出した。GluR1の免疫検出を抗-GluR1 抗体 (millipore社) 及び 抗-マウスIgG抗体-HRP複合体(GE Healthcare社, ×3000)を用いて行った。HRPシグナルを、ECLプライムウェスタンブロッティング検出試薬(GE Healthcare)を用いてLAS 4000 imaging system (FujiFilm社)で検出した。 Labeling of Endogenous AMPA Receptors in Cultured Cerebellar Granule Cells Neurobasal medium (glutamax, 10 mM) was obtained from cultured neurons derived from cerebellar granule cells (ref. 4) isolated from 7-day-old rats and cultured for 11 days. A labeling agent (0.3 μM) was added in the presence or absence of NBQX (50 μM) in HEPES, FBS (−), 25 mM KCl) and incubated at 17 ° C. for 4 hours. Cells were washed twice with HBS and lysed on ice using RIPA (radioimmunoprecipitation assay) buffer containing 1% protease inhibitor cocktail set III (Calbiochem®). The resulting solution was mixed with 2 × SDS-PAGE buffer (pH 6.8, 125 mM Tris · HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes. The obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad). Labeled products were detected with anti-Fluorescein antibody (Invitrogen, × 2000) or anti-Alexa488 antibody (Invitrogen, × 1000) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 3000). Immunodetection of GluR1 was performed using anti-GluR1 antibody (millipore) and anti-mouse IgG antibody-HRP complex (GE Healthcare, × 3000). The HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
生後7日目のラットから単離し11日間培養した小脳顆粒細胞由来の培養神経細胞(ref.4)に対して、Neurobasal培地(glutamax, 10 mM HEPES, FBS(-), 25 mM KCl)中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(0.3 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、氷上で1%プロテアーゼ阻害剤カクテルセット III (Calbiochem(登録商標))を含有するRIPA (放射免疫沈降アッセイ) バッファーを用いて溶解した。得られた溶液を2 × SDS-PAGEバッファー (pH 6.8, 125 mM トリス・HCl, 20% グリセロール, 4% SDS 及び 0.01% ブロモフェノールブルー, 100mM DTT) と混合し、室温で30分間ボルテックスした。得られたサンプルをSDS-PAGEで展開し、Immun-Blot PVDF 膜 (Bio-Rad)に転写した。標識生成物をanti-Fluorescein抗体 (Invitrogen社, ×2000)あるいはanti-Alexa488抗体 (Invitrogen社, ×1000) 及び 抗-ウサギIgG抗体-HRP複合体(GE Healthcare社, ×3000)で検出した。GluR1の免疫検出を抗-GluR1 抗体 (millipore社) 及び 抗-マウスIgG抗体-HRP複合体(GE Healthcare社, ×3000)を用いて行った。HRPシグナルを、ECLプライムウェスタンブロッティング検出試薬(GE Healthcare)を用いてLAS 4000 imaging system (FujiFilm社)で検出した。 Labeling of Endogenous AMPA Receptors in Cultured Cerebellar Granule Cells Neurobasal medium (glutamax, 10 mM) was obtained from cultured neurons derived from cerebellar granule cells (ref. 4) isolated from 7-day-old rats and cultured for 11 days. A labeling agent (0.3 μM) was added in the presence or absence of NBQX (50 μM) in HEPES, FBS (−), 25 mM KCl) and incubated at 17 ° C. for 4 hours. Cells were washed twice with HBS and lysed on ice using RIPA (radioimmunoprecipitation assay) buffer containing 1% protease inhibitor cocktail set III (Calbiochem®). The resulting solution was mixed with 2 × SDS-PAGE buffer (pH 6.8, 125 mM Tris · HCl, 20% glycerol, 4% SDS and 0.01% bromophenol blue, 100 mM DTT) and vortexed at room temperature for 30 minutes. The obtained sample was developed by SDS-PAGE and transferred to an Immun-Blot PVDF membrane (Bio-Rad). Labeled products were detected with anti-Fluorescein antibody (Invitrogen, × 2000) or anti-Alexa488 antibody (Invitrogen, × 1000) and anti-rabbit IgG antibody-HRP complex (GE Healthcare, × 3000). Immunodetection of GluR1 was performed using anti-GluR1 antibody (millipore) and anti-mouse IgG antibody-HRP complex (GE Healthcare, × 3000). The HRP signal was detected with LAS 4000 imaging system (FujiFilm) using ECL prime western blotting detection reagent (GE Healthcare).
培養海馬錐体細胞における内在性AMPA受容体のラベル化
胎生18日目のラットから単離し18日間培養した海馬錐体細胞由来の培養神経細胞(ref.4)に対して、Neurobasal培地(glutamax, 10 mM HEPES, FBS(-), 25 mM KCl)中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(1 μM)を添加し、17℃で4時間インキュベートした。細胞をHESで2回洗浄し、4%パラホルムアルデヒド水溶液で固定化した。Normal goat serumでブロッキングした後に、anti-GluR2抗体 (millipore社, ×1000) 及び 抗-マウスIgG抗体-Alexa546修飾(GE Healthcare社, ×3000)で免疫染色した。封入剤を用いて封入した後に、共焦点レーザー顕微鏡にて、ラベル化蛍光および免疫染色を観察した。 Labeling of Endogenous AMPA Receptors in Cultured Hippocampal Pyramidal Cells Cultured neurons from hippocampal pyramidal cells (ref. 4) isolated from embryonic day 18 rats and cultured for 18 days were treated with Neurobasal medium (glutamax, Labeling agent (1 μM) was added in the presence or absence of NBQX (50 μM) in 10 mM HEPES, FBS (−), 25 mM KCl) and incubated at 17 ° C. for 4 hours. Cells were washed twice with HES and fixed with 4% aqueous paraformaldehyde. After blocking with normal goat serum, immunostaining was performed with anti-GluR2 antibody (millipore, × 1000) and anti-mouse IgG antibody-Alexa546 modification (GE Healthcare, × 3000). After encapsulating with an encapsulant, labeled fluorescence and immunostaining were observed with a confocal laser microscope.
胎生18日目のラットから単離し18日間培養した海馬錐体細胞由来の培養神経細胞(ref.4)に対して、Neurobasal培地(glutamax, 10 mM HEPES, FBS(-), 25 mM KCl)中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(1 μM)を添加し、17℃で4時間インキュベートした。細胞をHESで2回洗浄し、4%パラホルムアルデヒド水溶液で固定化した。Normal goat serumでブロッキングした後に、anti-GluR2抗体 (millipore社, ×1000) 及び 抗-マウスIgG抗体-Alexa546修飾(GE Healthcare社, ×3000)で免疫染色した。封入剤を用いて封入した後に、共焦点レーザー顕微鏡にて、ラベル化蛍光および免疫染色を観察した。 Labeling of Endogenous AMPA Receptors in Cultured Hippocampal Pyramidal Cells Cultured neurons from hippocampal pyramidal cells (ref. 4) isolated from embryonic day 18 rats and cultured for 18 days were treated with Neurobasal medium (glutamax, Labeling agent (1 μM) was added in the presence or absence of NBQX (50 μM) in 10 mM HEPES, FBS (−), 25 mM KCl) and incubated at 17 ° C. for 4 hours. Cells were washed twice with HES and fixed with 4% aqueous paraformaldehyde. After blocking with normal goat serum, immunostaining was performed with anti-GluR2 antibody (millipore, × 1000) and anti-mouse IgG antibody-Alexa546 modification (GE Healthcare, × 3000). After encapsulating with an encapsulant, labeled fluorescence and immunostaining were observed with a confocal laser microscope.
HEK293T細胞におけるGluR2のラベル化およびライブセルイメージング
前述したGluR2遺伝子導入済のHEK293T細胞に、DMEM培地(glutamax, 25mM HEPES, FBS(-))中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(2 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、蛍光顕微鏡観察もしくは共焦点顕微鏡観察を行った。蛍光検出の際には、CCDカメラ(ORCA-Flash)が接続された蛍光顕微鏡(IX-71)を用い、HBS溶液、アゴニスト、アンタゴニスト溶液を還流することで液交換を行った。 Labeling and live cell imaging of GluR2 in HEK293T cells In the presence or absence of NBQX (50 μM) in DMEM medium (glutamax, 25 mM HEPES, FBS (-)) on HEK293T cells already transfected with GluR2 as described above Labeling agent (2 μM) was added and incubated at 17 ° C. for 4 hours. The cells were washed twice with HBS and observed with a fluorescent microscope or a confocal microscope. In fluorescence detection, liquid exchange was performed by refluxing the HBS solution, agonist, and antagonist solution using a fluorescence microscope (IX-71) connected to a CCD camera (ORCA-Flash).
前述したGluR2遺伝子導入済のHEK293T細胞に、DMEM培地(glutamax, 25mM HEPES, FBS(-))中のNBQX (50 μM)の存在下又は非存在下にラベル化剤(2 μM)を添加し、17℃で4時間インキュベートした。細胞をHBSで2回洗浄し、蛍光顕微鏡観察もしくは共焦点顕微鏡観察を行った。蛍光検出の際には、CCDカメラ(ORCA-Flash)が接続された蛍光顕微鏡(IX-71)を用い、HBS溶液、アゴニスト、アンタゴニスト溶液を還流することで液交換を行った。 Labeling and live cell imaging of GluR2 in HEK293T cells In the presence or absence of NBQX (50 μM) in DMEM medium (glutamax, 25 mM HEPES, FBS (-)) on HEK293T cells already transfected with GluR2 as described above Labeling agent (2 μM) was added and incubated at 17 ° C. for 4 hours. The cells were washed twice with HBS and observed with a fluorescent microscope or a confocal microscope. In fluorescence detection, liquid exchange was performed by refluxing the HBS solution, agonist, and antagonist solution using a fluorescence microscope (IX-71) connected to a CCD camera (ORCA-Flash).
参考文献(ref)
1.Napoli, A. et al, Anal. Chem., 82, 5552-5560 (2010)
2.Armstrong, N. et al, Neuron, 28, 165-181 (2000)
3.Kiyonaka, S. et al, Nat. Neurosci., 10, 691-701 (2007)
4.Beaudoin III, G.M.J. et al, Nat. Protoc., 7, 1741-1754 (2012) Reference (ref)
1. Napoli, A. et al, Anal. Chem., 82, 5552-5560 (2010)
2. Armstrong, N. et al, Neuron, 28, 165-181 (2000)
3. Kiyonaka, S. et al, Nat. Neurosci., 10, 691-701 (2007)
4). Beaudoin III, GMJ et al, Nat.Protoc., 7, 1741-1754 (2012)
1.Napoli, A. et al, Anal. Chem., 82, 5552-5560 (2010)
2.Armstrong, N. et al, Neuron, 28, 165-181 (2000)
3.Kiyonaka, S. et al, Nat. Neurosci., 10, 691-701 (2007)
4.Beaudoin III, G.M.J. et al, Nat. Protoc., 7, 1741-1754 (2012) Reference (ref)
1. Napoli, A. et al, Anal. Chem., 82, 5552-5560 (2010)
2. Armstrong, N. et al, Neuron, 28, 165-181 (2000)
3. Kiyonaka, S. et al, Nat. Neurosci., 10, 691-701 (2007)
4). Beaudoin III, GMJ et al, Nat.Protoc., 7, 1741-1754 (2012)
NMDA受容体ラベル化剤合成の実験項
LDAI試薬4aの合成 Experimental section on synthesis of NMDA receptor labeling agent
Synthesis of LDAI reagent 4a
LDAI試薬4aの合成 Experimental section on synthesis of NMDA receptor labeling agent
Synthesis of LDAI reagent 4a
化合物11a
NaNO2 (3.2 g, 43 mmol)の氷冷溶液を3,5-ジクロロアニリン (7.0 g, 43 mmol)の濃塩酸(80 mL)溶液に撹拌しながら0 °Cで10分間かけて滴下した。 反応混合物を0 °C で30分間撹拌した。SnCl2 (43 g, 225 mmol)の濃塩酸(40 mL) 溶液を反応混合物に0 °Cで滴下した。白色沈殿を集め、水(500 mL)に懸濁した。1N NaOHでpH 7.0に中和後、AcOEt (500 mL)を加えて生成物を有機層に抽出した。有機層を飽和食塩水(100 mL x2)で洗浄し、Na2SO4で乾燥した。次いで、溶液を濾過し、溶媒を留去して化合物11a(2.65 g, 15 mmol, 35%)を橙色固体として得た。
1H NMR (400 MHz; CDCl3):δ 6.75 (t, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 5.21 (br, 1H) Compound 11a
An ice-cold solution of NaNO 2 (3.2 g, 43 mmol) was added dropwise to a concentrated hydrochloric acid (80 mL) solution of 3,5-dichloroaniline (7.0 g, 43 mmol) at 0 ° C. over 10 minutes with stirring. The reaction mixture was stirred at 0 ° C. for 30 minutes. A solution of SnCl 2 (43 g, 225 mmol) in concentrated hydrochloric acid (40 mL) was added dropwise to the reaction mixture at 0 ° C. A white precipitate was collected and suspended in water (500 mL). After neutralizing to pH 7.0 with 1N NaOH, AcOEt (500 mL) was added to extract the product into the organic layer. The organic layer was washed with saturated brine (100 mL × 2) and dried over Na 2 SO 4 . The solution was then filtered and the solvent was evaporated to give compound 11a (2.65 g, 15 mmol, 35%) as an orange solid.
1 H NMR (400 MHz; CDCl 3 ): δ 6.75 (t, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 5.21 (br, 1H)
NaNO2 (3.2 g, 43 mmol)の氷冷溶液を3,5-ジクロロアニリン (7.0 g, 43 mmol)の濃塩酸(80 mL)溶液に撹拌しながら0 °Cで10分間かけて滴下した。 反応混合物を0 °C で30分間撹拌した。SnCl2 (43 g, 225 mmol)の濃塩酸(40 mL) 溶液を反応混合物に0 °Cで滴下した。白色沈殿を集め、水(500 mL)に懸濁した。1N NaOHでpH 7.0に中和後、AcOEt (500 mL)を加えて生成物を有機層に抽出した。有機層を飽和食塩水(100 mL x2)で洗浄し、Na2SO4で乾燥した。次いで、溶液を濾過し、溶媒を留去して化合物11a(2.65 g, 15 mmol, 35%)を橙色固体として得た。
1H NMR (400 MHz; CDCl3):δ 6.75 (t, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 5.21 (br, 1H) Compound 11a
An ice-cold solution of NaNO 2 (3.2 g, 43 mmol) was added dropwise to a concentrated hydrochloric acid (80 mL) solution of 3,5-dichloroaniline (7.0 g, 43 mmol) at 0 ° C. over 10 minutes with stirring. The reaction mixture was stirred at 0 ° C. for 30 minutes. A solution of SnCl 2 (43 g, 225 mmol) in concentrated hydrochloric acid (40 mL) was added dropwise to the reaction mixture at 0 ° C. A white precipitate was collected and suspended in water (500 mL). After neutralizing to pH 7.0 with 1N NaOH, AcOEt (500 mL) was added to extract the product into the organic layer. The organic layer was washed with saturated brine (100 mL × 2) and dried over Na 2 SO 4 . The solution was then filtered and the solvent was evaporated to give compound 11a (2.65 g, 15 mmol, 35%) as an orange solid.
1 H NMR (400 MHz; CDCl 3 ): δ 6.75 (t, J = 2.0 Hz, 1H), 6.71 (d, J = 2.0 Hz, 2H), 5.21 (br, 1H)
化合物 12a
化合物11a(2.5g, 14 mmol)をピルビン酸エチル(1.56 mL, 14 mmol)のAcOH (80 mL)溶液に添加し、N2 雰囲気下に30分間100 °Cで撹拌した。反応をTLC (AcOEt: ヘキサン=1:3)でモニターし、反応混合物を室温に冷却した。溶媒を留去し、AcOEt (80 mL)を粗化合物に加えた。有機層を飽和NaHCO3水溶液 (80 mL x2)及び飽和食塩水(80 mL x2)で洗浄し、Na2SO4 で乾燥して化合物 12a (3.66 g, 13.3 mmol, 94% (E:Z = 5:2))を無色オイルとして得た。
1H NMR (400 MHz; CDCl3): δ 11.80 (s, 1H, Z), 10.10 (s, 1H, E), 7.30 (s, 1H, Z), 7.20 (s, 1H, E), 7.00-7.02 (m, 1H, Z, 1H, E), 4.16-4.27 (m, 1H, Z, 1H, E), 2.09 (s, 1H, Z), 2.04 (s, 1H, E), 1.23-1.29 (m, 3H, Z, 3H, E) Compound 12a
Compound 11a (2.5 g, 14 mmol) was added to a solution of ethyl pyruvate (1.56 mL, 14 mmol) in AcOH (80 mL) and stirred at 100 ° C. for 30 minutes under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 3) and the reaction mixture was cooled to room temperature. The solvent was removed and AcOEt (80 mL) was added to the crude compound. The organic layer was washed with saturated aqueous NaHCO 3 solution (80 mL x2) and saturated brine (80 mL x2), dried over Na 2 SO 4 and compound 12a (3.66 g, 13.3 mmol, 94% (E: Z = 5 : 2)) was obtained as a colorless oil.
1 H NMR (400 MHz; CDCl 3 ): δ 11.80 (s, 1H, Z), 10.10 (s, 1H, E), 7.30 (s, 1H, Z), 7.20 (s, 1H, E), 7.00- 7.02 (m, 1H, Z, 1H, E), 4.16-4.27 (m, 1H, Z, 1H, E), 2.09 (s, 1H, Z), 2.04 (s, 1H, E), 1.23-1.29 ( m, 3H, Z, 3H, E)
化合物11a(2.5g, 14 mmol)をピルビン酸エチル(1.56 mL, 14 mmol)のAcOH (80 mL)溶液に添加し、N2 雰囲気下に30分間100 °Cで撹拌した。反応をTLC (AcOEt: ヘキサン=1:3)でモニターし、反応混合物を室温に冷却した。溶媒を留去し、AcOEt (80 mL)を粗化合物に加えた。有機層を飽和NaHCO3水溶液 (80 mL x2)及び飽和食塩水(80 mL x2)で洗浄し、Na2SO4 で乾燥して化合物 12a (3.66 g, 13.3 mmol, 94% (E:Z = 5:2))を無色オイルとして得た。
1H NMR (400 MHz; CDCl3): δ 11.80 (s, 1H, Z), 10.10 (s, 1H, E), 7.30 (s, 1H, Z), 7.20 (s, 1H, E), 7.00-7.02 (m, 1H, Z, 1H, E), 4.16-4.27 (m, 1H, Z, 1H, E), 2.09 (s, 1H, Z), 2.04 (s, 1H, E), 1.23-1.29 (m, 3H, Z, 3H, E) Compound 12a
Compound 11a (2.5 g, 14 mmol) was added to a solution of ethyl pyruvate (1.56 mL, 14 mmol) in AcOH (80 mL) and stirred at 100 ° C. for 30 minutes under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 3) and the reaction mixture was cooled to room temperature. The solvent was removed and AcOEt (80 mL) was added to the crude compound. The organic layer was washed with saturated aqueous NaHCO 3 solution (80 mL x2) and saturated brine (80 mL x2), dried over Na 2 SO 4 and compound 12a (3.66 g, 13.3 mmol, 94% (E: Z = 5 : 2)) was obtained as a colorless oil.
1 H NMR (400 MHz; CDCl 3 ): δ 11.80 (s, 1H, Z), 10.10 (s, 1H, E), 7.30 (s, 1H, Z), 7.20 (s, 1H, E), 7.00- 7.02 (m, 1H, Z, 1H, E), 4.16-4.27 (m, 1H, Z, 1H, E), 2.09 (s, 1H, Z), 2.04 (s, 1H, E), 1.23-1.29 ( m, 3H, Z, 3H, E)
化合物 13a
ポリホスホン酸(10 mL)を化合物12a (E:Z= 5:2 混合物, 3.6 g, 13 mmol)にゆっくり加えた。反応混合物を125 °Cで30分間撹拌した。反応混合物に冷水100 mLを加え、飽和NaHCO3 水溶液を加えてpHを7に調整した。生成物をAcOEt (60 mL x2)で抽出した。有機層を飽和食塩水 (60 mL)で洗浄し、Na2SO4で乾燥して化合物13a (2.01 g, 7.8 mmol, 60 %)を得た。
1H NMR (400 MHz; CDCl3): δ 12.4 (s, 1H), 7.44 (s, 1H), 7.28 (s, 1H), 7.11 (s, 1H), 4.36 (q, J = 7.20 Hz, 2H), 1.33 (t, J = 7.20 Hz, 3H) Compound 13a
Polyphosphonic acid (10 mL) was slowly added to compound 12a (E: Z = 5: 2 mixture, 3.6 g, 13 mmol). The reaction mixture was stirred at 125 ° C. for 30 minutes. To the reaction mixture was added 100 mL of cold water, and a saturated aqueous NaHCO 3 solution was added to adjust the pH to 7. The product was extracted with AcOEt (60 mL x2). The organic layer was washed with saturated brine (60 mL) and dried over Na 2 SO 4 to obtain compound 13a (2.01 g, 7.8 mmol, 60%).
1 H NMR (400 MHz; CDCl 3 ): δ 12.4 (s, 1H), 7.44 (s, 1H), 7.28 (s, 1H), 7.11 (s, 1H), 4.36 (q, J = 7.20 Hz, 2H ), 1.33 (t, J = 7.20 Hz, 3H)
ポリホスホン酸(10 mL)を化合物12a (E:Z= 5:2 混合物, 3.6 g, 13 mmol)にゆっくり加えた。反応混合物を125 °Cで30分間撹拌した。反応混合物に冷水100 mLを加え、飽和NaHCO3 水溶液を加えてpHを7に調整した。生成物をAcOEt (60 mL x2)で抽出した。有機層を飽和食塩水 (60 mL)で洗浄し、Na2SO4で乾燥して化合物13a (2.01 g, 7.8 mmol, 60 %)を得た。
1H NMR (400 MHz; CDCl3): δ 12.4 (s, 1H), 7.44 (s, 1H), 7.28 (s, 1H), 7.11 (s, 1H), 4.36 (q, J = 7.20 Hz, 2H), 1.33 (t, J = 7.20 Hz, 3H) Compound 13a
Polyphosphonic acid (10 mL) was slowly added to compound 12a (E: Z = 5: 2 mixture, 3.6 g, 13 mmol). The reaction mixture was stirred at 125 ° C. for 30 minutes. To the reaction mixture was added 100 mL of cold water, and a saturated aqueous NaHCO 3 solution was added to adjust the pH to 7. The product was extracted with AcOEt (60 mL x2). The organic layer was washed with saturated brine (60 mL) and dried over Na 2 SO 4 to obtain compound 13a (2.01 g, 7.8 mmol, 60%).
1 H NMR (400 MHz; CDCl 3 ): δ 12.4 (s, 1H), 7.44 (s, 1H), 7.28 (s, 1H), 7.11 (s, 1H), 4.36 (q, J = 7.20 Hz, 2H ), 1.33 (t, J = 7.20 Hz, 3H)
化合物 14a
1,2-ジクロロエタン(30 mL)中の化合物 13a (2.01 g, 7.79 mmol)の撹拌溶液にN-メチルホルムアニリド(1.6 mL, 12.9 mmol) 及びオキシ塩化リン(1.1 mL, 12.1 mmol)を加え、N2 雰囲気下80 °C で9時間撹拌した。反応をTLC (AcOEt:ヘキサン=1:1)でモニターし、50% NaOAc水溶液80 mL及び氷5 gを反応溶液に加えた。この溶液を4 °Cで終夜維持して再結晶した。橙色沈殿を集め、水及び1,2-ジクロロエタンで洗浄して化合物 14a (1.62 g, 5.66 mmol, 73 %)を橙色粉末として得た。
1H NMR (400 MHz; CDCl3): δ 10.80 (s, 1H), 9,37 (br, 1H), 7.39 (s, 1H), 7.35 (s, 1H), 4.52 (q, J = 7.2 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H) Compound 14a
To a stirred solution of compound 13a (2.01 g, 7.79 mmol) in 1,2-dichloroethane (30 mL) was added N-methylformanilide (1.6 mL, 12.9 mmol) and phosphorus oxychloride (1.1 mL, 12.1 mmol), The mixture was stirred at 80 ° C. for 9 hours under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 1), and 80 mL of 50% NaOAc aqueous solution and 5 g of ice were added to the reaction solution. This solution was recrystallized by keeping it at 4 ° C overnight. The orange precipitate was collected and washed with water and 1,2-dichloroethane to give compound 14a (1.62 g, 5.66 mmol, 73%) as an orange powder.
1 H NMR (400 MHz; CDCl 3 ): δ 10.80 (s, 1H), 9,37 (br, 1H), 7.39 (s, 1H), 7.35 (s, 1H), 4.52 (q, J = 7.2 Hz , 2H), 1.50 (t, J = 7.2 Hz, 3H)
1,2-ジクロロエタン(30 mL)中の化合物 13a (2.01 g, 7.79 mmol)の撹拌溶液にN-メチルホルムアニリド(1.6 mL, 12.9 mmol) 及びオキシ塩化リン(1.1 mL, 12.1 mmol)を加え、N2 雰囲気下80 °C で9時間撹拌した。反応をTLC (AcOEt:ヘキサン=1:1)でモニターし、50% NaOAc水溶液80 mL及び氷5 gを反応溶液に加えた。この溶液を4 °Cで終夜維持して再結晶した。橙色沈殿を集め、水及び1,2-ジクロロエタンで洗浄して化合物 14a (1.62 g, 5.66 mmol, 73 %)を橙色粉末として得た。
1H NMR (400 MHz; CDCl3): δ 10.80 (s, 1H), 9,37 (br, 1H), 7.39 (s, 1H), 7.35 (s, 1H), 4.52 (q, J = 7.2 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H) Compound 14a
To a stirred solution of compound 13a (2.01 g, 7.79 mmol) in 1,2-dichloroethane (30 mL) was added N-methylformanilide (1.6 mL, 12.9 mmol) and phosphorus oxychloride (1.1 mL, 12.1 mmol), The mixture was stirred at 80 ° C. for 9 hours under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 1), and 80 mL of 50% NaOAc aqueous solution and 5 g of ice were added to the reaction solution. This solution was recrystallized by keeping it at 4 ° C overnight. The orange precipitate was collected and washed with water and 1,2-dichloroethane to give compound 14a (1.62 g, 5.66 mmol, 73%) as an orange powder.
1 H NMR (400 MHz; CDCl 3 ): δ 10.80 (s, 1H), 9,37 (br, 1H), 7.39 (s, 1H), 7.35 (s, 1H), 4.52 (q, J = 7.2 Hz , 2H), 1.50 (t, J = 7.2 Hz, 3H)
化合物 15a
化合物14a(57 mg, 0.199 mmol)をCH3CNとジオキサンの1:1 混合物(5 mL)中の酢酸及び2-(トリメチルホスホラニリデン)-,1,1-ジメチルエチルエステル(97 mg, 0.259 mmol)の溶液に加えた。反応混合物をN2 雰囲気下に70 °Cで 5時間撹拌した。反応をTLC (AcOEt: ヘキサン=1:3)でモニターし、反応混合物を室温に冷却した。溶媒を留去し、粗残渣をシリカゲルカラムクロマトグラフィー(AcOEt: ヘキサン=1:3)で精製して化合物 15a (44 mg, 0.115 mmol, 58 %)を白色固体として得た。
1H NMR (600 MHz; (CD3)2SO): δ 12.70 (br, 1H), 8.28 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.31 (s, 1H), 6.46 (d, J= 16.0, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.47 (s, 9H), 1.34 (t, J = 7.2 Hz, 3H) Compound 15a
Compound 14a (57 mg, 0.199 mmol) was mixed with acetic acid and 2- (trimethylphosphoranylidene)-, 1,1-dimethylethyl ester (97 mg, 0.259 mmol) in a 1: 1 mixture of CH 3 CN and dioxane (5 mL). mmol). The reaction mixture was stirred at 70 ° C. for 5 hours under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 3) and the reaction mixture was cooled to room temperature. The solvent was distilled off, and the crude residue was purified by silica gel column chromatography (AcOEt: hexane = 1: 3) to obtain compound 15a (44 mg, 0.115 mmol, 58%) as a white solid.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 12.70 (br, 1H), 8.28 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.31 (s, 1H), 6.46 (d, J = 16.0, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.47 (s, 9H), 1.34 (t, J = 7.2 Hz, 3H)
化合物14a(57 mg, 0.199 mmol)をCH3CNとジオキサンの1:1 混合物(5 mL)中の酢酸及び2-(トリメチルホスホラニリデン)-,1,1-ジメチルエチルエステル(97 mg, 0.259 mmol)の溶液に加えた。反応混合物をN2 雰囲気下に70 °Cで 5時間撹拌した。反応をTLC (AcOEt: ヘキサン=1:3)でモニターし、反応混合物を室温に冷却した。溶媒を留去し、粗残渣をシリカゲルカラムクロマトグラフィー(AcOEt: ヘキサン=1:3)で精製して化合物 15a (44 mg, 0.115 mmol, 58 %)を白色固体として得た。
1H NMR (600 MHz; (CD3)2SO): δ 12.70 (br, 1H), 8.28 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.31 (s, 1H), 6.46 (d, J= 16.0, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.47 (s, 9H), 1.34 (t, J = 7.2 Hz, 3H) Compound 15a
Compound 14a (57 mg, 0.199 mmol) was mixed with acetic acid and 2- (trimethylphosphoranylidene)-, 1,1-dimethylethyl ester (97 mg, 0.259 mmol) in a 1: 1 mixture of CH 3 CN and dioxane (5 mL). mmol). The reaction mixture was stirred at 70 ° C. for 5 hours under N 2 atmosphere. The reaction was monitored by TLC (AcOEt: hexane = 1: 3) and the reaction mixture was cooled to room temperature. The solvent was distilled off, and the crude residue was purified by silica gel column chromatography (AcOEt: hexane = 1: 3) to obtain compound 15a (44 mg, 0.115 mmol, 58%) as a white solid.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 12.70 (br, 1H), 8.28 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.31 (s, 1H), 6.46 (d, J = 16.0, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.47 (s, 9H), 1.34 (t, J = 7.2 Hz, 3H)
化合物 16a
CH2Cl2 (10 ml)中の化合物 15a (1.0 g, 2.60 mmol)の撹拌溶液にTFA (10 ml)を加えた。室温で5分間撹拌し、反応をTLC (AcOEt: ヘキサン=1:3)でモニターして反応の終了を確認した。TFA をトルエンと共沸除去した後、化合物 16a (828 mg, 2.52 mmol, 97 %)を白色粉末として得た。
1H NMR (600 MHz; (CD3)2SO): δ 8.25 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.30 (s, 1H), 6.42 (d, J = 16.0 Hz), 4.35 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H) Compound 16a
To a stirred solution of compound 15a (1.0 g, 2.60 mmol) in CH 2 Cl 2 (10 ml) was added TFA (10 ml). The mixture was stirred at room temperature for 5 minutes, and the reaction was monitored by TLC (AcOEt: hexane = 1: 3) to confirm the completion of the reaction. After azeotropic removal of TFA with toluene, compound 16a (828 mg, 2.52 mmol, 97%) was obtained as a white powder.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 8.25 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.30 (s, 1H), 6.42 (d, J = 16.0 Hz ), 4.35 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H)
CH2Cl2 (10 ml)中の化合物 15a (1.0 g, 2.60 mmol)の撹拌溶液にTFA (10 ml)を加えた。室温で5分間撹拌し、反応をTLC (AcOEt: ヘキサン=1:3)でモニターして反応の終了を確認した。TFA をトルエンと共沸除去した後、化合物 16a (828 mg, 2.52 mmol, 97 %)を白色粉末として得た。
1H NMR (600 MHz; (CD3)2SO): δ 8.25 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.30 (s, 1H), 6.42 (d, J = 16.0 Hz), 4.35 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H) Compound 16a
To a stirred solution of compound 15a (1.0 g, 2.60 mmol) in CH 2 Cl 2 (10 ml) was added TFA (10 ml). The mixture was stirred at room temperature for 5 minutes, and the reaction was monitored by TLC (AcOEt: hexane = 1: 3) to confirm the completion of the reaction. After azeotropic removal of TFA with toluene, compound 16a (828 mg, 2.52 mmol, 97%) was obtained as a white powder.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 8.25 (d, J = 16.0 Hz, 1H), 7.49 (s, 1H), 7.30 (s, 1H), 6.42 (d, J = 16.0 Hz ), 4.35 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H)
化合物 17a
乾燥DMF(4 mL)中の化合物16a (36 mg, 110 μmol, 1.0 eq)の撹拌溶液にTEA (62 μL, 440 μmol, 4.0 eq), ヒスタミン・2HCl (24 mg, 110 μmol, 1.0 eq), HBTU (50 mg, 132 μmol, 1.2 eq) を添加し、N2 雰囲気下で2時間撹拌した。反応をTLC (CHCl3: MeOH=10:1+1 % NH3 aq)でモニターし、溶媒を留去した。粗残渣をシリカゲルカラムクロマトグラフィー(CHCl3: MeOH=10:1+1% NH3 aq→2% NH3 aq)で精製して化合物17a(47 mg, 110 μmol, 100 %)を白色固体として得た。1H NMR (600 MHz; (CD3)2SO): δ 12.50 (br, 1H), 11.82 (br, 1H), 8.19 (s, 1H), 8.33 (d, J = 16.0, 1H), 7.51 (s, 1H), 7.47 (s, 1H), 7.28 (s, 1H), 6.86 (br, 1H), 6.50 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H) Compound 17a
To a stirred solution of compound 16a (36 mg, 110 μmol, 1.0 eq) in dry DMF (4 mL), TEA (62 μL, 440 μmol, 4.0 eq), histamine-2HCl (24 mg, 110 μmol, 1.0 eq), HBTU (50 mg, 132 μmol, 1.2 eq) was added and stirred for 2 hours under N 2 atmosphere. The reaction was monitored by TLC (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq) and the solvent was distilled off. The crude residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq → 2% NH 3 aq) to obtain compound 17a (47 mg, 110 μmol, 100%) as a white solid. It was. 1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 12.50 (br, 1H), 11.82 (br, 1H), 8.19 (s, 1H), 8.33 (d, J = 16.0, 1H), 7.51 ( s, 1H), 7.47 (s, 1H), 7.28 (s, 1H), 6.86 (br, 1H), 6.50 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H)
乾燥DMF(4 mL)中の化合物16a (36 mg, 110 μmol, 1.0 eq)の撹拌溶液にTEA (62 μL, 440 μmol, 4.0 eq), ヒスタミン・2HCl (24 mg, 110 μmol, 1.0 eq), HBTU (50 mg, 132 μmol, 1.2 eq) を添加し、N2 雰囲気下で2時間撹拌した。反応をTLC (CHCl3: MeOH=10:1+1 % NH3 aq)でモニターし、溶媒を留去した。粗残渣をシリカゲルカラムクロマトグラフィー(CHCl3: MeOH=10:1+1% NH3 aq→2% NH3 aq)で精製して化合物17a(47 mg, 110 μmol, 100 %)を白色固体として得た。1H NMR (600 MHz; (CD3)2SO): δ 12.50 (br, 1H), 11.82 (br, 1H), 8.19 (s, 1H), 8.33 (d, J = 16.0, 1H), 7.51 (s, 1H), 7.47 (s, 1H), 7.28 (s, 1H), 6.86 (br, 1H), 6.50 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H) Compound 17a
To a stirred solution of compound 16a (36 mg, 110 μmol, 1.0 eq) in dry DMF (4 mL), TEA (62 μL, 440 μmol, 4.0 eq), histamine-2HCl (24 mg, 110 μmol, 1.0 eq), HBTU (50 mg, 132 μmol, 1.2 eq) was added and stirred for 2 hours under N 2 atmosphere. The reaction was monitored by TLC (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq) and the solvent was distilled off. The crude residue was purified by silica gel column chromatography (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq → 2% NH 3 aq) to obtain compound 17a (47 mg, 110 μmol, 100%) as a white solid. It was. 1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 12.50 (br, 1H), 11.82 (br, 1H), 8.19 (s, 1H), 8.33 (d, J = 16.0, 1H), 7.51 ( s, 1H), 7.47 (s, 1H), 7.28 (s, 1H), 6.86 (br, 1H), 6.50 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.67 (t, J = 6.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H)
化合物 4a
MeOH (2 mL)及び1N NaOH水溶液(1.1 mL, 1.1 mmol, 10 eq)中の化合物 17a (47 mg, 110 μmol)の溶液を60 °Cで終夜撹拌した。反応をTLC (CHCl3: MeOH=10:1+1 % NH3 aq)でモニターし、MeOHを留去した。溶液を1N HClでpH 5-6に中和後、水を留去した。DMF (3 mL)を加え、溶液を濾過してNaClを除去し、化合物18aを橙色オイルとして得た(47 mg, 119 μmol, 97%)。 Compound 4a
A solution of compound 17a (47 mg, 110 μmol) in MeOH (2 mL) and 1N aqueous NaOH (1.1 mL, 1.1 mmol, 10 eq) was stirred at 60 ° C. overnight. The reaction was monitored by TLC (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq) and MeOH was distilled off. After neutralizing the solution with 1N HCl to pH 5-6, water was distilled off. DMF (3 mL) was added and the solution was filtered to remove NaCl to give compound 18a as an orange oil (47 mg, 119 μmol, 97%).
MeOH (2 mL)及び1N NaOH水溶液(1.1 mL, 1.1 mmol, 10 eq)中の化合物 17a (47 mg, 110 μmol)の溶液を60 °Cで終夜撹拌した。反応をTLC (CHCl3: MeOH=10:1+1 % NH3 aq)でモニターし、MeOHを留去した。溶液を1N HClでpH 5-6に中和後、水を留去した。DMF (3 mL)を加え、溶液を濾過してNaClを除去し、化合物18aを橙色オイルとして得た(47 mg, 119 μmol, 97%)。 Compound 4a
A solution of compound 17a (47 mg, 110 μmol) in MeOH (2 mL) and 1N aqueous NaOH (1.1 mL, 1.1 mmol, 10 eq) was stirred at 60 ° C. overnight. The reaction was monitored by TLC (CHCl 3 : MeOH = 10: 1 + 1% NH 3 aq) and MeOH was distilled off. After neutralizing the solution with 1N HCl to pH 5-6, water was distilled off. DMF (3 mL) was added and the solution was filtered to remove NaCl to give compound 18a as an orange oil (47 mg, 119 μmol, 97%).
乾燥 DMF (0.5 mL)中の化合物18a(6 mg, 16 μmol, 1.0 eq)の撹拌溶液に化合物8 (10 mg, 16 μmol, 1.0 eq), 乾燥ピリジン(5 μL, 63 μmol, 4.0 eq)を加え、N2 雰囲気下で12時間撹拌した。反応をTLC (CHCl3: MeOH=10:1)でモニターし、溶媒を留去した。粗残渣をRP-HPLC (カラム ; YMC-packODS-A, 250 x 25 mm, 移動相; CH3CN ; 10 mM NH4OAc = 0 : 100 → 70 : 30 (70分かけた直線勾配、流速; 10 mL/min, detection; UV (220 nm))で精製し、化合物4a (6 mg, 6.5 μmol, 42 %)を黄色粉末として得た。
1H NMR (600 MHz; (CD3)2SO): δ 8.84 (t, J = 6.0 Hz, 1H), 8.44 (s, 1H), 8.28 (d, J = 14.6 Hz, 1H), 8.11 (s, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 6.69 (br, 2H), 6.45 (d, J = 11.4 Hz, 2H), 4.48 (t, J = 4.8 Hz, 2H), 3.78 (t, J = 4.8 Hz. 2H), 3.66 (t. J = 6.0 Hz, 2H), 3.47-3.51 (m, 2H), 3.32-3.34 (m, 2H), 2.58 (t, J = 7.2 Hz, 2H)
HR-ESI MS m/z calcd for [M+H]+ 918.1387, found 918.1373 To a stirred solution of compound 18a (6 mg, 16 μmol, 1.0 eq) in dry DMF (0.5 mL), add compound 8 (10 mg, 16 μmol, 1.0 eq), dry pyridine (5 μL, 63 μmol, 4.0 eq). In addition, the mixture was stirred for 12 hours under N 2 atmosphere. The reaction was monitored by TLC (CHCl3: MeOH = 10: 1) and the solvent was distilled off. The crude residue was RP-HPLC (column; YMC-packODS-A, 250 x 25 mm, mobile phase; CH 3 CN; 10 mM NH 4 OAc = 0: 100 → 70:30 (linear gradient over 70 minutes, flow rate; Purification by 10 mL / min, detection; UV (220 nm)) gave Compound 4a (6 mg, 6.5 μmol, 42%) as a yellow powder.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 8.84 (t, J = 6.0 Hz, 1H), 8.44 (s, 1H), 8.28 (d, J = 14.6 Hz, 1H), 8.11 (s , 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 6.69 (br, 2H), 6.45 (d, J = 11.4 Hz, 2H), 4.48 (t, J = 4.8 Hz, 2H), 3.78 (t, J = 4.8 Hz. 2H), 3.66 (t. J = 6.0 Hz, 2H), 3.47-3.51 (m, 2H) , 3.32-3.34 (m, 2H), 2.58 (t, J = 7.2 Hz, 2H)
HR-ESI MS m / z calcd for [M + H] + 918.1387, found 918.1373
1H NMR (600 MHz; (CD3)2SO): δ 8.84 (t, J = 6.0 Hz, 1H), 8.44 (s, 1H), 8.28 (d, J = 14.6 Hz, 1H), 8.11 (s, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 6.69 (br, 2H), 6.45 (d, J = 11.4 Hz, 2H), 4.48 (t, J = 4.8 Hz, 2H), 3.78 (t, J = 4.8 Hz. 2H), 3.66 (t. J = 6.0 Hz, 2H), 3.47-3.51 (m, 2H), 3.32-3.34 (m, 2H), 2.58 (t, J = 7.2 Hz, 2H)
HR-ESI MS m/z calcd for [M+H]+ 918.1387, found 918.1373 To a stirred solution of compound 18a (6 mg, 16 μmol, 1.0 eq) in dry DMF (0.5 mL), add compound 8 (10 mg, 16 μmol, 1.0 eq), dry pyridine (5 μL, 63 μmol, 4.0 eq). In addition, the mixture was stirred for 12 hours under N 2 atmosphere. The reaction was monitored by TLC (CHCl3: MeOH = 10: 1) and the solvent was distilled off. The crude residue was RP-HPLC (column; YMC-packODS-A, 250 x 25 mm, mobile phase; CH 3 CN; 10 mM NH 4 OAc = 0: 100 → 70:30 (linear gradient over 70 minutes, flow rate; Purification by 10 mL / min, detection; UV (220 nm)) gave Compound 4a (6 mg, 6.5 μmol, 42%) as a yellow powder.
1 H NMR (600 MHz; (CD 3 ) 2 SO): δ 8.84 (t, J = 6.0 Hz, 1H), 8.44 (s, 1H), 8.28 (d, J = 14.6 Hz, 1H), 8.11 (s , 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.76 (s, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 7.09 (s, 1H), 6.85 (d, J = 14.6 Hz, 1H), 6.69 (br, 2H), 6.45 (d, J = 11.4 Hz, 2H), 4.48 (t, J = 4.8 Hz, 2H), 3.78 (t, J = 4.8 Hz. 2H), 3.66 (t. J = 6.0 Hz, 2H), 3.47-3.51 (m, 2H) , 3.32-3.34 (m, 2H), 2.58 (t, J = 7.2 Hz, 2H)
HR-ESI MS m / z calcd for [M + H] + 918.1387, found 918.1373
GABA受容体ラベル化剤合成の実験項
化合物2bの合成 Synthesis of GABA receptor labeling agent synthesis term compound 2b
化合物2bの合成 Synthesis of GABA receptor labeling agent synthesis term compound 2b
tert-ブチル (2-(2-(((パーフルオロフェノキシ)カルボニル)オキシ)エトキシ)エチル)カルバメート (2b)
tert-ブチル(2-(2-ヒドロキシエトキシ)エチル)カルバメート (500 mg, 2.44 mmol)のTHF(24 ml) 撹拌溶液にビス(パーフルオロフェニル) カーボネート (1.15 g, 2.93 mmol), TBAF (190 mg, 0.73 mmol)を加えた。反応混合物を24時間室温で撹拌した。溶液をCHCl3で希釈し、1N NaOHで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン: AcOEt = 10:1 →ヘキサン : AcOEt = 2:1)で精製して化合物 2b (653 mg, 1.579 mmol, 64 %)を透明オイルとして得た。1H-NMR (400 MHz, CDCl3): δ 4.90 (s, 1H), 4.47 (m, 2H), 3.79 (m, 2H), 3.59 (t, 2H, J = 5.6 Hz), 3.36 (m, 2H), 1.46 (s, 9H).
化合物1bの合成 tert-Butyl (2- (2-(((perfluorophenoxy) carbonyl) oxy) ethoxy) ethyl) carbamate (2b)
Bis (perfluorophenyl) carbonate (1.15 g, 2.93 mmol), TBAF (190 mg) in a stirred solution of tert-butyl (2- (2-hydroxyethoxy) ethyl) carbamate (500 mg, 2.44 mmol) in THF (24 ml) , 0.73 mmol). The reaction mixture was stirred for 24 hours at room temperature. The solution was diluted with CHCl 3 and washed with 1N NaOH. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 10: 1 → hexane: AcOEt = 2: 1) to obtain compound 2b (653 mg, 1.579 mmol, 64%) as a clear oil. 1 H-NMR (400 MHz, CDCl 3 ): δ 4.90 (s, 1H), 4.47 (m, 2H), 3.79 (m, 2H), 3.59 (t, 2H, J = 5.6 Hz), 3.36 (m, 2H), 1.46 (s, 9H).
Synthesis of compound 1b
tert-ブチル(2-(2-ヒドロキシエトキシ)エチル)カルバメート (500 mg, 2.44 mmol)のTHF(24 ml) 撹拌溶液にビス(パーフルオロフェニル) カーボネート (1.15 g, 2.93 mmol), TBAF (190 mg, 0.73 mmol)を加えた。反応混合物を24時間室温で撹拌した。溶液をCHCl3で希釈し、1N NaOHで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン: AcOEt = 10:1 →ヘキサン : AcOEt = 2:1)で精製して化合物 2b (653 mg, 1.579 mmol, 64 %)を透明オイルとして得た。1H-NMR (400 MHz, CDCl3): δ 4.90 (s, 1H), 4.47 (m, 2H), 3.79 (m, 2H), 3.59 (t, 2H, J = 5.6 Hz), 3.36 (m, 2H), 1.46 (s, 9H).
化合物1bの合成 tert-Butyl (2- (2-(((perfluorophenoxy) carbonyl) oxy) ethoxy) ethyl) carbamate (2b)
Bis (perfluorophenyl) carbonate (1.15 g, 2.93 mmol), TBAF (190 mg) in a stirred solution of tert-butyl (2- (2-hydroxyethoxy) ethyl) carbamate (500 mg, 2.44 mmol) in THF (24 ml) , 0.73 mmol). The reaction mixture was stirred for 24 hours at room temperature. The solution was diluted with CHCl 3 and washed with 1N NaOH. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 10: 1 → hexane: AcOEt = 2: 1) to obtain compound 2b (653 mg, 1.579 mmol, 64%) as a clear oil. 1 H-NMR (400 MHz, CDCl 3 ): δ 4.90 (s, 1H), 4.47 (m, 2H), 3.79 (m, 2H), 3.59 (t, 2H, J = 5.6 Hz), 3.36 (m, 2H), 1.46 (s, 9H).
Synthesis of compound 1b
tert-ブチル 4-(7-クロロ-5-(2-フルオロフェニル)-2-オキソ-2,3-ジヒドロ-1H-ベンゾ[e][1,4]ジアゼピン-1-イル)ブタノエート (3b)
7-クロロ-5-(2-フルオロフェニル)-1,3-ジヒドロ-2H-ベンゾ[e][1,4]ジアゼピン-2-オン(200 mg, 0.69 mmol)の乾燥 DMF (700 μl)中の撹拌溶液にNaH (38 mg, 1.0 mmol)を0 °Cで加えた。反応混合物を0 °Cで5分間撹拌した。次いで、tert-ブチル4-ブロモブタノエート (185 mg, 0.83 mmol)の 乾燥 DMF (700 μl)溶液を加えた。反応混合物を室温で1時間撹拌した。溶液をCHCl3で希釈し、H2Oで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : AcOEt = 4:1 →ヘキサン : AcOEt = 2:1)で精製して化合物3b(125 mg, 0.29 mmol, 42 %)を透明固体として得た。
1H-NMR (400 MHz, CDCl3): δ 7.67 (t, 1H, J = 8.4 Hz), 7.49 (m, 2H), 7.40 (d, 1H, J = 8.8 Hz), 7.29 (m, 1H), 7.17 (s, 1H), 7.07 (t, 1H, J = 9.6 Hz), 4.87 (d, 1H, J = 10.4 Hz), 4.40 (m, 1H), 3.78 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 2.15 (m, 2H), 1.86 (m, 1H), 1.72 (m, 1H), 1.39 (s, 9H). tert-butyl 4- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) butanoate (3b)
7-Chloro-5- (2-fluorophenyl) -1,3-dihydro-2H-benzo [e] [1,4] diazepin-2-one (200 mg, 0.69 mmol) in dry DMF (700 μl) To the stirred solution of NaH (38 mg, 1.0 mmol) was added at 0 ° C. The reaction mixture was stirred at 0 ° C. for 5 minutes. A solution of tert-butyl 4-bromobutanoate (185 mg, 0.83 mmol) in dry DMF (700 μl) was then added. The reaction mixture was stirred at room temperature for 1 hour. The solution was diluted with CHCl 3 and washed with H 2 O. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 4: 1 → hexane: AcOEt = 2: 1) to obtain compound 3b (125 mg, 0.29 mmol, 42%) as a transparent solid.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (t, 1H, J = 8.4 Hz), 7.49 (m, 2H), 7.40 (d, 1H, J = 8.8 Hz), 7.29 (m, 1H) , 7.17 (s, 1H), 7.07 (t, 1H, J = 9.6 Hz), 4.87 (d, 1H, J = 10.4 Hz), 4.40 (m, 1H), 3.78 (d, 1H, J = 10.4 Hz) , 3.67 (m, 1H), 2.15 (m, 2H), 1.86 (m, 1H), 1.72 (m, 1H), 1.39 (s, 9H).
7-クロロ-5-(2-フルオロフェニル)-1,3-ジヒドロ-2H-ベンゾ[e][1,4]ジアゼピン-2-オン(200 mg, 0.69 mmol)の乾燥 DMF (700 μl)中の撹拌溶液にNaH (38 mg, 1.0 mmol)を0 °Cで加えた。反応混合物を0 °Cで5分間撹拌した。次いで、tert-ブチル4-ブロモブタノエート (185 mg, 0.83 mmol)の 乾燥 DMF (700 μl)溶液を加えた。反応混合物を室温で1時間撹拌した。溶液をCHCl3で希釈し、H2Oで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン : AcOEt = 4:1 →ヘキサン : AcOEt = 2:1)で精製して化合物3b(125 mg, 0.29 mmol, 42 %)を透明固体として得た。
1H-NMR (400 MHz, CDCl3): δ 7.67 (t, 1H, J = 8.4 Hz), 7.49 (m, 2H), 7.40 (d, 1H, J = 8.8 Hz), 7.29 (m, 1H), 7.17 (s, 1H), 7.07 (t, 1H, J = 9.6 Hz), 4.87 (d, 1H, J = 10.4 Hz), 4.40 (m, 1H), 3.78 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 2.15 (m, 2H), 1.86 (m, 1H), 1.72 (m, 1H), 1.39 (s, 9H). tert-butyl 4- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) butanoate (3b)
7-Chloro-5- (2-fluorophenyl) -1,3-dihydro-2H-benzo [e] [1,4] diazepin-2-one (200 mg, 0.69 mmol) in dry DMF (700 μl) To the stirred solution of NaH (38 mg, 1.0 mmol) was added at 0 ° C. The reaction mixture was stirred at 0 ° C. for 5 minutes. A solution of tert-butyl 4-bromobutanoate (185 mg, 0.83 mmol) in dry DMF (700 μl) was then added. The reaction mixture was stirred at room temperature for 1 hour. The solution was diluted with CHCl 3 and washed with H 2 O. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 4: 1 → hexane: AcOEt = 2: 1) to obtain compound 3b (125 mg, 0.29 mmol, 42%) as a transparent solid.
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67 (t, 1H, J = 8.4 Hz), 7.49 (m, 2H), 7.40 (d, 1H, J = 8.8 Hz), 7.29 (m, 1H) , 7.17 (s, 1H), 7.07 (t, 1H, J = 9.6 Hz), 4.87 (d, 1H, J = 10.4 Hz), 4.40 (m, 1H), 3.78 (d, 1H, J = 10.4 Hz) , 3.67 (m, 1H), 2.15 (m, 2H), 1.86 (m, 1H), 1.72 (m, 1H), 1.39 (s, 9H).
tert-ブチル (16-(7-クロロ-5-(2-フルオロフェニル)-2-オキソ-2,3-ジヒドロ-1H-ベンゾ[e][1,4]ジアゼピン-1-イル)-13-オキソ-3,6,9-トリオキサ-12-アザヘキサデシル)カルバメート (4b)
乾燥CH2Cl2(1 ml)中の化合物 3b (18 mg, 0.042 mmol)の撹拌溶液にTFA (0.5 ml)を加えた。反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (420 μl)に溶解した。次いで、tert-ブチル ((2-(2-(2-アミノエトキシ)エトキシ)エトキシ)メチル)カルバメート (13 mg, 0.063 mmol), COMU (27 mg, 0.063 mmol), DIPEA (73 μl, 0.42 mmol)をこの溶液に加えた。反応混合物を室温で1時間撹拌した。溶液をCHCl3 で希釈し、1N NaOHで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : AcOEt = 2:1 → CHCl3 : MeOH = 10:1)で精製して化合物4b (24 mg, 0.037 mmol, 88%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 7.56-7.67 (m, 4H), 7.34 (m, 1H), 7.18 (m, 1H), 7.14 (s, 1H), 4.69 (d, 1H, J = 10.8 Hz), 4.34 (m, 1H), 3.88 (d, 1H, J = 10.8 Hz), 3.79 (m, 1H), 3.18-3.67 (m, 16H), 2.14 (m, 2H), 1.85 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H). tert-butyl (16- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) -13- Oxo-3,6,9-trioxa-12-azahexadecyl) carbamate (4b)
To a stirred solution of compound 3b (18 mg, 0.042 mmol) in dry CH 2 Cl 2 (1 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (420 μl). Then tert-butyl ((2- (2- (2-aminoethoxy) ethoxy) ethoxy) methyl) carbamate (13 mg, 0.063 mmol), COMU (27 mg, 0.063 mmol), DIPEA (73 μl, 0.42 mmol) Was added to this solution. The reaction mixture was stirred at room temperature for 1 hour. The solution was diluted with CHCl 3 and washed with 1N NaOH. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 2: 1 → CHCl 3: MeOH = 10: 1) Compound 4b was purified by as a (24 mg, 0.037 mmol, 88 %) a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 7.56-7.67 (m, 4H), 7.34 (m, 1H), 7.18 (m, 1H), 7.14 (s, 1H), 4.69 (d, 1H, J = 10.8 Hz), 4.34 (m, 1H), 3.88 (d, 1H, J = 10.8 Hz), 3.79 (m, 1H), 3.18-3.67 (m, 16H), 2.14 (m, 2H), 1.85 (m , 1H), 1.70 (m, 1H), 1.42 (s, 9H).
乾燥CH2Cl2(1 ml)中の化合物 3b (18 mg, 0.042 mmol)の撹拌溶液にTFA (0.5 ml)を加えた。反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (420 μl)に溶解した。次いで、tert-ブチル ((2-(2-(2-アミノエトキシ)エトキシ)エトキシ)メチル)カルバメート (13 mg, 0.063 mmol), COMU (27 mg, 0.063 mmol), DIPEA (73 μl, 0.42 mmol)をこの溶液に加えた。反応混合物を室温で1時間撹拌した。溶液をCHCl3 で希釈し、1N NaOHで洗浄した。有機層をNa2SO4で乾燥し、濾過し, 留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン : AcOEt = 2:1 → CHCl3 : MeOH = 10:1)で精製して化合物4b (24 mg, 0.037 mmol, 88%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 7.56-7.67 (m, 4H), 7.34 (m, 1H), 7.18 (m, 1H), 7.14 (s, 1H), 4.69 (d, 1H, J = 10.8 Hz), 4.34 (m, 1H), 3.88 (d, 1H, J = 10.8 Hz), 3.79 (m, 1H), 3.18-3.67 (m, 16H), 2.14 (m, 2H), 1.85 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H). tert-butyl (16- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) -13- Oxo-3,6,9-trioxa-12-azahexadecyl) carbamate (4b)
To a stirred solution of compound 3b (18 mg, 0.042 mmol) in dry CH 2 Cl 2 (1 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (420 μl). Then tert-butyl ((2- (2- (2-aminoethoxy) ethoxy) ethoxy) methyl) carbamate (13 mg, 0.063 mmol), COMU (27 mg, 0.063 mmol), DIPEA (73 μl, 0.42 mmol) Was added to this solution. The reaction mixture was stirred at room temperature for 1 hour. The solution was diluted with CHCl 3 and washed with 1N NaOH. The organic layer was dried over Na 2 SO 4 , filtered and evaporated. The residue was purified by silica gel column chromatography (hexane: AcOEt = 2: 1 → CHCl 3: MeOH = 10: 1) Compound 4b was purified by as a (24 mg, 0.037 mmol, 88 %) a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 7.56-7.67 (m, 4H), 7.34 (m, 1H), 7.18 (m, 1H), 7.14 (s, 1H), 4.69 (d, 1H, J = 10.8 Hz), 4.34 (m, 1H), 3.88 (d, 1H, J = 10.8 Hz), 3.79 (m, 1H), 3.18-3.67 (m, 16H), 2.14 (m, 2H), 1.85 (m , 1H), 1.70 (m, 1H), 1.42 (s, 9H).
N-(1-(1H-イミダゾール-4-イル)-2-オキソ-6,9,12-トリオキサ-3-アザテトラデカン-14-イル)-4-(7-クロロ-5-(2-フルオロフェニル)-2-オキソ-2,3-ジヒドロ-1H-ベンゾ[e][1,4]ジアゼピン-1-イル)ブタナミド (5b)
乾燥 CH2Cl2 (1 ml)中の化合物4b (24 mg, 0.037 mmol)の撹拌溶液にTFA (0.5 ml)を加えた。 反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (370 μl)に溶解した。次いで、2-(1H-イミダゾール-4-イル)酢酸(6 mg, 0.055 mmol), EDC (10 mg, 0.055 mmol), HOBT (8 mg, 0.055 mmol), DIPEA (64 μl, 0.37 mmol) をこの溶液に加えた。反応混合物を室温で1時間撹拌した。溶液をシリカゲルカラムクロマトグラフィー (CHCl3 : MeOH : NH4OH aq. = 10:1:1)で精製して化合物 5b (18 mg, 0.027 mmol, 74%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 7.62 (t, 1H, J = 6.4 Hz), 7.53 (s, 1H), 7.41-7.49 (m, 4H), 7.12 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 6.84 (s, 1H,), 4.81 (d, 1H, J = 10.4 Hz), 4.29 (m, 1H), 3.77 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 3.51 (s, 1H), 2.05 (m, 2H), 1.91 (m, 1H), 1.65 (m, 1H). N- (1- (1H-imidazol-4-yl) -2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl) -4- (7-chloro-5- (2-fluoro Phenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) butanamide (5b)
To a stirred solution of compound 4b (24 mg, 0.037 mmol) in dry CH 2 Cl 2 (1 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (370 μl). Next, 2- (1H-imidazol-4-yl) acetic acid (6 mg, 0.055 mmol), EDC (10 mg, 0.055 mmol), HOBT (8 mg, 0.055 mmol), DIPEA (64 μl, 0.37 mmol) Added to the solution. The reaction mixture was stirred at room temperature for 1 hour. The solution was purified by silica gel column chromatography (CHCl 3 : MeOH: NH 4 OH aq. = 10: 1: 1) to obtain compound 5b (18 mg, 0.027 mmol, 74%) as a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (t, 1H, J = 6.4 Hz), 7.53 (s, 1H), 7.41-7.49 (m, 4H), 7.12 (s, 1H), 7.06 ( t, 1H, J = 9.2 Hz), 6.84 (s, 1H,), 4.81 (d, 1H, J = 10.4 Hz), 4.29 (m, 1H), 3.77 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 3.51 (s, 1H), 2.05 (m, 2H), 1.91 (m, 1H), 1.65 (m, 1H).
乾燥 CH2Cl2 (1 ml)中の化合物4b (24 mg, 0.037 mmol)の撹拌溶液にTFA (0.5 ml)を加えた。 反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (370 μl)に溶解した。次いで、2-(1H-イミダゾール-4-イル)酢酸(6 mg, 0.055 mmol), EDC (10 mg, 0.055 mmol), HOBT (8 mg, 0.055 mmol), DIPEA (64 μl, 0.37 mmol) をこの溶液に加えた。反応混合物を室温で1時間撹拌した。溶液をシリカゲルカラムクロマトグラフィー (CHCl3 : MeOH : NH4OH aq. = 10:1:1)で精製して化合物 5b (18 mg, 0.027 mmol, 74%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 7.62 (t, 1H, J = 6.4 Hz), 7.53 (s, 1H), 7.41-7.49 (m, 4H), 7.12 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 6.84 (s, 1H,), 4.81 (d, 1H, J = 10.4 Hz), 4.29 (m, 1H), 3.77 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 3.51 (s, 1H), 2.05 (m, 2H), 1.91 (m, 1H), 1.65 (m, 1H). N- (1- (1H-imidazol-4-yl) -2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl) -4- (7-chloro-5- (2-fluoro Phenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) butanamide (5b)
To a stirred solution of compound 4b (24 mg, 0.037 mmol) in dry CH 2 Cl 2 (1 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (370 μl). Next, 2- (1H-imidazol-4-yl) acetic acid (6 mg, 0.055 mmol), EDC (10 mg, 0.055 mmol), HOBT (8 mg, 0.055 mmol), DIPEA (64 μl, 0.37 mmol) Added to the solution. The reaction mixture was stirred at room temperature for 1 hour. The solution was purified by silica gel column chromatography (CHCl 3 : MeOH: NH 4 OH aq. = 10: 1: 1) to obtain compound 5b (18 mg, 0.027 mmol, 74%) as a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 7.62 (t, 1H, J = 6.4 Hz), 7.53 (s, 1H), 7.41-7.49 (m, 4H), 7.12 (s, 1H), 7.06 ( t, 1H, J = 9.2 Hz), 6.84 (s, 1H,), 4.81 (d, 1H, J = 10.4 Hz), 4.29 (m, 1H), 3.77 (d, 1H, J = 10.4 Hz), 3.67 (m, 1H), 3.51 (s, 1H), 2.05 (m, 2H), 1.91 (m, 1H), 1.65 (m, 1H).
2-(2-((tert-ブトキシカルボニル)アミノ)エトキシ)エチル 4-(19-(7-クロロ-5-(2-フルオロフェニル)-2-オキソ-2,3-ジヒドロ-1H-ベンゾ[e][1,4]ジアゼピン-1-イル)-2,16-ジオキソ-6,9,12-トリオキサ-3,15-ジアザノナデシル)-1H-イミダゾールe-1-カルボキシレート (6b)
乾燥 DMF (270μl)中の化合物 5b (18 mg, 0.027 mmol)の撹拌溶液に化合物 2b (17 mg, 0.04 mmol)を加えた。反応混合物を室温で1時間撹拌した。反応混合物をシリカゲルカラムクロマトグラフィー (CHCl3 only →CHCl3 : MeOH= 10:1)で精製して化合物 6b (15 mg, 0.017 mmol, 63%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 8.10 (s, 1H), 7.62 (t, 1H, J = 7.6 Hz), 7.41-7.49 (m, 3H), 7.35 (s, 1H), 7.26 (m, 1H), 7.13 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 4.82 (d, 1H, J = 10.8 Hz), 4.52 (m, 2H), 4.32 (m, 1H), 3.30-3.77 (m, 28H), 2.09 (m, 2H), 1.94 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H). 2- (2-((tert-butoxycarbonyl) amino) ethoxy) ethyl 4- (19- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [ e] [1,4] diazepin-1-yl) -2,16-dioxo-6,9,12-trioxa-3,15-diazanonadecyl) -1H-imidazole e-1-carboxylate (6b)
Compound 2b (17 mg, 0.04 mmol) was added to a stirred solution of compound 5b (18 mg, 0.027 mmol) in dry DMF (270 μl). The reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was purified by silica gel column chromatography (CHCl 3 only → CHCl 3 : MeOH = 10: 1) to obtain compound 6b (15 mg, 0.017 mmol, 63%) as a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 8.10 (s, 1H), 7.62 (t, 1H, J = 7.6 Hz), 7.41-7.49 (m, 3H), 7.35 (s, 1H), 7.26 ( m, 1H), 7.13 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 4.82 (d, 1H, J = 10.8 Hz), 4.52 (m, 2H), 4.32 (m, 1H), 3.30-3.77 (m, 28H), 2.09 (m, 2H), 1.94 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H).
乾燥 DMF (270μl)中の化合物 5b (18 mg, 0.027 mmol)の撹拌溶液に化合物 2b (17 mg, 0.04 mmol)を加えた。反応混合物を室温で1時間撹拌した。反応混合物をシリカゲルカラムクロマトグラフィー (CHCl3 only →CHCl3 : MeOH= 10:1)で精製して化合物 6b (15 mg, 0.017 mmol, 63%)を透明固体として得た。1H-NMR (400 MHz, CDCl3): δ 8.10 (s, 1H), 7.62 (t, 1H, J = 7.6 Hz), 7.41-7.49 (m, 3H), 7.35 (s, 1H), 7.26 (m, 1H), 7.13 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 4.82 (d, 1H, J = 10.8 Hz), 4.52 (m, 2H), 4.32 (m, 1H), 3.30-3.77 (m, 28H), 2.09 (m, 2H), 1.94 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H). 2- (2-((tert-butoxycarbonyl) amino) ethoxy) ethyl 4- (19- (7-chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [ e] [1,4] diazepin-1-yl) -2,16-dioxo-6,9,12-trioxa-3,15-diazanonadecyl) -1H-imidazole e-1-carboxylate (6b)
Compound 2b (17 mg, 0.04 mmol) was added to a stirred solution of compound 5b (18 mg, 0.027 mmol) in dry DMF (270 μl). The reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was purified by silica gel column chromatography (CHCl 3 only → CHCl 3 : MeOH = 10: 1) to obtain compound 6b (15 mg, 0.017 mmol, 63%) as a transparent solid. 1 H-NMR (400 MHz, CDCl 3 ): δ 8.10 (s, 1H), 7.62 (t, 1H, J = 7.6 Hz), 7.41-7.49 (m, 3H), 7.35 (s, 1H), 7.26 ( m, 1H), 7.13 (s, 1H), 7.06 (t, 1H, J = 9.2 Hz), 4.82 (d, 1H, J = 10.8 Hz), 4.52 (m, 2H), 4.32 (m, 1H), 3.30-3.77 (m, 28H), 2.09 (m, 2H), 1.94 (m, 1H), 1.70 (m, 1H), 1.42 (s, 9H).
2-(2-(2',7'-ジフルオロ-3',6'-ジヒドロキシ-3-オキソ-3H-スピロ[イソベンゾフラン-1,9'-キサンテン]-5-カルボキサミド)エトキシ)エチル 4-(19-(7-クロロ-5-(2-フルオロフェニル)-2-オキソ-2,3-ジヒドロ-1H-ベンゾ[e][1,4]ジアゼピン-1-イル)-2,16-diオキソ-6,9,12-トリオキサ-3,15-ジアザノナデシル)-1H-イミダゾール-1-カルボキシレート (1b)
乾燥 CH2Cl2 (0.5 ml)中の化合物 6b (1 mg, 1.1 μmol)の撹拌溶液にTFA (0.5 ml)を加えた。反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (100 μl)に溶解した。次いで、2,5-ジオキソピロリジン-1-イル 2',7'-ジフルオロ-3',6'-ジヒドロキシ-3-オキソ-3H-スピロ[イソベンゾフラン-1,9'-キサンテン]-5-カルボキシレート (1 mg, 2.0 μmol), DIPEA (20 μl, 0.11 mmol)をこの溶液に加えた。反応混合物を室温で1時間撹拌した。この溶液をHPLCで精製して化合物1b (0.8 mg, 0.7 μmol, 64%)を黄色固体として得た。HR-ESI MS: calcd for C58H55ClF3N7O15 [M+H]+ = 1182.3475: obsd 1182.3497. 2- (2- (2 ', 7'-difluoro-3', 6'-dihydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene] -5-carboxamido) ethoxy) ethyl 4- (19- (7-Chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) -2,16-di Oxo-6,9,12-trioxa-3,15-diazanonadecyl) -1H-imidazole-1-carboxylate (1b)
To a stirred solution of compound 6b (1 mg, 1.1 μmol) in dry CH 2 Cl 2 (0.5 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (100 μl). Then, 2,5-dioxopyrrolidin-1-yl 2 ′, 7′-difluoro-3 ′, 6′-dihydroxy-3-oxo-3H-spiro [isobenzofuran-1,9′-xanthene] -5- Carboxylate (1 mg, 2.0 μmol), DIPEA (20 μl, 0.11 mmol) was added to this solution. The reaction mixture was stirred at room temperature for 1 hour. This solution was purified by HPLC to give compound 1b (0.8 mg, 0.7 μmol, 64%) as a yellow solid. HR-ESI MS: calcd for C 58 H 55 ClF 3 N 7 O 15 [M + H] + = 1182.3475: obsd 1182.3497.
乾燥 CH2Cl2 (0.5 ml)中の化合物 6b (1 mg, 1.1 μmol)の撹拌溶液にTFA (0.5 ml)を加えた。反応混合物を室温で1時間撹拌した。TFAをトルエンと共沸除去した後、残渣を乾燥DMF (100 μl)に溶解した。次いで、2,5-ジオキソピロリジン-1-イル 2',7'-ジフルオロ-3',6'-ジヒドロキシ-3-オキソ-3H-スピロ[イソベンゾフラン-1,9'-キサンテン]-5-カルボキシレート (1 mg, 2.0 μmol), DIPEA (20 μl, 0.11 mmol)をこの溶液に加えた。反応混合物を室温で1時間撹拌した。この溶液をHPLCで精製して化合物1b (0.8 mg, 0.7 μmol, 64%)を黄色固体として得た。HR-ESI MS: calcd for C58H55ClF3N7O15 [M+H]+ = 1182.3475: obsd 1182.3497. 2- (2- (2 ', 7'-difluoro-3', 6'-dihydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene] -5-carboxamido) ethoxy) ethyl 4- (19- (7-Chloro-5- (2-fluorophenyl) -2-oxo-2,3-dihydro-1H-benzo [e] [1,4] diazepin-1-yl) -2,16-di Oxo-6,9,12-trioxa-3,15-diazanonadecyl) -1H-imidazole-1-carboxylate (1b)
To a stirred solution of compound 6b (1 mg, 1.1 μmol) in dry CH 2 Cl 2 (0.5 ml) was added TFA (0.5 ml). The reaction mixture was stirred at room temperature for 1 hour. After azeotropic removal of TFA with toluene, the residue was dissolved in dry DMF (100 μl). Then, 2,5-dioxopyrrolidin-1-
代謝型グルタミン酸受容体(mGluR1)ラベル化剤合成の実験項
ラベル化剤(Fl-AI-C4-PTMB)の合成 Synthesis of experimental labeling agent (Fl-AI-C4-PTMB) for synthesis of metabotropic glutamate receptor (mGluR1) labeling agent
ラベル化剤(Fl-AI-C4-PTMB)の合成 Synthesis of experimental labeling agent (Fl-AI-C4-PTMB) for synthesis of metabotropic glutamate receptor (mGluR1) labeling agent
化合物11cの合成Synthesis of compound 11c
乾燥 DMF (13 mL)中の化合物10c (171 mg, 0.452 mmol, 1.0 eq), HBTU (206 mg, 0.542 mmol, 1.2 eq), TEA (315 μL, 2.26 mmol, 5.0 eq)及び2-(2-アミノエトキシ)エタノール(90.0 μL, 0.904 mmol, 2.0 eq)の混合物を窒素雰囲気下に室温で5時間撹拌した。次いで、TEA (189 μL, 1.36 mmol, 3.0eq)をこの溶液に加え、窒素雰囲気下に室温で2時間30分撹拌した。その後、溶液を留去した。残渣をシリカゲルカラムクロマトグラフィー (CHCl3: Methanol: = 10:1 (AcOH 0.5%))で精製して黄色固体の化合物 11c (122 mg, 58.2%)を得た。
Compound 10c (171 mg, 0.452 mmol, 1.0 eq), HBTU (206 mg, 0.542 mmol, 1.2 eq), TEA (315 μL, 2.26 mmol, 5.0 eq) and 2- (2- in dry DMF (13 mL) A mixture of aminoethoxy) ethanol (90.0 μL, 0.904 mmol, 2.0 eq) was stirred at room temperature for 5 hours under nitrogen atmosphere. TEA (189 μL, 1.36 mmol, 3.0 eq) was then added to the solution and stirred at room temperature for 2 hours 30 minutes under a nitrogen atmosphere. Thereafter, the solution was distilled off. The residue was purified by silica gel column chromatography (CHCl 3 : Methanol: = 10: 1 (AcOH 0.5%)) to obtain a yellow solid compound 11c (122 mg, 58.2%).
化合物12cの合成Synthesis of compound 12c
乾燥 DMF (0.5 mL)中の化合物11c(10.0 mg, 21.6 μmol, 1.0 eq), TEA (7.5 μL, 53.9 μmol, 2.5 eq)及び DSC (13.8 mg, 53.9 μmol, 2.5 eq) の混合物を窒素雰囲気下に室温で5時間撹拌した。その後、溶液を留去して化合物12cを得、-80℃で保存した。
スペーサー2(化合物14c)の合成 A mixture of Compound 11c (10.0 mg, 21.6 μmol, 1.0 eq), TEA (7.5 μL, 53.9 μmol, 2.5 eq) and DSC (13.8 mg, 53.9 μmol, 2.5 eq) in dry DMF (0.5 mL) under a nitrogen atmosphere For 5 hours at room temperature. Thereafter, the solution was distilled off to obtain Compound 12c, which was stored at -80 ° C.
Synthesis of spacer 2 (compound 14c)
スペーサー2(化合物14c)の合成 A mixture of Compound 11c (10.0 mg, 21.6 μmol, 1.0 eq), TEA (7.5 μL, 53.9 μmol, 2.5 eq) and DSC (13.8 mg, 53.9 μmol, 2.5 eq) in dry DMF (0.5 mL) under a nitrogen atmosphere For 5 hours at room temperature. Thereafter, the solution was distilled off to obtain Compound 12c, which was stored at -80 ° C.
Synthesis of spacer 2 (compound 14c)
乾燥DMF(10 mL)中のBoc-Ape(5)-OH (215 mg, 0.99 mmol, 1.1 eq), HBTU (410 mg, 1.08 mmol, 1.0 eq), DIEA (744 μL, 4.50 mmol, 5.0 eq)及びヒスタミン二塩酸塩(100 mg, 0.543 mmol, 0.60 eq)の混合物を窒素雰囲気下に室温で3時間25分撹拌した。溶媒を減圧下に留去した。その後、この残渣をCHCl3 (30 mL)で抽出し、有機層を0.1N NaOH (30 mL×3)及び30 mL 飽和食塩水で洗浄し、Na2SO4で乾燥し、減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィー (CHCl3: メタノール: NH3 水 = 10:1:1%)で精製し、化合物14cを得た。
Boc-Ape (5) -OH (215 mg, 0.99 mmol, 1.1 eq), HBTU (410 mg, 1.08 mmol, 1.0 eq), DIEA (744 μL, 4.50 mmol, 5.0 eq) in dry DMF (10 mL) And a mixture of histamine dihydrochloride (100 mg, 0.543 mmol, 0.60 eq) was stirred at room temperature for 3 hours and 25 minutes under a nitrogen atmosphere. The solvent was distilled off under reduced pressure. The residue was then extracted with CHCl 3 (30 mL), and the organic layer was washed with 0.1N NaOH (30 mL × 3) and 30 mL saturated brine, dried over Na 2 SO 4 and evaporated under reduced pressure. did. The residue was purified by silica gel column chromatography (CHCl 3 : methanol: NH 3 water = 10: 1: 1%) to obtain Compound 14c.
化合物15cの合成Synthesis of compound 15c
CH2Cl2 8 mL中の化合物14c (424 mg, 1.36 mmol, 1.0 eq)の溶液にTFA 2 mLを氷上で加え、室温で2時間15分撹拌した。その後、溶媒を除去し、残留TFAをさらにトルエンとの共沸(3回)で除去し、化合物15c (623 mg, 105%)を得た。生成物は、さらに精製することなく次の反応に使用した。
To a solution of compound 14c (424 mg, 1.36 mmol, 1.0 eq) in 8 mL of CH 2 Cl 2 was added 2 mL of TFA on ice and stirred at room temperature for 2 hours and 15 minutes. Thereafter, the solvent was removed, and residual TFA was further removed by azeotropy with toluene (three times) to obtain Compound 15c (623 mg, 105%). The product was used in the next reaction without further purification.
化合物4cの合成Synthesis of compound 4c
乾燥DMF (6.0 mL)中の4,6-ジクロロピリミジン(300 mg, 2.01 mmol 1.0 eq), トリブチル (1-エトキシビニル)スズ(0.679 mL, 2.01 mmol, 1.0 eq), Pd(PPh3)4 (69.7 mg, 0.0603 mmol, 0.03 eq), フッ化セシウム(611 mg, 4.02 mmol, 2.0 eq)及びヨウ化銅(I)(38.3 mg, 2.01 mmol, 0.1 eq)の混合物をN2雰囲気下80 °C で8時間撹拌した。反応をCH2Cl2/ H2O (1/1, v/v, 10 mL)で止め、懸濁液をCH2Cl2を用いてCeliteで濾過した。有機層を水 (50 mL×3)及び50 mL飽和食塩水で洗浄し、Na2SO4で終夜乾燥した。その後、溶媒を減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン: 酢酸エチル = 25:1)で精製して化合物4c (38.1 mg, 10.3%)を無色固体として得た。
4,6-dichloropyrimidine (300 mg, 2.01 mmol 1.0 eq), tributyl (1-ethoxyvinyl) tin (0.679 mL, 2.01 mmol, 1.0 eq), Pd (PPh 3 ) 4 (in dry DMF (6.0 mL) 69.7 mg, 0.0603 mmol, 0.03 eq), a mixture of cesium fluoride (611 mg, 4.02 mmol, 2.0 eq) and copper (I) iodide (38.3 mg, 2.01 mmol, 0.1 eq) under N 2 atmosphere at 80 ° C For 8 hours. The reaction was quenched with CH 2 Cl 2 / H 2 O (1/1, v / v, 10 mL) and the suspension was filtered through Celite with CH 2 Cl 2 . The organic layer was washed with water (50 mL × 3) and 50 mL saturated brine, and dried over Na 2 SO 4 overnight. Thereafter, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 25: 1) to give compound 4c (38.1 mg, 10.3%) as a colorless solid.
化合物5cの合成Synthesis of compound 5c
THF/H2O (1.8 mL; 1/1, v/v)中の化合物4c (104 mg, 0.562 mmol 1.0 eq)の溶液にNBS (110 mg, 0.618 mmol 1.1 eq) を室温で添加し、2時間撹拌した。N-メチルチオウレア(50.7 mg, 0.562 mmol 1.0 eq) を反応混合物に添加し、該混合物を室温で2時間撹拌した。反応混合物を水(2mL)で希釈し、得られた固体を濾過し、熱THF/水で再結晶した。上澄みの液体をシリカゲルカラムクロマトグラフィー (ヘキサン: 酢酸エチル: NH3 水 = 5:1:0.01)で精製し、化合物5c(合計量で44.0 mg, 34.5%)を無色固体として得た。
To a solution of compound 4c (104 mg, 0.562 mmol 1.0 eq) in THF / H 2 O (1.8 mL; 1/1, v / v) was added NBS (110 mg, 0.618 mmol 1.1 eq) at room temperature and 2 Stir for hours. N-methylthiourea (50.7 mg, 0.562 mmol 1.0 eq) was added to the reaction mixture and the mixture was stirred at room temperature for 2 hours. The reaction mixture was diluted with water (2 mL) and the resulting solid was filtered and recrystallized with hot THF / water. The supernatant liquid was purified by silica gel column chromatography (hexane: ethyl acetate: NH 3 water = 5: 1: 0.01) to obtain compound 5c (total amount: 44.0 mg, 34.5%) as a colorless solid.
化合物6cの合成Synthesis of compound 6c
化合物5c (26.3 mg, 0.116 mmol 1.0 eq)及びEt3N (97.0μL, 0.696 mmol 6.0 eq) のトルエン (0.6 mL) 溶液に4-メトキシベンゾイルクロリド (20.9μL, 0.174 mmol 1.5 eq)を室温でN2雰囲気下に加えた。反応混合物を100 °Cで3時間50分還流した。この混合物の反応を水で冷却し、CH2Cl2で抽出した。有機層をNa2SO4で乾燥し、減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィー (CH2Cl2、次いで、CH2Cl2: 酢酸エチル= 4:1) で精製して化合物6c (32.5 mg, 80.3%)を無色固体として得た。
4-methoxybenzoyl chloride (20.9 μL, 0.174 mmol 1.5 eq) in a solution of compound 5c (26.3 mg, 0.116 mmol 1.0 eq) and Et3N (97.0 μL, 0.696 mmol 6.0 eq) in toluene (0.6 mL) at room temperature in N 2 atmosphere Added below. The reaction mixture was refluxed at 100 ° C. for 3 hours and 50 minutes. The mixture reaction was cooled with water and extracted with CH 2 Cl 2 . The organic layer was dried over Na 2 SO 4 and evaporated under reduced pressure. The residue was purified by silica gel column chromatography (CH 2 Cl 2 , then CH 2 Cl 2 : ethyl acetate = 4: 1) to obtain compound 6c (32.5 mg, 80.3%) as a colorless solid.
化合物8cの合成Synthesis of compound 8c
DMF (3 mL)中の化合物6c (50.0 mg, 0.143 mmol 1.0 eq)及びK2CO3 (98.8 mg, 0.715 mmol 5.0 eq) の溶液に化合物15c (94.0 mg, 0.215 mmol 1.5 eq)を室温で加えた。反応混合物を80 °Cに4時間30分加熱した。この混合物をシリカゲルカラム クロマトグラフィー (CHCl3: Methanol: NH3 水 10:1:1%)で精製して化合物8c (32.6 mg, 43.6%)を無色固体として得た。
To a solution of compound 6c (50.0 mg, 0.143 mmol 1.0 eq) and K 2 CO 3 (98.8 mg, 0.715 mmol 5.0 eq) in DMF (3 mL) was added compound 15c (94.0 mg, 0.215 mmol 1.5 eq) at room temperature. It was. The reaction mixture was heated to 80 ° C. for 4 hours 30 minutes. The mixture was purified by silica gel column chromatography (CHCl 3 : Methanol: NH 3 water 10: 1: 1%) to obtain Compound 8c (32.6 mg, 43.6%) as a colorless solid.
化合物2cの合成Synthesis of compound 2c
乾燥 DMF 0.5 mL中の粗化合物12cに化合物8c (10.0 mg, 11.0 μmol, 1.0 eq)及びピリジン 0.5 mLを室温で窒素雰囲気下に加えた。混合物を室温で7時間窒素雰囲気下に撹拌した。その後、粗溶液をHPLC (A:B = 5:95 → 70:30 for 55 min (linear gradient) → 100:0 for 5 min (linear gradient), A = CH3CN, B = 10 mM AcONH4 aq)で精製した。目的の生成物は、45 minで溶出し、化合物2c (Fl-AI-C4-PTMB)を橙色固体(4.6 mg, 41.4%)として得た。生成物は、1H-NMRおよびMALDI ([M+H] = 1012.7 (obs.), 1012.3 (cal.))により同定した。
Compound 8c (10.0 mg, 11.0 μmol, 1.0 eq) and 0.5 mL pyridine were added to crude compound 12c in 0.5 mL dry DMF at room temperature under a nitrogen atmosphere. The mixture was stirred at room temperature for 7 hours under a nitrogen atmosphere. After that, the crude solution was HPLC (A: B = 5:95 → 70:30 for 55 min (linear gradient) → 100: 0 for 5 min (linear gradient), A = CH 3 CN, B = 10 mM AcONH 4 aq ). The desired product eluted at 45 min to give compound 2c (Fl-AI-C4-PTMB) as an orange solid (4.6 mg, 41.4%). The product was identified by 1 H-NMR and MALDI ([M + H] = 1012.7 (obs.), 1012.3 (cal.)).
Claims (6)
- 下記式(II)
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで蛍光のパターンが変化する、標識された神経伝達物質受容体に前記受容体との相互作用が期待される候補物質を作用させて、前記候補物質と前記受容体の結合様式を標識が発するシグナルの変化により検出し、その結果に基づいて行うことを特徴とする、当該神経伝達物質受容体に結合する物質のスクリーニング方法。 The following formula (II)
It is expected that the labeled neurotransmitter receptor interacts with the receptor, which has a basic structure represented by the formula and changes the fluorescence pattern between when the antagonist is bound and when the agonist is bound. A substance that binds to a neurotransmitter receptor, characterized in that a candidate substance is allowed to act, and the binding mode of the candidate substance and the receptor is detected based on a change in a signal emitted by a label, and is performed based on the result. Screening method. - 標識された神経伝達物質受容体を有する細胞に前記候補物質を作用させる、請求項1に記載のスクリーニング方法。 The screening method according to claim 1, wherein the candidate substance is allowed to act on cells having a labeled neurotransmitter receptor.
- 前記受容体がAMPA受容体である、請求項1又は2に記載のスクリーニング方法。 The screening method according to claim 1 or 2, wherein the receptor is an AMPA receptor.
- 下記式(I)
で表される化合物。 Formula (I) below
A compound represented by - 下記式(I)
で表される当該神経伝達物質受容体の標識剤。 Formula (I) below
A labeling agent for the neurotransmitter receptor represented by: - 下記式(I)
で表される化合物と当該神経伝達物質受容体(Rec-Nu-H)を反応させて下記式(II)
で表される基本構造を有し、アンタゴニストが結合したときとアゴニストが結合したときとで標識の発するシグナルのパターンが変化する、標識された神経伝達物質受容体を得ることを特徴とする、標識受容体の製造方法。 Formula (I) below
And the neurotransmitter receptor (Rec-Nu-H) is reacted with the compound represented by the following formula (II):
A labeled neurotransmitter receptor having a basic structure represented by the above, wherein the signal pattern emitted by the label changes between when an antagonist is bound and when an agonist is bound. A method for producing a receptor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504151A JP6670502B2 (en) | 2014-02-19 | 2015-02-19 | Development of ligand screening system for neurotransmitter receptor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-029880 | 2014-02-19 | ||
JP2014029880 | 2014-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125851A1 true WO2015125851A1 (en) | 2015-08-27 |
Family
ID=53878350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054558 WO2015125851A1 (en) | 2014-02-19 | 2015-02-19 | Development of ligand screening system for neurotransmitter receptors |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6670502B2 (en) |
WO (1) | WO2015125851A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019168125A1 (en) * | 2018-03-01 | 2019-09-06 | 国立大学法人京都大学 | Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064772A1 (en) * | 2001-01-30 | 2002-08-22 | Shionogi & Co., Ltd. | Human nmda receptor splice variant |
WO2004027424A1 (en) * | 2002-09-19 | 2004-04-01 | Hamamatsu Photonics K.K. | Fluorescence analysis method with the use of fluorescent antibody |
WO2006070941A1 (en) * | 2004-12-28 | 2006-07-06 | Tokyo University Of Science | Novel screening method for substance using fluorescent molecular probe |
JP4485475B2 (en) * | 2004-02-12 | 2010-06-23 | 独立行政法人科学技術振興機構 | Probe for detecting agonist / antagonist of nuclear receptor and screening method of agonist and antagonist for nuclear receptor using the same |
-
2015
- 2015-02-19 JP JP2016504151A patent/JP6670502B2/en active Active
- 2015-02-19 WO PCT/JP2015/054558 patent/WO2015125851A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064772A1 (en) * | 2001-01-30 | 2002-08-22 | Shionogi & Co., Ltd. | Human nmda receptor splice variant |
WO2004027424A1 (en) * | 2002-09-19 | 2004-04-01 | Hamamatsu Photonics K.K. | Fluorescence analysis method with the use of fluorescent antibody |
JP4485475B2 (en) * | 2004-02-12 | 2010-06-23 | 独立行政法人科学技術振興機構 | Probe for detecting agonist / antagonist of nuclear receptor and screening method of agonist and antagonist for nuclear receptor using the same |
WO2006070941A1 (en) * | 2004-12-28 | 2006-07-06 | Tokyo University Of Science | Novel screening method for substance using fluorescent molecular probe |
Non-Patent Citations (2)
Title |
---|
FUJISHIMA SHO-HEI ET AL.: "Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane- Bound Proteins on Live Cells", J AM CHEM SOC, vol. 134, no. 9, pages 3961 - 3964, XP055221548 * |
SHIGEYUKI NAMIKI ET AL.: "Optical glutamate sensor for spatiotemporal analysis of synaptic transmission", EUROPEAN JOURNAL OF NEUROSCIENCE, vol. 25, 2007, pages 2249.2259, XP055221551 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019168125A1 (en) * | 2018-03-01 | 2019-09-06 | 国立大学法人京都大学 | Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015125851A1 (en) | 2017-03-30 |
JP6670502B2 (en) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9714260B2 (en) | Asymmetrical Si rhodamine and rhodol synthesis | |
Loison et al. | Selective Fluorescent Nonpeptidic Antagonists For Vasopressin V2 GPCR: Application To Ligand Screening and Oligomerization Assays. | |
US8148423B2 (en) | Fluorophore compounds | |
Yang et al. | Discovery of 2-((4, 6-dimethylpyrimidin-2-yl) thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors | |
US9006459B2 (en) | Fluorescent markers and use thereof for labeling specific protein targets | |
JP5223391B2 (en) | Sensitization assay method using fluorescent cysteine derivative and fluorescent cysteine derivative | |
US9701667B2 (en) | Coumarin-based fluorogenic agents and uses thereof for specific protein labelling | |
WO2012083872A1 (en) | Photoaffinity labeling double function probe molecule, preparation method and application thereof | |
CN105474015A (en) | 3-aryl propiolonitrile compounds for thiol labeling | |
Paul et al. | Design, synthesis, and biophysical studies of novel 1, 2, 3-triazole-based quinoline and coumarin compounds | |
Malan et al. | Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization | |
JP2006523203A (en) | Fluorescent tagged ligand | |
WO2015125851A1 (en) | Development of ligand screening system for neurotransmitter receptors | |
JP5219144B2 (en) | Novel affinity labeling method and screening method using the labeling method | |
Clavé et al. | A universal and ready-to-use heterotrifunctional cross-linking reagent for facile synthetic access to sophisticated bioconjugates | |
WO2015166491A2 (en) | Fluorescent molecular sensor for targeting changes in protein surfaces, and methods of use thereof | |
WO2015125892A1 (en) | Protein labeling compound | |
JP5244596B2 (en) | Protein detection method and fluorescent dye used therefor | |
Tanaka et al. | Template-assisted and self-activating clicked peptide as a synthetic mimic of the SH2 domain | |
Admas et al. | Development of photoactivatable allosteric modulators for the chemokine receptor CXCR3 | |
JP2006234772A (en) | Method of detecting protein and fluorescent dye used for same | |
Mertens et al. | Clickable coumarins as fluorescent labels for amino acids | |
US20170168064A1 (en) | Highly fluorogenic protein labelling agents | |
US11498932B2 (en) | Bright targetable red CA2+ indicators | |
Lavis et al. | Bright targetable red CA 2+ indicators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15751477 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016504151 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15751477 Country of ref document: EP Kind code of ref document: A1 |