WO2015125306A1 - 軸流送風機 - Google Patents
軸流送風機 Download PDFInfo
- Publication number
- WO2015125306A1 WO2015125306A1 PCT/JP2014/054359 JP2014054359W WO2015125306A1 WO 2015125306 A1 WO2015125306 A1 WO 2015125306A1 JP 2014054359 W JP2014054359 W JP 2014054359W WO 2015125306 A1 WO2015125306 A1 WO 2015125306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- blade
- distribution
- flow fan
- rotor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/002—Axial flow fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
- F04D29/329—Details of the hub
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
Definitions
- the present invention relates to an axial blower used for a ventilation fan, an air conditioner, a cooling fan, or the like.
- the rotor blades for the axial blower are mainly applied in the rotational direction and forwardly inclined to the upstream side in order to reduce noise, and in addition, in order to increase the air volume and static pressure, Increasing blade outer diameter and chord length within dimensional constraints is applied.
- the blade shape when adopting the shape for reducing noise, increasing the air volume and increasing the static pressure, the blade shape often causes stress concentration at the root of the blade leading edge. It is also necessary to secure the strength against
- Patent No. 5079063 Japanese Patent No. 2932975
- An axial blower used for an outdoor unit of a ventilation or air conditioner is within the product constraints because the longer the chord length is, the better the blowing-noise characteristics when improving the blowing characteristics and achieving low noise.
- the blade root portion is advantageous in terms of strength when the blade chord length is long in order to ensure blade strength.
- the rotor blades are integrally formed of resin or metal, if the distance between the blades of each blade is not taken to some extent so that the mold can be removed, molding becomes difficult and the cost increases. For this reason, it was necessary to take a sufficient distance between the blades of each blade.
- Patent Document 2 when the blade leading edge near the boss is extended in the rotational direction from an arbitrary point on the blade leading edge, the distance between the blades at the root of each blade is sufficiently large. I could not take it.
- a method of locally increasing the plate thickness of the blade root part as in Patent Document 1 or a method of introducing a rib shape is adopted.
- the plate thickness becomes discontinuous at the time of molding due to the plate thickness increase or rib shape of the wing root portion. For this reason, cooling and shrinkage during molding become non-uniform, and the entire blade may be distorted.
- rotor blades are increasingly applied with forward and forward tilting of blades or with a shape that bends the outer periphery of the blade toward the upstream side of the airflow. Due to deformation or the like, the stress applied to the wing root portion tends to increase.
- the present invention solves the above-mentioned problems, and improves the air flow-static pressure characteristics and further reduces the stress generated at the leading edge of the blade root even when a shape for reducing noise is applied. It aims at obtaining the axial flow fan which can be eased.
- an axial blower includes a boss portion that is rotationally driven by a motor, and a plurality of boss portions that are radially attached to the boss portion and blow in the direction of the rotation axis.
- each of the plurality of rotor blades is connected to the first region starting from the boss portion toward the outer periphery, and connected to the first region from the first region to the outermost of the rotor blades.
- the distribution of the advance angle changes in a quadratic function in the first region, and the maximum value of the advance angle of the first region is less than or equal to the advance angle of the second region.
- the distribution of the chordal ratio changes in a curved manner with the root as the minimum value in the first region, and has a linear distribution in the second region.
- the present invention by adopting the above configuration, it is possible to reduce the stress at the stress concentration portion of the rotor blade and to obtain a blower with less deterioration of the blower-noise characteristics.
- FIG. 2 is a plan view of the rotor blade of FIG. 1 viewed from an XY plane orthogonal to a rotation axis.
- FIG. 3 is a diagram showing the definition of the advance angle by extracting only one blade of the rotor blade of FIG. 2. It is the figure which showed the definition of the chordal ratio of the rotary blade of FIG. It is the top view which showed the rotary blade which increased the chord length of the blade root partially. It is a top view of the axial-flow fan which concerns on one embodiment of this invention. It is the figure which showed distribution of the advance angle in the rotary blade of this Embodiment, and distribution of the advance angle in the conventional rotary blade.
- FIG. 6 is a diagram showing air blowing-static pressure characteristics of the rotor blade according to the present embodiment and a conventional rotor blade.
- FIG. 6 is a diagram showing air-noise characteristics of the rotor blade according to the present embodiment and a conventional rotor blade.
- FIG. 1 is a perspective view showing a rotor blade of an axial blower
- FIG. 2 is a plan view of the rotor blade of FIG. 1 projected on an XY plane orthogonal to the rotor shaft 3.
- the rotor blade 1 of the axial-flow fan of FIG. 1 is an example of five sheets, the number of rotor blades of this Embodiment may be other than that.
- the shape of one rotor blade is mainly described for the rotor blade 1, but the shapes of the other rotor blades are also the same.
- the rotary blade 1 has a three-dimensional solid shape that inclines backward in the downstream direction of the flow as a whole, and its roots are radially attached to the outer peripheral portion of the cylindrical boss portion 2. It has been.
- the boss portion 2 is driven to rotate by a motor (not shown) and rotates about the rotation shaft 3, so that the rotary blade 1 rotates in the direction of arrow 4.
- the rotation of the rotary blade 1 in the direction of arrow 4 generates an air flow in the direction of arrow A.
- the upstream side of the rotor blade 1 is a negative pressure surface, and the downstream side is a positive pressure surface.
- FIG. 3 is a diagram showing the definition of the advance angle by extracting one blade of the rotating blade 1 ′ of FIG.
- Pt ′ indicates a chord line center point (middle point) from the blade leading edge 1b ′ to the blade trailing edge 1c ′ in the blade outer peripheral portion 1d ′.
- a line Pr ′ indicates a trajectory (blade chord centerline) of the chord line center point from the chord line center point Pb ′ of the boss portion to the chord line center point Pt ′ of the outer peripheral portion.
- an angle formed by a straight line connecting the chord line center point Pb ′ of the boss 2 and the rotation center O, and a straight line connecting the intersection of the arbitrary radius R and the chord line center line and the rotation center O. Is defined as an advance angle ⁇ .
- FIG. 4 is a diagram showing the definition of the chordal ratio of the rotor blade 1 ′ of FIG.
- a cross section of the rotary blade 1 ′ with an arbitrary radius R is shown as a cross-sectional view taken along the line AA ′ when a circular arc cut from the cross section is developed on a plane.
- FIG. 5 is a plan view of an axial blower provided with a rotary blade 1 ′ in which the chord length of the blade root is partially increased.
- the leading edge 1e when the chord length on the blade inner peripheral side is long (the chord length at the blade root is partially increased) has a form as shown in FIG.
- the rotor blade 1 ′ in FIG. 5 has a large chord length at its root, and the distribution of the chord length gradually changes to a certain radius, and linearly changes to the outer periphery after exceeding a certain radius. It has become.
- the rotor blade according to the present embodiment is configured against the background of the above considerations, and the present embodiment will be described with reference to FIGS.
- FIG. 6 is a plan view of the axial blower 100 according to the embodiment of the present invention.
- the rotor blade 10 'according to the present embodiment is different from the embodiment of FIG. 5 in that a trailing edge portion 1f in which the blade trailing edge portion 1c' of the blade root portion is cut is formed.
- the rotor blade 10 ′ is a rotor blade according to the present embodiment projected onto a plane orthogonal to the rotary shaft 3 as in the example of FIG.
- the overall shape of the axial blower 100 of the present embodiment is basically the same as that in FIG. 1, and the rotor blade 10 'has a three-dimensional solid shape that is inclined backward in the downstream direction of the flow as a whole.
- the bosses 2 are attached radially.
- the rotary blade 10 ′ shown in FIG. 6 stress concentration can be reduced by increasing the blade area near the leading edge of the blade root where the maximum stress is generated. Further, the trailing edge 1c ′ of the blade has a trailing edge shape that changes in a curved manner in order to secure a gap between the blades.
- the form of the rotary blade 10 ' is specified as follows, focusing on the distribution of the advance angle and the distribution of the chordal ratio.
- the rotary blade 10 ′ is partitioned from the boss portion 2 into a first region 11 on the inner peripheral side of the blade and a second region 12 on the outer peripheral side of the first region 11.
- the distribution of the advance angle ⁇ of the rotary blade 10 ′ changes and increases in a quadratic function in the first region 11 (however, the maximum value is a value less than the advance angle of the second region 12),
- the second region 12 has a linear distribution (the final value of the first region 11 further increases linearly) (see FIG. 7 for details).
- the distribution of the chordal ratio of the rotor blade 10 ′ increases in a curved manner with the root as a minimum value in the first region 11, and has a linear distribution (decreasing in a substantially linear manner) in the second region 12 ( For details, see FIG.
- the rotor blade 10 ′ in FIG. 6 has a slightly higher stress than the rotor blade in FIG. 5, but the strength analysis reveals that the stress can be reduced by about 30% compared to the rotor blade in FIG. 2. Yes. (Refer to FIGS. 12 and 13 described later)
- FIG. 7 is a diagram showing the distribution of the advance angle ⁇ of the rotor blade 10 ′ according to the present embodiment and the distribution of the advance angle ⁇ of the conventional rotor blade.
- the advancing angle ⁇ of the rotor blade 10 ′ according to the present embodiment changes and increases in a quadratic function in the first region 11 and increases linearly (increases linearly) in the second region 12. is doing.
- the advance angle ⁇ of the conventional rotor blade has a linear distribution (increases linearly) through the first region and the second region.
- FIG. 8 is a diagram showing the distribution of the chordal ratio of the rotor blade 10 ′ according to the present embodiment and the distribution of the chordal ratio of the conventional rotor blade.
- the chordal ratio of the rotor blade 10 ′ according to the present embodiment increases in a curved manner with the root being the minimum value in the first region 11, while the distribution of the chordal ratio increases in the second region 12. Linearly decreasing).
- the chordal ratio of the conventional rotor blade has a linear distribution (decreases linearly) through the first region 11 and the second region.
- the first region 11 is from the blade root to a position of 0.65 ⁇ Rt, and is shown in FIGS.
- the advancing angle and chord ratio distributions applied were applied.
- the outer diameter Rt of the rotary blade 10 ' refers to the length from the rotary shaft 3 to the outer peripheral portion of the rotary blade 10'.
- FIG. 9 is a view showing the stress distribution of the rotary blade 10. As shown in FIG. 9, due to the centrifugal force of rotation, stress concentration occurs in the portion 5 near the front edge of the rotary blade 10.
- FIG. 10 is a diagram showing the stress distribution of a conventional rotor blade.
- FIG. 11 is a diagram showing the stress distribution of the conventional rotor blade (FIG. 5) when the root chord length is longer than the conventional chord length.
- FIG. 12 is a diagram showing the stress distribution of the rotor blade according to the present embodiment.
- FIG. 13 is a comparison table of maximum stress.
- FIGS. 11 and 12 are compared with the stress distribution in FIGS. 11 and 12, it can be seen that the stress concentration generated in the vicinity of the leading edge of the rotor blade in FIGS. 11 and 12 is relaxed. Further, when comparing the maximum stress, as shown in FIG. 13, the rotary blade (FIG. 5) with the extended base chord length and the present embodiment are approximately ⁇ 30% compared to the conventional rotary blade. A reduction of the degree was confirmed.
- FIG. 14 is a diagram showing the blowing-static pressure characteristics of the rotor blades of the present embodiment and the conventional rotor blades (rotor blades having advancing angles and chordal ratios having a linear distribution).
- FIG. 15 is a diagram showing the air-noise characteristics of the rotor blades of the present embodiment and the conventional rotor blades (rotary blades having a linear distribution of advancing angle and chordal ratio). From the characteristics shown in FIGS. 14 and 15, it can be seen that the difference between the air blowing / static pressure-noise characteristics of the rotor blade 10 of this embodiment is smaller in the vicinity of the actual use point than the conventional rotor blade.
- the reference value is set to “0.65 Rt” in the above specific example.
- this reference value is not limited to “0.65 Rt”.
- the object of the present invention can be achieved as long as it is in the range of 0.5 Rt to 0.65 Rt.
- the rotor blade 10 (that is, the axial blower 100) according to the present embodiment can improve the strength characteristic with little influence on the blower-noise characteristic.
- the distance between the blades of each blade can be secured so that the mold can be removed, so that the mold strength is not reduced and the mold strength can be secured.
- a mold structure (a structure that is divided into two in the axial direction and pulled out) can be formed. That is, it is not necessary to partially change the die removal direction only at the base of the rotary blade using the slide die.
- the axial blower according to the present invention can be applied to a ventilation fan, an air conditioner, a cooling fan, etc. as a blower that can relieve the stress concentration portion of the rotor blade and has a small deterioration in the blowing-noise characteristics. Is done.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
しかし、回転翼が樹脂や金属によって一体成形される際には、金型が抜けるように各翼の翼間距離をある程度とらなければ、成形に際して困難が生じコストアップにもつながる。このため、各翼の翼間距離を十分にとることが必要であった。しかし、特許文献2のように、羽根前縁部の任意の点よりボス部寄りの部分の羽根前縁部を回転方向に延長した場合には、各翼の根元部分の翼間距離を十分にとることができなかった。
また、強度アップのために、特許文献1のように、翼付け根部分の板厚を局所的に増大させる方法を採用したり、或いはリブ形状を導入する等の方法が採用したりしている。しかし、翼付け根部分の板厚アップ又はリブ形状によって、成形の際に板厚が不連続となる。そのため、成形時における冷却及び収縮が不均一となり、翼全体がゆがむ可能性を生じる。
また、近年は回転翼においては、翼の前進化及び前傾化を適用したり、翼外周部を気流の上流側に屈曲する形状を適用しているものが多くなりつつあり、羽根外周部の変形などにより、翼付け根部分にかかる応力は増大する傾向にある。
本発明の一実施の形態について説明する前に、本実施の形態の構成が採用された根拠を図1~図5に基づいて説明する。
図3において、Pt´は、翼外周部1d´における翼前縁部1b´から翼後縁部1c´までの翼弦線中心点(中点)を示す。線Pr´は、ボス部の翼弦線中心点Pb´から外周部の翼弦線中心点Pt´における翼弦線中心点の軌跡(翼弦中心線)を示している。
図4において、任意の半径Rでの回転翼1´の断面を、断面を切った円弧を平面上に展開すると、A-A´断面展開図のように示される。回転翼1´の翼弦長をL,回転翼1の翼ピッチをtとすると、弦節比σはσ=L/t、と定義できる。
本実施の形態に係る回転翼10´は、図5の形態との相違点は、翼根元部の翼後縁部1c´がカットされた形態の後縁部1fが形成されていることにある。なお、回転翼10´は、図2の例と同様に、回転軸3に直交する面に投影した本実施の形態の回転翼である。本実施の形態の軸流送風機100の全体形状は、図1と基本的に同様であり、回転翼10´は、全体的に流れの下流方向に後傾する3次元立体形状を有しており、ボス部2に放射状に取り付けられている。
回転翼10´は、ボス部2から翼の内周側の第一領域11と、第一領域11の外周側の第二領域12とに区画される。そして、回転翼10´の前進角δθの分布は、第一領域11では2次関数的に変化して増加し(但し、その最大値は第二領域12の前進角以下の値である)、第二領域12では線形分布(第一領域11の最終値が更に直線的に増加)を有する(詳細は図7参照)。さらに、回転翼10´の弦節比の分布は、第一領域11では根元を最小値として曲線的に変化して増加し、第二領域12では線形分布(ぼぼ直線的に減少)を有する(詳細は図8参照)。
図9に示されるように、回転の遠心力により、回転翼10の前縁付近の部位5に応力集中が生じている。
本実施の形態の回転翼10は、図14及び図15の特性から、従来の回転翼と比べて、実使用ポイント付近では、送風/静圧-騒音特性の差は小さいことがわかる。
図1に示されるような形状の回転翼は、その吹き出しの流速分布において、流速が速い領域部分は略0.7Rt~Rt(Rt:羽根外径)に集中するので、この部分が送風性能への寄与が大きい。また、それより内側では流速が遅いため、外周部に比べると送風性能への寄与は小さくなる。したがって、送風性能への寄与が小さい範囲で、羽根形状を変化させるための基準値を設定するのが好ましい。また、強度面から考えると、内周部で急激に形状を変化させると、応力集中部が生じるので、送風性能に影響が小さい範囲で、穏やかに変化させた方が、構造上無理が生じない。このよう理由から、上記の具体例では基準値を「0.65Rt」に設定している。しかし、この基準値は「0.65Rt」に限定されるものではなく、上記の理由から、0.5Rt~0.65Rtの範囲であれば、本発明の課題を達成することができる。
Claims (3)
- モータによって回転駆動されるボス部と、
前記ボス部に放射状に取付けられ、回転軸方向に送風する複数の回転翼と
を備えた軸流送風機において、
前記複数の回転翼の各々を、前記ボス部から始まり外周側に向う第一領域と、前記第一領域につながり前記第一領域から前記回転翼の最外周までの第二領域とに区画し、
前進角の分布は、前記第一領域では2次関数的に変化し、前記第一領域の前進角の最大値を前記第二領域の前進角以下の値とし、
弦節比の分布は、前記第一領域で根元を最小値として曲線的に変化し、前記第二領域では線形分布を有する、軸流送風機。 - 前進角の分布は、前記第二領域では線形分布を有する、
請求項1に記載の軸流送風機。 - 前記複数の回転翼の各々は、全体的に流れの下流方向に後傾する形状を有することを特徴とする請求項1又は2記載の軸流送風機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016503905A JP6121046B2 (ja) | 2014-02-24 | 2014-02-24 | 軸流送風機 |
CN201480076268.1A CN106030117B (zh) | 2014-02-24 | 2014-02-24 | 轴流送风机 |
US15/117,399 US10208770B2 (en) | 2014-02-24 | 2014-02-24 | Axial flow fan |
DE112014006395.9T DE112014006395T5 (de) | 2014-02-24 | 2014-02-24 | Axialgebläse |
PCT/JP2014/054359 WO2015125306A1 (ja) | 2014-02-24 | 2014-02-24 | 軸流送風機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/054359 WO2015125306A1 (ja) | 2014-02-24 | 2014-02-24 | 軸流送風機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125306A1 true WO2015125306A1 (ja) | 2015-08-27 |
Family
ID=53877839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/054359 WO2015125306A1 (ja) | 2014-02-24 | 2014-02-24 | 軸流送風機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10208770B2 (ja) |
JP (1) | JP6121046B2 (ja) |
CN (1) | CN106030117B (ja) |
DE (1) | DE112014006395T5 (ja) |
WO (1) | WO2015125306A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019069374A1 (ja) * | 2017-10-03 | 2020-02-06 | 三菱電機株式会社 | プロペラファンおよび軸流送風機 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD808003S1 (en) * | 2015-01-21 | 2018-01-16 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Ventilator fan for a ventilation system |
KR101921422B1 (ko) * | 2017-06-26 | 2018-11-22 | 두산중공업 주식회사 | 블레이드 구조와 이를 포함하는 팬 및 발전장치 |
JP6931776B2 (ja) * | 2018-03-28 | 2021-09-08 | パナソニックIpマネジメント株式会社 | 軸流ファン |
USD910834S1 (en) * | 2018-12-05 | 2021-02-16 | Asia Vital Components Co., Ltd. | Impeller for a fan |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08312589A (ja) * | 1995-05-16 | 1996-11-26 | Samsung Electronics Co Ltd | 送風ファンの構造 |
JPH0968199A (ja) * | 1995-08-31 | 1997-03-11 | Mitsubishi Electric Corp | 軸流送風機、空気調和機 |
JP2000110789A (ja) * | 1998-09-30 | 2000-04-18 | Toshiba Kyaria Kk | 軸流送風機 |
JP2006291955A (ja) * | 2005-04-07 | 2006-10-26 | General Electric Co <Ge> | 低ソリディティターボファン |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2825220B2 (ja) * | 1995-03-10 | 1998-11-18 | 日本サーボ株式会社 | 軸流フアン |
JP3483447B2 (ja) * | 1998-01-08 | 2004-01-06 | 松下電器産業株式会社 | 送風装置 |
KR100347050B1 (ko) * | 1999-11-02 | 2002-08-03 | 엘지전자주식회사 | 냉장고용 축류팬 |
US6328533B1 (en) * | 1999-12-21 | 2001-12-11 | General Electric Company | Swept barrel airfoil |
US6544010B1 (en) * | 2000-06-09 | 2003-04-08 | Lg Electronics Co., Ltd. | Axial flow fan with brushless direct current motor |
JP4374897B2 (ja) * | 2003-05-12 | 2009-12-02 | 株式会社日立製作所 | 軸流ファン |
GB0701866D0 (en) * | 2007-01-31 | 2007-03-14 | Rolls Royce Plc | Tone noise reduction in turbomachines |
AU2009259850B2 (en) * | 2008-06-20 | 2013-06-13 | Philadelphia Mixing Solutions, Ltd. | Combined axial-radial intake impeller with circular rake |
JP5079063B2 (ja) * | 2010-08-25 | 2012-11-21 | 三菱電機株式会社 | プロペラおよび送風機並びにヒートポンプ装置 |
JP5649608B2 (ja) * | 2012-03-30 | 2015-01-07 | 三菱電機株式会社 | 軸流送風機 |
-
2014
- 2014-02-24 CN CN201480076268.1A patent/CN106030117B/zh active Active
- 2014-02-24 US US15/117,399 patent/US10208770B2/en active Active
- 2014-02-24 WO PCT/JP2014/054359 patent/WO2015125306A1/ja active Application Filing
- 2014-02-24 DE DE112014006395.9T patent/DE112014006395T5/de active Pending
- 2014-02-24 JP JP2016503905A patent/JP6121046B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08312589A (ja) * | 1995-05-16 | 1996-11-26 | Samsung Electronics Co Ltd | 送風ファンの構造 |
JPH0968199A (ja) * | 1995-08-31 | 1997-03-11 | Mitsubishi Electric Corp | 軸流送風機、空気調和機 |
JP2000110789A (ja) * | 1998-09-30 | 2000-04-18 | Toshiba Kyaria Kk | 軸流送風機 |
JP2006291955A (ja) * | 2005-04-07 | 2006-10-26 | General Electric Co <Ge> | 低ソリディティターボファン |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019069374A1 (ja) * | 2017-10-03 | 2020-02-06 | 三菱電機株式会社 | プロペラファンおよび軸流送風機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015125306A1 (ja) | 2017-03-30 |
CN106030117B (zh) | 2018-06-22 |
DE112014006395T5 (de) | 2016-11-17 |
CN106030117A (zh) | 2016-10-12 |
US10208770B2 (en) | 2019-02-19 |
US20160348700A1 (en) | 2016-12-01 |
JP6121046B2 (ja) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10400604B2 (en) | Axial fan with grooved trailing edge and outdoor unit | |
CN103339385B (zh) | 用于风机的具有可变翼弦长度的推进器 | |
JP6121046B2 (ja) | 軸流送風機 | |
KR101348012B1 (ko) | 프로펠러 팬, 성형용 금형 및 유체 이송 장치 | |
CN103328826B (zh) | 用于风机的具有可变叶片角的推进器 | |
WO2011062062A1 (ja) | 遠心式送風機の多翼ファン | |
WO2012161280A1 (ja) | ノズル翼 | |
KR20140133433A (ko) | 원심팬 | |
TWI658215B (zh) | 螺槳風扇及軸流送風機 | |
WO2015146013A1 (ja) | 扇風機用のプロペラファン、扇風機 | |
JP5425192B2 (ja) | プロペラファン | |
WO2019150567A1 (ja) | 軸流送風機 | |
AU2020478845B2 (en) | Turbofan and air-conditioning apparatus | |
JP4712714B2 (ja) | 遠心式多翼ファン | |
CN110566500B (zh) | 一种离心通风机的叶轮 | |
JP2012072673A (ja) | 遠心ファンとこれを備えた空気調和装置及び遠心ファンの金型 | |
JP2003065293A (ja) | 軸流ファン用羽根車 | |
JP2008002441A (ja) | 軸流送風機 | |
JP2012057587A (ja) | 天井扇 | |
JP2010150945A (ja) | 軸流ファンおよび空気調和機の室外機 | |
CN110730868B (zh) | 螺旋桨式风扇 | |
JP2012026380A (ja) | 天井扇 | |
JP2006322378A (ja) | 送風機羽根車 | |
CN211009265U (zh) | 一种离心通风机的叶轮 | |
JP2000009083A (ja) | 羽根車 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14883127 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016503905 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117399 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014006395 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14883127 Country of ref document: EP Kind code of ref document: A1 |