WO2015122756A1 - Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) - Google Patents
Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) Download PDFInfo
- Publication number
- WO2015122756A1 WO2015122756A1 PCT/MX2014/000046 MX2014000046W WO2015122756A1 WO 2015122756 A1 WO2015122756 A1 WO 2015122756A1 MX 2014000046 W MX2014000046 W MX 2014000046W WO 2015122756 A1 WO2015122756 A1 WO 2015122756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar
- air
- wind
- buildings
- heater
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F17/00—Vertical ducts; Channels, e.g. for drainage
- E04F17/02—Vertical ducts; Channels, e.g. for drainage for carrying away waste gases, e.g. flue gases; Building elements specially designed therefor, e.g. shaped bricks or sets thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/02—Roof ventilation
- F24F7/025—Roof ventilation with forced air circulation by means of a built-in ventilator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
- F24F2005/0064—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/272—Solar heating or cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
Definitions
- MIXED AIR EXTRACTOR USING SOLAR AND WIND ENERGY, TO PASSIVENTLY VENTILATE INDUSTRIAL, HOUSING, AND / OR BUILDINGS (SOLAR-WIND CHIMNEY)
- Natural ventilation is considered one of the main requirements in the design of homes and / or buildings, mainly in those buildings oriented to low energy consumption. Natural ventilation is a concept of air conditioning systems, which due to its characteristics has been called a passive system, and is considered essential for comfort inside rooms and for human well-being.
- Passive air conditioning systems unlike conventional air conditioning systems (air conditioning systems and electric heaters, etc.), are characterized by their easy manufacture and very little maintenance required, in addition to their zero dependence on conventional energy , such as those of fossil origin.
- the use of these systems contributes decisively to the reduction of greenhouse gas emissions, the saving and efficient use of non-renewable resources.
- the issue of proposing new alternatives and improving existing ones to achieve comfort within the premises, and simultaneously reducing the consumption of conventional energy is one of the current challenges of our modern society.
- renewable energies such as solar energy, wind energy and others, for use in passive ventilation systems in enclosures such as residential and non-residential buildings, industrial buildings, warehouses, classrooms, etc., are clear examples of this.
- Simple ventilation When the air flow enters through one or more openings on one side of the room, for example, through a window.
- Cross ventilation It is a concept used in Bioclimatic Architecture, to define a mode of ventilation of buildings. When air enters one side of a room through one or more openings and exits on the opposite side through one or more openings. Induced draft ventilation: In this case the buoyant force, due to thermal gradients is the main driving force, where the height of the shot is considered fundamental.
- some types of passive ventilation devices can be mentioned, which are governed by the same physical principles, among them ⁇ Wind Towers, the Wall or Trombe Wall, the Ventilated Facade, the Solar roof with ventilation and the Solar fireplace, among others.
- Wind Towers are appropriate in places where buildings are low-rise and where there is adequate wind speed, a wind tower collector is an architectural device of Persian tradition used for many centuries to provide natural ventilation and cooling inside of the buildings.
- the Trombe Walls although they can be used to ventilate a room, their main function is to produce passive heating.
- the Trombe Wall or Trombe-Michel Wall sensor is a sun-oriented wall or wall, preferably to the North in the southern hemisphere and to the South in the northern hemisphere, it is commonly constructed with materials that can store heat under the effect of thermal mass (such as stone, concrete, adobe or water), combined with an air space, a glass cover and vented holes forming a thermal solar collector.
- the Ventilated Facades in addition to generating ventilation in a building, can be used to control, in some way and in some proportion, the light intensity and the noise level from the outside to the inside in a building.
- the Solar Roofs with ventilation can be used in certain latitudes to passively ventilate an enclosure and at the same time they are part of the structure of the same enclosure or building.
- a solar collector of the type Solar Roof with ventilation allows that in certain latitudes it is possible to use the roof surface to capture a certain amount of solar energy and at the same time can be used to ventilate a building and / or housing.
- the Solar fireplace is very similar to the Trombe Wall collector, with the difference that the upper opening is used to expel hot air from the channel to the outside and in this way there is ventilation of the enclosure to which it is attached.
- the solar chimney is integrated into the building with an orientation in such a way that it takes full advantage of the incident solar energy, in order to heat the absorber plate and therefore the air inside the canal.
- a Solar fireplace can be defined as an elongated ventilated cavity, usually located in the sunniest part of a house and / or building. Its main function is to remove the volume of air in an enclosure, with the simple purpose of ventilating the home to improve air quality, or, with the additional purpose of generating thermal comfort conditions if the air entering the Room is pre-conditioned, either passively or actively. Under normal operating conditions, a Solar Chimney receives radiant energy from the Sun, which affects the absorption plate through a glass cover.
- a simple classification of these systems by their application is: Solar chimneys of daytime use (with metal absorber plate), and chimneys of night use (with absorber plate of great thermal storage capacity).
- Condori M. Mealla L. Saravia L., "Study and modeling of a new design of solar chimney", Advances in Renewable Energy and Environment, Vol., 5.Pages. 02.19-02.24, 2001.
- Adam, Z. Yamanaka, T., Kotani, H., "Mathematical model and experimental study of airfiow in solar chimneys", Proceedings of 8 th International Conference “ on Air Distribution in Rooms (ROOMVENT 2002) pp. 621-624, 2002. Mart ⁇ H., Jaime "Analysis of the solar chimney of LECE for its energy characterization as a natural ventilation system in the building", Solar Energy Project in the Building. Department of Renewable Energys. Ciemat Avd. Complutense 22, Madrid 28040. September 2003.
- Atmospheric or wind extractors are natural ventilation systems of the mechanical type, which work mainly with wind energy, however, for their operation, they also take advantage of a small differential of air temperatures, between the exterior and interior of the building.
- the speed of this extraction process is given by the flow of stale air that is displaced from the building and replaced by fresh air in a certain period of time, under certain temperature conditions, mainly.
- the amount of hourly renovations necessary for a certain size of building mark an index of hydrodynamic comfort in the habitability of the same and in turn depend on the intended use.
- this desired number of hourly renovations will depend on the quantity, capacity and size of the wind extractors, as well as the wind speed and direction.
- any type of solar collector or heater that has the appropriate form to be able to attach an atmospheric extractor of the commercial type, through a nozzle reduction, or, by manufacturing an adapter that meets the minimum coupling specifications of the commercial atmospheric extractor, will serve to generate the new mixed ventilation extractor or solar-wind chimney.
- the new Solar-Wind Chimney for air extraction to passively ventilate industrial buildings, homes, and / or buildings consists of the coupling of a solar collector or heater and a conventional atmospheric extractor of dynamic type, through a nozzle type reduction with characteristic dimensions, resulting in a mixed extraction system that presents considerable improvements and advantages over those of the traditional ventilation systems that they can provide separately.
- the present invention relates to the coupling of a passive natural ventilation system of the Solar Chimney type with an Atmospheric Air Extractor of the dynamic type.
- Said coupling is made through a nozzle reduction with trapezoidal geometry and characteristic dimensions. It is a coupling in a series type arrangement between two natural ventilation systems and a nozzle type reduction as a coupling element.
- FIGURES BRIEF DESCRIPTION OF FIGURES.
- Figures 1-6 six different configurations of commonly known atmospheric extractors are shown, any of them can be used to couple it to a passive solar chimney ventilation system, the capacities and dimensions will depend on the size of the enclosure to be ventilated.
- Figures 7-9 show three different configurations of solar chimneys, referenced in the literature, where L, and d are the height and thickness of the channel respectively, and At the entrance height.
- Figure 10 shows the simplified configuration of the dual channel solar chimney, which is the object of the present invention. The different heat transfer processes involved in the system are also shown.
- Figure 1 1 shows a front view and a side view of the system as a whole that includes the solar chimney collector or heater and the reduction of the coupling nozzle type (3).
- the Atmospheric Extractor (2) is shown and it is indicated where it is coupled with the nozzle type reduction of the solar chimney type or dual-channel solar chimney heater.
- Figure 12 shows the air velocity profiles in a section of the sensor and in the nozzle reduction, as a result of a numerical simulation using a commercial computing package (Algor).
- the velocity vectors are not as uniform due to the dimensions of the nozzle reduction.
- Figure 13 shows the air velocity profiles in a section of the collector or heater and in the nozzle reduction, as a result of a second numerical simulation using a commercial computing package (Algor).
- the velocity vectors are also not seen as uniform because the dimensions of the nozzle reduction are also not appropriate.
- Figure 14 shows the air velocity profiles in a section of the sensor and in the nozzle reduction, as a result of a numerical simulation using a commercial computing package (Algor).
- the velocity vectors in this case, look very uniform because the dimensions of the nozzle reduction, in this case, are appropriate.
- Figure 15 shows the regions of the air velocity limit layers that could be generated at some point between the vertical surfaces of the absorber plate and the internal vertical surfaces of the glass covers, or glazed surfaces. For simplicity, and for symmetry they are only shown for one of the two channels.
- the present invention relates to the coupling of an atmospheric exhaust fan of the dynamic type, with a solar chimney collector or solar heater.
- the atmospheric extractor can be of the commercial type like those shown in Figures 1-6, while the solar collector or heater is the one shown in Figure 13-14. However, they may also be used of the type referenced in the literature such as those shown in Figures 7-9. Both systems are connected through a nozzle type reduction (3) with characteristic dimensions.
- the purpose of this invention is to generate a mixed passive air extraction system, with better characteristics and better performance than each separate system could have.
- the main intention of producing natural ventilation required in homes, industrial buildings and / or buildings (according to ASHRAE STANDAR-62-1999, "Ventilation for Acceptable Air Quality", American Society of Heating, Refrigeration and Air - Conditioning Engineers, Atlanta, GA) espara improve the quality of the air inside the enclosures and achieve passive cooling.
- the main parts of the atmospheric or wind extractors are their blades joined in a body that rotates freely on an axis and its coupling ring with the enclosure to be ventilated, in this case the atmospheric extractor has been coupled to the dual-channel solar chimney of air as shown in Figure 11.
- Atmospheric extractors are natural ventilation systems of the mechanical type, which work mainly with the impulse of the wind. Due to its aerodynamic design, the wind produces shear forces on its blades, which generates a torsional torque that rotates the body of the extractor, always in the same direction by the design of its blades, whose intensity depends on the magnitude of the forces of the wind and of course the geometry and dimensions of the blades of the extractor itself.
- FIG. 10 A simplified side view of the dual-channel solar chimney, which is the subject of the present invention, is shown in Figure 10. Its main parts shown are:
- (l) - Absorber plate It constitutes the main part of the solar chimney, since it is this one in charge of absorbing the incident solar radiation, and of transferring said energy to the working fluid, which in this case is air.
- metallic material is usually used in the manufacture or selection of the absorber plates, additionally they are painted dark color, in order to increase their coefficient absorption.
- high heat capacity in the construction of said absorber plates for solar chimneys such as concrete.
- opening and closing flaps (19) are added to the entrance and exit of the air channels, in order to store the heat absorbed by the plate during the day, and to release it during the night when opening the air flaps, and allow the air flow to exit the system.
- the building is passively cooled by the air changes that are generated by extracting air with higher temperature from the top where the solar chimney is installed, and allowing air at a lower temperature from outside to occupy the empty space that is generated.
- solar chimneys are manufactured with larger absorber plates, or absorbent plates that can store heat are manufactured, as does a high heat capacity material that include phase changes at medium temperature, such as the use of paraffin. In this case, it is also necessary to use the hatches to retain heat during the day and release it during the night.
- the aforementioned percentages have to do on the one hand, with the composition and geometry of the material, and on the other with the very nature of solar radiation.
- the glass (4) behaves as a transparent material in a certain short wavelength range, and as an opaque material for another long wavelength range. It is considered that, due to its finish characteristics of the absorber plate (matte black paint), little more than 90% of the solar radiation transmitted through the glass cover is absorbed. The amount of solar energy absorbed in the absorber surface (1) is converted into thermal energy, whereby its internal energy is increased in said plate, and consequently its temperature. Much of this energy is transmitted by conduction to the other side of the same plate, giving rise to a similar range of temperatures throughout its surface.
- the absorber surface will reach a higher temperature, and therefore emit more energy. According to the Planck Distribution Law, and according to the maximum temperature values reached on similar surfaces this surface will emit in the infrared (long wavelength), due to the nature of the glass, it will behave like an opaque material to this radiation, and therefore the known greenhouse effect within the system will be presented.
- An atmospheric extractor of the dynamic type It is usually made of galvanized sheet or aluminum, it is available in the market for commercial sale, in different sizes (... 10, 12, 14, 16 ... inches). The atmospheric extractor must be completely fixed and level, so that it has no imbalances in any direction and premature failures can be generated due to system fatigue.
- a nozzle type reduction of characteristic dimensions which is used to couple the solar collector or heater and the atmospheric extractor. It is made with a metal structure and with glass covers or transparent glazed surfaces, however, some other type of rigid material can be used, as long as it is a transparent material so that the solar radiation that falls on the absorber plate is not obstructed. What characterizes the nozzle reduction is its geometric aspect ratio (A). The product of two quotients will be understood as aspect ratio
- Glass covers or glazed surfaces They mainly serve to form the two rectangular channels of the collector or heater, reduce convective and radiative losses, and also serve to create the greenhouse effect within the system.
- the glazed surfaces are also used in the trapezoidal nozzle type reduction.
- Metal fasteners They are used to fix the absorber plate to the metal support structure of the collector or heater.
- Coupling ring It can be metallic or of some other material that guarantees the coupling between the nozzle type reduction (3) and the atmospheric extractor, and that at the same time serves as a fastener.
- Support structure It can be made of structural steel or some other material that serves to hold the absorber plate (1), the nozzle reduction (3), the glass covers (4) and the base of the solar collector (8) mainly.
- Base of the solar collector It can be made of structural steel or, some other material that serves to engage with the building by ventilating, can be held in the upper part (Roof) of the building.
- the use of two previously selected devices, a solar chimney collector or heater and an atmospheric extractor of the dynamic type, is proposed as an invention, as shown in Figures 13 and 14.
- the coupling is made to through a nozzle reduction (3) with a characteristic geometry previously described.
- the new mixed air extractor is called Solar-Wind Chimney.
- the invention consists of the coupling of two systems or devices, (an atmospheric air extractor of the commercial type, such as some of those shown in Figure 1-6 and a solar collector or heater of the type Chimney Solar, etc., as one of those shown in Figures 7-9
- the purpose is to generate a mixed passive air extraction system, with better characteristics and better performance than each separate system could have.
- the intention is to produce a natural ventilation required in homes, industrial buildings and / or buildings (according to ASHRAE STANDAR-62-1999) to improve the quality of air inside the enclosures.
- the system as a whole must be installed with an orientation that favors the collection of solar energy incident on the absorption plate for greater heating, and at the same time at a height such that the effect of the wind is used to rotate the air extractor.
- Figure 14 shows the air velocity profiles within the nozzle reduction that includes part of the body of the same sensor, as a result of a numerical simulation using a commercial computation package (Algor).
- W is the width of the absorber plate of the solar collector or heater
- (2d) is the hydraulic diameter of the discharge
- (a) the height of the discharge nozzle type reduction.
- L 2 m was used.
- the numerical simulation it was considered that there are circular ducts throughout the width of the solar collector, in order to compare the numerical results with the theoretical results, which are well defined profiles for this type of geometry.
- the uniformity of the parabolic profiles guarantees a uniform flow distribution across the entire width of the solar collector, thanks to the characteristic dimensions of the values of W, a and b. It is from these dimensions that a geometric aspect ratio is obtained, which is characteristic of the system and which has been described in detail in the present invention.
- the reduction material may be galvanized, but some other type of material may be used. It will be ensured that there are no air leaks, so that the solar heater outlet fits perfectly with the base of the atmospheric extractor. It is recommended to use some type of commercial silicone to seal possible air leaks in existing joints, and / or water ingress in the rainy season.
- the atmospheric extractor must be completely fixed and level, so that it has no imbalances in any direction and premature failures can be generated due to system fatigue.
- the extraction of air in the new mixed system or Solar-Wind Chimney is carried out by the double maximized effect, the Thermal effect and the Dynamic effect.
- the effect Thermal is produced when solar radiation strikes the absorber plate of the solar collector and this in turn heats the air adjacent to the inside of the channel.
- the density of the air decreases and by natural effect it rises towards the exit, thus generating a natural induced draft effect through the system that produces the ventilation effect.
- the dynamic effect takes place when the wind speed is such that it breaks the resting state of the atmospheric extractor to produce a rotating effect that helps the extraction of air in the system.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Building Environments (AREA)
Abstract
Es una estrategia de ventilación y/o calentamiento pasivo para viviendas, naves industriales y/o edificaciones, mediante el uso de un captador o calentador solar de aire. También resulta una estrategia de ventilación natural de viviendas, naves industriales y/o edificaciones, mediante el uso acoplado en serie de dos sistemas pasivos, un calentador solar y un extractor atmosférico de aire tipo dinámico. La extracción de aire en el nuevo sistema mixto se lleva a cabo por un doble efecto maximizado, el efecto Solar-Térmico y el efecto Dinámico-Eólico. El acoplamiento del calentador solar con el extractor atmosférico es por medio de una reducción tipo toberatrapezoidalcon una geometría y dimensiones características. El sistema en conjunto debe ser instalado de tal forma que se favorezca la captación de energía solar incidente sobre su placa de absorción para su mayor calentamiento y aprovechamiento.Al mismo tiempo,es también conveniente que se instale a una altura suficiente para que se aproveche el efecto del viento y se haga girar de forma adecuada al extractor de aire dinámico. Al acoplar ambos dispositivos (el calentador solar y el extractor atmosférico del tipo dinámico) a través de una reducción tipo tobera con dimensiones características se obtiene un efecto mejorado, ya que se maximiza la extracción de aire en recintos y/o edificaciones de hasta cuatro veces más que ambos sistemas por separado pudieran tener, como tradicionalmente se ha hecho. A este nuevo sistema mixto de extracción de aire se le denomina Chimenea Solar-Eólica.
Description
EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA SOLAR-EÓLICA)
ANTECEDENTES En la actualidad, la ventilación natural se considera uno de los requerimientos principales en el diseño de viviendas y/o edificaciones, principalmente en aquellas construcciones orientadas al bajo consumo energético. La ventilación natural es un concepto de sistemas de climatización, que por sus características se ha denominado sistema pasivo, y se considera fundamental para el confort al interior de recintos ypara el bienestar humano .
Los sistemas pasivos de climatización, a diferencia de los sistemas de climatización convencionales (sistemas de aire acondicionado y calefactores eléctricos, etc.), se caracterizan por su fácil fabricación y por su muy poco mantenimiento requerido, además de su nula dependencia de los energéticos convencionales, como por ejemplo los de origen fósil. Con el uso de estos sistemas se contribuye de manera contundente a la reducción de emisión de gases de efecto invernadero, al ahorro y uso eficiente de los recursos no renovables. El tema de proponer nuevas alternativas y de mejorar las ya existentes para conseguir un confort al interior de recintos, y simultáneamente reducir el consumo de energías convencionales, es uno de los retos actuales de nuestra sociedad moderna. El uso de las energías renovables, como por ejemplo la energía solar, la energía eólica y otras más, para su empleo en los sistemas pasivos de ventilación en recintos como son las edificaciones residenciales y no-residenciales,las naves industriales, las bodegas, los salones de clases, etc., son ejemplos claros de ello.
En la literatura se pueden encontrar diferentes conceptos teóricos de tipos de ventilación aplicados a una vivienda o edificación, (Hazim B. Awbi, 2003, "Ventilation of Buildings" Renewable and Sustainable Energy" Second Edition, Spon Press), estos pueden ser:
Ventilación simple: Cuando el flujo de aire entra a través de una o más aberturas por un solo lado de la habitación, por ejemplo, a través de una ventana.
Ventilación cruzada: Es un concepto utilizado en Arquitectura Bioclimática, para definir un modo de ventilación de los edificios. Cuando el aire entra por un lado de una habitación a través de una o más aberturas y sale por el lado opuesto a través de una o más aberturas.
Ventilación por tiro inducido: En este caso la fuerza de flotación, debida a gradientes térmicos es la principal fuerza motriz, donde la altura del tiro se considera fundamental. Al usar el concepto de la ventilación inducida solar se pueden mencionar algunos tipos de dispositivos pasivos de ventilación, los cuales están gobernados por los mismos principios físicos, entre ellos se encuentran ^ Torres de Viento, la Pared o Muro Trombe, la Fachada Ventilada, el Techo Solar con ventilación y la Chimenea Solar, entre otros.
Las Torres de Viento son apropiadas en lugares donde las edificaciones son de baja altura y donde exista una velocidad adecuada del viento, un captador de Torre de viento es un dispositivo arquitectónico de tradición Persa utilizado durante muchos siglos para proveer de ventilación natural y refrescamiento al interior de los edificios. Las Paredes Trombe, aunque pueden usarse para ventilar una habitación, su función principal es producir calentamiento pasivo. El captador de Pared Trombe o Muro Trombe-Michel es un muro o pared orientada al sol, preferentemente al Norte en el hemisferio Sur y al Sur en el hemisferio Norte, es comúnmente construido con materiales que puedan almacenar calor bajo el efecto de masa térmica (tales como piedra, hormigón, adobe o agua), combinado con un espacio de aire, una cubierta de vidrio y orificios ventilados formando un captador solar térmico. De esta forma, el aire en el interior del canal se calienta y asciende por efecto de las fuerzas de flotación, lo que genera una ventilación natural por tiro inducido. Este mismo proceso se puede utilizar para el calentamiento pasivo al interior del recinto, o bien, para generar una ventilación natural del mismo, si se expulsa al exterior del recinto. Las Fachadas Ventiladas, además de generar ventilación en una edificación, pueden usarse para controlar, de alguna forma y en cierta proporción, la intensidad luminosa y el nivel de ruido desde el exterior hacia el interior en una edificación. Los Techos Solares con ventilación se pueden usar en ciertas latitudes para ventilar pasivamente un recinto y al mismo tiempo forman parte de la propia estructura del mismo recinto o edificación.Un captador solar del tipo Techo Solar con ventilación permite que en ciertas latitudes sea posible usar la superficie del techo para captar cierta cantidad de energía solar y al mismo tiempo se pueda aprovechar para ventilar una edificacióny/o vivienda.
La Chimenea Solar es muy similar al captador de Muro Trombe, con la diferencia de que la abertura superior se usa para expulsar el aire caliente del canal hacia el exterior y de esta forma se produzca una ventilación del recinto al que esté acoplada. Generalmente, la chimenea solar está integrada a la edificación con una orientación de tal forma que aprovecha al máximo la energía solar incidente, con la finalidad de calentar la placa absorbedora y por consiguiente el aire que se encuentra al interior del canal.
Una Chimenea Solar puede definirse como una cavidad ventilada alargada, generalmente ubicada en la parte más soleada de una vivienda y/o edificación. Su función principal es la de remover el volumen de aire en un recinto, con el simple propósito de ventilar la vivienda para mejorar la calidad del aire, o bien, con el adicional propósito de generar condiciones de confort térmico si el aire de entrada a la habitación se pre-acondiciona, ya sea pasiva o activamente. En condiciones normales de operación, una Chimenea Solar recibe energía radiante proveniente del Sol, la cual incide sobre la
placa de absorción a través de una cubierta de vidrio. Una simple clasificación de estos sistemas por su aplicación es: Chimeneas Solares de uso diurno (con placa absorbedora metálica), y chimeneas de uso nocturno (con placa absorbedora de gran capacidad de almacenamiento térmico).
La ventilación natural usando Chimeneas Solares no es una técnica reciente. Existen referencias del uso de estos dispositivos en edificaciones históricas del siglo XVI (Spencer S., "An experimental investigation of a solar chimney natural ventilation system" A Thesis in the Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, Canadá, 2001 ).
Otros estudios, particularmente sobre el tiro inducido y la capacidad de chimeneas convencionales, es el publicado por Mingle J., 1925 ("Draft and capacity of chimneys" Combustión Publishing Corporation, New York, Eleven Broadway, 1925).
Actualmente, la ventilación en edificaciones se ha convertido en un factor importante que debe tomarse en cuenta al momento de diseñar cualquier edificación o vivienda, y las Chimeneas Solares son ahora una alternativa para ello. En la literatura se pueden encontrar diversos estudios sobre estos sistemas, dichos estudios se pueden dividir en tres grandes grupos: a) Estudios teóricos.
b) Estudios experimentales.
c) Estudios teórico-experimentales.
A continuación se presentan las referencias de cada grupo: a) Estudio teóricos
Una descripción teórica del funcionamiento térmico de una chimenea solar se puede encontrar en las siguientes referencias bibliográficas:
Barrra O. y Carratelli E., "Theoretical study of laminar free convection in 1-D solar induced flows", Solar Energy. Vol., 23. Págs. 211-215, 1979.
Awbi H.B., "Design considerations for naturally ventilated building". Renewable Energy. Vol., 5. Págs. 1081-1090, 1994.
Aboulnaga M. "Aroof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: an energy conservation approach in al-ain city", Renewable Energy, Vol., 14-1-4. Págs. 357-363, 1998.
Hamdy I., Fikry M., "Passive solar ventilation", Renewable Energy, Vol. 14, Págs. 381- 386, 1998.
Aboulnaga M. y Abdrabboh "Improving nigh ventilation into low-rise buildings in hot- arid climates exploring a combined wall-roof solar chimney", Renewable Energy, Vol., 19. Págs. 47-54, 2000.
Dai Y., Sumathy K., Wang R, Li Y., " Enhancement of natural ventilation in a solar house with a solar chimeney and a solid adsorption cooling cavity", Solar Energy, Vol., 74.Págs. 65-75, 2003. Ong K., "A mathematical model of a solar chimney", Renewable Energy, Vol., 28, Págs. 1047-1060, 2003.
Martí H., J. y M.R., Heras C. "Dynamic physical model for a solar chimney", Solar Energy, Vol., 81. Págs. 614-622, 2006.
Nouanégué H.F., Alandji L.R., y Bilgen E. "Numerical study of solar-wind tower systems for ventilation of dwellings", Renewable Energy, Vol., 33.Págs. 434-443, 2007.
Harris D.J., Helwig N., "Solar chimney and Building ventilation", Applied Energy, Vol., 84, Págs. 135-146, 2007.
J. Arce, J. Xamán, G. Álvarez, M.J. Jiménez, M.R. Heras, J.D. Guzman. "Theoretical study on a diurnal solar chimney with double air flow", "EUROSUN 2008. lst international Congress on Heating, Cooling and Buildings". Lisbon (Portugal) 2008.
M. J. Jiménez, J. Arce, J. D. Guzman, M. R. Heras; "Estimation of the main thermal parameters of a real size solar chimney from outdoor dynamic tests", presentado en "Passive 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 2 lst century", Creta (Grecia), Septiembre 2007.
J. Arce, J. Xamán, G. Álvarez, M.J. Jiménez, R. Enríquez, M.R. Heras. "A simulation of the thermal performance of a small solar chimney already installed in a building". Journal of Solar Energy Engineering, Transactions of the ASME. Vol., 135. Págs 11005-111005-10, 2013. b) Estudios experimentales
Entre los estudios experimentales sobre estos sistemas pasivos de ventilación se pueden mencionar los realizados por:
Akbarzadeh A., Charters W., Lesslie D., "Thermocirculation characteristics of a trombe wall passive test cell", Solar Energy. Vol. 28, Págs. 461-468, 1982.
Khedari J., Boonsri B., Hirunlabh J., "Ventilation impact of a solar chimney on indoor temperature fiuctuation and air change in a school building", Energy and Building, Vol. 32, Págs. 89-93, 2000. Ong K., y Chow C, "Performance of a solar chimeney", Solar Energy, Vol. 74, Págs. 1- 17, 2003.
Khedari J., Rachapradit N., Hirunlabh J., "Field study of performance of solar chimney with air-conditioned building", Energy, Vol., 28. Págs 1099-1114, 2003.
Chen Z., Bandopadhayay P., Halldorsson J., Byrjalsen C, Heiselberb P., Li Y., "An experimental investigation of a solar chimney model with uniform wall heat flux", Building and Environment, Vol. 38, Págs. 893-906, 2003. Chakraborty J., Fonseca E., "Analysis and evaluation of a passive evaporative cool tower in conjuntion with a solar chimney". Plea'2005-The 22nd Conference on Passive and Low Energy Architecture. Beirut, Lebanon, 13-16 November 2005. College of Architecture and Environmental Design, Arizona State University, Tempe Arizona, USA.
Emad H., "Passive options for solar cooling of buildings in arid áreas", Energy, Vol. 31, Págs. 1332-1344, 2006.
Chungloo S., Limmeechokchai B., "Application of passive cooling systems in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand", Building and Environment, Vol., 42.Págs. 3341-3351, 2007.
Burek, S.A.M., Habeb, A., "Air flow and thermal efficiency characteristics in solar chimneys and Trombe Wall", Energy and Building, Vol. 39, Págs. 128-135, 2007.
J. Arce, M.J. Jiménez, J.D. Guzmán, M.R. Heras, G. Álvarez, J. Xamán. "Experimental study for natural ventilation on a solar Chimney". Renewable Energy. 2009. Vol. ,34. Págs. 2928-2934, 2009. c) Estudios teóricos-experimentales
Como estudios teóricos-experimentales sobre estos mismos sistemas se pueden mencionar los realizados por: Bouchair Ammar, "Solar induced ventilation in the Algerian and similar climates", Tesis doctoral. Department of Civil Engineering, The University of Leeds, October 1989.
Afonso C. y Oliveira A., "Solar chimneys: simulation and experiment", Energy and Building, Vol., 32.Págs. 71-79, 2000.
Raman P., Mande S., Kishore V., "A passive solar system for thermal comfort conditioning of buildings in composite climates", Solar Energy, Vol., 70.Págs. 319-329, 2001.
Condori M., Mealla L. Saravia L., "Estudio y modelación de un nuevo diseño de chimenea solar", Avances en Energía Renovables y medio Ambiente, Vol., 5.Págs. 02.19-02.24, 2001. Adam, Z., Yamanaka, T., Kotani, H., "Mathematical model and experimental study of airfiow in solar chimneys", Proceedings of 8thInternational Conference" on Air Distribution in Rooms (ROOMVENT 2002) pp. 621-624, 2002.
Martí H., Jaime "Análisis de la chimenea solar del LECE para su caracterización energética como sistema de ventilación natural en la edificación", Proyecto Energía Solar en la Edificación. Departamento de Energías Renovables. Ciemat. Avd. Complutense 22, Madrid 28040. Septiembre de 2003.
Bansal N., Mathur J., Mathur S., y Jain M., "Modeling of window-sized solar chimneys for ventilation", Building and Environment, Vol., 40.Págs. 1302-1308, 2005. Chantawong P., Hirunlabh J., Zeghmati B., Khedari J., Teekasap S., Win M., "Investigation on thermal performance of glazed solar chimney walls", Solar Energy. Vol., 80. Págs. 288-297, 2006.
Bacharoudis E., Vrachopoulos M., Koukou M., Margaris D., Filios A., y Mavrommatis S., "Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux", Applied Thermal Engineering. Vol., 27. Págs. 2266-2275, 2007.
Dentro del estudio de la técnica también se encuentran referenciados algunos de estos dispositivos pasivos de ventilación, de los cuales algunas invenciones se encuentran registradasy otras en vías de registro de la Propiedad Industrial. En la Tabla siguiente se hace referencia a algunas de ellos.
La gran mayoría de estas invenciones contemplan sistemas de generación de energía eléctrica donde llevan acoplado una chimenea solar. Algunos diseños consideran que la energía que se genera se utiliza para el uso de bombas en invernaderos, para la irrigación de cultivos en regiones áridas y del desierto. En otras invenciones se consideran torres de viento, una chimenea y el sistema de generación, donde se aprovecha el calor residual industrial y la energía solar yotras de las invenciones toman en cuenta la generación de energía con almacenamiento nocturno de energía térmica.
Tabla. Documentos de Patentes Recuperados desde distintas bases de datos.
Base de datos y No. Solicitud o Patente Título Inventor(es) Fecha de Oficina solicitud y/o de otorgamiento
Oficina Europea de JO1800 (B)-1994-12- Solar Powered Brosow Jorgen 1994-12-25 Patentes (OEP / 25 Installation
EPO)Base de datos
espácenet
CN 102852744 (A) Method for combining Wang Zilong; Zhang
agricultural production Hua; Hu Liye
with solar chimney
power generation
system.
Cn202690324 (U) Air flue device for Zhou Xinping; Qian 2013-01-23 chimney ventilation Peng; Liu Chi; Qian
device Chaoqun
CN202628197 (U) Solar power-generated Zhang Xingcai, y 2012-12-26 turbine Zhang Jinzhu
WO2012127134 (A2) Hibrid Solar-Wind UngSeng-Hong 2012-09-27
Power Station
De acuerdo a la revisión de todos estos documentos de patentes en vías de registro o con fechas de publicación, ninguna contempla un diseño similar como el que se presenta y se reclama en la presente solicitud. Por otra parte, y dentro de otra clasificación de los mismos sistemas pasivos de ventilación, existen los llamados extractores dinámicos del tipo comercial, los cuales son dispositivos que también se utilizan para ventilar una edificación o vivienda. Entre estos dispositivos, los más conocidos son los extractores atmosféricos o eólicos, cuyo funcionamiento se explica a continuación.
Funcionamiento de los extractores atmosféricos o eólicos. Los extractores atmosféricos o eólicos son sistemas de ventilación natural del tipo mecánico, los cuales funcionan principalmente con energía del viento, sin embargo, para su funcionamiento, también aprovechan un pequeño diferencial de temperaturas del aire, entre la parte exterior e interior de la edificación.
Al colocar un determinado número de extractores eólicos sobre el techo de un inmueble, se genera un proceso continuo de extracción de aire. Bajo ciertas condiciones, el aire más caliente, que en condiciones normales se acumula en la parte más alta del interior del edificio, es succionado por los álabes del extractor, y a su vez es impulsado y desplazado hacia la parte exterior por las fuerzas del viento, principalmente. En seguida, el vacío que deja se compensa de manera natural por la entrada de aire del exterior en la parte inferior de la edificación que se infiltra a través de ventanas, puertas, portones, rejillas de ventilación, etc. Este proceso permanente de extracción de aire, permite mejorar las condiciones de habitabilidad del edificio, elimina en cierta medida no sólo el calor excesivo, sino también la humedad, los olores, vapores, humos y demás elementos perjudiciales que puedan estar contenidos en el ambiente interior del edificio. La velocidad de este proceso de extracción está dada por el caudal de aire viciado que es desplazado del edificio y reemplazado por aire fresco en un cierto período de tiempo, bajo ciertas condiciones de temperatura, principalmente. Así se da lugar al término "cantidad de renovaciones horarias", que no es otra cosa que el número de veces que el volumen de aire contenido en el interior del edificio se puede reemplazar por unidad de tiempo (generalmente unidades por hora). Entonces, la cantidad de renovaciones horarias necesarias para un cierto tamaño de edificio, marcan un índice de confort hidrodinámico en la habitabilidad del mismo y a su vez dependen del uso al que esté destinado. Por supuesto, este número deseado de renovaciones horarias dependerá de la cantidad, capacidad y dimensión de los extractores eólicos,así como también de la velocidad y dirección del viento. Todo lo anterior bajo el supuesto caso que el edificio cuente con suficientes infiltraciones de aire, ya que la cantidad de aire de salida debe ser compensada de igual forma por aire que entra al mismo edificio, a su vez también dependerá de la cantidad de extractores que estén colocados estratégicamente en la parte más alta posible de la edificación. En resumen de todo lo anterior, se puede decir que en la literatura se encuentran referenciados diferentes tipos de captadores o calentadores solares, ejemplos de ellos son: las Torres de Viento, los Muros Trombe, los Techos Solares con ventilación, las
Fachadas Ventiladas y las Chimeneas Solares, entre otros. Por otra parte, comercialmente se encuentra una infinidad de modelos de extractores atmosféricos dinámicos, que sirven para ventilar recintos cerrados como por ejemplo: edificaciones residenciales, naves industriales, bodegas, salones de fiesta, etc. Sin embargo, no se ha encontrado ningún sistema que integre el acoplamiento de un captador o calentador solar con un extractor dinámico para la ventilación de edificaciones residenciales, naves industriales, bodegas, salones de fiesta, etc.
Con el uso de los captadores o calentadores solares ha sido posible intercambiar el volumen de aire de un recinto u edificación un número de veces por unidad de tiempo. Paralelamente, con el uso de los extractores dinámicos, también es posible el intercambio del volumen de aire otro número de veces por unidad de tiempo. Sin embargo, en ocasiones el tamaño de la edificación es tal que se hace necesario aumentar el número de equipos, ya sea de captadores o calentadores solares, o bien, de extractores atmosféricos, con la finalidad de renovar el volumen total de aire de dicha edificación. Por lo tanto, y bajo estas condiciones,se hace necesario plantear nuevas estrategias, que hagan uso de un mínimo de captadores o extractores atmosféricos, y de esta manera se reduzca el costo total de inversión. A continuación se explica esta nueva estrategia, la cual es la justificación del presente documento.
Se propone utilizar una estrategia de extracción mixta de ventilación natural, la cual consiste en utilizar de forma acoplada un calentador solar de doble canal de aire y un extractor de aire tipo atmosférico. A este nuevo sistema se le denomina Chimenea Solar-Eólica, y podrá ser capaz de inducir aire a través del recinto haciendo uso de dos fuentes de energía, cuya finalidad es la de generar confort ambiental al interior de viviendas, naves industriales y/o edificaciones, gracias a que aprovecha dos tipos de efectos (el solar y el eólico), siendo ésta la invención que se reclama. CAMPO TÉCNICO DE LA INVENCIÓN
El uso de sistemas pasivos para ventilar viviendas, naves industriales y/o edificaciones, con fines de ahorro de energía y de mejorar las condiciones térmicas e hidrodinámicas al interior de las mismas es un nuevo reto. Es una estrategia para usarse en los procesos de la ventilación natural para espacios poco ventilados mediante el uso acoplado de tres elementos principales, en arreglo de conexión tipo serie; un captador o calentador solar, un extractor atmosférico de aire y una reducción tipo tobera. Se puede utilizar para generar confort ambiental al interior de viviendas, naves industriales y/o edificaciones, con el aprovechamiento tanto de la energía solar como de la energía del viento.
Con el uso apropiado de estos sistemas pasivos de ventilación se puede conseguir un mayor confort térmico e hidrodinámico, así como una mejoría en la calidad del aire al interior de recintos, viviendas, cuartos de almacenamiento. Al mismo tiempo, también es posible obtener condiciones de trabajo más confortables.
El solo extractor atmosférico de aire es del tipo comercial, y se puede obtener comercialmente en el mercado, en las Figuras 1-6 se muestran seis diferentes
configuraciones. Sin embargo, la adquisición de los captadores o calentadores solares de aire no está del todo comercializada, y por lo tanto, no son del todo accesibles de conseguirse. Hasta el momento estos calentadores solares de aire son del tipo artesanal, en las Figuras 7-9 se muestran tres configuraciones distintas que se les ha denominado, por la función que desempeñan, Chimeneas Solares. La información técnica que existe sobre estos captadores o calentadores solares artesanales no está del todo normalizada, y por lo tanto su adquisición comercial no es tan accesible, se espera que, en algún momento se comiencen a introducir poco a poco al mercado. En general cualquier tipo de captador o calentador solar que tenga la forma apropiada para poder acoplarle un extractor atmosférico del tipo comercial, a través de una reducción tipo tobera, o bien, mediante la fabricación de un adaptador que cumpla con las especificaciones mínimas de acoplamiento del extractor atmosférico comercial, servirán para generar el nuevo extractor mixto de ventilación o chimenea solar-eólica.
La nueva Chimenea Solar-Eólica de extracción de aire para ventilar pasivamente naves industriales, viviendas, y/o edificaciones, consiste en el acoplamiento de un captador o calentador solar y un extractor atmosférico convencional de tipo dinámico, a través de una reducción tipo tobera con dimensiones características, lo que resulta un sistema de extracción mixto que presenta considerables mejoras y ventajas respecto a aquellas de los sistemas de ventilación tradicionales que de forma separada pueden proporcionar. BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere al acoplamiento de un sistema pasivo de ventilación natural del tipo Chimenea Solar con un Extractor de Aire Atmosférico del tipo dinámico. Dicho acoplamiento se hace a través de una reducción tipo tobera con geometría trapezoidal y dimensiones características. Es un acoplamiento en un arreglo tipo serie entre dos sistemas de ventilación natural y una reducción tipo tobera como elemento de acople. Con ello se consigue aprovechar el efecto térmico del tiro natural del captador o calentador solar sumado al efecto de tiro inducido que genera el viento con el extractor atmosférico tipo dinámico. El resultado es un caudal de hasta cuatro veces mayor comparado con el caudal de aire que cada sistema por separado pudiera proporcionar, en condiciones medioambientales de operación similares, como tradicionalmente se ha hecho. Adicionalmente y una vez acoplados ambos sistemas, es recomendable que el sistema en conjunto se le dé una orientación de instalación tal que se aproveche al máximo la radiación solar incidente sobre su superficie absorbedora, así como también la dirección y velocidad del viento.
BREVE DESCRIPCIÓN DE FIGURAS. En las Figuras 1-6, se muestran seis diferentes configuraciones de extractores atmosféricos comúnmente conocidos, cualquiera de ellos se puede utilizar para
acoplarlo a un sistema pasivo de ventilación del tipo chimenea solar, las capacidades y dimensiones dependerá del tamaño del recinto por ventilar.
En las Figuras7-9 se muestran tres diferentes configuraciones de chimeneas solares, referenciadas en la literatura, donde L, y d son la altura y el espesor del canal respectivamente, y A la altura de entrada.
En la Figura 10 se muestra la configuración simplificada de la chimenea solar de doble canal, que es objeto de la presente invención. También se muestran los diferentes procesos de transferencia de calor que intervienen en el sistema.
En una pequeña parte de la cubierta de vidrio (4'), a la izquierda de la Figura 10, de la presente solicitud, se señala un segmento amplificado de una de las cubiertas de vidrio donde se indican la energía reflejada, la energía absorbida y la energía transmitida.
En la Figura 1 1 se muestra una vista frontal y una vista lateral del sistema en conjunto que incluye, el Captador o calentador solar del tipo chimenea solar y la Reducción del tipo tobera de acoplamiento (3). En la parte superior de la misma Figura 11 se muestra el Extractor Atmosférico (2) y se señala donde se acopla con la reducción tipo tobera del captador o calentador solar tipo Chimenea Solar de doble canal de aire.
En la Figura 12 se muestran los perfiles de velocidad del aire en una sección del captador y en la reducción tipo tobera, como resultado de una simulación numérica utilizando un paquete de cómputo comercial (Algor). Los vectores de velocidad no son tan uniformes debido a las dimensiones de la reducción tipo tobera.
En la Figura 13 se muestran los perfiles de velocidad del aire en una sección del captador o calentador y en la reducción tipo tobera, como resultado de una segunda simulación numérica utilizando un paquete de cómputo comercial (Algor). Los vectores de velocidad tampoco se observan tan uniformes debido a que las dimensiones de la reducción tipo tobera tampoco son apropiadas.
En la Figura 14 se muestran los perfiles de velocidad del aire en una sección del captador y en la reducción tipo tobera, como resultado de una simulación numérica utilizando un paquete de cómputo comercial (Algor). Los vectores de velocidad, en este caso, se ven muy uniformes debido a que las dimensiones de la reducción tipo tobera, en este caso, son las apropiadas.
En la Figura 15 se muestran las regiones de las capas límites de velocidad del aire que en algún momento se pudieran generar entre las superficies verticales de la placa absorbedora y las superficies verticales internas de las cubiertas del vidrio, o superficies acristaladas. Por simplicidad, y por simetría sólo se muestran para uno de los dos canales.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere al acoplamiento de un extractor atmosférico de aire del tipo dinámico, con un captador o calentador solar tipo Chimenea Solar. El extractor atmosférico puede ser del tipo comercial como los que se muestran en las Figuras 1 -6, mientras que el captador o calentador solar es el que se muestra en la Figura 13-14. Sin embargo, también podrán ser utilizados del tipo referenciado en la literatura como los que se muestran en las Figuras 7-9. Ambos sistemas se conectan a través de una reducción tipo tobera (3) con dimensiones características.
La finalidad de esta invención es generar un sistema pasivo mixto de extracción de aire, con mejores características y mejor desempeño que cada sistema por separado pudiera tener. La intención principal de producir una ventilación natural requerida en viviendas, naves industriales y/o edificaciones (según norma ASHRAE STANDAR-62-1999, "VentilationforAcceptablelndoor Air Quality", American Society of Heating, Refrigeration and Air - ConditioningEngineers, Atlanta, G.A.) espara mejorar la calidad del aire al interior de recintos y conseguir un enfriamiento pasivo.
En la Figural l se muestra el nuevo EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA SOLAR-EÓLICA), el cual se describirá a detalle, y que es el objeto de la presente invención. A continuación se describen las partes principales del sistema, el funcionamiento que cada sistema por separado puede tener, y el funcionamiento en conjunto del mismo.
Partes principales y el funcionamiento dinámico de los extractores atmosféricos o eólicos. Las partes principales de los extractores atmosféricos o eólicos son sus álabes unidos en un cuerpo que gira libremente sobre un eje y su arillo de acoplamiento con el recinto por ventilar, en este caso el extractor atmosférico ha sido acoplado a la chimenea solar de doble canal de aire como se muestra en la Figura 11. Los extractores atmosféricos, son sistemas de ventilación natural del tipo mecánico, que funcionan con el impulso del viento, principalmente. Debido a su diseño aerodinámico, el viento produce esfuerzos cortantes sobre sus álabes, lo cual genera un par torsional que hace girar el cuerpo del extractor, siempre en una misma dirección por el diseño de sus álabes, cuya intensidad depende de la magnitud de las fuerzas del viento y desde luego de la geometría y dimensiones de los álabes mismos del extractor. Como consecuencia del movimiento angular, se genera una fuerza de succión en el interior del extractor, que permite la extracción del aire bajo la cubierta o techo de una edificación a la que esté instalado, dando origen al reemplazo de aire del recinto. Este proceso es conocido como ventilación pasiva en edificaciones.
Aunque la principal fuerza motriz en un extractor atmosférico proviene de la energía del viento, existe también un aprovechamiento térmico natural debido a un pequeño diferencial de temperaturas del aire entre la parte exterior e interior del edificio al que esté acoplado.
Partes principales y funcionamiento térmico de los captadores o calentadores solares de aire. Los captadores o calentadores solares de aire son sistemas de ventilación natural del tipo térmico, y que también se pueden utilizar para calentar pasivamente una edificación, funcionan con el aprovechamiento de la energía solar, principalmente, y se caracterizan por la nula dependencia del uso de energías convencionales como aquellas provenientes de origen fósil. La poca necesidad de mantenimiento hace que sea muy atractiva su instalación.
En la Figura 10 se muestra una vista lateral simplificada de la chimenea solar de doble canal, que es objeto de la presente invención. Sus partes principales que se muestran son:
(l)-Placa absorbedora. Constituye la parte principal de la chimenea solar, ya que es ésta la encargada de absorber la radiación solar incidente, y de transferir en forma de calor dicha energía al fluido de trabajo, que en este caso es aire. Para aquellas chimeneas solares de uso diurno, es decir, aquellas que funcionan preferentemente durante el día, se utiliza por lo general material metálico en la fabricación o selección de las placas absorbedoras, adicionalmente se pintan de color obscuro, con la finalidad de aumentar su coeficiente deabsorción. Sin embargo, en aquellos casos donde se busca una ventilación nocturna, con el propósito de enfriar pasivamente una edificación, o bien por otras razones, como por ejemplo, la de mejorar la calidad del aire al interior de dicha edificación, es conveniente utilizar materiales de alta capacidad calorífica en la construcción de dichas placas absorbedoras para chimeneas solares, como por ejemplo el hormigón. En este último caso, se agregan trampillas de apertura y cierre (19) a la entrada y a la salida de los canales de aire, con la finalidad de almacenar durante el día el calor absorbido por la placa, y de liberarlo durante la noche al abrir las trampillas de aire, y permitir que el flujo de aire salga del sistema. La edificación se enfría pasivamente con los cambios de aire que se generan al extraer aire con mayor temperatura por la parte superior donde se encuentra instalada la chimenea solar, y permitir que aire a menor temperatura del exterior entre a ocupar el espacio vacío que se genera. Si se requieren tiempos de enfriamiento más prolongados, se tienen dos opciones, o bien se fabrican chimeneas solares con placas absorbedoras de mayor tamaño, o bien se fabrican placas absorbedoras que puedan almacenar el calor, como lo hace un material de alta capacidad calorífica y que incluyan cambios de fase a mediana temperatura, como por ejemplo el uso de la parafina. En este caso, también se hace necesario el uso de las trampillas para retener el calor durante el día y de liberarlo durante la noche.
(4)-Cubiertas de vidrio o superficies acristaladas transparentes. Sirven para formar los canales de aire, se encuentran separadas de la placa absorbedora (1) una distancia (d). Su función principal es la de dejar pasar la radiación solar de onda corta, y atrapar la radiación de onda larga, provocando de esta manera el llamado efecto invernadero al interior del sistema. (9)-Entradas de aire. Generalmente las entradas de aire se encuentran ubicadas en la parte inferior del captador o calentador solar y van conectada al recinto por ventilar.
(lO')-Salidas de aire. Generalmente las salidas se encuentran ubicadas en la parte superior del captador o calentador, y es por donde se expulsa el aire al exterior.
(18) -Canales de aire. Se forman con la separación de las cubiertas de vidrio y la placa absorbedora. Es el camino que recorre el flujo de aire en el proceso de extracción.
(19) -Trampillas de apertura y cierre. Sirven para permitir o bien para obstruir el flujo de aire que entra y pasa por los canales de aire de la chimenea solar. De esta forma, si se mantienen cerradas durante el día se podrá almacenar en la placa absorbedora gran parte de energía térmica y si se abren durante la noche se podrá liberar ese calor absorbido durante el día. Las trampillas se usan en chimeneas de uso nocturno cuando la placa absorbedora es de alta capacidad calorífica y se requiere un enfriamiento pasivo, principalmente. Su fabricación puede ser de material metálico o de algún material transparente a la radiación solar, preferentemente.
A continuación se describen los diferentes procesos de transferencia de calor que intervienen en el sistema.
De una forma muy general posible, en la misma Figura 10 se representan los diferentes procesos de ganancia y transferencia de energía que participan en una sección de la chimenea solar, y que a continuación se describen:
Radiación Solar "G" (14). Es energía proveniente del sol y llega sobre toda la superficie vertical vidriada. En la Figura 4', se muestra una fracción de las cubiertas de vidrio claro o superficies acristaladas transparentes, tiene un espesor de 4 mm, se estima que un 8 % de esta energía es reflejada " pG " (15) , un 14 % es absorbida "a G " (16), y el 78 % es transmitida "T G " (17).
Los porcentajes antes mencionados tienen que ver por una parte, con la composición y geometría del material, y por la otra con la naturaleza misma de la radiación solar. El vidrio (4) se comporta como un material transparente en cierto intervalo de longitud de onda corta, y como un material opaco para otro intervalo de longitud de onda larga. Se considera que, por sus características de acabado de la placa absorbedora (pintura negro mate) se absorbe poco más del 90 % de la radiación solar transmitida a través de la cubierta de vidrio. La cantidad de energía solar absorbida en la superficie absorbedora (1) se convierte en energía térmica, por lo que se incrementa en dicha placa su energía interna, y por consiguiente su temperatura. Gran parte de esta energía se transmite por conducción hacia el otro lado de la misma placa, dando lugar a un campo similar de temperaturas en toda su superficie. Hacia los canales de aire, desde ambas superficies de la placa, se transfiere calor por conducción, hacia las moléculas del aire adyacentes, y después se transfiere calor por convección (12), dentro de la capa límite de velocidad que se desarrolla en ambas superficies de la placa absorbedora (ver Figura 15). Como resultado de estos perfiles de velocidades se produce un flujo ascendente de aire en ambos canales del sistema. La longitud de la placa y el espesor de un canal, respectivamente se expresan como (L', d), mientras que las regiones del tipo de régimen de flujo que en un momento dado pueden tener lugar en el sistema son:
(20) Es la región de flujo laminar.
(21) Es la región de transición de regímenes de flujo laminar-turbulento.
(22) Es la región de flujo turbulento.
(23) Es la sub-capa laminar.
(24) Es la capa de transición.
(25) Es una región turbulenta.
Análogamente, sucede algo similar, pero con menor intensidad en ambas superficies verticales de la cubierta de vidrio (lado interno y lado externo), ya que es menor la cantidad de energía que absorbe el material vidriado. Al mismo tiempo, y de acuerdo con la teoría de la radiación térmica, es bien sabido que todos los materiales emiten y absorben radiación electromagnética en todas direcciones de forma difusa. La razón de esta energía emitida y absorbida dependerá de las temperaturas de superficie internas en el canal de la chimenea, así como de sus mismas propiedades ópticas. Lo anterior, se manifestará en un intercambio radiativo entre superficies, dando origen al tercer mecanismo de transferencia de calor por Radiación (13).
Por la naturaleza de los procesos que se mencionaron anteriormente, se estima que la superficie absorbedorá alcance una mayor temperatura, y por lo tanto emita mayor cantidad de energía. De acuerdo a la Ley de distribución de Planck, y de acuerdo a los valores de temperatura máximos alcanzados en superficies similares esta superficie emitirá en el infrarrojo (longitud de onda larga), por la naturaleza misma del vidrio, este se comportará como un material opaco a esta radiación, y por consiguiente se presentará el conocido efecto invernadero dentro del sistema.
Desde ambas superficies acristaladas externas, también se estima que exista una transferencia de calor por radiación (13), y al igual que los otros dos mecanismos de transferencia de calor, conducción (11) y convección (12), también se indica en la misma Figura 10.
Todos los procesos anteriormente descritos dan origen al movimiento del aire por convección natural dentro de los canales cuyo efecto se conoce como Funcionamiento Térmico del sistema. Por otra parte, y bajo ciertas condiciones, el efecto debido a las fuerzas del viento se puede hacer presente, sin embargo, éste puede o no actuar en dirección del flujo de aire. En este último caso, se manifiesta como un flujo inverso a través del sistema, lo cual es indeseable en muchos casos. Para evitar estos reflujos de aire en este tipo de sistemas, existen algunos accesorios comerciales como las caperuzas giratorias. Estos accesorios se pueden orientar en una u otra dirección según la dirección del viento, de tal forma que se evite el reflujo, o de que exista un flujo inverso en el sistema.
Con base al estudio previo, en la presente invención, se ha optado por instalar un extractor atmosférico del tipo dinámico a la salida del captador o calentador solar. Para su acoplamiento fue necesario diseñar una reducción de acoplamiento tipo tobera. El sistema en conjunto, es el que se muestra en la Figura 11, donde se muestran una vista frontal (lado izquierdo) y una vista lateral (lado derecho). En la parte superior de la
misma Figura 11 se muestra el extractor atmosférico (2) y se señala donde se acopla con la reducción tipo tobera de una Chimenea Solar de doble canal de aire. Las partes principales del sistema en conjunto se describen a continuación: (1) Una placa absorbedora de longitud L ' y ancho W'.ün este caso particular, la placa está fabricada de lámina galvanizada y pintada de color negro mate, con la finalidad de absorber la mayor cantidad de energía solar incidente sobre la misma. Los detalles de otros tipos de materiales de construcción para las placas absorbedoras de chimeneas solares se han descrito anteriormente. (2) Un extractor atmosférico del tipo dinámico. Generalmente está fabricado de lámina galvanizada o de aluminio, se encuentra disponible en el mercado para su venta comercial, en diferentes medidas (...10, 12, 14, 16... pulgadas). El extractor atmosférico deberá estar totalmente fijo y nivelado, de tal manera que no tenga desbalances en alguna dirección y puedan generarse fallas prematuras por fatiga del sistema.
(3) Una reducción tipo tobera de dimensiones características, que sirve para acoplar el captador o calentadorsolar y el extractor atmosférico. Está fabricada con estructura metálica y con cubiertas de vidrio o superficies acristaladas transparentes, sin embargo, se puede utilizar algún otro tipo de material rígido, siempre y cuando sea un material trasparente para que no se obstruya la radiación solar que incide sobre la placa absorbedora. Lo que caracteriza a la reducción tipo tobera es su razón de aspecto geométrica (A). Como razón de aspecto se entenderá el producto de dos cocientes
" A =—*— »< o.3 ", donde Wy L son el ancho y largo del captador o calentador solar del
L a
tipo chimenea solar, respectivamente, y pueden variarse de forma independiente, 2d y a son el ancho o diámetro hidráulico de descarga y largo de la reducción tipo tobera respectivamente, y pueden variarse sólo de forma dependiente. Esta razón de aspecto geométrica garantiza la uniformidad del flujo de aire dentro de la reducción tipo tobera, lo cual a su vez, reduce la caída de presión entre la salida del captador o calentador solar y la entrada al extractor atmosférico, favoreciendo a su vez la extracción de caudal de aire a través del sistema. Se procurará que la salida del calentador solar acople perfectamente con la reducción tipo tobera, y esta con la entrada del extractor atmosférico, de tal suerte que no existan fugas de aire entre ambas conexiones. Para lo anterior,se recomienda usar algún tipo de silicón comercial para sellar posibles fugas de aire alrededor de las uniones y al mismo tiempo evitar entradas de agua en época de lluvias.
(4) Cubiertas de vidrio o superficies acristaladas. Sirven principalmente para formar los dos canales rectangulares del captador o calentador, reducen las pérdidas convectivas y radiativas, además de que también sirven para crear el efecto invernadero dentro del sistema. Las superficies acristaladas también se utilizan en la reducción tipo tobera trapezoidal.
(5) Sujetadores metálicos. Sirven para fijar la placa absorbedora a la estructura metálicade soporte del captador o calentador.
(6) Arillo de acoplamiento. Puede ser metálico o de algún otro material que garantice el acoplamiento entre la reducción tipo tobera (3) y el extractor atmosférico, y que al mismo tiempo sirva de sujeción. (7) Estructura de soporte. Puede ser de acero estructural o bien, algún otro material que sirva para sujetar la placa absorbedora (1), la reducción tipo tobera (3), las cubiertas de vidrio (4) y la base del captador solar (8) principalmente.
(8) Base del captador solar. Puede ser de acero estructural o bien, algún otro material que sirva para acoplarse con la edificación por ventilar, puede ir sujeta en la parte superior (Techo) de la edificación.
(9) Flujo de aire a la entrada y al interior de los dos canales del captador solar. Son corrientes convectivas de aire que se generan de forma natural debido a las fuerzas de flotación como consecuencia de las diferencias de temperaturas entre la placa absorbedora (1) y el aire adyacente (9) en ambos canales del sistema, o bien debido a las diferencias de presión entre la entrada y la salida provocadas por el extractor atmosférico (2). (10) Caudal de aire a la salida del extractor atmosférico. Son corrientes de aire de salida expulsadas por el sistema, como consecuencia de la extracción natural debido a gradientes de presión y/o temperatura entre la entrada y la salida del sistema.
Otras dimensiones del sistema que también se muestran en las Figuras 13-14 son; La longitud (L) y el ancho (W) respectivamente del captador solar del tipo chimenea solar, la longitud (L ') y el ancho (W') respectivamente de la placa absorbedora. El diámetro del arillo de acoplamiento (2 ) para conectar el extractor atmosférico (2) con la reducción tipo tobera (3), es donde se concentra la descarga de aire saliente de ambos canales, el llamado diámetro hidráulico (2d) también corresponde al espesor de ambos canales de aire, y de igual forma es la distancia de separación entre las cubiertas frontal y posterior de vidrio (4), (a) es la longitud de la reducción tipo tobera,(¿) es el ancho del arillo de acoplamiento, y (c) es la altura del extractor atmosférico.
De lo anterior se puede concluir que, el caudal de aire a través de una chimenea solar se origina cuando existen diferencias de presiones entre la entrada y la salida del sistema. Por supuesto, siempre se busca obtener diferencias de presiones positivas, con la finalidad de evitar reflujos cuando el captador o calentador tipo chimenea solar esté conectado a una vivienda o edificación. Dicho efecto se consigue como resultado de la manifestación de dos fuerzas motrices (fuerzas de flotación debido a gradientes térmicos, provocados por las ganancias de calor en la superficie soleada de la placa absorbedora, y fuerzas dinámicas originadas por las fuerzas del viento). Sin embargo, experimentalmente se ha observado que, pese a los distintos diseños de captadores solares de aire referenciados en la literatura, y a los distintos accesorios que se encuentran comercialmente en el mercado, muchas veces el caudal de aire requerido por una edificación es insuficiente al proporcionado por el sólo captador o calentador, o bien, por el sólo accesorio, por lo tanto, como medida correctiva a esta demanda se ha
optado por instalar un mayor número de estos equipo, lo que da origen a un consto elevado del sistema.
Por todo lo anterior, se plantea como invención el uso acoplado de dos dispositivos previamente seleccionados, un captador o calentador solar del tipo chimenea solar y un extractor atmosférico del tipo dinámico, como se muestra en las Figuras 13 y 14. El acoplamiento se hace a través de una reducción tipo tobera (3) con una geometría característica previamente descrita. Al nuevo extractor mixto de aire se le denomina Chimenea solar-Eólica. Se puede resumir que la invención consiste en el acoplamiento de dos sistemas o dispositivos, (un extractor de aire atmosférico del tipo comercial, como alguno de los que se muestran en las Figura 1-6 y un captador o calentador solar del tipo Chimenea Solar, etc., como alguno de los que se muestran en las Figuras7-9. La finalidad es generar un sistema pasivo mixto de extracción de aire, con mejores características y mejor desempeño que cada sistema por separado pudiera tener. La intención es la de producir una ventilación natural requerida en las viviendas, naves industriales y/o edificaciones (según norma ASHRAE STANDAR-62-1999) para mejorar la calidad de aire al interior de recintos. El sistema en conjunto debe ser instalado con una orientación tal que se favorezca la captación de energía solar incidente sobre la placa de absorción para su mayor calentamiento, y al mismo tiempo a una altura tal que se aproveche el efecto del viento para hacer girar el extractor de aire.
En la Figura 14 se muestran los perfiles de velocidad del aire dentro de la reducción tipo tobera que contempla parte del cuerpo del mismo captador, como resultado de una simulación numérica usando un paquete de cómputo comercial (Algor). Donde W es el ancho déla placa absorbedora del captador o calentador solar, (2d) es el diámetro hidráulico de la descarga y (a) la altura de la reducción tipo tobera de descarga. Las dimensiones de estas medidas dependen de la longitud del captador, para la presente simulación se utilizó una longitud de L=2 m. En la simulación numérica se consideró que existen ductos circulares en todo lo ancho del captador solar, con la finalidad de comparar los resultados numéricos con los resultados teóricos, que son perfiles bien definidos para este tipo de geometrías. Como puede observarse, la uniformidad de los perfiles parabólicos garantiza un distribución de flujo uniforme en todo lo ancho del captador solar, ello gracias a las dimensiones características de los valores de W, a y b. Es a partir de estas dimensiones que se obtiene una razón de aspecto geométrica, que es característica del sistema y que se ha descrito a detalle en la presente invención. El material de la reducción puede ser de lámina galvanizada, pero podrá utilizarse algún otro tipo de material. Se procurará que no existan fugas de aire, de tal manera que la salida del calentador solar acople perfectamente con la base del extractor atmosférico. Se recomienda usar algún tipo de silicón comercial para sellar posibles fugas de aire en las uniones existentes, y/o entrada de agua en época de lluvias. El extractor atmosférico deberá estar totalmente fijo y nivelado, de tal manera que no tenga desbalances en alguna dirección y puedan generarse fallas prematuras por fatiga del sistema.
La extracción de aire en el nuevo sistema mixto o Chimenea Solar-Eólica se lleva a cabo por el doble efecto maximizado, el efecto Térmico y el efecto Dinámico. El efecto
térmico se produce cuando la radiación solar incide sobre la placa absorbedora del captador solar y ésta a su vez calienta el aire adyacente al interior del canal. Como consecuencia la densidad del aire disminuye y por efecto natural asciende hacia la salida, generándose así un efecto de tiro inducido natural a través del sistema que produce el efecto de ventilación. El efecto dinámico tiene lugar cuando la velocidad del viento es tal que rompe el estado de reposo del extractor atmosférico para producir un efecto giratorio que ayuda a la extracción de aire en el sistema.
Al acoplar ambos dispositivos (el captador o calentador solar y el extractor atmosférico del tipo dinámico) a través de una reducción tipo tobera,se obtiene un efecto resultante mucho mayor. Lo anterior tnaximiza la extracción de aire en recintos y/o edificaciones de hasta cuatro veces más que ambos sistemas por separado pudieran tener.
Claims
1. UN CAPTADOR O CALENTADOR SOLAR DEL TIPO CHIMENEA SOLAR, que se caracteriza por ser de doble canal de aire, formado por los siguientes elementos principales; una placa absorbedora de la radiación solar, cubiertas de vidrio o superficies acristaladas transparentes, como envolventes en un arreglo rectangular que forman los dos canales de aire, soportadas por una estructura rígida en forma de ángulo, y que además, dicho captador o calentador solar se caracteriza por llevar dos pares de trampillas de apertura y cierre para controlar el paso de aire, según se requiera ventilar o calentar pasivamente durante el día, o bien durante la noche.
2. UN CAPTADOR O CALENTADOR SOLAR DEL TIPO CHIMENEA SOLAR, QUE UTILIZA LA ENERGÍA SOLAR, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES de conformidad con la cláusula 1 que se caracteriza porque además la placa absorbedora del captador o calentador solar de aire es metálica si se requiere ventilar, una edificación durante el día.
3. UN CAPTADOR O CALENTADOR SOLAR DEL TIPO CHIMENEA SOLAR, QUE UTILIZA LA ENERGÍA SOLAR, PARA VENTILAR
PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES de conformidad con la cláusula 1 que se caracteriza porque además la placa absorbedora del captador o calentador solar de aire es de un material de alta capacidad calorífica como el hormigón si se requiere ventilar o calentar paivamente una edificación durante la noche.
4. UN CAPTADOR O CALENTADOR SOLAR DEL TIPO CHIMENEA SOLAR, QUE UTILIZA LA ENERGÍA SOLAR, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES de conformidad con la cláusula 1 que se caracteriza porque además la placa absorbedora del captador o calentador solar de aire es metálica y contiene un material de alta capacidad calorífica con cambio de fase a las temperaturas de trabajo como la parafina si se requiere ventilar o calentar pasivamente una edificación durante el día, o bien durante la noche.
5. UNA REDUCCIÓN TIPO TOBERA DE FORMA TRAPEZOIDAL, que se caracteriza porque está formada en su mayor parte por superficies acristaladas transparentes, soportadas por una estructura rígida en forma de ángulo, y que además se caracteriza porque sus dimensiones son de tales magnitudes que de una combinación de ellas se obtiene una razón de aspecto geométrica característica, " =— *— »≤o.3 " que sirve para conducir en su interior
L a
volúmenes de aire y que con ello el flujo de aire a través de la misma se mueve de forma uniforme y su caída de presión es mínima.
6. EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR
Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA SOLAR-EÓLICA), el cual está integrado por tres elementos o dispositivos principales conectados en un arreglo tipo serie; un captador o calentador solar de aire del tipo Chimenea Solar de doble canal, una Reducción tipo Tobera Trape oidal y un Extractor Atmosférico. Donde la Chimenea Solar se caracteriza por ser de doble canal de aire, y cuenta con los siguientes elementos principales; una placa absorbedora de la radiación solar, cubiertas de vidrio o superficies acristaladas transparentes como envolvente en un arreglo rectangular que forman los canales de aire. La salida de la Chimenea Solar se acopla a la entrada de una Reducción tipo Tobera Trapezoidal, la cual está formada en su mayor parte por superficies acristaladas transparentes, soportadas por una estructura rígida en forma de ángulo, que además se caracteriza porque sus dimensiones son de tales magnitudes que de una combinación de ellas se obtiene una razón de aspecto geométrica característica, " =— *— »≤o.3 " y que con
L a
ello el flujo de aire dentro del sistema se mueve de forma uniforme y su caída de presión es mínima. La salida de la reducción tipo tobera trapezoidal se conecta a la entrada del Extractor Atmosférico por medio de un arillo de acoplamiento. El extractor atmosférico es un dispositivo mecánico del tipo dinámico que gira sobre un pivote o eje vertical, formado por álabes.
7. EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR
Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA
SOLAR-EÓLICA), de conformidad con la cláusula 6 que se caracteriza porque además la placa absorbedora del captador o calentador solar de aire es metálica si se requiereventilar, una edificación durante el día.
8. EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR
Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA SOLAR-EÓLICA), de conformidad con la cláusula 6, que se caracteriza porque además la placa absorbedora es de un material de alta capacidad calorífica como el hormigón y que se caracteriza además por llevar trampillas de apertura y cierre, para controlar el paso de aire, según se requiera ventilar durante el día, o bien ventilar y/o enfriar pasivamente durante la noche una edificación.
9. EXTRACTOR MIXTO DE AIRE, QUE UTILIZA LA ENERGÍA SOLAR Y LA DEL VIENTO, PARA VENTILAR PASIVAMENTE NAVES
INDUSTRIALES, VIVIENDAS, Y/O EDIFICACIONES (CHIMENEA SOLAR-EÓLICA), de conformidad con la cláusula 6, que se caracteriza porque además la placa absorbedora es de un material de alta capacidad calorífica con cambio de fase como la parafinay que se caracteriza además por llevar trampillas de apertura y cierre, para controlar el paso de aire, según se requiera ventilar durante el día, o bien ventilar y/o enfriar pasivamente durante la noche una edificación.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2014/000046 WO2015122756A1 (es) | 2014-02-13 | 2014-02-13 | Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) |
MX2016009619A MX2016009619A (es) | 2014-02-13 | 2014-02-13 | Extractor mixto de aire, que utiliza la energia solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eolica). |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/MX2014/000046 WO2015122756A1 (es) | 2014-02-13 | 2014-02-13 | Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122756A1 true WO2015122756A1 (es) | 2015-08-20 |
Family
ID=53800416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2014/000046 WO2015122756A1 (es) | 2014-02-13 | 2014-02-13 | Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) |
Country Status (2)
Country | Link |
---|---|
MX (1) | MX2016009619A (es) |
WO (1) | WO2015122756A1 (es) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107726526A (zh) * | 2017-10-25 | 2018-02-23 | 河海大学 | 一种基于太阳能和风能的强化地下空间通风装置 |
CN108224623A (zh) * | 2017-12-13 | 2018-06-29 | 西安工程大学 | 以干空气能及太阳能为驱动能源的被动式新风系统 |
CN108224622A (zh) * | 2017-12-13 | 2018-06-29 | 西安工程大学 | 以干空气能、太阳能及地热能为驱动能源的空调系统 |
CN108692404A (zh) * | 2018-05-25 | 2018-10-23 | 西安工程大学 | 一种半主动式冷暖型蒸发冷却与机械制冷复合空调系统 |
CN109543302A (zh) * | 2018-11-22 | 2019-03-29 | 许江锋 | 一种建筑屋顶檐口的风效应数值模拟方法 |
WO2022031236A1 (en) * | 2020-08-05 | 2022-02-10 | Leung Wing Chuen | Solar chimney |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070056304A1 (en) * | 2005-09-14 | 2007-03-15 | Everett Steve E | Method, arrangement and apparatus for facilitating environmental climate control of a building structure |
US20110021133A1 (en) * | 2009-07-23 | 2011-01-27 | Arthur Louis Zwern | Passive heating, cooling, and ventilation system |
KR20130124034A (ko) * | 2012-05-04 | 2013-11-13 | (주)융도엔지니어링 | 태양 광 또는 풍력을 이용한 환기 장치 |
-
2014
- 2014-02-13 MX MX2016009619A patent/MX2016009619A/es unknown
- 2014-02-13 WO PCT/MX2014/000046 patent/WO2015122756A1/es active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070056304A1 (en) * | 2005-09-14 | 2007-03-15 | Everett Steve E | Method, arrangement and apparatus for facilitating environmental climate control of a building structure |
US20110021133A1 (en) * | 2009-07-23 | 2011-01-27 | Arthur Louis Zwern | Passive heating, cooling, and ventilation system |
KR20130124034A (ko) * | 2012-05-04 | 2013-11-13 | (주)융도엔지니어링 | 태양 광 또는 풍력을 이용한 환기 장치 |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 201378, Derwent World Patents Index; Class q45, AN 2013-V14752 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107726526A (zh) * | 2017-10-25 | 2018-02-23 | 河海大学 | 一种基于太阳能和风能的强化地下空间通风装置 |
CN108224623A (zh) * | 2017-12-13 | 2018-06-29 | 西安工程大学 | 以干空气能及太阳能为驱动能源的被动式新风系统 |
CN108224622A (zh) * | 2017-12-13 | 2018-06-29 | 西安工程大学 | 以干空气能、太阳能及地热能为驱动能源的空调系统 |
CN108224623B (zh) * | 2017-12-13 | 2020-02-07 | 西安工程大学 | 以干空气能及太阳能为驱动能源的被动式新风系统 |
CN108692404A (zh) * | 2018-05-25 | 2018-10-23 | 西安工程大学 | 一种半主动式冷暖型蒸发冷却与机械制冷复合空调系统 |
CN109543302A (zh) * | 2018-11-22 | 2019-03-29 | 许江锋 | 一种建筑屋顶檐口的风效应数值模拟方法 |
WO2022031236A1 (en) * | 2020-08-05 | 2022-02-10 | Leung Wing Chuen | Solar chimney |
Also Published As
Publication number | Publication date |
---|---|
MX2016009619A (es) | 2017-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saxena et al. | A thermodynamic review of solar air heaters | |
AU2013325337B2 (en) | Solar air heating / cooling system | |
ES2648213T3 (es) | Soporte de techo con recolector solar estructuralmente integrado | |
WO2015122756A1 (es) | Extractor mixto de aire, que utiliza la energía solar y la del viento, para ventilar pasivamente naves industriales, viviendas, y/o edificaciones (chimenea solar-eólica) | |
CN201567700U (zh) | 龙骨通风式双层玻璃幕墙 | |
CN103244999B (zh) | 一种太阳能建筑供暖通风系统 | |
Ismail et al. | Stack ventilation strategies in architectural context: a brief review of historical development, current trends and future possibilities | |
KR20140104073A (ko) | 친환경 다기능 폐열회수형 공조시스템 | |
KR101410440B1 (ko) | 태양 복사열을 이용한 건물 자연 환기 및 난방 시스템 | |
CN204460430U (zh) | 一种太阳能建筑通风供暖与通风降温系统 | |
CN203891495U (zh) | 建筑物太阳能采暖结构 | |
CN206310579U (zh) | 一种被动式太阳能建筑的空气集热和热水集热一体化系统 | |
ES2971620T3 (es) | Sistema climático de ventilación y método para controlar un sistema climático de ventilación | |
Kalkan et al. | Passive cooling technology by using solar chimney for mild or warm climates | |
CN211739523U (zh) | 一种可移动式集装箱太阳采暖房 | |
CN205606927U (zh) | 气流可控太阳能真空玻璃管板式幕墙 | |
KR101640250B1 (ko) | 건축용 태양열 집열패널 | |
CN204401841U (zh) | 一种光热呼吸幕墙 | |
Tonui et al. | Ventilation benefit accrued from PV module installed in building | |
Kumar et al. | Review on Solar Chimney in Natural Ventilation | |
CN221505166U (zh) | 一种室内空气调节装置 | |
Palero et al. | Thorough study of a proposal to improve the thermal behaviour of a bioclimatic building | |
WO2007036587A2 (es) | Sistema de aprovechamiento, control y regulación de energías renovables en edificios autosuficientes | |
CN207113097U (zh) | 一种建筑用太阳能烟囱排热装置 | |
Zhou et al. | Improving natural ventilation in combined solar house with solar chimney and solar water collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/009619 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14882424 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14882424 Country of ref document: EP Kind code of ref document: A1 |