WO2015119239A1 - Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film - Google Patents
Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film Download PDFInfo
- Publication number
- WO2015119239A1 WO2015119239A1 PCT/JP2015/053363 JP2015053363W WO2015119239A1 WO 2015119239 A1 WO2015119239 A1 WO 2015119239A1 JP 2015053363 W JP2015053363 W JP 2015053363W WO 2015119239 A1 WO2015119239 A1 WO 2015119239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- transparent conductive
- conductive film
- amount
- oxide film
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 348
- 239000011787 zinc oxide Substances 0.000 claims abstract description 174
- 239000007789 gas Substances 0.000 claims abstract description 92
- 230000004888 barrier function Effects 0.000 claims abstract description 83
- 229910052738 indium Inorganic materials 0.000 claims abstract description 83
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 82
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 69
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 63
- 238000004544 sputter deposition Methods 0.000 claims abstract description 42
- 239000011701 zinc Substances 0.000 claims abstract description 41
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 24
- 239000001301 oxygen Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000000921 elemental analysis Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 10
- -1 polyethylene terephthalate Polymers 0.000 claims description 10
- 229920000642 polymer Chemical class 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 6
- 230000035699 permeability Effects 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920006393 polyether sulfone Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 3
- 229910052945 inorganic sulfide Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000010408 film Substances 0.000 description 257
- 239000010410 layer Substances 0.000 description 131
- 125000004429 atom Chemical group 0.000 description 40
- 238000000034 method Methods 0.000 description 40
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 238000002156 mixing Methods 0.000 description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 229910003437 indium oxide Inorganic materials 0.000 description 17
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 13
- LGCMKPRGGJRYGM-UHFFFAOYSA-N Osalmid Chemical compound C1=CC(O)=CC=C1NC(=O)C1=CC=CC=C1O LGCMKPRGGJRYGM-UHFFFAOYSA-N 0.000 description 12
- 239000002019 doping agent Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 9
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 9
- 229910001195 gallium oxide Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 229920001709 polysilazane Polymers 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000007733 ion plating Methods 0.000 description 5
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000003373 anti-fouling effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004687 Nylon copolymer Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005478 sputtering type Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/286—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/325—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80517—Multilayers, e.g. transparent multilayers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/202—LCD, i.e. liquid crystal displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
Definitions
- the present invention relates to a transparent conductive film, a method for producing a transparent conductive film, and an electronic device using the transparent conductive film, and in particular, a transparent conductive film having excellent gas barrier properties and wet heat characteristics, and production of such a transparent conductive film.
- the present invention relates to a method and an electronic device using such a transparent conductive film.
- a transparent conductive film using tin-doped indium oxide as a material for forming a transparent conductive layer has been widely used.
- a transparent conductive film using zinc oxide having excellent transparency and surface smoothness has been proposed as an alternative to a transparent conductive layer using tin-doped indium oxide containing a large amount of indium which is an expensive and rare metal.
- a transparent conductive film is proposed in which an Al 2 O 3 thin film is formed on an organic polymer film substrate, and a GZO thin film of ZnO doped with Ga is formed thereon. (For example, refer to Patent Document 1).
- a low-resistivity transparent conductor which has a zinc oxide as a main component and a dopant whose concentration can be easily controlled. That is, a transparent conductor composed of zinc oxide, indium oxide, and gallium oxide, and a low-resistivity transparent conductor in which the element concentrations of indium and gallium are each within a predetermined range has been proposed (for example, Patent Documents). 2).
- a transparent conductive zinc oxide film doped with a specific element has been proposed for the purpose of obtaining excellent moisture and heat resistance characteristics even at an extremely thin film level. That is, a first element composed of Ga and / or Al and a second element composed of at least one selected from the group consisting of In, Bi, Se, Ce, Cu, Er, and Eu are added to zinc oxide.
- a conductive zinc oxide film has been proposed (for example, Patent Document 3).
- ion plating targets for transparent conductive zinc oxide thin films with excellent heat and moisture resistance are proposed (for example, Patent Document 4). More specifically, it is composed of a sintered body in which zinc oxide contains a predetermined amount of gallium and indium, and the obtained transparent conductive zinc oxide thin film has an In / Ga mass ratio of 0.01 to 0.00. This is an ion plating target having a value of less than 6.
- the transparent conductive film disclosed in Patent Document 1 requires an Al 2 O 3 thin film as an undercoat layer
- the zinc oxide film doped only with gallium still has insufficient moisture and heat resistance characteristics. There was a problem.
- the low resistivity transparent conductor disclosed in Patent Document 2 has improved the resistivity, there has been a problem that no consideration has been given to the wet heat characteristics.
- the transparent conductive zinc oxide film disclosed in Patent Document 3 has some wet heat characteristics, the film forming conditions are relatively severe, and the film thickness must be 140 nm or less.
- the transparent conductive zinc oxide film disclosed in Patent Document 4 cannot be formed by a general-purpose sputtering apparatus, and is characterized by being formed by expensive ion plating. There was a problem that it became an economic disadvantage.
- the present inventors combined a gas barrier layer and a zinc oxide film formed by a sputtering method, and the zinc oxide film contains a predetermined amount of gallium and indium.
- the inventors have found that excellent gas barrier properties and wet heat characteristics can be obtained by having a specific resistance and a film thickness of predetermined values, and have completed the present invention. That is, the present invention uses a transparent conductive film having excellent gas barrier properties and wet heat characteristics that can be formed using a general-purpose sputtering apparatus, a method for producing such a transparent conductive film, and such a transparent conductive film.
- An object is to provide an electronic device.
- a transparent conductive film including a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the zinc oxide film containing zinc oxide.
- a zinc oxide film doped with gallium and indium, and the amount of indium with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement The value is within the range of 0.01 to 25 atom%, the gallium amount is within the range of 0.1 to 10 atom%, the initial specific resistance is ⁇ 0 , and the temperature is 60 ° C. and the relative humidity is 95% for 500 hours.
- the ratio represented by ⁇ 500 / ⁇ 0 is 1.5 or less, and the thickness of the zinc oxide film is in the range of 20 to 300 nm.
- the zinc oxide film constituting a part of the present invention contains a predetermined amount of gallium and indium and is combined with a gas barrier layer, so that even a relatively thin film has extremely good wet heat characteristics. And gas barrier properties.
- the zinc oxide film is formed by a general-purpose sputtering method and has a predetermined blending composition and film thickness, it can exhibit suitable light transmittance and conductivity, and is economically advantageous. It is.
- the zinc oxide film is measured by XPS analysis in the film thickness direction as shown in FIG. 2 or elemental analysis by SIMS (Secondary Ion Mass Spectrometry) as shown in FIG.
- the present invention includes a plurality of regions (first region and second region) having a non-uniform concentration distribution regarding the amount of zinc, the amount of gallium, the amount of oxygen, and the amount of indium. Even so, the zinc oxide film is treated as a single layer (the same applies hereinafter).
- the ratio represented by 1000 / ⁇ 0 is preferably set to a value of 2.0 or less.
- the resin substrate is at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, cycloolefin copolymer, cycloolefin polymer, polyether sulfone, and polyimide. It is preferable. By comprising in this way, a softness
- the gas barrier layer is selected from metals, inorganic oxides, inorganic nitrides, inorganic oxynitrides, inorganic carbides, inorganic sulfides, inorganic oxynitride carbides, polymer compounds, and composites thereof. It is preferable to consist of at least one selected from the above. By comprising in this way, a gas barrier layer can exhibit sufficient gas barrier property.
- the water vapor permeability of the gas barrier layer is 0.1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less.
- Another embodiment of the present invention is an electronic device characterized by using any of the transparent conductive films described above as a transparent electrode.
- the long-term stability of an electronic device can be suitably achieved by using a transparent conductive film excellent in wet heat characteristics and gas barrier properties as a transparent electrode.
- Still another embodiment of the present invention is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the following steps: A method for producing a transparent conductive film comprising (1) to (3).
- Step of preparing a resin base material and a sintered body, respectively Step of forming a gas barrier layer on at least one surface of the resin base material (3) On the gas barrier layer, a sintered body using a sputtering method To zinc oxide film containing zinc oxide and doped with gallium and indium, and the total amount of zinc, gallium, oxygen and indium by XPS elemental analysis (100 atom%) On the other hand, the amount of indium is set to a value in the range of 0.01 to 25 atom%, the amount of gallium is set to a value in the range of 0.1 to 10 atom%, the initial specific resistance of the zinc oxide film is set to ⁇ 0, and 60 ° C.
- the ratio represented by ⁇ 500 / ⁇ 0 is 1.5 or less, and the film thickness is 20-300n Step of forming a zinc oxide film having a value within the range of m That is, by manufacturing in this way, a transparent conductive film excellent in wet heat characteristics and gas barrier properties can be stably manufactured.
- the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C.
- FIGS. 1 (a) to 1 (d) are diagrams for explaining each aspect of the transparent conductive film of the present invention.
- FIGS. 2 (a) to 2 (c) are views for explaining the zinc oxide film (first region and second region) in the transparent conductive film (Example 4) of the present invention based on XPS measurement.
- FIG. 3 is a diagram provided for explaining the zinc oxide film (first region and second region) based on SIMS measurement.
- FIG. 4 is a photograph provided to explain the crystal structure of a zinc oxide film (GZO) or the like in the transparent conductive film of the present invention.
- FIG. 5 is an X-ray diffraction chart by an In Plane method of a zinc oxide film containing zinc, gallium, and oxygen and doped with indium in the transparent conductive film of the present invention.
- FIG. 6 is an X-ray diffraction chart on the 002 plane of the zinc oxide film in the transparent conductive film of the present invention by the Out of Plane method.
- FIG. 7 illustrates the wet heat characteristics of the transparent conductive film of the present invention (Example 1 etc.) in comparison with the transparent conductive film of Comparative Example 1 etc. with a constant indium amount (0.3 wt%).
- FIG. 8 is for explaining the wet heat characteristics of the transparent conductive film of the present invention (Example 4 etc.) in comparison with the transparent conductive film of Comparative Example 3 etc. with the indium content (1.0 wt%) being constant.
- FIG. FIG. 9 illustrates the wet heat characteristics of the transparent conductive film of the present invention (Example 7 and the like) in comparison with the transparent conductive film of Comparative Example 5 and the like with a constant indium amount (5.0% by weight).
- FIG. FIG. 10 is used to explain the wet heat characteristics of the transparent conductive film of the present invention (Example 1) in comparison with the transparent conductive film of Example 4 or the like, with the number of gas barrier layers (one layer) being constant.
- FIG. 11 is used to explain the wet heat characteristics of the transparent conductive film of the present invention (Example 2) in comparison with the transparent conductive film of Example 5 while keeping the number of gas barrier layers (two layers) constant.
- FIG. FIG. 12 is used for explaining the wet heat characteristics of the transparent conductive film of the present invention (Example 3) in comparison with the transparent conductive film of Example 6 while keeping the number of gas barrier layers (three layers) constant.
- the first embodiment is a transparent material including a gas barrier layer 14 and a zinc oxide film 10 formed by a sputtering method on at least one surface of a resin base material 12.
- the conductive film 50 is a zinc oxide film 10 containing zinc oxide and doped with gallium and indium, and the zinc amount, gallium amount, oxygen by XPS elemental analysis measurement The amount of indium and the total amount of indium (100 atom%), the indium content is in the range of 0.01 to 25 atom%, and the gallium content is in the range of 0.1 to 10 atom%. Film 50.
- the initial specific resistance is ⁇ 0 and the specific resistance after storage for 500 hours under the conditions of 60 ° C.
- the transparent conductive film is characterized in that the following values are set, and further, the thickness of the zinc oxide film is set in the range of 20 to 300 nm.
- the transparent conductive film of the first embodiment will be specifically described with reference to the drawings as appropriate.
- a zinc oxide film (sometimes referred to as a transparent conductive layer) used in the present invention is a zinc oxide film formed on a gas barrier layer and containing zinc oxide and doped with gallium and indium. .
- the amount of indium is within a range of 0.01 to 25 atom% with respect to the total amount (100 atom%) of zinc, gallium, oxygen and indium measured by XPS elemental analysis.
- the amount is set to a value within the range of 0.1 to 10 atom%. That is, the zinc oxide film on the gas barrier layer can exhibit good wet heat characteristics and transparency even if it is a relatively thin film by containing a specific element in a predetermined amount.
- the zinc oxide film has a hexagonal wurtzite crystal structure, and a zinc oxide film doped with gallium (hereinafter sometimes referred to as a GZO film) is also shown in FIG. As shown in FIG. 4, it is known that the film has a hexagonal wurtzite crystal structure and has a strong c-axis orientation.
- the zinc oxide film formed on the gas barrier layer in the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium (hereinafter sometimes referred to as an In-GZO film). Even when it is doped with indium, it has been found from the X-ray diffraction chart that a predetermined crystallinity is exhibited. More specifically, FIG.
- the characteristic curve E does not contain indium, that is, an X-ray diffraction chart of the GZO film.
- FIG. 6 shows an X-ray diffraction chart according to the out of plane method on the 002 plane of the zinc oxide film.
- characteristic curves A to E in FIG. 6 are the same as the samples corresponding to the X-ray diffraction chart of FIG. Therefore, as understood from the comparison of the X-ray diffraction charts of FIGS. 5 and 6, since the In-GZO film shows the same diffraction peak as that of the GZO film on the gas barrier layer, the crystal structure is Inferred to be similar. That is, from FIG. 5 and FIG. 6, it is considered that the crystal structures are similar to each other, and thus it is estimated that each has a columnar structure with high c-axis orientation.
- the zinc oxide film formed on the gas barrier layer is based on the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount, and indium amount as measured by XPS elemental analysis.
- the amount of indium is set to a value in the range of 0.01 to 25 atom%
- the amount of gallium is set to a value in the range of 0.1 to 10 atom%. This is because if the amount of indium in the zinc oxide film is less than 0.01 atom%, the dopant effect is not exhibited and good wet heat characteristics may not be obtained.
- the amount of indium exceeds 25 atom%, the initial specific resistance is remarkably large, and the electrical characteristics of the transparent conductive film may be deteriorated.
- the indium content is preferably set to a value in the range of 0.015 to 8 atom% with respect to the total amount.
- a value in the range of 0.02 to 6 atom% is more preferable, and a value in the range of 0.05 to 4 atom% is more preferable.
- the electrical characteristics of the zinc oxide film may be inferior. Accordingly, in the zinc oxide film, it is more preferable that the gallium amount is within a range of 0.5 to 8 atom% with respect to the total amount of zinc amount, gallium amount and oxygen amount (100 atom%). More preferably, the value is within the range of%.
- each element amount by the elemental analysis measurement of XPS means the average value of the element amount in each depth measured by the XPS analysis of the depth direction in the whole zinc oxide film.
- the thickness of the first region is usually set. The thickness is less than 20 nm. Therefore, unless otherwise specified, each element amount obtained by XPS elemental analysis means an average value of element amounts at each depth in the second region.
- gallium and indium are selected as dopants for the zinc oxide film. That is, it is because the chemical stability of zinc oxide can be improved by including two or more dopants to be added.
- gallium and indium are selected as dopants for the zinc oxide film. That is, it is because the chemical stability of zinc oxide can be improved by including two or more dopants to be added.
- group 13 element in the periodic table of elements in the case of assuming that the zinc site has one more valence electron than that of group 12 zinc and a dopant is substituted at the zinc site, aluminum, gallium, and indium This is because each of the first ionization energies is small and is considered to be effective as a carrier generation source.
- the Madelung energy which is an index of bond energy in an ion-bonded ion crystal such as zinc oxide, is assumed as described above with respect to the occupied site of zinc as a dopant.
- the stability as a dopant for zinc oxide is considered to be higher in the order of gallium, indium, and aluminum.
- the covalent bond radius is 1.25 ⁇ for zinc, 1.18 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ for aluminum, 1.26 ⁇ ⁇ ⁇ ⁇ for gallium, and 1.44 ⁇ ⁇ ⁇ ⁇ ⁇ for indium, while the ionic radius is 0.74 ⁇ ⁇ for zinc and 0 for aluminum. .53 ⁇ , gallium is 0.61 ⁇ , and indium is 0.76 ⁇ .
- zinc dopant is substituted for the zinc site in the crystal mainly composed of zinc oxide, and considering its structural stability, gallium is most stably substituted from the viewpoint of the covalent bond radius. From the viewpoint of ionic radius, it is presumed that indium is most stably substituted, and therefore these are selected as dopants.
- the film thickness of the zinc oxide film is a value in the range of 20 to 300 nm. This is because when the thickness of the zinc oxide film is less than 20 nm, not only stable formation of the zinc oxide film may be difficult, but also the wet heat characteristics may be significantly reduced. On the other hand, when the thickness of the zinc oxide film exceeds 300 nm, it takes an excessive amount of time to form the zinc oxide film, and the productivity may decrease. Therefore, the thickness of the zinc oxide film is more preferably in the range of 25 to 250 nm, and further preferably in the range of 30 to 200 nm.
- the film thickness (d) of the zinc oxide film can be measured using a spectroscopic ellipsometer, as will be specifically described in Example 1.
- the initial specific resistance ( ⁇ 0 ) of the zinc oxide films 10 and 10 ′ illustrated in FIGS. 1 (a) to 1 (d) exceeds 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and 1 It is preferable to set it as the value of x10 ⁇ -1 > ohm * cm or less. This is because the film forming conditions may be complicated when the initial specific resistance of the zinc oxide film is 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less. On the other hand, when the initial specific resistance of the zinc oxide film exceeds 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm, suitable conductivity may not be obtained.
- the initial specific resistance of the zinc oxide film is more preferably set to a value within the range of 5.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm, more preferably 6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. More preferably, the value is in a range of ⁇ 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
- the initial specific resistance ( ⁇ 0 ) of the zinc oxide film should be calculated from the film thickness (d) of the transparent conductive film and the measured surface resistivity (R), as specifically described in Example 1. Can do.
- the initial specific resistance ( ⁇ 0 ) is preferably set in the above-described range by setting the amount of indium (atom%) contained in the first region and the second region of the zinc oxide film of the transparent conductive film to a value within a predetermined range.
- the value can be
- characteristic curves F to J in FIG. 8 correspond to Examples 4 to 6 and Comparative Examples 3 to 4 described later, respectively.
- the characteristic curves K to O in FIG. 9 correspond to Examples 7 to 9 and Comparative Examples 5 to 6 described later, respectively. From the comparison of these characteristic curves, the wet heat characteristics of the transparent conductive film having such a zinc oxide film are dramatically improved by adding a predetermined amount of indium as a dopant in the zinc oxide film formed on the gas barrier layer. It is understood that it has improved.
- the specific resistance ratio represented by ⁇ 500 / ⁇ 0 is set to a value of 1.4 or less.
- the value is 1.3 or less, more preferably 1.2 or less.
- the specific resistance ratio represented by ⁇ 1000 / ⁇ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. It can be said that the value is more preferable.
- the transparent conductive film has a zinc oxide film doped with gallium and indium on the gas barrier layer, and the zinc oxide A plurality of regions (first region and second region) having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the film thickness direction from the film to the substrate. It is preferable to include. More specifically, FIG. 2A is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the element amount (atom%). 2 (b) is an enlarged view for making it easier to understand the change in the element amount (atom%) in FIG. 2 (a). FIG.
- 2C is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the In / Ga ratio ( ⁇ ). From these XPS analysis charts, in the first region, the zinc amount is 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement.
- the amount of gallium is a value within the range of 0.1 to 10 atom%
- the amount of oxygen is within the range of 22 to 79.89 atom%
- the amount of indium is 0.01 to 8 atom%. It is understood that a value within the range is preferred.
- the zinc amount is set to a value in the range of 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement,
- the amount of gallium is set to a value within the range of 0.1 to 10 atom%
- the amount of oxygen is set to a value within the range of 17 to 64.89 atom%
- the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is understood that this is preferred.
- the value of [In] / [Ga] in the first region is preferably larger than the value of [In] / [Ga] in the second region.
- the first region having a relatively large indium amount, and the relatively indium when the second region having a small amount is sequentially included, the wet heat characteristics of the zinc oxide film can be remarkably improved. Moreover, with such a composition, excellent adhesion can be obtained with a gas barrier layer described later.
- the interface between the first region and the second region included in the zinc oxide film is not necessarily clear, and there is a portion where the composition ratio of each region changes continuously or stepwise. Also good.
- the first region and the second region may be formed by performing one sputtering process, or may be formed by performing two or more sputtering processes. That is, even in a single sputtering step, a zinc oxide-gallium oxide-indium oxide ternary sintered body is used as a sputtering target, and the blending ratios of the respective components are appropriately adjusted. As shown in FIG.
- indium in the vicinity of the surface of the zinc oxide film opposite to the substrate side, a relatively large amount of indium (first region) and a relatively small amount of indium inside the zinc oxide film.
- the region (second region) can be formed continuously. This is because, from the viewpoint of the Madelung energy, gallium is large and stably incorporated into the crystal grains, while indium is presumed to be unstable compared to gallium, and in addition, from the viewpoint of the covalent bond radius. Therefore, it is estimated that indium is larger than zinc and gallium. That is, since indium is expected to have low solubility in zinc oxide, it is presumed that indium, which is relatively excessive in maintaining the crystal structure, segregates on the surface.
- the sputtering method was adopted in the present invention.
- the first region and the second region having different composition ratios may be formed by performing the sputtering process two or more times and changing the sputtering conditions, the type of sputtering target, and the like.
- gas barrier layers 14 and 14 ′ are formed on at least one surface of the resin base material 12. . More specifically, as illustrated in FIG. 1, the gas barrier layer 14 is formed between the resin base material 12 and the zinc oxide film 10, and passes through the resin base material 12 so that water vapor or the like is generated. Even if it penetrates, it is a layer for preventing further penetration of the water vapor and the like, and as a result, preventing the zinc oxide film 10 from deteriorating. Therefore, the configuration of the gas barrier layer is not particularly limited as long as it exhibits a predetermined gas barrier property.
- a metal such as aluminum, magnesium, zirconium, titanium, zinc, tin; silicon oxide, Inorganic oxides such as aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride; inorganic carbides; inorganic sulfides; and silicon oxynitride which is a composite of these Inorganic oxycarbides such as: inorganic nitriding carbides; inorganic oxynitriding carbides; polymer compounds and the like alone or in combination of two or more.
- the gas barrier layer may contain other compounding components such as various polymer resins, curing agents, anti-aging agents, light stabilizers, and flame retardants. As shown in FIG. 1C, a plurality of gas barrier layers may be formed on a resin base material, or a gas barrier layer may be formed after forming the above-described zinc oxide film (not shown).
- the film thickness of the gas barrier layer 14 illustrated in FIG. 1 is preferably set to a value in the range of 20 nm to 50 ⁇ m.
- the reason for this is that by using such a gas barrier layer having a predetermined film thickness, further excellent gas barrier properties and adhesion can be obtained, and at the same time, both flexibility and coating strength can be achieved. Therefore, the thickness of the gas barrier layer is more preferably set to a value within the range of 30 nm to 1,000 nm, and further preferably set to a value within the range of 40 nm to 500 nm.
- the water vapor transmission rate measured in an atmosphere of the gas barrier layer at 40 ° C. and a relative humidity of 90% is preferably set to a value of 0.1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less, and 0.05 g ⁇ m ⁇ 2. More preferably, the value is not more than day ⁇ 1 , and more preferably not more than 0.01 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- the reason for this is that by setting such a value of water vapor transmission rate, the zinc oxide film is prevented from deteriorating, and gas barrier properties excellent in wet heat resistance are obtained.
- a water vapor transmission rate of a gas barrier layer it can measure by a well-known method, For example, as shown in Example 1, it can measure using a commercially available water vapor transmission rate measuring apparatus.
- the number of gas barrier layers in the transparent conductive film is not particularly limited, but it is usually preferably 1 to 8 layers. This is because the wet heat characteristics of the transparent conductive film can be remarkably improved if there is even one gas barrier layer. On the other hand, if the number of gas barrier layers exceeds 8, the total thickness of the transparent conductive film becomes thick and the flexibility may be lowered, or the stable production of the transparent conductive film may be difficult. Because. Therefore, although depending on the application, the number of gas barrier layers is preferably 1 to 6 (or 2 to 6), and the number of layers is preferably 2 to 4 (or 3 to 4). It is more preferable to set the value within the range.
- FIGS. 10 to 12 wet heat characteristics
- the horizontal axis of FIGS. 10 to 12 shows the elapsed time (X) under the conditions of 60 ° C. and relative humidity of 95%
- the vertical axis represents the specific resistance represented by ⁇ X / ⁇ 0.
- the ratio is shown.
- the characteristic curves A, F, and K in FIG. 10 correspond to Examples 1, 4, and 7, respectively.
- characteristic curves B, G, and L in FIG. 11 correspond to Examples 2, 5, and 8, respectively.
- the specific resistance ratio represented by ⁇ 500 / ⁇ 0 is preferably a value of 1.4 or less, more preferably a value of 1.3 or less, and a value of 1.2 or less. Further preferred. Further, the specific resistance ratio represented by ⁇ 1000 / ⁇ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. Further preferred.
- Resin base material (1) type The resin used for the resin base material 12 illustrated in FIG. 1 is not particularly limited as long as it is excellent in flexibility and transparency.
- polyester since it is excellent in transparency and has flexibility and versatility, it is preferably at least one selected from the group consisting of polyester, polycarbonate, polyimide, polyamide, cycloolefin polymer, and polyether sulfone. More preferably, it is a polyester or cycloolefin polymer. More specifically, examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate. Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
- cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
- Examples thereof include apell (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), arton (a norbornene polymer manufactured by JSR), zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like.
- the film thickness of the resin substrate 12 illustrated in FIG. 1 may be determined according to the purpose of use, etc., but is in the range of 1 to 1000 ⁇ m from the viewpoint of flexibility and easy handling. The value is preferably in the range of 5 to 250 ⁇ m, more preferably in the range of 10 to 200 ⁇ m.
- the resin base material may contain various additives such as an antioxidant, a flame retardant, and a lubricant as long as transparency and the like are not impaired.
- the undercoat layer 16 is a layer provided in order to improve the adhesiveness of a resin base material and a zinc oxide film
- a material it is a urethane type resin, an acryl, for example Known resins such as a resin, a silane coupling agent, an epoxy resin, a polyester resin, and an ultraviolet curable resin can be used.
- the other layer 18 on the surface on the opposite side to the zinc oxide film
- Transparent conductive film (1) embodiment The transparent conductive films 50, 50 ', 50 ", 50"”illustrated in FIGS. 1 (a) to 1 (d) are gas barrier layers on one or both sides of the resin substrate 12. 14 and 14 'and zinc oxide films 10 and 10', wherein the zinc oxide film contains zinc oxide and is doped with gallium and indium.
- the zinc oxide film has an indium content within a range of 0.01 to 25 atom% with respect to the total amount (100 atom%) of zinc content, gallium content, oxygen content, and indium content as measured by XPS elemental analysis.
- the amount of gallium is set to a value in the range of 0.1 to 10 atom%, and it has predetermined wet heat characteristics and film thickness.
- the light transmittance at a wavelength of 550 nm is preferably a value of 70% or more at a predetermined thickness, for example, any of 20 to 600 nm, and 80% or more. More preferably, the value is 90% or more.
- the light transmittance at a wavelength of 550 nm is preferably a value of 50% or more and a value of 60% or more at a predetermined thickness, for example, from 10 ⁇ m to 1 mm. More preferably, the value is more preferably 70% or more.
- the specific resistance ( ⁇ ) of the transparent conductive films 50, 50 ′, 50 ′′, 50 ′′ ′′ illustrated in FIGS. 1A to 1D is the same as that of the zinc oxide films 10, 10 ′. Since it is substantially the same as the specific resistance, the description thereof will be omitted.
- the second embodiment is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, which comprises the following steps (1) to (1): It is a manufacturing method of the transparent conductive film characterized by including (3).
- a step of preparing each of the resin base material and the sintered body hereinafter sometimes referred to as step (1).
- step (2) A step of forming a gas barrier layer on at least one surface of the resin base material (hereinafter sometimes referred to as step (2)).
- the initial resistivity of the zinc oxide film is ⁇ 0 and the resistivity after storage for 500 hours at 60 ° C. and 95% relative humidity is ⁇ 500 .
- the ratio represented by ⁇ 500 / ⁇ 0 is set to a value of 1.5 or less, and further, a step of forming a zinc oxide film having a thickness in the range of 20 to 300 nm (hereinafter referred to as step (3) ) May be.)
- step (3) a step of forming a zinc oxide film having a thickness in the range of 20 to 300 nm
- Process (1) is a process of preparing a resin base material and a sintered compact. That is, the zinc oxide film illustrated in FIGS. 1A to 1D is preferably formed from a sintered body containing zinc oxide as a main component and further containing gallium oxide and indium oxide. Further, in the sintered body forming the zinc oxide film, the blending amount of zinc oxide is set to a value within the range of 15 to 99.98% by weight with respect to the total amount of the sintered body, and the blending amount of gallium oxide is It is preferable to set the value within the range of 0.01 to 15% by weight and the amount of indium oxide to be within the range of 0.01 to 70% by weight.
- the reason for this is that by using a ternary sintered body of zinc oxide-gallium oxide-indium oxide in which the blending amount is controlled, a zinc oxide film having excellent wet heat characteristics can be efficiently formed. This is because production efficiency can be improved. More specifically, when the blending amount of indium oxide is less than 0.01% by weight relative to the total amount of the sintered body, the amount of indium contained in the zinc oxide film after film formation is significantly reduced. This is because sufficient wet heat characteristics may not be obtained. Accordingly, the zinc oxide content is within the range of 27 to 99.4% by weight and the gallium oxide content is within the range of 0.5 to 8% by weight relative to the total amount of the sintered body.
- the blending amount of indium oxide is set to a value within the range of 0.1 to 65% by weight.
- the blending amount of zinc oxide is set to a value within the range of 33 to 98.7% by weight
- the blending amount of gallium oxide is set to a value within the range of 1 to 7% by weight with respect to the total amount of the sintered body.
- it is more preferable that the blending amount of indium oxide is a value within the range of 0.3 to 60% by weight.
- the details of the resin base material are the same as those already described, and will be omitted.
- Step (2) Gas Barrier Layer Forming Step Step (2) is a step of forming the gas barrier layers 14 and 14 'of the transparent conductive film, and a resin base material 12 for which gas barrier properties are desired is prepared. In this step, the gas barrier layers 14 and 14 'are formed.
- the method for forming the gas barrier layer is not particularly limited.
- a method for forming the above-described material on a substrate by a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, or the like A method in which a solution obtained by dissolving or dispersing the above-described material in an organic solvent is applied on a resin substrate by a known application method, and the obtained coating film is appropriately dried, or the obtained coating film
- a method of forming by performing a modification process such as an atmospheric pressure plasma process, an ion implantation process, and a lamp annealing process.
- the gas barrier layer 14 described above can be formed by performing plasma ion implantation on the polysilazane compound-containing layer by performing plasma ion implantation on the polysilazane compound-containing layer.
- plasma ion implantation treatment a method for injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or for forming a gas barrier layer without using an external electric field.
- ions existing in plasma generated only by an electric field generated by a negative high voltage pulse applied to a layer made of a material are implanted into the polysilazane compound-containing layer.
- Examples of ions to be implanted include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
- Step (3) is a method of forming a zinc oxide film on at least one surface of a resin base material. That is, as a method for forming a zinc oxide film, a physical production method typified by a sputtering method or a vapor deposition method, and a chemical production method typified by a chemical vapor deposition method can be mentioned. Since a transparent conductor layer can be efficiently formed, a sputtering method is used. This is because, according to the sputtering method, even in only one step, a zinc oxide film comprising a first region and a second region having different compositions can be efficiently formed by adjusting the composition of the target. This is because it can.
- the target of the ternary sintered body of zinc oxide-gallium oxide-indium oxide is used as described above.
- the blending amount of zinc oxide is 70 to 99.98% by weight (56 to 80% by weight as zinc)
- the blending amount of gallium oxide is 0.01 to 15% by weight (0.007 to 11.2% by weight as gallium) and 0.01 to 15% by weight of indium oxide (0.008 to 12.4% by weight as indium) ) within the range.
- the blending amount of zinc oxide is set to a value in the range of 76 to 99.4% by weight (61 to 80% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 0.5.
- the value is within a range of ⁇ 12% by weight (0.37 to 8.9% by weight as gallium), and the blending amount of indium oxide is 0.1 to 12% by weight (0.08 to 9.9% by weight as indium). It is more preferable to set the value within the range.
- the blending amount of zinc oxide is set to a value in the range of 80 to 98.7% by weight (64 to 79% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 1 to 10%.
- the blending amount of zinc oxide is set to a value within the range of 80 to 94.3 wt% (64 to 79 wt% as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 5.4.
- the value is in the range of ⁇ 10% by weight (4.1 to 7.4% by weight as gallium), and the blending amount of indium oxide is 0.3 to 10% by weight (0.25 to 8.3% by weight as indium). %) Is more preferable.
- DC sputtering method DC magnetron sputtering method, RF sputtering method, RF magnetron sputtering method, DC + RF superposition sputtering method, DC + RF superposition magnetron sputtering method, counter target sputtering method, ECR sputtering method, dual The magnetron sputtering method etc. are mentioned.
- the sputtering conditions are not particularly limited, but the back pressure is preferably 1 ⁇ 10 ⁇ 2 Pa or less, and more preferably 1 ⁇ 10 ⁇ 3 Pa or less.
- the internal pressure is preferably set to a value in the range of 0.1 to 5 Pa, more preferably 0.2 to 1 Pa.
- argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ) as the gas species introduced into the system when performing the sputtering method.
- a rare gas, nitrogen (N 2 ), or the like may be used.
- the mixing ratio (O 2 / (Ar + O 2 )) is preferably set to a value within the range of 0.01 to 20, and preferably set to a value within the range of 0.1 to 10. Is more preferable. This is because when the mixing ratio of argon and oxygen is in the above-described range, a conductive layer having a low specific resistance and low reflectance can be formed.
- the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C. This is because, if the temperature of the resin substrate is a value within the range of 10 to 150 ° C., a zinc oxide film can be suitably formed even with a resin substrate having a relatively low softening point. is there.
- the third embodiment is an electronic device using the transparent conductive film of the first embodiment described above as a transparent electrode. More specifically, a liquid crystal display, an organic EL display, an inorganic EL display, an electronic paper, a solar cell, an organic transistor, an organic EL lighting, an inorganic EL lighting, a thermoelectric device, which are mounted with a transparent electrode provided with a predetermined transparent conductive film. A conversion device, a gas sensor, etc. are mentioned.
- the electronic device of the present invention includes the transparent conductive film described in the first embodiment, the specific resistance is sufficiently small and the conductivity that can suppress an increase in specific resistance over a long period of time is exhibited. can do.
- the present invention will be described in more detail by way of examples. However, the following description shows the present invention by way of example, and the present invention is not limited to these descriptions.
- the first region and the second region having different compositions in the film thickness direction may be formed.
- the thickness of the first region is usually less than 20 nm, in the case of the present invention in which the zinc oxide film and the gas barrier layer are used in combination, particularly in the following examples, such a plurality of regions are formed. Even if it has, the zinc oxide film shall be handled as a single layer for convenience.
- Step (2) Gas barrier layer forming step Next, after applying an undercoat layer forming solution made of a photocurable resin on a resin substrate, heat treatment is performed at 120 ° C. for 1 minute, Dried. Next, using a UV light irradiation line, using a high-pressure mercury lamp, UV irradiation was performed under the conditions of line speed: 20 m / min, integrated light quantity: 100 mJ, peak intensity: 1.466 W, number of passes: 2 times, and undercoat A layer was formed.
- argon plasma ions are implanted into the polysilazane compound-containing layer under the following plasma ion implantation conditions, and a gas barrier layer (hereinafter referred to as a PHPS layer) as a plasma ion implantation film is used. did.
- RF power source JEOL Ltd., model number “RF” 56000
- High voltage pulse power supply Kurita Seisakusho Co., Ltd., model number “PV-3-HSHV-0835”
- Plasma generation gas Argon (Ar) Gas flow rate: 100sccm Duty ratio: 0.5% Repeat frequency: 1000Hz Applied voltage: -6kV RF power supply: frequency 13.56 MHz, applied power 1000 W Chamber internal pressure: 0.2 Pa Pulse width: 5 ⁇ sec Processing time (ion implantation time): 5 minutes Conveying speed: 0.2 m / min
- the water-vapor-permeation rate in the conditions of 40 degreeC and relative humidity 90% was measured using the water-vapor-permeation measuring apparatus (MOCON Co., Ltd. product, AQUATRAN). However, it was 0.02 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- Step (3) Zinc Oxide Film Formation Step Next, the following sputtering is performed on the resin base material obtained by laminating the obtained gas barrier layer by the DC magnetron sputtering method using the above-described ternary sintered body. A zinc oxide film (film thickness: 100 nm) was formed under the conditions to obtain a transparent conductive film. By XPS measurement, a first region of a thin film (less than 5 nm) is formed on the surface side of the zinc oxide film, that is, the surface opposite to the gas barrier layer, and a second region having a thickness of 95 nm is formed below the first region. It was confirmed separately that it was formed. Resin substrate temperature: 20 ° C DC output: 500W Carrier gas: Argon (Ar) Deposition pressure: 0.6Pa Deposition time: 35 sec.
- Zinc oxide film thickness (d) The film thickness (d) of the obtained transparent conductive film in the zinc oxide film was measured using a spectroscopic ellipsometer M-2000U (manufactured by JA Woollam Japan).
- the resistivity (R 500 ) was measured. Further, the obtained transparent conductive film was placed in an environment of 60 ° C. and 95% RH for 1000 hours, taken out, and then subjected to temperature and humidity control for one day in an environment of 23 ° C. and 50% RH.
- the resistivity (R 1000 ) was measured. That is, the initial surface resistivity (R 0 ) in the zinc oxide film, the surface resistivity after the wet heat test (R 500 , R 1000 ), and the film thickness (d) of the transparent conductive film were measured.
- Example 2 a transparent conductive film provided with two PHPS layers was evaluated. That is, after the first PHPS layer is formed, a second PHPS layer is formed thereon, and then a predetermined zinc oxide film (predetermined first region and second region) is formed. A transparent conductive film was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. The water vapor permeability of the resin base material provided with two PHPS layers as the gas barrier layer was 0.005 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- Example 3 a transparent conductive film provided with three PHPS layers was evaluated. That is, after the first PHPS layer was formed, a second PHPS layer and a third PHPS layer were formed thereon to form a total of three PHPS layers. Next, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that a predetermined zinc oxide film (predetermined first region and second region) was further formed on the three PHPS layers. did. The obtained results are shown in Table 1. The water vapor transmission rate in a resin base material provided with three PHPS layers as a gas barrier layer was 0.0005 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- Comparative Example 1 In Comparative Example 1, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that an undercoat layer was formed on the resin base material and then no gas barrier layer was formed. The obtained results are shown in Table 1. The water vapor permeability of the resin base material provided with only the undercoat layer was 6.8 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- Comparative Example 2 In Comparative Example 2, an undercoat layer was formed on a resin substrate, and then a silicon oxide (SiOx) layer was formed by a sputtering method so as to have a film thickness of 100 nm under the following conditions. Next, a transparent conductive film was produced on the formed SiOx layer in the same manner as in Example 1 and evaluated. The obtained results are shown in Table 1. The water vapor permeability of the resin base material provided with the SiOx layer and the undercoat layer was 0.5 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 .
- Comparative Example 3 Comparative Example 4
- the rate of change in specific resistance ( ⁇ 500 / ⁇ 0 ) is 1.5 or less even after 500 hours, and further the rate of change in specific resistance after 1000 hours.
- Comparative Examples 1, 3 and 5 having no gas barrier layer the specific resistance after the environmental test is remarkably increased, for example, after 500 hours, compared with the case having the gas barrier layer (Example 1).
- the specific resistance change rate was 100 times or more.
- Comparative Examples 2, 4 and 6 including the gas barrier layer having a low water vapor transmission rate the specific resistance after the environmental test is increased. For example, after 500 hours, the gas barrier layer having a low water vapor transmission rate of the present invention is used. Compared to the case of Example 1 (Example 1), the rate of change in specific resistance was 5 times or more.
- a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface on a resin substrate.
- the zinc oxide film includes a predetermined amount of indium and gallium with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS elemental analysis, and the zinc oxide film includes:
- the transparent conductive film of the present invention can be used for electrical products, electronic components, image display devices (organic electroluminescence elements, inorganic electroluminescence elements, liquid crystal display devices, electronic paper, etc.) solar cells, etc. for which predetermined wet heat characteristics are desired. It is expected to be used effectively as a transparent electrode in various applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The present invention provides a transparent conductive film having excellent moist heat characteristics, a method for producing said transparent conductive film, and an electronic device formed using such a transparent conductive film. This transparent conductive film is provided, on at least one side of a resin substrate, with a gas barrier layer and a zinc oxide film that is formed according to a sputtering method, wherein the zinc oxide film includes zinc oxide and is formed by doping gallium and indium, and if, in relation to the total content (100 atom%) of zinc content, gallium content, oxygen content, and indium content according to XPS elemental analysis measurement, the indium content is configured to a value within the range of 0.01-25 atom%, if the gallium content is configured to a value within the range of 0.1-10 atom%, if the initial specific resistance is termed ρ0, and if the specific resistance after storing for 500 hours under conditions of 60°C and 95% relative humidity is termed ρ500, then the ratio represented by ρ500/ρ0 is configured to a value of 1.5 or less, and the film thickness of the zinc oxide film is configured to a value within the range of 20-300 nm.
Description
本発明は、透明導電フィルム、透明導電フィルムの製造方法、及び透明導電フィルムを用いてなる電子デバイスに関し、特に、優れたガスバリア性及び湿熱特性を有する透明導電フィルム、そのような透明導電フィルムの製造方法、及びそのような透明導電フィルムを用いてなる電子デバイスに関する。
The present invention relates to a transparent conductive film, a method for producing a transparent conductive film, and an electronic device using the transparent conductive film, and in particular, a transparent conductive film having excellent gas barrier properties and wet heat characteristics, and production of such a transparent conductive film. The present invention relates to a method and an electronic device using such a transparent conductive film.
従来、液晶デバイスや有機エレクトロルミネッセンスデバイス(有機EL素子)を備えた画像表示装置において、錫ドープ酸化インジウムを透明導電層の形成材料として用いた透明導電フィルムが広く用いられている。
一方、高価で希少金属であるインジウムを多量に含む錫ドープ酸化インジウムを用いた透明導電層の代替として、透明性や表面平滑性に優れた酸化亜鉛を用いた透明導電フィルムが提案されている。
より具体的には、有機高分子フィルム基材上にAl2O3薄膜が形成されており、その上にGaをドープしたZnOであるGZO薄膜が形成されている透明導電フィルムが提案されている(例えば、特許文献1参照)。 Conventionally, in an image display device provided with a liquid crystal device or an organic electroluminescence device (organic EL element), a transparent conductive film using tin-doped indium oxide as a material for forming a transparent conductive layer has been widely used.
On the other hand, a transparent conductive film using zinc oxide having excellent transparency and surface smoothness has been proposed as an alternative to a transparent conductive layer using tin-doped indium oxide containing a large amount of indium which is an expensive and rare metal.
More specifically, a transparent conductive film is proposed in which an Al 2 O 3 thin film is formed on an organic polymer film substrate, and a GZO thin film of ZnO doped with Ga is formed thereon. (For example, refer to Patent Document 1).
一方、高価で希少金属であるインジウムを多量に含む錫ドープ酸化インジウムを用いた透明導電層の代替として、透明性や表面平滑性に優れた酸化亜鉛を用いた透明導電フィルムが提案されている。
より具体的には、有機高分子フィルム基材上にAl2O3薄膜が形成されており、その上にGaをドープしたZnOであるGZO薄膜が形成されている透明導電フィルムが提案されている(例えば、特許文献1参照)。 Conventionally, in an image display device provided with a liquid crystal device or an organic electroluminescence device (organic EL element), a transparent conductive film using tin-doped indium oxide as a material for forming a transparent conductive layer has been widely used.
On the other hand, a transparent conductive film using zinc oxide having excellent transparency and surface smoothness has been proposed as an alternative to a transparent conductive layer using tin-doped indium oxide containing a large amount of indium which is an expensive and rare metal.
More specifically, a transparent conductive film is proposed in which an Al 2 O 3 thin film is formed on an organic polymer film substrate, and a GZO thin film of ZnO doped with Ga is formed thereon. (For example, refer to Patent Document 1).
また、酸化亜鉛を主成分とし、濃度制御容易なドーパントによって、抵抗率の低下を目的とした低抵抗率透明導電体が提案されている。
すなわち、酸化亜鉛、酸化インジウム及び酸化ガリウムからなる透明導電体であって、インジウム及びガリウムの元素濃度をそれぞれ所定範囲内の値とした低抵抗率透明導電体が提案されている(例えば、特許文献2)。 In addition, a low-resistivity transparent conductor has been proposed which has a zinc oxide as a main component and a dopant whose concentration can be easily controlled.
That is, a transparent conductor composed of zinc oxide, indium oxide, and gallium oxide, and a low-resistivity transparent conductor in which the element concentrations of indium and gallium are each within a predetermined range has been proposed (for example, Patent Documents). 2).
すなわち、酸化亜鉛、酸化インジウム及び酸化ガリウムからなる透明導電体であって、インジウム及びガリウムの元素濃度をそれぞれ所定範囲内の値とした低抵抗率透明導電体が提案されている(例えば、特許文献2)。 In addition, a low-resistivity transparent conductor has been proposed which has a zinc oxide as a main component and a dopant whose concentration can be easily controlled.
That is, a transparent conductor composed of zinc oxide, indium oxide, and gallium oxide, and a low-resistivity transparent conductor in which the element concentrations of indium and gallium are each within a predetermined range has been proposed (for example, Patent Documents). 2).
一方で、極薄膜レベルであっても優れた耐湿熱特性を得ることを目的として、特定の元素をドープした透明導電性酸化亜鉛膜が提案されている。
すなわち、酸化亜鉛に、Ga及び/又はAlからなる第1元素と、In、Bi、Se、Ce、Cu、Er及びEuからなる群から選択される少なくとも1つからなる第2元素が添加された透明導電性酸化亜鉛膜であって、所定の湿熱試験前後における比抵抗が所定範囲内の値であり、亜鉛と第2元素の原子数量比及び膜厚を所定の範囲内の値に規定した透明導電性酸化亜鉛膜が提案されている(例えば、特許文献3)。 On the other hand, a transparent conductive zinc oxide film doped with a specific element has been proposed for the purpose of obtaining excellent moisture and heat resistance characteristics even at an extremely thin film level.
That is, a first element composed of Ga and / or Al and a second element composed of at least one selected from the group consisting of In, Bi, Se, Ce, Cu, Er, and Eu are added to zinc oxide. A transparent conductive zinc oxide film having a specific resistance value within a predetermined range before and after a predetermined wet heat test, and a transparent value in which the atomic quantity ratio between the zinc and the second element and the film thickness are specified within the predetermined range. A conductive zinc oxide film has been proposed (for example, Patent Document 3).
すなわち、酸化亜鉛に、Ga及び/又はAlからなる第1元素と、In、Bi、Se、Ce、Cu、Er及びEuからなる群から選択される少なくとも1つからなる第2元素が添加された透明導電性酸化亜鉛膜であって、所定の湿熱試験前後における比抵抗が所定範囲内の値であり、亜鉛と第2元素の原子数量比及び膜厚を所定の範囲内の値に規定した透明導電性酸化亜鉛膜が提案されている(例えば、特許文献3)。 On the other hand, a transparent conductive zinc oxide film doped with a specific element has been proposed for the purpose of obtaining excellent moisture and heat resistance characteristics even at an extremely thin film level.
That is, a first element composed of Ga and / or Al and a second element composed of at least one selected from the group consisting of In, Bi, Se, Ce, Cu, Er, and Eu are added to zinc oxide. A transparent conductive zinc oxide film having a specific resistance value within a predetermined range before and after a predetermined wet heat test, and a transparent value in which the atomic quantity ratio between the zinc and the second element and the film thickness are specified within the predetermined range. A conductive zinc oxide film has been proposed (for example, Patent Document 3).
さらに、インジウムやガリウムの含有量が多く、厚膜化しやすい等のスパッタリング用ターゲットの問題を解決すべく、耐湿熱性に優れた、透明導電性酸化亜鉛薄膜用のイオンプレーティング用ターゲットや、それから得られてなる透明導電性酸化亜鉛薄膜が提案されている(例えば、特許文献4)。
より具体的には、酸化亜鉛に、所定量のガリウム及びインジウムを含ませた焼結体からなり、得られた透明導電性酸化亜鉛薄膜における、In/Gaの質量比率が0.01~0.6未満の値であるイオンプレーティング用ターゲットである。 Furthermore, in order to solve the problems of sputtering targets such as high content of indium and gallium and easy to increase the thickness, ion plating targets for transparent conductive zinc oxide thin films with excellent heat and moisture resistance, and obtained from them. A transparent conductive zinc oxide thin film has been proposed (for example, Patent Document 4).
More specifically, it is composed of a sintered body in which zinc oxide contains a predetermined amount of gallium and indium, and the obtained transparent conductive zinc oxide thin film has an In / Ga mass ratio of 0.01 to 0.00. This is an ion plating target having a value of less than 6.
より具体的には、酸化亜鉛に、所定量のガリウム及びインジウムを含ませた焼結体からなり、得られた透明導電性酸化亜鉛薄膜における、In/Gaの質量比率が0.01~0.6未満の値であるイオンプレーティング用ターゲットである。 Furthermore, in order to solve the problems of sputtering targets such as high content of indium and gallium and easy to increase the thickness, ion plating targets for transparent conductive zinc oxide thin films with excellent heat and moisture resistance, and obtained from them. A transparent conductive zinc oxide thin film has been proposed (for example, Patent Document 4).
More specifically, it is composed of a sintered body in which zinc oxide contains a predetermined amount of gallium and indium, and the obtained transparent conductive zinc oxide thin film has an In / Ga mass ratio of 0.01 to 0.00. This is an ion plating target having a value of less than 6.
しかしながら、特許文献1に開示された透明導電フィルムは、アンダーコート層としてAl2O3薄膜を必須としているにも関わらず、ガリウムのみをドープした酸化亜鉛膜は、未だ耐湿熱特性が不十分であるという問題が見られた。
また、特許文献2に開示された低抵抗率透明導電体は、抵抗率の改善は図れたものの、湿熱特性については、何ら考慮されていないという問題が見られた。 However, although the transparent conductive film disclosed inPatent Document 1 requires an Al 2 O 3 thin film as an undercoat layer, the zinc oxide film doped only with gallium still has insufficient moisture and heat resistance characteristics. There was a problem.
Moreover, although the low resistivity transparent conductor disclosed inPatent Document 2 has improved the resistivity, there has been a problem that no consideration has been given to the wet heat characteristics.
また、特許文献2に開示された低抵抗率透明導電体は、抵抗率の改善は図れたものの、湿熱特性については、何ら考慮されていないという問題が見られた。 However, although the transparent conductive film disclosed in
Moreover, although the low resistivity transparent conductor disclosed in
また、特許文献3に開示された透明導電性酸化亜鉛膜は、ある程度の湿熱特性は得られているものの、成膜条件が比較的過酷であり、また膜厚が140nm以下であることを必須としており、用途が比較的狭く限定されるという問題が見られた。
さらに、特許文献4に開示された透明導電性酸化亜鉛膜は、汎用のスパッタリング装置では形成することができず、高価なイオンプレーティングによって形成することを特徴としており、そのため、製造設備が大規模になったり、経済的に不利益であるという問題が見られた。 Moreover, although the transparent conductive zinc oxide film disclosed inPatent Document 3 has some wet heat characteristics, the film forming conditions are relatively severe, and the film thickness must be 140 nm or less. However, there has been a problem that the application is relatively narrow and limited.
Further, the transparent conductive zinc oxide film disclosed inPatent Document 4 cannot be formed by a general-purpose sputtering apparatus, and is characterized by being formed by expensive ion plating. There was a problem that it became an economic disadvantage.
さらに、特許文献4に開示された透明導電性酸化亜鉛膜は、汎用のスパッタリング装置では形成することができず、高価なイオンプレーティングによって形成することを特徴としており、そのため、製造設備が大規模になったり、経済的に不利益であるという問題が見られた。 Moreover, although the transparent conductive zinc oxide film disclosed in
Further, the transparent conductive zinc oxide film disclosed in
そこで、本発明者らは、このような問題を鋭意検討した結果、ガスバリア層と、スパッタリング法によって形成した酸化亜鉛膜とを組み合わせ、かつ、酸化亜鉛膜において、所定量のガリウム及びインジウムを含むとともに、所定値の比抵抗及び膜厚を有することにより、優れたガスバリア性及び湿熱特性が得られることを見出し、本発明を完成させたものである。
すなわち、本発明は、汎用のスパッタリング装置を用いて形成できる、優れたガスバリア性や湿熱特性を有する透明導電フィルム、そのような透明導電フィルムの製造方法、及びそのような透明導電フィルムを用いてなる電子デバイスを提供することを目的とする。 Accordingly, as a result of intensive studies on such problems, the present inventors combined a gas barrier layer and a zinc oxide film formed by a sputtering method, and the zinc oxide film contains a predetermined amount of gallium and indium. The inventors have found that excellent gas barrier properties and wet heat characteristics can be obtained by having a specific resistance and a film thickness of predetermined values, and have completed the present invention.
That is, the present invention uses a transparent conductive film having excellent gas barrier properties and wet heat characteristics that can be formed using a general-purpose sputtering apparatus, a method for producing such a transparent conductive film, and such a transparent conductive film. An object is to provide an electronic device.
すなわち、本発明は、汎用のスパッタリング装置を用いて形成できる、優れたガスバリア性や湿熱特性を有する透明導電フィルム、そのような透明導電フィルムの製造方法、及びそのような透明導電フィルムを用いてなる電子デバイスを提供することを目的とする。 Accordingly, as a result of intensive studies on such problems, the present inventors combined a gas barrier layer and a zinc oxide film formed by a sputtering method, and the zinc oxide film contains a predetermined amount of gallium and indium. The inventors have found that excellent gas barrier properties and wet heat characteristics can be obtained by having a specific resistance and a film thickness of predetermined values, and have completed the present invention.
That is, the present invention uses a transparent conductive film having excellent gas barrier properties and wet heat characteristics that can be formed using a general-purpose sputtering apparatus, a method for producing such a transparent conductive film, and such a transparent conductive film. An object is to provide an electronic device.
本発明によれば、樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムであって、当該酸化亜鉛膜が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、初期比抵抗をρ0とし、60℃、相対湿度95%の条件下、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、酸化亜鉛膜の膜厚を20~300nmの範囲内の値とすることを特徴とする透明導電フィルムが提供され、上述した問題を解決することができる。
すなわち、本発明の一部を構成する酸化亜鉛膜は、所定量のガリウム及びインジウムを含んでいるとともに、ガスバリア層と組み合わせられていることから、比較的薄膜であっても、極めて良好な湿熱特性やガスバリア性を発揮することができる。
また、酸化亜鉛膜が、汎用のスパッタリング法により形成してあり、かつ、所定の配合組成及び膜厚を有しているため、好適な光透過性及び導電性を発揮できるとともに、経済的に有利である。
なお、後述するように、酸化亜鉛膜が、図2に示されるように、膜厚方向のXPS分析、あるいは、図3に示されるように、SIMS(Secondary Ion Mass Spectrometry)による元素分析によって測定される亜鉛量、ガリウム量、酸素量、及びインジウム量に関して、不均一な濃度分布を有する複数領域(第1領域及び第2領域)を含んでいる場合があるが、本発明では、そのような場合であっても、当該酸化亜鉛膜を単一層として扱うものとする(以下、同様である。)。 According to the present invention, a transparent conductive film including a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the zinc oxide film containing zinc oxide. In addition, a zinc oxide film doped with gallium and indium, and the amount of indium with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement The value is within the range of 0.01 to 25 atom%, the gallium amount is within the range of 0.1 to 10 atom%, the initial specific resistance is ρ 0 , and the temperature is 60 ° C. and the relative humidity is 95% for 500 hours. When the specific resistance after storage is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5 or less, and the thickness of the zinc oxide film is in the range of 20 to 300 nm. When The transparent conductive film characterized by doing is provided, and the problem mentioned above can be solved.
That is, the zinc oxide film constituting a part of the present invention contains a predetermined amount of gallium and indium and is combined with a gas barrier layer, so that even a relatively thin film has extremely good wet heat characteristics. And gas barrier properties.
In addition, since the zinc oxide film is formed by a general-purpose sputtering method and has a predetermined blending composition and film thickness, it can exhibit suitable light transmittance and conductivity, and is economically advantageous. It is.
As will be described later, the zinc oxide film is measured by XPS analysis in the film thickness direction as shown in FIG. 2 or elemental analysis by SIMS (Secondary Ion Mass Spectrometry) as shown in FIG. In some cases, the present invention includes a plurality of regions (first region and second region) having a non-uniform concentration distribution regarding the amount of zinc, the amount of gallium, the amount of oxygen, and the amount of indium. Even so, the zinc oxide film is treated as a single layer (the same applies hereinafter).
すなわち、本発明の一部を構成する酸化亜鉛膜は、所定量のガリウム及びインジウムを含んでいるとともに、ガスバリア層と組み合わせられていることから、比較的薄膜であっても、極めて良好な湿熱特性やガスバリア性を発揮することができる。
また、酸化亜鉛膜が、汎用のスパッタリング法により形成してあり、かつ、所定の配合組成及び膜厚を有しているため、好適な光透過性及び導電性を発揮できるとともに、経済的に有利である。
なお、後述するように、酸化亜鉛膜が、図2に示されるように、膜厚方向のXPS分析、あるいは、図3に示されるように、SIMS(Secondary Ion Mass Spectrometry)による元素分析によって測定される亜鉛量、ガリウム量、酸素量、及びインジウム量に関して、不均一な濃度分布を有する複数領域(第1領域及び第2領域)を含んでいる場合があるが、本発明では、そのような場合であっても、当該酸化亜鉛膜を単一層として扱うものとする(以下、同様である。)。 According to the present invention, a transparent conductive film including a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the zinc oxide film containing zinc oxide. In addition, a zinc oxide film doped with gallium and indium, and the amount of indium with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement The value is within the range of 0.01 to 25 atom%, the gallium amount is within the range of 0.1 to 10 atom%, the initial specific resistance is ρ 0 , and the temperature is 60 ° C. and the relative humidity is 95% for 500 hours. When the specific resistance after storage is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5 or less, and the thickness of the zinc oxide film is in the range of 20 to 300 nm. When The transparent conductive film characterized by doing is provided, and the problem mentioned above can be solved.
That is, the zinc oxide film constituting a part of the present invention contains a predetermined amount of gallium and indium and is combined with a gas barrier layer, so that even a relatively thin film has extremely good wet heat characteristics. And gas barrier properties.
In addition, since the zinc oxide film is formed by a general-purpose sputtering method and has a predetermined blending composition and film thickness, it can exhibit suitable light transmittance and conductivity, and is economically advantageous. It is.
As will be described later, the zinc oxide film is measured by XPS analysis in the film thickness direction as shown in FIG. 2 or elemental analysis by SIMS (Secondary Ion Mass Spectrometry) as shown in FIG. In some cases, the present invention includes a plurality of regions (first region and second region) having a non-uniform concentration distribution regarding the amount of zinc, the amount of gallium, the amount of oxygen, and the amount of indium. Even so, the zinc oxide film is treated as a single layer (the same applies hereinafter).
また、本発明を構成するにあたり、酸化亜鉛膜における初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、1000時間、保管した後の比抵抗をρ1000としたとき、ρ1000/ρ0で表わされる比率を2.0以下の値とすることが好ましい。
このように構成することにより、湿熱特性にさらに優れる透明導電フィルムを得ることができる。 In constructing the present invention, when the initial specific resistance in the zinc oxide film is ρ 0 and the specific resistance after storage for 1000 hours at 60 ° C. and a relative humidity of 95% is ρ 1000 , The ratio represented by 1000 / ρ 0 is preferably set to a value of 2.0 or less.
By comprising in this way, the transparent conductive film which is further excellent in wet heat characteristics can be obtained.
このように構成することにより、湿熱特性にさらに優れる透明導電フィルムを得ることができる。 In constructing the present invention, when the initial specific resistance in the zinc oxide film is ρ 0 and the specific resistance after storage for 1000 hours at 60 ° C. and a relative humidity of 95% is ρ 1000 , The ratio represented by 1000 / ρ 0 is preferably set to a value of 2.0 or less.
By comprising in this way, the transparent conductive film which is further excellent in wet heat characteristics can be obtained.
また、本発明を構成するにあたり、樹脂基材が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、シクロオレフィン系コポリマ、シクロオレフィン系ポリマ、ポリエーテルスルフォン、及びポリイミドからなる群から選ばれる少なくとも1種であることが好ましい。
このように構成することにより、透明導電フィルムに柔軟性及び透明性を付与することができる。 In constituting the present invention, the resin substrate is at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, cycloolefin copolymer, cycloolefin polymer, polyether sulfone, and polyimide. It is preferable.
By comprising in this way, a softness | flexibility and transparency can be provided to a transparent conductive film.
このように構成することにより、透明導電フィルムに柔軟性及び透明性を付与することができる。 In constituting the present invention, the resin substrate is at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, cycloolefin copolymer, cycloolefin polymer, polyether sulfone, and polyimide. It is preferable.
By comprising in this way, a softness | flexibility and transparency can be provided to a transparent conductive film.
また、本発明を構成するにあたり、ガスバリア層が、金属、無機酸化物、無機窒化物、無機酸窒化物、無機炭化物、無機硫化物、無機酸窒化炭化物、高分子化合物及びこれらの複合体から選ばれる少なくとも1種からなることが好ましい。
このように構成することにより、ガスバリア層が十分なガスバリア性を発揮することができる。 In constituting the present invention, the gas barrier layer is selected from metals, inorganic oxides, inorganic nitrides, inorganic oxynitrides, inorganic carbides, inorganic sulfides, inorganic oxynitride carbides, polymer compounds, and composites thereof. It is preferable to consist of at least one selected from the above.
By comprising in this way, a gas barrier layer can exhibit sufficient gas barrier property.
このように構成することにより、ガスバリア層が十分なガスバリア性を発揮することができる。 In constituting the present invention, the gas barrier layer is selected from metals, inorganic oxides, inorganic nitrides, inorganic oxynitrides, inorganic carbides, inorganic sulfides, inorganic oxynitride carbides, polymer compounds, and composites thereof. It is preferable to consist of at least one selected from the above.
By comprising in this way, a gas barrier layer can exhibit sufficient gas barrier property.
また、本発明を構成するにあたり、ガスバリア層の水蒸気透過率を0.1g・m-2・day-1以下の値とすることが好ましい。
このように水蒸気透過率を制限することにより、樹脂基材を透過して、水蒸気等が浸入したとしても、その水蒸気等の更なる浸透を防ぎ、結果として、酸化亜鉛膜が劣化することを防ぐことができる。 In configuring the present invention, it is preferable that the water vapor permeability of the gas barrier layer is 0.1 g · m −2 · day −1 or less.
By limiting the water vapor transmission rate in this way, even if water vapor or the like permeates through the resin base material, further penetration of the water vapor or the like is prevented, and as a result, deterioration of the zinc oxide film is prevented. be able to.
このように水蒸気透過率を制限することにより、樹脂基材を透過して、水蒸気等が浸入したとしても、その水蒸気等の更なる浸透を防ぎ、結果として、酸化亜鉛膜が劣化することを防ぐことができる。 In configuring the present invention, it is preferable that the water vapor permeability of the gas barrier layer is 0.1 g · m −2 · day −1 or less.
By limiting the water vapor transmission rate in this way, even if water vapor or the like permeates through the resin base material, further penetration of the water vapor or the like is prevented, and as a result, deterioration of the zinc oxide film is prevented. be able to.
また、本発明の別の態様は、上述したいずれかの透明導電フィルムを透明電極に用いてなることを特徴とする電子デバイスである。
このように、湿熱特性及びガスバリア性に優れる透明導電フィルムを透明電極に用いることにより、電子デバイスの長期安定性を好適に図ることができる。 Another embodiment of the present invention is an electronic device characterized by using any of the transparent conductive films described above as a transparent electrode.
Thus, the long-term stability of an electronic device can be suitably achieved by using a transparent conductive film excellent in wet heat characteristics and gas barrier properties as a transparent electrode.
このように、湿熱特性及びガスバリア性に優れる透明導電フィルムを透明電極に用いることにより、電子デバイスの長期安定性を好適に図ることができる。 Another embodiment of the present invention is an electronic device characterized by using any of the transparent conductive films described above as a transparent electrode.
Thus, the long-term stability of an electronic device can be suitably achieved by using a transparent conductive film excellent in wet heat characteristics and gas barrier properties as a transparent electrode.
また、本発明のさらに別の態様は、樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムの製造方法であって、下記工程(1)~(3)を含むことを特徴とする透明導電フィルムの製造方法である。
(1)樹脂基材及び焼結体を、それぞれ準備する工程
(2)樹脂基材の少なくとも片面に、ガスバリア層を形成する工程
(3)ガスバリア層上に、スパッタリング法を用いて、焼結体から、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、当該酸化亜鉛膜の初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、膜厚が20~300nmの範囲内の値である、酸化亜鉛膜を形成する工程
すなわち、このように製造することによって、湿熱特性及びガスバリア性に優れた透明導電フィルムを安定的に製造することができる。 Still another embodiment of the present invention is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the following steps: A method for producing a transparent conductive film comprising (1) to (3).
(1) Step of preparing a resin base material and a sintered body, respectively (2) Step of forming a gas barrier layer on at least one surface of the resin base material (3) On the gas barrier layer, a sintered body using a sputtering method To zinc oxide film containing zinc oxide and doped with gallium and indium, and the total amount of zinc, gallium, oxygen and indium by XPS elemental analysis (100 atom%) On the other hand, the amount of indium is set to a value in the range of 0.01 to 25 atom%, the amount of gallium is set to a value in the range of 0.1 to 10 atom%, the initial specific resistance of the zinc oxide film is set to ρ 0, and 60 ° C. When the specific resistance after storage for 500 hours at a relative humidity of 95% is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5 or less, and the film thickness is 20-300n Step of forming a zinc oxide film having a value within the range of m That is, by manufacturing in this way, a transparent conductive film excellent in wet heat characteristics and gas barrier properties can be stably manufactured.
(1)樹脂基材及び焼結体を、それぞれ準備する工程
(2)樹脂基材の少なくとも片面に、ガスバリア層を形成する工程
(3)ガスバリア層上に、スパッタリング法を用いて、焼結体から、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、当該酸化亜鉛膜の初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、膜厚が20~300nmの範囲内の値である、酸化亜鉛膜を形成する工程
すなわち、このように製造することによって、湿熱特性及びガスバリア性に優れた透明導電フィルムを安定的に製造することができる。 Still another embodiment of the present invention is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the following steps: A method for producing a transparent conductive film comprising (1) to (3).
(1) Step of preparing a resin base material and a sintered body, respectively (2) Step of forming a gas barrier layer on at least one surface of the resin base material (3) On the gas barrier layer, a sintered body using a sputtering method To zinc oxide film containing zinc oxide and doped with gallium and indium, and the total amount of zinc, gallium, oxygen and indium by XPS elemental analysis (100 atom%) On the other hand, the amount of indium is set to a value in the range of 0.01 to 25 atom%, the amount of gallium is set to a value in the range of 0.1 to 10 atom%, the initial specific resistance of the zinc oxide film is set to ρ 0, and 60 ° C. When the specific resistance after storage for 500 hours at a relative humidity of 95% is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5 or less, and the film thickness is 20-300n Step of forming a zinc oxide film having a value within the range of m That is, by manufacturing in this way, a transparent conductive film excellent in wet heat characteristics and gas barrier properties can be stably manufactured.
また、本発明を実施するにあたり、樹脂基材上に、酸化亜鉛膜を形成する際の樹脂基材の温度を10~150℃の範囲内の値とすることが好ましい。
このように製造することによって、使用可能な樹脂基材の種類が増えるため、多用途に使用可能な透明導電フィルムを製造可能であるばかりか、経済的にも有利である。 In practicing the present invention, the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C.
By manufacturing in this way, the types of resin base materials that can be used increase, so that it is possible not only to manufacture a transparent conductive film that can be used for many purposes, but also economically advantageous.
このように製造することによって、使用可能な樹脂基材の種類が増えるため、多用途に使用可能な透明導電フィルムを製造可能であるばかりか、経済的にも有利である。 In practicing the present invention, the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C.
By manufacturing in this way, the types of resin base materials that can be used increase, so that it is possible not only to manufacture a transparent conductive film that can be used for many purposes, but also economically advantageous.
[第1の実施形態]
第1の実施形態は、図1(a)に例示されるように、樹脂基材12の少なくとも片面に、ガスバリア層14と、スパッタリング法により形成してなる酸化亜鉛膜10と、を備えた透明導電フィルム50であって、当該酸化亜鉛膜10が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜10であり、かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とした透明導電フィルム50である。
そして、初期比抵抗をρ0とし、60℃、相対湿度95%の条件下、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、酸化亜鉛膜の膜厚を20~300nmの範囲内の値とすることを特徴とする透明導電フィルムである。
以下、第1の実施形態の透明導電フィルムにつき、適宜図面を参照して具体的に説明する。 [First embodiment]
As illustrated in FIG. 1A, the first embodiment is a transparent material including agas barrier layer 14 and a zinc oxide film 10 formed by a sputtering method on at least one surface of a resin base material 12. The conductive film 50 is a zinc oxide film 10 containing zinc oxide and doped with gallium and indium, and the zinc amount, gallium amount, oxygen by XPS elemental analysis measurement The amount of indium and the total amount of indium (100 atom%), the indium content is in the range of 0.01 to 25 atom%, and the gallium content is in the range of 0.1 to 10 atom%. Film 50.
When the initial specific resistance is ρ 0 and the specific resistance after storage for 500 hours under the conditions of 60 ° C. and 95% relative humidity is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5. The transparent conductive film is characterized in that the following values are set, and further, the thickness of the zinc oxide film is set in the range of 20 to 300 nm.
Hereinafter, the transparent conductive film of the first embodiment will be specifically described with reference to the drawings as appropriate.
第1の実施形態は、図1(a)に例示されるように、樹脂基材12の少なくとも片面に、ガスバリア層14と、スパッタリング法により形成してなる酸化亜鉛膜10と、を備えた透明導電フィルム50であって、当該酸化亜鉛膜10が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜10であり、かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とした透明導電フィルム50である。
そして、初期比抵抗をρ0とし、60℃、相対湿度95%の条件下、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、酸化亜鉛膜の膜厚を20~300nmの範囲内の値とすることを特徴とする透明導電フィルムである。
以下、第1の実施形態の透明導電フィルムにつき、適宜図面を参照して具体的に説明する。 [First embodiment]
As illustrated in FIG. 1A, the first embodiment is a transparent material including a
When the initial specific resistance is ρ 0 and the specific resistance after storage for 500 hours under the conditions of 60 ° C. and 95% relative humidity is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5. The transparent conductive film is characterized in that the following values are set, and further, the thickness of the zinc oxide film is set in the range of 20 to 300 nm.
Hereinafter, the transparent conductive film of the first embodiment will be specifically described with reference to the drawings as appropriate.
1.酸化亜鉛膜
本発明に用いる酸化亜鉛膜(透明導電層と称する場合がある。)は、ガスバリア層の上に形成され、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜である。そして、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることを特徴とする。
すなわち、ガスバリア層上の酸化亜鉛膜は、特定の元素を所定量の割合で含むことによって、比較的薄膜であっても、良好な湿熱特性や透明性を示すことができる。 1. Zinc Oxide Film A zinc oxide film (sometimes referred to as a transparent conductive layer) used in the present invention is a zinc oxide film formed on a gas barrier layer and containing zinc oxide and doped with gallium and indium. . The amount of indium is within a range of 0.01 to 25 atom% with respect to the total amount (100 atom%) of zinc, gallium, oxygen and indium measured by XPS elemental analysis. The amount is set to a value within the range of 0.1 to 10 atom%.
That is, the zinc oxide film on the gas barrier layer can exhibit good wet heat characteristics and transparency even if it is a relatively thin film by containing a specific element in a predetermined amount.
本発明に用いる酸化亜鉛膜(透明導電層と称する場合がある。)は、ガスバリア層の上に形成され、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜である。そして、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることを特徴とする。
すなわち、ガスバリア層上の酸化亜鉛膜は、特定の元素を所定量の割合で含むことによって、比較的薄膜であっても、良好な湿熱特性や透明性を示すことができる。 1. Zinc Oxide Film A zinc oxide film (sometimes referred to as a transparent conductive layer) used in the present invention is a zinc oxide film formed on a gas barrier layer and containing zinc oxide and doped with gallium and indium. . The amount of indium is within a range of 0.01 to 25 atom% with respect to the total amount (100 atom%) of zinc, gallium, oxygen and indium measured by XPS elemental analysis. The amount is set to a value within the range of 0.1 to 10 atom%.
That is, the zinc oxide film on the gas barrier layer can exhibit good wet heat characteristics and transparency even if it is a relatively thin film by containing a specific element in a predetermined amount.
(1)結晶構造
また、酸化亜鉛膜は、六方晶系ウルツ鉱型の結晶構造を有しており、ガリウムをドープした酸化亜鉛膜(以下、GZO膜と称する場合がある。)もまた、図4に示すように、六方晶系ウルツ鉱型の結晶構造を有しており、c軸配向性の強い薄膜であることが知られている。
また、本発明におけるガスバリア層上に形成された酸化亜鉛膜は、酸化亜鉛を含むとともに、ガリウムとインジウムをドープしてなる酸化亜鉛膜(以下、In-GZO膜と称する場合がある)であるが、インジウムをドープした場合であっても、X線回折チャートから、所定の結晶性を示すことが判明している。
より具体的には、図5は、インジウムの量を変化させた場合における酸化亜鉛膜のIn plane法によるX線回折チャートを示している。
ここで、特性曲線Aは、重量比がZnO:Ga2O3:In2O3=94.0:5.7:0.3である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Bは、重量比がZnO:Ga2O3:In2O3=93.3:5.7:1.0である焼結体から得られたIn-GZO膜のX線回折チャートである。
また、特性曲線Cは、重量比がZnO:Ga2O3:In2O3=89.3:5.7:5.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Dは、重量比がZnO:Ga2O3:In2O3=84.3:5.7:10.0である焼結体から得られたIn-GZO膜のX線回折チャートである。
そして、特性曲線Eは、インジウムを含まない、すなわち、GZO膜のX線回折チャートである。 (1) Crystal Structure The zinc oxide film has a hexagonal wurtzite crystal structure, and a zinc oxide film doped with gallium (hereinafter sometimes referred to as a GZO film) is also shown in FIG. As shown in FIG. 4, it is known that the film has a hexagonal wurtzite crystal structure and has a strong c-axis orientation.
The zinc oxide film formed on the gas barrier layer in the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium (hereinafter sometimes referred to as an In-GZO film). Even when it is doped with indium, it has been found from the X-ray diffraction chart that a predetermined crystallinity is exhibited.
More specifically, FIG. 5 shows an X-ray diffraction chart of the zinc oxide film by the in plane method when the amount of indium is changed.
Here, the characteristic curve A is an X-ray of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 94.0: 5.7: 0.3. It is a diffraction chart, and the characteristic curve B shows an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0. It is an X-ray diffraction chart.
The characteristic curve C shows the X-ray diffraction of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. The characteristic curve D is an X of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 84.3: 5.7: 10.0. It is a line diffraction chart.
The characteristic curve E does not contain indium, that is, an X-ray diffraction chart of the GZO film.
また、酸化亜鉛膜は、六方晶系ウルツ鉱型の結晶構造を有しており、ガリウムをドープした酸化亜鉛膜(以下、GZO膜と称する場合がある。)もまた、図4に示すように、六方晶系ウルツ鉱型の結晶構造を有しており、c軸配向性の強い薄膜であることが知られている。
また、本発明におけるガスバリア層上に形成された酸化亜鉛膜は、酸化亜鉛を含むとともに、ガリウムとインジウムをドープしてなる酸化亜鉛膜(以下、In-GZO膜と称する場合がある)であるが、インジウムをドープした場合であっても、X線回折チャートから、所定の結晶性を示すことが判明している。
より具体的には、図5は、インジウムの量を変化させた場合における酸化亜鉛膜のIn plane法によるX線回折チャートを示している。
ここで、特性曲線Aは、重量比がZnO:Ga2O3:In2O3=94.0:5.7:0.3である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Bは、重量比がZnO:Ga2O3:In2O3=93.3:5.7:1.0である焼結体から得られたIn-GZO膜のX線回折チャートである。
また、特性曲線Cは、重量比がZnO:Ga2O3:In2O3=89.3:5.7:5.0である焼結体から得られたIn-GZO膜のX線回折チャートであり、特性曲線Dは、重量比がZnO:Ga2O3:In2O3=84.3:5.7:10.0である焼結体から得られたIn-GZO膜のX線回折チャートである。
そして、特性曲線Eは、インジウムを含まない、すなわち、GZO膜のX線回折チャートである。 (1) Crystal Structure The zinc oxide film has a hexagonal wurtzite crystal structure, and a zinc oxide film doped with gallium (hereinafter sometimes referred to as a GZO film) is also shown in FIG. As shown in FIG. 4, it is known that the film has a hexagonal wurtzite crystal structure and has a strong c-axis orientation.
The zinc oxide film formed on the gas barrier layer in the present invention is a zinc oxide film containing zinc oxide and doped with gallium and indium (hereinafter sometimes referred to as an In-GZO film). Even when it is doped with indium, it has been found from the X-ray diffraction chart that a predetermined crystallinity is exhibited.
More specifically, FIG. 5 shows an X-ray diffraction chart of the zinc oxide film by the in plane method when the amount of indium is changed.
Here, the characteristic curve A is an X-ray of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 94.0: 5.7: 0.3. It is a diffraction chart, and the characteristic curve B shows an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0. It is an X-ray diffraction chart.
The characteristic curve C shows the X-ray diffraction of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. The characteristic curve D is an X of an In-GZO film obtained from a sintered body having a weight ratio of ZnO: Ga 2 O 3 : In 2 O 3 = 84.3: 5.7: 10.0. It is a line diffraction chart.
The characteristic curve E does not contain indium, that is, an X-ray diffraction chart of the GZO film.
また、図6は、酸化亜鉛膜の002面におけるOut of Plane法によるX線回折チャートを示している。
ここで、図6中の特性曲線A~Eは、図5のX線回折チャートに対応したンプルと同様である。
したがって、図5及び図6のX線回折チャートの比較から理解されるように、ガスバリア層の上でも、In-GZO膜は、GZO膜と同様の回折ピークを示していることから、結晶構造も類似していると推認される。
すなわち、図5及び図6より、それぞれ結晶構造も類似していると思料され、よって、それぞれc軸配向性の高い柱状構造を有していると推定される。 FIG. 6 shows an X-ray diffraction chart according to the out of plane method on the 002 plane of the zinc oxide film.
Here, characteristic curves A to E in FIG. 6 are the same as the samples corresponding to the X-ray diffraction chart of FIG.
Therefore, as understood from the comparison of the X-ray diffraction charts of FIGS. 5 and 6, since the In-GZO film shows the same diffraction peak as that of the GZO film on the gas barrier layer, the crystal structure is Inferred to be similar.
That is, from FIG. 5 and FIG. 6, it is considered that the crystal structures are similar to each other, and thus it is estimated that each has a columnar structure with high c-axis orientation.
ここで、図6中の特性曲線A~Eは、図5のX線回折チャートに対応したンプルと同様である。
したがって、図5及び図6のX線回折チャートの比較から理解されるように、ガスバリア層の上でも、In-GZO膜は、GZO膜と同様の回折ピークを示していることから、結晶構造も類似していると推認される。
すなわち、図5及び図6より、それぞれ結晶構造も類似していると思料され、よって、それぞれc軸配向性の高い柱状構造を有していると推定される。 FIG. 6 shows an X-ray diffraction chart according to the out of plane method on the 002 plane of the zinc oxide film.
Here, characteristic curves A to E in FIG. 6 are the same as the samples corresponding to the X-ray diffraction chart of FIG.
Therefore, as understood from the comparison of the X-ray diffraction charts of FIGS. 5 and 6, since the In-GZO film shows the same diffraction peak as that of the GZO film on the gas barrier layer, the crystal structure is Inferred to be similar.
That is, from FIG. 5 and FIG. 6, it is considered that the crystal structures are similar to each other, and thus it is estimated that each has a columnar structure with high c-axis orientation.
(2)構成
また、本発明において、ガスバリア層の上に形成された酸化亜鉛膜は、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることを特徴とする。
この理由は、酸化亜鉛膜におけるインジウム量が、0.01atom%未満では、ドーパント効果を発揮せず、良好な湿熱特性が得られない場合があるためである。
一方、インジウム量が25atom%を超えた値となると、初期比抵抗が著しく大きな値となり、透明導電フィルムの電気特性が低下する場合があるためである。
したがって、湿熱特性を良好なものとするとともに、初期比抵抗を低く安定化させるために、合計量に対して、インジウム量を0.015~8atom%の範囲内の値とすることが好ましく、0.02~6atom%の範囲内の値とすることがより好ましく、0.05~4atom%の範囲内の値とすることがさらに好ましい。
また、ガリウム量については、上記範囲外の値となると、酸化亜鉛膜における電気特性が劣る場合があるためである。
したがって、酸化亜鉛膜において、亜鉛量、ガリウム量、酸素量の合計量(100atom%)に対して、ガリウム量を0.5~8atom%の範囲内の値とすることがより好ましく、1~7atom%の範囲内の値であることがさらに好ましい。 (2) Configuration In the present invention, the zinc oxide film formed on the gas barrier layer is based on the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount, and indium amount as measured by XPS elemental analysis. The amount of indium is set to a value in the range of 0.01 to 25 atom%, and the amount of gallium is set to a value in the range of 0.1 to 10 atom%.
This is because if the amount of indium in the zinc oxide film is less than 0.01 atom%, the dopant effect is not exhibited and good wet heat characteristics may not be obtained.
On the other hand, when the amount of indium exceeds 25 atom%, the initial specific resistance is remarkably large, and the electrical characteristics of the transparent conductive film may be deteriorated.
Therefore, in order to improve the wet heat characteristics and stabilize the initial specific resistance low, the indium content is preferably set to a value in the range of 0.015 to 8 atom% with respect to the total amount. A value in the range of 0.02 to 6 atom% is more preferable, and a value in the range of 0.05 to 4 atom% is more preferable.
Further, when the amount of gallium is outside the above range, the electrical characteristics of the zinc oxide film may be inferior.
Accordingly, in the zinc oxide film, it is more preferable that the gallium amount is within a range of 0.5 to 8 atom% with respect to the total amount of zinc amount, gallium amount and oxygen amount (100 atom%). More preferably, the value is within the range of%.
また、本発明において、ガスバリア層の上に形成された酸化亜鉛膜は、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とすることを特徴とする。
この理由は、酸化亜鉛膜におけるインジウム量が、0.01atom%未満では、ドーパント効果を発揮せず、良好な湿熱特性が得られない場合があるためである。
一方、インジウム量が25atom%を超えた値となると、初期比抵抗が著しく大きな値となり、透明導電フィルムの電気特性が低下する場合があるためである。
したがって、湿熱特性を良好なものとするとともに、初期比抵抗を低く安定化させるために、合計量に対して、インジウム量を0.015~8atom%の範囲内の値とすることが好ましく、0.02~6atom%の範囲内の値とすることがより好ましく、0.05~4atom%の範囲内の値とすることがさらに好ましい。
また、ガリウム量については、上記範囲外の値となると、酸化亜鉛膜における電気特性が劣る場合があるためである。
したがって、酸化亜鉛膜において、亜鉛量、ガリウム量、酸素量の合計量(100atom%)に対して、ガリウム量を0.5~8atom%の範囲内の値とすることがより好ましく、1~7atom%の範囲内の値であることがさらに好ましい。 (2) Configuration In the present invention, the zinc oxide film formed on the gas barrier layer is based on the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount, and indium amount as measured by XPS elemental analysis. The amount of indium is set to a value in the range of 0.01 to 25 atom%, and the amount of gallium is set to a value in the range of 0.1 to 10 atom%.
This is because if the amount of indium in the zinc oxide film is less than 0.01 atom%, the dopant effect is not exhibited and good wet heat characteristics may not be obtained.
On the other hand, when the amount of indium exceeds 25 atom%, the initial specific resistance is remarkably large, and the electrical characteristics of the transparent conductive film may be deteriorated.
Therefore, in order to improve the wet heat characteristics and stabilize the initial specific resistance low, the indium content is preferably set to a value in the range of 0.015 to 8 atom% with respect to the total amount. A value in the range of 0.02 to 6 atom% is more preferable, and a value in the range of 0.05 to 4 atom% is more preferable.
Further, when the amount of gallium is outside the above range, the electrical characteristics of the zinc oxide film may be inferior.
Accordingly, in the zinc oxide film, it is more preferable that the gallium amount is within a range of 0.5 to 8 atom% with respect to the total amount of zinc amount, gallium amount and oxygen amount (100 atom%). More preferably, the value is within the range of%.
なお、XPSの元素分析測定による各元素量は、酸化亜鉛膜全体において、深さ方向のXPS分析によって測定される、各深さにおける元素量の平均値を意味する。
但し、酸化亜鉛膜において、図2(a)~(c)に示されるように、組成が異なる複数領域(第1領域及び第2領域)を含んでいたとしても、通常、第1領域の厚さは20nm未満である。したがって、特に断りのない限り、XPSの元素分析測定による各元素量は、第2領域における各深さにおける元素量の平均値を意味することになる。 In addition, each element amount by the elemental analysis measurement of XPS means the average value of the element amount in each depth measured by the XPS analysis of the depth direction in the whole zinc oxide film.
However, even if the zinc oxide film includes a plurality of regions (first region and second region) having different compositions, as shown in FIGS. 2A to 2C, the thickness of the first region is usually set. The thickness is less than 20 nm. Therefore, unless otherwise specified, each element amount obtained by XPS elemental analysis means an average value of element amounts at each depth in the second region.
但し、酸化亜鉛膜において、図2(a)~(c)に示されるように、組成が異なる複数領域(第1領域及び第2領域)を含んでいたとしても、通常、第1領域の厚さは20nm未満である。したがって、特に断りのない限り、XPSの元素分析測定による各元素量は、第2領域における各深さにおける元素量の平均値を意味することになる。 In addition, each element amount by the elemental analysis measurement of XPS means the average value of the element amount in each depth measured by the XPS analysis of the depth direction in the whole zinc oxide film.
However, even if the zinc oxide film includes a plurality of regions (first region and second region) having different compositions, as shown in FIGS. 2A to 2C, the thickness of the first region is usually set. The thickness is less than 20 nm. Therefore, unless otherwise specified, each element amount obtained by XPS elemental analysis means an average value of element amounts at each depth in the second region.
(3)ドーパント
また、酸化亜鉛膜のドーパントとして、ガリウム及びインジウムを選択することを特徴とする。
すなわち、添加するドーパントを2種類以上含むことにより、酸化亜鉛の化学的安定性を高めることができるためである。
また、元素周期表における13族元素の場合、12族の亜鉛よりも価電子を1つ多く持ち、かつ、亜鉛サイトにドーパントが置換されることを想定した場合において、アルミニウム、ガリウム、及びインジウムのそれぞれの第1イオン化エネルギーが小さく、キャリアの発生源として有効であると考えられるためである。
さらに、ドーパントである亜鉛の占有サイトに関して上述したように想定し、しかも、第1イオン化エネルギーが小さいことから、酸化亜鉛のようなイオン結合性のイオン結晶における結合エネルギーの指標であるマーデルングエネルギーを比較した場合、アルミニウムは-6.44eV、ガリウムは-13.72eV、インジウムは-9.73eVである。
したがって、酸化亜鉛に対するドーパントとしての安定性は、ガリウム、インジウム、アルミニウムの順に高いと考えられるためである。
加えて、共有結合半径について、亜鉛の場合1.25Å、アルミニウムは1.18Å、ガリウムは1.26Å、インジウムは1.44Åとなる一方、イオン半径については、亜鉛は0.74Å、アルミニウムは0.53Å、ガリウムは0.61Å、インジウムは0.76Åとなる。
とすれば、酸化亜鉛を主とする結晶において、亜鉛サイトにドーパントが置換されることを想定し、その構造安定性を考慮した場合、共有結合半径の観点からはガリウムが最も安定に置換されると推察され、イオン半径の観点からはインジウムが最も安定に置換されると推察され、そのため、これらをドーパントとして選択するものである。 (3) Dopant Further, gallium and indium are selected as dopants for the zinc oxide film.
That is, it is because the chemical stability of zinc oxide can be improved by including two or more dopants to be added.
In addition, in the case of a group 13 element in the periodic table of elements, in the case of assuming that the zinc site has one more valence electron than that ofgroup 12 zinc and a dopant is substituted at the zinc site, aluminum, gallium, and indium This is because each of the first ionization energies is small and is considered to be effective as a carrier generation source.
Furthermore, since the first ionization energy is small, the Madelung energy, which is an index of bond energy in an ion-bonded ion crystal such as zinc oxide, is assumed as described above with respect to the occupied site of zinc as a dopant. Are -6.44 eV for aluminum, -13.72 eV for gallium, and -9.73 eV for indium.
Therefore, the stability as a dopant for zinc oxide is considered to be higher in the order of gallium, indium, and aluminum.
In addition, the covalent bond radius is 1.25 Å for zinc, 1.18 ア ル ミ ニ ウ ム for aluminum, 1.26 ガ リ ウ ム for gallium, and 1.44 イ ン ジ ウ ム for indium, while the ionic radius is 0.74 亜 鉛 for zinc and 0 for aluminum. .53Å, gallium is 0.61Å, and indium is 0.76Å.
Assuming that zinc dopant is substituted for the zinc site in the crystal mainly composed of zinc oxide, and considering its structural stability, gallium is most stably substituted from the viewpoint of the covalent bond radius. From the viewpoint of ionic radius, it is presumed that indium is most stably substituted, and therefore these are selected as dopants.
また、酸化亜鉛膜のドーパントとして、ガリウム及びインジウムを選択することを特徴とする。
すなわち、添加するドーパントを2種類以上含むことにより、酸化亜鉛の化学的安定性を高めることができるためである。
また、元素周期表における13族元素の場合、12族の亜鉛よりも価電子を1つ多く持ち、かつ、亜鉛サイトにドーパントが置換されることを想定した場合において、アルミニウム、ガリウム、及びインジウムのそれぞれの第1イオン化エネルギーが小さく、キャリアの発生源として有効であると考えられるためである。
さらに、ドーパントである亜鉛の占有サイトに関して上述したように想定し、しかも、第1イオン化エネルギーが小さいことから、酸化亜鉛のようなイオン結合性のイオン結晶における結合エネルギーの指標であるマーデルングエネルギーを比較した場合、アルミニウムは-6.44eV、ガリウムは-13.72eV、インジウムは-9.73eVである。
したがって、酸化亜鉛に対するドーパントとしての安定性は、ガリウム、インジウム、アルミニウムの順に高いと考えられるためである。
加えて、共有結合半径について、亜鉛の場合1.25Å、アルミニウムは1.18Å、ガリウムは1.26Å、インジウムは1.44Åとなる一方、イオン半径については、亜鉛は0.74Å、アルミニウムは0.53Å、ガリウムは0.61Å、インジウムは0.76Åとなる。
とすれば、酸化亜鉛を主とする結晶において、亜鉛サイトにドーパントが置換されることを想定し、その構造安定性を考慮した場合、共有結合半径の観点からはガリウムが最も安定に置換されると推察され、イオン半径の観点からはインジウムが最も安定に置換されると推察され、そのため、これらをドーパントとして選択するものである。 (3) Dopant Further, gallium and indium are selected as dopants for the zinc oxide film.
That is, it is because the chemical stability of zinc oxide can be improved by including two or more dopants to be added.
In addition, in the case of a group 13 element in the periodic table of elements, in the case of assuming that the zinc site has one more valence electron than that of
Furthermore, since the first ionization energy is small, the Madelung energy, which is an index of bond energy in an ion-bonded ion crystal such as zinc oxide, is assumed as described above with respect to the occupied site of zinc as a dopant. Are -6.44 eV for aluminum, -13.72 eV for gallium, and -9.73 eV for indium.
Therefore, the stability as a dopant for zinc oxide is considered to be higher in the order of gallium, indium, and aluminum.
In addition, the covalent bond radius is 1.25 Å for zinc, 1.18 ア ル ミ ニ ウ ム for aluminum, 1.26 ガ リ ウ ム for gallium, and 1.44 イ ン ジ ウ ム for indium, while the ionic radius is 0.74 亜 鉛 for zinc and 0 for aluminum. .53Å, gallium is 0.61Å, and indium is 0.76Å.
Assuming that zinc dopant is substituted for the zinc site in the crystal mainly composed of zinc oxide, and considering its structural stability, gallium is most stably substituted from the viewpoint of the covalent bond radius. From the viewpoint of ionic radius, it is presumed that indium is most stably substituted, and therefore these are selected as dopants.
(5)膜厚
また、本発明において、酸化亜鉛膜の膜厚が20~300nmの範囲内の値であることを特徴とする。
この理由は、酸化亜鉛膜の膜厚が20nm未満の値となると、酸化亜鉛膜の安定的形成が困難となる場合が生じるばかりか、湿熱特性等が、著しく低下する場合があるためである。
一方、酸化亜鉛膜の膜厚が300nmを超えた値になると、酸化亜鉛膜の形成に過度に時間を要し、生産性が低下する場合があるためである。
したがって、酸化亜鉛膜の膜厚が25~250nmの範囲内の値であることがより好ましく、30~200nmの範囲内の値であることがさらに好ましい。
なお、酸化亜鉛膜の膜厚(d)は、実施例1において具体的に説明するように、分光エリプソメーターを用いて、測定することができる。 (5) Film thickness In the present invention, the film thickness of the zinc oxide film is a value in the range of 20 to 300 nm.
This is because when the thickness of the zinc oxide film is less than 20 nm, not only stable formation of the zinc oxide film may be difficult, but also the wet heat characteristics may be significantly reduced.
On the other hand, when the thickness of the zinc oxide film exceeds 300 nm, it takes an excessive amount of time to form the zinc oxide film, and the productivity may decrease.
Therefore, the thickness of the zinc oxide film is more preferably in the range of 25 to 250 nm, and further preferably in the range of 30 to 200 nm.
The film thickness (d) of the zinc oxide film can be measured using a spectroscopic ellipsometer, as will be specifically described in Example 1.
また、本発明において、酸化亜鉛膜の膜厚が20~300nmの範囲内の値であることを特徴とする。
この理由は、酸化亜鉛膜の膜厚が20nm未満の値となると、酸化亜鉛膜の安定的形成が困難となる場合が生じるばかりか、湿熱特性等が、著しく低下する場合があるためである。
一方、酸化亜鉛膜の膜厚が300nmを超えた値になると、酸化亜鉛膜の形成に過度に時間を要し、生産性が低下する場合があるためである。
したがって、酸化亜鉛膜の膜厚が25~250nmの範囲内の値であることがより好ましく、30~200nmの範囲内の値であることがさらに好ましい。
なお、酸化亜鉛膜の膜厚(d)は、実施例1において具体的に説明するように、分光エリプソメーターを用いて、測定することができる。 (5) Film thickness In the present invention, the film thickness of the zinc oxide film is a value in the range of 20 to 300 nm.
This is because when the thickness of the zinc oxide film is less than 20 nm, not only stable formation of the zinc oxide film may be difficult, but also the wet heat characteristics may be significantly reduced.
On the other hand, when the thickness of the zinc oxide film exceeds 300 nm, it takes an excessive amount of time to form the zinc oxide film, and the productivity may decrease.
Therefore, the thickness of the zinc oxide film is more preferably in the range of 25 to 250 nm, and further preferably in the range of 30 to 200 nm.
The film thickness (d) of the zinc oxide film can be measured using a spectroscopic ellipsometer, as will be specifically described in Example 1.
(6)初期比抵抗
また、図1(a)~(d)に例示される酸化亜鉛膜10、10´の初期比抵抗(ρ0)を5×10-4Ω・cmを超えて、1×10-1Ω・cm以下の値とすることが好ましい。
この理由は、酸化亜鉛膜の初期比抵抗が5×10-4Ω・cm以下の値になると、成膜条件が複雑になる場合があるためである。
一方、酸化亜鉛膜の初期比抵抗が1×10-1Ω・cmを超えた値になると、好適な導電性が得られない場合があるためである。
したがって、酸化亜鉛膜の初期比抵抗を5.5×10-4Ω・cm~1×10-2Ω・cmの範囲内の値とすることが、より好ましく、6×10-4Ω・cm~5×10-3Ω・cmの範囲内の値とすることがさらに好ましい。
なお、酸化亜鉛膜の初期比抵抗(ρ0)は、実施例1において具体的に説明するように、透明導電フィルムの膜厚(d)及び測定した表面抵抗率(R)より、算出することができる。 (6) Initial Specific Resistance The initial specific resistance (ρ 0 ) of the zinc oxide films 10 and 10 ′ illustrated in FIGS. 1 (a) to 1 (d) exceeds 5 × 10 −4 Ω · cm, and 1 It is preferable to set it as the value of x10 < -1 > ohm * cm or less.
This is because the film forming conditions may be complicated when the initial specific resistance of the zinc oxide film is 5 × 10 −4 Ω · cm or less.
On the other hand, when the initial specific resistance of the zinc oxide film exceeds 1 × 10 −1 Ω · cm, suitable conductivity may not be obtained.
Therefore, the initial specific resistance of the zinc oxide film is more preferably set to a value within the range of 5.5 × 10 −4 Ω · cm to 1 × 10 −2 Ω · cm, more preferably 6 × 10 −4 Ω · cm. More preferably, the value is in a range of ˜5 × 10 −3 Ω · cm.
The initial specific resistance (ρ 0 ) of the zinc oxide film should be calculated from the film thickness (d) of the transparent conductive film and the measured surface resistivity (R), as specifically described in Example 1. Can do.
また、図1(a)~(d)に例示される酸化亜鉛膜10、10´の初期比抵抗(ρ0)を5×10-4Ω・cmを超えて、1×10-1Ω・cm以下の値とすることが好ましい。
この理由は、酸化亜鉛膜の初期比抵抗が5×10-4Ω・cm以下の値になると、成膜条件が複雑になる場合があるためである。
一方、酸化亜鉛膜の初期比抵抗が1×10-1Ω・cmを超えた値になると、好適な導電性が得られない場合があるためである。
したがって、酸化亜鉛膜の初期比抵抗を5.5×10-4Ω・cm~1×10-2Ω・cmの範囲内の値とすることが、より好ましく、6×10-4Ω・cm~5×10-3Ω・cmの範囲内の値とすることがさらに好ましい。
なお、酸化亜鉛膜の初期比抵抗(ρ0)は、実施例1において具体的に説明するように、透明導電フィルムの膜厚(d)及び測定した表面抵抗率(R)より、算出することができる。 (6) Initial Specific Resistance The initial specific resistance (ρ 0 ) of the
This is because the film forming conditions may be complicated when the initial specific resistance of the zinc oxide film is 5 × 10 −4 Ω · cm or less.
On the other hand, when the initial specific resistance of the zinc oxide film exceeds 1 × 10 −1 Ω · cm, suitable conductivity may not be obtained.
Therefore, the initial specific resistance of the zinc oxide film is more preferably set to a value within the range of 5.5 × 10 −4 Ω · cm to 1 × 10 −2 Ω · cm, more preferably 6 × 10 −4 Ω · cm. More preferably, the value is in a range of ˜5 × 10 −3 Ω · cm.
The initial specific resistance (ρ 0 ) of the zinc oxide film should be calculated from the film thickness (d) of the transparent conductive film and the measured surface resistivity (R), as specifically described in Example 1. Can do.
また、透明導電フィルムの酸化亜鉛膜の第1領域及び第2領域に含まれるインジウム量(atom%)を所定の範囲内の値とすることにより、初期比抵抗(ρ0)を上述した好ましい範囲内の値とすることができる。
In addition, the initial specific resistance (ρ 0 ) is preferably set in the above-described range by setting the amount of indium (atom%) contained in the first region and the second region of the zinc oxide film of the transparent conductive film to a value within a predetermined range. The value can be
(5)湿熱特性
また、図7~図9を参照して、透明導電フィルムにおける酸化亜鉛膜のインジウム量(0.3重量%、1重量%、5重量%)等と、環境試験前後における比抵抗の変化との関係を説明する。
すなわち、図7~図9の横軸に、60℃、相対湿度95%の条件下での経過時間が採って示してあり、縦軸に、60℃、相対湿度95%の条件下で、X時間、保管した後の比抵抗をρXとして計算したρX/ρ0で表わされる比率が採って示してある。
そして、図7中の特性曲線A~Eは、それぞれ、後述する実施例1~3及び比較例1~2に対応している。
また、図8中の特性曲線F~Jは、それぞれ、後述する実施例4~6及び比較例3~4に対応している。
また、図9中の特性曲線K~Oは、それぞれ、後述する実施例7~9及び比較例5~6に対応している。
これらの特性曲線の比較より、ガスバリア層の上に形成した酸化亜鉛膜において、所定量のインジウムをドーパントとして添加することにより、このような酸化亜鉛膜を有する透明導電フィルムにおいて、湿熱特性が劇的に向上していることが理解される。
したがって、このような酸化亜鉛膜を有する透明導電フィルムの比抵抗が長時間にわたって安定し、各種用途に使用できることから、ρ500/ρ0で表わされる比抵抗の比率を1.4以下の値とすることが好ましく、1.3以下の値とすることがより好ましく、1.2以下の値とすることがさらに好ましいと言える。
また、同様の理由で、ρ1000/ρ0で表わされる比抵抗の比率を1.8以下の値とすることが好ましく、1.6以下の値とすることがより好ましく、1.4以下の値とすることがさらに好ましいと言える。 (5) Wet heat characteristics Referring to FIGS. 7 to 9, the indium content (0.3% by weight, 1% by weight, 5% by weight) of the zinc oxide film in the transparent conductive film and the ratio before and after the environmental test The relationship with the resistance change will be described.
That is, the abscissa of FIGS. 7 to 9 shows the elapsed time under the condition of 60 ° C. and relative humidity of 95%, and the ordinate represents X under the condition of 60 ° C. and relative humidity of 95%. The ratio represented by ρ X / ρ 0 calculated with ρ X as the specific resistance after storage for time and storage is shown.
Characteristic curves A to E in FIG. 7 correspond to Examples 1 to 3 and Comparative Examples 1 and 2, which will be described later, respectively.
In addition, characteristic curves F to J in FIG. 8 correspond to Examples 4 to 6 and Comparative Examples 3 to 4 described later, respectively.
Also, the characteristic curves K to O in FIG. 9 correspond to Examples 7 to 9 and Comparative Examples 5 to 6 described later, respectively.
From the comparison of these characteristic curves, the wet heat characteristics of the transparent conductive film having such a zinc oxide film are dramatically improved by adding a predetermined amount of indium as a dopant in the zinc oxide film formed on the gas barrier layer. It is understood that it has improved.
Therefore, since the specific resistance of the transparent conductive film having such a zinc oxide film is stable for a long time and can be used for various applications, the specific resistance ratio represented by ρ 500 / ρ 0 is set to a value of 1.4 or less. Preferably, the value is 1.3 or less, more preferably 1.2 or less.
For the same reason, the specific resistance ratio represented by ρ 1000 / ρ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. It can be said that the value is more preferable.
また、図7~図9を参照して、透明導電フィルムにおける酸化亜鉛膜のインジウム量(0.3重量%、1重量%、5重量%)等と、環境試験前後における比抵抗の変化との関係を説明する。
すなわち、図7~図9の横軸に、60℃、相対湿度95%の条件下での経過時間が採って示してあり、縦軸に、60℃、相対湿度95%の条件下で、X時間、保管した後の比抵抗をρXとして計算したρX/ρ0で表わされる比率が採って示してある。
そして、図7中の特性曲線A~Eは、それぞれ、後述する実施例1~3及び比較例1~2に対応している。
また、図8中の特性曲線F~Jは、それぞれ、後述する実施例4~6及び比較例3~4に対応している。
また、図9中の特性曲線K~Oは、それぞれ、後述する実施例7~9及び比較例5~6に対応している。
これらの特性曲線の比較より、ガスバリア層の上に形成した酸化亜鉛膜において、所定量のインジウムをドーパントとして添加することにより、このような酸化亜鉛膜を有する透明導電フィルムにおいて、湿熱特性が劇的に向上していることが理解される。
したがって、このような酸化亜鉛膜を有する透明導電フィルムの比抵抗が長時間にわたって安定し、各種用途に使用できることから、ρ500/ρ0で表わされる比抵抗の比率を1.4以下の値とすることが好ましく、1.3以下の値とすることがより好ましく、1.2以下の値とすることがさらに好ましいと言える。
また、同様の理由で、ρ1000/ρ0で表わされる比抵抗の比率を1.8以下の値とすることが好ましく、1.6以下の値とすることがより好ましく、1.4以下の値とすることがさらに好ましいと言える。 (5) Wet heat characteristics Referring to FIGS. 7 to 9, the indium content (0.3% by weight, 1% by weight, 5% by weight) of the zinc oxide film in the transparent conductive film and the ratio before and after the environmental test The relationship with the resistance change will be described.
That is, the abscissa of FIGS. 7 to 9 shows the elapsed time under the condition of 60 ° C. and relative humidity of 95%, and the ordinate represents X under the condition of 60 ° C. and relative humidity of 95%. The ratio represented by ρ X / ρ 0 calculated with ρ X as the specific resistance after storage for time and storage is shown.
Characteristic curves A to E in FIG. 7 correspond to Examples 1 to 3 and Comparative Examples 1 and 2, which will be described later, respectively.
In addition, characteristic curves F to J in FIG. 8 correspond to Examples 4 to 6 and Comparative Examples 3 to 4 described later, respectively.
Also, the characteristic curves K to O in FIG. 9 correspond to Examples 7 to 9 and Comparative Examples 5 to 6 described later, respectively.
From the comparison of these characteristic curves, the wet heat characteristics of the transparent conductive film having such a zinc oxide film are dramatically improved by adding a predetermined amount of indium as a dopant in the zinc oxide film formed on the gas barrier layer. It is understood that it has improved.
Therefore, since the specific resistance of the transparent conductive film having such a zinc oxide film is stable for a long time and can be used for various applications, the specific resistance ratio represented by ρ 500 / ρ 0 is set to a value of 1.4 or less. Preferably, the value is 1.3 or less, more preferably 1.2 or less.
For the same reason, the specific resistance ratio represented by ρ 1000 / ρ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. It can be said that the value is more preferable.
(6)複数領域
また、図2(a)~(c)に示すように、透明導電フィルムが、ガスバリア層の上に、ガリウム及びインジウムをドープしてなる酸化亜鉛膜を有し、当該酸化亜鉛膜から基材に向かう膜厚方向において、XPS分析によって測定される亜鉛量、ガリウム量、酸素量、及びインジウム量に関して、不均一な濃度分布を有する複数領域(第1領域及び第2領域)を含んでいることが好ましい。
より具体的には、図2(a)は、横軸にエッチング時間を(min.)を採って有り、縦軸に、元素量(atom%)を採ってある、XPS分析チャートであり、図2(b)は、図2(a)の元素量(atom%)の変化をより理解しやすくするための拡大図である。そして、図2(c)は、横軸にエッチング時間を(min.)を採って有り、縦軸に、In/Gaの比率(-)を採ってある、XPS分析チャートである。
そして、これらのXPS分析チャートから、第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、亜鉛量を20~60atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を22~79.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましいことが理解される。
また、第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、亜鉛量を35~65atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を17~64.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましいことが理解される。
そして、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも大きいことが好ましいことが理解される。
すなわち、酸化亜鉛膜における亜鉛量、ガリウム量、酸素量及びインジウム量に関して、酸化亜鉛膜の表面から基材に向かう膜厚方向において、相対的にインジウム量が多い第1領域、及び相対的にインジウム量が少ない第2領域を順次に含んでいる場合、酸化亜鉛膜の湿熱特性を著しく向上させることができる。その上、このような組成であれば、後述するガスバリア層との間で、優れた密着性を得ることもできる。 (6) Multiple regions As shown in FIGS. 2A to 2C, the transparent conductive film has a zinc oxide film doped with gallium and indium on the gas barrier layer, and the zinc oxide A plurality of regions (first region and second region) having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the film thickness direction from the film to the substrate. It is preferable to include.
More specifically, FIG. 2A is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the element amount (atom%). 2 (b) is an enlarged view for making it easier to understand the change in the element amount (atom%) in FIG. 2 (a). FIG. 2C is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the In / Ga ratio (−).
From these XPS analysis charts, in the first region, the zinc amount is 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The amount of gallium is a value within the range of 0.1 to 10 atom%, the amount of oxygen is within the range of 22 to 79.89 atom%, and the amount of indium is 0.01 to 8 atom%. It is understood that a value within the range is preferred.
In the second region, the zinc amount is set to a value in the range of 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement, The amount of gallium is set to a value within the range of 0.1 to 10 atom%, the amount of oxygen is set to a value within the range of 17 to 64.89 atom%, and the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is understood that this is preferred.
It is understood that the value of [In] / [Ga] in the first region is preferably larger than the value of [In] / [Ga] in the second region.
That is, with respect to the zinc amount, the gallium amount, the oxygen amount, and the indium amount in the zinc oxide film, in the film thickness direction from the surface of the zinc oxide film toward the substrate, the first region having a relatively large indium amount, and the relatively indium When the second region having a small amount is sequentially included, the wet heat characteristics of the zinc oxide film can be remarkably improved. Moreover, with such a composition, excellent adhesion can be obtained with a gas barrier layer described later.
また、図2(a)~(c)に示すように、透明導電フィルムが、ガスバリア層の上に、ガリウム及びインジウムをドープしてなる酸化亜鉛膜を有し、当該酸化亜鉛膜から基材に向かう膜厚方向において、XPS分析によって測定される亜鉛量、ガリウム量、酸素量、及びインジウム量に関して、不均一な濃度分布を有する複数領域(第1領域及び第2領域)を含んでいることが好ましい。
より具体的には、図2(a)は、横軸にエッチング時間を(min.)を採って有り、縦軸に、元素量(atom%)を採ってある、XPS分析チャートであり、図2(b)は、図2(a)の元素量(atom%)の変化をより理解しやすくするための拡大図である。そして、図2(c)は、横軸にエッチング時間を(min.)を採って有り、縦軸に、In/Gaの比率(-)を採ってある、XPS分析チャートである。
そして、これらのXPS分析チャートから、第1領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、亜鉛量を20~60atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を22~79.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましいことが理解される。
また、第2領域において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、亜鉛量を35~65atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、酸素量を17~64.89atom%の範囲内の値とし、かつ、インジウム量を0.01~8atom%の範囲内の値とすることが好ましいことが理解される。
そして、第1領域の[In]/[Ga]の値が、第2領域の[In]/[Ga]の値よりも大きいことが好ましいことが理解される。
すなわち、酸化亜鉛膜における亜鉛量、ガリウム量、酸素量及びインジウム量に関して、酸化亜鉛膜の表面から基材に向かう膜厚方向において、相対的にインジウム量が多い第1領域、及び相対的にインジウム量が少ない第2領域を順次に含んでいる場合、酸化亜鉛膜の湿熱特性を著しく向上させることができる。その上、このような組成であれば、後述するガスバリア層との間で、優れた密着性を得ることもできる。 (6) Multiple regions As shown in FIGS. 2A to 2C, the transparent conductive film has a zinc oxide film doped with gallium and indium on the gas barrier layer, and the zinc oxide A plurality of regions (first region and second region) having a non-uniform concentration distribution with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS analysis in the film thickness direction from the film to the substrate. It is preferable to include.
More specifically, FIG. 2A is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the element amount (atom%). 2 (b) is an enlarged view for making it easier to understand the change in the element amount (atom%) in FIG. 2 (a). FIG. 2C is an XPS analysis chart in which the horizontal axis represents the etching time (min.) And the vertical axis represents the In / Ga ratio (−).
From these XPS analysis charts, in the first region, the zinc amount is 20 to 60 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement. The amount of gallium is a value within the range of 0.1 to 10 atom%, the amount of oxygen is within the range of 22 to 79.89 atom%, and the amount of indium is 0.01 to 8 atom%. It is understood that a value within the range is preferred.
In the second region, the zinc amount is set to a value in the range of 35 to 65 atom% with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount and indium amount by XPS elemental analysis measurement, The amount of gallium is set to a value within the range of 0.1 to 10 atom%, the amount of oxygen is set to a value within the range of 17 to 64.89 atom%, and the amount of indium is set to a value within the range of 0.01 to 8 atom%. It is understood that this is preferred.
It is understood that the value of [In] / [Ga] in the first region is preferably larger than the value of [In] / [Ga] in the second region.
That is, with respect to the zinc amount, the gallium amount, the oxygen amount, and the indium amount in the zinc oxide film, in the film thickness direction from the surface of the zinc oxide film toward the substrate, the first region having a relatively large indium amount, and the relatively indium When the second region having a small amount is sequentially included, the wet heat characteristics of the zinc oxide film can be remarkably improved. Moreover, with such a composition, excellent adhesion can be obtained with a gas barrier layer described later.
但し、酸化亜鉛膜に含まれる第1領域及び第2領域の界面は必ずしも明確である必要はなく、各領域の組成比が連続的又は段階的に変化する部分が存在している状態であってもよい。
その上、組成比が異なる第1領域及び第2領域の形成に関し、1回のスパッタリング工程の実施により形成しても良いし、あるいは、2回以上のスパッタリング工程の実施により形成しても良い。
すなわち、1回のスパッタリング工程であっても、スパッタリング用ターゲットとして、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体を用い、その各成分の配合割合等を適宜調整することによって、図1に示すように、酸化亜鉛膜における基板側とは反対側の表面近辺に、インジウム量が相対的に多い領域(第1領域)と、酸化亜鉛膜の内部に、インジウム量が相対的に少ない領域(第2領域)と、を連続的に形成することができる。
この理由は、マーデルングエネルギーの観点から、ガリウムが大きく、結晶粒に安定的に取り込まれる一方、インジウムはガリウムと比較すると不安定であると推察されることに加えて、共有結合半径の観点から、インジウムは亜鉛及びガリウムと比較して大きいことに起因すると推定される。すなわち、インジウムは、酸化亜鉛に対する溶解度が小さいことが予測されるため、結晶構造を維持する上で、比較的過剰となったインジウムが、表面に偏析するのではないかと推察される。
なお、このような偏析は、イオンプレーティング法や真空蒸着法を用いた場合に比べて、スパッタリング法を用いた場合に、顕著に生じることが確認されたため、本発明ではスパッタリング法を採用した。
もちろん、2回以上のスパッタリング工程の実施により、かつ、スパッタリング条件やスパッタリング用ターゲットの種類等を異ならせて、組成比が異なる第1領域及び第2領域を形成しても良い。 However, the interface between the first region and the second region included in the zinc oxide film is not necessarily clear, and there is a portion where the composition ratio of each region changes continuously or stepwise. Also good.
In addition, regarding the formation of the first region and the second region having different composition ratios, the first region and the second region may be formed by performing one sputtering process, or may be formed by performing two or more sputtering processes.
That is, even in a single sputtering step, a zinc oxide-gallium oxide-indium oxide ternary sintered body is used as a sputtering target, and the blending ratios of the respective components are appropriately adjusted. As shown in FIG. 1, in the vicinity of the surface of the zinc oxide film opposite to the substrate side, a relatively large amount of indium (first region) and a relatively small amount of indium inside the zinc oxide film. The region (second region) can be formed continuously.
This is because, from the viewpoint of the Madelung energy, gallium is large and stably incorporated into the crystal grains, while indium is presumed to be unstable compared to gallium, and in addition, from the viewpoint of the covalent bond radius. Therefore, it is estimated that indium is larger than zinc and gallium. That is, since indium is expected to have low solubility in zinc oxide, it is presumed that indium, which is relatively excessive in maintaining the crystal structure, segregates on the surface.
In addition, since it was confirmed that such segregation occurred more significantly when the sputtering method was used than when the ion plating method or the vacuum deposition method was used, the sputtering method was adopted in the present invention.
Needless to say, the first region and the second region having different composition ratios may be formed by performing the sputtering process two or more times and changing the sputtering conditions, the type of sputtering target, and the like.
その上、組成比が異なる第1領域及び第2領域の形成に関し、1回のスパッタリング工程の実施により形成しても良いし、あるいは、2回以上のスパッタリング工程の実施により形成しても良い。
すなわち、1回のスパッタリング工程であっても、スパッタリング用ターゲットとして、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体を用い、その各成分の配合割合等を適宜調整することによって、図1に示すように、酸化亜鉛膜における基板側とは反対側の表面近辺に、インジウム量が相対的に多い領域(第1領域)と、酸化亜鉛膜の内部に、インジウム量が相対的に少ない領域(第2領域)と、を連続的に形成することができる。
この理由は、マーデルングエネルギーの観点から、ガリウムが大きく、結晶粒に安定的に取り込まれる一方、インジウムはガリウムと比較すると不安定であると推察されることに加えて、共有結合半径の観点から、インジウムは亜鉛及びガリウムと比較して大きいことに起因すると推定される。すなわち、インジウムは、酸化亜鉛に対する溶解度が小さいことが予測されるため、結晶構造を維持する上で、比較的過剰となったインジウムが、表面に偏析するのではないかと推察される。
なお、このような偏析は、イオンプレーティング法や真空蒸着法を用いた場合に比べて、スパッタリング法を用いた場合に、顕著に生じることが確認されたため、本発明ではスパッタリング法を採用した。
もちろん、2回以上のスパッタリング工程の実施により、かつ、スパッタリング条件やスパッタリング用ターゲットの種類等を異ならせて、組成比が異なる第1領域及び第2領域を形成しても良い。 However, the interface between the first region and the second region included in the zinc oxide film is not necessarily clear, and there is a portion where the composition ratio of each region changes continuously or stepwise. Also good.
In addition, regarding the formation of the first region and the second region having different composition ratios, the first region and the second region may be formed by performing one sputtering process, or may be formed by performing two or more sputtering processes.
That is, even in a single sputtering step, a zinc oxide-gallium oxide-indium oxide ternary sintered body is used as a sputtering target, and the blending ratios of the respective components are appropriately adjusted. As shown in FIG. 1, in the vicinity of the surface of the zinc oxide film opposite to the substrate side, a relatively large amount of indium (first region) and a relatively small amount of indium inside the zinc oxide film. The region (second region) can be formed continuously.
This is because, from the viewpoint of the Madelung energy, gallium is large and stably incorporated into the crystal grains, while indium is presumed to be unstable compared to gallium, and in addition, from the viewpoint of the covalent bond radius. Therefore, it is estimated that indium is larger than zinc and gallium. That is, since indium is expected to have low solubility in zinc oxide, it is presumed that indium, which is relatively excessive in maintaining the crystal structure, segregates on the surface.
In addition, since it was confirmed that such segregation occurred more significantly when the sputtering method was used than when the ion plating method or the vacuum deposition method was used, the sputtering method was adopted in the present invention.
Needless to say, the first region and the second region having different composition ratios may be formed by performing the sputtering process two or more times and changing the sputtering conditions, the type of sputtering target, and the like.
2.ガスバリア層
(1)態様
また、本発明において、図1(a)~(d)に示すように樹脂基材12の少なくとも片面に、ガスバリア層14、14´が形成してあることを特徴とする。
より具体的には、図1に例示されるように、ガスバリア層14は、樹脂基材12と、酸化亜鉛膜10と、の間に形成され、樹脂基材12を透過して、水蒸気等が浸入したとしても、その水蒸気等の更なる浸透を防ぎ、結果として、酸化亜鉛膜10が劣化することを防ぐための層である。
したがって、所定のガスバリア性を発揮するのであれば、かかるガスバリア層の構成については、特に制限されるものではないが、例えば、アルミニウム、マグネシウム、ジルコニウム、チタン、亜鉛、スズ等の金属;酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化珪素等の無機窒化物;無機炭化物;無機硫化物;これらの複合体である酸窒化珪素等の無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物;高分子化合物等の一種単独又は二種以上の組み合わせが挙げられる。
また、かかるガスバリア層は、各種高分子樹脂、硬化剤、老化防止剤、光安定剤、難燃剤等の他の配合成分を含んでいても良い。
なお、ガスバリア層は、図1(c)に示すように樹脂基材上に複数層形成してもよく、図示しないものの上述の酸化亜鉛膜を形成した後に、ガスバリア層を形成してもよい。 2. Gas Barrier Layer (1) Aspect In the present invention, as shown in FIGS. 1A to 1D, gas barrier layers 14 and 14 ′ are formed on at least one surface of theresin base material 12. .
More specifically, as illustrated in FIG. 1, thegas barrier layer 14 is formed between the resin base material 12 and the zinc oxide film 10, and passes through the resin base material 12 so that water vapor or the like is generated. Even if it penetrates, it is a layer for preventing further penetration of the water vapor and the like, and as a result, preventing the zinc oxide film 10 from deteriorating.
Therefore, the configuration of the gas barrier layer is not particularly limited as long as it exhibits a predetermined gas barrier property. For example, a metal such as aluminum, magnesium, zirconium, titanium, zinc, tin; silicon oxide, Inorganic oxides such as aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride; inorganic carbides; inorganic sulfides; and silicon oxynitride which is a composite of these Inorganic oxycarbides such as: inorganic nitriding carbides; inorganic oxynitriding carbides; polymer compounds and the like alone or in combination of two or more.
The gas barrier layer may contain other compounding components such as various polymer resins, curing agents, anti-aging agents, light stabilizers, and flame retardants.
As shown in FIG. 1C, a plurality of gas barrier layers may be formed on a resin base material, or a gas barrier layer may be formed after forming the above-described zinc oxide film (not shown).
(1)態様
また、本発明において、図1(a)~(d)に示すように樹脂基材12の少なくとも片面に、ガスバリア層14、14´が形成してあることを特徴とする。
より具体的には、図1に例示されるように、ガスバリア層14は、樹脂基材12と、酸化亜鉛膜10と、の間に形成され、樹脂基材12を透過して、水蒸気等が浸入したとしても、その水蒸気等の更なる浸透を防ぎ、結果として、酸化亜鉛膜10が劣化することを防ぐための層である。
したがって、所定のガスバリア性を発揮するのであれば、かかるガスバリア層の構成については、特に制限されるものではないが、例えば、アルミニウム、マグネシウム、ジルコニウム、チタン、亜鉛、スズ等の金属;酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化珪素等の無機窒化物;無機炭化物;無機硫化物;これらの複合体である酸窒化珪素等の無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物;高分子化合物等の一種単独又は二種以上の組み合わせが挙げられる。
また、かかるガスバリア層は、各種高分子樹脂、硬化剤、老化防止剤、光安定剤、難燃剤等の他の配合成分を含んでいても良い。
なお、ガスバリア層は、図1(c)に示すように樹脂基材上に複数層形成してもよく、図示しないものの上述の酸化亜鉛膜を形成した後に、ガスバリア層を形成してもよい。 2. Gas Barrier Layer (1) Aspect In the present invention, as shown in FIGS. 1A to 1D, gas barrier layers 14 and 14 ′ are formed on at least one surface of the
More specifically, as illustrated in FIG. 1, the
Therefore, the configuration of the gas barrier layer is not particularly limited as long as it exhibits a predetermined gas barrier property. For example, a metal such as aluminum, magnesium, zirconium, titanium, zinc, tin; silicon oxide, Inorganic oxides such as aluminum oxide, magnesium oxide, zirconium oxide, titanium oxide, zinc oxide, indium oxide and tin oxide; inorganic nitrides such as silicon nitride; inorganic carbides; inorganic sulfides; and silicon oxynitride which is a composite of these Inorganic oxycarbides such as: inorganic nitriding carbides; inorganic oxynitriding carbides; polymer compounds and the like alone or in combination of two or more.
The gas barrier layer may contain other compounding components such as various polymer resins, curing agents, anti-aging agents, light stabilizers, and flame retardants.
As shown in FIG. 1C, a plurality of gas barrier layers may be formed on a resin base material, or a gas barrier layer may be formed after forming the above-described zinc oxide film (not shown).
(2)膜厚
また、図1に例示されるガスバリア層14の膜厚を20nm~50μmの範囲内の値とすることが好ましい。
この理由は、このような所定膜厚のガスバリア層とすることによって、さらに優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができるためである。
したがって、ガスバリア層の膜厚を30nm~1,000nmの範囲内の値とすることがより好ましく、40nm~500nmの範囲内の値とすることがさらに好ましい。 (2) Film thickness The film thickness of thegas barrier layer 14 illustrated in FIG. 1 is preferably set to a value in the range of 20 nm to 50 μm.
The reason for this is that by using such a gas barrier layer having a predetermined film thickness, further excellent gas barrier properties and adhesion can be obtained, and at the same time, both flexibility and coating strength can be achieved.
Therefore, the thickness of the gas barrier layer is more preferably set to a value within the range of 30 nm to 1,000 nm, and further preferably set to a value within the range of 40 nm to 500 nm.
また、図1に例示されるガスバリア層14の膜厚を20nm~50μmの範囲内の値とすることが好ましい。
この理由は、このような所定膜厚のガスバリア層とすることによって、さらに優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができるためである。
したがって、ガスバリア層の膜厚を30nm~1,000nmの範囲内の値とすることがより好ましく、40nm~500nmの範囲内の値とすることがさらに好ましい。 (2) Film thickness The film thickness of the
The reason for this is that by using such a gas barrier layer having a predetermined film thickness, further excellent gas barrier properties and adhesion can be obtained, and at the same time, both flexibility and coating strength can be achieved.
Therefore, the thickness of the gas barrier layer is more preferably set to a value within the range of 30 nm to 1,000 nm, and further preferably set to a value within the range of 40 nm to 500 nm.
(3)水蒸気透過率(WVTR)
また、ガスバリア層の40℃、相対湿度90%の雰囲気下で測定される水蒸気透過率を0.1g・m-2・day-1以下の値とすることが好ましく、0.05g・m-2・day-1以下の値とすることがより好ましく、0.01g・m-2・day-1以下の値とすることがさらに好ましい。
この理由は、このような水蒸気透過率の値とすることによって、酸化亜鉛膜が劣化することを防ぎ、耐湿熱性に優れたガスバリア性が得られるためである。
なお、ガスバリア層の水蒸気透過率としては、公知方法で測定することができ、例えば、実施例1に示すように、市販の水蒸気透過率測定装置を用いて測定することができる。 (3) Water vapor transmission rate (WVTR)
In addition, the water vapor transmission rate measured in an atmosphere of the gas barrier layer at 40 ° C. and a relative humidity of 90% is preferably set to a value of 0.1 g · m −2 · day −1 or less, and 0.05 g · m −2. More preferably, the value is not more than day −1 , and more preferably not more than 0.01 g · m −2 · day −1 .
The reason for this is that by setting such a value of water vapor transmission rate, the zinc oxide film is prevented from deteriorating, and gas barrier properties excellent in wet heat resistance are obtained.
In addition, as a water vapor transmission rate of a gas barrier layer, it can measure by a well-known method, For example, as shown in Example 1, it can measure using a commercially available water vapor transmission rate measuring apparatus.
また、ガスバリア層の40℃、相対湿度90%の雰囲気下で測定される水蒸気透過率を0.1g・m-2・day-1以下の値とすることが好ましく、0.05g・m-2・day-1以下の値とすることがより好ましく、0.01g・m-2・day-1以下の値とすることがさらに好ましい。
この理由は、このような水蒸気透過率の値とすることによって、酸化亜鉛膜が劣化することを防ぎ、耐湿熱性に優れたガスバリア性が得られるためである。
なお、ガスバリア層の水蒸気透過率としては、公知方法で測定することができ、例えば、実施例1に示すように、市販の水蒸気透過率測定装置を用いて測定することができる。 (3) Water vapor transmission rate (WVTR)
In addition, the water vapor transmission rate measured in an atmosphere of the gas barrier layer at 40 ° C. and a relative humidity of 90% is preferably set to a value of 0.1 g · m −2 · day −1 or less, and 0.05 g · m −2. More preferably, the value is not more than day −1 , and more preferably not more than 0.01 g · m −2 · day −1 .
The reason for this is that by setting such a value of water vapor transmission rate, the zinc oxide film is prevented from deteriorating, and gas barrier properties excellent in wet heat resistance are obtained.
In addition, as a water vapor transmission rate of a gas barrier layer, it can measure by a well-known method, For example, as shown in Example 1, it can measure using a commercially available water vapor transmission rate measuring apparatus.
(4)層数
また、透明導電フィルムにおけるガスバリア層の数、すなわち、層数については特に制限されるものではないが、通常、1~8層とすることが好ましい。
この理由は、ガスバリア層が1層でもあれば、透明導電フィルムにおける湿熱特性を著しく向上させることができるためである。
一方、ガスバリア層の層数が8層を超えると、透明導電フィルムの総厚が厚くなって、フレキシブル性が低下したり、あるいは、透明導電フィルムの安定的製造が困難となったりする場合があるためである。
したがって、用途にもよるが、ガスバリア層の層数を1~6層(または2~6層)の範囲内の値とすることが好ましく、層数を2~4層(または3~4層)の範囲内の値とすることがより好ましい。 (4) Number of Layers The number of gas barrier layers in the transparent conductive film, that is, the number of layers is not particularly limited, but it is usually preferably 1 to 8 layers.
This is because the wet heat characteristics of the transparent conductive film can be remarkably improved if there is even one gas barrier layer.
On the other hand, if the number of gas barrier layers exceeds 8, the total thickness of the transparent conductive film becomes thick and the flexibility may be lowered, or the stable production of the transparent conductive film may be difficult. Because.
Therefore, although depending on the application, the number of gas barrier layers is preferably 1 to 6 (or 2 to 6), and the number of layers is preferably 2 to 4 (or 3 to 4). It is more preferable to set the value within the range.
また、透明導電フィルムにおけるガスバリア層の数、すなわち、層数については特に制限されるものではないが、通常、1~8層とすることが好ましい。
この理由は、ガスバリア層が1層でもあれば、透明導電フィルムにおける湿熱特性を著しく向上させることができるためである。
一方、ガスバリア層の層数が8層を超えると、透明導電フィルムの総厚が厚くなって、フレキシブル性が低下したり、あるいは、透明導電フィルムの安定的製造が困難となったりする場合があるためである。
したがって、用途にもよるが、ガスバリア層の層数を1~6層(または2~6層)の範囲内の値とすることが好ましく、層数を2~4層(または3~4層)の範囲内の値とすることがより好ましい。 (4) Number of Layers The number of gas barrier layers in the transparent conductive film, that is, the number of layers is not particularly limited, but it is usually preferably 1 to 8 layers.
This is because the wet heat characteristics of the transparent conductive film can be remarkably improved if there is even one gas barrier layer.
On the other hand, if the number of gas barrier layers exceeds 8, the total thickness of the transparent conductive film becomes thick and the flexibility may be lowered, or the stable production of the transparent conductive film may be difficult. Because.
Therefore, although depending on the application, the number of gas barrier layers is preferably 1 to 6 (or 2 to 6), and the number of layers is preferably 2 to 4 (or 3 to 4). It is more preferable to set the value within the range.
(5)湿熱特性
また、図10~図12を参照して、透明導電フィルムにおける湿熱特性として、ガスバリア層の数(1層、2層、3層)等と、環境試験前後における比抵抗の変化との関係を説明する。
すなわち、図10~図12の横軸に、60℃、相対湿度95%の条件下での経過時間(X)が採って示してあり、縦軸に、ρX/ρ0で表わされる比抵抗の比率が採って示してある。
そして、図10中の特性曲線A、F、Kは、それぞれ、実施例1、4及び7に対応している。
また、図11中の特性曲線B、G、Lは、それぞれ、実施例2、5及び8に対応している。
さらに、図12中の特性曲線C、H、Mは、それぞれ、実施例3、6及び9に対応している。
これらの特性曲線の比較より、ガスバリア層が1層でもあれば、ドーパントとしてのインジウム量にかかわらず、透明導電フィルムにおける酸化亜鉛膜の比抵抗の変化が小さくなり、すなわち、湿熱特性を著しく向上させることが理解される。
したがって、ρ500/ρ0で表わされる比抵抗の比率を1.4以下の値とすることが好ましく、1.3以下の値とすることがより好ましく、1.2以下の値とすることがさらに好ましい。
また、ρ1000/ρ0で表わされる比抵抗の比率を1.8以下の値とすることが好ましく、1.6以下の値とすることがより好ましく、1.4以下の値とすることがさらに好ましい。 (5) Wet heat characteristics Referring also to FIGS. 10 to 12, as the wet heat characteristics of the transparent conductive film, the number of gas barrier layers (1 layer, 2 layers, 3 layers), etc., and the change in specific resistance before and after the environmental test Will be described.
That is, the horizontal axis of FIGS. 10 to 12 shows the elapsed time (X) under the conditions of 60 ° C. and relative humidity of 95%, and the vertical axis represents the specific resistance represented by ρ X / ρ 0. The ratio is shown.
The characteristic curves A, F, and K in FIG. 10 correspond to Examples 1, 4, and 7, respectively.
Further, characteristic curves B, G, and L in FIG. 11 correspond to Examples 2, 5, and 8, respectively.
Furthermore, characteristic curves C, H, and M in FIG. 12 correspond to Examples 3, 6, and 9, respectively.
From the comparison of these characteristic curves, if there is even one gas barrier layer, the change in specific resistance of the zinc oxide film in the transparent conductive film becomes small regardless of the amount of indium as a dopant, that is, the wet heat characteristics are remarkably improved. It is understood.
Therefore, the specific resistance ratio represented by ρ 500 / ρ 0 is preferably a value of 1.4 or less, more preferably a value of 1.3 or less, and a value of 1.2 or less. Further preferred.
Further, the specific resistance ratio represented by ρ 1000 / ρ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. Further preferred.
また、図10~図12を参照して、透明導電フィルムにおける湿熱特性として、ガスバリア層の数(1層、2層、3層)等と、環境試験前後における比抵抗の変化との関係を説明する。
すなわち、図10~図12の横軸に、60℃、相対湿度95%の条件下での経過時間(X)が採って示してあり、縦軸に、ρX/ρ0で表わされる比抵抗の比率が採って示してある。
そして、図10中の特性曲線A、F、Kは、それぞれ、実施例1、4及び7に対応している。
また、図11中の特性曲線B、G、Lは、それぞれ、実施例2、5及び8に対応している。
さらに、図12中の特性曲線C、H、Mは、それぞれ、実施例3、6及び9に対応している。
これらの特性曲線の比較より、ガスバリア層が1層でもあれば、ドーパントとしてのインジウム量にかかわらず、透明導電フィルムにおける酸化亜鉛膜の比抵抗の変化が小さくなり、すなわち、湿熱特性を著しく向上させることが理解される。
したがって、ρ500/ρ0で表わされる比抵抗の比率を1.4以下の値とすることが好ましく、1.3以下の値とすることがより好ましく、1.2以下の値とすることがさらに好ましい。
また、ρ1000/ρ0で表わされる比抵抗の比率を1.8以下の値とすることが好ましく、1.6以下の値とすることがより好ましく、1.4以下の値とすることがさらに好ましい。 (5) Wet heat characteristics Referring also to FIGS. 10 to 12, as the wet heat characteristics of the transparent conductive film, the number of gas barrier layers (1 layer, 2 layers, 3 layers), etc., and the change in specific resistance before and after the environmental test Will be described.
That is, the horizontal axis of FIGS. 10 to 12 shows the elapsed time (X) under the conditions of 60 ° C. and relative humidity of 95%, and the vertical axis represents the specific resistance represented by ρ X / ρ 0. The ratio is shown.
The characteristic curves A, F, and K in FIG. 10 correspond to Examples 1, 4, and 7, respectively.
Further, characteristic curves B, G, and L in FIG. 11 correspond to Examples 2, 5, and 8, respectively.
Furthermore, characteristic curves C, H, and M in FIG. 12 correspond to Examples 3, 6, and 9, respectively.
From the comparison of these characteristic curves, if there is even one gas barrier layer, the change in specific resistance of the zinc oxide film in the transparent conductive film becomes small regardless of the amount of indium as a dopant, that is, the wet heat characteristics are remarkably improved. It is understood.
Therefore, the specific resistance ratio represented by ρ 500 / ρ 0 is preferably a value of 1.4 or less, more preferably a value of 1.3 or less, and a value of 1.2 or less. Further preferred.
Further, the specific resistance ratio represented by ρ 1000 / ρ 0 is preferably 1.8 or less, more preferably 1.6 or less, and 1.4 or less. Further preferred.
3.樹脂基材
(1)種類
図1に例示する樹脂基材12に使用される樹脂としては、柔軟性及び透明性に優れるものであれば特に限定されず、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系コポリマ、シクロオレフィン系ポリマ、芳香族系重合体、ポリウレタン系ポリマ等が挙げられる。
これらの中でも、透明性に優れ、柔軟性及び汎用性があることから、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド、シクロオレフィン系ポリマ、及びポリエーテルスルフォンからなる群から選ばれる少なくとも1種であることが好ましく、ポリエステル又はシクロオレフィン系ポリマであることがさらに好ましい。
より具体的には、ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
また、ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
また、シクロオレフィン系ポリマとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。例えば、アぺル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。 3. Resin base material (1) type The resin used for theresin base material 12 illustrated in FIG. 1 is not particularly limited as long as it is excellent in flexibility and transparency. Polyimide, polyamide, polyamideimide, polyphenylene Ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin copolymer, cycloolefin polymer, aromatic polymer, Examples thereof include polyurethane polymers.
Among these, since it is excellent in transparency and has flexibility and versatility, it is preferably at least one selected from the group consisting of polyester, polycarbonate, polyimide, polyamide, cycloolefin polymer, and polyether sulfone. More preferably, it is a polyester or cycloolefin polymer.
More specifically, examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Examples thereof include apell (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), arton (a norbornene polymer manufactured by JSR), zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like.
(1)種類
図1に例示する樹脂基材12に使用される樹脂としては、柔軟性及び透明性に優れるものであれば特に限定されず、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系コポリマ、シクロオレフィン系ポリマ、芳香族系重合体、ポリウレタン系ポリマ等が挙げられる。
これらの中でも、透明性に優れ、柔軟性及び汎用性があることから、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド、シクロオレフィン系ポリマ、及びポリエーテルスルフォンからなる群から選ばれる少なくとも1種であることが好ましく、ポリエステル又はシクロオレフィン系ポリマであることがさらに好ましい。
より具体的には、ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
また、ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
また、シクロオレフィン系ポリマとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。例えば、アぺル(三井化学社製のエチレン-シクロオレフィン共重合体)、アートン(JSR社製のノルボルネン系重合体)、ゼオノア(日本ゼオン社製のノルボルネン系重合体)等が挙げられる。 3. Resin base material (1) type The resin used for the
Among these, since it is excellent in transparency and has flexibility and versatility, it is preferably at least one selected from the group consisting of polyester, polycarbonate, polyimide, polyamide, cycloolefin polymer, and polyether sulfone. More preferably, it is a polyester or cycloolefin polymer.
More specifically, examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
Examples of the polyamide include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
Examples of cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Examples thereof include apell (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), arton (a norbornene polymer manufactured by JSR), zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like.
(2)膜厚
また、図1に例示する樹脂基材12の膜厚は、使用目的等に応じて決定すればよいが、柔軟性及び取り扱いが容易であるという点から、1~1000μmの範囲内の値とすることが好ましく、5~250μmの範囲内の値とすることがより好ましく、10~200μmの範囲内の値とすることがさらに好ましい。 (2) Film thickness The film thickness of theresin substrate 12 illustrated in FIG. 1 may be determined according to the purpose of use, etc., but is in the range of 1 to 1000 μm from the viewpoint of flexibility and easy handling. The value is preferably in the range of 5 to 250 μm, more preferably in the range of 10 to 200 μm.
また、図1に例示する樹脂基材12の膜厚は、使用目的等に応じて決定すればよいが、柔軟性及び取り扱いが容易であるという点から、1~1000μmの範囲内の値とすることが好ましく、5~250μmの範囲内の値とすることがより好ましく、10~200μmの範囲内の値とすることがさらに好ましい。 (2) Film thickness The film thickness of the
(3)添加剤
また、樹脂基材には、上述した樹脂成分の他に、透明性等を損なわない範囲で、酸化防止剤、難燃剤、滑剤等の各種添加剤を含んでも良い。 (3) Additive In addition to the resin component described above, the resin base material may contain various additives such as an antioxidant, a flame retardant, and a lubricant as long as transparency and the like are not impaired.
また、樹脂基材には、上述した樹脂成分の他に、透明性等を損なわない範囲で、酸化防止剤、難燃剤、滑剤等の各種添加剤を含んでも良い。 (3) Additive In addition to the resin component described above, the resin base material may contain various additives such as an antioxidant, a flame retardant, and a lubricant as long as transparency and the like are not impaired.
4.他層
さらに、本発明の透明導電フィルムには、必要に応じて、各種他層を設けることができる。
このような他層としては、例えば、アンダーコート層(プライマー層)、平坦化層、ハードコート層、保護層、帯電防止層、防汚層、防眩層、カラーフィルター、接着剤層、装飾層、印刷層等が挙げられる。
ここで、図1(d)に示すように、アンダーコート層16は、樹脂基材と酸化亜鉛膜の密着性を向上させるために設ける層であり、材料としては、例えば、ウレタン系樹脂、アクリル系樹脂、シランカップリング剤、エポキシ系樹脂、ポリエステル系樹脂、紫外線硬化型樹脂等の公知のものを用いることができる。
また、図1(d)に示すように、樹脂基材12の酸化亜鉛膜10と反対側の面には、各用途に応じて他層18(防眩層、帯電防止層、防反射層、防汚層等)を設けることも好ましい。 4). Other layers Furthermore, various other layers can be provided in the transparent conductive film of this invention as needed.
Examples of such other layers include an undercoat layer (primer layer), a planarizing layer, a hard coat layer, a protective layer, an antistatic layer, an antifouling layer, an antiglare layer, a color filter, an adhesive layer, and a decorative layer. And a printing layer.
Here, as shown in FIG.1 (d), theundercoat layer 16 is a layer provided in order to improve the adhesiveness of a resin base material and a zinc oxide film, As a material, it is a urethane type resin, an acryl, for example Known resins such as a resin, a silane coupling agent, an epoxy resin, a polyester resin, and an ultraviolet curable resin can be used.
Moreover, as shown in FIG.1 (d), on the surface on the opposite side to the zinc oxide film |membrane 10 of the resin base material 12, according to each use, the other layer 18 (Anti-glare layer, antistatic layer, antireflection layer, It is also preferable to provide an antifouling layer or the like.
さらに、本発明の透明導電フィルムには、必要に応じて、各種他層を設けることができる。
このような他層としては、例えば、アンダーコート層(プライマー層)、平坦化層、ハードコート層、保護層、帯電防止層、防汚層、防眩層、カラーフィルター、接着剤層、装飾層、印刷層等が挙げられる。
ここで、図1(d)に示すように、アンダーコート層16は、樹脂基材と酸化亜鉛膜の密着性を向上させるために設ける層であり、材料としては、例えば、ウレタン系樹脂、アクリル系樹脂、シランカップリング剤、エポキシ系樹脂、ポリエステル系樹脂、紫外線硬化型樹脂等の公知のものを用いることができる。
また、図1(d)に示すように、樹脂基材12の酸化亜鉛膜10と反対側の面には、各用途に応じて他層18(防眩層、帯電防止層、防反射層、防汚層等)を設けることも好ましい。 4). Other layers Furthermore, various other layers can be provided in the transparent conductive film of this invention as needed.
Examples of such other layers include an undercoat layer (primer layer), a planarizing layer, a hard coat layer, a protective layer, an antistatic layer, an antifouling layer, an antiglare layer, a color filter, an adhesive layer, and a decorative layer. And a printing layer.
Here, as shown in FIG.1 (d), the
Moreover, as shown in FIG.1 (d), on the surface on the opposite side to the zinc oxide film |
5.透明導電フィルム
(1)態様
図1(a)~(d)に例示される透明導電フィルム50、50´、50´´、50´´´は、樹脂基材12上の片面又は両面にガスバリア層14、14´及び酸化亜鉛膜10、10´を形成してなる透明導電フィルムであって、酸化亜鉛膜が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、当該酸化亜鉛膜は、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とし、所定の湿熱特性及び膜厚を有している。
なお、本発明において、酸化亜鉛膜の透明性に関して、所定厚さ、例えば、20~600nmのいずれかにおいて、波長550nmの光線透過率が70%以上の値であることが好ましく、80%以上の値であることがより好ましく、90%以上の値であることがさらに好ましい。
また、透明導電フィルムの透明性に関して、所定厚さ、例えば10μm~1mmのいずれかにおいて、波長550nmの光線透過率が50%以上の値であることが好ましく、60%以上の値であることがより好ましく、70%以上の値であることがさらに好ましい。 5. Transparent conductive film (1) embodiment The transparent conductive films 50, 50 ', 50 ", 50""illustrated in FIGS. 1 (a) to 1 (d) are gas barrier layers on one or both sides of the resin substrate 12. 14 and 14 'and zinc oxide films 10 and 10', wherein the zinc oxide film contains zinc oxide and is doped with gallium and indium. The zinc oxide film has an indium content within a range of 0.01 to 25 atom% with respect to the total amount (100 atom%) of zinc content, gallium content, oxygen content, and indium content as measured by XPS elemental analysis. In addition, the amount of gallium is set to a value in the range of 0.1 to 10 atom%, and it has predetermined wet heat characteristics and film thickness.
In the present invention, regarding the transparency of the zinc oxide film, the light transmittance at a wavelength of 550 nm is preferably a value of 70% or more at a predetermined thickness, for example, any of 20 to 600 nm, and 80% or more. More preferably, the value is 90% or more.
Regarding the transparency of the transparent conductive film, the light transmittance at a wavelength of 550 nm is preferably a value of 50% or more and a value of 60% or more at a predetermined thickness, for example, from 10 μm to 1 mm. More preferably, the value is more preferably 70% or more.
(1)態様
図1(a)~(d)に例示される透明導電フィルム50、50´、50´´、50´´´は、樹脂基材12上の片面又は両面にガスバリア層14、14´及び酸化亜鉛膜10、10´を形成してなる透明導電フィルムであって、酸化亜鉛膜が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、当該酸化亜鉛膜は、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、かつ、ガリウム量を0.1~10atom%の範囲内の値とし、所定の湿熱特性及び膜厚を有している。
なお、本発明において、酸化亜鉛膜の透明性に関して、所定厚さ、例えば、20~600nmのいずれかにおいて、波長550nmの光線透過率が70%以上の値であることが好ましく、80%以上の値であることがより好ましく、90%以上の値であることがさらに好ましい。
また、透明導電フィルムの透明性に関して、所定厚さ、例えば10μm~1mmのいずれかにおいて、波長550nmの光線透過率が50%以上の値であることが好ましく、60%以上の値であることがより好ましく、70%以上の値であることがさらに好ましい。 5. Transparent conductive film (1) embodiment The transparent
In the present invention, regarding the transparency of the zinc oxide film, the light transmittance at a wavelength of 550 nm is preferably a value of 70% or more at a predetermined thickness, for example, any of 20 to 600 nm, and 80% or more. More preferably, the value is 90% or more.
Regarding the transparency of the transparent conductive film, the light transmittance at a wavelength of 550 nm is preferably a value of 50% or more and a value of 60% or more at a predetermined thickness, for example, from 10 μm to 1 mm. More preferably, the value is more preferably 70% or more.
(2)比抵抗
図1(a)~(d)に例示される透明導電フィルム50、50´、50´´、50´´´の比抵抗(ρ)は、酸化亜鉛膜10、10´の比抵抗と、実質的に同一であることから、再度の説明は省略する。 (2) Specific Resistance The specific resistance (ρ) of the transparent conductive films 50, 50 ′, 50 ″, 50 ″ ″ illustrated in FIGS. 1A to 1D is the same as that of the zinc oxide films 10, 10 ′. Since it is substantially the same as the specific resistance, the description thereof will be omitted.
図1(a)~(d)に例示される透明導電フィルム50、50´、50´´、50´´´の比抵抗(ρ)は、酸化亜鉛膜10、10´の比抵抗と、実質的に同一であることから、再度の説明は省略する。 (2) Specific Resistance The specific resistance (ρ) of the transparent
[第2の実施形態]
第2の実施形態は、樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムの製造方法であって、下記工程(1)~(3)を含むことを特徴とする透明導電フィルムの製造方法である。
(1)樹脂基材及び焼結体を、それぞれ準備する工程(以下、工程(1)と称する場合がある。)
(2)樹脂基材の少なくとも片面に、ガスバリア層を形成する工程(以下、工程(2)と称する場合がある。)
(3)ガスバリア層上に、スパッタリング法を用いて、焼結体から形成してなる、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープした酸化亜鉛膜であり、かつ、当該酸化亜鉛膜において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とするとともに、ガリウム量を0.1~10atom%の範囲内の値とし、当該酸化亜鉛膜の初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、膜厚が20~300nmの範囲内の値である酸化亜鉛膜を形成する工程(以下、工程(3)と称する場合がある。)
以下、第2の実施形態の透明導電フィルムの製造方法について、具体的に説明する。 [Second Embodiment]
The second embodiment is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, which comprises the following steps (1) to (1): It is a manufacturing method of the transparent conductive film characterized by including (3).
(1) A step of preparing each of the resin base material and the sintered body (hereinafter sometimes referred to as step (1)).
(2) A step of forming a gas barrier layer on at least one surface of the resin base material (hereinafter sometimes referred to as step (2)).
(3) A zinc oxide film containing zinc oxide and doped with gallium and indium, formed from a sintered body on the gas barrier layer by sputtering, and in the zinc oxide film, XPS With respect to the total amount (100 atom%) of zinc, gallium, oxygen and indium determined by elemental analysis, the indium content is set to a value within the range of 0.01 to 25 atom%, and the gallium content is 0. The initial resistivity of the zinc oxide film is ρ 0 and the resistivity after storage for 500 hours at 60 ° C. and 95% relative humidity is ρ 500 . Then, the ratio represented by ρ 500 / ρ 0 is set to a value of 1.5 or less, and further, a step of forming a zinc oxide film having a thickness in the range of 20 to 300 nm (hereinafter referred to as step (3) ) May be.)
Hereinafter, the manufacturing method of the transparent conductive film of 2nd Embodiment is demonstrated concretely.
第2の実施形態は、樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムの製造方法であって、下記工程(1)~(3)を含むことを特徴とする透明導電フィルムの製造方法である。
(1)樹脂基材及び焼結体を、それぞれ準備する工程(以下、工程(1)と称する場合がある。)
(2)樹脂基材の少なくとも片面に、ガスバリア層を形成する工程(以下、工程(2)と称する場合がある。)
(3)ガスバリア層上に、スパッタリング法を用いて、焼結体から形成してなる、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープした酸化亜鉛膜であり、かつ、当該酸化亜鉛膜において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とするとともに、ガリウム量を0.1~10atom%の範囲内の値とし、当該酸化亜鉛膜の初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、膜厚が20~300nmの範囲内の値である酸化亜鉛膜を形成する工程(以下、工程(3)と称する場合がある。)
以下、第2の実施形態の透明導電フィルムの製造方法について、具体的に説明する。 [Second Embodiment]
The second embodiment is a method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, which comprises the following steps (1) to (1): It is a manufacturing method of the transparent conductive film characterized by including (3).
(1) A step of preparing each of the resin base material and the sintered body (hereinafter sometimes referred to as step (1)).
(2) A step of forming a gas barrier layer on at least one surface of the resin base material (hereinafter sometimes referred to as step (2)).
(3) A zinc oxide film containing zinc oxide and doped with gallium and indium, formed from a sintered body on the gas barrier layer by sputtering, and in the zinc oxide film, XPS With respect to the total amount (100 atom%) of zinc, gallium, oxygen and indium determined by elemental analysis, the indium content is set to a value within the range of 0.01 to 25 atom%, and the gallium content is 0. The initial resistivity of the zinc oxide film is ρ 0 and the resistivity after storage for 500 hours at 60 ° C. and 95% relative humidity is ρ 500 . Then, the ratio represented by ρ 500 / ρ 0 is set to a value of 1.5 or less, and further, a step of forming a zinc oxide film having a thickness in the range of 20 to 300 nm (hereinafter referred to as step (3) ) May be.)
Hereinafter, the manufacturing method of the transparent conductive film of 2nd Embodiment is demonstrated concretely.
1.工程(1):樹脂基材及び焼結体を準備する工程
工程(1)は、樹脂基材及び焼結体を準備する工程である。
すなわち、図1(a)~(d)に例示される酸化亜鉛膜は、酸化亜鉛を主成分とするとともに、酸化ガリウム及び酸化インジウムをさらに含む焼結体から成膜することが好ましい。
また、酸化亜鉛膜を形成する焼結体において、当該焼結体の全体量に対して、酸化亜鉛の配合量を15~99.98重量%の範囲内の値とし、酸化ガリウムの配合量を0.01~15重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.01~70重量%の範囲内の値とすることが好ましい。
この理由は、配合量が制御された酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体を用いることにより、湿熱特性に優れた酸化亜鉛膜を効率的に成膜することができ、ひいては、生産効率を向上させることができるためである。
より具体的には、焼結体の全体量に対して、酸化インジウムの配合量が0.01重量%未満の場合は、成膜後の酸化亜鉛膜に含まれるインジウムの量が著しく少なくなり、十分な湿熱特性が得られない場合があるためである。
したがって、焼結体の全体量に対して、酸化亜鉛の配合量を27~99.4重量%の範囲内の値とし、酸化ガリウムの配合量を0.5~8重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.1~65重量%の範囲内の値とすることがより好ましい。
また、焼結体の全体量に対して、酸化亜鉛の配合量を33~98.7重量%の範囲内の値とし、酸化ガリウムの配合量を1~7重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~60重量%の範囲内の値とすることがさらに好ましい。
なお、樹脂基材の詳細については、既に記載した通りであるため、省略する。 1. Process (1): The process of preparing a resin base material and a sintered compact Process (1) is a process of preparing a resin base material and a sintered compact.
That is, the zinc oxide film illustrated in FIGS. 1A to 1D is preferably formed from a sintered body containing zinc oxide as a main component and further containing gallium oxide and indium oxide.
Further, in the sintered body forming the zinc oxide film, the blending amount of zinc oxide is set to a value within the range of 15 to 99.98% by weight with respect to the total amount of the sintered body, and the blending amount of gallium oxide is It is preferable to set the value within the range of 0.01 to 15% by weight and the amount of indium oxide to be within the range of 0.01 to 70% by weight.
The reason for this is that by using a ternary sintered body of zinc oxide-gallium oxide-indium oxide in which the blending amount is controlled, a zinc oxide film having excellent wet heat characteristics can be efficiently formed. This is because production efficiency can be improved.
More specifically, when the blending amount of indium oxide is less than 0.01% by weight relative to the total amount of the sintered body, the amount of indium contained in the zinc oxide film after film formation is significantly reduced. This is because sufficient wet heat characteristics may not be obtained.
Accordingly, the zinc oxide content is within the range of 27 to 99.4% by weight and the gallium oxide content is within the range of 0.5 to 8% by weight relative to the total amount of the sintered body. More preferably, the blending amount of indium oxide is set to a value within the range of 0.1 to 65% by weight.
The blending amount of zinc oxide is set to a value within the range of 33 to 98.7% by weight, and the blending amount of gallium oxide is set to a value within the range of 1 to 7% by weight with respect to the total amount of the sintered body. Further, it is more preferable that the blending amount of indium oxide is a value within the range of 0.3 to 60% by weight.
The details of the resin base material are the same as those already described, and will be omitted.
工程(1)は、樹脂基材及び焼結体を準備する工程である。
すなわち、図1(a)~(d)に例示される酸化亜鉛膜は、酸化亜鉛を主成分とするとともに、酸化ガリウム及び酸化インジウムをさらに含む焼結体から成膜することが好ましい。
また、酸化亜鉛膜を形成する焼結体において、当該焼結体の全体量に対して、酸化亜鉛の配合量を15~99.98重量%の範囲内の値とし、酸化ガリウムの配合量を0.01~15重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.01~70重量%の範囲内の値とすることが好ましい。
この理由は、配合量が制御された酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体を用いることにより、湿熱特性に優れた酸化亜鉛膜を効率的に成膜することができ、ひいては、生産効率を向上させることができるためである。
より具体的には、焼結体の全体量に対して、酸化インジウムの配合量が0.01重量%未満の場合は、成膜後の酸化亜鉛膜に含まれるインジウムの量が著しく少なくなり、十分な湿熱特性が得られない場合があるためである。
したがって、焼結体の全体量に対して、酸化亜鉛の配合量を27~99.4重量%の範囲内の値とし、酸化ガリウムの配合量を0.5~8重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.1~65重量%の範囲内の値とすることがより好ましい。
また、焼結体の全体量に対して、酸化亜鉛の配合量を33~98.7重量%の範囲内の値とし、酸化ガリウムの配合量を1~7重量%の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~60重量%の範囲内の値とすることがさらに好ましい。
なお、樹脂基材の詳細については、既に記載した通りであるため、省略する。 1. Process (1): The process of preparing a resin base material and a sintered compact Process (1) is a process of preparing a resin base material and a sintered compact.
That is, the zinc oxide film illustrated in FIGS. 1A to 1D is preferably formed from a sintered body containing zinc oxide as a main component and further containing gallium oxide and indium oxide.
Further, in the sintered body forming the zinc oxide film, the blending amount of zinc oxide is set to a value within the range of 15 to 99.98% by weight with respect to the total amount of the sintered body, and the blending amount of gallium oxide is It is preferable to set the value within the range of 0.01 to 15% by weight and the amount of indium oxide to be within the range of 0.01 to 70% by weight.
The reason for this is that by using a ternary sintered body of zinc oxide-gallium oxide-indium oxide in which the blending amount is controlled, a zinc oxide film having excellent wet heat characteristics can be efficiently formed. This is because production efficiency can be improved.
More specifically, when the blending amount of indium oxide is less than 0.01% by weight relative to the total amount of the sintered body, the amount of indium contained in the zinc oxide film after film formation is significantly reduced. This is because sufficient wet heat characteristics may not be obtained.
Accordingly, the zinc oxide content is within the range of 27 to 99.4% by weight and the gallium oxide content is within the range of 0.5 to 8% by weight relative to the total amount of the sintered body. More preferably, the blending amount of indium oxide is set to a value within the range of 0.1 to 65% by weight.
The blending amount of zinc oxide is set to a value within the range of 33 to 98.7% by weight, and the blending amount of gallium oxide is set to a value within the range of 1 to 7% by weight with respect to the total amount of the sintered body. Further, it is more preferable that the blending amount of indium oxide is a value within the range of 0.3 to 60% by weight.
The details of the resin base material are the same as those already described, and will be omitted.
2.工程(2):ガスバリア層の形成工程
工程(2)は、透明導電フィルムのガスバリア層14、14´の形成工程であって、ガスバリア性を所望する樹脂基材12を準備し、樹脂基材上にガスバリア層14、14´を形成する工程である。 2. Step (2): Gas Barrier Layer Forming Step Step (2) is a step of forming the gas barrier layers 14 and 14 'of the transparent conductive film, and aresin base material 12 for which gas barrier properties are desired is prepared. In this step, the gas barrier layers 14 and 14 'are formed.
工程(2)は、透明導電フィルムのガスバリア層14、14´の形成工程であって、ガスバリア性を所望する樹脂基材12を準備し、樹脂基材上にガスバリア層14、14´を形成する工程である。 2. Step (2): Gas Barrier Layer Forming Step Step (2) is a step of forming the gas barrier layers 14 and 14 'of the transparent conductive film, and a
また、ガスバリア層を形成する方法としては、特に限定されず、例えば、上述の材料を蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、プラズマCVD法等により基材上に形成する方法や、上述した材料を有機溶剤に溶解又は分散した溶液を公知の塗布方法によって樹脂基材上に塗布し、得られた塗膜を適度に乾燥して形成する方法、又は得られた塗膜に対して大気圧プラズマ処理、イオン注入処理、ランプアニール処理等の改質処理を行って形成する方法等が挙げられる。
In addition, the method for forming the gas barrier layer is not particularly limited. For example, a method for forming the above-described material on a substrate by a vapor deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, or the like. , A method in which a solution obtained by dissolving or dispersing the above-described material in an organic solvent is applied on a resin substrate by a known application method, and the obtained coating film is appropriately dried, or the obtained coating film And a method of forming by performing a modification process such as an atmospheric pressure plasma process, an ion implantation process, and a lamp annealing process.
例えば、上述したガスバリア層14は、ポリシラザン化合物含有層に、プラズマイオン注入処理を施すことによりポリシラザン化合物含有層に、プラズマイオン注入処理を施すことにより形成することができる。
このようなプラズマイオン注入処理としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に対して注入する方法、又は外部電電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に注入する方法が挙げられる。
なお、注入されるイオンとしては、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトン等が挙げられる。 For example, thegas barrier layer 14 described above can be formed by performing plasma ion implantation on the polysilazane compound-containing layer by performing plasma ion implantation on the polysilazane compound-containing layer.
As such plasma ion implantation treatment, a method for injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or for forming a gas barrier layer without using an external electric field. There is a method in which ions existing in plasma generated only by an electric field generated by a negative high voltage pulse applied to a layer made of a material are implanted into the polysilazane compound-containing layer.
Examples of ions to be implanted include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
このようなプラズマイオン注入処理としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に対して注入する方法、又は外部電電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に注入する方法が挙げられる。
なお、注入されるイオンとしては、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトン等が挙げられる。 For example, the
As such plasma ion implantation treatment, a method for injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or for forming a gas barrier layer without using an external electric field. There is a method in which ions existing in plasma generated only by an electric field generated by a negative high voltage pulse applied to a layer made of a material are implanted into the polysilazane compound-containing layer.
Examples of ions to be implanted include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
3.工程(3):酸化亜鉛膜の形成工程
工程(3)は、樹脂基材の少なくとも片面に酸化亜鉛膜を形成する方法である。
すなわち、酸化亜鉛膜を形成する方法として、スパッタリング法や蒸着法に代表される物理的作製法と、化学気相成長法に代表される化学的作製法が挙げられるが、これらの中でも、簡便かつ効率よく、透明導電体層を形成できることから、スパッタリング法を用いることを特徴とする。
この理由は、スパッタリング法によれば、1工程のみであっても、ターゲットの配合組成等を調整することによって、組成が異なる第1領域及び第2領域を含んでなる酸化亜鉛膜を効率良く形成できるためである。
なお、組成が異なる第1領域及び第2領域を含む酸化亜鉛膜を効率良く形成するためには、上述したように、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体のターゲットを用い、全体量を100重量%とした時に、酸化亜鉛の配合量を70~99.98重量%(亜鉛として56~80重量%)の範囲内の値とし、酸化ガリウムの配合量を0.01~15重量%(ガリウムとして0.007~11.2重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.01~15重量%(インジウムとして0.008~12.4重量%)の範囲内の値とすることである。
したがって、焼結体の全体量に対して、酸化亜鉛の配合量を76~99.4重量%(亜鉛として61~80重量%)の範囲内の値とし、酸化ガリウムの配合量を0.5~12重量%(ガリウムとして0.37~8.9重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.1~12重量(インジウムとして0.08~9.9重量%)の範囲内の値とすることがより好ましい。
また、焼結体の全体量に対して、酸化亜鉛の配合量を80~98.7重量%(亜鉛として64~79重量%)の範囲内の値とし、酸化ガリウムの配合量を1~10重量%(ガリウムとして0.74~7.4重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~10重量%(インジウムとして0.25~8.3重量%)の範囲内の値とすることがさらに好ましい。
さらに、焼結体の全体量に対して、酸化亜鉛の配合量を80~94.3重量%(亜鉛として64~79重量%)の範囲内の値とし、酸化ガリウムの配合量を5.4~10重量%(ガリウムとして4.1~7.4重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~10重量%(インジウムとして0.25~8.3重量%)の範囲内の値とすることがさらに好ましい。 3. Step (3): Zinc Oxide Film Forming Step Step (3) is a method of forming a zinc oxide film on at least one surface of a resin base material.
That is, as a method for forming a zinc oxide film, a physical production method typified by a sputtering method or a vapor deposition method, and a chemical production method typified by a chemical vapor deposition method can be mentioned. Since a transparent conductor layer can be efficiently formed, a sputtering method is used.
This is because, according to the sputtering method, even in only one step, a zinc oxide film comprising a first region and a second region having different compositions can be efficiently formed by adjusting the composition of the target. This is because it can.
In order to efficiently form the zinc oxide film including the first region and the second region having different compositions, the target of the ternary sintered body of zinc oxide-gallium oxide-indium oxide is used as described above. When the total amount is 100% by weight, the blending amount of zinc oxide is 70 to 99.98% by weight (56 to 80% by weight as zinc), and the blending amount of gallium oxide is 0.01 to 15% by weight (0.007 to 11.2% by weight as gallium) and 0.01 to 15% by weight of indium oxide (0.008 to 12.4% by weight as indium) ) Within the range.
Therefore, the blending amount of zinc oxide is set to a value in the range of 76 to 99.4% by weight (61 to 80% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 0.5. The value is within a range of ˜12% by weight (0.37 to 8.9% by weight as gallium), and the blending amount of indium oxide is 0.1 to 12% by weight (0.08 to 9.9% by weight as indium). It is more preferable to set the value within the range.
Further, the blending amount of zinc oxide is set to a value in the range of 80 to 98.7% by weight (64 to 79% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 1 to 10%. % By weight (0.74 to 7.4% by weight as gallium), and 0.3 to 10% by weight of indium oxide (0.25 to 8.3% by weight as indium) It is more preferable to set the value within the range.
Furthermore, the blending amount of zinc oxide is set to a value within the range of 80 to 94.3 wt% (64 to 79 wt% as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 5.4. The value is in the range of ˜10% by weight (4.1 to 7.4% by weight as gallium), and the blending amount of indium oxide is 0.3 to 10% by weight (0.25 to 8.3% by weight as indium). %) Is more preferable.
工程(3)は、樹脂基材の少なくとも片面に酸化亜鉛膜を形成する方法である。
すなわち、酸化亜鉛膜を形成する方法として、スパッタリング法や蒸着法に代表される物理的作製法と、化学気相成長法に代表される化学的作製法が挙げられるが、これらの中でも、簡便かつ効率よく、透明導電体層を形成できることから、スパッタリング法を用いることを特徴とする。
この理由は、スパッタリング法によれば、1工程のみであっても、ターゲットの配合組成等を調整することによって、組成が異なる第1領域及び第2領域を含んでなる酸化亜鉛膜を効率良く形成できるためである。
なお、組成が異なる第1領域及び第2領域を含む酸化亜鉛膜を効率良く形成するためには、上述したように、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体のターゲットを用い、全体量を100重量%とした時に、酸化亜鉛の配合量を70~99.98重量%(亜鉛として56~80重量%)の範囲内の値とし、酸化ガリウムの配合量を0.01~15重量%(ガリウムとして0.007~11.2重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.01~15重量%(インジウムとして0.008~12.4重量%)の範囲内の値とすることである。
したがって、焼結体の全体量に対して、酸化亜鉛の配合量を76~99.4重量%(亜鉛として61~80重量%)の範囲内の値とし、酸化ガリウムの配合量を0.5~12重量%(ガリウムとして0.37~8.9重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.1~12重量(インジウムとして0.08~9.9重量%)の範囲内の値とすることがより好ましい。
また、焼結体の全体量に対して、酸化亜鉛の配合量を80~98.7重量%(亜鉛として64~79重量%)の範囲内の値とし、酸化ガリウムの配合量を1~10重量%(ガリウムとして0.74~7.4重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~10重量%(インジウムとして0.25~8.3重量%)の範囲内の値とすることがさらに好ましい。
さらに、焼結体の全体量に対して、酸化亜鉛の配合量を80~94.3重量%(亜鉛として64~79重量%)の範囲内の値とし、酸化ガリウムの配合量を5.4~10重量%(ガリウムとして4.1~7.4重量%)の範囲内の値とし、かつ、酸化インジウムの配合量を0.3~10重量%(インジウムとして0.25~8.3重量%)の範囲内の値とすることがさらに好ましい。 3. Step (3): Zinc Oxide Film Forming Step Step (3) is a method of forming a zinc oxide film on at least one surface of a resin base material.
That is, as a method for forming a zinc oxide film, a physical production method typified by a sputtering method or a vapor deposition method, and a chemical production method typified by a chemical vapor deposition method can be mentioned. Since a transparent conductor layer can be efficiently formed, a sputtering method is used.
This is because, according to the sputtering method, even in only one step, a zinc oxide film comprising a first region and a second region having different compositions can be efficiently formed by adjusting the composition of the target. This is because it can.
In order to efficiently form the zinc oxide film including the first region and the second region having different compositions, the target of the ternary sintered body of zinc oxide-gallium oxide-indium oxide is used as described above. When the total amount is 100% by weight, the blending amount of zinc oxide is 70 to 99.98% by weight (56 to 80% by weight as zinc), and the blending amount of gallium oxide is 0.01 to 15% by weight (0.007 to 11.2% by weight as gallium) and 0.01 to 15% by weight of indium oxide (0.008 to 12.4% by weight as indium) ) Within the range.
Therefore, the blending amount of zinc oxide is set to a value in the range of 76 to 99.4% by weight (61 to 80% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 0.5. The value is within a range of ˜12% by weight (0.37 to 8.9% by weight as gallium), and the blending amount of indium oxide is 0.1 to 12% by weight (0.08 to 9.9% by weight as indium). It is more preferable to set the value within the range.
Further, the blending amount of zinc oxide is set to a value in the range of 80 to 98.7% by weight (64 to 79% by weight as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 1 to 10%. % By weight (0.74 to 7.4% by weight as gallium), and 0.3 to 10% by weight of indium oxide (0.25 to 8.3% by weight as indium) It is more preferable to set the value within the range.
Furthermore, the blending amount of zinc oxide is set to a value within the range of 80 to 94.3 wt% (64 to 79 wt% as zinc) with respect to the total amount of the sintered body, and the blending amount of gallium oxide is 5.4. The value is in the range of ˜10% by weight (4.1 to 7.4% by weight as gallium), and the blending amount of indium oxide is 0.3 to 10% by weight (0.25 to 8.3% by weight as indium). %) Is more preferable.
ここで、より具体的なスパッタリング法として、DCスパッタリング法、DCマグネトロンスパッタリング法、RFスパッタリング法、RFマグネトロンスパッタリング法、DC+RF重畳スパッタリング法、DC+RF重畳マグネトロンスパッタリング法、対向ターゲットスパッタリング法、ECRスパッタリング法、デュアルマグネトロンスパッタリング法等が挙げられる。
Here, as a more specific sputtering method, DC sputtering method, DC magnetron sputtering method, RF sputtering method, RF magnetron sputtering method, DC + RF superposition sputtering method, DC + RF superposition magnetron sputtering method, counter target sputtering method, ECR sputtering method, dual The magnetron sputtering method etc. are mentioned.
また、スパッタリング条件としては、特に限定されないが、背圧としては、1×10-2Pa以下の値が好ましく、1×10-3Pa以下の値がより好ましい。
また、アルゴンガスを系内に導入する形成方法を選択した場合、系内圧力を0.1~5Pa、より好ましくは0.2~1Paの範囲内の値とすることが好ましい。
さらに、スパッタリング法を実施するに際して、系内に導入するガス種は、アルゴン(Ar)もしくはアルゴン(Ar)と酸素(O2)の混合ガスを用いることが生産コスト上、好ましいが、Ar以外の希ガス、窒素(N2)等を用いても良い。
また、混合ガスを用いる場合、かかる混合比(O2/(Ar+O2))を0.01~20の範囲内の値とすることが好ましく、0.1~10の範囲内の値とすることがさらに好ましい。
この理由は、アルゴンと酸素の混合比が上述した範囲であれば、比抵抗が低く、反射率が低い導電層を成膜することができるためである。 The sputtering conditions are not particularly limited, but the back pressure is preferably 1 × 10 −2 Pa or less, and more preferably 1 × 10 −3 Pa or less.
In addition, when a formation method in which argon gas is introduced into the system is selected, the internal pressure is preferably set to a value in the range of 0.1 to 5 Pa, more preferably 0.2 to 1 Pa.
Furthermore, it is preferable in terms of production cost to use argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ) as the gas species introduced into the system when performing the sputtering method. A rare gas, nitrogen (N 2 ), or the like may be used.
When a mixed gas is used, the mixing ratio (O 2 / (Ar + O 2 )) is preferably set to a value within the range of 0.01 to 20, and preferably set to a value within the range of 0.1 to 10. Is more preferable.
This is because when the mixing ratio of argon and oxygen is in the above-described range, a conductive layer having a low specific resistance and low reflectance can be formed.
また、アルゴンガスを系内に導入する形成方法を選択した場合、系内圧力を0.1~5Pa、より好ましくは0.2~1Paの範囲内の値とすることが好ましい。
さらに、スパッタリング法を実施するに際して、系内に導入するガス種は、アルゴン(Ar)もしくはアルゴン(Ar)と酸素(O2)の混合ガスを用いることが生産コスト上、好ましいが、Ar以外の希ガス、窒素(N2)等を用いても良い。
また、混合ガスを用いる場合、かかる混合比(O2/(Ar+O2))を0.01~20の範囲内の値とすることが好ましく、0.1~10の範囲内の値とすることがさらに好ましい。
この理由は、アルゴンと酸素の混合比が上述した範囲であれば、比抵抗が低く、反射率が低い導電層を成膜することができるためである。 The sputtering conditions are not particularly limited, but the back pressure is preferably 1 × 10 −2 Pa or less, and more preferably 1 × 10 −3 Pa or less.
In addition, when a formation method in which argon gas is introduced into the system is selected, the internal pressure is preferably set to a value in the range of 0.1 to 5 Pa, more preferably 0.2 to 1 Pa.
Furthermore, it is preferable in terms of production cost to use argon (Ar) or a mixed gas of argon (Ar) and oxygen (O 2 ) as the gas species introduced into the system when performing the sputtering method. A rare gas, nitrogen (N 2 ), or the like may be used.
When a mixed gas is used, the mixing ratio (O 2 / (Ar + O 2 )) is preferably set to a value within the range of 0.01 to 20, and preferably set to a value within the range of 0.1 to 10. Is more preferable.
This is because when the mixing ratio of argon and oxygen is in the above-described range, a conductive layer having a low specific resistance and low reflectance can be formed.
また、樹脂基材上に酸化亜鉛膜を形成する際の樹脂基材の温度を10~150℃の範囲内の値とすることが好ましい。
この理由は、樹脂基材の温度が10~150℃の範囲内の値であれば、軟化点が比較的低い樹脂基材であっても、好適に酸化亜鉛膜を形成することができるためである。 Further, the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C.
This is because, if the temperature of the resin substrate is a value within the range of 10 to 150 ° C., a zinc oxide film can be suitably formed even with a resin substrate having a relatively low softening point. is there.
この理由は、樹脂基材の温度が10~150℃の範囲内の値であれば、軟化点が比較的低い樹脂基材であっても、好適に酸化亜鉛膜を形成することができるためである。 Further, the temperature of the resin base material when forming the zinc oxide film on the resin base material is preferably set to a value within the range of 10 to 150 ° C.
This is because, if the temperature of the resin substrate is a value within the range of 10 to 150 ° C., a zinc oxide film can be suitably formed even with a resin substrate having a relatively low softening point. is there.
[第3の実施形態]
第3の実施形態は、上述した第1の実施形態の透明導電フィルムを透明電極に用いてなることを特徴とする電子デバイスである。
より具体的には、所定の透明導電フィルムを備えた透明電極を搭載してなる液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池、有機トランジスタ、有機EL照明、無機EL照明、熱電変換デバイス、ガスセンサー等が挙げられる。 [Third embodiment]
The third embodiment is an electronic device using the transparent conductive film of the first embodiment described above as a transparent electrode.
More specifically, a liquid crystal display, an organic EL display, an inorganic EL display, an electronic paper, a solar cell, an organic transistor, an organic EL lighting, an inorganic EL lighting, a thermoelectric device, which are mounted with a transparent electrode provided with a predetermined transparent conductive film. A conversion device, a gas sensor, etc. are mentioned.
第3の実施形態は、上述した第1の実施形態の透明導電フィルムを透明電極に用いてなることを特徴とする電子デバイスである。
より具体的には、所定の透明導電フィルムを備えた透明電極を搭載してなる液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池、有機トランジスタ、有機EL照明、無機EL照明、熱電変換デバイス、ガスセンサー等が挙げられる。 [Third embodiment]
The third embodiment is an electronic device using the transparent conductive film of the first embodiment described above as a transparent electrode.
More specifically, a liquid crystal display, an organic EL display, an inorganic EL display, an electronic paper, a solar cell, an organic transistor, an organic EL lighting, an inorganic EL lighting, a thermoelectric device, which are mounted with a transparent electrode provided with a predetermined transparent conductive film. A conversion device, a gas sensor, etc. are mentioned.
すなわち、本発明の電子デバイスは、第1の実施形態に記載の透明導電フィルムを備えているので、比抵抗が十分に小さく、かつ、長期に渡って比抵抗の上昇が抑制できる導電性を発揮することができる。
That is, since the electronic device of the present invention includes the transparent conductive film described in the first embodiment, the specific resistance is sufficiently small and the conductivity that can suppress an increase in specific resistance over a long period of time is exhibited. can do.
以下、本発明を実施例によってさらに詳細に説明する。但し、以下の説明は、本発明を例示的に示すものであり、本発明はこれらの記載に制限されるものではない。
なお、上述したように、酸化亜鉛膜において、工程が1ステップの場合であっても、膜厚方向に組成が異なる第1領域及び第2領域が形成される場合がある。
但し、第1領域の厚さは、通常、20nm未満であることから、酸化亜鉛膜と、ガスバリア層とを併用する本発明の場合、特に、以下の実施例の場合、そのような複数領域を有する場合であっても、便宜上、酸化亜鉛膜を単一層として扱うものとする。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following description shows the present invention by way of example, and the present invention is not limited to these descriptions.
Note that, as described above, in the zinc oxide film, even if the process is a single step, the first region and the second region having different compositions in the film thickness direction may be formed.
However, since the thickness of the first region is usually less than 20 nm, in the case of the present invention in which the zinc oxide film and the gas barrier layer are used in combination, particularly in the following examples, such a plurality of regions are formed. Even if it has, the zinc oxide film shall be handled as a single layer for convenience.
なお、上述したように、酸化亜鉛膜において、工程が1ステップの場合であっても、膜厚方向に組成が異なる第1領域及び第2領域が形成される場合がある。
但し、第1領域の厚さは、通常、20nm未満であることから、酸化亜鉛膜と、ガスバリア層とを併用する本発明の場合、特に、以下の実施例の場合、そのような複数領域を有する場合であっても、便宜上、酸化亜鉛膜を単一層として扱うものとする。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following description shows the present invention by way of example, and the present invention is not limited to these descriptions.
Note that, as described above, in the zinc oxide film, even if the process is a single step, the first region and the second region having different compositions in the film thickness direction may be formed.
However, since the thickness of the first region is usually less than 20 nm, in the case of the present invention in which the zinc oxide film and the gas barrier layer are used in combination, particularly in the following examples, such a plurality of regions are formed. Even if it has, the zinc oxide film shall be handled as a single layer for convenience.
[実施例1]
1.透明導電フィルムの製造
(1)工程(1):樹脂基材及び焼結体を準備する工程
樹脂基材として、ポリエチレンテレフタレートフィルム(東洋紡績社製A4100、厚み:100μm)を準備した。
また、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体(ZnO:Ga2O3:In2O3=94.0重量%:5.7重量%:0.3重量%)を準備した。 [Example 1]
1. Production of transparent conductive film (1) Step (1): Step of preparing resin base material and sintered body A polyethylene terephthalate film (A4100 manufactured by Toyobo Co., Ltd., thickness: 100 μm) was prepared as a resin base material.
Also, a zinc oxide-gallium oxide-indium oxide ternary sintered body (ZnO: Ga 2 O 3 : In 2 O 3 = 94.0 wt%: 5.7 wt%: 0.3 wt%) was prepared. did.
1.透明導電フィルムの製造
(1)工程(1):樹脂基材及び焼結体を準備する工程
樹脂基材として、ポリエチレンテレフタレートフィルム(東洋紡績社製A4100、厚み:100μm)を準備した。
また、酸化亜鉛-酸化ガリウム-酸化インジウムの三元系焼結体(ZnO:Ga2O3:In2O3=94.0重量%:5.7重量%:0.3重量%)を準備した。 [Example 1]
1. Production of transparent conductive film (1) Step (1): Step of preparing resin base material and sintered body A polyethylene terephthalate film (A4100 manufactured by Toyobo Co., Ltd., thickness: 100 μm) was prepared as a resin base material.
Also, a zinc oxide-gallium oxide-indium oxide ternary sintered body (ZnO: Ga 2 O 3 : In 2 O 3 = 94.0 wt%: 5.7 wt%: 0.3 wt%) was prepared. did.
(2)工程(2):ガスバリア層の形成工程
次いで、樹脂基材上に、光硬化性樹脂からなるアンダーコート層形成溶液を塗布した後、120℃、1分間の条件で加熱処理して、乾燥させた。
次いで、UV光照射ラインを用いて、高圧水銀灯を用い、ラインスピ-ド:20m/min、積算光量:100mJ、ピーク強度:1.466W、パス回数:2回の条件でUV照射を行い、アンダーコート層を形成した。 (2) Step (2): Gas barrier layer forming step Next, after applying an undercoat layer forming solution made of a photocurable resin on a resin substrate, heat treatment is performed at 120 ° C. for 1 minute, Dried.
Next, using a UV light irradiation line, using a high-pressure mercury lamp, UV irradiation was performed under the conditions of line speed: 20 m / min, integrated light quantity: 100 mJ, peak intensity: 1.466 W, number of passes: 2 times, and undercoat A layer was formed.
次いで、樹脂基材上に、光硬化性樹脂からなるアンダーコート層形成溶液を塗布した後、120℃、1分間の条件で加熱処理して、乾燥させた。
次いで、UV光照射ラインを用いて、高圧水銀灯を用い、ラインスピ-ド:20m/min、積算光量:100mJ、ピーク強度:1.466W、パス回数:2回の条件でUV照射を行い、アンダーコート層を形成した。 (2) Step (2): Gas barrier layer forming step Next, after applying an undercoat layer forming solution made of a photocurable resin on a resin substrate, heat treatment is performed at 120 ° C. for 1 minute, Dried.
Next, using a UV light irradiation line, using a high-pressure mercury lamp, UV irradiation was performed under the conditions of line speed: 20 m / min, integrated light quantity: 100 mJ, peak intensity: 1.466 W, number of passes: 2 times, and undercoat A layer was formed.
次いで、形成したアンダーコート層上に、ポリシラザン化合物としてのアクアミカNL110-20(クラリアントジャパン社製)を塗布した後、120℃で、1分間の条件で加熱処理して、乾燥させ、ポリシラザン化合物含有層(膜厚:150nm)を得た。その後、23℃、50%RH環境下でシーズニングを行った。
Next, after applying AQUAMICA NL110-20 (manufactured by Clariant Japan) as a polysilazane compound on the formed undercoat layer, it is heat-treated at 120 ° C. for 1 minute, dried, and a polysilazane compound-containing layer (Film thickness: 150 nm) was obtained. Thereafter, seasoning was performed in an environment of 23 ° C. and 50% RH.
次いで、下記プラズマ注入装置を用いて、下記プラズマイオン注入条件で、ポリシラザン化合物含有層に対して、アルゴンのプラズマイオンを注入し、プラズマイオン注入膜としてのガスバリア層(以下、PHPS層と称する)とした。
Next, using the following plasma implantation apparatus, argon plasma ions are implanted into the polysilazane compound-containing layer under the following plasma ion implantation conditions, and a gas barrier layer (hereinafter referred to as a PHPS layer) as a plasma ion implantation film is used. did.
(プラズマイオン装置)
RF電源:日本電子(株)製、型番「RF」56000
高電圧パルス電源:栗田製作所(株)製、型番「PV-3-HSHV-0835」 (Plasma ion device)
RF power source: JEOL Ltd., model number “RF” 56000
High voltage pulse power supply: Kurita Seisakusho Co., Ltd., model number “PV-3-HSHV-0835”
RF電源:日本電子(株)製、型番「RF」56000
高電圧パルス電源:栗田製作所(株)製、型番「PV-3-HSHV-0835」 (Plasma ion device)
RF power source: JEOL Ltd., model number “RF” 56000
High voltage pulse power supply: Kurita Seisakusho Co., Ltd., model number “PV-3-HSHV-0835”
(プラズマイオン注入条件)
プラズマ生成ガス:アルゴン(Ar)
ガス流量:100sccm
Duty比:0.5%
繰り返し周波数:1000Hz
印加電圧:-6kV
RF電源:周波数13.56MHz、印加電力1000W
チャンバー内圧:0.2Pa
パルス幅:5μsec
処理時間(イオン注入時間):5分間
搬送速度:0.2m/min (Plasma ion implantation conditions)
Plasma generation gas: Argon (Ar)
Gas flow rate: 100sccm
Duty ratio: 0.5%
Repeat frequency: 1000Hz
Applied voltage: -6kV
RF power supply: frequency 13.56 MHz, applied power 1000 W
Chamber internal pressure: 0.2 Pa
Pulse width: 5μsec
Processing time (ion implantation time): 5 minutes Conveying speed: 0.2 m / min
プラズマ生成ガス:アルゴン(Ar)
ガス流量:100sccm
Duty比:0.5%
繰り返し周波数:1000Hz
印加電圧:-6kV
RF電源:周波数13.56MHz、印加電力1000W
チャンバー内圧:0.2Pa
パルス幅:5μsec
処理時間(イオン注入時間):5分間
搬送速度:0.2m/min (Plasma ion implantation conditions)
Plasma generation gas: Argon (Ar)
Gas flow rate: 100sccm
Duty ratio: 0.5%
Repeat frequency: 1000Hz
Applied voltage: -6kV
RF power supply: frequency 13.56 MHz, applied power 1000 W
Chamber internal pressure: 0.2 Pa
Pulse width: 5μsec
Processing time (ion implantation time): 5 minutes Conveying speed: 0.2 m / min
また、得られたガスバリア層を積層した樹脂基材について、水蒸気透過率測定装置(MOCON(株)製、AQUATRAN)を用いて、40℃、相対湿度90%の条件下における水蒸気透過率を測定したところ、0.02g・m-2・day-1であった。
Moreover, about the resin base material which laminated | stacked the obtained gas barrier layer, the water-vapor-permeation rate in the conditions of 40 degreeC and relative humidity 90% was measured using the water-vapor-permeation measuring apparatus (MOCON Co., Ltd. product, AQUATRAN). However, it was 0.02 g · m −2 · day −1 .
(3)工程(3):酸化亜鉛膜の形成工程
次いで、得られたガスバリア層を積層した樹脂基材に対し、DCマグネトロンスパッタリング法により、上述の三元系焼結体を用いて、下記スパッタリング条件にて、酸化亜鉛膜(膜厚:100nm)を形成して、透明導電フィルムとした。
なお、XPS測定により、酸化亜鉛膜の表層側、すなわち、ガスバリア層とは反対側の表面に、薄膜(5nm未満)の第1領域が形成され、その下に、厚さ95nmの第2領域が形成されていることを別途確認した。
樹脂基材温度:20℃
DC出力:500W
キャリアガス:アルゴン(Ar)
成膜圧力:0.6Pa
成膜時間:35sec. (3) Step (3): Zinc Oxide Film Formation Step Next, the following sputtering is performed on the resin base material obtained by laminating the obtained gas barrier layer by the DC magnetron sputtering method using the above-described ternary sintered body. A zinc oxide film (film thickness: 100 nm) was formed under the conditions to obtain a transparent conductive film.
By XPS measurement, a first region of a thin film (less than 5 nm) is formed on the surface side of the zinc oxide film, that is, the surface opposite to the gas barrier layer, and a second region having a thickness of 95 nm is formed below the first region. It was confirmed separately that it was formed.
Resin substrate temperature: 20 ° C
DC output: 500W
Carrier gas: Argon (Ar)
Deposition pressure: 0.6Pa
Deposition time: 35 sec.
次いで、得られたガスバリア層を積層した樹脂基材に対し、DCマグネトロンスパッタリング法により、上述の三元系焼結体を用いて、下記スパッタリング条件にて、酸化亜鉛膜(膜厚:100nm)を形成して、透明導電フィルムとした。
なお、XPS測定により、酸化亜鉛膜の表層側、すなわち、ガスバリア層とは反対側の表面に、薄膜(5nm未満)の第1領域が形成され、その下に、厚さ95nmの第2領域が形成されていることを別途確認した。
樹脂基材温度:20℃
DC出力:500W
キャリアガス:アルゴン(Ar)
成膜圧力:0.6Pa
成膜時間:35sec. (3) Step (3): Zinc Oxide Film Formation Step Next, the following sputtering is performed on the resin base material obtained by laminating the obtained gas barrier layer by the DC magnetron sputtering method using the above-described ternary sintered body. A zinc oxide film (film thickness: 100 nm) was formed under the conditions to obtain a transparent conductive film.
By XPS measurement, a first region of a thin film (less than 5 nm) is formed on the surface side of the zinc oxide film, that is, the surface opposite to the gas barrier layer, and a second region having a thickness of 95 nm is formed below the first region. It was confirmed separately that it was formed.
Resin substrate temperature: 20 ° C
DC output: 500W
Carrier gas: Argon (Ar)
Deposition pressure: 0.6Pa
Deposition time: 35 sec.
2.透明導電フィルムの評価
得られた透明導電フィルムにつき、以下の測定を行い、評価した。 2. Evaluation of transparent conductive film The obtained transparent conductive film was measured and evaluated as follows.
得られた透明導電フィルムにつき、以下の測定を行い、評価した。 2. Evaluation of transparent conductive film The obtained transparent conductive film was measured and evaluated as follows.
(1)XPS分析における元素分析測定
下記のXPS測定装置を用いるとともに、下記の測定条件にて、得られた透明導電フィルムにおける酸化亜鉛膜の膜厚方向の亜鉛、ガリウム、インジウム、酸素及びケイ素の元素分析を行った。得られたXPS測定による各元素量を、表1に示す。 (1) Elemental analysis measurement in XPS analysis While using the following XPS measurement apparatus, zinc, gallium, indium, oxygen and silicon in the thickness direction of the zinc oxide film in the transparent conductive film obtained under the following measurement conditions Elemental analysis was performed. Table 1 shows the amount of each element obtained by XPS measurement.
下記のXPS測定装置を用いるとともに、下記の測定条件にて、得られた透明導電フィルムにおける酸化亜鉛膜の膜厚方向の亜鉛、ガリウム、インジウム、酸素及びケイ素の元素分析を行った。得られたXPS測定による各元素量を、表1に示す。 (1) Elemental analysis measurement in XPS analysis While using the following XPS measurement apparatus, zinc, gallium, indium, oxygen and silicon in the thickness direction of the zinc oxide film in the transparent conductive film obtained under the following measurement conditions Elemental analysis was performed. Table 1 shows the amount of each element obtained by XPS measurement.
(XPS測定装置)
機種名:PHI Quantera SXM(アルバックファイ社製)
X線源:AlKα(1486.6eV)
X線ビーム径:100μm (XPS measuring device)
Model name: PHI Quantera SXM (manufactured by ULVAC-PHI)
X-ray source: AlKα (1486.6 eV)
X-ray beam diameter: 100 μm
機種名:PHI Quantera SXM(アルバックファイ社製)
X線源:AlKα(1486.6eV)
X線ビーム径:100μm (XPS measuring device)
Model name: PHI Quantera SXM (manufactured by ULVAC-PHI)
X-ray source: AlKα (1486.6 eV)
X-ray beam diameter: 100 μm
(測定条件)
電力値:25W
電圧:15kV
取り出し角度:45度
真空度:5.0×10-8Pa
Pass Energy:112eV
Time Per Step:20msec
eV step:0.1eV (Measurement condition)
Electric power value: 25W
Voltage: 15kV
Extraction angle: 45 degrees Vacuum degree: 5.0 × 10 −8 Pa
Pass Energy: 112eV
Time Per Step: 20msec
eV step: 0.1 eV
電力値:25W
電圧:15kV
取り出し角度:45度
真空度:5.0×10-8Pa
Pass Energy:112eV
Time Per Step:20msec
eV step:0.1eV (Measurement condition)
Electric power value: 25W
Voltage: 15kV
Extraction angle: 45 degrees Vacuum degree: 5.0 × 10 −8 Pa
Pass Energy: 112eV
Time Per Step: 20msec
eV step: 0.1 eV
(スパッタリング条件)
スパッタリングガス:アルゴン
印加電圧:-4kV
スパッタリング時間:5min
インターバル時間:0.2min (Sputtering conditions)
Sputtering gas: Argon Applied voltage: -4 kV
Sputtering time: 5 min
Interval time: 0.2min
スパッタリングガス:アルゴン
印加電圧:-4kV
スパッタリング時間:5min
インターバル時間:0.2min (Sputtering conditions)
Sputtering gas: Argon Applied voltage: -4 kV
Sputtering time: 5 min
Interval time: 0.2min
(測定元素ピーク)
O:O1s
In:In3d5/2
Zn:Zn2p3/2
Ga:Ga2p3/2 (Measurement element peak)
O: O1s
In: In3d 5/2
Zn: Zn2p 3/2
Ga: Ga2p 3/2
O:O1s
In:In3d5/2
Zn:Zn2p3/2
Ga:Ga2p3/2 (Measurement element peak)
O: O1s
In: In3d 5/2
Zn: Zn2p 3/2
Ga: Ga2p 3/2
(2)酸化亜鉛膜の膜厚(d)
得られた透明導電フィルムの酸化亜鉛膜における膜厚(d)を、分光エリプソメーターM-2000U(J.A.ウーラム・ジャパン社製)を用いて測定した。 (2) Zinc oxide film thickness (d)
The film thickness (d) of the obtained transparent conductive film in the zinc oxide film was measured using a spectroscopic ellipsometer M-2000U (manufactured by JA Woollam Japan).
得られた透明導電フィルムの酸化亜鉛膜における膜厚(d)を、分光エリプソメーターM-2000U(J.A.ウーラム・ジャパン社製)を用いて測定した。 (2) Zinc oxide film thickness (d)
The film thickness (d) of the obtained transparent conductive film in the zinc oxide film was measured using a spectroscopic ellipsometer M-2000U (manufactured by JA Woollam Japan).
(3)ρ1000/ρ0及びρ500/ρ0の算出
得られた透明導電フィルムの酸化亜鉛膜における初期の表面抵抗率(R0)を、表面抵抗測定装置として、LORESTA-GP MCP-T600(三菱化学(株)製)及びプローブとして、PROBE TYPE ASP(三菱化学アナリテック(株)製)を用いて、温度23℃、50%RHの環境条件下、測定した。
次いで、得られた透明導電フィルムを、60℃、95%RH環境下に、500時間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、湿熱試験後の表面抵抗率(R500)を測定した。
さらに、得られた透明導電フィルムを、60℃、95%RH環境下に、1000時間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、湿熱試験後の表面抵抗率(R1000)を測定した。
すなわち、酸化亜鉛膜における初期表面抵抗率(R0)及び湿熱試験後の表面抵抗率(R500、R1000)、さらには、透明導電フィルムの膜厚(d)を測定し、それらから下式(1)~(3)より、比抵抗(ρ0)及び湿熱試験後の比抵抗(ρ500、ρ1000)を算出して、ρ500/ρ0及びρ1000/ρ0の比率を得た。得られた結果を表1に示す。
なお、図7に、実施例1等における湿熱試験経過時間と、湿熱試験前後における比抵抗の比率(ρ500/ρ0及びρ1000/ρ0)との関係を示す。
R0 =ρ0/d (1)
R500 =ρ500/d (2)
R1000=ρ1000/d (3) (3) Calculation of ρ 1000 / ρ 0 and ρ 500 / ρ 0 The initial surface resistivity (R 0 ) in the zinc oxide film of the obtained transparent conductive film was used as a surface resistance measuring device, and LOCESTA-GP MCP-T600 Using PROBE TYPE ASP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) as a probe (Mitsubishi Chemical Co., Ltd.) and a probe, the measurement was performed under environmental conditions of a temperature of 23 ° C. and 50% RH.
Next, the obtained transparent conductive film was placed in an environment of 60 ° C. and 95% RH for 500 hours, taken out, and then subjected to temperature control and humidity control in a 23 ° C. and 50% RH environment for 1 day. The resistivity (R 500 ) was measured.
Further, the obtained transparent conductive film was placed in an environment of 60 ° C. and 95% RH for 1000 hours, taken out, and then subjected to temperature and humidity control for one day in an environment of 23 ° C. and 50% RH. The resistivity (R 1000 ) was measured.
That is, the initial surface resistivity (R 0 ) in the zinc oxide film, the surface resistivity after the wet heat test (R 500 , R 1000 ), and the film thickness (d) of the transparent conductive film were measured. From (1) to (3), the specific resistance (ρ 0 ) and the specific resistance after the wet heat test (ρ 500 , ρ 1000 ) were calculated, and the ratios of ρ 500 / ρ 0 and ρ 1000 / ρ 0 were obtained. . The obtained results are shown in Table 1.
In addition, in FIG. 7, the relationship between the wet heat test elapsed time in Example 1 etc. and the ratio ((rho) 500 / (rho) 0 and (rho) 1000 / (rho) 0 ) of the specific resistance before and behind a wet heat test is shown.
R 0 = ρ 0 / d (1)
R 500 = ρ 500 / d (2)
R 1000 = ρ 1000 / d (3)
得られた透明導電フィルムの酸化亜鉛膜における初期の表面抵抗率(R0)を、表面抵抗測定装置として、LORESTA-GP MCP-T600(三菱化学(株)製)及びプローブとして、PROBE TYPE ASP(三菱化学アナリテック(株)製)を用いて、温度23℃、50%RHの環境条件下、測定した。
次いで、得られた透明導電フィルムを、60℃、95%RH環境下に、500時間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、湿熱試験後の表面抵抗率(R500)を測定した。
さらに、得られた透明導電フィルムを、60℃、95%RH環境下に、1000時間置き、取り出し後、23℃50%RH環境下で1日調温・調湿を行い、湿熱試験後の表面抵抗率(R1000)を測定した。
すなわち、酸化亜鉛膜における初期表面抵抗率(R0)及び湿熱試験後の表面抵抗率(R500、R1000)、さらには、透明導電フィルムの膜厚(d)を測定し、それらから下式(1)~(3)より、比抵抗(ρ0)及び湿熱試験後の比抵抗(ρ500、ρ1000)を算出して、ρ500/ρ0及びρ1000/ρ0の比率を得た。得られた結果を表1に示す。
なお、図7に、実施例1等における湿熱試験経過時間と、湿熱試験前後における比抵抗の比率(ρ500/ρ0及びρ1000/ρ0)との関係を示す。
R0 =ρ0/d (1)
R500 =ρ500/d (2)
R1000=ρ1000/d (3) (3) Calculation of ρ 1000 / ρ 0 and ρ 500 / ρ 0 The initial surface resistivity (R 0 ) in the zinc oxide film of the obtained transparent conductive film was used as a surface resistance measuring device, and LOCESTA-GP MCP-T600 Using PROBE TYPE ASP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) as a probe (Mitsubishi Chemical Co., Ltd.) and a probe, the measurement was performed under environmental conditions of a temperature of 23 ° C. and 50% RH.
Next, the obtained transparent conductive film was placed in an environment of 60 ° C. and 95% RH for 500 hours, taken out, and then subjected to temperature control and humidity control in a 23 ° C. and 50% RH environment for 1 day. The resistivity (R 500 ) was measured.
Further, the obtained transparent conductive film was placed in an environment of 60 ° C. and 95% RH for 1000 hours, taken out, and then subjected to temperature and humidity control for one day in an environment of 23 ° C. and 50% RH. The resistivity (R 1000 ) was measured.
That is, the initial surface resistivity (R 0 ) in the zinc oxide film, the surface resistivity after the wet heat test (R 500 , R 1000 ), and the film thickness (d) of the transparent conductive film were measured. From (1) to (3), the specific resistance (ρ 0 ) and the specific resistance after the wet heat test (ρ 500 , ρ 1000 ) were calculated, and the ratios of ρ 500 / ρ 0 and ρ 1000 / ρ 0 were obtained. . The obtained results are shown in Table 1.
In addition, in FIG. 7, the relationship between the wet heat test elapsed time in Example 1 etc. and the ratio ((rho) 500 / (rho) 0 and (rho) 1000 / (rho) 0 ) of the specific resistance before and behind a wet heat test is shown.
R 0 = ρ 0 / d (1)
R 500 = ρ 500 / d (2)
R 1000 = ρ 1000 / d (3)
[実施例2]
実施例2においては、2層のPHPS層を備えた透明導電フィルムを評価した。
すなわち、第1のPHPS層を形成した後、その上に、第2のPHPS層を形成し、次いで、所定の酸化亜鉛膜(所定の第1領域及び第2領域)を形成したこと以外は、実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、ガスバリア層として2層のPHPS層を備えた樹脂基材における水蒸気透過率は、0.005g・m-2・day-1であった。 [Example 2]
In Example 2, a transparent conductive film provided with two PHPS layers was evaluated.
That is, after the first PHPS layer is formed, a second PHPS layer is formed thereon, and then a predetermined zinc oxide film (predetermined first region and second region) is formed. A transparent conductive film was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with two PHPS layers as the gas barrier layer was 0.005 g · m −2 · day −1 .
実施例2においては、2層のPHPS層を備えた透明導電フィルムを評価した。
すなわち、第1のPHPS層を形成した後、その上に、第2のPHPS層を形成し、次いで、所定の酸化亜鉛膜(所定の第1領域及び第2領域)を形成したこと以外は、実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、ガスバリア層として2層のPHPS層を備えた樹脂基材における水蒸気透過率は、0.005g・m-2・day-1であった。 [Example 2]
In Example 2, a transparent conductive film provided with two PHPS layers was evaluated.
That is, after the first PHPS layer is formed, a second PHPS layer is formed thereon, and then a predetermined zinc oxide film (predetermined first region and second region) is formed. A transparent conductive film was produced and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with two PHPS layers as the gas barrier layer was 0.005 g · m −2 · day −1 .
[実施例3]
実施例3においては、3層のPHPS層を備えた透明導電フィルムを評価した。
すなわち、第1のPHPS層を形成した後、その上に、第2のPHPS層及び第3のPHPS層を形成して合計3層のPHPS層とした。
次いで、3層のPHPS層の上に、所定の酸化亜鉛膜(所定の第1領域及び第2領域)をさらに形成したこと以外は、実施例1と同様に、透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、ガスバリア層として3層のPHPS層を備えた樹脂基材における水蒸気透過率は、0.0005g・m-2・day-1であった。 [Example 3]
In Example 3, a transparent conductive film provided with three PHPS layers was evaluated.
That is, after the first PHPS layer was formed, a second PHPS layer and a third PHPS layer were formed thereon to form a total of three PHPS layers.
Next, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that a predetermined zinc oxide film (predetermined first region and second region) was further formed on the three PHPS layers. did. The obtained results are shown in Table 1.
The water vapor transmission rate in a resin base material provided with three PHPS layers as a gas barrier layer was 0.0005 g · m −2 · day −1 .
実施例3においては、3層のPHPS層を備えた透明導電フィルムを評価した。
すなわち、第1のPHPS層を形成した後、その上に、第2のPHPS層及び第3のPHPS層を形成して合計3層のPHPS層とした。
次いで、3層のPHPS層の上に、所定の酸化亜鉛膜(所定の第1領域及び第2領域)をさらに形成したこと以外は、実施例1と同様に、透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、ガスバリア層として3層のPHPS層を備えた樹脂基材における水蒸気透過率は、0.0005g・m-2・day-1であった。 [Example 3]
In Example 3, a transparent conductive film provided with three PHPS layers was evaluated.
That is, after the first PHPS layer was formed, a second PHPS layer and a third PHPS layer were formed thereon to form a total of three PHPS layers.
Next, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that a predetermined zinc oxide film (predetermined first region and second region) was further formed on the three PHPS layers. did. The obtained results are shown in Table 1.
The water vapor transmission rate in a resin base material provided with three PHPS layers as a gas barrier layer was 0.0005 g · m −2 · day −1 .
[実施例4~6]
実施例4~6においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=93.3:5.7:1.0に変えたほかは、実施例1~3と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す [Examples 4 to 6]
In Examples 4 to 6, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0 A transparent conductive film was produced and evaluated in the same manner as in Examples 1 to 3. The obtained results are shown in Table 1.
実施例4~6においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=93.3:5.7:1.0に変えたほかは、実施例1~3と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す [Examples 4 to 6]
In Examples 4 to 6, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0 A transparent conductive film was produced and evaluated in the same manner as in Examples 1 to 3. The obtained results are shown in Table 1.
[実施例7~9]
実施例7~9においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=89.3:5.7:5.0に変えたほかは、実施例1~3と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Examples 7 to 9]
In Examples 7 to 9, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0 A transparent conductive film was produced and evaluated in the same manner as in Examples 1 to 3. The obtained results are shown in Table 1.
実施例7~9においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=89.3:5.7:5.0に変えたほかは、実施例1~3と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Examples 7 to 9]
In Examples 7 to 9, except that the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0 A transparent conductive film was produced and evaluated in the same manner as in Examples 1 to 3. The obtained results are shown in Table 1.
[比較例1]
比較例1においては、樹脂基材にアンダーコート層を形成した後、ガスバリア層を形成しなかった他は、実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、アンダーコート層のみを備えた樹脂基材の水蒸気透過率は、6.8g・m-2・day-1であった。 [Comparative Example 1]
In Comparative Example 1, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that an undercoat layer was formed on the resin base material and then no gas barrier layer was formed. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with only the undercoat layer was 6.8 g · m −2 · day −1 .
比較例1においては、樹脂基材にアンダーコート層を形成した後、ガスバリア層を形成しなかった他は、実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、アンダーコート層のみを備えた樹脂基材の水蒸気透過率は、6.8g・m-2・day-1であった。 [Comparative Example 1]
In Comparative Example 1, a transparent conductive film was produced and evaluated in the same manner as in Example 1 except that an undercoat layer was formed on the resin base material and then no gas barrier layer was formed. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with only the undercoat layer was 6.8 g · m −2 · day −1 .
[比較例2]
比較例2においては、樹脂基材にアンダーコート層を形成した後、スパッタリング法により下記条件にて、膜厚が100nmとなるように酸化ケイ素(SiOx)層を形成した。
次いで形成したSiOx層に実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、SiOx層及びアンダーコート層を備えた樹脂基材の水蒸気透過率は、0.5g・m-2・day-1であった。 [Comparative Example 2]
In Comparative Example 2, an undercoat layer was formed on a resin substrate, and then a silicon oxide (SiOx) layer was formed by a sputtering method so as to have a film thickness of 100 nm under the following conditions.
Next, a transparent conductive film was produced on the formed SiOx layer in the same manner as in Example 1 and evaluated. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with the SiOx layer and the undercoat layer was 0.5 g · m −2 · day −1 .
比較例2においては、樹脂基材にアンダーコート層を形成した後、スパッタリング法により下記条件にて、膜厚が100nmとなるように酸化ケイ素(SiOx)層を形成した。
次いで形成したSiOx層に実施例1と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。
なお、SiOx層及びアンダーコート層を備えた樹脂基材の水蒸気透過率は、0.5g・m-2・day-1であった。 [Comparative Example 2]
In Comparative Example 2, an undercoat layer was formed on a resin substrate, and then a silicon oxide (SiOx) layer was formed by a sputtering method so as to have a film thickness of 100 nm under the following conditions.
Next, a transparent conductive film was produced on the formed SiOx layer in the same manner as in Example 1 and evaluated. The obtained results are shown in Table 1.
The water vapor permeability of the resin base material provided with the SiOx layer and the undercoat layer was 0.5 g · m −2 · day −1 .
[比較例3、比較例4]
比較例3及び比較例4においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=93.3:5.7:1.0に変えたほかは、比較例1~2と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Comparative Example 3, Comparative Example 4]
In Comparative Example 3 and Comparative Example 4, the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0. Otherwise, transparent conductive films were produced and evaluated in the same manner as in Comparative Examples 1 and 2. The obtained results are shown in Table 1.
比較例3及び比較例4においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=93.3:5.7:1.0に変えたほかは、比較例1~2と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Comparative Example 3, Comparative Example 4]
In Comparative Example 3 and Comparative Example 4, the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 93.3: 5.7: 1.0. Otherwise, transparent conductive films were produced and evaluated in the same manner as in Comparative Examples 1 and 2. The obtained results are shown in Table 1.
[比較例5、比較例6]
比較例5及び比較例6においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=89.3:5.7:5.0に変えたほかは、比較例1~2と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Comparative Example 5, Comparative Example 6]
In Comparative Example 5 and Comparative Example 6, the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. Otherwise, transparent conductive films were produced and evaluated in the same manner as in Comparative Examples 1 and 2. The obtained results are shown in Table 1.
比較例5及び比較例6においては、スパッタリングに用いた三元系焼結体の重量比をZnO:Ga2O3:In2O3=89.3:5.7:5.0に変えたほかは、比較例1~2と同様に透明導電フィルムを製造し、評価した。得られた結果を表1に示す。 [Comparative Example 5, Comparative Example 6]
In Comparative Example 5 and Comparative Example 6, the weight ratio of the ternary sintered body used for sputtering was changed to ZnO: Ga 2 O 3 : In 2 O 3 = 89.3: 5.7: 5.0. Otherwise, transparent conductive films were produced and evaluated in the same manner as in Comparative Examples 1 and 2. The obtained results are shown in Table 1.
実施例1~9においては、例えば、500時間後においても、比抵抗の変化率(ρ500/ρ0)が1.5以下の値となり、さらに、1000時間後においても、比抵抗の変化率(ρ1000/ρ0)が、2.0以下の小さい透明導電フィルムが得られた。
一方、ガスバリア層を有さない比較例1、3及び5においては、環境試験後の比抵抗が著しく大きくなり、例えば、500時間後において、ガスバリア層を有する場合(実施例1)と比較して、比抵抗の変化率が100倍以上の値となった。
また、水蒸気透過率が低いガスバリア層を備えた比較例2、4及び6においても、環境試験後の比抵抗が大きくなり、例えば、500時間後において、本願発明の水蒸気透過率が低いガスバリア層を有する場合(実施例1)と比較して、比抵抗の変化率が5倍以上の値となった。 In Examples 1 to 9, for example, the rate of change in specific resistance (ρ 500 / ρ 0 ) is 1.5 or less even after 500 hours, and further the rate of change in specific resistance after 1000 hours. A small transparent conductive film having (ρ 1000 / ρ 0 ) of 2.0 or less was obtained.
On the other hand, in Comparative Examples 1, 3 and 5 having no gas barrier layer, the specific resistance after the environmental test is remarkably increased, for example, after 500 hours, compared with the case having the gas barrier layer (Example 1). The specific resistance change rate was 100 times or more.
Further, in Comparative Examples 2, 4 and 6 including the gas barrier layer having a low water vapor transmission rate, the specific resistance after the environmental test is increased. For example, after 500 hours, the gas barrier layer having a low water vapor transmission rate of the present invention is used. Compared to the case of Example 1 (Example 1), the rate of change in specific resistance was 5 times or more.
一方、ガスバリア層を有さない比較例1、3及び5においては、環境試験後の比抵抗が著しく大きくなり、例えば、500時間後において、ガスバリア層を有する場合(実施例1)と比較して、比抵抗の変化率が100倍以上の値となった。
また、水蒸気透過率が低いガスバリア層を備えた比較例2、4及び6においても、環境試験後の比抵抗が大きくなり、例えば、500時間後において、本願発明の水蒸気透過率が低いガスバリア層を有する場合(実施例1)と比較して、比抵抗の変化率が5倍以上の値となった。 In Examples 1 to 9, for example, the rate of change in specific resistance (ρ 500 / ρ 0 ) is 1.5 or less even after 500 hours, and further the rate of change in specific resistance after 1000 hours. A small transparent conductive film having (ρ 1000 / ρ 0 ) of 2.0 or less was obtained.
On the other hand, in Comparative Examples 1, 3 and 5 having no gas barrier layer, the specific resistance after the environmental test is remarkably increased, for example, after 500 hours, compared with the case having the gas barrier layer (Example 1). The specific resistance change rate was 100 times or more.
Further, in Comparative Examples 2, 4 and 6 including the gas barrier layer having a low water vapor transmission rate, the specific resistance after the environmental test is increased. For example, after 500 hours, the gas barrier layer having a low water vapor transmission rate of the present invention is used. Compared to the case of Example 1 (Example 1), the rate of change in specific resistance was 5 times or more.
以上、詳述したように、本発明の透明導電フィルムによれば、樹脂基材上の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムであって、酸化亜鉛膜が、XPSの元素分析によって測定される亜鉛量、ガリウム量、酸素量、及びインジウム量に関して、所定のインジウム量及びガリウム量を含んでおり、かつ、当該酸化亜鉛膜が、特定の湿熱特性及び膜厚を有することによって、湿熱特性及びガスバリア性が、長期に渡って極めて優れた透明導電フィルムが効率的に得られるようになった。
よって、本発明の透明導電フィルムは、所定の湿熱特性が所望される電気製品、電子部品、画像表示装置(有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、液晶表示装置、電子ペーパー等)太陽電池等の各種用途において、透明電極等として、有効に使用されることが期待される。 As described above in detail, according to the transparent conductive film of the present invention, a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface on a resin substrate. The zinc oxide film includes a predetermined amount of indium and gallium with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS elemental analysis, and the zinc oxide film includes: By having specific wet heat characteristics and film thickness, a transparent conductive film having excellent wet heat characteristics and gas barrier properties over a long period of time can be efficiently obtained.
Therefore, the transparent conductive film of the present invention can be used for electrical products, electronic components, image display devices (organic electroluminescence elements, inorganic electroluminescence elements, liquid crystal display devices, electronic paper, etc.) solar cells, etc. for which predetermined wet heat characteristics are desired. It is expected to be used effectively as a transparent electrode in various applications.
よって、本発明の透明導電フィルムは、所定の湿熱特性が所望される電気製品、電子部品、画像表示装置(有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンス素子、液晶表示装置、電子ペーパー等)太陽電池等の各種用途において、透明電極等として、有効に使用されることが期待される。 As described above in detail, according to the transparent conductive film of the present invention, a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface on a resin substrate. The zinc oxide film includes a predetermined amount of indium and gallium with respect to zinc amount, gallium amount, oxygen amount, and indium amount measured by XPS elemental analysis, and the zinc oxide film includes: By having specific wet heat characteristics and film thickness, a transparent conductive film having excellent wet heat characteristics and gas barrier properties over a long period of time can be efficiently obtained.
Therefore, the transparent conductive film of the present invention can be used for electrical products, electronic components, image display devices (organic electroluminescence elements, inorganic electroluminescence elements, liquid crystal display devices, electronic paper, etc.) solar cells, etc. for which predetermined wet heat characteristics are desired. It is expected to be used effectively as a transparent electrode in various applications.
10、10´:酸化亜鉛膜
12:樹脂基材
14:ガスバリア層
16:アンダーコート層
18:他の層
20:GZO膜
50、50´、50´´、50´´´:透明導電フィルム 10, 10 ': Zinc oxide film 12: Resin substrate 14: Gas barrier layer 16: Undercoat layer 18: Other layer 20: GZO films 50, 50', 50 ", 50"": Transparent conductive film
12:樹脂基材
14:ガスバリア層
16:アンダーコート層
18:他の層
20:GZO膜
50、50´、50´´、50´´´:透明導電フィルム 10, 10 ': Zinc oxide film 12: Resin substrate 14: Gas barrier layer 16: Undercoat layer 18: Other layer 20: GZO
Claims (8)
- 樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムであって、酸化亜鉛膜が、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープしてなる酸化亜鉛膜であり、
かつ、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、初期比抵抗をρ0とし、60℃、相対湿度95%の条件下、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、
さらには、酸化亜鉛膜の膜厚を20~300nmの範囲内の値とすることを特徴とする透明導電フィルム。 A transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin base material, the zinc oxide film containing zinc oxide and doped with gallium and indium A zinc oxide film,
In addition, with respect to the total amount (100 atom%) of zinc amount, gallium amount, oxygen amount, and indium amount by XPS elemental analysis measurement, the indium amount is a value within the range of 0.01 to 25 atom%, and the gallium amount is When the value is in the range of 0.1 to 10 atom%, the initial specific resistance is ρ 0, and the specific resistance after storage for 500 hours at 60 ° C. and relative humidity of 95% is ρ 500 , ρ 500 The ratio represented by / ρ 0 is a value of 1.5 or less,
Furthermore, the transparent conductive film is characterized in that the thickness of the zinc oxide film is set to a value in the range of 20 to 300 nm. - 前記酸化亜鉛膜における初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、1000時間、保管した後の比抵抗をρ1000としたとき、ρ1000/ρ0で表わされる比率を2.0以下の値とすることを特徴とする請求項1に記載の透明導電フィルム。 The ratio represented by ρ 1000 / ρ 0 when the initial specific resistance in the zinc oxide film is ρ 0 and the specific resistance after storage for 1000 hours at 60 ° C. and 95% relative humidity is ρ 1000. The transparent conductive film according to claim 1, wherein the value is 2.0 or less.
- 前記樹脂基材が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、シクロオレフィン系コポリマ、シクロオレフィン系ポリマ、ポリエーテルスルフォン、及びポリイミドからなる群から選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の透明導電フィルム。 2. The resin substrate is at least one selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, cycloolefin copolymer, cycloolefin polymer, polyether sulfone, and polyimide. Or the transparent conductive film of 2.
- 前記ガスバリア層が、金属、無機酸化物、無機窒化物、無機酸窒化物、無機炭化物、無機硫化物、無機酸窒化炭化物、高分子化合物及びこれらの複合体から選ばれる少なくとも1種からなることを特徴とする請求項1~3のいずれか一項に記載の透明導電フィルム。 The gas barrier layer is made of at least one selected from metals, inorganic oxides, inorganic nitrides, inorganic oxynitrides, inorganic carbides, inorganic sulfides, inorganic oxynitride carbides, polymer compounds, and composites thereof. The transparent conductive film according to any one of claims 1 to 3, wherein
- 前記ガスバリア層の水蒸気透過率を0.1g・m-2・day-1以下の値とすることを特徴とする請求項1~4のいずれか一項に記載の透明導電フィルム。 The transparent conductive film according to any one of claims 1 to 4, wherein the water vapor permeability of the gas barrier layer is set to a value of 0.1 g · m -2 · day -1 or less.
- 請求項1~5のいずれか一項に記載の透明導電フィルムを透明電極に用いてなることを特徴とする電子デバイス。 An electronic device comprising the transparent conductive film according to any one of claims 1 to 5 as a transparent electrode.
- 樹脂基材の少なくとも片面に、ガスバリア層と、スパッタリング法により形成してなる酸化亜鉛膜と、を備えた透明導電フィルムの製造方法であって、
下記工程(1)~(3)を含むことを特徴とする透明導電フィルムの製造方法。
(1)前記樹脂基材及び焼結体を、それぞれ準備する工程
(2)前記樹脂基材の少なくとも片面に、前記ガスバリア層を形成する工程
(3)前記ガスバリア層上に、スパッタリング法を用いて、前記焼結体から、酸化亜鉛を含むとともに、ガリウム及びインジウムをドープした酸化亜鉛膜であり、かつ、当該酸化亜鉛膜において、XPSの元素分析測定による亜鉛量、ガリウム量、酸素量、及びインジウム量の合計量(100atom%)に対して、インジウム量を0.01~25atom%の範囲内の値とし、ガリウム量を0.1~10atom%の範囲内の値とし、当該酸化亜鉛膜の初期比抵抗をρ0とし、60℃、相対湿度95%の条件下で、500時間、保管した後の比抵抗をρ500としたとき、ρ500/ρ0で表わされる比率を1.5以下の値とし、さらには、膜厚を20~300nmの範囲内の値とした、前記酸化亜鉛膜を形成する工程 A method for producing a transparent conductive film comprising a gas barrier layer and a zinc oxide film formed by a sputtering method on at least one surface of a resin substrate,
A method for producing a transparent conductive film, comprising the following steps (1) to (3):
(1) Step of preparing each of the resin base material and the sintered body (2) Step of forming the gas barrier layer on at least one surface of the resin base material (3) Sputtering method on the gas barrier layer A zinc oxide film containing zinc oxide and doped with gallium and indium from the sintered body, and in the zinc oxide film, the amount of zinc, the amount of gallium, the amount of oxygen, and indium by XPS elemental analysis measurement With respect to the total amount (100 atom%), the amount of indium is set to a value in the range of 0.01 to 25 atom%, the amount of gallium is set to a value in the range of 0.1 to 10 atom%, and the initial value of the zinc oxide film When the specific resistance is ρ 0 and the specific resistance after storage at 60 ° C. and 95% relative humidity for 500 hours is ρ 500 , the ratio represented by ρ 500 / ρ 0 is 1.5 or less. And further forming the zinc oxide film with a film thickness in the range of 20 to 300 nm. - 前記樹脂基材上に、前記酸化亜鉛膜を形成する際の、前記樹脂基材の温度を10~150℃の範囲内の値とすることを特徴とする請求項7に記載の透明導電フィルムの製造方法。 The transparent conductive film according to claim 7, wherein the temperature of the resin base material when the zinc oxide film is formed on the resin base material is set to a value within a range of 10 to 150 ° C. Production method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580003128.6A CN105830172B (en) | 2014-02-07 | 2015-02-06 | Transparent conductive film, the manufacture method of transparent conductive film and the electronic installation using transparent conductive film |
JP2015561051A JPWO2015119239A1 (en) | 2014-02-07 | 2015-02-06 | Transparent conductive film, method for producing transparent conductive film, and electronic device using transparent conductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014021982 | 2014-02-07 | ||
JP2014-021982 | 2014-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015119239A1 true WO2015119239A1 (en) | 2015-08-13 |
Family
ID=53777544
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077184 WO2015118725A1 (en) | 2014-02-07 | 2014-10-10 | Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film |
PCT/JP2015/053363 WO2015119239A1 (en) | 2014-02-07 | 2015-02-06 | Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077184 WO2015118725A1 (en) | 2014-02-07 | 2014-10-10 | Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2015119239A1 (en) |
CN (1) | CN105830172B (en) |
TW (2) | TW201531577A (en) |
WO (2) | WO2015118725A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI618098B (en) * | 2015-11-24 | 2018-03-11 | Konica Minolta Inc | Touch panel sensor film |
CN107225827A (en) * | 2016-03-23 | 2017-10-03 | 张家港康得新光电材料有限公司 | Backing material, its preparation method and photoelectric device |
CN106601382B (en) * | 2016-12-15 | 2018-06-29 | 华南理工大学 | A kind of preparation method of flexible transparent conducting film |
JP6437080B1 (en) * | 2017-11-15 | 2018-12-12 | 尾池工業株式会社 | Gas barrier film |
CN110931657A (en) * | 2019-12-06 | 2020-03-27 | 中国乐凯集团有限公司 | Flexible composite substrate for perovskite thin-film solar cell and preparation method thereof |
CN114790541A (en) * | 2022-03-09 | 2022-07-26 | 沈阳工程学院 | Low-temperature deposition Ga on self-sustaining diamond thick film substrate 2 O 3 Method for producing thin film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007080738A1 (en) * | 2006-01-11 | 2007-07-19 | Murata Manufacturing Co., Ltd. | Transparent electroconductive film and process for producing transparent electroconductive film |
JP2007329051A (en) * | 2006-06-08 | 2007-12-20 | Tosoh Corp | Zinc oxide system transparent conductive film and liquid crystal display using it as well as zinc oxide system sputtering target |
JP2011074479A (en) * | 2009-10-01 | 2011-04-14 | Hakusui Tech Co Ltd | Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film |
WO2011122497A1 (en) * | 2010-03-31 | 2011-10-06 | リンテック株式会社 | Transparent conductive film, method for producing same, and electronic device using transparent conductive film |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3396148B2 (en) * | 1997-04-28 | 2003-04-14 | 住友ベークライト株式会社 | Antistatic film |
JP2006147325A (en) * | 2004-11-19 | 2006-06-08 | Nikko Materials Co Ltd | Low resistivity transparent conductor |
JP5334246B2 (en) * | 2007-10-19 | 2013-11-06 | ハクスイテック株式会社 | Ion plating target for zinc oxide thin film production |
CN101851745B (en) * | 2009-04-02 | 2012-12-26 | 宜兴佰伦光电材料科技有限公司 | Indium zinc gallium oxide (IZGO) sputtering target for transparent conductive film and manufacturing method |
KR101344227B1 (en) * | 2010-02-19 | 2013-12-23 | 린텍 가부시키가이샤 | Transparent conductive film, process for producing same, and electronic device employing transparent conductive film |
TW201208114A (en) * | 2010-08-02 | 2012-02-16 | Foxsemicon Integrated Tech Inc | Lighting-emitting diode structure |
-
2014
- 2014-10-10 WO PCT/JP2014/077184 patent/WO2015118725A1/en active Application Filing
- 2014-12-19 TW TW103144524A patent/TW201531577A/en unknown
-
2015
- 2015-02-06 WO PCT/JP2015/053363 patent/WO2015119239A1/en active Application Filing
- 2015-02-06 CN CN201580003128.6A patent/CN105830172B/en active Active
- 2015-02-06 TW TW104104060A patent/TWI645983B/en active
- 2015-02-06 JP JP2015561051A patent/JPWO2015119239A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007080738A1 (en) * | 2006-01-11 | 2007-07-19 | Murata Manufacturing Co., Ltd. | Transparent electroconductive film and process for producing transparent electroconductive film |
JP2007329051A (en) * | 2006-06-08 | 2007-12-20 | Tosoh Corp | Zinc oxide system transparent conductive film and liquid crystal display using it as well as zinc oxide system sputtering target |
JP2011074479A (en) * | 2009-10-01 | 2011-04-14 | Hakusui Tech Co Ltd | Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film |
WO2011122497A1 (en) * | 2010-03-31 | 2011-10-06 | リンテック株式会社 | Transparent conductive film, method for producing same, and electronic device using transparent conductive film |
Also Published As
Publication number | Publication date |
---|---|
WO2015118725A1 (en) | 2015-08-13 |
JPWO2015119239A1 (en) | 2017-03-30 |
TWI645983B (en) | 2019-01-01 |
TW201536563A (en) | 2015-10-01 |
TW201531577A (en) | 2015-08-16 |
CN105830172B (en) | 2017-10-13 |
CN105830172A (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015119239A1 (en) | Transparent conductive film, method for producing transparent conductive film, and electronic device formed using transparent conductive film | |
EP2556954A1 (en) | Transparent conductive film, method for producing same, and electronic device using transparent conductive film | |
CN102356122B (en) | Molded article, process for producing the molded article, member for electronic device, and electronic device | |
TWI551709B (en) | Gas barrier film and method for producing of gas barrier film | |
TWI433943B (en) | Transparent conductive thin film and method for manufacturing the same, and an electronic device using a transparent conductive film | |
EP3001428A1 (en) | Conductive film and electronic device having conductive film | |
JP6110188B2 (en) | Transparent conductive film, electronic device, and method for producing transparent conductive film | |
JP6414082B2 (en) | Laminated film and method for producing composite film | |
JP5948928B2 (en) | Gas barrier laminated film | |
JP5751027B2 (en) | Transparent conductive film | |
JP6709171B2 (en) | Transparent conductive film and method for producing transparent conductive film | |
WO2015119238A1 (en) | Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate | |
US9546415B2 (en) | Composite transparent electrodes | |
WO2015119240A1 (en) | Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate | |
JP2015147983A (en) | Transparent conductive film, method for manufacturing the same and electronic device formed using transparent conductive film | |
JP2017033897A (en) | Transparent conductive laminate and manufacturing method of transparent conductive laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746792 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015561051 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15746792 Country of ref document: EP Kind code of ref document: A1 |