WO2015119127A1 - ガス濃度検出装置 - Google Patents
ガス濃度検出装置 Download PDFInfo
- Publication number
- WO2015119127A1 WO2015119127A1 PCT/JP2015/053034 JP2015053034W WO2015119127A1 WO 2015119127 A1 WO2015119127 A1 WO 2015119127A1 JP 2015053034 W JP2015053034 W JP 2015053034W WO 2015119127 A1 WO2015119127 A1 WO 2015119127A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concentration
- gas
- temperature
- output value
- calibration curve
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 66
- 238000011088 calibration curve Methods 0.000 claims abstract description 63
- 238000012937 correction Methods 0.000 claims abstract description 33
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 6
- 230000031700 light absorption Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 8
- 238000010606 normalization Methods 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 112
- 229910002092 carbon dioxide Inorganic materials 0.000 description 56
- 239000001569 carbon dioxide Substances 0.000 description 56
- 238000010521 absorption reaction Methods 0.000 description 36
- 238000012545 processing Methods 0.000 description 16
- 238000000862 absorption spectrum Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 3
- 238000012888 cubic function Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012889 quartic function Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
Definitions
- the present invention relates to a gas concentration detection device that detects the concentration of a gas in consideration of the temperature characteristics of the amount of infrared absorption by the gas.
- a technique for detecting the concentration of a gas from the amount of infrared absorption of a detection target gas using a NDIR (Non-dispersive Infrared Analyzer) type (non-dispersion type) gas concentration detection device is known.
- NDIR Non-dispersive Infrared Analyzer
- Japanese Patent No. 4154274 Patent Document 1 uses a correction amount determined by the magnitude of the average output change rate in the temperature region between the detected temperature and the reference temperature.
- a technique for detecting the gas concentration by correcting the detection output value is disclosed.
- Patent Document 1 a plurality of calibration curve data for a plurality of temperatures are prepared in order to improve the detection accuracy of the gas concentration in consideration of such temperature characteristics. Therefore, there has been a problem that it takes a long time to acquire calibration curve data, or a long processing time due to a large amount of calibration curve data.
- the present invention has been made in order to solve the above-described problems, and its purpose is to suppress the increase in the amount of data required in advance and to control the gas concentration in consideration of the temperature characteristics of the infrared absorption amount.
- the object is to provide a gas concentration detection device that detects with high accuracy.
- a gas concentration detection apparatus includes a concentration detection unit that outputs a signal indicating a concentration output value corresponding to a gas concentration, and a temperature detection that outputs a signal indicating a temperature output value corresponding to the temperature of the gas.
- a calculation unit that calculates a gas concentration based on the first calibration curve shown.
- the first calibration curve includes a correction coefficient proportional to the temperature output value.
- the gas concentration can be calculated with high accuracy in consideration of the temperature characteristics of the amount of infrared absorption by the gas. .
- the calibration curve data for a plurality of temperatures can be reduced, it is possible to suppress an increase in the calibration curve data creation time and the amount of calibration curve data.
- the calculation unit calculates a correction coefficient corresponding to the light absorption rate by the gas that varies inversely with the temperature change of the gas.
- the gas concentration can be calculated with high accuracy.
- the calculation unit calculates the reference output value based on the temperature output value and a second calibration curve indicating the relationship of the reference output value to the temperature output value.
- the gas concentration can be calculated with higher accuracy using the calculated reference output value.
- the second calibration curve is set by deriving an approximate expression of a predetermined order based on a plurality of concentration output values acquired in advance corresponding to each of a plurality of gas temperatures at the reference concentration.
- the gas concentration can be calculated with higher accuracy based on the second calibration curve.
- the first calibration curve derives an approximate expression of a predetermined order multiplied by a correction coefficient based on a plurality of concentration output values acquired in advance corresponding to each of the plurality of concentrations of the gas at the reference temperature. Is set.
- the gas concentration can be calculated with higher accuracy based on the first calibration curve.
- the concentration detection unit is provided between the light receiving sensor and the light source, an optical path portion into which the gas to be detected is introduced, a light source that emits infrared light, a light receiving sensor that detects infrared light emitted from the light source, and the light receiving sensor.
- Bandpass filter is provided between the light receiving sensor and the light source, an optical path portion into which the gas to be detected is introduced, a light source that emits infrared light, a light receiving sensor that detects infrared light emitted from the light source, and the light receiving sensor.
- the gas concentration can be calculated with high accuracy in consideration of the temperature characteristics of the amount of infrared absorption by the gas. .
- the calibration curve data for a plurality of temperatures can be reduced, it is possible to suppress an increase in the calibration curve data creation time and the amount of calibration curve data. Therefore, it is possible to provide a gas concentration detection device that can suppress an increase in a necessary data amount in advance and detect a gas concentration with high accuracy in consideration of a temperature characteristic of an infrared absorption amount.
- FIG. 1 shows the structure of the gas concentration detection apparatus which concerns on this Embodiment. It is a circuit block diagram of the gas concentration detection apparatus which concerns on this Embodiment. It is a figure for demonstrating the 1st calibration curve in reference
- FIG. 6A is a diagram illustrating an error of a detection value with respect to the concentration under a plurality of temperature environments according to the comparative example.
- FIG. 6B is a diagram illustrating an error of a detection value with respect to the concentration under a plurality of temperature environments in the present embodiment.
- FIG. 1 is a diagram showing a configuration of a gas concentration detection apparatus 10 according to the present embodiment.
- the configuration of the gas concentration detection device 10 shown in FIG. 1 is an example, and is not particularly limited to the configuration shown in FIG.
- the gas concentration detection device 10 is an infrared absorption (NDIR) gas sensor.
- NDIR infrared absorption
- the gas that is a concentration detection target by the gas concentration detection apparatus 10 in the present embodiment will be described as being carbon dioxide, the gas that is the detection target is not particularly limited to carbon dioxide.
- the gas concentration detection device 10 is, for example, a ventilation control based on the carbon dioxide concentration in a BEMS (Building Energy Management System), a control for keeping the indoor carbon dioxide concentration within a predetermined range in a plant cultivation facility, or the like. Used for.
- BEMS Building Energy Management System
- the gas concentration detection device 10 includes a concentration detection unit 30 that performs a gas concentration detection operation, a thermistor 28 that is a temperature detection unit that detects the temperature of the gas, lighting control and concentration of the light source 20. And a drive circuit 40 for performing predetermined processing on the gas concentration detection signal output from the detection unit 30 and the temperature detection signal output from the thermistor 28.
- a concentration detection unit 30 that performs a gas concentration detection operation
- a thermistor 28 that is a temperature detection unit that detects the temperature of the gas, lighting control and concentration of the light source 20.
- a drive circuit 40 for performing predetermined processing on the gas concentration detection signal output from the detection unit 30 and the temperature detection signal output from the thermistor 28.
- Each of the component parts of the concentration detection unit 30 and the thermistor 28 is provided at a predetermined position on one surface of the circuit board 12.
- the components of the drive circuit 40 are provided at predetermined positions on the circuit board 12.
- the concentration detector 30 includes a light source 20, a holding base 22, a pyroelectric sensor 24, and an optical filter 26 as components.
- the light source 20 is provided at a position separated from the pyroelectric sensor 24 by a predetermined distance.
- An optical path 18 is provided between the light source 20 and the pyroelectric sensor 24.
- the light source 20 emits infrared rays toward the pyroelectric sensor 24.
- the light source 20 is described as being a filament lamp, for example, but may be a light source that emits infrared rays, such as an LED (Light Emitting Diode).
- the light source 20 is held by a holding table 22 fixed to the circuit board 12.
- the light source 20 is controlled to blink at a predetermined cycle.
- the cross-sectional shape of the holding table 22 has a semi-elliptical shape opened to the pyroelectric sensor 24 side.
- a mirror surface is formed inside the semi-elliptical shape. That is, the holding table 22 is an elliptical mirror.
- the light source 20 is provided at a semi-elliptical focal position of the holding table 22. Therefore, the infrared rays radiated from the light source 20 pass through the optical path 18 and enter the pyroelectric sensor 24 directly, or reflect the mirror surface formed on the holding base 22 and then pass through the optical path 18. Or incident on the pyroelectric sensor 24.
- the pyroelectric sensor 24 is a pyroelectric infrared sensor using bulk ceramics.
- the pyroelectric sensor 24 is provided with an incident window, which is a part that receives infrared rays emitted from the light source 20, facing the light source 20.
- An optical filter 26 is provided in the incident window.
- the optical filter 26 is, for example, a bandpass filter that passes infrared rays in a predetermined wavelength band.
- the predetermined wavelength band is, for example, a wavelength band including the vicinity of 4.26 ⁇ m, which is an infrared wavelength having a high absorption rate by carbon dioxide molecules.
- the predetermined wavelength band has a wavelength corresponding to the type of gas that is the concentration detection target (that is, the absorption rate of the gas that is the concentration detection target is high).
- a wavelength band based on (wavelength) is selected. That is, the pyroelectric sensor 24 receives infrared rays in a predetermined wavelength band among infrared rays emitted from the light source 20.
- the thermistor 28 is provided around the pyroelectric sensor 24 and is fixed to the circuit board 12. In the thermistor 28, a constant current flows when a voltage is applied from the drive circuit 40, and a voltage generated when the constant current flows is detected in the drive circuit 40 as an output voltage.
- the cover 14 is provided so as to cover the components of the concentration detection unit 30 and the thermistor 28, and is fixed to the circuit board 12.
- the cover 14 is provided with an intake port 16 for taking in gas from the outside of the cover 14 and discharging gas inside the cover 14.
- the intake port 16 is provided with an air filter.
- the detection of the concentration of carbon dioxide by the gas concentration detection device 10 is performed in a state where gas is taken into the cover 14 from the intake port 16.
- the pyroelectric sensor 24 When infrared rays are emitted from the light source 20 toward the pyroelectric sensor 24, the emitted infrared rays are received by the pyroelectric sensor 24.
- the pyroelectric sensor 24 outputs a voltage in response to infrared light reception. At this time, the output voltage varies depending on the concentration and temperature of carbon dioxide in the optical path section 18.
- the optical filter 26 since the optical filter 26 transmits infrared rays having a wavelength with high carbon dioxide absorption, it is possible to convert the output value of the pyroelectric sensor 24 into the concentration of carbon dioxide.
- FIG. 2 is a circuit configuration diagram of the gas concentration detection apparatus 10 according to the present embodiment.
- the drive circuit 40 includes an amplifier circuit 42, an AD conversion circuit 44, and a density conversion processing circuit 46.
- the density conversion processing circuit 46 corresponds to a calculation unit in the claims of the present application.
- the circuit configuration of the gas concentration detection apparatus 10 shown in FIG. 2 is an example, and is not limited to the circuit configuration shown in FIG.
- the amplifying circuit 42 is configured by, for example, an amplifier, and amplifies the signal strength of the concentration detection signal (output voltage) of the concentration detector 30 and the signal strength of the temperature detection signal (output voltage) of the thermistor 28.
- the AD conversion circuit 44 converts the analog signal whose signal intensity is amplified in the amplification circuit 42 into a digital signal.
- a well-known technique may be used for amplification of signal intensity and conversion from an analog signal to a digital signal.
- the concentration conversion processing circuit 46 performs a predetermined process on the digital signal converted by the AD conversion circuit 44 to detect the concentration C of carbon dioxide contained in the gas introduced into the cover 14.
- the density conversion processing circuit 46 is realized by, for example, a CPU (Central Processing Unit).
- the CPU executes predetermined arithmetic processing and control processing by executing a program stored in a storage unit (not shown). For example, the CPU executes a control process for lighting the light source 20 and a control process for applying a voltage to the thermistor 28 in addition to a calculation process for calculating the concentration of carbon dioxide.
- the detection of the concentration of carbon dioxide in the gas concentration detection apparatus 10 is performed in the following procedure.
- a temperature detection signal is acquired from the thermistor 28.
- the light source 20 is turned on.
- the output value V of the pyroelectric sensor 24 is acquired.
- Predetermined signal processing is executed on the acquired output value V of the pyroelectric sensor 24.
- the output value V of the pyroelectric sensor 24 corresponds to the concentration output value of the present invention. Further, the temperature detection signal of the thermistor 28 corresponds to the temperature output value of the present invention.
- the predetermined signal processing includes, for example, processing for removing noise from the output waveform of the pyroelectric sensor 24 using a moving average method, processing for amplifying the signal intensity by the amplifier circuit 42, and digital data by the AD conversion circuit 44. And the process of converting to. These processes are also performed on the temperature detection signal. Further, the thermistor temperature Th [K] is calculated from the temperature detection signal. The calculation of the thermistor temperature Th may be performed in the above (1).
- the concentration C of carbon dioxide is calculated from the thermistor temperature Th and the output value V of the pyroelectric sensor 24.
- the light source 20 is turned off.
- the gas concentration detection apparatus 10 performs the processes (1) to (6) at regular intervals, for example.
- the concentration conversion processing circuit 46 calculates the concentration of carbon dioxide based on the output value V of the pyroelectric sensor 24, the first calibration curve obtained in advance, the thermistor temperature Th, and the second calibration curve.
- the data relating to the first calibration curve and the data relating to the second calibration curve are acquired in advance at the time of manufacturing the gas concentration detection device 10 and stored in a storage medium such as a memory provided in the drive circuit 40.
- the first calibration curve indicates the relationship between the carbon dioxide concentration C and the output value V of the pyroelectric sensor 24 at a predetermined reference temperature (for example, 25 ° C.). More specifically, the first calibration curve shows the relationship between the value (V / V0) obtained by normalizing the output value V of the pyroelectric sensor 24 with the reference output value V0 and the concentration C of carbon dioxide. An output value of the pyroelectric sensor 24 corresponding to each of the plurality of carbon dioxide concentrations at the reference temperature is acquired in advance, and the first calibration curve is based on the output values of the plurality of pyroelectric sensors 24 acquired in advance. Thus, an approximate expression of a predetermined order multiplied by the correction coefficient ⁇ is derived and set.
- the reference output value V0 is an output value of the pyroelectric sensor 24 corresponding to the thermistor temperature Th when the concentration of carbon dioxide is a predetermined reference concentration (for example, 0 ppm).
- the reference output value V0 is calculated using a second calibration curve described later based on the thermistor temperature Th.
- the first calibration curve is represented by the following equation.
- C (carbon dioxide concentration) ⁇ (correction coefficient) ⁇ f1 (V / V0) (Equation 1)
- F1 in the above (Expression 1) is a function of a predetermined order, and may be, for example, a quadratic function or a cubic function.
- f1 is a cubic function
- the gas concentration C is expressed by the following equation.
- a1 to a4 are calculated based on a combination of the concentrations of a plurality of types of carbon dioxide and the output value of the pyroelectric sensor 24 obtained in advance through experiments or the like at the reference temperature. For example, as shown in FIG.
- output values of a plurality of pyroelectric sensors 24 respectively corresponding to a plurality of predetermined carbon dioxide concentrations (for example, concentrations of 0 ppm, 400 ppm, 1000 ppm, and 2000 ppm) at the reference temperature are obtained in advance.
- A1 to a4 are calculated based on the acquired output values acquired by experiments or the like.
- Equation 2 The above (Equation 2) and the calculated values of a1 to a4 are stored in a storage medium such as a memory provided in the drive circuit 40.
- Th 25 indicates the thermistor temperature [K] at 25 ° C. That is, the correction coefficient ⁇ is proportional to the temperature output value.
- B represents a constant
- Vth represents the output voltage of the thermistor 28
- Vcc represents the voltage applied from the drive circuit 40 to the thermistor 28.
- the above (Equation 3) and the constant B are stored in a storage medium such as a memory provided in the drive circuit 40.
- the correction coefficient ⁇ is a coefficient proportional to the thermistor temperature Th.
- the correction coefficient ⁇ is stored in a storage medium such as a memory provided in the drive circuit 40.
- the first calibration curve expressed by the above is indicated by a solid line in FIG.
- the horizontal axis of FIG. 4 indicates the carbon dioxide concentration C
- the vertical axis of FIG. 4 indicates the normalized value (V / V0).
- the concentration C and the normalized value (V / V0) are normalized as the concentration C increases, the normalized value (V / V0) decreases, and the concentration C decreases.
- the value (V / V0) has an increasing relationship.
- the correction coefficient ⁇ is set in consideration of the temperature characteristics of the amount of absorption by which carbon dioxide absorbs infrared rays.
- the molar concentration n (mol / l), which means the number of molecules of carbon dioxide, follows the gas equation of state (PV nRT). Therefore, in an environment where the pressure P and the volume V are constant, the temperature Proportional to inverse (inversely proportional to temperature). Therefore, even in an environment with the same carbon dioxide concentration, the amount of absorbed infrared light decreases between the temperature of the gas containing carbon dioxide and the amount of absorbed infrared light as the temperature of the gas containing carbon dioxide increases. There is a relationship in which the amount of infrared absorption increases as the temperature of the gas containing carbon dioxide decreases.
- the output value V of the pyroelectric sensor 24 is changed to a value higher than the original output value when the infrared absorption amount is decreased. Therefore, the output value V of the pyroelectric sensor 24 is converted to a value lower than the original density.
- the output value V of the pyroelectric sensor 24 changes to a value lower than the original output value. Therefore, the output value V of the pyroelectric sensor 24 is converted to a value higher than the original density.
- the concentration of carbon dioxide to be calculated is the ratio of the volume of carbon dioxide gas to the volume inside the cover 14, the relationship between the temperature and the concentration to be calculated differs from the relationship between the temperature and the molar concentration n.
- FIG. 5 shows the relationship between the wavelength of infrared rays emitted from the light source and the absorption rate of infrared rays by carbon dioxide molecules.
- the vertical axis in FIG. 5 indicates the infrared absorption rate, and the horizontal axis in FIG. 5 indicates the infrared wavelength.
- the infrared absorption rate indicates the amount of infrared absorption at a specific wavelength.
- the thick solid line in FIG. 5 is an absorption spectrum when the gas concentration is ⁇ 50 ° C.
- the thick broken line in FIG. 5 is an absorption spectrum when the gas concentration is 0 ° C.
- the thin solid line in FIG. 5 is an absorption spectrum when the gas temperature is 25 ° C.
- the thin broken line in FIG. 5 is an absorption spectrum when the gas temperature is 50 ° C.
- the dashed-dotted line in FIG. 5 is an absorption spectrum when the gas temperature is 100 ° C.
- the concentration of carbon dioxide can be calculated with higher accuracy by setting the correction coefficient ⁇ in consideration of the temperature characteristics of the amount of absorption by which carbon dioxide absorbs infrared rays.
- the absorption ratio B / A (absorption amount B is the absorption amount A) between the infrared absorption amount A at a predetermined reference temperature Ta (for example, 25 ° C.) and the infrared absorption amount B at the temperature Tb.
- the normalized value is similar to the reciprocal Ta / Tb of the temperature ratio. That is, the error in the density C occurs in proportion to Ta / Tb.
- the correction coefficient ⁇ may be a coefficient proportional to the temperature, and is not particularly limited to the above formula, and may be adjusted by experiments or the like.
- the first calibration curve is corrected by the correction coefficient ⁇ . For example, when the thermistor temperature Th is 50 ° C., the first calibration curve is located above the first calibration curve (solid line in FIG. 4) at the reference temperature (25 ° C.) as shown by the broken line in FIG. Since it is located, the density is corrected downward. Further, when the thermistor temperature Th is 0 ° C., the first calibration curve is located below the first calibration curve at the reference temperature as shown by the one-dot chain line in FIG. Is done.
- the gas concentration can be calculated with high accuracy in consideration of the temperature characteristic of the infrared absorption amount.
- the concentration conversion processing circuit 46 calculates the reference output value V0 using the second calibration curve.
- the second calibration curve shows the relationship between the thermistor temperature Th and the reference output value V0 at a predetermined reference concentration (for example, 0 ppm).
- the second calibration curve is set by deriving an approximate expression of a predetermined order based on the output values of the plurality of pyroelectric sensors 24 acquired in advance corresponding to each of the plurality of carbon dioxide temperatures at the reference concentration. .
- the second calibration curve is represented by the following equation.
- V0 f2 (Th) (Formula 4)
- F2 in the above (Formula 4) is a function of a predetermined order, and may be, for example, a cubic function or a quartic function.
- f2 is a quartic function
- the reference output value V0 is expressed by the following equation.
- V0 b1 ⁇ Th 4 + b2 ⁇ Th 3 + b3 ⁇ Th 2 + b4 ⁇ Th + b5 (Formula 5)
- b1 to b5 are calculated based on a combination of a plurality of types of temperatures (thermistor temperature Th) obtained in advance by experiments or the like at the reference concentration and the output value of the pyroelectric sensor 24.
- the gas concentration detection device 10 replaces a plurality of types of temperatures (thermistor temperature Th) previously acquired by experiments or the like at the reference concentration with the voltage values of a plurality of types of temperatures previously acquired by experiments or the like at the reference concentration (thermistor temperature Th).
- the output voltage Vth of the thermistor may be used. That is, the reference output value V0 may be obtained from the output voltage Vth of the thermistor. Therefore, in the above (Formula 4) and (Formula 5), Th may be replaced with Vth.
- the output values of a plurality of pyroelectric sensors 24 respectively corresponding to a plurality of temperatures (for example, 0 ° C., 10 ° C., 25 ° C., 40 ° C., and 50 ° C.) at the reference concentration are previously tested.
- b1 to b4 are calculated based on the acquired output values.
- the pyroelectric infrared sensor used in the experimental example is E472SW1 manufactured by Murata Manufacturing Co., Ltd., but generally the same effect can be obtained if the infrared sensor uses bulk piezoelectric ceramics or MEMS (Micro Electro Mechanical Systems). Is expected to be obtained.
- FIG. 6 (A) shows errors in detection values corresponding to concentrations in a plurality of temperature environments when the correction coefficient ⁇ is not included in the first calibration curve.
- the vertical axis in FIG. 6A indicates an error, and with 0 as a reference, the upward direction in FIG. 6A is a positive direction, and the downward direction in FIG. 6A is a negative direction.
- the horizontal axis of FIG. 6A shows the concentration of carbon dioxide.
- the broken line in FIG. 6 (A) shows the relationship between error and concentration when the temperature (thermistor temperature Th) is 0 ° C.
- the solid line in FIG. 6A shows the relationship between error and concentration when the temperature is 25 ° C. (reference temperature).
- the dashed line in FIG. 6A shows the relationship between error and concentration when the temperature is 50 ° C.
- the error in concentration corresponding to each of the plurality of concentrations is almost zero. This is because the first calibration curve is set based on the output value (actually measured value) of the pyroelectric sensor 24 corresponding to each of a plurality of concentrations at the reference temperature.
- the output value of the pyroelectric sensor 24 is the original value. It changes to a higher side than the output value (the output value of the pyroelectric sensor 24 for the same density when the temperature is 25 ° C.). For this reason, an error in density occurs on the lower side than an error in density when the temperature is 25 ° C.
- the infrared absorption amount increases more than the infrared absorption amount when the temperature is 25 ° C. Therefore, the output value of the pyroelectric sensor 24 is higher than the original output value. Also changes to the lower side. For this reason, an error in density occurs on the higher side than an error in density when the temperature is 25 ° C.
- FIG. 6 (B) shows errors in detected values corresponding to concentrations in a plurality of temperature environments when the correction coefficient ⁇ is included in the first calibration curve.
- the vertical axis in FIG. 6B represents an error, and with 0 as a reference, the upward direction in FIG. 6B is the positive direction, and the downward direction in FIG. 6B is the negative direction.
- the horizontal axis in FIG. 6B indicates the concentration of carbon dioxide. Note that the vertical scale in FIG. 6A and the vertical scale in FIG. 6B are the same.
- the broken line in FIG. 6B shows the relationship between the error and the concentration when the temperature (thermistor temperature Th) is 0 ° C.
- the solid line in FIG. 6B shows the relationship between error and concentration when the temperature is 25 ° C.
- the alternate long and short dash line in FIG. 6B shows the relationship between the error and the concentration when the temperature is 50 ° C.
- the correction coefficient ⁇ proportional to the thermistor temperature Th can be included in the first calibration curve, and therefore the infrared ray proportional to the inverse of the thermistor temperature Th. It is possible to correct the density error caused by the change in the amount of absorption. Therefore, the concentration C of carbon dioxide can be calculated with high accuracy in consideration of the temperature characteristics of the amount of infrared rays absorbed by carbon dioxide.
- the calibration curve data for a plurality of temperatures can be reduced, it is possible to suppress the time for creating the calibration curve data and the increase in the data amount of the calibration curve data. Therefore, it is possible to provide a gas concentration detection device that can suppress an increase in a necessary data amount in advance and detect a gas concentration with high accuracy in consideration of a temperature characteristic of an infrared absorption amount.
- a value corresponding to the amount of infrared rays absorbed by the gas that changes in inverse proportion to the change in the thermistor temperature Th specifically, a value Th / standardized by the thermistor temperature Th 25 of the reference temperature (25 ° C.).
- the reference output value V0 corresponding to the thermistor temperature Th can be calculated based on the second calibration curve, the carbon dioxide concentration C is calculated using the first calibration curve and the calculated reference output value V0. It is possible to calculate with high accuracy.
- the carbon dioxide concentration C can be calculated using the first calibration curve represented by (Equation 1) and the second calibration curve represented by (Equation 4) including the correction coefficient ⁇ , data acquired in advance While suppressing an increase in the amount, the calculation load can be reduced. Moreover, the increase in the manufacturing cost and design cost of a product can be suppressed by suppressing the increase in the data acquired beforehand and reducing the calculation load.
- the output values of the pyroelectric sensor 24 corresponding to each concentration are acquired in advance by using four concentrations of 0 ppm, 400 ppm, 1000 ppm, and 2000 ppm as measurement points.
- the a1 to a4 of the first calibration curve are calculated using the output values, but for example, the output values of the pyroelectric sensor 24 corresponding to the concentrations of four or more points may be acquired in advance, The output value of the pyroelectric sensor 24 corresponding to the density of the measurement points other than the above four points may be acquired in advance, or a plurality of pyroelectrics corresponding to a plurality of densities having a density higher or lower than 2000 ppm as an upper limit value. The output value of the electric sensor 24 may be acquired in advance.
- pyroelectric sensors corresponding to each temperature are measured at five temperatures of 0 ° C., 10 ° C., 25 ° C., 40 ° C., and 50 ° C.
- the output values of 24 are acquired in advance, and b1 to b5 of the second calibration curve are calculated using the acquired output values.
- the output of the pyroelectric sensor 24 corresponding to a temperature of 5 points or more is used.
- the value may be acquired in advance, the output value of the pyroelectric sensor 24 corresponding to the temperature of the measurement point other than the above five points may be acquired in advance, or a temperature higher or lower than 50 ° C.
- Output values of a plurality of pyroelectric sensors 24 corresponding to a plurality of temperatures may be acquired in advance, or a plurality of pyroelectrics corresponding to a plurality of temperatures having a lower value or a value lower than 0 ° C. Even if the output value of the sensor 24 is acquired in advance There.
- each of the concentration measurement points is set to 0, R / 4, R / 2, and R when the measurement range is 0 to R.
- the correction coefficient ⁇ is proportional to the temperature output value, but is not limited thereto.
- the correction coefficient ⁇ may be proportional to the power of the temperature output signal.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
ガス濃度検出装置(10)は、ガスの濃度に応じた濃度出力値を示す信号を出力する濃度検出部(30)と、ガスの温度に応じた温度出力値を示す信号を出力するサーミスタ(28)と、予め定められたガスの基準濃度において温度出力値に対応する基準出力値を算出し、濃度出力値を基準出力値で規格化した値と、規格化した値に対するガスの濃度との関係を示す第1検量線に基づいてガスの濃度を算出する濃度変換処理回路とを備える。第1検量線は、温度出力値に比例する補正係数を含む。
Description
本発明は、ガスによる赤外線の吸収量の温度特性を考慮してガスの濃度を検出するガス濃度検出装置に関する。
たとえば、NDIR(Non-dispersive Infrared Analyzer)型(非分散型)のガス濃度検出装置を用いて、検出対象のガスの赤外線の吸収量から当該ガスの濃度を検出する技術が公知である。このようなガス濃度検出装置として、たとえば、特許第4154274号公報(特許文献1)には、検出温度と基準温度との間の温度領域における平均出力変化率の大きさによって定められる補正量を用いて検出出力値を補正してガス濃度を検出する技術が開示される。
ところで、ガスによる赤外線の吸収量は温度によって変化するため、ガス濃度を精度高く検出するためには、そのような温度特性を考慮する必要がある。特許文献1においては、そのような温度特性を考慮してガス濃度の検出精度を向上させるために、複数の温度に対する複数の検量線データを用意している。そのため、検量線データの取得に長時間を要したり、あるいは、検量線データのデータ量が多いため処理時間に長時間を要したりするという問題があった。
本発明は、上述した課題を解決するためになされたものであって、その目的は、予め必要なデータ量の増加を抑制するとともに、赤外線の吸収量の温度特性を考慮してガスの濃度を精度高く検出するガス濃度検出装置を提供することである。
この発明のある局面に係るガス濃度検出装置は、ガスの濃度に応じた濃度出力値を示す信号を出力する濃度検出部と、ガスの温度に応じた温度出力値を示す信号を出力する温度検出部と、予め定められたガスの基準濃度において温度出力値に対応する基準出力値を算出し、濃度出力値を基準出力値で規格化した値、および規格化した値に対するガスの濃度の関係を示す第1検量線に基づいてガスの濃度を算出する算出部とを備える。第1検量線は、温度出力値に比例する補正係数を含む。
このようにすると、第1検量線にガスの温度に比例する補正係数を含めることができるので、ガスによる赤外線の吸収量の温度特性を考慮して、ガスの濃度を精度高く算出することができる。また、複数の温度に対する検量線データを減少させることができるため、検量線データの作成時間、および検量線データのデータ量の増大を抑制できる。
好ましくは、算出部は、ガスの温度変化に反比例して変化するガスによる光の吸収率に応じた補正係数を算出する。
このようにすると、補正係数によって、ガスの温度の逆数に比例する赤外線の吸収量の変化によって生じる濃度の誤差を補正することができる。そのため、ガスの濃度を精度高く算出することができる。
さらに好ましくは、算出部は、温度出力値、および温度出力値に対する基準出力値の関係を示す第2検量線に基づいて基準出力値を算出する。
このようにすると、第2検量線に基づいて基準出力値を算出することができるため、算出された基準出力値を用いてガスの濃度をより精度高く算出することができる。
さらに好ましくは、第2検量線は、基準濃度におけるガスの複数の温度の各々に対応した、予め取得された複数の濃度出力値に基づいて所定の次数の近似式を導出して設定される。
このようにすると、第2検量線に基づいてガスの濃度をより精度高く算出することができる。
さらに好ましくは、第1検量線は、基準温度におけるガスの複数の濃度の各々に対応した、予め取得された複数の濃度出力値に基づいて補正係数が乗算された所定の次数の近似式を導出して設定される。
このようにすると、第1検量線に基づいてガスの濃度をより精度高く算出することができる。
さらに好ましくは、濃度検出部は、検出対象のガスが導入される光路部と、赤外線を放射する光源と、光源から放射された赤外線を検出する受光センサと、受光センサと光源との間に設けられるバンドパスフィルタとを含む。
この発明によると、第1検量線にガスの温度に比例する補正係数を含めることができるので、ガスによる赤外線の吸収量の温度特性を考慮して、ガスの濃度を精度高く算出することができる。また、複数の温度に対する検量線データを減少させることができるため、検量線データの作成時間、および検量線データのデータ量の増大を抑制できる。したがって、予め必要なデータ量の増加を抑制するとともに、赤外線の吸収量の温度特性を考慮してガスの濃度を精度高く検出するガス濃度検出装置を提供することができる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
図1は、本実施の形態に係るガス濃度検出装置10の構成を示す図である。なお、図1に示すガス濃度検出装置10の構成は、一例であり、図1に示される構成に特に限定されるものではない。
本実施の形態において、ガス濃度検出装置10は、赤外線吸収方式(NDIR)のガスセンサである。本実施の形態におけるガス濃度検出装置10による濃度の検出対象となる気体は、二酸化炭素であるものとして説明するが、検出対象となる気体は、二酸化炭素に特に限定されるものではない。
ガス濃度検出装置10は、たとえば、BEMS(Building Energy Management System)において二酸化炭素の濃度に基づく換気量の制御や、植物の栽培施設等において屋内の二酸化炭素の濃度を所定の範囲内に収める制御等に用いられる。
図1に示すように、ガス濃度検出装置10は、ガスの濃度の検出動作を行う濃度検出部30と、ガスの温度を検出する温度検出部であるサーミスタ28と、光源20の点灯制御、濃度検出部30から出力されるガス濃度検出信号、およびサーミスタ28から出力される温度検出信号に対して所定の処理を行うための駆動回路40とを含む。濃度検出部30の構成部品およびサーミスタ28の各々は、回路基板12の一方の面上の所定の位置に設けられる。駆動回路40の構成部品は、回路基板12の所定の位置に設けられる。
濃度検出部30は、光源20と、保持台22と、焦電センサ24と、光学フィルタ26とを構成部品として含む。
光源20は、焦電センサ24と所定の距離だけ離隔した位置に設けられる。光源20と焦電センサ24との間には光路部18が設けられる。光源20は、焦電センサ24に向けて赤外線を放射する。本実施の形態において、光源20は、たとえば、フィラメントランプであるものとして説明するが、たとえば、LED(Light Emitting Diode)等の赤外線を放射する光源であってもよい。光源20は、回路基板12に固定された保持台22によって保持される。光源20は、所定の周期で点滅するように制御される。
保持台22の断面形状は、焦電センサ24側に開いた半楕円形状を有する。半楕円形状の内側は、鏡面が形成される。すなわち、保持台22は、楕円ミラーである。光源20は、保持台22の半楕円形状の焦点位置に設けられる。そのため、光源20から放射された赤外線は、光路部18を通過して焦電センサ24に直接的に入射したり、あるいは、保持台22に形成される鏡面を反射した後、光路部18を通過して焦電センサ24に入射したりする。
焦電センサ24は、バルクセラミックスを用いた焦電型赤外線センサである。焦電センサ24には、光源20から放射される赤外線を受光する部分である入射窓が光源20に向けて設けられる。この入射窓には、光学フィルタ26が設けられる。光学フィルタ26は、たとえば、所定の波長帯の赤外線を通過するバンドパスフィルタである。所定の波長帯は、たとえば、二酸化炭素分子による吸収率の高い赤外線の波長である、4.26μmの近傍を含む波長帯である。所定の波長帯は、濃度の検出対象が二酸化炭素以外の気体である場合には、濃度の検出対象となる気体の種類に応じた波長(すなわち、濃度の検出対象となる気体の吸収率が高い波長)を基準とした波長帯が選択される。すなわち、焦電センサ24は、光源20から放射された赤外線のうち所定の波長帯の赤外線を受光する。
サーミスタ28は、焦電センサ24の周辺に設けられ、回路基板12に固定される。サーミスタ28においては、駆動回路40から電圧が印加されることにより定電流が流れ、定電流が流れたときに生じる電圧が出力電圧として駆動回路40において検出される。
カバー14は、濃度検出部30の構成部品およびサーミスタ28を覆うように設けられ、回路基板12に固定される。カバー14には、カバー14の外部からガスを取り入れたり、カバー14の内部のガスを排出したりするための取入口16が設けられる。取入口16には、エアフィルターが設けられる。
ガス濃度検出装置10による二酸化炭素の濃度の検出は、取入口16からカバー14の内部に気体が取り入れられた状態で行われる。光源20から焦電センサ24に向けて赤外線が放射されると、放射された赤外線は、焦電センサ24において受光される。焦電センサ24は、赤外線の受光に応じて電圧を出力する。このとき、出力される電圧は、光路部18における二酸化炭素の濃度と温度によって異なる。これは、光源20から放射される赤外線が光路部18上の二酸化炭素により吸収されるため、二酸化炭素の濃度により、光源20から焦電センサ24に到達する赤外線の量も変化するためである(Lambert-Beerの法則)。
本実施の形態において、光学フィルタ26は、二酸化炭素の吸収率が高い波長の赤外線を通過させるものであるため、焦電センサ24の出力値から二酸化炭素の濃度に換算することが可能となる。
図2は、本実施の形態に係るガス濃度検出装置10の回路構成図である。図2に示すように、駆動回路40は、増幅回路42と、AD変換回路44と、濃度変換処理回路46とを含む。なお、濃度変換処理回路46が本願請求項の算出部に相当する。また、図2に示すガス濃度検出装置10の回路構成は、一例であり、図2に示される回路構成に限定されるものではない。
増幅回路42は、たとえば、アンプ等によって構成され、濃度検出部30の濃度検出信号(出力電圧)の信号強度と、サーミスタ28の温度検出信号(出力電圧)の信号強度とを増幅する。
AD変換回路44は、増幅回路42において信号強度が増幅されたアナログ信号をデジタル信号に変換する。なお、信号強度の増幅やアナログ信号からデジタル信号への変換は、周知の技術を用いればよい。
濃度変換処理回路46は、AD変換回路44において変換されたデジタル信号に対して所定の処理を実施することによってカバー14の内部に取り入れられた気体に含まれる二酸化炭素の濃度Cを検出する。なお、本実施の形態において、濃度変換処理回路46は、たとえば、CPU(Central Processing Unit)によって実現される。CPUは、図示しない記憶部に記憶されたプログラムを実行することによって、所定の演算処理や制御処理を実行する。CPUは、たとえば、二酸化炭素の濃度を算出する演算処理に加えて、光源20を点灯させる制御処理やサーミスタ28に電圧を印加する制御処理を実行する。
本実施の形態において、ガス濃度検出装置10における二酸化炭素の濃度の検出は、以下のような手順で行われる。(1)サーミスタ28から温度検出信号を取得する。(2)光源20を点灯状態にする。(3)焦電センサ24の出力値Vを取得する。(4)取得された焦電センサ24の出力値Vに対して、所定の信号処理を実行する。
なお、焦電センサ24の出力値Vが本願発明の濃度出力値に相当する。また、サーミスタ28の温度検出信号が本願発明の温度出力値に相当する。
なお、所定の信号処理は、たとえば、焦電センサ24の出力波形から移動平均法を用いてノイズを除去する処理と、増幅回路42によって信号強度を増幅する処理と、AD変換回路44によってデジタルデータに変換する処理とを含む。これらの処理は、温度検出信号に対しても行なわれる。また、温度検出信号からサーミスタ温度Th[K]が算出される。サーミスタ温度Thの算出は、上記(1)において行なわれてもよい。
(5)サーミスタ温度Thと焦電センサ24の出力値Vとから二酸化炭素の濃度Cを算出する。(6)光源20を点灯停止状態にする。ガス濃度検出装置10は、上記(1)~(6)の処理を、たとえば、一定間隔毎に行なう。
以下に、本実施の形態に係るガス濃度検出装置10がサーミスタ28の温度Thと焦電センサ24の出力値Vとから二酸化炭素の濃度Cを算出する方法について説明する。
濃度変換処理回路46は、焦電センサ24の出力値Vと予め取得された第1検量線とサーミスタ温度Thと第2検量線とに基づいて二酸化炭素の濃度を算出する。
第1検量線に関するデータおよび第2検量線に関するデータは、ガス濃度検出装置10の製造時において予め取得されて、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
第1検量線は、予め定められた基準温度(たとえば、25℃)における二酸化炭素の濃度Cと焦電センサ24の出力値Vとの関係を示す。より具体的には、第1検量線は、焦電センサ24の出力値Vを基準出力値V0で規格化した値(V/V0)と、二酸化炭素の濃度Cとの関係を示す。基準温度における二酸化炭素の複数の濃度の各々に対応した、焦電センサ24の出力値が予め取得されており、第1検量線は、予め取得された複数の焦電センサ24の出力値に基づいて、補正係数αが乗算された所定の次数の近似式を導出して設定される。
この基準出力値V0は、二酸化炭素の濃度が予め定められた基準濃度(たとえば、0ppm)である場合における、サーミスタ温度Thに対応した焦電センサ24の出力値である。基準出力値V0は、サーミスタ温度Thに基づいて後述する第2検量線を用いて算出される。
本実施の形態において、第1検量線は、以下の式で示される。
C(二酸化炭素の濃度)=α(補正係数)×f1(V/V0)…(式1)
上記(式1)におけるf1は、所定の次数の関数であって、たとえば、2次関数であってもよいし、3次関数であってもよい。f1が3次関数である場合には、ガスの濃度Cは、以下の式で示される。
C(二酸化炭素の濃度)=α(補正係数)×f1(V/V0)…(式1)
上記(式1)におけるf1は、所定の次数の関数であって、たとえば、2次関数であってもよいし、3次関数であってもよい。f1が3次関数である場合には、ガスの濃度Cは、以下の式で示される。
C=α×[a1×(V/V0)3+a2×(V/V0)2+a3×(V/V0)+a4]…(式2)
上記(式2)におけるa1~a4は、基準温度において予め実験等により取得された複数種類の二酸化炭素の濃度と焦電センサ24の出力値との組み合わせに基づいて算出される。たとえば、図3に示すように、基準温度における予め定められた複数の二酸化炭素の濃度(たとえば、0ppm、400ppm、1000ppm、2000ppmの濃度)にそれぞれ対応した複数の焦電センサ24の出力値が予め実験等により取得され、取得された出力値に基づいてa1~a4が算出される。
上記(式2)におけるa1~a4は、基準温度において予め実験等により取得された複数種類の二酸化炭素の濃度と焦電センサ24の出力値との組み合わせに基づいて算出される。たとえば、図3に示すように、基準温度における予め定められた複数の二酸化炭素の濃度(たとえば、0ppm、400ppm、1000ppm、2000ppmの濃度)にそれぞれ対応した複数の焦電センサ24の出力値が予め実験等により取得され、取得された出力値に基づいてa1~a4が算出される。
上記(式2)および算出されたa1~a4の値は、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
補正係数αは、α=Th/Th25の式より算出される。なお、Th25は、25℃時のサーミスタ温度[K]を示す。すなわち、補正係数αは、温度出力値に比例する。
サーミスタ温度Th[K]は、以下の式を用いて算出される。
Th=1/(1/Th25+1/B×ln(Vth/(Vcc-Vth)))…(式3)
上記(式3)において、Bは、定数を示し、Vthは、サーミスタ28の出力電圧を示し、Vccは、駆動回路40からサーミスタ28への印加電圧を示す。上記(式3)および定数Bは、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
Th=1/(1/Th25+1/B×ln(Vth/(Vcc-Vth)))…(式3)
上記(式3)において、Bは、定数を示し、Vthは、サーミスタ28の出力電圧を示し、Vccは、駆動回路40からサーミスタ28への印加電圧を示す。上記(式3)および定数Bは、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
補正係数αは、サーミスタ温度Thに比例する係数である。補正係数αは、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
上記(式1)で示される第1検量線は、たとえば、図4の実線で示される。図4の横軸は、二酸化炭素の濃度Cを示し、図4の縦軸は、規格化した値(V/V0)を示す。図4に示されるように、濃度Cと規格化した値(V/V0)とは、濃度Cが高くなるほど、規格化した値(V/V0)が減少し、濃度Cが低くなるほど規格化した値(V/V0)は増加する関係がある。
補正係数αは、二酸化炭素が赤外線を吸収する吸収量についての温度特性を考慮して設定される。
カバー14の内部の二酸化炭素の分子数によって赤外線の吸収量は異なる。そのため、カバー14の内部の体積が同じで、圧力が同じであっても、二酸化炭素の分子の数が異なると、赤外線の吸収量が異なることから焦電センサ24の出力値も変化することとなる。
この二酸化炭素の分子数を意味するモル濃度n(mol/l)は、理想気体の場合、気体の状態方程式(PV=nRT)に従うため、圧力Pおよび体積Vが一定の環境下では、温度の逆数に比例(温度に反比例)する。したがって、同じ二酸化炭素濃度の環境下であっても、二酸化炭素を含むガスの温度と赤外線の吸収量との間には、二酸化炭素を含むガスの温度が上昇するほど赤外線の吸収量は低下し、二酸化炭素を含むガスの温度が低下するほど赤外線の吸収量が増加する関係がある。
温度上昇によりモル濃度nが低下するため、赤外線の吸収量が低下する場合には、焦電センサ24の出力値Vは本来の出力値よりも高い値に変化する。そのため、焦電センサ24の出力値Vは、本来の濃度よりも低い値に換算されることとなる。
同様に、温度低下によりモル濃度nが増加するため、赤外線の吸収量が増加する場合には、焦電センサ24の出力値Vは本来の出力値よりも低い値に変化する。そのため、焦電センサ24の出力値Vは、本来の濃度よりも高い値に換算されることとなる。
しかしながら、算出したい二酸化炭素の濃度は、カバー14の内部の容積に対する二酸化炭素ガスの体積の比率であるため、温度と算出したい濃度の関係と、温度とモル濃度nの関係とは乖離がでる。
図5に、光源から放射される赤外線の波長と、二酸化炭素分子による赤外線の吸収率との関係を示す。図5の縦軸は、赤外線の吸収率を示し、図5の横軸は、赤外線の波長を示す。なお、本実施の形態において、赤外線の吸収率は、特定の波長における赤外線の吸収量を示す。
図5の太実線は、ガスの濃度が-50℃である場合の吸収スペクトルである。図5の太破線は、ガスの濃度が0℃である場合の吸収スペクトルである。図5の細実線は、ガス温度が25℃である場合の吸収スペクトルである。図5の細破線は、ガス温度が50℃である場合の吸収スペクトルである。図5の一点鎖線は、ガス温度が100℃である場合の吸収スペクトルである。
図5に示す吸収スペクトルからも明らかなように、二酸化炭素分子による赤外線の吸収率が高い波長領域(吸収波長領域)において、二酸化炭素を含むガスの各温度における赤外線の吸収率の積分値(図5における各吸収スペクトルの波形の面積、すなわち、赤外線の吸収量)は、温度の逆数に比例する傾向がある。
したがって、二酸化炭素が赤外線を吸収する吸収量の温度特性を考慮して補正係数αを設定することにより、二酸化炭素の濃度をより精度高く算出することができる。
また、予め定められた基準温度Ta(たとえば、25℃)での赤外線の吸収量Aと、温度Tbでの赤外線の吸収量Bとの吸収量比B/A(吸収量Bを吸収量Aで規格化した値)は、温度の比の逆数Ta/Tbと類似する。すなわち、濃度Cの誤差は、Ta/Tbに比例して生じることとなる。そのため、本実施の形態においては、補正係数αを、α=Th/Th25の式により設定するものとする。なお、補正係数αは、温度に比例する係数であればよく、特に上記式に限定されるものではなく、実験等により調整してもよい。
第1検量線は、補正係数αにより補正される。たとえば、サーミスタ温度Thが50℃である場合には、図4の破線に示すように、基準温度(25℃)での第1検量線(図4の実線)よりも上方に第1検量線が位置するので、濃度は下方に補正される。また、サーミスタ温度Thが0℃である場合には、図4の一点鎖線に示すように、基準温度での第1検量線よりも下方に第1検量線が位置するので、濃度は上方に補正される。
このように第1検量線に温度に比例する補正係数αを含めることにより、赤外線の吸収量の温度特性を考慮してガス濃度を精度高く算出することができる。
また、濃度変換処理回路46は、第2検量線を用いて基準出力値V0を算出する。第2検量線は、予め定められた基準濃度(たとえば、0ppm)におけるサーミスタ温度Thと基準出力値V0との関係を示す。第2検量線は、基準濃度における二酸化炭素の複数の温度の各々に対応した、予め取得された複数の焦電センサ24の出力値に基づいて所定の次数の近似式を導出して設定される。
本実施の形態において、第2検量線は、以下の式で示される。
V0=f2(Th)…(式4)
上記(式4)におけるf2は、所定の次数の関数であって、たとえば、3次関数であってもよいし、4次関数であってもよい。f2が4次関数である場合には、基準出力値V0は、以下の式で示される。
V0=f2(Th)…(式4)
上記(式4)におけるf2は、所定の次数の関数であって、たとえば、3次関数であってもよいし、4次関数であってもよい。f2が4次関数である場合には、基準出力値V0は、以下の式で示される。
V0=b1×Th4+b2×Th3+b3×Th2+b4×Th+b5…(式5)
上記(式5)におけるb1~b5は、基準濃度において予め実験等により取得された複数種類の温度(サーミスタ温度Th)と焦電センサ24の出力値との組み合わせに基づいて算出される。
上記(式5)におけるb1~b5は、基準濃度において予め実験等により取得された複数種類の温度(サーミスタ温度Th)と焦電センサ24の出力値との組み合わせに基づいて算出される。
なお、ガス濃度検出装置10は、基準濃度において予め実験等により取得された複数種類の温度(サーミスタ温度Th)に代えて、基準濃度において予め実験等により取得された複数種類の温度の電圧値(サーミスタの出力電圧Vth)を用いてもよい。すなわち、基準出力値V0は、サーミスタの出力電圧Vthから求められてもよい。したがって、上記(式4)、(式5)において、ThをVthに置き換えてもよい。
たとえば、図3に示すように、基準濃度における複数の温度(たとえば、0℃、10℃、25℃、40℃および50℃)にそれぞれ対応した複数の焦電センサ24の出力値が予め実験等により取得され、取得された出力値に基づいてb1~b4が算出される。
上記(式5)および算出されたb1~b5の値は、駆動回路40に設けられるメモリ等の記憶媒体に記憶される。
以下に実験例を示し、本実施の形態に係るガス濃度検出装置10の作用効果について説明する。なお、実験例で用いられた焦電型赤外線センサは、村田製作所製E472SW1であるが、一般的にバルクの圧電セラミックスや、MEMS(Micro Electro Mechanical Systems)を用いた赤外線センサであれば同様の効果が得られると予想される。
以下に、上記(式1)で示される第1検量線における補正係数αの有無による温度特性の改善効果について図6を用いて説明する。
比較例として、図6(A)に、第1検量線において補正係数αが含まれない場合における複数の温度環境下での濃度の各々に対応する検出値の誤差を示す。図6(A)の縦軸は、誤差を示し、0を基準として図6(A)上方向をプラス方向、図6(A)下方向をマイナス方向とする。図6(A)の横軸は、二酸化炭素の濃度を示す。
図6(A)の破線は、温度(サーミスタ温度Th)が0℃である場合の誤差と濃度との関係を示す。図6(A)の実線は、温度が25℃(基準温度)である場合の誤差と濃度との関係を示す。図6(A)の一点鎖線は、温度が50℃である場合の誤差と濃度との関係を示す。
図6(A)に示すように、温度が25℃である場合には、複数の濃度の各々に対応する濃度の誤差は、ほぼゼロとなる。これは、第1検量線が基準温度における複数の濃度の各々に対応する焦電センサ24の出力値(実測値)に基づいて設定されているためである。
一方、温度が50℃である場合には、二酸化炭素による赤外線の吸収量は、温度が25℃である場合の赤外線の吸収量よりも低下するため、焦電センサ24の出力値は、本来の出力値(温度が25℃である場合の同一の濃度に対する焦電センサ24の出力値)よりも高い側に変化する。このため、温度が25℃である場合の濃度の誤差よりも低い側に濃度の誤差が生じることとなる。
また、温度が0℃である場合には、赤外線の吸収量は、温度が25℃である場合の赤外線の吸収量よりも増加するため、焦電センサ24の出力値は、本来の出力値よりも低い側に変化する。このため、温度が25℃である場合の濃度の誤差よりも高い側に濃度の誤差が生じることとなる。
図6(B)に、第1検量線において補正係数αが含まれる場合における複数の温度環境下での濃度の各々に対応する検出値の誤差を示す。図6(B)の縦軸は、誤差を示し、0を基準として図6(B)上方向をプラス方向、図6(B)下方向をマイナス方向とする。図6(B)の横軸は、二酸化炭素の濃度を示す。なお、図6(A)の縦軸のスケールと図6(B)の縦軸のスケールとは同一であるものとする。
図6(B)の破線は、温度(サーミスタ温度Th)が0℃である場合の誤差と濃度との関係を示す。図6(B)の実線は、温度が25℃である場合の誤差と濃度との関係を示す。図6(B)の一点鎖線は、温度が50℃である場合の誤差と濃度との関係を示す。
図6(B)に示すように、温度が25℃である場合には、図6(A)を用いて説明したとおり、複数の濃度の各々に対応する誤差は、ほぼゼロとなる。
一方、温度が50℃である場合には、二酸化炭素による赤外線の吸収量は、温度が25℃である場合の赤外線の吸収量も低下する。しかしながら、補正係数αは、温度が25℃である場合(α=1)よりも大きい値になる。そのため、二酸化炭素の濃度Cの誤差は、図6(A)に示される温度が50℃である場合の誤差と比較して、濃度の誤差は、プラス方向に是正されることとなる。そのため、図6(A)の温度が50℃である場合と比較して、濃度の誤差の大きさが小さくなる。
同様に、温度が0℃である場合には、二酸化炭素による赤外線の吸収量は、温度が25℃である場合の赤外線の吸収量よりも増加する。しかしながら、補正係数αは、温度が25である場合(α=1)よりも小さい値になる。そのため、二酸化炭素の濃度Cの誤差は、図6(A)に示される温度が0℃である場合の誤差と比較して、濃度の誤差は、マイナス方向に是正されることとなる。そのため、図6(A)の温度が0℃である場合と比較して、濃度の誤差の大きさが小さくなる。
以上のようにして、本実施の形態に係るガス濃度検出装置10によると、第1検量線にサーミスタ温度Thに比例する補正係数αを含めることができるので、サーミスタ温度Thの逆数に比例する赤外線の吸収量の変化によって生じる濃度の誤差を補正することができる。そのため、二酸化炭素による赤外線の吸収量の温度特性を考慮して、二酸化炭素の濃度Cを精度高く算出することができる。また、複数の温度に対する検量線データを減少させることができるため、検量線データの作成時間、および検量線データのデータ量の増大を抑制することができる。したがって、予め必要なデータ量の増加を抑制するとともに、赤外線の吸収量の温度特性を考慮してガスの濃度を精度高く検出するガス濃度検出装置を提供することができる。
さらに、サーミスタ温度Thの変化に反比例して変化するガスによる赤外線の吸収量に応じた値、具体的には、サーミスタ温度Thを基準温度(25℃)のサーミスタ温度Th25で規格した値Th/Th25を補正係数αとして算出することにより、二酸化炭素による赤外線の吸収量の温度特性を考慮して、二酸化炭素の濃度Cを精度高く算出することができる。
さらに、第2検量線に基づいてサーミスタ温度Thに応じた基準出力値V0を算出することができるため、第1検量線と、算出された基準出力値V0とを用いて二酸化炭素の濃度Cを精度高く算出することができる。
補正係数αを含む上記(式1)で示される第1検量線および上記(式4)で示される第2検量線を用いて二酸化炭素の濃度Cの算出が可能となるため、予め取得するデータ量の増加を抑制するとともに、演算の負荷を低減することができる。また、予め取得するデータの増加の抑制や演算の負荷の低減により、製品の製造コストや設計コストの増加を抑制することができる。
本実施の形態において、基準温度である場合に、0ppm、400ppm、1000ppm、および、2000ppmの4点の濃度を測定ポイントとして、各濃度に対応する焦電センサ24の出力値を予め取得し、取得された出力値を用いて第1検量線のa1~a4を算出するものとして説明したが、たとえば、4点以上の濃度に対応する焦電センサ24の出力値を予め取得してもよいし、上記4点以外の測定ポイントの濃度に対応する焦電センサ24の出力値を予め取得してもよいし、2000ppmよりも大きい濃度あるいは小さい濃度を上限値とする複数の濃度に対応する複数の焦電センサ24の出力値を予め取得してもよい。
さらに、本実施の形態においては、基準濃度である場合に、0℃、10℃、25℃、40℃、および、50℃の5点の温度を測定ポイントとして、各温度に対応する焦電センサ24の出力値を予め取得し、取得された出力値を用いて第2検量線のb1~b5を算出するものとして説明したが、たとえば、5点以上の温度に対応する焦電センサ24の出力値を予め取得してもよいし、上記5点以外の測定ポイントの温度に対応する焦電センサ24の出力値を予め取得してもよいし、50℃よりも大きい温度あるいは小さい温度を上限値とする複数の温度に対応する複数の焦電センサ24の出力値を予め取得してもよいし、0℃よりも低い値あるいは高い値を下限値とする複数の温度に対応する複数の焦電センサ24の出力値を予め取得してもよい。
なお、好ましくは、濃度の測定ポイントの各々は、測定範囲が0~Rである場合、0、R/4、R/2、Rとすることが望ましい。
なお、上述の実施の形態では、補正係数αは、温度出力値に比例するとしたが、これに限るものではない。補正係数αは、温度出力信号のべき乗に比例してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 ガス濃度検出装置、12 回路基板、14 カバー、16 取入口、18 光路部、20 光源、22 保持台、24 焦電センサ、26 光学フィルタ、28 サーミスタ、30 濃度検出部、40 駆動回路、42 増幅回路、44 AD変換回路、46 濃度変換処理回路。
Claims (6)
- ガスの濃度に応じた濃度出力値を示す信号を出力する濃度検出部と、
前記ガスの温度に応じた温度出力値を示す信号を出力する温度検出部と、
予め定められた前記ガスの基準濃度において前記温度出力値に対応する基準出力値を算出し、前記濃度出力値を前記基準出力値で規格化した値、および前記規格化した値に対する前記ガスの濃度の関係を示す第1検量線に基づいて前記ガスの濃度を算出する算出部とを備え、
前記第1検量線は、前記温度出力値に比例する補正係数を含む、ガス濃度検出装置。 - 前記算出部は、前記ガスの温度変化に反比例して変化する前記ガスによる光の吸収率に応じた前記補正係数を算出する、請求項1に記載のガス濃度検出装置。
- 前記算出部は、前記温度出力値、および前記温度出力値に対する前記基準出力値の関係を示す第2検量線に基づいて前記基準出力値を算出する、請求項1または2に記載のガス濃度検出装置。
- 前記第2検量線は、前記基準濃度における前記ガスの複数の温度の各々に対応した、予め取得された複数の濃度出力値に基づいて所定の次数の近似式を導出して設定される、請求項3に記載のガス濃度検出装置。
- 前記第1検量線は、基準温度における前記ガスの複数の濃度の各々に対応した、予め取得された複数の濃度出力値に基づいて前記補正係数が乗算された所定の次数の近似式を導出して設定される、請求項1~3のいずれかに記載のガス濃度検出装置。
- 前記濃度検出部は、
検出対象のガスが導入される光路部と、
赤外線を放射する光源と、
前記光源から放射された前記赤外線を検出する受光センサと、
前記受光センサと前記光源との間に設けられるバンドパスフィルタとを含む、請求項1~5のいずれかに記載のガス濃度検出装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-022369 | 2014-02-07 | ||
JP2014022369 | 2014-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015119127A1 true WO2015119127A1 (ja) | 2015-08-13 |
Family
ID=53777931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053034 WO2015119127A1 (ja) | 2014-02-07 | 2015-02-04 | ガス濃度検出装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015119127A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045240A (ja) * | 2017-08-31 | 2019-03-22 | 株式会社堀場製作所 | 分光分析装置及び分光分析方法 |
CN110161181A (zh) * | 2018-02-13 | 2019-08-23 | 中国石油化工股份有限公司 | 混合气体的组分浓度识别方法及系统 |
WO2020066769A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社フジキン | 濃度測定方法 |
CN112557991A (zh) * | 2020-11-12 | 2021-03-26 | 珠海一多监测科技有限公司 | 基于摩尔数量与温度的电流互感器故障诊断方法 |
CN115931759A (zh) * | 2023-03-15 | 2023-04-07 | 浙江新寰科环保科技股份有限公司 | 一种烟气排放的分析系统及方法 |
JP7445557B2 (ja) | 2020-07-31 | 2024-03-07 | 株式会社Lixil | 分析方法、当該分析方法を採用する分析装置、およびプログラム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264452A (ja) * | 1992-01-30 | 1993-10-12 | Vaisala Oy | ガス濃度測定のための校正法 |
JPH06249779A (ja) * | 1993-02-26 | 1994-09-09 | Shimadzu Corp | ガス分析計 |
JP2004309391A (ja) * | 2003-04-09 | 2004-11-04 | Riken Keiki Co Ltd | ガス濃度検出方法およびガス濃度検出装置 |
JP2007502407A (ja) * | 2003-08-11 | 2007-02-08 | センセエアー アーベー | 測定誤差を補償する方法およびこのための電子配置 |
US20110049342A1 (en) * | 2009-08-28 | 2011-03-03 | Simon Tsao | Gas concentration measurement device and method thereof |
US8148691B1 (en) * | 2009-08-21 | 2012-04-03 | Jacob Y Wong | Calibration methodology for NDIR dew point sensors |
JP2012073098A (ja) * | 2010-09-28 | 2012-04-12 | Asahi Kasei Electronics Co Ltd | ガス濃度検出方法、ガス濃度センサ |
-
2015
- 2015-02-04 WO PCT/JP2015/053034 patent/WO2015119127A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05264452A (ja) * | 1992-01-30 | 1993-10-12 | Vaisala Oy | ガス濃度測定のための校正法 |
JPH06249779A (ja) * | 1993-02-26 | 1994-09-09 | Shimadzu Corp | ガス分析計 |
JP2004309391A (ja) * | 2003-04-09 | 2004-11-04 | Riken Keiki Co Ltd | ガス濃度検出方法およびガス濃度検出装置 |
JP2007502407A (ja) * | 2003-08-11 | 2007-02-08 | センセエアー アーベー | 測定誤差を補償する方法およびこのための電子配置 |
US8148691B1 (en) * | 2009-08-21 | 2012-04-03 | Jacob Y Wong | Calibration methodology for NDIR dew point sensors |
US20110049342A1 (en) * | 2009-08-28 | 2011-03-03 | Simon Tsao | Gas concentration measurement device and method thereof |
JP2012073098A (ja) * | 2010-09-28 | 2012-04-12 | Asahi Kasei Electronics Co Ltd | ガス濃度検出方法、ガス濃度センサ |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045240A (ja) * | 2017-08-31 | 2019-03-22 | 株式会社堀場製作所 | 分光分析装置及び分光分析方法 |
CN110161181A (zh) * | 2018-02-13 | 2019-08-23 | 中国石油化工股份有限公司 | 混合气体的组分浓度识别方法及系统 |
WO2020066769A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社フジキン | 濃度測定方法 |
JP7445557B2 (ja) | 2020-07-31 | 2024-03-07 | 株式会社Lixil | 分析方法、当該分析方法を採用する分析装置、およびプログラム |
CN112557991A (zh) * | 2020-11-12 | 2021-03-26 | 珠海一多监测科技有限公司 | 基于摩尔数量与温度的电流互感器故障诊断方法 |
CN112557991B (zh) * | 2020-11-12 | 2024-05-28 | 珠海一多监测科技有限公司 | 基于摩尔数量与温度的电流互感器故障诊断方法 |
CN115931759A (zh) * | 2023-03-15 | 2023-04-07 | 浙江新寰科环保科技股份有限公司 | 一种烟气排放的分析系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015119127A1 (ja) | ガス濃度検出装置 | |
US10527589B2 (en) | Apparatus and method for in-situ calibration of a photoacoustic sensor | |
US20110049342A1 (en) | Gas concentration measurement device and method thereof | |
JP2007502407A (ja) | 測定誤差を補償する方法およびこのための電子配置 | |
JP2006038721A (ja) | ガス濃度検出装置 | |
JP6428779B2 (ja) | ガス濃度検出装置 | |
US10677721B2 (en) | Optical concentration measuring device and control method for optical concentration measuring device | |
JP6049930B1 (ja) | ガス分析方法およびガス測定装置 | |
JP6293855B2 (ja) | 物質分析方法および分析装置 | |
Gibson et al. | Self powered non-dispersive infra-red CO2 gas sensor | |
CN109946234B (zh) | 利用光声效应的装置和方法 | |
US10677720B2 (en) | Detector, correction method and calibration method of detector, detection apparatus and detection system | |
JP6530669B2 (ja) | ガス濃度測定装置 | |
CN110036277B (zh) | 一种气体传感装置及一种气体感测方法 | |
JP2015210188A (ja) | 粒子測定装置 | |
JP6574110B2 (ja) | ガスセンサ回路、ガスセンサ装置及びガス濃度検知方法 | |
JP2008292321A (ja) | ガス濃度測定装置 | |
JP2015148552A (ja) | ガス濃度検出装置 | |
KR101713212B1 (ko) | 분리형 원거리 가스 측정 장치 및 방법, 그리고 이를 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체 | |
JP6571476B2 (ja) | ガス濃度測定装置 | |
KR102410126B1 (ko) | 비분산식 유해 가스 검출 장치 및 방법 | |
JP6024561B2 (ja) | センサ回路 | |
US20240280478A1 (en) | Gas sensor and methods of operating thereof | |
JP6506124B2 (ja) | ガス濃度測定装置 | |
JP2009109344A (ja) | 赤外線検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15746660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |