Nothing Special   »   [go: up one dir, main page]

WO2015118760A1 - Electroconductive composition, solar cell, and solar cell module - Google Patents

Electroconductive composition, solar cell, and solar cell module Download PDF

Info

Publication number
WO2015118760A1
WO2015118760A1 PCT/JP2014/082130 JP2014082130W WO2015118760A1 WO 2015118760 A1 WO2015118760 A1 WO 2015118760A1 JP 2014082130 W JP2014082130 W JP 2014082130W WO 2015118760 A1 WO2015118760 A1 WO 2015118760A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
metal
conductive composition
metal oxide
powder
Prior art date
Application number
PCT/JP2014/082130
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 佐藤
石川 和憲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2015561168A priority Critical patent/JPWO2015118760A1/en
Publication of WO2015118760A1 publication Critical patent/WO2015118760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a conductive composition, a solar battery cell used for a collector electrode using the conductive composition, and a solar battery module using the solar battery cell.
  • conductive particles such as silver particles and binders made of thermoplastic resin (for example, acrylic resin, vinyl acetate resin, etc.) or thermosetting resin (for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.), organic
  • thermoplastic resin for example, acrylic resin, vinyl acetate resin, etc.
  • thermosetting resin for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.
  • organic A conductive paste obtained by adding and mixing a solvent, a curing agent, a catalyst, etc. is printed on a substrate (for example, a silicon substrate, an epoxy resin substrate, etc.) so as to have a predetermined pattern.
  • a substrate for example, a silicon substrate, an epoxy resin substrate, etc.
  • a method of manufacturing a solar battery cell or a printed wiring board by forming electrodes and wirings by heating is known.
  • a conductive paste used for an electrode of a transparent conductive film which includes a binder resin, a conductive fine powder, and a solvent as essential components
  • the conductive fine powder is composed of 0.2 to 20% by mass of tin oxide fine powder and 99.8 to 80% by mass of fine silver powder
  • the binder resin is a copolymer of polyester resin, acrylic resin, phenol resin, vinyl chloride vinyl acetate.
  • a conductive paste for an electrode characterized in that " 1).
  • the present invention provides a conductive composition capable of forming an electrode having a low contact resistance against a transparent conductive layer or the like while maintaining a low volume resistivity, and a solar using the conductive composition as a collecting electrode It is an object to provide a battery cell and a solar battery module using the solar battery cell.
  • a low volume resistance is obtained by blending a metal powder (for example, silver powder) and a metal oxide (for example, tin oxide) with a fatty acid metal salt. It was found that an electrode having a low contact resistance with respect to the transparent conductive layer or the like was formed while maintaining the rate, and the present invention was completed. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the metal oxide (C) is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide;
  • the content of the fatty acid metal salt (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A),
  • the solar battery cell according to [7] comprising a transparent conductive layer as a base layer of the current collecting electrode.
  • a conductive composition capable of forming an electrode having a low contact resistance with respect to a transparent conductive layer or the like while maintaining a low volume resistivity, and the conductive composition are collected.
  • a solar battery cell used for the electric electrode and a solar battery module using the solar battery cell can be provided.
  • the conductive composition of the present invention when used, an electrode having a low contact resistance against a transparent conductive layer or the like while maintaining a low volume resistivity even at low temperature (450 ° C. or less (particularly 200 ° C. or less)) firing. And the like can be formed, and the solar cell (especially a second preferred embodiment described later) has an effect of reducing damage caused by heat, which is very useful.
  • an electronic circuit, an antenna, etc. not only on a material having high heat resistance such as indium tin oxide (ITO) or silicon but also on a material having low heat resistance such as PET film.
  • ITO indium tin oxide
  • PET film a material having low heat resistance
  • FIG. 1 is a cross-sectional view showing a first preferred embodiment of a solar battery cell.
  • FIG. 2 is a cross-sectional view showing a second preferred embodiment of the solar battery cell.
  • the conductive composition of the present invention contains a metal powder (A), a fatty acid metal salt (B), and a metal oxide (C).
  • the metal oxide (C) is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide, and the content of the fatty acid metal salt (B) is the metal
  • the amount of the metal oxide (C) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A).
  • the electroconductive composition of this invention may contain curable resin (D), the hardening
  • the contact resistance to the transparent conductive layer or the like is maintained while maintaining a low volume resistivity. It becomes an electroconductive composition which can form a low electrode etc.
  • This is not clear in detail, but is estimated to be as follows. First, as shown in Comparative Example 3 described later, when only the metal oxide (C) is added to the metal powder (A) without adding the fatty acid metal salt (B), the contact resistance is increased. I understand. This is presumably because the dispersibility of the metal oxide (C) is poor.
  • finger electrodes in recent solar cells are required to be thinned (for example, about 50 ⁇ m) from the viewpoint of improving the fill factor and reducing the amount of metal (mainly silver) paste used.
  • the dispersion of the compounding agent is important. Therefore, the conductive composition of the present invention in which the dispersibility of the metal oxide (C) is improved by blending the fatty acid metal salt (B) can suppress clogging of the screen printing mesh, and also has the above-mentioned required characteristics. It can respond and is extremely useful.
  • the metal powder (A), the fatty acid metal salt (B), the metal oxide (C), and other components that may be optionally contained will be described in detail.
  • the metal powder (A) contained in the conductive composition of the present invention is not particularly limited.
  • a metal material having an electrical resistivity of 20 ⁇ 10 ⁇ 6 ⁇ ⁇ cm or less can be used.
  • Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like.
  • One species may be used alone, or two or more species may be used in combination. Of these, silver powder and copper powder are preferable, and silver powder is more preferable because an electrode having a lower volume resistivity can be formed.
  • the metal powder (A) is preferably a metal powder having an average particle size of 0.5 to 10 ⁇ m because printability (particularly screen printability) is good.
  • the metal powders it is more preferable to use spherical silver particles and / or copper particles for the reason that an electrode having a lower volume resistivity can be formed.
  • the average particle diameter of the metal powder (A) refers to the average value of the particle diameter of the metal powder, and refers to the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring apparatus.
  • the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
  • the spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
  • the average particle diameter of the metal powder (A) is preferably 0.7 to 5.0 ⁇ m because the printability is better, and the sintering speed is appropriate and workability is improved. From the reason that the thickness is excellent, the thickness is more preferably 1.0 to 3.0 ⁇ m.
  • a commercial item can be used as said metal powder (A).
  • Specific examples of commercially available silver particles include AG2-1C (average particle size: 1.0 ⁇ m, manufactured by DOWA Electronics), AG4-8F (average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics), AG3- 11F (average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics), AgC-102 (average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Powder Co., Ltd.), AgC-103 (average particle size: 1.5 ⁇ m, Fukuda) Metal foil powder industry), EHD (average particle size: 0.5 ⁇ m, Mitsui Metals), and the like.
  • the fatty acid metal salt (B) contained in the conductive composition of the present invention is not particularly limited as long as it is a metal salt of an organic carboxylic acid.
  • a metal salt of an organic carboxylic acid For example, silver, magnesium, nickel, copper, zinc, yttrium, zirconium, tin, and It is preferable to use a carboxylic acid metal salt of at least one metal selected from the group consisting of lead.
  • a silver carboxylic acid metal salt hereinafter, also referred to as “carboxylic acid silver salt (B1)”.
  • a carboxylic acid silver salt of a metal other than silver is also referred to as “carboxylic acid metal salt (B2)”.
  • the carboxylic acid silver salt (B1) is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid).
  • fatty acid fatty acid
  • Fatty acid metal salts particularly tertiary fatty acid silver salts
  • fatty acid silver salts described in paragraph [0030] of Japanese Patent No.
  • the volume resistivity of the formed electrode or the like is lower, and the contact resistance to the transparent conductive layer or the like is lower, so that the carboxylic acid silver salt (B1-1), carboxy, A carboxylic acid silver salt (B1-2) having at least one silver base (—COOAg) and one hydroxyl group (—OH), and two carboxy silver bases (—COOAg) having no hydroxyl group (—OH) It is preferable to use at least one kind of silver carboxylate selected from the group consisting of polycarboxylic acid silver salts (B1-3).
  • Examples of the carboxylic acid silver salt (B1-2) include compounds represented by any of the following formulas (I) to (III).
  • n represents an integer of 0 to 2
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 2 may be the same or different
  • the plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • a plurality of R 1 may be the same or different.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 represents an alkylene group having 1 to 6 carbon atoms.
  • the plurality of R 1 may be the same or different.
  • Examples of the polycarboxylic acid silver salt (B1-3) include compounds represented by the following formula (IV).
  • m represents an integer of 2 to 6
  • R 4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms
  • an m-valent unsaturated fat having 2 to 12 carbon atoms.
  • carboxylic acid silver salt (B1-1) examples include 2-methylpropanoic acid silver salt (also known as silver isobutyrate) and 2-methylbutanoic acid silver salt.
  • carboxylic acid silver salt (B1-2) examples include 2-hydroxyisobutyric acid silver salt and 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
  • polycarboxylic acid silver salt (B1-3) specifically, 1,3,5-pentanetricarboxylic acid silver salt, 1,2,3,4-butanetetracarboxylic acid silver salt and the like are preferable. Is exemplified.
  • the carboxylic acid metal salt (B2) is at least one selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead, for example, organic carboxylic acids (fatty acids) as described above.
  • the metal salt of the above metal is mentioned.
  • organic carboxylic acid that forms the carboxylic acid metal salt (B2) examples include 2-methylpropanoic acid, 2-ethylhexanoic acid, octylic acid, naphthenic acid, and stearic acid. , Lauric acid and the like, and these may be used alone or in combination of two or more.
  • carboxylic acid metal salt (B2) specifically, for example, 2-methylpropanoic acid zinc salt
  • the content of the fatty acid metal salt (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and the dispersibility of the metal oxide (C) to be described later 1 to 10 parts by mass is more preferable because the contact resistance with respect to the transparent conductive layer and the like is further improved.
  • the metal oxide (C) used in the conductive composition of the present invention is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide.
  • said metal oxide (C) it is preferable that it is a tin oxide from the reason for which contact resistance with respect to a transparent conductive layer etc. becomes lower. Also, among tin oxides, the volume resistivity of the formed electrode or the like is lower, and the contact resistance to the transparent conductive layer or the like is lower, so that it is doped with a dopant (for example, antimony, phosphorus, etc.). More preferred is tin oxide. In addition, the doping with a dopant is preferably performed by doping up to about 0.1 to 20 parts by mass with respect to 100 parts by mass of tin oxide.
  • a dopant for example, antimony, phosphorus, etc.
  • the metal oxide (C) is a particulate material having an average particle diameter of 10 to 100 nm because the effect of adding the fatty acid metal salt (B), that is, the dispersibility of the metal oxide is more manifested. Of these, particles of 10 to 50 nm are more preferable.
  • the average particle diameter of the metal oxide (C) refers to the average value of the particle diameter of the metal oxide, and the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring device.
  • the particle diameter that is the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, That diameter.
  • the metal oxide (C) has a BET specific surface area of 10 to 100 m 2 / g because of the effect of adding the fatty acid metal salt (B), that is, the dispersibility of the metal oxide. It is preferably 30 to 100 m 2 / g.
  • the BET specific surface area means a measured value measured using a BET method by nitrogen adsorption according to a test method defined in JIS K1477: 2007.
  • the shape of the metal oxide (C) is not particularly limited, but is preferably a particulate material having the above-described average particle diameter.
  • the volume resistivity of the formed electrode or the like is lower, and transparent
  • a core-shell structure having a core material and a coating material is more preferable because the contact resistance to the conductive layer or the like is lower.
  • the core material is not particularly limited, and only the coating material may be composed of the metal oxide.
  • the content of the metal oxide (C) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and the volume resistivity of the formed electrode or the like is higher.
  • the amount is more preferably 1 to 10 parts by mass because the contact resistance to the transparent conductive layer or the like becomes lower.
  • the fatty acid metal salt (B), the metal oxide (C), and the addition effect of the fatty acid metal salt (B) described above, that is, the dispersibility of the metal oxide is more expressed.
  • the mass ratio (fatty acid metal salt (B) / metal oxide (C)) is preferably 0.05 to 5, and more preferably 0.1 to 5.
  • thermosetting resin examples include epoxy resins, organopolysiloxanes, unsaturated polyester resins, and the like. These may be used alone or in combination of two or more. Good. Among these, the adhesion to the transparent conductive layer and the like is good, it is possible to form an electrode or the like having a lower contact resistance, the coating film strength is increased, and the strength of the formed electrode and the like is improved. An epoxy resin and / or an organopolysiloxane described later are preferable.
  • Epoxy resin is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule, and generally has an epoxy equivalent of 90 to 2000.
  • a conventionally well-known epoxy resin can be used as such an epoxy resin.
  • epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, biphenyl type, and polyalkylene Bifunctional glycidyl ether type epoxy resins such as glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthalene ring, and epoxy compounds having a fluorene group; Polyfunctional glycidyl ether type epoxy resins such as phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type; Glycidyl ester epoxy resins of synthetic fatty acids such as dimer acid; N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyldiaminodiphenylsulfone (TGDDM), te
  • bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable from the viewpoints of curability, heat resistance, durability, and cost.
  • organopolysiloxane refers to a polymer composed of one or more repeating units selected from the group consisting of the following four units.
  • R each independently represents a substituted or unsubstituted monovalent hydrocarbon group.
  • R include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group.
  • the alkenyl group include a vinyl group, a butenyl group, a pentenyl group, and an allyl group.
  • at least one of R is a vinyl group because of its high activity and high reactivity.
  • the aryl group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and the like. Among them, for the reason that the adhesion to the transparent conductive layer is good due to the ⁇ - ⁇ interaction, It is preferred that at least one of R is a phenyl group.
  • the organopolysiloxane (B) is represented by at least the above formula (S-3) because it has good adhesion to the transparent conductive layer and can form an electrode having a lower contact resistance. It is preferably a silicone resin having a T unit or a Q unit represented by the above formula (S-4), that is, a crosslinked resin.
  • the content when the curable resin (D) is contained is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and preferably 2 to 15 parts by mass. More preferably, it is 2 to 10 parts by mass.
  • the conductive composition of the present invention contains an epoxy resin or an organopolysiloxane having an epoxy group as the curable resin (D), the conductive composition preferably contains those curing agents (E).
  • the curing agent (E) for example, it is preferable to use a complex of boron trifluoride and an amine compound described in detail below.
  • a complex of boron trifluoride and an amine compound a complex of boron trifluoride and an aliphatic amine (aliphatic primary amine, aliphatic secondary amine, aliphatic tertiary amine), trifluoride
  • examples thereof include a complex of boron and an alicyclic amine, a complex of boron trifluoride and an aromatic amine, a complex of boron trifluoride and a heterocyclic amine, and the like.
  • the heterocyclic amine may be an alicyclic heterocyclic amine (hereinafter also referred to as “alicyclic heterocyclic amine”) or an aromatic heterocyclic amine (hereinafter referred to as “aromatic heterocyclic amine”).
  • aliphatic primary amine examples include methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, n-hexylamine, n-octylamine, 2 -Ethylhexylamine, laurylamine and the like.
  • aliphatic secondary amine examples include dimethylamine, diethylamine, methylethylamine, methylpropylamine, di-iso-propylamine, di-n-propylamine, ethylpropylamine, di-n-butylamine, di- Examples include iso-butylamine, dipropenylamine, chlorobutylpropylamine, di (chlorobutyl) amine, di (bromoethyl) amine and the like.
  • Specific examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tributylamine, triethanolamine and the like.
  • alicyclic amine examples include cyclohexylamine.
  • aromatic amines include benzylamine.
  • alicyclic heterocyclic amine examples include pyrrolidine, piperidine, 2-pipecoline, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, piperazine, and homopiperazine.
  • aromatic heterocyclic amine examples include pyridine, pyrrole, imidazole, pyridazine, pyrimidine, quinoline, triazine, tetrazine, isoquinoline, quinazoline, naphthyridine, pteridine, acridine, phenazine and the like.
  • the curing agent (E) has a lower volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, etc., so that boron trifluoride piperidine, boron trifluoride ethylamine and trifluoride are used.
  • a complex selected from the group consisting of borohydride triethanolamine is preferred.
  • the content of the curing agent (E) is lower than the volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, etc., so that the amount of the metal powder (A) is 100 parts by mass.
  • the amount is preferably 0.1 to 1 part by mass.
  • the conductive composition of the present invention preferably contains a solvent (F) from the viewpoint of workability such as printability.
  • the solvent (F) is not particularly limited as long as the conductive composition of the present invention can be applied onto a substrate. Specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, ⁇ -terpineol, and the like. These may be used alone or in combination of two or more.
  • the electrically conductive composition of this invention may contain additives, such as a reducing agent, as needed.
  • a reducing agent include ethylene glycols.
  • the conductive composition of the present invention is not particularly necessary for a glass frit generally used as a high-temperature (700 to 800 ° C.) firing type conductive paste, and is based on 100 parts by mass of the metal powder (A). The amount is preferably less than 0.1 parts by mass, and is preferably substantially not contained.
  • the manufacturing method of the electroconductive composition of this invention is not specifically limited,
  • curing agent (E), the said solvent (F), etc. with a roll, a kneader, an extruder, a universal stirrer etc. is mentioned.
  • the solar battery cell of the present invention is a solar battery cell using the above-described conductive composition of the present invention as a collecting electrode.
  • a 1st suitable aspect of the photovoltaic cell of this invention comprises the surface electrode by the side of a light-receiving surface, a semiconductor substrate, and a back electrode,
  • the said surface electrode and / or the said back electrode are the electroconductivity of this invention mentioned above.
  • a solar battery cell formed using the composition can be mentioned.
  • the 1st suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
  • the solar cell 1 includes a surface electrode 4 on the light receiving surface side, a pn junction silicon substrate 7 in which a p layer 5 and an n layer 2 are joined, and a back electrode 6.
  • the solar battery cell 1 is preferably provided with an antireflection film 3, for example, by etching the wafer surface to form a pyramidal texture in order to reduce reflectivity.
  • an antireflection film 3 for example, by etching the wafer surface to form a pyramidal texture in order to reduce reflectivity.
  • the arrangement (pitch), shape, height, width and the like of the electrode are not particularly limited.
  • the height of the electrode is usually designed to be several to several tens of ⁇ m, but the ratio of the height and width of the cross section of the electrode formed using the conductive composition of the present invention (height / width) (below) , “Aspect ratio”) can be adjusted to a large value (for example, about 0.4 or more).
  • the front surface electrode and the back surface electrode usually have a plurality, but, for example, only a part of the plurality of surface electrodes is formed of the conductive composition of the present invention.
  • part of the plurality of front surface electrodes and part of the plurality of back surface electrodes may be formed of the conductive composition of the present invention.
  • the antireflection film is a film (film thickness: about 0.05 to 0.1 ⁇ m) formed on a portion of the light receiving surface where the surface electrode is not formed.
  • a silicon oxide film, a silicon nitride film, a titanium oxide It is comprised from a film
  • the silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate.
  • the second conductivity type is p-type.
  • the impurity imparting p-type include boron and aluminum
  • examples of the impurity imparting n-type include phosphorus and arsenic.
  • the silicon substrate is not particularly limited, and a known silicon substrate (plate thickness: about 80 to 450 ⁇ m) for forming a solar cell can be used, and either a monocrystalline or polycrystalline silicon substrate can be used. Good.
  • the solar battery cell has a large electrode aspect ratio because the surface electrode and / or the back electrode is formed using the conductive composition of the present invention.
  • the electromotive force generated by light reception can be efficiently taken out as a current.
  • the conductive composition of the present invention described above can also be applied to the formation of the back electrode of an all-back electrode type (so-called back contact type) solar cell, it can also be applied to an all-back electrode type solar cell. Can do.
  • the manufacturing method of a photovoltaic cell (1st suitable aspect) is not specifically limited,
  • the antireflection film can be formed by a known method such as a plasma CVD method.
  • the wiring formation step is a step of forming a wiring by applying the conductive composition of the present invention on a silicon substrate.
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the heat treatment step is a step of forming a conductive wiring (electrode) by heat-treating the coating film formed in the wiring forming step.
  • the heat treatment is not particularly limited as long as it is at a temperature of 450 ° C. or lower, but it is preferably a heat treatment (baking) at a temperature of 150 to 350 ° C. for several seconds to several tens of minutes.
  • a heat treatment at a temperature of 150 to 350 ° C. for several seconds to several tens of minutes.
  • an electrode can be easily formed even when an antireflection film is formed on a silicon substrate.
  • the electrically conductive composition of this invention is used, even if it is a comparatively low temperature of 450 degrees C or less, it is favorable heat processing (baking). Can be applied.
  • the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays.
  • an amorphous silicon layer and a transparent conductive layer are provided above and below an n-type single crystal silicon substrate, and the transparent conductive layer is disposed below.
  • the base layer include a solar cell (for example, a heterojunction solar cell) cell in which a collecting electrode is formed on the transparent conductive layer using the conductive composition of the present invention described above.
  • the solar battery cell (second preferred embodiment) is a solar battery cell in which single crystal silicon and amorphous silicon are hybridized and exhibits high conversion efficiency. Below, the 2nd suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
  • the solar battery cell 100 has an n-type single crystal silicon substrate 11 as a center, i-type amorphous silicon layers 12 a and 12 b, and p-type amorphous silicon layers 13 a and n-type amorphous silicon layers above and below it. 13b, transparent conductive layers 14a and 14b, and current collecting electrodes 15a and 15b formed using the above-described conductive composition of the present invention.
  • the n-type single crystal silicon substrate is a single crystal silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
  • the i-type amorphous silicon layer is an undoped amorphous silicon layer.
  • the p-type amorphous silicon is an amorphous silicon layer doped with an impurity imparting p-type. Impurities that give p-type are as described above.
  • the n-type amorphous silicon is an amorphous silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
  • the said collector electrode is a collector electrode formed using the electrically conductive composition of this invention mentioned above. A specific aspect of the current collecting electrode is the same as that of the front surface electrode or the back surface electrode described above.
  • Transparent conductive layer Specific examples of the material for the transparent conductive layer include single metal oxides such as zinc oxide, tin oxide, indium oxide, and titanium oxide; indium tin oxide (ITO), indium zinc oxide, indium titanium oxide, tin cadmium oxide, and the like.
  • ITO indium tin oxide
  • the method for producing the solar battery cell is not particularly limited, and can be produced by, for example, the method described in JP 2010-34162 A.
  • the i-type amorphous silicon layer 12a is formed on one main surface of the n-type single crystal silicon substrate 11 by a PECVD (plasma enhanced chemical vapor deposition) method or the like.
  • a p-type amorphous silicon layer 13a is formed on the formed i-type amorphous silicon layer 12a by PECVD or the like.
  • an i-type amorphous silicon layer 12b is formed on the other main surface of the n-type single crystal silicon substrate 11 by PECVD or the like. Further, an n-type amorphous silicon layer 13b is formed on the formed i-type amorphous silicon layer 12b by PECVD or the like.
  • transparent conductive layers 14a and 14b such as ITO are formed on the p-type amorphous silicon layer 13a and the n-type amorphous silicon layer 13b by sputtering or the like.
  • the conductive composition of the present invention is applied on the formed transparent conductive layers 14a and 14b to form wirings, and the formed wirings are heat-treated to form current collecting electrodes 15a and 15b.
  • the method for forming the wiring is the same as the method described in the wiring formation step of the above-described solar battery cell (first preferred embodiment).
  • the method of heat-treating the wiring is the same as the method described in the heat treatment step of the above-described solar battery cell (first preferred embodiment), but the heat treatment temperature (firing temperature) is preferably 150 to 200 ° C.
  • volume resistivity, contact resistance, and fill factor (FF) of each prepared conductive composition were evaluated by the following methods.
  • ITO indium oxide doped with Sn
  • AZO Al-doped ZnO
  • TLM Transfer Length Method
  • Metal powder Silver powder (AG4-8F, average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics)
  • Silver salt of 2-methylpropanoate First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 38 g of 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and are allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-methylpropanoic acid silver salt.
  • MEK methyl ethyl ketone
  • Neodecanoic acid silver salt First, 50 g of silver oxide (manufactured by Toyo Kagaku Co., Ltd.), 74.3 g of neodecanoic acid (manufactured by Toyo Gosei Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver neodecanoate.
  • MEK methyl ethyl ketone
  • Silver stearate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 122.7 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Was reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to obtain white silver stearate.
  • MEK methyl ethyl ketone
  • Silver salt of 2-hydroxyisobutyrate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 45 g of 2-hydroxyisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and are allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-hydroxyisobutyric acid silver salt.
  • MEK methyl ethyl ketone
  • -1,2,3,4-butanetetracarboxylic acid silver salt First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 1,2,3,4-butanetetracarboxylic acid (manufactured by Shin Nippon Rika Co., Ltd.) 29 g and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,2,3,4-butanetetracarboxylic acid silver salt.
  • MEK methyl ethyl ketone
  • -Silver maleate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 25.05 g of maleic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are placed in a ball mill and stirred at room temperature for 24 hours. Reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver maleate.
  • MEK methyl ethyl ketone
  • Silver salt of glutarate First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 57 g of glutaric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are charged into a ball mill and reacted by stirring at room temperature for 24 hours. I let you. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white silver glutarate.
  • MEK methyl ethyl ketone
  • Zinc 2-methylpropanoate First, 50 g of zinc oxide (manufactured by Kanto Chemical Co., Ltd.), 54.11 g of 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-methylpropanoic acid zinc salt.
  • MEK methyl ethyl ketone
  • 2-methylpropanoic acid 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Inc.)
  • -Tin oxide 1-5 Commercial products listed in Table 1-Curing resin: Bisphenol A type epoxy resin (YD-019, epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
  • Curing agent Boron trifluoride ethylamine (manufactured by Stella Chemifa)
  • Solvent ⁇ -terpineol (manufactured by Yasuhara Chemical)
  • Comparative Example 1 prepared without blending the fatty acid metal salt (B) and the metal oxide (C) had high volume resistivity and poor contact resistance.
  • Comparative Example 2 prepared without mix
  • blending a fatty-acid metal salt (B) is an example corresponded to the electrically conductive paste described in patent document 1 (patent 5169501), and has a high volume resistivity, contact. It turns out that resistance is inferior.
  • the contact resistance of Comparative Example 4 prepared by blending a fatty acid not corresponding to the fatty acid metal salt (B) was slightly improved as compared with Comparative Example 3, it was found that it was not sufficient.
  • the conductive compositions of Examples 1 to 12 prepared by blending a predetermined amount of the fatty acid metal salt (B) and the metal oxide (C) with the metal powder (A) all have a low volume. It has been found that the contact resistance is lowered while maintaining the resistivity.
  • the conductive compositions of Examples 9 to 12 prepared by blending tin oxides 3 to 5 in which the average particle diameter of the metal oxide (C) is in the range of 10 to 100 nm are more than the other examples. It has been found that the contact resistance is lower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 The present invention provides an electroconductive composition capable of forming an electrode or the like having a low contact resistance against a transparent electroconductive layer or the like while maintaining a low volume resistivity, a solar cell in which the electroconductive composition is used in a collector electrode, and a solar cell module in which the solar cell is used. This electroconductive composition contains a metal powder (A), a fatty acid metal salt (B), and a metal oxide (C). The metal oxide (C) is at least one selected from the group consisting of tin oxide, indium oxide, zinc oxide, and titanium oxide. The fatty acid metal salt (B) content is 0.1-20 mass parts to 100 mass parts of the metal powder (A). The metal oxide (C) content is 0.1-20 mass parts to 100 mass parts of the metal powder (A). Firing is performed at a temperature of 450°C or less.

Description

導電性組成物、太陽電池セルおよび太陽電池モジュールConductive composition, solar battery cell and solar battery module
 本発明は、導電性組成物、上記導電性組成物を用いた集電電極に用いた太陽電池セル、および、上記太陽電池セルを用いた太陽電池モジュールに関する。 The present invention relates to a conductive composition, a solar battery cell used for a collector electrode using the conductive composition, and a solar battery module using the solar battery cell.
 従来、銀粒子などの導電性粒子に熱可塑性樹脂(例えば、アクリル樹脂、酢酸ビニル樹脂等)や熱硬化性樹脂(例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂等)などからなるバインダー、有機溶剤、硬化剤、触媒等を添加し混合して得られる導電性ペースト(導電性組成物)を、基板(例えばシリコン基板、エポキシ樹脂基板など)上に所定のパターンとなるように印刷し、これらを加熱して電極や配線を形成し、太陽電池セルやプリント配線板を製造する方法が知られている。 Conventionally, conductive particles such as silver particles and binders made of thermoplastic resin (for example, acrylic resin, vinyl acetate resin, etc.) or thermosetting resin (for example, epoxy resin, silicone resin, unsaturated polyester resin, etc.), organic A conductive paste (conductive composition) obtained by adding and mixing a solvent, a curing agent, a catalyst, etc. is printed on a substrate (for example, a silicon substrate, an epoxy resin substrate, etc.) so as to have a predetermined pattern. A method of manufacturing a solar battery cell or a printed wiring board by forming electrodes and wirings by heating is known.
 このような導電性ペーストとして、例えば、特許文献1には、「透明導電性膜の電極用として使用される導電性ペーストであって、バインダー樹脂、導電性微粉末及び溶剤を必須成分とし、前記導電性微粉末が酸化錫微粉末0.2~20質量%、銀微粉末99.8~80質量%からなり、前記バインダー樹脂が、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、塩化ビニル酢酸ビニル共重合樹脂、ウレタン樹脂、エポキシ樹脂からなる群より選ばれる少なくとも一つであり、前記溶剤が、エチルジグリコールアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ベンジルアルコール、イソホロンからなる群より選ばれる少なくとも一つであることを特徴とする電極用導電性ペースト。」が記載されている(請求項1)。 As such a conductive paste, for example, in Patent Document 1, “a conductive paste used for an electrode of a transparent conductive film, which includes a binder resin, a conductive fine powder, and a solvent as essential components, The conductive fine powder is composed of 0.2 to 20% by mass of tin oxide fine powder and 99.8 to 80% by mass of fine silver powder, and the binder resin is a copolymer of polyester resin, acrylic resin, phenol resin, vinyl chloride vinyl acetate. At least one selected from the group consisting of a resin, a urethane resin, and an epoxy resin, and the solvent is at least one selected from the group consisting of ethyl diglycol acetate, butyl glycol acetate, butyl diglycol acetate, benzyl alcohol, and isophorone. A conductive paste for an electrode, characterized in that " 1).
特許第5169501号Japanese Patent No. 5169501
 しかしながら、本発明者らが、特許文献1に記載の導電性ペーストについて検討したところ、形成される電極や配線(以下、「電極等」ともいう。)の体積抵抗率は低くなるが、透明導電層(例えば、透明導電酸化物層(TCO))等に電極等を形成したときに、接触抵抗が高くなる場合があることが明らかとなった。 However, when the present inventors examined the conductive paste described in Patent Document 1, the volume resistivity of the formed electrodes and wirings (hereinafter also referred to as “electrodes”) is reduced, but the transparent conductive It has been found that contact resistance may increase when an electrode or the like is formed on a layer (for example, a transparent conductive oxide layer (TCO)).
 そこで、本発明は、低い体積抵抗率を維持しつつ、透明導電層等に対する接触抵抗の低い電極等を形成することができる導電性組成物、上記導電性組成物を集電電極に用いた太陽電池セル、および、上記太陽電池セルを用いた太陽電池モジュールを提供することを課題とする。 Therefore, the present invention provides a conductive composition capable of forming an electrode having a low contact resistance against a transparent conductive layer or the like while maintaining a low volume resistivity, and a solar using the conductive composition as a collecting electrode It is an object to provide a battery cell and a solar battery module using the solar battery cell.
 本発明者らは、上記課題を解決するため鋭意検討した結果、金属粉末(例えば、銀粉など)および金属酸化物(例えば、酸化錫など)とともに、脂肪酸金属塩を配合することにより、低い体積抵抗率を維持しつつ、透明導電層等に対する接触抵抗の低い電極等が形成されることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of intensive studies to solve the above problems, the present inventors have found that a low volume resistance is obtained by blending a metal powder (for example, silver powder) and a metal oxide (for example, tin oxide) with a fatty acid metal salt. It was found that an electrode having a low contact resistance with respect to the transparent conductive layer or the like was formed while maintaining the rate, and the present invention was completed.
That is, the present inventors have found that the above problem can be solved by the following configuration.
 [1] 金属粉末(A)と、脂肪酸金属塩(B)と、金属酸化物(C)とを含有し、
 上記金属酸化物(C)が、酸化錫、酸化インジウム、酸化亜鉛および酸化チタンからなる群から選択される少なくとも1種の金属酸化物であり、
 上記脂肪酸金属塩(B)の含有量が、上記金属粉末(A)100質量部に対して0.1~20質量部であり、
 上記金属酸化物(C)の含有量が、上記金属粉末(A)100質量部に対して0.1~20質量部であり、450℃以下の温度で焼成を行う導電性組成物。
 [2] 上記脂肪酸金属塩(B)と上記金属酸化物(C)との質量比(脂肪酸金属塩(B)/金属酸化物(C))が、0.05~5である、上記[1]に記載の導電性組成物。
 [3] 上記金属酸化物(C)が、平均粒子径が10~100nmの粒子状物である、上記[1]または[2]に記載の導電性組成物。
 [4] 上記金属粉末(A)が、銀粉末および銅粉末からなる群から選択される少なくとも1種の金属粉末である、上記[1]~[3]のいずれかに記載の導電性組成物。
 [5] 上記金属酸化物(C)が、酸化錫である、上記[1]~[4]のいずれかに記載の導電性組成物。
 [6] 更に、硬化性樹脂(D)を含有する、上記[1]~[5]のいずれかに記載の導電性組成物。
 [7] 上記[1]~[6]のいずれかに記載の導電性組成物を集電電極に用いた太陽電池セル。
 [8] 上記集電電極の下地層として透明導電層を具備する[7]に記載の太陽電池セル。
 [9] 上記[7]または[8]に記載の太陽電池セルを用いた太陽電池モジュール。
[1] containing a metal powder (A), a fatty acid metal salt (B), and a metal oxide (C),
The metal oxide (C) is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide;
The content of the fatty acid metal salt (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A),
A conductive composition having a content of the metal oxide (C) of 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A) and firing at a temperature of 450 ° C. or lower.
[2] The above [1], wherein the mass ratio of the fatty acid metal salt (B) to the metal oxide (C) (fatty acid metal salt (B) / metal oxide (C)) is 0.05 to 5. ] The electrically conductive composition of description.
[3] The conductive composition according to [1] or [2] above, wherein the metal oxide (C) is a particulate material having an average particle diameter of 10 to 100 nm.
[4] The conductive composition according to any one of [1] to [3], wherein the metal powder (A) is at least one metal powder selected from the group consisting of silver powder and copper powder. .
[5] The conductive composition according to any one of [1] to [4], wherein the metal oxide (C) is tin oxide.
[6] The conductive composition according to any one of [1] to [5], further including a curable resin (D).
[7] A solar battery cell using the conductive composition according to any one of [1] to [6] as a collecting electrode.
[8] The solar battery cell according to [7], comprising a transparent conductive layer as a base layer of the current collecting electrode.
[9] A solar battery module using the solar battery cell according to [7] or [8].
 以下に示すように、本発明によれば、低い体積抵抗率を維持しつつ、透明導電層等に対する接触抵抗の低い電極等を形成することができる導電性組成物、上記導電性組成物を集電電極に用いた太陽電池セル、および、上記太陽電池セルを用いた太陽電池モジュールを提供することができる。
 また、本発明の導電性組成物を用いれば、低温(450℃以下(特に200℃以下))焼成であっても、低い体積抵抗率を維持しつつ、透明導電層等に対する接触抵抗の低い電極等を形成することができるため、太陽電池セル(特に後述する第2の好適態様)への熱によるダメージを軽減できる効果も有し、非常に有用である。
 更に、本発明の導電性組成物を用いれば、酸化インジウムスズ(ITO)やシリコンなどの耐熱性の高い材料のみならず、例えばPETフィルムなどの耐熱性の低い材料上にも電子回路、アンテナ等の回路を容易かつ短時間で作製することができるため非常に有用である。
As described below, according to the present invention, a conductive composition capable of forming an electrode having a low contact resistance with respect to a transparent conductive layer or the like while maintaining a low volume resistivity, and the conductive composition are collected. A solar battery cell used for the electric electrode and a solar battery module using the solar battery cell can be provided.
Further, when the conductive composition of the present invention is used, an electrode having a low contact resistance against a transparent conductive layer or the like while maintaining a low volume resistivity even at low temperature (450 ° C. or less (particularly 200 ° C. or less)) firing. And the like can be formed, and the solar cell (especially a second preferred embodiment described later) has an effect of reducing damage caused by heat, which is very useful.
Furthermore, if the conductive composition of the present invention is used, an electronic circuit, an antenna, etc. not only on a material having high heat resistance such as indium tin oxide (ITO) or silicon but also on a material having low heat resistance such as PET film. This circuit is very useful because it can be manufactured easily and in a short time.
図1は太陽電池セルの第1の好適態様を示す断面図である。FIG. 1 is a cross-sectional view showing a first preferred embodiment of a solar battery cell. 図2は太陽電池セルの第2の好適態様を示す断面図である。FIG. 2 is a cross-sectional view showing a second preferred embodiment of the solar battery cell.
 〔導電性組成物〕
 本発明の導電性組成物(以下、「本発明の導電性組成物」とも略す。)は、金属粉末(A)と、脂肪酸金属塩(B)と、金属酸化物(C)とを含有し、上記金属酸化物(C)が酸化錫、酸化インジウム、酸化亜鉛および酸化チタンからなる群から選択される少なくとも1種の金属酸化物であり、上記脂肪酸金属塩(B)の含有量が上記金属粉末(A)100質量部に対して0.1~20質量部であり、上記金属酸化物(C)の含有量が上記金属粉末(A)100質量部に対して0.1~20質量部であり、450℃以下の温度で焼成を行う導電性組成物である。
 また、本発明の導電性組成物は、後述するように、必要に応じて、硬化性樹脂(D)、硬化性樹脂の硬化剤(E)、溶媒(F)などを含有していてもよい。
[Conductive composition]
The conductive composition of the present invention (hereinafter also abbreviated as “the conductive composition of the present invention”) contains a metal powder (A), a fatty acid metal salt (B), and a metal oxide (C). The metal oxide (C) is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide, and the content of the fatty acid metal salt (B) is the metal The amount of the metal oxide (C) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A). And a conductive composition that is fired at a temperature of 450 ° C. or lower.
Moreover, the electroconductive composition of this invention may contain curable resin (D), the hardening | curing agent (E) of a curable resin, a solvent (F) etc. as needed so that it may mention later. .
 本発明においては、金属粉末(A)および金属酸化物(C)とともに、脂肪酸金属塩(B)を所定量配合することにより、低い体積抵抗率を維持しつつ、透明導電層等に対する接触抵抗の低い電極等を形成することができる導電性組成物となる。
 これは、詳細には明らかではないが、およそ以下のとおりと推測される。
 まず、後述する比較例3に示す通り、金属粉末(A)に対して、脂肪酸金属塩(B)を配合せずに金属酸化物(C)のみを配合した場合は、接触抵抗が大きくなることが分かる。これは、金属酸化物(C)の分散性が劣るためと考えられる。
 また、後述する比較例4に示す通り、金属粉末(A)に対して、脂肪酸金属塩(B)に該当しない脂肪酸とともに、金属酸化物(C)を配合した場合は、接触抵抗が僅かに改善されているものの十分ではないことが分かる。これは、金属酸化物(C)の分散性は改善されるものの、脂肪酸自体が抵抗成分となっているためと考えられる。
 これらの比較例の結果から、本発明においては、脂肪酸金属塩(B)を所定量配合することにより、金属酸化物(C)の分散性が改善され、かつ、脂肪酸金属塩(B)自体が還元されることにより金属粒子が生成するため、抵抗成分にならないためと考えられる。
 ここで、近年の太陽電池セルにおけるフィンガー電極は、曲線因子の向上や金属(主に銀)ペーストの使用量低減の観点から、細線化(例えば、50μm程度)が要求されており、ペーストに配合する配合剤の分散が重要となっている。
 そのため、脂肪酸金属塩(B)の配合により金属酸化物(C)の分散性が改善された本発明の導電性組成物は、スクリーン印刷のメッシュの目詰まりを抑制でき、上述した要求特性にも応えることができ、極めて有用である。
In the present invention, by adding a predetermined amount of the fatty acid metal salt (B) together with the metal powder (A) and the metal oxide (C), the contact resistance to the transparent conductive layer or the like is maintained while maintaining a low volume resistivity. It becomes an electroconductive composition which can form a low electrode etc.
This is not clear in detail, but is estimated to be as follows.
First, as shown in Comparative Example 3 described later, when only the metal oxide (C) is added to the metal powder (A) without adding the fatty acid metal salt (B), the contact resistance is increased. I understand. This is presumably because the dispersibility of the metal oxide (C) is poor.
Moreover, as shown in Comparative Example 4 described later, when the metal oxide (C) is blended with the metal powder (A) together with the fatty acid not corresponding to the fatty acid metal salt (B), the contact resistance is slightly improved. It turns out that what is being done is not enough. This is probably because although the dispersibility of the metal oxide (C) is improved, the fatty acid itself is a resistance component.
From the results of these comparative examples, in the present invention, the dispersibility of the metal oxide (C) is improved by blending a predetermined amount of the fatty acid metal salt (B), and the fatty acid metal salt (B) itself is It is considered that metal particles are generated by the reduction, and thus do not become a resistance component.
Here, finger electrodes in recent solar cells are required to be thinned (for example, about 50 μm) from the viewpoint of improving the fill factor and reducing the amount of metal (mainly silver) paste used. The dispersion of the compounding agent is important.
Therefore, the conductive composition of the present invention in which the dispersibility of the metal oxide (C) is improved by blending the fatty acid metal salt (B) can suppress clogging of the screen printing mesh, and also has the above-mentioned required characteristics. It can respond and is extremely useful.
 以下に、金属粉末(A)、脂肪酸金属塩(B)および金属酸化物(C)ならびに所望により含有してもよい他の成分について詳述する。 Hereinafter, the metal powder (A), the fatty acid metal salt (B), the metal oxide (C), and other components that may be optionally contained will be described in detail.
 <金属粉末(A)>
 本発明の導電性組成物が含有する金属粉末(A)は特に限定されず、例えば、電気抵抗率が20×10-6Ω・cm以下の金属材料を用いることができる。
 上記金属材料としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、より低い体積抵抗率の電極等を形成することができる理由から、銀粉末、銅粉末であるのが好ましく、銀粉末であるのがより好ましい。
<Metal powder (A)>
The metal powder (A) contained in the conductive composition of the present invention is not particularly limited. For example, a metal material having an electrical resistivity of 20 × 10 −6 Ω · cm or less can be used.
Specific examples of the metal material include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and the like. One species may be used alone, or two or more species may be used in combination.
Of these, silver powder and copper powder are preferable, and silver powder is more preferable because an electrode having a lower volume resistivity can be formed.
 本発明においては、上記金属粉末(A)は、印刷性(特に、スクリーン印刷性)が良好となる理由から、平均粒子径が0.5~10μmの金属粉末を用いるのが好ましい。
 上記金属粉末のうち、より低い体積抵抗率の電極等を形成することができる理由から、球状の銀粒子および/または銅粒子を用いるのがより好ましい。なお、銅粒子は、耐酸化性を改善する観点から、有機化合物、無機化合物、無機酸化物、銅以外の金属等で表面を改質または被覆した銅粒子を用いるのが好ましい。
 ここで、金属粉末(A)の平均粒子径とは、金属粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、金属粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 また、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
In the present invention, the metal powder (A) is preferably a metal powder having an average particle size of 0.5 to 10 μm because printability (particularly screen printability) is good.
Among the above metal powders, it is more preferable to use spherical silver particles and / or copper particles for the reason that an electrode having a lower volume resistivity can be formed. In addition, from a viewpoint of improving oxidation resistance, it is preferable to use copper particles whose surfaces are modified or coated with an organic compound, an inorganic compound, an inorganic oxide, a metal other than copper, or the like.
Here, the average particle diameter of the metal powder (A) refers to the average value of the particle diameter of the metal powder, and refers to the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring apparatus. In addition, when the cross-section of the metal powder is an ellipse, the particle diameter used as the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, Refers to the diameter.
The spherical shape refers to the shape of particles having a major axis / minor axis ratio of 2 or less.
 また、本発明においては、上記金属粉末(A)の平均粒子径は、印刷性がより良好となる理由から、0.7~5.0μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1.0~3.0μmであるのがより好ましい。 In the present invention, the average particle diameter of the metal powder (A) is preferably 0.7 to 5.0 μm because the printability is better, and the sintering speed is appropriate and workability is improved. From the reason that the thickness is excellent, the thickness is more preferably 1.0 to 3.0 μm.
 更に、本発明においては、上記金属粉末(A)として市販品を用いることができる。
 上記銀粒子の市販品の具体例としては、AG2-1C(平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG4-8F(平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG3-11F(平均粒子径:1.4μm、DOWAエレクトロニクス社製)、AgC-102(平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(平均粒子径:1.5μm、福田金属箔粉工業社製)、EHD(平均粒子径:0.5μm、三井金属社製)等が挙げられる。
Furthermore, in this invention, a commercial item can be used as said metal powder (A).
Specific examples of commercially available silver particles include AG2-1C (average particle size: 1.0 μm, manufactured by DOWA Electronics), AG4-8F (average particle size: 2.2 μm, manufactured by DOWA Electronics), AG3- 11F (average particle size: 1.4 μm, manufactured by DOWA Electronics), AgC-102 (average particle size: 1.5 μm, manufactured by Fukuda Metal Foil Powder Co., Ltd.), AgC-103 (average particle size: 1.5 μm, Fukuda) Metal foil powder industry), EHD (average particle size: 0.5 μm, Mitsui Metals), and the like.
 <脂肪酸金属塩(B)>
 本発明の導電性組成物が含有する脂肪酸金属塩(B)は、有機カルボン酸の金属塩であれば特に限定されず、例えば、銀、マグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上の金属のカルボン酸金属塩を用いるのが好ましい。
 これらのうち、銀のカルボン酸金属塩(以下、「カルボン酸銀塩(B1)」ともいう。)を用いるのが好ましい。なお、以下の説明において、銀以外の金属のカルボン酸銀塩を「カルボン酸金属塩(B2)」ともいう。
<Fatty acid metal salt (B)>
The fatty acid metal salt (B) contained in the conductive composition of the present invention is not particularly limited as long as it is a metal salt of an organic carboxylic acid. For example, silver, magnesium, nickel, copper, zinc, yttrium, zirconium, tin, and It is preferable to use a carboxylic acid metal salt of at least one metal selected from the group consisting of lead.
Among these, it is preferable to use a silver carboxylic acid metal salt (hereinafter, also referred to as “carboxylic acid silver salt (B1)”). In the following description, a carboxylic acid silver salt of a metal other than silver is also referred to as “carboxylic acid metal salt (B2)”.
 ここで、上記カルボン酸銀塩(B1)は、有機カルボン酸(脂肪酸)の銀塩であれば特に限定されず、例えば、特開2008-198595号公報の[0063]~[0068]段落に記載された脂肪酸金属塩(特に3級脂肪酸銀塩)、特許第4482930号公報の[0030]段落に記載された脂肪酸銀塩、特開2010-92684号公報の[0029]~[0045]段落に記載された水酸基を1個以上有する脂肪酸銀塩、同公報の[0046]~[0056]段落に記載された2級脂肪酸銀塩、特開2011-35062号公報の[0022]~[0026]に記載されたカルボン酸銀等を用いることができる。
 これらのうち、形成される電極等の体積抵抗率がより低くなり、また、透明導電層等に対する接触抵抗がより低くなる理由から、炭素数18以下のカルボン酸銀塩(B1-1)、カルボキシ銀塩基(-COOAg)と水酸基(-OH)とをそれぞれ1個以上有するカルボン酸銀塩(B1-2)、および、水酸基(-OH)を有さずにカルボキシ銀塩基(-COOAg)を2個以上有するポリカルボン酸銀塩(B1-3)からなる群から選択される少なくとも1種のカルボン酸銀塩を用いるのが好ましい。
Here, the carboxylic acid silver salt (B1) is not particularly limited as long as it is a silver salt of an organic carboxylic acid (fatty acid). For example, it is described in paragraphs [0063] to [0068] of JP-A-2008-198595. Fatty acid metal salts (particularly tertiary fatty acid silver salts), fatty acid silver salts described in paragraph [0030] of Japanese Patent No. 4482930, and [0029] to [0045] paragraphs of JP 2010-92684 A Fatty acid silver salts having one or more hydroxyl groups, secondary fatty acid silver salts described in paragraphs [0046] to [0056] of the same publication, and [0022] to [0026] of JP 2011-35062 A The silver carboxylate etc. which were made can be used.
Of these, the volume resistivity of the formed electrode or the like is lower, and the contact resistance to the transparent conductive layer or the like is lower, so that the carboxylic acid silver salt (B1-1), carboxy, A carboxylic acid silver salt (B1-2) having at least one silver base (—COOAg) and one hydroxyl group (—OH), and two carboxy silver bases (—COOAg) having no hydroxyl group (—OH) It is preferable to use at least one kind of silver carboxylate selected from the group consisting of polycarboxylic acid silver salts (B1-3).
 上記カルボン酸銀塩(B1-2)としては、例えば、下記式(I)~(III)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(I)中、nは0~2の整数を表し、R1は水素原子または炭素数1~10のアルキル基を表し、R2は炭素数1~6のアルキレン基を表す。nが0または1である場合、複数のR2はそれぞれ同一であっても異なっていてもよい。nが2である場合、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(II)中、R1は水素原子または炭素数1~10のアルキル基を表し、複数のR1はそれぞれ同一であっても異なっていてもよい。
 式(III)中、R1は水素原子または炭素数1~10のアルキル基を表し、R3は炭素数1~6のアルキレン基を表す。複数のR1はそれぞれ同一であっても異なっていてもよい。)
Examples of the carboxylic acid silver salt (B1-2) include compounds represented by any of the following formulas (I) to (III).
Figure JPOXMLDOC01-appb-C000001
(In the formula (I), n represents an integer of 0 to 2, R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 2 represents an alkylene group having 1 to 6 carbon atoms. When it is 0 or 1, the plurality of R 2 may be the same or different, and when n is 2, the plurality of R 1 may be the same or different.
In the formula (II), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and a plurality of R 1 may be the same or different.
In the formula (III), R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 3 represents an alkylene group having 1 to 6 carbon atoms. The plurality of R 1 may be the same or different. )
 また、上記ポリカルボン酸銀塩(B1-3)としては、例えば、下記式(IV)で表される化合物であるが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式(IV)中、mは、2~6の整数を表し、R4は、炭素数1~24のm価の飽和脂肪族炭化水素基、炭素数2~12のm価の不飽和脂肪族炭化水素基、炭素数3~12のm価の脂環式炭化水素基、または、炭素数6~12のm価の芳香族炭化水素基を表す。R4の炭素数をpとすると、m≦2p+2である。)
Examples of the polycarboxylic acid silver salt (B1-3) include compounds represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000002
(In the formula (IV), m represents an integer of 2 to 6, R 4 represents an m-valent saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms, and an m-valent unsaturated fat having 2 to 12 carbon atoms. Represents an aromatic hydrocarbon group, an m-valent alicyclic hydrocarbon group having 3 to 12 carbon atoms, or an m-valent aromatic hydrocarbon group having 6 to 12 carbon atoms, where the carbon number of R 4 is p. m ≦ 2p + 2.)
 上記カルボン酸銀塩(B1-1)としては、具体的には、2-メチルプロパン酸銀塩(別名:イソ酪酸銀塩)、2-メチルブタン酸銀塩等が好適に例示される。
 また、上記カルボン酸銀塩(B1-2)としては、具体的には、2-ヒドロキシイソ酪酸銀塩、2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩等が好適に例示される。
 また、上記ポリカルボン酸銀塩(B1-3)としては、具体的には、1,3,5-ペンタントリカルボン酸銀塩、1,2,3,4-ブタンテトラカルボン酸銀塩等が好適に例示される。
Specific examples of the carboxylic acid silver salt (B1-1) include 2-methylpropanoic acid silver salt (also known as silver isobutyrate) and 2-methylbutanoic acid silver salt.
Specific examples of the carboxylic acid silver salt (B1-2) include 2-hydroxyisobutyric acid silver salt and 2,2-bis (hydroxymethyl) -n-butyric acid silver salt. .
As the polycarboxylic acid silver salt (B1-3), specifically, 1,3,5-pentanetricarboxylic acid silver salt, 1,2,3,4-butanetetracarboxylic acid silver salt and the like are preferable. Is exemplified.
 一方、上記カルボン酸金属塩(B2)は、上述した通り、例えば、有機カルボン酸(脂肪酸)のマグネシウム、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、スズおよび鉛からなる群から選択される少なくとも1種以上の金属の金属塩が挙げられる。 On the other hand, the carboxylic acid metal salt (B2) is at least one selected from the group consisting of magnesium, nickel, copper, zinc, yttrium, zirconium, tin and lead, for example, organic carboxylic acids (fatty acids) as described above. The metal salt of the above metal is mentioned.
 本発明においては、上記カルボン酸金属塩(B2)を生成する上記有機カルボン酸としては、具体的には、例えば、2-メチルプロパン酸、2-エチルヘキサン酸、オクチル酸、ナフテン酸、ステアリン酸、ラウリン酸等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 In the present invention, specific examples of the organic carboxylic acid that forms the carboxylic acid metal salt (B2) include 2-methylpropanoic acid, 2-ethylhexanoic acid, octylic acid, naphthenic acid, and stearic acid. , Lauric acid and the like, and these may be used alone or in combination of two or more.
 このようなカルボン酸金属塩(B2)としては、具体的には、例えば、2-メチルプロパン酸亜鉛塩;
 オクチル酸マグネシウム塩、オクチル酸ニッケル塩、オクチル酸銅塩、オクチル酸亜鉛塩、オクチル酸イットリウム塩、オクチル酸ジルコニウム塩、オクチル酸スズ塩、オクチル酸鉛塩;ナフテン酸マグネシウム塩、ナフテン酸ニッケル塩、ナフテン酸銅塩、ナフテン酸亜鉛塩、ナフテン酸イットリウム塩、ナフテン酸ジルコニウム塩、ナフテン酸スズ塩、ナフテン酸鉛塩;
 ステアリン酸マグネシウム塩、ステアリン酸ニッケル塩、ステアリン酸銅塩、ステアリン酸亜鉛塩、ステアリン酸イットリウム塩、ステアリン酸ジルコニウム塩、ステアリン酸スズ塩、ステアリン酸鉛塩;
 ラウリン酸マグネシウム塩、ラウリン酸ニッケル塩、ラウリン酸銅塩、ラウリン酸亜鉛塩、ラウリン酸イットリウム塩、ラウリン酸ジルコニウム塩、ラウリン酸スズ塩、ラウリン酸鉛塩;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
As such carboxylic acid metal salt (B2), specifically, for example, 2-methylpropanoic acid zinc salt;
Magnesium octylate, nickel octylate, copper octylate, zinc octylate, yttrium octylate, zirconium octylate, tin octylate, lead octylate; magnesium naphthenate, nickel naphthenate, Naphthenic acid copper salt, Naphthenic acid zinc salt, Naphthenic acid yttrium salt, Naphthenic acid zirconium salt, Naphthenic acid tin salt, Naphthenic acid lead salt;
Magnesium stearate, nickel stearate, copper stearate, zinc stearate, yttrium stearate, zirconium stearate, tin stearate, lead stearate;
Magnesium laurate, nickel laurate, copper laurate, zinc laurate, yttrium laurate, zirconium laurate, tin laurate, lead laurate; and the like. Or two or more of them may be used in combination.
 本発明においては、上記脂肪酸金属塩(B)の含有量は、上記金属粉末(A)100質量部に対して0.1~20質量部であり、後述する金属酸化物(C)の分散性が向上し、透明導電層等に対する接触抵抗がより低くなる理由から、1~10質量部であるのがより好ましい。 In the present invention, the content of the fatty acid metal salt (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and the dispersibility of the metal oxide (C) to be described later 1 to 10 parts by mass is more preferable because the contact resistance with respect to the transparent conductive layer and the like is further improved.
 <金属酸化物(C)>
 本発明の導電性組成物で用いる金属酸化物(C)は、酸化錫、酸化インジウム、酸化亜鉛および酸化チタンからなる群から選択される少なくとも1種の金属酸化物である。
<Metal oxide (C)>
The metal oxide (C) used in the conductive composition of the present invention is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide.
 上記金属酸化物(C)としては、透明導電層等に対する接触抵抗がより低くなる理由から、酸化錫であるのが好ましい。
 また、酸化錫の中でも、形成される電極等の体積抵抗率がより低くなり、また、透明導電層等に対する接触抵抗がより低くなる理由から、ドーパント(例えば、アンチモン、リン等)によりドープされた酸化錫であるのがより好ましい。なお、ドーパントによるドープは、酸化錫100質量部に対して、0.1~20質量部程度までドープされたものが好ましい。
As said metal oxide (C), it is preferable that it is a tin oxide from the reason for which contact resistance with respect to a transparent conductive layer etc. becomes lower.
Also, among tin oxides, the volume resistivity of the formed electrode or the like is lower, and the contact resistance to the transparent conductive layer or the like is lower, so that it is doped with a dopant (for example, antimony, phosphorus, etc.). More preferred is tin oxide. In addition, the doping with a dopant is preferably performed by doping up to about 0.1 to 20 parts by mass with respect to 100 parts by mass of tin oxide.
 上記金属酸化物(C)は、上述した脂肪酸金属塩(B)の添加効果、すなわち、金属酸化物の分散性がより発現する理由から、その平均粒子径が10~100nmの粒子状物であるのが好ましく、10~50nmの粒子状物であるのがより好ましい。
 ここで、金属酸化物(C)の平均粒子径とは、金属酸化物の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、金属酸化物の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
The metal oxide (C) is a particulate material having an average particle diameter of 10 to 100 nm because the effect of adding the fatty acid metal salt (B), that is, the dispersibility of the metal oxide is more manifested. Of these, particles of 10 to 50 nm are more preferable.
Here, the average particle diameter of the metal oxide (C) refers to the average value of the particle diameter of the metal oxide, and the 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution measuring device. Say. In addition, when the cross section of the metal oxide is an elliptical shape, the particle diameter that is the basis for calculating the average value is an average value obtained by dividing the total value of the major axis and the minor axis by 2, and in the case of a perfect circle, That diameter.
 上記金属酸化物(C)は、上述した脂肪酸金属塩(B)の添加効果、すなわち、金属酸化物の分散性がより発現する理由から、BET比表面積が10~100m2/gであるのが好ましく、30~100m2/gであるのがより好ましい。
 ここで、BET比表面積とは、JIS K1477:2007に規定された試験方法に従い、窒素吸着によるBET法を用いて測定した測定値をいう。
The metal oxide (C) has a BET specific surface area of 10 to 100 m 2 / g because of the effect of adding the fatty acid metal salt (B), that is, the dispersibility of the metal oxide. It is preferably 30 to 100 m 2 / g.
Here, the BET specific surface area means a measured value measured using a BET method by nitrogen adsorption according to a test method defined in JIS K1477: 2007.
 上記金属酸化物(C)の形状は特に限定されないが、上述した平均粒子径を有する粒子状物であるのが好ましく、特に、形成される電極等の体積抵抗率がより低くなり、また、透明導電層等に対する接触抵抗がより低くなる理由から、コア材料と被覆材料とを有するコア・シェル構造であるのがより好ましい。
 ここで、コア・シェル構造を有する場合、コア材料は特に限定されず、被覆材料のみ上記金属酸化物で構成されていればよい。
The shape of the metal oxide (C) is not particularly limited, but is preferably a particulate material having the above-described average particle diameter. In particular, the volume resistivity of the formed electrode or the like is lower, and transparent A core-shell structure having a core material and a coating material is more preferable because the contact resistance to the conductive layer or the like is lower.
Here, in the case of having a core-shell structure, the core material is not particularly limited, and only the coating material may be composed of the metal oxide.
 本発明においては、上記金属酸化物(C)の含有量は、上記金属粉末(A)100質量部に対して0.1~20質量部であり、形成される電極等の体積抵抗率がより低くなり、また、透明導電層等に対する接触抵抗がより低くなる理由から、1~10質量部であるのがより好ましい。 In the present invention, the content of the metal oxide (C) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and the volume resistivity of the formed electrode or the like is higher. The amount is more preferably 1 to 10 parts by mass because the contact resistance to the transparent conductive layer or the like becomes lower.
 また、本発明においては、上述した脂肪酸金属塩(B)の添加効果、すなわち、金属酸化物の分散性がより発現する理由から、上記脂肪酸金属塩(B)と上記金属酸化物(C)との質量比(脂肪酸金属塩(B)/金属酸化物(C))が、0.05~5であるのが好ましく、0.1~5であるのがより好ましい。 In the present invention, the fatty acid metal salt (B), the metal oxide (C), and the addition effect of the fatty acid metal salt (B) described above, that is, the dispersibility of the metal oxide is more expressed. The mass ratio (fatty acid metal salt (B) / metal oxide (C)) is preferably 0.05 to 5, and more preferably 0.1 to 5.
 <硬化性樹脂(D)>
 本発明の導電性組成物で用いることができる任意の硬化性樹脂(D)は、熱硬化性樹脂であれば特に限定されない。
 上記熱硬化性樹脂としては、具体的には、例えば、エポキシ樹脂、オルガノポリシロキサン、不飽和ポリエステル樹脂等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、透明導電層等に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができ、また、塗膜強度が高くなり、形成される電極等の強度が向上する理由から、後述するエポキシ樹脂および/またはオルガノポリシロキサンであるのが好ましい。
<Curable resin (D)>
Arbitrary curable resin (D) which can be used with the electrically conductive composition of this invention will not be specifically limited if it is a thermosetting resin.
Specific examples of the thermosetting resin include epoxy resins, organopolysiloxanes, unsaturated polyester resins, and the like. These may be used alone or in combination of two or more. Good.
Among these, the adhesion to the transparent conductive layer and the like is good, it is possible to form an electrode or the like having a lower contact resistance, the coating film strength is increased, and the strength of the formed electrode and the like is improved. An epoxy resin and / or an organopolysiloxane described later are preferable.
 (エポキシ樹脂)
 上記エポキシ樹脂は、1分子中に2個以上のオキシラン環(エポキシ基)を有する化合物からなる樹脂であれば特に限定されず、一般的に、エポキシ当量が90~2000のものである。
 このようなエポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。
 具体的には、例えば、ビスフェノールA型、ビスフェノールF型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型等のビスフェニル基を有するエポキシ化合物や、ポリアルキレングリコール型、アルキレングリコール型のエポキシ化合物や、ナフタレン環を有するエポキシ化合物や、フルオレン基を有するエポキシ化合物等の二官能型のグリシジルエーテル系エポキシ樹脂;
 フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の多官能型のグリシジルエーテル系エポキシ樹脂;
 ダイマー酸等の合成脂肪酸のグリシジルエステル系エポキシ樹脂;
 N,N,N′,N′-テトラグリシジルジアミノジフェニルメタン(TGDDM)、テトラグリシジルジアミノジフェニルスルホン(TGDDS)、テトラグリシジル-m-キシリレンジアミン(TGMXDA)、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、N,N-ジグリシジルアニリン、テトラグリシジル1,3-ビスアミノメチルシクロヘキサン(TG1,3-BAC)、トリグリシジルイソシアヌレート(TGIC)等のグリシジルアミン系エポキシ樹脂;
 トリシクロ〔5,2,1,02,6〕デカン環を有するエポキシ化合物、具体的には、例えば、ジシクロペンタジエンとメタクレゾール等のクレゾール類またはフェノール類を重合させた後、エピクロルヒドリンを反応させる公知の製造方法によって得ることができるエポキシ化合物;
 脂環型エポキシ樹脂;東レチオコール社製のフレップ10に代表されるエポキシ樹脂主鎖に硫黄原子を有するエポキシ樹脂;ウレタン結合を有するウレタン変性エポキシ樹脂;ポリブタジエン、液状ポリアクリロニトリル-ブタジエンゴムまたはアクリロニトリルブタジエンゴム(NBR)を含有するゴム変性エポキシ樹脂等が挙げられる。
(Epoxy resin)
The epoxy resin is not particularly limited as long as it is a resin composed of a compound having two or more oxirane rings (epoxy groups) in one molecule, and generally has an epoxy equivalent of 90 to 2000.
A conventionally well-known epoxy resin can be used as such an epoxy resin.
Specifically, for example, epoxy compounds having a bisphenyl group such as bisphenol A type, bisphenol F type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol S type, bisphenol AF type, biphenyl type, and polyalkylene Bifunctional glycidyl ether type epoxy resins such as glycol type, alkylene glycol type epoxy compounds, epoxy compounds having a naphthalene ring, and epoxy compounds having a fluorene group;
Polyfunctional glycidyl ether type epoxy resins such as phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type;
Glycidyl ester epoxy resins of synthetic fatty acids such as dimer acid;
N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyldiaminodiphenylsulfone (TGDDS), tetraglycidyl-m-xylylenediamine (TGMXDA), triglycidyl-p-aminophenol, triglycidyl- Glycidylamine epoxy resins such as m-aminophenol, N, N-diglycidylaniline, tetraglycidyl 1,3-bisaminomethylcyclohexane (TG1,3-BAC), triglycidyl isocyanurate (TGIC);
Tricyclo [5,2,1,0 2,6] epoxy compound having a decane ring, specifically, for example, after polymerizing the cresols or phenols such as dicyclopentadiene and cresol are reacted with epichlorohydrin Epoxy compounds obtainable by known production methods;
An alicyclic epoxy resin; an epoxy resin represented by Toray Rethiokol's Flep 10 epoxy resin having a sulfur atom in the main chain; a urethane-modified epoxy resin having a urethane bond; polybutadiene, liquid polyacrylonitrile-butadiene rubber or acrylonitrile butadiene rubber Examples thereof include a rubber-modified epoxy resin containing (NBR).
 これらは1種単独で用いても、2種以上を併用してもよい。
 また、これらのうち、硬化性、耐熱性、耐久性およびコストの観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂であるのが好ましい。
These may be used alone or in combination of two or more.
Of these, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable from the viewpoints of curability, heat resistance, durability, and cost.
 (オルガノポリシロキサン)
 上記オルガノポリシロキサンは、以下に示す4つの単位からなる群より選ばれる1種以上の繰り返し単位から構成される重合体をいう。
(Organopolysiloxane)
The organopolysiloxane refers to a polymer composed of one or more repeating units selected from the group consisting of the following four units.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 上記式(S-1)~(S-3)で表される繰返し単位中、Rは、それぞれ独立に、置換または非置換の一価の炭化水素基を表す。
 また、Rとしては、例えば、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数6~12のアリール基が挙げられる。
 上記アルキル基としては、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等が挙げられる。
 上記アルケニル基としては、具体的には、例えば、ビニル基、ブテニル基、ペンテニル基、アリル基等が挙げられ、中でも、活性が高く、反応性が高い理由から、Rの少なくとも1つがビニル基であるのが好ましい。
 上記アリール基としては、具体的には、例えば、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられ、中でも、π-π相互作用により透明導電層に対する密着性が良好となる理由から、Rの少なくとも1つがフェニル基であるのが好ましい。
In the repeating units represented by the above formulas (S-1) to (S-3), R each independently represents a substituted or unsubstituted monovalent hydrocarbon group.
Examples of R include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, a hexyl group, an octyl group, and a dodecyl group.
Specific examples of the alkenyl group include a vinyl group, a butenyl group, a pentenyl group, and an allyl group. Among them, at least one of R is a vinyl group because of its high activity and high reactivity. Preferably there is.
Specific examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and the like. Among them, for the reason that the adhesion to the transparent conductive layer is good due to the π-π interaction, It is preferred that at least one of R is a phenyl group.
 本発明においては、透明導電層に対する密着性が良好となり、接触抵抗のより低い電極等を形成することができる理由から、上記オルガノポリシロキサン(B)は、少なくとも上記式(S-3)で表されるT単位または上記式(S-4)で表されるQ単位を含むもの、すなわち、架橋構造を有するシリコーンレジンであるのが好ましい。 In the present invention, the organopolysiloxane (B) is represented by at least the above formula (S-3) because it has good adhesion to the transparent conductive layer and can form an electrode having a lower contact resistance. It is preferably a silicone resin having a T unit or a Q unit represented by the above formula (S-4), that is, a crosslinked resin.
 本発明においては、上記硬化性樹脂(D)を含有する場合の含有量は、上記金属粉末(A)100質量部に対して2~20質量部であるのが好ましく、2~15質量部であるのがより好ましく、2~10質量部であるのがさらに好ましい。 In the present invention, the content when the curable resin (D) is contained is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A), and preferably 2 to 15 parts by mass. More preferably, it is 2 to 10 parts by mass.
 <硬化剤(E)>
 本発明の導電性組成物は、上記硬化性樹脂(D)としてエポキシ樹脂やエポキシ基を有するオルガノポリシロキサンを含有する場合、それらの硬化剤(E)を含有するのが好ましい。
 上記硬化剤(E)としては、例えば、以下に詳述する三フッ化ホウ素とアミン化合物との錯体を用いるのが好ましい。
<Curing agent (E)>
When the conductive composition of the present invention contains an epoxy resin or an organopolysiloxane having an epoxy group as the curable resin (D), the conductive composition preferably contains those curing agents (E).
As the curing agent (E), for example, it is preferable to use a complex of boron trifluoride and an amine compound described in detail below.
 三フッ化ホウ素とアミン化合物との錯体としては、三フッ化ホウ素と脂肪族アミン(脂肪族第1級アミン、脂肪族第2級アミン、脂肪族第3級アミン)との錯体、三フッ化ホウ素と脂環式アミンとの錯体、三フッ化ホウ素と芳香族アミンとの錯体、三フッ化ホウ素と複素環アミンとの錯体などが挙げられる。上記複素環アミンは、脂環式の複素環アミン(以下、「脂環式複素環アミン」ともいう。)であっても、芳香族の複素環アミン(以下、「芳香族複素環アミン」ともいう。)であってもよい。
 脂肪族第1級アミンの具体例としては、メチルアミン、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、iso-ブチルアミン、sec-ブチルアミン、n-ヘキシルアミン、n-オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン等が挙げられる。脂肪族第2級アミンの具体例としては、ジメチルアミン、ジエチルアミン、メチルエチルアミン、メチルプロピルアミン、ジ-iso-プロピルアミン、ジ-n-プロピルアミン、エチルプロピルアミン、ジ-n-ブチルアミン、ジ-iso-ブチルアミン、ジプロペニルアミン、クロロブチルプロピルアミン、ジ(クロロブチル)アミン、ジ(ブロモエチル)アミン等が挙げられる。脂肪族第3級アミンの具体例としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン等が挙げられる。脂環式アミンの具体例としては、シクロヘキシルアミン等が挙げられる。芳香族アミンとしては、ベンジルアミン等が挙げられる。脂環式複素環アミンの具体例としては、ピロリジン、ピペリジン、2-ピペコリン、3-ピペコリン、4-ピペコリン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ピペラジン、ホモピペラジン、N-メチルピペラジン、N-エチルピペラジン、N-プロピルピペラジン、N-メチルホモピペラジン、N-アセチルピペラジン、1-(クロロフェニル)ピペラジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、モルホリン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、N-アミノプロピル-2-ピペコリン、N-アミノプロピル-4-ピペコリン、1,4-ビス(アミノプロピル)ピペラジン、トリエチレンジアミン、2-メチルトリエチエレンジアミン等が挙げられる。芳香族複素環アミンの具体例としては、ピリジン、ピロール、イミダゾール、ピリダジン、ピリミジン、キノリン、トリアジン、テトラジン、イソキノリン、キナゾリン、ナフチリジン、プテリジン、アクリジン、フェナジン等が挙げられる。
As a complex of boron trifluoride and an amine compound, a complex of boron trifluoride and an aliphatic amine (aliphatic primary amine, aliphatic secondary amine, aliphatic tertiary amine), trifluoride Examples thereof include a complex of boron and an alicyclic amine, a complex of boron trifluoride and an aromatic amine, a complex of boron trifluoride and a heterocyclic amine, and the like. The heterocyclic amine may be an alicyclic heterocyclic amine (hereinafter also referred to as “alicyclic heterocyclic amine”) or an aromatic heterocyclic amine (hereinafter referred to as “aromatic heterocyclic amine”). It may be.)
Specific examples of the aliphatic primary amine include methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, n-hexylamine, n-octylamine, 2 -Ethylhexylamine, laurylamine and the like. Specific examples of the aliphatic secondary amine include dimethylamine, diethylamine, methylethylamine, methylpropylamine, di-iso-propylamine, di-n-propylamine, ethylpropylamine, di-n-butylamine, di- Examples include iso-butylamine, dipropenylamine, chlorobutylpropylamine, di (chlorobutyl) amine, di (bromoethyl) amine and the like. Specific examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tributylamine, triethanolamine and the like. Specific examples of the alicyclic amine include cyclohexylamine. Examples of aromatic amines include benzylamine. Specific examples of the alicyclic heterocyclic amine include pyrrolidine, piperidine, 2-pipecoline, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, piperazine, and homopiperazine. N-methylpiperazine, N-ethylpiperazine, N-propylpiperazine, N-methylhomopiperazine, N-acetylpiperazine, 1- (chlorophenyl) piperazine, N-aminoethylpiperidine, N-aminopropylpiperidine, N-aminoethyl Piperazine, N-aminopropylpiperazine, morpholine, N-aminoethylmorpholine, N-aminopropylmorpholine, N-aminopropyl-2-pipecholine, N-aminopropyl-4-pipecholine, 1,4-bis (aminopropyl) piperazine , Triethylenediamine , 2-methyl-triethylene Chie diamine and the like. Specific examples of the aromatic heterocyclic amine include pyridine, pyrrole, imidazole, pyridazine, pyrimidine, quinoline, triazine, tetrazine, isoquinoline, quinazoline, naphthyridine, pteridine, acridine, phenazine and the like.
 上記硬化剤(E)は、体積抵抗率がより低く、透明導電層等に対する接触抵抗のより低い電極等を形成することができる理由から、三フッ化ホウ素ピペリジン、三フッ化ホウ素エチルアミンおよび三フッ化ホウ素トリエタノールアミンからなる群より選択される錯体であることが好ましい。 The curing agent (E) has a lower volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, etc., so that boron trifluoride piperidine, boron trifluoride ethylamine and trifluoride are used. A complex selected from the group consisting of borohydride triethanolamine is preferred.
 上記硬化剤(E)の含有量は、体積抵抗率がより低く、透明導電層等に対する接触抵抗がより低い電極等を形成することができる理由から、上記金属粉末(A)100質量部に対して0.1~1質量部であるのが好ましい。 The content of the curing agent (E) is lower than the volume resistivity and can form an electrode having a lower contact resistance with respect to the transparent conductive layer, etc., so that the amount of the metal powder (A) is 100 parts by mass. The amount is preferably 0.1 to 1 part by mass.
 <溶媒(F)>
 本発明の導電性組成物は、印刷性等の作業性の観点から、溶媒(F)を含有するのが好ましい。
 上記溶媒(F)は、本発明の導電性組成物を基板上に塗布することができるものであれば特に限定されず、その具体例としては、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
<Solvent (F)>
The conductive composition of the present invention preferably contains a solvent (F) from the viewpoint of workability such as printability.
The solvent (F) is not particularly limited as long as the conductive composition of the present invention can be applied onto a substrate. Specific examples thereof include butyl carbitol, methyl ethyl ketone, isophorone, α-terpineol, and the like. These may be used alone or in combination of two or more.
 <添加剤>
 本発明の導電性組成物は、必要に応じて、還元剤等の添加剤を含有していてもよい。
 上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
 また、本発明の導電性組成物は、高温(700~800℃)焼成タイプの導電性ペーストとして一般的に用いられるガラスフリットについては特に必要がなく、上記金属粉末(A)100質量部に対して0.1質量部未満であるのが好ましく、実質的に含有していないのが好ましい。
<Additives>
The electrically conductive composition of this invention may contain additives, such as a reducing agent, as needed.
Specific examples of the reducing agent include ethylene glycols.
In addition, the conductive composition of the present invention is not particularly necessary for a glass frit generally used as a high-temperature (700 to 800 ° C.) firing type conductive paste, and is based on 100 parts by mass of the metal powder (A). The amount is preferably less than 0.1 parts by mass, and is preferably substantially not contained.
 本発明の導電性組成物の製造方法は特に限定されず、上記金属粉末(A)、上記脂肪酸金属塩(B)および上記金属酸化物(C)ならびに所望により含有していてもよい上記硬化性樹脂(D)、上記硬化剤(E)および上記溶媒(F)等を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。 The manufacturing method of the electroconductive composition of this invention is not specifically limited, The said metal powder (A), the said fatty-acid metal salt (B), the said metal oxide (C), and the said sclerosis | hardenability which may be contained if desired. The method of mixing resin (D), the said hardening | curing agent (E), the said solvent (F), etc. with a roll, a kneader, an extruder, a universal stirrer etc. is mentioned.
 〔太陽電池セル〕
 本発明の太陽電池セルは、上述した本発明の導電性組成物を集電電極に用いた太陽電池セルである。
[Solar cells]
The solar battery cell of the present invention is a solar battery cell using the above-described conductive composition of the present invention as a collecting electrode.
 <太陽電池セルの第1の好適な態様>
 本発明の太陽電池セルの第1の好適な態様としては、受光面側の表面電極、半導体基板および裏面電極を具備し、上記表面電極および/または上記裏面電極が、上述した本発明の導電性組成物を用いて形成される太陽電池セルが挙げられる。
 以下に、本発明の太陽電池セルの第1の好適な態様について図1を用いて説明する。
<First preferred embodiment of solar cell>
As a 1st suitable aspect of the photovoltaic cell of this invention, it comprises the surface electrode by the side of a light-receiving surface, a semiconductor substrate, and a back electrode, The said surface electrode and / or the said back electrode are the electroconductivity of this invention mentioned above. A solar battery cell formed using the composition can be mentioned.
Below, the 1st suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
 図1に示すように、太陽電池セル1は、受光面側の表面電極4と、p層5およびn層2が接合したpn接合シリコン基板7と、裏面電極6とを具備するものである。
 また、図1に示すように、太陽電池セル1は、反射率低減のため、例えば、ウエハ表面にエッチングを施して、ピラミッド状のテクスチャを形成し、反射防止膜3を具備するのが好ましい。
 以下に、本発明の太陽電池セルの第1の好適な態様が具備する上記表面電極、裏面電極およびシリコン基板並びに具備していてもよい上記反射防止膜について詳述する。
As shown in FIG. 1, the solar cell 1 includes a surface electrode 4 on the light receiving surface side, a pn junction silicon substrate 7 in which a p layer 5 and an n layer 2 are joined, and a back electrode 6.
As shown in FIG. 1, the solar battery cell 1 is preferably provided with an antireflection film 3, for example, by etching the wafer surface to form a pyramidal texture in order to reduce reflectivity.
Below, the said surface electrode, back surface electrode, silicon substrate which the 1st suitable aspect of the photovoltaic cell of this invention comprises, and the said antireflection film which may be equipped are explained in full detail.
 (表面電極/裏面電極)
 表面電極および裏面電極は、いずれか一方または両方が本発明の導電性組成物を用いて形成されていれば、電極の配置(ピッチ)、形状、高さ、幅等は特に限定されない。なお、電極の高さは、通常、数~数十μmに設計されるが、本発明の導電性組成物を用いて形成した電極の断面の高さと幅の比率(高さ/幅)(以下、「アスペクト比」という。)を大きく(例えば、0.4程度以上)調整することが可能となる。
 ここで、表面電極および裏面電極は、図1に示すように、通常、複数個有するものであるが、例えば、複数の表面電極の一部のみが本発明の導電性組成物で形成されたものであってもよく、複数の表面電極の一部と複数の裏面電極の一部が本発明の導電性組成物で形成されたものであってもよい。
(Front electrode / Back electrode)
As long as any one or both of the front electrode and the back electrode are formed using the conductive composition of the present invention, the arrangement (pitch), shape, height, width and the like of the electrode are not particularly limited. The height of the electrode is usually designed to be several to several tens of μm, but the ratio of the height and width of the cross section of the electrode formed using the conductive composition of the present invention (height / width) (below) , “Aspect ratio”) can be adjusted to a large value (for example, about 0.4 or more).
Here, as shown in FIG. 1, the front surface electrode and the back surface electrode usually have a plurality, but, for example, only a part of the plurality of surface electrodes is formed of the conductive composition of the present invention. Alternatively, part of the plurality of front surface electrodes and part of the plurality of back surface electrodes may be formed of the conductive composition of the present invention.
 (反射防止膜)
 反射防止膜は、受光面の表面電極が形成されていない部分に形成される膜(膜厚:0.05~0.1μm程度)であって、例えば、シリコン酸化膜、シリコン窒化膜、酸化チタン膜、これらの積層膜等から構成されるものである。
(Antireflection film)
The antireflection film is a film (film thickness: about 0.05 to 0.1 μm) formed on a portion of the light receiving surface where the surface electrode is not formed. For example, a silicon oxide film, a silicon nitride film, a titanium oxide It is comprised from a film | membrane, these laminated films, etc.
 また、上記シリコン基板はpn接合を有するが、これは、第1導電型の半導体基板の表面側に第2導電型の受光面不純物拡散領域が形成されていることを意味する。なお、第1導電型がn型の場合には、第2導電型はp型であり、第1導電型がp型の場合には、第2導電型はn型である。
 ここで、p型を与える不純物としては、ホウ素、アルミニウム等が挙げられ、n型を与える不純物としては、リン、砒素などが挙げられる。
The silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate. When the first conductivity type is n-type, the second conductivity type is p-type. When the first conductivity type is p-type, the second conductivity type is n-type.
Here, examples of the impurity imparting p-type include boron and aluminum, and examples of the impurity imparting n-type include phosphorus and arsenic.
 (シリコン基板)
 シリコン基板は特に限定されず、太陽電池を形成するための公知のシリコン基板(板厚:80~450μm程度)を用いることができ、また、単結晶または多結晶のいずれのシリコン基板であってもよい。
(Silicon substrate)
The silicon substrate is not particularly limited, and a known silicon substrate (plate thickness: about 80 to 450 μm) for forming a solar cell can be used, and either a monocrystalline or polycrystalline silicon substrate can be used. Good.
 本発明の太陽電池セルの第1の好適な態様において、太陽電池セルは、表面電極および/または裏面電極が本発明の導電性組成物を用いて形成されているため、電極のアスペクト比を大きくし易く、受光により発生した起電力を電流として効率良く取り出すことができる。 In the first preferred embodiment of the solar battery cell of the present invention, the solar battery cell has a large electrode aspect ratio because the surface electrode and / or the back electrode is formed using the conductive composition of the present invention. The electromotive force generated by light reception can be efficiently taken out as a current.
 なお、上述した本発明の導電性組成物は全裏面電極型(いわゆるバックコンタクト型)太陽電池の裏面電極の形成にも適用することができるため、全裏面電極型の太陽電池にも適用することができる。 In addition, since the conductive composition of the present invention described above can also be applied to the formation of the back electrode of an all-back electrode type (so-called back contact type) solar cell, it can also be applied to an all-back electrode type solar cell. Can do.
 <太陽電池セル(第1の好適な態様)の製造方法>
 上記太陽電池セル(第1の好適な態様)の製造方法は特に限定されないが、本発明の導電性組成物をシリコン基板上に塗布して配線を形成する配線形成工程と、形成された配線を熱処理して電極(表面電極および/または裏面電極)を形成する熱処理工程とを有する方法が挙げられる。
 なお、太陽電池セルが反射防止層を具備する場合、反射防止膜は、プラズマCVD法等の公知の方法により形成することができる。
 以下に、配線形成工程、熱処理工程について詳述する。
<The manufacturing method of a photovoltaic cell (1st suitable aspect)>
Although the manufacturing method of the said photovoltaic cell (1st suitable aspect) is not specifically limited, The wiring formation process which apply | coats the electrically conductive composition of this invention on a silicon substrate, and forms wiring, and the formed wiring And a heat treatment step of forming an electrode (front electrode and / or back electrode) by heat treatment.
In the case where the solar battery cell includes an antireflection layer, the antireflection film can be formed by a known method such as a plasma CVD method.
Below, a wiring formation process and a heat treatment process are explained in full detail.
 (配線形成工程)
 上記配線形成工程は、本発明の導電性組成物をシリコン基板上に塗布して配線を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
(Wiring formation process)
The wiring formation step is a step of forming a wiring by applying the conductive composition of the present invention on a silicon substrate.
Here, specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
 (熱処理工程)
 上記熱処理工程は、上記配線形成工程で形成された塗膜を熱処理して導電性の配線(電極)を形成する工程である。
(Heat treatment process)
The heat treatment step is a step of forming a conductive wiring (electrode) by heat-treating the coating film formed in the wiring forming step.
 上記熱処理は、450℃以下の温度条件であれば特に限定されないが、150~350℃の温度で、数秒~数十分間、加熱(焼成)する処理であるのが好ましい。温度および時間がこの範囲であると、シリコン基板上に反射防止膜を形成した場合であっても、容易に電極を形成することができる。
 また、本発明の太陽電池セルの第1の好適な態様においては、本発明の導電性組成物を用いているため、450℃以下の比較的低い温度であっても、良好な熱処理(焼成)を施すことができる。
 本発明においては、上記配線形成工程で形成された配線は、紫外線または赤外線の照射でも電極を形成することができるため、上記熱処理工程は、紫外線または赤外線の照射によるものであってもよい。
The heat treatment is not particularly limited as long as it is at a temperature of 450 ° C. or lower, but it is preferably a heat treatment (baking) at a temperature of 150 to 350 ° C. for several seconds to several tens of minutes. When the temperature and time are within this range, an electrode can be easily formed even when an antireflection film is formed on a silicon substrate.
Moreover, in the 1st suitable aspect of the photovoltaic cell of this invention, since the electrically conductive composition of this invention is used, even if it is a comparatively low temperature of 450 degrees C or less, it is favorable heat processing (baking). Can be applied.
In the present invention, since the wiring formed in the wiring formation step can form electrodes even by irradiation with ultraviolet rays or infrared rays, the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays.
 <太陽電池セルの第2の好適な態様>
 本発明の太陽電池セルの第2の好適な態様としては、n型単結晶シリコン基板を中心にその上下にアモルファスシリコン層および透明導電層(例えば、TCO)を具備し、上記透明導電層を下地層として、上記透明導電層上に上述した本発明の導電性組成物を用いて集電電極を形成した太陽電池(例えばヘテロ接合型太陽電池)セルが挙げられる。上記太陽電池セル(第2の好適な態様)は、単結晶シリコンとアモルファスシリコンとをハイブリッドした太陽電池セルであり、高い変換効率を示す。
 以下に、本発明の太陽電池セルの第2の好適な態様について図2を用いて説明する。
<The 2nd suitable aspect of a photovoltaic cell>
As a second preferred embodiment of the solar battery cell of the present invention, an amorphous silicon layer and a transparent conductive layer (for example, TCO) are provided above and below an n-type single crystal silicon substrate, and the transparent conductive layer is disposed below. Examples of the base layer include a solar cell (for example, a heterojunction solar cell) cell in which a collecting electrode is formed on the transparent conductive layer using the conductive composition of the present invention described above. The solar battery cell (second preferred embodiment) is a solar battery cell in which single crystal silicon and amorphous silicon are hybridized and exhibits high conversion efficiency.
Below, the 2nd suitable aspect of the photovoltaic cell of this invention is demonstrated using FIG.
 図2に示すように、太陽電池セル100は、n型単結晶シリコン基板11を中心に、その上下にi型アモルファスシリコン層12aおよび12b、並びに、p型アモルファスシリコン層13aおよびn型アモルファスシリコン層13b、並びに、透明導電層14aおよび14b、並びに、上述した本発明の導電性組成物を用いて形成した集電電極15aおよび15bを具備する。 As shown in FIG. 2, the solar battery cell 100 has an n-type single crystal silicon substrate 11 as a center, i-type amorphous silicon layers 12 a and 12 b, and p-type amorphous silicon layers 13 a and n-type amorphous silicon layers above and below it. 13b, transparent conductive layers 14a and 14b, and current collecting electrodes 15a and 15b formed using the above-described conductive composition of the present invention.
 上記n型単結晶シリコン基板は、n型を与える不純物がドープされた単結晶シリコン層である。n型を与える不純物は上述のとおりである。
 上記i型アモルファスシリコン層は、ドープされていないアモルファスシリコン層である。
 上記p型アモルファスシリコンは、p型を与える不純物がドープされたアモルファスシリコン層である。p型を与える不純物は上述のとおりである。
 上記n型アモルファスシリコンは、n型を与える不純物がドープされたアモルファスシリコン層である。n型を与える不純物は上述のとおりである。
 上記集電電極は、上述した本発明の導電性組成物を用いて形成された集電電極である。集電電極の具体的な態様は上述した表面電極または裏面電極と同じである。
The n-type single crystal silicon substrate is a single crystal silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
The i-type amorphous silicon layer is an undoped amorphous silicon layer.
The p-type amorphous silicon is an amorphous silicon layer doped with an impurity imparting p-type. Impurities that give p-type are as described above.
The n-type amorphous silicon is an amorphous silicon layer doped with an n-type impurity. Impurities that give n-type are as described above.
The said collector electrode is a collector electrode formed using the electrically conductive composition of this invention mentioned above. A specific aspect of the current collecting electrode is the same as that of the front surface electrode or the back surface electrode described above.
 (透明導電層)
 上記透明導電層の材料の具体例としては、酸化亜鉛、酸化スズ、酸化インジウム、酸化チタンなどの単一金属酸化物;酸化インジウムスズ(ITO)、酸化インジウム亜鉛、酸化インジウムチタン、酸化スズカドミウムなどの多種金属酸化物;ガリウム添加酸化亜鉛、アルミニウム添加酸化亜鉛、硼素添加酸化亜鉛、チタン添加酸化亜鉛、チタン添加酸化インジウム、ジルコニウム添加酸化インジウム、フッ素添加酸化スズなどのドーピング型金属酸化物;などが挙げられる。
(Transparent conductive layer)
Specific examples of the material for the transparent conductive layer include single metal oxides such as zinc oxide, tin oxide, indium oxide, and titanium oxide; indium tin oxide (ITO), indium zinc oxide, indium titanium oxide, tin cadmium oxide, and the like. Gallium-doped zinc oxide, aluminum-doped zinc oxide, boron-doped zinc oxide, titanium-doped zinc oxide, titanium-doped indium oxide, zirconium-doped indium oxide, fluorine-doped tin oxide, and the like. Can be mentioned.
 <太陽電池セル(第2の好適な態様)の製造方法>
 上記太陽電池セル(第2の好適な態様)の製造方法は特に限定されないが、例えば、特開2010-34162号公報に記載の方法などで製造することができる。
 具体的には、n型単結晶シリコン基板11の片方の主面上に、PECVD(plasma enhanced chemical vapor deposition)法などによって、i型アモルファスシリコン層12aを形成する。さらに、形成したi型アモルファスシリコン層12a上にPECVD法などによってp型アモルファスシリコン層13aを形成する。
 次に、n型単結晶シリコン基板11のもう一方の主面上に、PECVD法などによって、i型アモルファスシリコン層12bを形成する。さらに、形成したi型アモルファスシリコン層12b上にPECVD法などによってn型アモルファスシリコン層13bを形成する。
 次に、スパッタ法などによって、p型アモルファスシリコン層13a上およびn型アモルファスシリコン層13b上にITOなどの透明導電層14aおよび14bを形成する。
 次に、形成した透明導電層14aおよび14b上に本発明の導電性組成物を塗布して配線を形成し、さらに、形成した配線を熱処理することで集電電極15aおよび15bを形成する。
 配線を形成する方法は、上述した太陽電池セル(第1の好適な態様)の配線形成工程に記載した方法と同じである。
 配線を熱処理する方法は、上述した太陽電池セル(第1の好適な態様)の熱処理工程に記載した方法と同じであるが、熱処理温度(焼成温度)は150~200℃であることが好ましい。
<The manufacturing method of a photovoltaic cell (2nd suitable aspect)>
The method for producing the solar battery cell (second preferred embodiment) is not particularly limited, and can be produced by, for example, the method described in JP 2010-34162 A.
Specifically, the i-type amorphous silicon layer 12a is formed on one main surface of the n-type single crystal silicon substrate 11 by a PECVD (plasma enhanced chemical vapor deposition) method or the like. Further, a p-type amorphous silicon layer 13a is formed on the formed i-type amorphous silicon layer 12a by PECVD or the like.
Next, an i-type amorphous silicon layer 12b is formed on the other main surface of the n-type single crystal silicon substrate 11 by PECVD or the like. Further, an n-type amorphous silicon layer 13b is formed on the formed i-type amorphous silicon layer 12b by PECVD or the like.
Next, transparent conductive layers 14a and 14b such as ITO are formed on the p-type amorphous silicon layer 13a and the n-type amorphous silicon layer 13b by sputtering or the like.
Next, the conductive composition of the present invention is applied on the formed transparent conductive layers 14a and 14b to form wirings, and the formed wirings are heat-treated to form current collecting electrodes 15a and 15b.
The method for forming the wiring is the same as the method described in the wiring formation step of the above-described solar battery cell (first preferred embodiment).
The method of heat-treating the wiring is the same as the method described in the heat treatment step of the above-described solar battery cell (first preferred embodiment), but the heat treatment temperature (firing temperature) is preferably 150 to 200 ° C.
 以下、実施例を用いて、本発明の導電性組成物について詳細に説明する。ただし、本発明はこれに限定されるものではない。 Hereinafter, the conductive composition of the present invention will be described in detail using examples. However, the present invention is not limited to this.
 (実施例1~12、比較例1~4)
 金属酸化物として下記第1表に示す酸化錫1~5を用い、酸化錫1~5や銀粉等を下記第2表中に示す組成比(質量部)となるように配合し、これらを混合することにより導電性組成物を調製した。
(Examples 1 to 12, Comparative Examples 1 to 4)
Using tin oxide 1-5 shown in Table 1 below as the metal oxide, tin oxide 1-5, silver powder, etc. are blended so as to have the composition ratio (parts by mass) shown in Table 2 below, and these are mixed Thus, a conductive composition was prepared.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 調製した各導電性組成物について、体積抵抗率および接触抵抗ならびに曲線因子(FF)を以下に示す方法で評価した。 The volume resistivity, contact resistance, and fill factor (FF) of each prepared conductive composition were evaluated by the following methods.
 <体積抵抗率(比抵抗)>
 ソーダライムガラスの表面に、透明導電層としてITO(Snをドープした酸化インジウム)およびAZO(AlをドープしたZnO)を製膜して評価用のガラス基板を作製した。
 次いで、調製した各導電性組成物を、ベアウエハ上にスクリーン印刷で塗布して、20mm×20mmの正方形パターンを形成した。
 オーブンにて200℃で30分間乾燥(焼成)し、導電性被膜を作製した。
 作製した各導電性被膜について、抵抗率計(ロレスターGP、三菱化学社製)を用いた4端子4探針法により体積抵抗率を評価した。結果を下記第2表に示す。なお、ITOを製膜したガラス基板と、AZOを製膜したガラス基板とでは、体積抵抗率は同じ値であったため、下記第2表においては、その値を示す。
<Volume resistivity (specific resistance)>
On the surface of soda lime glass, ITO (indium oxide doped with Sn) and AZO (Al doped ZnO) were formed as a transparent conductive layer to prepare a glass substrate for evaluation.
Subsequently, each prepared electrically conductive composition was apply | coated by screen printing on the bare wafer, and the square pattern of 20 mm x 20 mm was formed.
The film was dried (fired) at 200 ° C. for 30 minutes in an oven to produce a conductive film.
About each produced electroconductive film, the volume resistivity was evaluated by the 4-terminal 4 probe method using the resistivity meter (Lorestar GP, Mitsubishi Chemical Corporation make). The results are shown in Table 2 below. In addition, since the volume resistivity was the same value with the glass substrate which formed ITO into a film, and the glass substrate which formed AZO, the value is shown in the following 2nd table | surface.
 <接触抵抗>
 まず、ソーダライムガラスの表面に、透明導電層としてITO(Snをドープした酸化インジウム)およびAZO(AlをドープしたZnO)を製膜して評価用のガラス基板を作製した。
 次いで、調製した各導電性組成物を、ガラス基板上にスクリーン印刷で塗布して、幅0.08mm(80μm)、長さ15mmの細線形状のテストパターンを1.8mm間隔で6本並べて形成した。
 オーブンにて200℃で30分間乾燥(焼成)し、細線形状の導電性被膜(細線電極)を形成し、太陽電池セルのサンプルを作製した。
 各細線電極間の抵抗値をデジタルマルチメーター(HIOKI社製:3541 RESISTANCE HiTESTER)を用いて測定し、Transfer Length Method(TLM法)により接触抵抗を算出した。結果を下記第2表に示す。
<Contact resistance>
First, ITO (indium oxide doped with Sn) and AZO (Al-doped ZnO) were formed as transparent conductive layers on the surface of soda lime glass to produce a glass substrate for evaluation.
Next, each of the prepared conductive compositions was applied on a glass substrate by screen printing, and six thin line-shaped test patterns having a width of 0.08 mm (80 μm) and a length of 15 mm were arranged at intervals of 1.8 mm. .
Drying (baking) was carried out at 200 ° C. for 30 minutes in an oven to form a thin wire-shaped conductive film (thin wire electrode), and a solar cell sample was produced.
The resistance value between each thin wire electrode was measured using a digital multimeter (HIOKI: 3541 REISTANCE HiTESTER), and the contact resistance was calculated by Transfer Length Method (TLM method). The results are shown in Table 2 below.
 <曲線因子(FF)>
 接触抵抗の測定において作製した各太陽電池セルのサンプルについて、I-V曲線で表される太陽電池の電流電圧特性を示す曲線因子(FF)を下記式から算出した。結果を下記第2表に示す。
 FF = Pmax ÷ ( VOC × ISC )
 FF:曲線因子
 Pmax:最適動作点での出力[W]
 VOC:開放電圧[V]
 ISC:短絡電流[A]
<Curve factor (FF)>
For each solar cell sample produced in the measurement of contact resistance, the fill factor (FF) indicating the current-voltage characteristics of the solar cell represented by the IV curve was calculated from the following equation. The results are shown in Table 2 below.
FF = Pmax ÷ (VOC x ISC)
FF: fill factor Pmax: output at the optimum operating point [W]
VOC: Open circuit voltage [V]
ISC: Short-circuit current [A]
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 第2表中の各成分は、以下のものを使用した。
 ・金属粉末:銀粉(AG4-8F、平均粒子径:2.2μm、DOWAエレクトロニクス社製)
The following were used for each component in Table 2.
Metal powder: Silver powder (AG4-8F, average particle size: 2.2 μm, manufactured by DOWA Electronics)
 ・2-メチルプロパン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-メチルプロパン酸(関東化学社製)38gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2-メチルプロパン酸銀塩を調製した。 Silver salt of 2-methylpropanoate: First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 38 g of 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and are allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-methylpropanoic acid silver salt.
 ・ネオデカン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、ネオデカン酸(東洋合成社製)74.3gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色のネオデカン酸銀塩を調製した。 ・ Neodecanoic acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Kagaku Co., Ltd.), 74.3 g of neodecanoic acid (manufactured by Toyo Gosei Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver neodecanoate.
 ・ステアリン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、ステアリン酸(関東化学社製)122.7gおよびメチルエチルケトン(MEK)300gを、ボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色のステアリン酸銀を得た。 Silver stearate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 122.7 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and stirred at room temperature for 24 hours. Was reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to obtain white silver stearate.
 ・2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2,2-ビス(ヒドロキシメチル)-n-酪酸(東京化成社製)64gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2,2-ビス(ヒドロキシメチル)-n-酪酸銀塩を調製した。 ・ 2,2-bis (hydroxymethyl) -n-butyric acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 64 g of 2,2-bis (hydroxymethyl) -n-butyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 300 g of methyl ethyl ketone (MEK) was put into a ball mill and reacted by stirring at room temperature for 24 hours. Next, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2,2-bis (hydroxymethyl) -n-butyric acid silver salt.
 ・2-ヒドロキシイソ酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-ヒドロキシイソ酪酸(東京化成社製)45gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2-ヒドロキシイソ酪酸銀塩を調製した。 Silver salt of 2-hydroxyisobutyrate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 45 g of 2-hydroxyisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and are allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-hydroxyisobutyric acid silver salt.
 ・1,2,3,4-ブタンテトラカルボン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、1,2,3,4-ブタンテトラカルボン酸(新日本理化社製)25.29gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色の1,2,3,4-ブタンテトラカルボン酸銀塩を調製した。 -1,2,3,4-butanetetracarboxylic acid silver salt: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 1,2,3,4-butanetetracarboxylic acid (manufactured by Shin Nippon Rika Co., Ltd.) 29 g and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 1,2,3,4-butanetetracarboxylic acid silver salt.
 ・マレイン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、マレイン酸(関東化学社製)25.05gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色のマレイン酸銀塩を調製した。 -Silver maleate: First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 25.05 g of maleic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are placed in a ball mill and stirred at room temperature for 24 hours. Reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a white silver maleate.
 ・グルタル酸銀塩:まず、酸化銀(東洋化学工業社製)50g、グルタル酸(東京化成工業社製)57gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることによって、白色のグルタル酸銀塩を調製した。 Silver salt of glutarate: First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 57 g of glutaric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are charged into a ball mill and reacted by stirring at room temperature for 24 hours. I let you. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white silver glutarate.
 ・2-メチルプロパン酸亜鉛塩:まず、酸化亜鉛(関東化学製)50g、2-メチルプロパン酸(関東化学社製)54.11gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、白色の2-メチルプロパン酸亜鉛塩を調製した。 ・ Zinc 2-methylpropanoate: First, 50 g of zinc oxide (manufactured by Kanto Chemical Co., Ltd.), 54.11 g of 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) were placed in a ball mill and allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare white 2-methylpropanoic acid zinc salt.
 ・2-メチルプロパン酸:2-メチルプロパン酸(関東化学社製)
 ・酸化錫1~5:第1表中に記載した市販品
 ・硬化性樹脂:ビスフェノールA型エポキシ樹脂(YD-019、エポキシ当量:2400~3300g/eq、新日鐵化学社製)
 ・硬化剤:三フッ化ホウ素エチルアミン(ステラケミファ社製)
 ・溶媒:α-テルピネオール(ヤスハラケミカル社製)
・ 2-methylpropanoic acid: 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Inc.)
-Tin oxide 1-5: Commercial products listed in Table 1-Curing resin: Bisphenol A type epoxy resin (YD-019, epoxy equivalent: 2400-3300 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.)
・ Curing agent: Boron trifluoride ethylamine (manufactured by Stella Chemifa)
・ Solvent: α-terpineol (manufactured by Yasuhara Chemical)
 第2表に示す結果から、脂肪酸金属塩(B)および金属酸化物(C)を配合せずに調製した比較例1は、体積抵抗率が高く、接触抵抗も劣ることが分かった。
 また、金属酸化物(C)を配合せずに調製した比較例2は、体積抵抗率は良好であるが、接触抵抗が劣ることが分かった。
 また、脂肪酸金属塩(B)を配合せずに調製した比較例3は、特許文献1(特許第5169501号)に記載された導電性ペーストに相当する例であり、体積抵抗率が高く、接触抵抗が劣ることが分かった。
 また、脂肪酸金属塩(B)に相当しない脂肪酸を配合して調製した比較例4は、比較例3よりも接触抵抗が僅かに改善されるが、十分ではないことが分かった。
From the results shown in Table 2, it was found that Comparative Example 1 prepared without blending the fatty acid metal salt (B) and the metal oxide (C) had high volume resistivity and poor contact resistance.
Moreover, although the comparative example 2 prepared without mix | blending a metal oxide (C) had a favorable volume resistivity, it turned out that contact resistance is inferior.
Moreover, the comparative example 3 prepared without mix | blending a fatty-acid metal salt (B) is an example corresponded to the electrically conductive paste described in patent document 1 (patent 5169501), and has a high volume resistivity, contact. It turns out that resistance is inferior.
Moreover, although the contact resistance of Comparative Example 4 prepared by blending a fatty acid not corresponding to the fatty acid metal salt (B) was slightly improved as compared with Comparative Example 3, it was found that it was not sufficient.
 これに対し、金属粉末(A)に対して、脂肪酸金属塩(B)および金属酸化物(C)を所定量配合して調製した実施例1~12の導電性組成物は、いずれも低い体積抵抗率を維持しつつ、接触抵抗が低くなることが分かった。
 特に、金属酸化物(C)の平均粒子径が10~100nmの範囲内となる酸化錫3~5を配合して調製した実施例9~12の導電性組成物は、他の実施例よりも接触抵抗がより低くなることが分かった。
In contrast, the conductive compositions of Examples 1 to 12 prepared by blending a predetermined amount of the fatty acid metal salt (B) and the metal oxide (C) with the metal powder (A) all have a low volume. It has been found that the contact resistance is lowered while maintaining the resistivity.
In particular, the conductive compositions of Examples 9 to 12 prepared by blending tin oxides 3 to 5 in which the average particle diameter of the metal oxide (C) is in the range of 10 to 100 nm are more than the other examples. It has been found that the contact resistance is lower.
 1、100 太陽電池セル
 2 n層
 3 反射防止膜
 4 表面電極
 5 p層
 6 裏面電極
 7 シリコン基板
 11 n型単結晶シリコン基板
 12a、12b i型アモルファスシリコン層
 13a p型アモルファスシリコン層
 13b n型アモルファスシリコン層
 14a、14b 透明導電層
 15a、15b 集電電極
DESCRIPTION OF SYMBOLS 1,100 Solar cell 2 N layer 3 Anti-reflective film 4 Front surface electrode 5 P layer 6 Back surface electrode 7 Silicon substrate 11 N-type single crystal silicon substrate 12a, 12b i-type amorphous silicon layer 13a p-type amorphous silicon layer 13b n-type amorphous Silicon layer 14a, 14b Transparent conductive layer 15a, 15b Current collecting electrode

Claims (9)

  1.  金属粉末(A)と、脂肪酸金属塩(B)と、金属酸化物(C)とを含有し、
     前記金属酸化物(C)が、酸化錫、酸化インジウム、酸化亜鉛および酸化チタンからなる群から選択される少なくとも1種の金属酸化物であり、
     前記脂肪酸金属塩(B)の含有量が、前記金属粉末(A)100質量部に対して0.1~20質量部であり、
     前記金属酸化物(C)の含有量が、前記金属粉末(A)100質量部に対して0.1~20質量部であり、450℃以下の温度で焼成を行う導電性組成物。
    Containing metal powder (A), fatty acid metal salt (B), and metal oxide (C),
    The metal oxide (C) is at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide and titanium oxide;
    The content of the fatty acid metal salt (B) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A),
    A conductive composition in which the content of the metal oxide (C) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the metal powder (A) and firing is performed at a temperature of 450 ° C. or less.
  2.  前記脂肪酸金属塩(B)と前記金属酸化物(C)との質量比(脂肪酸金属塩(B)/金属酸化物(C))が、0.05~5である、請求項1に記載の導電性組成物。 The mass ratio of the fatty acid metal salt (B) and the metal oxide (C) (fatty acid metal salt (B) / metal oxide (C)) is 0.05 to 5. Conductive composition.
  3.  前記金属酸化物(C)が、平均粒子径が10~100nmの粒子状物である、請求項1または2に記載の導電性組成物。 The conductive composition according to claim 1 or 2, wherein the metal oxide (C) is a particulate material having an average particle diameter of 10 to 100 nm.
  4.  前記金属粉末(A)が、銀粉末および銅粉末からなる群から選択される少なくとも1種の金属粉末である、請求項1~3のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 3, wherein the metal powder (A) is at least one metal powder selected from the group consisting of silver powder and copper powder.
  5.  前記金属酸化物(C)が、酸化錫である、請求項1~4のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 4, wherein the metal oxide (C) is tin oxide.
  6.  更に、硬化性樹脂(D)を含有する、請求項1~5のいずれかに記載の導電性組成物。 The conductive composition according to any one of claims 1 to 5, further comprising a curable resin (D).
  7.  請求項1~6のいずれかに記載の導電性組成物を集電電極に用いた太陽電池セル。 A solar battery cell using the conductive composition according to any one of claims 1 to 6 as a collecting electrode.
  8.  前記集電電極の下地層として透明導電層を具備する請求項7に記載の太陽電池セル。 The solar cell according to claim 7, further comprising a transparent conductive layer as a base layer of the current collecting electrode.
  9.  請求項7または8に記載の太陽電池セルを用いた太陽電池モジュール。 A solar battery module using the solar battery cell according to claim 7 or 8.
PCT/JP2014/082130 2014-02-06 2014-12-04 Electroconductive composition, solar cell, and solar cell module WO2015118760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015561168A JPWO2015118760A1 (en) 2014-02-06 2014-12-04 Conductive composition, solar battery cell and solar battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021194 2014-02-06
JP2014021194 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015118760A1 true WO2015118760A1 (en) 2015-08-13

Family

ID=53777577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082130 WO2015118760A1 (en) 2014-02-06 2014-12-04 Electroconductive composition, solar cell, and solar cell module

Country Status (3)

Country Link
JP (1) JPWO2015118760A1 (en)
TW (1) TW201542638A (en)
WO (1) WO2015118760A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114946039A (en) * 2020-02-14 2022-08-26 硕禾电子材料股份有限公司 Conductive paste for heterojunction solar cell, heterojunction solar cell and electrode structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130539A1 (en) * 2018-04-04 2021-05-06 Huntsman Advanced Materials Licensing (Switzerland) Gmbh Accelerator Composition for the Cure of Epoxy Resins with Aromatic Amines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125879A1 (en) * 2006-04-25 2007-11-08 Sharp Corporation Electroconductive paste for solar battery electrode
JP2012038846A (en) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The Paste for solar cell electrode, and solar cell
JP2012178456A (en) * 2011-02-25 2012-09-13 Yokohama Rubber Co Ltd:The Conductive composition for solar cell collecting electrode formation and solar cell
JP2012238827A (en) * 2011-04-25 2012-12-06 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode and solar cell
JP2014022192A (en) * 2012-07-18 2014-02-03 Yokohama Rubber Co Ltd:The Conductive composition and solar battery cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125879A1 (en) * 2006-04-25 2007-11-08 Sharp Corporation Electroconductive paste for solar battery electrode
JP2012038846A (en) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The Paste for solar cell electrode, and solar cell
JP2012178456A (en) * 2011-02-25 2012-09-13 Yokohama Rubber Co Ltd:The Conductive composition for solar cell collecting electrode formation and solar cell
JP2012238827A (en) * 2011-04-25 2012-12-06 Yokohama Rubber Co Ltd:The Conductive composition for forming solar cell collector electrode and solar cell
JP2014022192A (en) * 2012-07-18 2014-02-03 Yokohama Rubber Co Ltd:The Conductive composition and solar battery cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114946039A (en) * 2020-02-14 2022-08-26 硕禾电子材料股份有限公司 Conductive paste for heterojunction solar cell, heterojunction solar cell and electrode structure

Also Published As

Publication number Publication date
TW201542638A (en) 2015-11-16
JPWO2015118760A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5304932B1 (en) Conductive composition and solar battery cell
JP4847154B2 (en) Conductive paste composition, solar cell using the paste composition, and solar cell module using the cell
JP5045803B2 (en) Conductive composition and solar battery cell
JP5321723B1 (en) Conductive composition and solar battery cell
JP2016030794A (en) Conductive composition, solar cell and solar cell module
WO2014080789A1 (en) Conductive composition for low temperature firing and solar cell
JP6579108B2 (en) Conductive composition, solar battery cell and solar battery module
TW201833940A (en) Conductive composition
WO2015118760A1 (en) Electroconductive composition, solar cell, and solar cell module
JP2016032022A (en) Conductive composition, solar battery cell and solar battery module
WO2016021535A1 (en) Conductive composition, solar cell, and solar cell module
JP2016160415A (en) Conductive composition, solar cell, and solar cell module
JP2012151276A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP6620744B2 (en) Conductive composition for forming solar battery collecting electrode, solar battery cell and solar battery module
WO2014203897A1 (en) Electrically conductive composition and solar cell
JP2016160413A (en) Conductive composition, solar cell, and solar cell module
JP2012178456A (en) Conductive composition for solar cell collecting electrode formation and solar cell
JP2013045742A (en) Conductive composition, solar cell, and solar cell module
JP2012023082A (en) Paste for solar cell electrode and solar cell
KR20140019100A (en) Conductive composition for forming solar cell collecting electrode and solar cell
TW201409486A (en) Conductive composition for collector electrode of solar cell and solar cell unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881902

Country of ref document: EP

Kind code of ref document: A1