WO2015115503A1 - 導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法 - Google Patents
導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法 Download PDFInfo
- Publication number
- WO2015115503A1 WO2015115503A1 PCT/JP2015/052405 JP2015052405W WO2015115503A1 WO 2015115503 A1 WO2015115503 A1 WO 2015115503A1 JP 2015052405 W JP2015052405 W JP 2015052405W WO 2015115503 A1 WO2015115503 A1 WO 2015115503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- conductive
- substrate
- conductive pattern
- pattern
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims abstract description 135
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 60
- 239000000463 material Substances 0.000 claims abstract description 78
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims description 81
- 238000007639 printing Methods 0.000 claims description 47
- 239000004020 conductor Substances 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 33
- 238000001035 drying Methods 0.000 claims description 33
- 229910052709 silver Inorganic materials 0.000 claims description 22
- 239000004332 silver Substances 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 238000004381 surface treatment Methods 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 19
- 238000009713 electroplating Methods 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 239000011231 conductive filler Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000007772 electroless plating Methods 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 5
- 238000001311 chemical methods and process Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000000470 constituent Substances 0.000 abstract 1
- 239000000945 filler Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 221
- 238000007747 plating Methods 0.000 description 33
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 29
- 239000000523 sample Substances 0.000 description 28
- 239000002105 nanoparticle Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 11
- -1 etc.) Substances 0.000 description 10
- 239000004094 surface-active agent Substances 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000002042 Silver nanowire Substances 0.000 description 1
- 238000000560 X-ray reflectometry Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- LFAGQMCIGQNPJG-UHFFFAOYSA-N silver cyanide Chemical compound [Ag+].N#[C-] LFAGQMCIGQNPJG-UHFFFAOYSA-N 0.000 description 1
- 229940098221 silver cyanide Drugs 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/245—Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
- H05K3/246—Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0338—Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10128—Display
Definitions
- the present invention relates to a conductive pattern, a substrate with a conductive pattern, a method for manufacturing a substrate with a conductive pattern, a structure having a conductive pattern on a surface, and a method for manufacturing the structure, and more particularly, a conductive pattern.
- the present invention relates to a conductive pattern composed of conductive thin wires having a line width of less than 10 ⁇ m, a substrate with a conductive pattern, a method for manufacturing a substrate with a conductive pattern, a structure having a conductive pattern on the surface, and a method for manufacturing the structure.
- the printing method is suitable for large area and continuous production (for example, roll-to-roll), and has the merit of greatly reducing the production cost.
- it has been used for manufacturing electronic parts. Attempts have been made to try.
- Patent Document 1 a circuit pattern is drawn with a metal fine particle ink using an inkjet apparatus, and then the substrate or the substrate is treated with heat or light to decompose and volatilize a polymer or a surfactant contained in the circuit pattern. It is described that a conductor pattern having a thickness of 5 mm is further plated.
- Patent Document 2 describes that a Pd circuit having a wiring of 7 ⁇ m is formed and subjected to pressure treatment, and then copper plating is performed.
- Patent Documents 1 and 2 cannot sufficiently satisfy the following requirements (1) to (5).
- the object of the present invention is to reduce the visibility of the conductive thin wires, to reduce the resistance value, to improve the adhesion between the substrate and the conductive pattern, and to change the resistance value even when the substrate is bent.
- Conductive pattern capable of suppressing heat resistance and further imparting durability such as heat and humidity resistance a substrate with a conductive pattern, a method for producing a substrate with a conductive pattern, a structure having a conductive pattern on the surface, and a structure of the structure It is to provide a manufacturing method.
- the multilayer structure includes a first layer having a thickness of less than 500 nm containing one or more conductive materials selected from conductive particles, conductive fillers, and conductive wires, and a thickness greater than that of the first layer.
- a conductive pattern comprising a second layer containing metal as a main component.
- a pattern made of conductive thin wires having a line width of less than 10 ⁇ m is provided, At least a part of the thin wire has a multilayer structure,
- the multilayer structure includes a first layer having a thickness of less than 500 nm containing one or more conductive materials selected from conductive particles, conductive fillers, and conductive wires, and a thickness greater than that of the first layer.
- the base material with an electroconductive pattern which uses as a component the 2nd layer which has a metal as a main component.
- a method for producing a substrate with a conductive pattern according to any one of 6 to 9 includes a printing process, and the printing process forms a line segment using an ink having a conductive material concentration of less than 5%, and then controls the drying process of the ink, and the line width of the line segment
- the manufacturing method of the base material with a conductive pattern including the process of selectively depositing a conductive material on the direction both ends.
- the ink drying process one or more selected from a process of drying the substrate during printing, a process of heating after printing, a process of blowing air after printing, and a process of irradiating light after printing are used in combination.
- a process selected from a heat process, a chemical process, and a light (irradiation) process as a subsequent step of the process of selectively depositing the conductive material.
- a structure having a conductive pattern on the surface is It is a pattern composed of conductive thin wires having a line width of less than 10 ⁇ m, At least a part of the thin wire has a multilayer structure,
- the multilayer structure includes a first layer having a thickness of less than 500 nm containing one or more conductive materials selected from conductive particles, conductive fillers, and conductive wires, and a thickness greater than that of the first layer.
- the structure which has the 2nd layer which has a metal as a main component, and a component.
- the multilayer structure includes a first layer having a thickness of less than 500 nm containing one or more conductive materials selected from conductive particles, conductive fillers, and conductive wires, and a thickness greater than that of the first layer.
- Sectional drawing which shows an example of the electroconductive thin wire which comprises the electroconductive pattern which concerns on a 1st aspect
- the figure which shows an example of the change of the surface roughness by providing a 2nd layer with respect to a 1st layer
- the figure explaining the principle which deposits a conductive material selectively in the line width direction both ends of the line segment which consists of ink containing a conductive material
- Explanatory drawing explaining an example of the formation process of a 1st layer
- Explanatory drawing explaining the other example of the formation process of the 1st layer Explanatory drawing explaining the further another example of the formation process of the 1st layer Diagram showing examples of current collector Sectional drawing which shows the other example of the electroconductive thin wire which comprises the electroconductive pattern which concerns on a 2nd aspect.
- FIG. 1 is a cross-sectional view showing an example of a conductive thin wire constituting the conductive pattern according to the first embodiment.
- 1 is a base material
- 2 is a thin conductive wire constituting a conductive pattern.
- the line width of the conductive thin wire 2 is less than 10 ⁇ m.
- the conductive thin wire 2 has a multilayer structure, and in the illustrated example, it has a first layer 21 and a second layer 22 as components of the multilayer structure.
- the first layer 21 includes a conductive material selected from conductive particles, a conductive filler, and a conductive wire, and has a thickness of less than 500 nm.
- the second layer 22 is thicker than the first layer 21 and contains metal as a main component.
- the conductive pattern composed of the conductive thin wires having the specific multilayer structure can reduce the visibility of the conductive thin wires, can reduce the resistance value, can improve the adhesion between the substrate and the conductive pattern, It is possible to suppress fluctuations in the resistance value even during bending, and to provide durability such as resistance to heat and humidity. Therefore, for example, it has excellent characteristics suitable for use as a transparent electrode film or the like provided on a flexible substrate.
- the line width of the conductive thin wire 2 is set to be less than 10 ⁇ m, preferably 3 to 8 ⁇ m. When the line width is in the range of 3 to 8 ⁇ m, disconnection of the conductive thin wire 2 can be more preferably prevented, and visibility can be suitably reduced. It is also preferable that the line width is in the range of 3 ⁇ m or more, less than 7 ⁇ m, and further less than 5 ⁇ m. An example of a preferable method for providing such a thin line width will be described in detail later.
- the conductive material contained in the first layer 21 of the conductive thin wire 2 may be any combination of one or more selected from conductive particles, conductive fillers, and conductive wires, and is particularly limited.
- metal nanoparticles having a particle diameter of less than 100 nm for example, silver nanoparticles, copper nanoparticles, etc.
- conductive fillers such as silver powder and copper powder, or silver nanowires and copper nanowires
- Preferred examples thereof include conductive nanowires.
- a conductive carbon material eg, graphite, carbon nanotube, graphene, or the like
- the first layer 21 is particularly preferably composed mainly of silver and copper, and conversely, palladium and platinum are not preferable because the number of steps is increased because a separate reduction step is required.
- the thickness of the first layer 21 is not particularly limited as long as it is less than 500 nm, but is more preferably in the range of 30 nm to 300 nm.
- the metal contained as the main component in the second layer 22 of the conductive thin wire 2 is not particularly limited, but one or a combination of two or more selected from silver, copper, nickel and the like can be preferably exemplified.
- the second layer is preferably composed mainly of copper.
- the thickness of the second layer 22 is not particularly limited as long as it is thicker than the thickness of the first layer, but is preferably in the range of 600 nm to 5 ⁇ m.
- the film thickness of the second layer 22 is a thickness measured from the surface of the first layer.
- the film thickness of the second layer 22 is preferably 5 times or more, more preferably 10 times or more of the film thickness of the first layer 21. .
- the film density of the first layer 21 and the film density of the second layer 22 are preferably different from each other.
- the film density of the second layer 22 is preferably higher than the film density of the first layer 21.
- the film density difference is particularly preferably 1 g / cm 3 or more.
- the film density of the first layer 21 is preferably in the range of 5 g / cm 3 to 8 g / cm 3
- the film density of the second layer 22 is preferably in the range of 6 g / cm 3 to 9 g / cm 3 . It is most preferable that the above film density difference is formed within these ranges.
- the film density can be measured by using an X-ray reflectivity method.
- the surface of the conductive thin wire 2 constituting the conductive pattern preferably has a large surface roughness.
- the arithmetic average roughness Ra is preferably 200 nm or more and less than 2000 nm, and is in the range of 300 nm to 1200 nm. More preferred.
- the arithmetic average roughness Ra can be measured using a high-intensity non-contact three-dimensional surface shape roughness meter WYKO NT9100. Thereby, the effect which can further reduce the visibility of the electroconductive thin wire 2 is acquired.
- the surface roughness after the formation of the second layer 22 is larger than the surface roughness of the first layer 21 from the viewpoint of further reducing the visibility of the conductive thin wire 2.
- FIG. 2 is a diagram illustrating an example of a change in surface roughness by providing the second layer 22 with respect to the first layer 21.
- 2A is an electron micrograph of the surface of the first layer 21 where the second layer is not yet provided.
- FIG. 2B is a diagram after the second layer 22 is provided on the first layer 21.
- FIG. 2 is an electron micrograph of the surface of the conductive thin wire 2 of FIG.
- the base material 1 is not particularly limited, and plastic, glass, metal (for example, copper, nickel, aluminum, iron, or the like), ceramic, or the like can be used alone or in combination.
- plastics are preferable from the viewpoint of flexibility, and among them, polyethylene, polypropylene, acrylic, polyester, polyamide, and the like are preferable.
- polypropylene such as polyethylene terephthalate (also referred to as PET) and polybutylene terephthalate (also referred to as PBT) is suitable.
- the surface of the substrate 1 on which the conductive thin wires 2 are formed may be smooth or rough.
- the maximum height Ry is preferably less than 5 mm, and more preferably in the range of 0.3 mm to 2 mm.
- the maximum height Ry can be measured using a high-intensity non-contact three-dimensional surface shape roughness meter WYKO NT9100.
- the specific surface state of the rough surface is not particularly limited, but in particular, it is optically reflective to a specific wavelength, such as a shape in which irregularities are regularly repeated with a period and a shape in which conical pillar structures are continuous. It is preferable to use a rough surface base material having a function of controlling absorption.
- the conductive pattern of the present invention is formed on such a substrate, it is preferable because it can have both a conductive function and an optical function.
- the substrate 1 is preferably surface-treated in advance.
- Preferred examples of the surface treatment include solvent cleaning, surfactant aqueous solution cleaning, UV ozone cleaning, plasma processing, and resin layer formation.
- a resin substituted with a hydroxyl group, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a polyoxyethylene group, or the like is preferable.
- An acrylic resin, a polyester resin, a polyamide resin, a polyurethane Resins and the like can be preferably used.
- the weight average molecular weight of the resin is preferably 5000 or more and 500,000 or less.
- the resin may have a cross-linked structure.
- the thickness of the resin layer is preferably in the range of 50 nm to 5 ⁇ m.
- the method for forming the resin layer is not particularly limited, but is preferably formed by a printing method, an inkjet method, a dip method, or the like.
- the surface treatment is preferably a treatment for increasing the surface energy of the substrate 1. It is preferable to increase the surface energy of the substrate 1 by 5 mN / m or more by surface treatment.
- the surface energy of the substrate 1 is preferably 50 mN / m or more.
- the surface energy of the substrate 1 is preferably set in a range of 50 mN / m or more and less than 70 mN / m.
- the surface treatment may be performed on the entire substrate 1 or may be partially performed on a portion including a region where the conductive thin wire is formed.
- the conductive pattern portion formed on the base material 1 is transferred to a structure or the like as will be described later, an appropriate peeling is provided between the base material 1 and the conductive pattern portion. It is also preferable to impart a property (hereinafter also referred to as “easy peelability”).
- a silicone resin layer is provided, and the upper layer is treated as the surface treatment of the present invention. It is preferable to provide a resin layer or the like.
- the silicone resin layer preferably has a thickness in the range of 10 nm to 10 ⁇ m, and a silicone resin of a solvent type, a solventless type, an emulsion type or the like can be used.
- the substrate 1 can be subjected to the surface treatment described above in advance.
- the first layer 21 on the substrate 1 it is preferable to use, for example, a printing process.
- the printing process is not particularly limited as long as the conductive material is applied on the substrate 1 as ink.
- the printing process forms a line segment using an ink having a conductive material concentration of less than 5%, and then controls the drying process of the ink to selectively deposit the conductive material on both ends in the line width direction of the line segment. It is preferable to include the process to make this process, and this point is demonstrated in detail below.
- FIG. 3 is a diagram for explaining the principle of selectively depositing a conductive material on both ends in the line width direction of a line segment made of ink containing a conductive material.
- a line segment (hereinafter sometimes referred to as a line-like liquid) 20 made of a liquid containing a conductive material on the substrate 1
- the drying speed is higher at the edge than at the center of the line-like liquid 20. Since it tends to be faster (FIG. 3A), local deposition of the conductive material is promoted at the edge of the line-shaped liquid 20 (FIG. 3B). Thereby, fixation of the contact line (edge part) of the line-shaped liquid 20 occurs, and shrinkage of the line-shaped liquid 20 in the substrate surface direction accompanying subsequent drying is suppressed. Due to this effect, the liquid in the line-shaped liquid 20 forms convection from the center to the edge so as to compensate for the liquid lost by drying at the edge (FIG. 3C). By this convection, the conductive material in the line-shaped liquid 20 is carried to both ends in the line width direction, and further deposition is promoted.
- the first layer 21 is formed by the conductive material thus deposited (FIG. 3D).
- the first layer 21 generated by the selective deposition of the conductive material can be significantly thinner than the first line segment, it is possible to more suitably realize thinning of the conductive pattern.
- the ink used in the printing process has a conductive material concentration of less than 5% and preferably less than 1%.
- the ink can be used as a solvent or a dispersion medium of the conductive material, and one or two or more of water, an organic solvent, and the like can be used in combination, but an aqueous ink containing water is preferable. It is also preferable to include a surfactant in the ink.
- the organic solvent is not particularly limited.
- alcohols such as 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, propylene glycol
- ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
- the surfactant is not particularly limited, but a silicon surfactant or the like can be used.
- Silicon-based surfactants are those in which the side chain or terminal of dimethylpolysiloxy acid is modified with polyether.
- KF-351A and KF-642 manufactured by Shin-Etsu Chemical Co., Ltd. and BYK347 and BYK348 manufactured by Big Chemie are commercially available. ing.
- the surface tension of the ink is preferably less than 50 mN / m, and more preferably less than 40 mN / m.
- the contact angle of the ink with respect to the substrate 1 is preferably 10 ° to 50 °.
- the surface tension can be controlled by a solvent, a surfactant or the like. The same control can be performed for the adjustment of the contact angle, but it can also be performed by setting the surface energy of the substrate 1.
- an ink jet method can be particularly preferably used.
- the ink droplet discharge mechanism of the ink jet head a thermal method, a piezo method, a continuous method, or the like can be preferably exemplified.
- the amount of droplets ejected by one droplet ejection from one nozzle of the inkjet head by the inkjet method is preferably in the range of 1 pl to 200 pl, more preferably in the range of 1 pl to 100 pl.
- FIG. 4 is an explanatory diagram for explaining an example of the formation process of the first layer 21.
- the inkjet head is scanned a plurality of times along the longitudinal direction of the substrate 1 to form a striped first layer along the longitudinal direction.
- the inkjet head is scanned a plurality of times along the short direction of the substrate 1 to form a stripe-shaped first layer along the short direction. .
- a lattice-shaped first layer in which the stripes in the longitudinal direction intersect with the stripes in the short direction can be formed.
- FIG. 5 is an explanatory diagram for explaining another example of the formation process of the first layer 21.
- the inkjet head is scanned a plurality of times along a direction inclined at a predetermined angle (45 ° in this case) from the longitudinal direction of the base material 1 to form a stripe shape along the direction.
- the first layer is formed, and then, with respect to this forming region, as shown in FIG. 5B, the first layer is further inclined at another predetermined angle (here, ⁇ 45 °) from the longitudinal direction of the substrate 1.
- the inkjet head is scanned a plurality of times along the direction to form a striped first layer along the direction. In this way, a grid-like first layer can be formed by oblique lines inclined from the longitudinal direction of the substrate 1.
- FIG. 6 is an explanatory diagram for explaining still another example of the formation process of the first layer 21.
- the inkjet head is scanned a plurality of times along the longitudinal direction of the substrate 1 to form the first layer (FIG. 6A), and further along the short direction.
- the ink jet head is scanned a plurality of times to form the first layer (FIG. 6B).
- a grid-like first layer is formed by wavy lines. ing.
- interference fringes are generated between the conductive pattern and the pattern provided on the other member.
- the pattern is inclined from the longitudinal direction (or short direction) of the substrate, or the lines constituting the pattern are made wavy as in the example of FIG. By doing so, it is possible to obtain the effect of suitably preventing the generation of interference fringes.
- the drying process of the ink applied on the substrate 1 is not particularly limited.
- the process of drying the substrate 1 during printing the process of heating after printing, the process of blowing air after printing, and It is preferable to use a combination of one or more selected from the processes of light irradiation after printing.
- the substrate 1 it is preferable to dry the substrate 1 during printing.
- the drying process after printing is preferably performed immediately after printing.
- the light used for the light irradiation is not particularly limited as long as it can accelerate the drying of the ink, but an infrared ray or the like can be preferably exemplified.
- the first layer 21 it is also preferable to subject the first layer 21 to a low resistance treatment as a post treatment for the process of selectively depositing a conductive material.
- a low resistance treatment for the process of selectively depositing a conductive material.
- the resistance of the first layer 21 can be reduced by performing a process selected from a heat process, a chemical process, and a light irradiation process.
- the temperature of the heat treatment is not particularly limited, but a temperature in the range of 80 ° C. to 300 ° C. can be applied.
- a treatment for removing an organic substance or the like in the conductive material can be preferably exemplified, and a method of washing with an acidic or basic washing aqueous solution, a method of washing with a solvent or a solvent aqueous solution, and the like can be used.
- the light irradiation treatment for example, flash sintering or IR irradiation can be used.
- the first layer 21 can be subjected to a resistance reduction process combining one or more of the processes described above.
- Such resistance reduction processing may be performed during printing.
- the resistance reduction process may be performed in the middle of the process once, or divided into a plurality of times.
- it is preferable to perform a resistance reduction process in the middle when printing a plurality of times from a plurality of directions on the base material, it is preferable to perform a resistance reduction process in the middle.
- an electrochemical process it is preferable to use either or both of an electroless plating method and an electrolytic plating method.
- Electrolytic plating means a method of depositing metal by electrolysis on a conductive object using a solution in which metal ions to be deposited as a plating are dissolved.
- the second layer can be formed using the first layer 21 as the conductive object.
- the electroless plating method refers to a method in which a metal is deposited on a catalyst by a chemical reaction using a solution in which metal ions to be deposited as a plating are dissolved.
- the second layer can be formed using the first layer 21 as a catalyst.
- a current collector (hereinafter sometimes referred to as an extraction electrode or an extraction wiring) is formed so as to be connected to at least a part of the conductive pattern.
- FIG. 7 is a diagram showing an example of forming a current collecting line.
- conductive patterns 200 are provided on the substrate 1.
- the current collector 3 is provided on the substrate 1 so as to surround each conductive pattern 200, and is connected to a part of the conductive thin wire 2 constituting the conductive pattern 200.
- the current collector 3 is further connected to the wiring 4, and the wiring 4 extends to the end of the substrate 1.
- the line width of the current collector 3 is larger than the line width of the conductive thin wires 2 constituting the conductive pattern 200, preferably 15 ⁇ m or more, more preferably 50 ⁇ m or more, and most preferably 100 ⁇ m or more.
- the upper limit of the line width is not particularly limited, but is preferably less than 5 mm.
- the line width of the portion directly coupled to the conductive fine wire 2 constituting the conductive pattern 200 is preferably 15 ⁇ m or more and less than 100 ⁇ m.
- the current collecting line 3 is provided along the four sides of the conductive pattern 200 having a rectangular shape as a whole.
- the current collecting line 3 is provided along two opposing sides, or on one side. It is also preferable to provide it along. Further, it is not necessarily provided along the side, and it is only necessary to be connected to at least a part of the conductive thin wire 2 constituting the conductive pattern 200.
- the current collector 3 is connected to at least a part of the first layer 21 before the second layer 22 is formed. It is preferable to form them in the same manner. At this time, the current collector 3 may be formed before the formation of the first layer 21 or may be formed after the formation of the first layer 21. Since the first layer 21 can be stably energized via the current collector 3, the second layer 22 can be stably formed by an electrochemical process, particularly by electrolytic plating.
- the current collector 3 can ensure stable energization to the conductive pattern 200 even in the finished product.
- FIG. 8 is a cross-sectional view showing another example of the conductive thin wire constituting the conductive pattern according to the second embodiment.
- the conductive thin wire 2 is a first layer of the second layer 22 in addition to the first layer 21 and the second layer 22 described above as a component of a multilayer structure constituting at least a part thereof.
- a third layer 23 is further provided on the side opposite to the side 21.
- the material of the third layer 23 is not particularly limited, but in terms of causing the third layer 23 to function as a protective layer for protecting the conductive pattern, a corrosion-resistant metal such as Ni or Cr, or an organic material. It is preferable to configure with a film.
- the first layer 21 and the second layer 22 of the conductive thin wire 2 are formed using the method described as the method for manufacturing the conductive pattern according to the first aspect.
- the conductive pattern according to the second mode can be manufactured by forming the third layer 23 on the second layer 22.
- the method for forming the third layer 23 is not particularly limited, but it is preferable to use an electrochemical process.
- the third layer 23 is made of a metal such as a corrosion-resistant metal, it is preferable to use either or both of an electroless plating method and an electrolytic plating method as an electrochemical process.
- the third layer is composed of an organic film or the like, it is preferable to use a method selected from an electrodeposition method, an electrolytic polymerization method and the like. At this time, the third layer 23 can be formed using the first layer 21 and the second layer 22 as electrodes.
- the conductive pattern described above is formed on both surfaces of the substrate 1.
- both surfaces of the base material 1 are subjected to the above-described surface treatment in advance prior to the formation of the conductive pattern.
- the same surface treatment may be applied to the front surface and the back surface of the substrate 1, or different surface treatments may be applied.
- the conductive patterns provided on the front surface and the back surface of the substrate 1 may be the same or different.
- line 2 and the 2nd layer 22 may be the same or different by the surface and a back surface.
- the configuration of the third layer 23 may be the same or different between the front surface and the back surface.
- the conductive pattern according to the first aspect may be formed on one surface, and the conductive pattern according to the second aspect may be formed on the other surface.
- FIG. 9 is a diagram showing an example of the base material 1 on both sides of which a conductive pattern is formed.
- FIG. 9A is a plan view of the front surface, and FIG.
- a plurality of conductive patterns 200 are provided on the surface of the substrate 1. These conductive patterns 200 are lattice-like patterns formed by the conductive thin wires 2 formed by oblique lines inclined from the longitudinal direction of the substrate 1.
- These conductive patterns 200 provided on the surface have a rectangular shape (strip shape) as a whole, and their long sides are arranged along the short direction of the substrate 1.
- the current collector 3 is provided on these conductive patterns 200 so as to surround the conductive pattern 200 with four sides.
- a plurality of conductive patterns 200 are provided on the back surface of the substrate 1. These conductive patterns 200 are lattice-like patterns formed by the conductive thin wires 2 formed by oblique lines inclined from the longitudinal direction of the substrate 1.
- These conductive patterns 200 provided on the back surface have a rectangular shape (strip shape) as a whole, and their long sides are arranged along the longitudinal direction of the substrate 1.
- the current collector 3 is provided on these conductive patterns 200 so as to surround the conductive pattern 200 with four sides.
- Such a pattern can be suitably used as an X and Y pattern in a capacitive touch sensor, for example, on a single substrate made of a film.
- One of the conductive pattern 200 on the front surface and the conductive pattern 200 on the back surface can be an X pattern and the other can be a Y pattern.
- FIG. 10 is an explanatory view showing an example of a manufacturing apparatus for manufacturing a substrate with a conductive pattern.
- the illustrated manufacturing apparatus is configured to form a conductive pattern on a substrate by a roll-to-roll method.
- 5 is a wound body in which the substrate is wound
- 6 is a first layer forming zone
- 7 is a support roller
- 8 is a drying zone
- 9 is a low resistance zone.
- 10 is a second layer forming zone
- 11 is a third layer forming zone
- 12 is a wound body on which a substrate on which a pattern is formed is wound.
- the conductive pattern is formed on the base material 1 in the conveying process until the belt-like base material 1 drawn out from the wound body 5 is wound up by the wound body 12.
- the direction from the wound body 5 toward the wound body 12 may be referred to as a conveyance direction.
- the belt-like base material 1 fed out from the wound body 5 is conveyed to the first layer forming zone 6 for forming the first layer 21.
- FIG. 11 is a schematic plan view for explaining the basic configuration of the first layer formation zone 6.
- the first layer formation zone 6 is also provided with an ink jet head 62 for drawing the lead-out wiring 3 together with a head array 61 for forming the first layer 21.
- the head array 61 can be configured by arranging a plurality of inkjet heads in an array.
- the lead-out wiring 3 is formed on the substrate 1 by the ink-jet head 62 for drawing the lead-out wiring.
- the region of the base material 1 on which the lead wiring 3 is formed is transported to the drying zone 8 where it is dried.
- the region of the substrate 1 is reversely conveyed by a certain amount in the direction toward the wound body 5, and again provided to the first layer forming zone 6.
- the first layer 21 is formed on the substrate 1 by the head array 61 for forming the first layer 21 provided in the first layer forming zone 6.
- FIG. 12 is a diagram for explaining an example of the formation process of the first layer 21 in the first layer formation zone 6.
- the head array 61 is moved in the direction orthogonal to the transport direction (the direction toward the right in the figure) while transporting the substrate 1 in the transport direction. Scan.
- the head array 61 can be moved relative to the base material 1 in an oblique direction.
- this relative movement by ejecting ink containing a conductive material from the head array 61 onto the substrate 1, a line segment inclined at a predetermined angle with respect to the transport direction of the substrate 1 can be drawn. it can.
- a line segment inclined at 45 ° can be drawn.
- the inclination angle can be set to an arbitrary value by adjusting the scanning speed of the head array 61 and / or the conveyance speed of the substrate 1.
- the region of the substrate 1 on which the line segment is formed is transported to the drying zone 8 where it is dried.
- the conductive material can be selectively deposited at both ends of the line width direction.
- the region of the substrate 1 is reversely conveyed by a certain amount in the direction toward the wound body 5 and is subjected to the second printing process in the first layer forming zone 6.
- the head array 61 is moved in the direction perpendicular to the conveying direction while conveying the base material 1 in the conveying direction, and in the first printing process. Scan in the direction opposite to the scanning direction (the direction toward the left in the figure).
- a predetermined angle in the direction opposite to the first printing step with respect to the conveyance direction of the substrate 1 is obtained. It is possible to draw a line segment inclined by. For example, by making the conveyance speed of the substrate 1 and the scanning speed of the head array 61 the same, a line segment inclined at ⁇ 45 ° can be drawn. In this way, as shown in the drawing, the line segment formed in the first printing process (inclination angle 45 °) and the line segment formed in the second printing process (inclination angle ⁇ 45 °) are combined. It is also possible to cross at right angles.
- the region of the substrate 1 on which the line segment is formed is transported to the drying zone 8 where it is dried.
- the conductive material can be selectively deposited at both ends of the line width direction of the line segment formed in the second printing step.
- the lattice-shaped first layer 21 made of diagonal lines can be formed.
- the region of the base material 1 on which the first layer 21 is formed is conveyed to the low resistance zone 9.
- the resistance lowering zone 9 is provided with an oven, and the first layer 21 is subjected to the resistance reduction treatment by heating the substrate 1 with the oven.
- the region of the base material 1 subjected to the resistance reduction treatment is conveyed to the second layer forming zone 10.
- the second layer forming zone 10 is provided with an electrolytic plating apparatus for forming the second layer 22.
- the electrolytic plating apparatus forms, for example, a base material 1 across a plurality of transport rolls to form a transport system, and one or two or more of these transport rolls are used as external electrodes in a plating solution (plating bath). , Also referred to as an electrolytic solution).
- a counter electrode is provided in the plating solution.
- the second layer 22 can be formed by supplying power from the external electrode to the first layer 21 through the lead-out wiring 3 and performing electrolytic plating in a plating solution by an electrolytic plating apparatus.
- the second layer forming zone 10 is preferably provided with a washing machine for washing the region of the substrate 1 after the electrolytic plating with a washing liquid such as water, a drying machine for drying the washing liquid, and the like.
- the region of the base material 1 on which the second layer 22 is formed is further conveyed to the third layer forming zone 11.
- an electrolytic plating apparatus for forming the third layer 23 is provided in the third layer forming zone 11.
- the configuration described in the second layer formation zone 10 can be used for the basic configuration of the electrolytic plating apparatus.
- the third layer forming zone 11 is also preferably provided with a washing machine for washing the region of the substrate 1 after the electrolytic plating with a washing liquid such as water, a drying machine for drying the washing liquid, and the like.
- a conductive pattern can be formed on the substrate 1.
- region of the base material 1 in which the electroconductive pattern was formed can be comprised so that the winding body 12 may be wound up sequentially.
- FIG. 13 is an explanatory view showing another example of a manufacturing apparatus for manufacturing a substrate with a conductive pattern.
- the same reference numerals as those in FIG. 10 can have the same configuration, and the description of FIG. 10 can be used.
- the manufacturing apparatus shown in this example can be suitably used for forming a conductive pattern on both surfaces of a base material.
- the treatment in the first layer forming zone 6 and the drying zone 8 is performed as in the example of FIG. 10.
- the first layer 21 is formed.
- the base material 1 on which the first layer 21 is formed on one surface (surface) is wound around the wound body 14.
- the wound body 14 is replaced with the wound body 13 and set so that the front and back surfaces are reversed, and again by the processing in the first layer forming zone 6 and the drying zone 8, This time, the first layer 21 is formed on the other surface (back surface) of the substrate 1.
- the base material 1 having the first layer 21 formed on both surfaces of the base material 1 is wound around the wound body 14.
- the wound body 14 is set as the wound body 15 in the downstream line B.
- the low resistance zone 9, the second layer forming zone 10, and the third layer forming zone 11 are applied to the belt-like base material 1 drawn out from the wound body 15. Through the process, the resistance of the first layer is reduced, the second layer 22 is formed, and the third layer 23 is formed. Thereafter, the substrate 1 after each process is wound around the wound body 16.
- Each process in the downstream line B is easy to apply to both surfaces of the substrate 1 at the same time, so that it is easy to configure the roll-to-roll in the downstream line B to be finished in one pass.
- the object on which the conductive pattern described above is formed is not limited to a two-dimensional sheet-like substrate, and can be preferably applied to a three-dimensional structure (sometimes simply referred to as a structure).
- a structure refers to an object other than a two-dimensional sheet, and is special if it includes a three-dimensional shape, such as a rectangular parallelepiped shape, a spherical shape, a cylindrical shape, a prism shape, a combination thereof, or a curve (curved surface). It is not limited.
- FIG. 14 is an explanatory view showing an example of a structure in which a conductive pattern is formed.
- the conductive pattern 200 is formed on the curved surface of the structure 100.
- the material of the structure 100 is not particularly limited, but preferable examples include plastic, metal, ceramic, stone, pulp, wood, rubber, and composite materials thereof.
- the conductive pattern 200 can be provided on the entire surface or a part of the structure 100.
- Image information may be displayed on the surface of the structure 100 so that the specific part can be identified at the specific part where the conductive pattern is formed.
- Image information on the surface of the structure can be provided so as to be visible through the conductive pattern when the conductive pattern is formed thereon.
- the image information is not particularly limited, but preferable examples include characters, symbols, and coloring patterns. These pieces of image information can guide functions such as position detection in applications such as switches, keyboards, touch panels, and sensors.
- the image information need not always be displayed, and may be configured to be displayed under specific conditions, for example.
- the method of manufacturing the structure 100 including the conductive pattern 200 is not particularly limited, and the conductive pattern may be directly formed on the surface of the structure 100. However, as an example of a preferable method, the conductive pattern is formed. An example of the method of manufacturing using the prepared base material (base material with conductive pattern) can be given.
- the surface is conductive. It is preferable to manufacture the structure 100 having the pattern 200.
- FIG. 15 is an explanatory diagram showing an example of a method for forming the conductive pattern 200 on the surface of the structure 100 using a substrate with a conductive pattern.
- the base material 1 on which the conductive pattern 200 is formed is bonded to the structure body 100 through the adhesive layer 17 so that the conductive pattern 200 side is oriented to the structure body 100 side. They are pasted together.
- Reference numeral 18 denotes a resin layer provided on the substrate 1, and the conductive pattern 200 is formed on the surface of the resin layer 18 on the substrate 1.
- the conductive pattern 200 can be formed on the surface of the structure 100 by bonding the substrate with the conductive pattern to the surface of the structure 100.
- the base material 1 from the conductive pattern 200 shown in the example of FIG. 15B by further providing a step of peeling the base material 1 from the conductive pattern 200 shown in the example of FIG.
- the pattern 200 can be transferred.
- an easy peeling process for facilitating peeling is performed in advance between the base material 1 and the resin layer 18 so that the base material 1 and the resin layer 18 are easily peeled off. be able to.
- the use of the conductive pattern of the present invention is not particularly limited, but can be suitably used as a transparent conductive film or the like.
- the use of the substrate and structure with a conductive pattern of the present invention is not particularly limited, but can be used for various devices included in various electronic devices. From the viewpoint of prominently achieving the effects of the present invention, for example, as a transparent electrode for various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, etc., or as a touch panel, a mobile phone, electronic paper, various solar cells, various electro It can be suitably used as a transparent electrode used in a luminescence light control element or the like.
- the substrate with a conductive pattern and the structure according to the present invention are suitably used as a transparent electrode of a device.
- a device For example, a touch panel sensor etc. can be illustrated preferably.
- an electronic device provided with these devices For example, a smart phone, a tablet terminal, etc. can be illustrated preferably.
- substrates 1 to 4 were prepared as substrates.
- the base materials 1 and 2 are not subjected to surface treatment, and the base materials 3 and 4 are subjected to surface treatment.
- -Substrate 1 Commercially available low thermal shrinkage PET film (thickness 120 ⁇ m) for optical use, and surface energy is 50 mN / m.
- Substrate 2 A commercially available low heat shrinkage PET film (thickness 120 ⁇ m) different from the substrate 1 and having a surface energy of 42 mN / m.
- -Base material 3 The base material 1 is surface-treated and the surface energy is adjusted to 60 mN / m.
- -Base material 4 The base material 2 is surface-treated and the surface energy is adjusted to 60 mN / m.
- Ink 1 (silver nanoparticle-containing ink 1) A silver nanoparticle dispersion (SW1000 manufactured by Bando Chemical Co., Ltd.) as a solid (silver nanoparticle) is 0.2 wt%, diethylene glycol monobutyl ether is 20 wt%, and the remainder is ion-exchanged water to 100 wt%, and this is filtered through a 1 ⁇ m filter. . The obtained permeate was designated as ink 1. The concentration of the silver nanoparticles as conductive particles did not substantially change before and after the filtration, and was 0.2 wt% in ink 1. The viscosity of the ink 1 was 2.0 mPa ⁇ s, and the surface tension was 29 mN / m.
- Ink 2 (silver nanoparticle-containing ink 2) Silver nanoparticle dispersion (Bandow Chemical SW1000) as a solid (silver nanoparticles), 0.2 wt%, 1,3-butanediol 25 wt%, surfactant (BYK348 "BYK348”) 0.5 wt% The remainder was made up to 100 wt% with ion-exchanged water and filtered through a 1 ⁇ m filter. The obtained permeate was designated as ink 2. The concentration of silver nanoparticles as conductive particles did not substantially change before and after the filtration, and was 0.2 wt% in ink 2. The viscosity of the ink 2 was 3.5 mPa ⁇ s, and the surface tension was 31 mN / m.
- Ink 3 (ink containing copper nanoparticles) Copper nanoparticle dispersion as solid content (copper nanoparticle) 0.2 wt%, ethylene glycol 30 wt%, surfactant ("BYK348" manufactured by Big Chemie) 0.5 wt%, the balance to 100 wt% with ion-exchanged water Finished and filtered through a 1 ⁇ m filter.
- the obtained permeate was designated as Ink 3.
- the concentration of copper nanoparticles as conductive particles did not substantially change before and after the filtration, and was 0.2 wt% in ink 3.
- the viscosity of the ink 3 was 4.0 mPa ⁇ s, and the surface tension was 32 mN / m.
- Ink 4 (ink containing silver powder) Silver powder with an average particle size of 0.5 ⁇ m, 0.1 wt%, ethylene glycol 30 wt%, surfactant (“BYK348” manufactured by BYK Chemie) 0.5 wt%, and the balance is ion-exchanged water to 100 wt%, and this is a 1 ⁇ m filter. And filtered. The obtained permeate was designated as Ink 4.
- the concentration of silver powder particles as conductive particles did not substantially change before and after the filtration, and was 0.1 wt% in ink 4.
- the viscosity of the ink 4 was 4.0 mPa ⁇ s, and the surface tension was 32 mN / m.
- Silver nano ink for lead-out wiring Silver nano particle dispersion (SW1000 manufactured by Bando Chemical Co., Ltd.) as solid content (silver nano particles), 15 wt%, propylene glycol 20%, and the rest to 100 wt% with ion-exchanged water, 1 ⁇ m filter The obtained permeate was filtered to obtain a silver nano ink for wiring.
- a conductive pattern was prepared as follows on a roll-shaped substrate having a width of 300 mm.
- the lead-out wiring was drawn using the lead-out wiring silver nano ink using the lead-out wiring inkjet head provided in the first layer forming zone 6.
- the ink applied on the base material was dried by blowing air at 70 ° C. for 5 minutes in the drying zone 8.
- a head array 61 is arranged so as to be orthogonal to the substrate transport direction.
- the head array 61 In the head array 61, five inkjet heads ("KM1024L” manufactured by Konica Minolta Co., Ltd. (piezo method, droplet amount 42pL)) are arranged, and the print width of the entire array is 360 mm.
- KM1024L manufactured by Konica Minolta Co., Ltd. (piezo method, droplet amount 42pL)
- the head array 61 While transporting the base material in the base material transport direction, the head array 61 is simultaneously scanned in the right direction, the conductive ink (ink 1) is ejected, and stripes by oblique lines are formed as shown in FIG. Formed (first printing step).
- the nozzles of the inkjet head are selected so that the nozzle spacing is evenly 280 ⁇ m, and the substrate temperature is adjusted to 70 ° C. with the heater at the lower part of the conveyance path from the selected nozzles on the substrate 1 ⁇ 10 ⁇ 10
- the ink discharge amount was adjusted so as to be m 3 / m, and an ink line was formed.
- the droplet discharge frequency was 4.5 KHz. This line is dried immediately after formation, and further by controlling the drying conditions, the conductive material is selectively accumulated at the end by drying, and as a result, each ink line becomes two parallel lines with an interval of 140 ⁇ m. It was.
- the head array 61 is scanned from the opposite side to the left while the substrate is conveyed again in the substrate conveyance direction as shown in FIG.
- the conductive ink was ejected in the same manner as in the first printing process, and stripes with diagonal lines inclined in the opposite direction to the first printing process were formed (second printing process).
- drying zone 8 drying was performed by blowing air at 70 ° C. for 5 minutes to form a first layer.
- the first layer became a lattice pattern composed of diagonal lines.
- the first layer was heated in an oven at 120 ° C. for 1 hour.
- FIG. 16 is a diagram illustrating ink application regions in the first printing process and the second printing process.
- the hatched portion in the figure is the ink application area.
- the line width of the conductive ink applied on the base material in each printing step is 140 ⁇ m after wetting and spreading on the base material, and these are arranged at a pitch of 280 ⁇ m.
- FIG. 17 shows a lattice pattern composed of the first layer formed as a result of selectively depositing a conductive material on both ends of the line width direction.
- a conductive material is selectively deposited on both ends in the line width direction, so that two parallel lines (parallel lines) are generated from one line segment, and a lattice having a line interval of 140 ⁇ m is formed. Pattern is formed.
- the line segment of the conductive ink applied on the substrate has a line width after wetting and spreading (this line width is two parallel lines (parallel lines) generated from one line segment). Is preferably 100 to 400 ⁇ m.
- the arrangement pitch of the conductive ink applied to the substrate is preferably set to a range of 1.8 to 2.3 times the line width after wetting and spreading. More preferably, it is set in the range of 1 times.
- plating power was supplied from the lead-out wiring and electrolytic plating was performed in the following plating bath.
- a copper plate for plating is connected to the anode, and a constant current of 0.30 A / dm 2 with respect to the total area of the lead-out wiring portion and the first-layer thin wire portion, until the time when the thin-wire portion film thickness reaches the target film thickness Energized.
- the line width was the value shown in Table 1. After completion of energization, it was thoroughly washed with water and dried.
- Electrolytic copper plating 60 g of copper sulfate pentahydrate, 19 g of sulfuric acid, 2 g of 1N hydrochloric acid, and 5 g of a gloss-imparting agent (“ST901C” manufactured by Meltex Co., Ltd.) were prepared with a formulation for finishing to 1000 ml with ion-exchanged water.
- ⁇ Evaluation criteria> 5 The number of cells where film peeling occurred was 0 cell. 4: The number of cells where film peeling occurred was 1-2 cells. 3: The number of squares where film peeling occurred was 3-5 squares. 2: The number of cells where film peeling occurred was 6-10 cells. 1: The number of cells where film peeling occurred was 11-25 cells.
- the substrate with the conductive pattern is reciprocated and bent with the surface on which the conductive pattern is formed on a cylinder having a diameter of 10 mm and bent.
- the decreasing rate of the resistance value of the conductive pattern before and after was measured, and the measured value was evaluated according to the following evaluation criteria.
- the same reciprocation is performed over a cylinder with either side facing up, and the rate of decrease in resistance value for the conductive pattern on the surface was measured.
- the substrate with a conductive pattern was stored for 500 hours in an environment of 85 ° C. and relative humidity of 85%, and after returning to a room temperature and normal pressure environment, the rate of decrease in resistance value was measured, and the measured values were evaluated according to the following evaluation criteria. .
- Example No. 2 In Example 1, the ink 1 (silver nanoparticle-containing ink 1) forming the first layer is replaced with the ink 2 (silver nanoparticle-containing ink 2), and the current density under electrolytic plating conditions is 0.50 A / dm 2. Instead of this, a substrate with a conductive pattern was obtained in the same manner as in Example 1 except that the film densities of the first layer and the second layer were set to the values shown in Table 1.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 3 In Example 1, the ink 1 (silver nanoparticle-containing ink 1) forming the first layer is replaced with the ink 3 (copper nanoparticle-containing ink), and the low-resistance treatment in the low-resistance zone 9 is performed in a reducing atmosphere.
- a substrate with a conductive pattern was obtained in the same manner as in Example 1 except that the heat treatment was performed at 0 ° C. and the laminated structure shown in Table 1 was used.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 4 In Example 1, the ink 1 (silver nanoparticle-containing ink 1) forming the first layer was replaced with the ink 4 (silver powder-containing ink), and this was applied to the substrate by flexographic printing to obtain the laminated structure shown in Table 1. Except having done, it carried out similarly to Example 1, and obtained the base material with an electroconductive pattern.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 5 the base material with a conductive pattern was obtained like Example 1 except having formed the 2nd layer with the following method.
- Electrolytic silver plating was performed on the base material on which the first layer was formed using the following plating bath 2.
- plating power was supplied from the lead wiring and electrolytic silver plating was performed in the following plating bath.
- a silver plate for plating is connected to the anode, and the time at which the thickness of the thin line portion reaches the target film thickness is 0.30 A / dm 2 with respect to the total area of the lead-out wiring portion and the thin line portion of the first layer. Energized until.
- the line width was the value shown in Table 1. After completion of energization, it was thoroughly washed with water and dried.
- Electrolytic silver plating 35 g of silver cyanide, 80 g of potassium cyanide, and 10 g of potassium carbonate were prepared with a formulation for finishing to 1000 ml with ion-exchanged water.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 6 A substrate with a conductive pattern was obtained in the same manner as in Example 1 except that the substrate 3 was replaced with the substrate 1 in Example 1.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 7 A substrate with a conductive pattern was obtained in the same manner as in Example 1 except that the substrate 3 was replaced with the substrate 2 in Example 1.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 8 A substrate with a conductive pattern was obtained in the same manner as in Example 1 except that the substrate 3 was replaced with the substrate 4 in Example 1.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 9 In Example 1, the third layer was further formed on the opposite side of the second layer from the first layer by the following method, and the conductive structure was the same as in Example 1 except that the laminated structure shown in Table 1 was used. A patterned substrate was obtained.
- Electrolytic nickel plating was performed on the base material on which the second layer was formed using the following plating bath 2.
- plating power was supplied from the lead-out wiring, and electrolytic plating was performed in the plating bath 3 described below.
- a nickel plate for plating is connected to the anode, and the target film whose thickness is shown in Table 1 at a constant current of 0.05 A / dm 2 with respect to the total area of the lead-out wiring portion and the thin wire portion of the first layer. It was energized until it became thick.
- the line width was the value shown in Table 1. After completion of energization, it was thoroughly washed with water and dried.
- Electrolytic nickel plating 240 g of nickel sulfate, 45 g of nickel chloride, and 30 g of boric acid were prepared with a formulation for finishing to 1000 ml with ion-exchanged water.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 10 In Example 1, the third layer was further formed on the opposite side of the second layer from the first layer by the following method, and the conductive structure was the same as in Example 1 except that the laminated structure shown in Table 1 was used. A patterned substrate was obtained.
- Electroless nickel plating was performed on the base material on which the second layer was formed using the following plating bath 4.
- the electroless plating time was performed until the predetermined film thickness shown in Table 1 was reached.
- the line width was the value shown in Table 1.
- Electroless nickel plating 26 g of nickel sulfate, 60 g of sodium citrate, 21 g of sodium hypophosphite, and ammonium sulfate were prepared with a formulation for finishing with 1000 ml of ion-exchanged water.
- the plating bath temperature was 90 ° C.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- Example No. 11 In Example 1, the third layer was further formed on the opposite side of the second layer from the first layer by the following method, and the conductive structure was the same as in Example 1 except that the laminated structure shown in Table 1 was used. A patterned substrate was obtained.
- the base material on which the second layer is formed is subjected to electrodeposition coating by a conventional method in a bath using a mixture of carbon black and a water-soluble electrodeposition resin, and has an organic film thickness and line width shown in Table 1.
- a third layer made of a film was formed.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- sample No. In No. 7 since an organic film was used for the third layer, the sheet resistance was not measured, and the resistance between terminals between which the organic film was not provided was measured.
- sample No. 1 was confirmed to be substantially the same value as the inter-terminal resistance between the end portions.
- Example No. 12 * Comparison In Example 1, the ink discharge amount was adjusted to 4 ⁇ 10 ⁇ 10 m 3 / m on the base material adjusted to 40 ° C. to form an ink line. Except having set it as the laminated structure, it carried out similarly to Example 1, and obtained the base material with a conductive pattern.
- Table 1 shows the results of evaluating the obtained substrate with a conductive pattern in the same manner as in Example 1.
- the conductive patterns 1 to 11 and a substrate (substrate with a conductive pattern) provided with the conductive pattern can reduce the visibility of the conductive fine wires, reduce the resistance value, and bond the substrate and the conductive pattern. It can be seen that the property (adhesiveness) can be improved, the resistance value can be prevented from fluctuating even when the substrate is bent, and durability such as heat and humidity resistance can be imparted.
- sample No. using silver powder In No. 4 sample No. using silver nano-ink was used.
- the effect of the present invention is slightly inferior, but since silver is used, for example, compared to the case of using palladium or the like that requires reduction treatment for resistance reduction, the burden of the resistance reduction treatment (treatment Time).
- Sample No. provided with third layer Nos. 9, 10 and 11 are sample Nos. With no third layer. It can be seen that compared to 1, it is further excellent in heat and humidity resistance.
- No. 12 shows that the visibility of the conductive thin wire cannot be sufficiently lowered, and the adhesiveness, bending resistance, and heat and humidity resistance are poor.
- Substrate 2 Conductive thin wire 21: First layer 22: Second layer 23: Third layer 3: Current collector 4: Wiring
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Structure Of Printed Boards (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Laminated Bodies (AREA)
- Floor Finish (AREA)
Abstract
Description
例えば、導電性パターンが設けられた基材を、ディスプレイ用透明電極等として用いる際に、導電性細線の視認性を低下することが要求される。
視認性を低下させる等の観点から線幅10μm未満とされた導電性細線では、十分な導電性を発揮させるために、抵抗値を下げることが要求される。
例えばフレキシブルなディスプレイを実現する際において、導電性パターンを安定に保持するべく、基材と導電性パターンの接着性を向上させることが要求される。
線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターン。
前記第1層と前記第2層の膜密度が異なる前記1記載の導電性パターン。
前記導電性細線の表面は、算術平均粗さRaが、200nm以上2000nm未満である前記1又は2記載の導電性パターン。
前記第1層は、銀又は銅を主成分とし、前記第2層は、銅を主成分とする前記1~3の何れかに記載の導電性パターン。
前記第2層の、前記第1層と反対側に更に第3層を有する前記1~4の何れかに記載の導電性パターン。
表面処理を行った基材上に、線幅10μm未満の導電性細線からなるパターンが設けられており、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターン付き基材。
前記表面処理が前記基材の表面エネルギーを上げる処理である前記6記載の導電性パターン付き基材。
前記表面処理が前記基材の表面に樹脂層を形成する処理である前記6又は7記載の導電性パターン付き基材。
両面に表面処理を行った前記基材の両面に、前記線幅10μm未満の導電性細線からなるパターンが設けられている前記6~8の何れかに記載の導電性パターン付き基材。
前記6~9の何れかに記載の導電性パターン付き基材の製造方法であって、
前記第1層の形成工程に印刷プロセスを含み、該印刷プロセスは、導電材料濃度が5%未満のインクを用いて線分を形成後、インクの乾燥プロセスを制御し、前記線分の線幅方向両端に導電材料を選択的に堆積させるプロセスを含む導電性パターン付き基材の製造方法。
前記インクの表面張力は、50mN/m未満であり、且つ該インクの前記基材に対する接触角は、10°~50°の範囲である前記10記載の導電性パターン付き基材の製造方法。
前記印刷プロセスにおける前記線分の形成にインクジェット法を用いる前記10又は11記載の導電性パターン付き基材の製造方法。
インクジェット法を用いて前記基材に対して複数の方向から複数回にわたり印刷して前記線分を形成する前記12記載の導電性パターン付き基材の製造方法。
前記インクの乾燥プロセスとして、印字中の前記基材を乾燥するプロセス、印字後に加熱するプロセス、印字後に送風するプロセス、及び、印字後に光照射するプロセスから選択される1又は複数を組み合わせて用いる前記10~13の何れかに記載の導電性パターン付き基材の製造方法。
前記導電材料を選択的に堆積させるプロセスの後工程として、加熱処理、化学処理、光(照射)処理から選択される処理により低抵抗化を行う前記10~14の何れかに記載の導電性パターン付き基材の製造方法。
前記第2層の形成工程として、電気化学的プロセスを含む前記10~15の何れかに記載の導電性パターン付き基材の製造方法。
前記電気化学的プロセスが、無電解メッキ及び電解メッキの何れか一方又は両方の組み合わせである前記16記載の導電性パターン付き基材の製造方法。
前記第2層の上に第3層を形成する前記10~17の何れかに記載の導電性パターン付き基材の製造方法。
前記導電性パターンの少なくとも一部と接触するように集電線を形成する前記10~18の何れかに記載の導電性パターン付き基材の製造方法。
表面に導電性パターンを有する構造体であって、
前記導電性パターンが、
線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする構造体。
前記20記載の構造体を製造する構造体の製造方法であって、
線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターンが、表面処理された表面に設けられた導電性パターン付き基材を用い、
構造体表面に、前記導電性パターン付き基材を貼り合せるか、もしくは前記導電性パターン付き基材から導電性パターン部を転写して、表面に導電性パターンを有する構造体を製造する構造体の製造方法。
基材として下記基材1~4を用意した。なお、基材1及び2には表面処理が施されておらず、基材3及び4には表面処理が施されている。
・基材1:市販の光学用途低熱収縮処理済みPETフィルム(厚さ120μm)であって、表面エネルギーは50mN/mである。
・基材2:基材1とは異なる市販の光学用途低熱収縮処理済みPETフィルム(厚さ120μm)であって、表面エネルギーは42mN/mである。
・基材3:基材1を表面処理し、表面エネルギーを60mN/mに調整したものである。
・基材4:基材2を表面処理し、表面エネルギーを60mN/mに調整したものである。
・インク1(銀ナノ粒子含有インク1)
銀ナノ粒子分散物(バンドー化学製 SW1000)を固形分(銀ナノ粒子)として0.2wt%分、ジエチレングリコールモノブチルエーテル20wt%、残部をイオン交換水で100wt%に仕上げ、これを1μmフィルターでろ過した。
得られた透過液をインク1とした。導電性粒子である銀ナノ粒子の濃度は、上記ろ過前後で実質的に変化せず、インク1において0.2wt%であった。インク1の粘度は2.0mPa・sであり、表面張力は29mN/mであった。
銀ナノ粒子分散物(バンドー化学製 SW1000)を固形分(銀ナノ粒子)として0.2wt%分、1,3-ブタンジオール25wt%、界面活性剤(ビックケミー社製「BYK348」)0.5wt%残部をイオン交換水で100wt%に仕上げ、これを1μmフィルターでろ過した。
得られた透過液をインク2とした。導電性粒子である銀ナノ粒子の濃度は、上記ろ過前後で実質的被変化せず、インク2において0.2wt%であった。インク2の粘度は3.5mPa・sであり、表面張力は31mN/mであった。
銅ナノ粒子分散物を固形分(銅ナノ粒子)として0.2wt%分、エチレングリコール30wt%、界面活性剤(ビックケミー社製「BYK348」)0.5wt%、残部をイオン交換水で100wt%に仕上げ、これを1μmフィルターでろ過した。
得られた透過液をインク3とした。導電性粒子である銅ナノ粒子の濃度は、上記ろ過前後で実質的に変化せず、インク3において0.2wt%であった。インク3の粘度は4.0mPa・sであり、表面張力は32mN/mであった。
平均粒子径0.5μmの銀粉0.1wt%分、エチレングリコール30wt%、界面活性剤(ビックケミー社製「BYK348」)0.5wt%、残部をイオン交換水で100wt%に仕上げ、これを1μmフィルターでろ過した。
得られた透過液をインク4とした。導電性粒子である銀粉粒子の濃度は、上記ろ過前後で実質的に変化せず、インク4において0.1wt%であった。インク4の粘度は4.0mPa・sであり、表面張力は32mN/mであった。
銀ナノ粒子分散物(バンドー化学製 SW1000)を固形分(銀ナノ粒子)として15wt%分、プロピレングリコール20%、残部をイオン交換水で100wt%に仕上げ、これを1μmフィルターでろ過し、得られた透過液を引き出し配線用銀ナノインクとした。
図10に示した装置を用い、幅300mmのロール状基材に対して、下記のようにして導電性パターンを作成した。
まず、第1層形成ゾーン6に併設されている引き出し配線用インクジェットヘッドを用いて、引き出し配線用銀ナノインクを用いて引き出し配線を描画した。
上記乾燥の後、第1層形成ゾーン6にて第1層のパターニングを行った。
次いで、第1層が形成された基材の領域を第2層形成ゾーン10に搬送し、電解メッキ装置により、電解銅メッキを行った。
線幅は表1に示す値となった。通電終了後、十分に水洗し、乾燥した。
硫酸銅5水塩60g、硫酸19g、1N塩酸2g、光沢付与剤(メルテックス社製「ST901C」)5gを、イオン交換水で1000mlに仕上げる処方で調製した。
得られた導電性パターン付き基材について、以下の評価を行った。
縦横20cmの領域全面に形成された導電性パターンについて、導電性パターンと目との距離を変えながら、導電性パターンの格子を形成するラインが識別できるかを、下記評価基準で評価した。
5: 5cmでも識別不能である。
4: 10cmであれば識別不能である。
3: 15cmであれば識別不能である。
2: 20cmであれば識別不能である。
1: 25cmであっても識別可能である。
導電性パターンを構成する導電性細線部のシート抵抗を4端子4探針法にて測定した。
10点の測定を行って測定された平均値について、下記の評価基準で評価した。
5: 1.0Ω/□未満である。
4: 1.0Ω/□以上5.0Ω/□未満である。
3: 5.0Ω/□以上10.0Ω/□未満である。
2: 10.0Ω/□以上50Ω/□未満である。
1: 50Ω/□以上である。
(3)密着性
テープ剥離法及びクロスカット法に基づいて評価した。即ち、導電性パターン付き基材に25マスの切り込み(クロスカット)を入れ、テープ剥離により膜はがれが生じたマス数を計測した。導電性パターン付き基材を3つ用意しておき、3回の試験での計測値を平均し、下記の評価基準で評価した。
5: 膜はがれが生じたマス数が0マスである。
4: 膜はがれが生じたマス数が1-2マスである。
3: 膜はがれが生じたマス数が3-5マスである。
2: 膜はがれが生じたマス数が6-10マスである。
1: 膜はがれが生じたマス数が11-25マスである。
図18に示すように、導電性パターン付き基材を、直径10mmの円柱に、導電性パターンが形成された面を表側にして架けた状態で、往復させて屈曲させ、屈曲前後での該導電性パターンの抵抗値の低下率を測定し、測定値により下記の評価基準で評価した。なお、両面に導電性パターンを有する基材に当該試験を適用する場合は、何れかの面を表側にして円柱に架けて同様の往復を行い、該面の導電性パターンについて抵抗値の低下率を測定した。
5: 5%未満
4: 10%未満
3: 20%未満
2: 21-50%未満
1: 50%以上
85℃、相対湿度85%の環境に、導電性パターン付き基材を500時間保存後、常温常圧環境に戻したのち抵抗値の低下率を測定し、測定値により下記の評価基準で評価した。
5: 5%未満
4: 10%未満
3: 20%未満
2: 21-50%未満
1: 50%以上
実施例1において、第1層を形成するインク1(銀ナノ粒子含有インク1)をインク2(銀ナノ粒子含有インク2)に代え、更に、電解メッキ条件の電流密度を0.50A/dm2に代えて、第1層及び第2層の膜密度を表1の値としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、第1層を形成するインク1(銀ナノ粒子含有インク1)をインク3(銅ナノ粒子含有インク)に代え、低抵抗化ゾーン9における低抵抗化処理を、還元雰囲気における180℃での加熱処理とし、表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、第1層を形成するインク1(銀ナノ粒子含有インク1)をインク4(銀粉含有インク)に代え、これをフレキソ印刷法により基材に付与して表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、第2層を下記の方法で形成したこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
第1層が形成された基材に、下記メッキ浴2を用いて、電解銀メッキを行った。
シアン化銀35g、シアン化カリ80g、炭酸カリウム10gを、イオン交換水で1000mlに仕上げる処方で調製した。
実施例1において、基材3を基材1に代えたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、基材3を基材2に代えたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、基材3を基材4に代えたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
実施例1において、第2層の、第1層と反対側に更に第3層を、下記の方法で形成し、表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
第2層が形成された基材に、下記メッキ浴2を用いて、電解ニッケルメッキを行った。
硫酸ニッケル240g、塩化ニッケル45g、ほう酸30gを、イオン交換水で1000mlに仕上げる処方で調製した。
実施例1において、第2層の、第1層と反対側に更に第3層を、下記の方法で形成し、表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
第2層が形成された基材に、下記メッキ浴4を用いて、無電解ニッケルメッキを行った。
硫酸ニッケル26g、クエン酸ナトリウム60g、次亜リン酸ナトリウム21g、硫酸アンモニウムを、イオン交換水で1000mlに仕上げる処方で調製した。メッキ浴温度は90℃とした。
実施例1において、第2層の、第1層と反対側に更に第3層を、下記の方法で形成し、表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
第2層が形成された基材について、カーボンブラックと水溶性電着樹脂からなる混合物を用いた浴中で、定法により電着塗装を行って、表1に示す膜厚及び線幅を有する有機膜からなる第3層を形成した。
実施例1において、40℃に調整した基材上に4×10-10m3/mとなるようにインク吐出量を調整しインクラインを形成し、表1の積層構造としたこと以外は、実施例1と同様にして導電性パターン付き基材を得た。
表1より、本発明に係る試料No.1~11の導電性パターン及びこれを備えた基材(導電性パターン付き基材)は、導電性細線の視認性を低下でき、抵抗値を下げることができ、基材と導電性パターンの接着性(密着性)を向上でき、基材の折り曲げ時においても抵抗値の変動を抑制でき、更に熱湿耐性などの耐久性を付与できることがわかる。
2:導電性細線
21:第1層
22:第2層
23:第3層
3:集電線
4:配線
Claims (21)
- 線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターン。 - 前記第1層と前記第2層の膜密度が異なる請求項1記載の導電性パターン。
- 前記導電性細線の表面は、算術平均粗さRaが、200nm以上2000nm未満である請求項1又は2記載の導電性パターン。
- 前記第1層は、銀又は銅を主成分とし、前記第2層は、銅を主成分とする請求項1~3の何れかに記載の導電性パターン。
- 前記第2層の、前記第1層と反対側に更に第3層を有する請求項1~4の何れかに記載の導電性パターン。
- 表面処理を行った基材上に、線幅10μm未満の導電性細線からなるパターンが設けられており、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターン付き基材。 - 前記表面処理が前記基材の表面エネルギーを上げる処理である請求項6記載の導電性パターン付き基材。
- 前記表面処理が前記基材の表面に樹脂層を形成する処理である請求項6又は7記載の導電性パターン付き基材。
- 両面に表面処理を行った前記基材の両面に、前記線幅10μm未満の導電性細線からなるパターンが設けられている請求項6~8の何れかに記載の導電性パターン付き基材。
- 請求項6~9の何れかに記載の導電性パターン付き基材の製造方法であって、
前記第1層の形成工程に印刷プロセスを含み、該印刷プロセスは、導電材料濃度が5%未満のインクを用いて線分を形成後、インクの乾燥プロセスを制御し、前記線分の線幅方向両端に導電材料を選択的に堆積させるプロセスを含む導電性パターン付き基材の製造方法。 - 前記インクの表面張力は、50mN/m未満であり、且つ該インクの前記基材に対する接触角は、10°~50°の範囲である請求項10記載の導電性パターン付き基材の製造方法。
- 前記印刷プロセスにおける前記線分の形成にインクジェット法を用いる請求項10又は11記載の導電性パターン付き基材の製造方法。
- インクジェット法を用いて前記基材に対して複数の方向から複数回にわたり印刷して前記線分を形成する請求項12記載の導電性パターン付き基材の製造方法。
- 前記インクの乾燥プロセスとして、印字中の前記基材を乾燥するプロセス、印字後に加熱するプロセス、印字後に送風するプロセス、及び、印字後に光照射するプロセスから選択される1又は複数を組み合わせて用いる請求項10~13の何れかに記載の導電性パターン付き基材の製造方法。
- 前記導電材料を選択的に堆積させるプロセスの後工程として、加熱処理、化学処理、光(照射)処理から選択される処理により低抵抗化を行う請求項10~14の何れかに記載の導電性パターン付き基材の製造方法。
- 前記第2層の形成工程として、電気化学的プロセスを含む請求項10~15の何れかに記載の導電性パターン付き基材の製造方法。
- 前記電気化学的プロセスが、無電解メッキ及び電解メッキの何れか一方又は両方の組み合わせである請求項16記載の導電性パターン付き基材の製造方法。
- 前記第2層の上に第3層を形成する請求項10~17の何れかに記載の導電性パターン付き基材の製造方法。
- 前記導電性パターンの少なくとも一部と接触するように集電線を形成する請求項10~18の何れかに記載の導電性パターン付き基材の製造方法。
- 表面に導電性パターンを有する構造体であって、
前記導電性パターンが、
線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする構造体。 - 請求項20記載の構造体を製造する構造体の製造方法であって、
線幅10μm未満の導電性細線からなるパターンであって、
前記細線の少なくとも一部は多層構造になっており、
該多層構造は、導電性粒子、導電性フィラー、導電性ワイヤーから選択される1種又は2種以上の導電材料を含む膜厚500nm未満の第1層と、前記第1層より膜厚が厚く、金属を主成分とする第2層と、を構成要素とする導電性パターンが、表面処理された表面に設けられた導電性パターン付き基材を用い、
構造体表面に、前記導電性パターン付き基材を貼り合せるか、もしくは前記導電性パターン付き基材から導電性パターン部を転写して、表面に導電性パターンを有する構造体を製造する構造体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580005923.9A CN105934802B (zh) | 2014-01-28 | 2015-01-28 | 导电性图案、带导电性图案的基材、带导电性图案的基材的制造方法、在表面具有导电性图案的结构体及该结构体的制造方法 |
KR1020167023151A KR101906694B1 (ko) | 2014-01-28 | 2015-01-28 | 도전성 패턴, 도전성 패턴을 구비한 기재, 도전성 패턴을 구비한 기재의 제조 방법, 표면에 도전성 패턴을 갖는 구조체 및 그 구조체의 제조 방법 |
JP2015559989A JP6610262B2 (ja) | 2014-01-28 | 2015-01-28 | 導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014013252 | 2014-01-28 | ||
JP2014-013252 | 2014-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115503A1 true WO2015115503A1 (ja) | 2015-08-06 |
Family
ID=53757075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052405 WO2015115503A1 (ja) | 2014-01-28 | 2015-01-28 | 導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6610262B2 (ja) |
KR (1) | KR101906694B1 (ja) |
CN (1) | CN105934802B (ja) |
WO (1) | WO2015115503A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104652A1 (ja) * | 2015-12-17 | 2017-06-22 | コニカミノルタ株式会社 | 導電性細線の形成方法 |
JP2018088397A (ja) * | 2016-11-18 | 2018-06-07 | 矢崎総業株式会社 | 回路体形成方法及び回路体 |
WO2018173402A1 (ja) * | 2017-03-23 | 2018-09-27 | コニカミノルタ株式会社 | 構造物及び構造物の製造方法 |
WO2018218373A1 (en) * | 2017-06-02 | 2018-12-06 | Simon Fraser University | Method of patterned deposition employing pressurized fluids and thermal gradients |
JP2019046626A (ja) * | 2017-08-31 | 2019-03-22 | ナガセケムテックス株式会社 | 回路部材の製造方法 |
JP2020064558A (ja) * | 2018-10-19 | 2020-04-23 | 凸版印刷株式会社 | 配線板、および配線板を含むタッチパネル基板、並びにタッチパネル表示装置 |
WO2022196348A1 (ja) * | 2021-03-18 | 2022-09-22 | 日東電工株式会社 | 透明導電性フィルム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108932073A (zh) * | 2017-05-22 | 2018-12-04 | 祥达光学(厦门)有限公司 | 触控面板与其引线结构 |
KR102705757B1 (ko) * | 2019-06-14 | 2024-09-11 | 주식회사 아모라이프사이언스 | 피부미용용 발열패치 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01140870U (ja) * | 1988-03-22 | 1989-09-27 | ||
JP2005152758A (ja) * | 2003-11-25 | 2005-06-16 | Seiko Epson Corp | 膜形成方法、デバイス製造方法および電気光学装置 |
JP2008258293A (ja) * | 2007-04-03 | 2008-10-23 | Nippon Steel Chem Co Ltd | パターン化導体層の形成方法、回路基板の製造方法および回路基板 |
JP2009123408A (ja) * | 2007-11-13 | 2009-06-04 | Seiren Co Ltd | 透明導電性部材の製造方法 |
JP2010003964A (ja) * | 2008-06-23 | 2010-01-07 | Fujimori Kogyo Co Ltd | 周波数選択型の電磁波シールド材、及びそれを用いた電磁波吸収体 |
JP2010265420A (ja) * | 2009-05-18 | 2010-11-25 | Konica Minolta Holdings Inc | インクジェット用インク及び導電性パターン形成方法 |
WO2011090034A1 (ja) * | 2010-01-19 | 2011-07-28 | 国立大学法人京都大学 | 導電膜及びその製造方法 |
WO2014030647A1 (ja) * | 2012-08-20 | 2014-02-27 | コニカミノルタ株式会社 | 導電性材料を含む平行線パターン、平行線パターン形成方法、透明導電膜付き基材、デバイス及び電子機器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4355436B2 (ja) | 2000-10-25 | 2009-11-04 | 森村ケミカル株式会社 | 配線パターンの形成方法、回路基板の製造方法および遮光パターンの形成された透光体の製造方法 |
JP4383725B2 (ja) | 2002-02-12 | 2009-12-16 | 株式会社秀峰 | 印刷または塗布画像作成方法およびそれによる印刷または塗布画像体 |
JP2005142420A (ja) | 2003-11-07 | 2005-06-02 | Konica Minolta Holdings Inc | 導電パターンの形成方法 |
US9307633B2 (en) * | 2011-03-28 | 2016-04-05 | Lg Chem, Ltd. | Conductive structure, touch panel, and method for manufacturing same |
US9696751B2 (en) | 2012-05-17 | 2017-07-04 | Kaneka Corporation | Substrate with transparent electrode, method for manufacturing same, and touch panel |
-
2015
- 2015-01-28 WO PCT/JP2015/052405 patent/WO2015115503A1/ja active Application Filing
- 2015-01-28 CN CN201580005923.9A patent/CN105934802B/zh active Active
- 2015-01-28 KR KR1020167023151A patent/KR101906694B1/ko active IP Right Grant
- 2015-01-28 JP JP2015559989A patent/JP6610262B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01140870U (ja) * | 1988-03-22 | 1989-09-27 | ||
JP2005152758A (ja) * | 2003-11-25 | 2005-06-16 | Seiko Epson Corp | 膜形成方法、デバイス製造方法および電気光学装置 |
JP2008258293A (ja) * | 2007-04-03 | 2008-10-23 | Nippon Steel Chem Co Ltd | パターン化導体層の形成方法、回路基板の製造方法および回路基板 |
JP2009123408A (ja) * | 2007-11-13 | 2009-06-04 | Seiren Co Ltd | 透明導電性部材の製造方法 |
JP2010003964A (ja) * | 2008-06-23 | 2010-01-07 | Fujimori Kogyo Co Ltd | 周波数選択型の電磁波シールド材、及びそれを用いた電磁波吸収体 |
JP2010265420A (ja) * | 2009-05-18 | 2010-11-25 | Konica Minolta Holdings Inc | インクジェット用インク及び導電性パターン形成方法 |
WO2011090034A1 (ja) * | 2010-01-19 | 2011-07-28 | 国立大学法人京都大学 | 導電膜及びその製造方法 |
WO2014030647A1 (ja) * | 2012-08-20 | 2014-02-27 | コニカミノルタ株式会社 | 導電性材料を含む平行線パターン、平行線パターン形成方法、透明導電膜付き基材、デバイス及び電子機器 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104652A1 (ja) * | 2015-12-17 | 2017-06-22 | コニカミノルタ株式会社 | 導電性細線の形成方法 |
JP2018088397A (ja) * | 2016-11-18 | 2018-06-07 | 矢崎総業株式会社 | 回路体形成方法及び回路体 |
WO2018173402A1 (ja) * | 2017-03-23 | 2018-09-27 | コニカミノルタ株式会社 | 構造物及び構造物の製造方法 |
JPWO2018173402A1 (ja) * | 2017-03-23 | 2020-01-23 | コニカミノルタ株式会社 | 構造物及び構造物の製造方法 |
WO2018218373A1 (en) * | 2017-06-02 | 2018-12-06 | Simon Fraser University | Method of patterned deposition employing pressurized fluids and thermal gradients |
JP2019046626A (ja) * | 2017-08-31 | 2019-03-22 | ナガセケムテックス株式会社 | 回路部材の製造方法 |
JP2020064558A (ja) * | 2018-10-19 | 2020-04-23 | 凸版印刷株式会社 | 配線板、および配線板を含むタッチパネル基板、並びにタッチパネル表示装置 |
JP7331346B2 (ja) | 2018-10-19 | 2023-08-23 | 凸版印刷株式会社 | 配線板、および配線板を含むタッチパネル基板、並びにタッチパネル表示装置 |
WO2022196348A1 (ja) * | 2021-03-18 | 2022-09-22 | 日東電工株式会社 | 透明導電性フィルム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015115503A1 (ja) | 2017-03-23 |
JP6610262B2 (ja) | 2019-11-27 |
KR101906694B1 (ko) | 2018-12-05 |
CN105934802B (zh) | 2018-04-17 |
KR20160113216A (ko) | 2016-09-28 |
CN105934802A (zh) | 2016-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6610262B2 (ja) | 導電性パターン、導電性パターン付き基材、導電性パターン付き基材の製造方法、表面に導電性パターンを有する構造体及び該構造体の製造方法 | |
CN110537394B (zh) | 印刷电路纳米纤维网制造方法及印刷电路纳米纤维网 | |
WO2015199204A1 (ja) | パターン形成方法、透明導電膜付き基材、デバイス及び電子機器 | |
TWI666658B (zh) | 機能性細線圖樣的形成方法、透明導電膜的形成方法、元件的製造方法及電子機器的製造方法 | |
JP6439641B2 (ja) | 導電性パターンの形成方法及び導電性パターン | |
JP2019219949A (ja) | 導電性細線パターンの製造方法及びタッチパネルセンサーの製造方法 | |
TWI574284B (zh) | 附導電性圖案基材之製造方法 | |
JP6753300B2 (ja) | 透明導電体の製造方法 | |
WO2015199201A1 (ja) | メッシュ状の機能性パターンの形成方法、メッシュ状の機能性パターン及び機能性基材 | |
JP6683117B2 (ja) | 細線パターン形成方法及び細線パターン形成装置 | |
CN110062820B (zh) | 透明导电膜的形成方法以及电镀用镀敷液 | |
JP2018098446A (ja) | タッチパネルセンサー中間体、及びタッチパネルセンサーの製造方法 | |
JP7073860B2 (ja) | 機能性細線付き基材の製造方法、及び、インクと基材のセット | |
JP7092183B2 (ja) | パターン形成方法 | |
JPWO2016140284A1 (ja) | パターン形成方法、透明導電膜付き基材、デバイス及び電子機器 | |
WO2019234841A1 (ja) | ケーブル付きフレキシブル回路及びその製造方法、並びにケーブル付きフレキシブル回路中間体 | |
WO2018146963A1 (ja) | タッチスクリーン及びタッチスクリーンの製造方法 | |
JP6658800B2 (ja) | 機能性細線パターン、透明導電膜付き基材、デバイス及び電子機器 | |
JPWO2019215929A1 (ja) | タッチセンサーフィルムの製造方法及びタッチセンサーフィルム中間体 | |
JPWO2019064595A1 (ja) | タッチパネルセンサー及びタッチパネルセンサーの製造方法 | |
WO2020161876A1 (ja) | 機能性細線パターン前駆体の形成方法及び機能性細線パターンの形成方法 | |
JP2021008648A (ja) | 導電性パターン薄膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15742927 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015559989 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167023151 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15742927 Country of ref document: EP Kind code of ref document: A1 |