Nothing Special   »   [go: up one dir, main page]

WO2015115059A1 - 高強度冷延鋼板およびその製造方法 - Google Patents

高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015115059A1
WO2015115059A1 PCT/JP2015/000241 JP2015000241W WO2015115059A1 WO 2015115059 A1 WO2015115059 A1 WO 2015115059A1 JP 2015000241 W JP2015000241 W JP 2015000241W WO 2015115059 A1 WO2015115059 A1 WO 2015115059A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cooling
temperature
average
Prior art date
Application number
PCT/JP2015/000241
Other languages
English (en)
French (fr)
Inventor
克利 ▲高▼島
勇樹 田路
長谷川 浩平
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP15743100.8A priority Critical patent/EP3101147B1/en
Priority to CN201580006501.3A priority patent/CN105940134B/zh
Priority to KR1020167023517A priority patent/KR101912512B1/ko
Priority to US15/115,138 priority patent/US10174396B2/en
Priority to MX2016009745A priority patent/MX2016009745A/es
Priority to JP2015559808A priority patent/JP6172298B2/ja
Publication of WO2015115059A1 publication Critical patent/WO2015115059A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet having a high yield ratio and a method for producing the same, and particularly to a high-strength cold-rolled steel sheet suitable as a member for structural parts such as automobiles.
  • High strength steel sheets used for automobile structural members and reinforcing members are required to have excellent formability.
  • high-strength steel sheets used for parts having complex shapes not only have excellent properties such as stretch or stretch flangeability (also referred to as hole expandability), but also have both stretch and stretch flangeability. Is required.
  • excellent collision absorption energy characteristics are required for automotive parts such as structural members and reinforcing members.
  • DP steel dual-phase steel having a ferrite-martensite structure
  • Patent Document 1 DP steel, which is a composite structure steel in which the main phase is ferrite and martensite is dispersed, has a low yield ratio, a high TS, and an excellent elongation.
  • Patent Document 2 a TRIP steel sheet using transformation induced plasticity of retained austenite.
  • This TRIP steel sheet has a steel sheet structure containing residual austenite, and when deformed at a temperature equal to or higher than the martensitic transformation start temperature, the residual austenite is induced and transformed into martensite by the stress, and a large elongation is obtained.
  • DP steel generally has a low yield ratio due to the introduction of movable dislocations in the ferrite during the martensitic transformation, resulting in low impact absorption energy characteristics. Further, even in a steel sheet using retained austenite, elongation and stretch flangeability are not enhanced in a high strength region of 1180 MPa or more.
  • An object of the present invention is to provide a high-strength cold-rolled steel sheet having a high yield ratio, which is excellent in elongation and stretch flangeability, and a method for producing the same, by solving the above-described problems of the prior art.
  • the inventors have controlled the volume fraction of ferrite, retained austenite, and martensite in the microstructure of the steel sheet at a specific ratio, and the average crystal grain size of ferrite and martensite, It has been found that by controlling the distribution state of the precipitated cementite particles, it is possible to obtain excellent stretch flangeability in addition to high stretch properties while ensuring a high yield ratio.
  • the present invention is based on the above findings.
  • the inventors examined the relationship between the microstructure of the steel sheet and the properties such as tensile strength, yield ratio, elongation, and stretch flangeability as described above, and considered as follows. a) When martensite or retained austenite with high hardness is present in the steel sheet structure, voids are generated at the interface between ferrite and martensite or retained austenite, especially at the interface between soft ferrite during punching in the hole expansion test. In the subsequent hole expanding process, the voids are connected and propagated to generate a crack. For this reason, it becomes difficult to ensure good stretch flangeability. On the other hand, the elongation is improved by containing retained austenite and soft ferrite in the steel sheet structure.
  • each phase in the microstructure is a microstructure containing residual austenite and having a reduced volume fraction of ferrite. It is desirable to reduce the hardness difference. b) By containing bainite or tempered martensite having a high dislocation density in the steel sheet structure, the yield ratio is increased, but the effect on elongation is small.
  • the inventors made extensive studies. As a result, the volume fraction of the soft phase and the hard phase, which are the sources of voids, is adjusted, and the distribution of cementite particles precipitated in the tempered martensite or bainite, which is the hard intermediate phase, is controlled. It was found that by reducing the hardness difference, improvement in elongation and a high yield ratio can be obtained while securing strength and stretch flangeability.
  • the microstructure of the hot-rolled steel sheet is made to be a bainite homogeneous structure (the volume fraction of bainite is 100% at a 1/4 position in the thickness direction), followed by heat treatment (first And control the distribution of elements and carbides in the hot-rolled steel sheet, and after cold rolling such a hot-rolled steel sheet, cooling conditions in the continuous annealing (second heat treatment) and after cooling
  • heat treatment first And control the distribution of elements and carbides in the hot-rolled steel sheet, and after cold rolling such a hot-rolled steel sheet, cooling conditions in the continuous annealing (second heat treatment) and after cooling
  • second heat treatment cooling conditions in the continuous annealing
  • B it is important to use B as a quenching element. That is, if Mn or the like is added excessively as a quenching element, not only the hardness of tempered martensite and martensite is increased, but also the martensite transformation start point is lowered. For this reason, in the cooling at the time of performing martensitic transformation, which is the previous stage for obtaining tempered martensite, the cooling stop temperature must be lowered, and excessive cooling capacity is required, resulting in an increase in cost. Since B can ensure hardenability without lowering the martensitic transformation start point, the cost required for cooling can be reduced.
  • B can suppress the formation of ferrite and pearlite even in cooling after finish rolling during hot rolling, and is effective in making the steel sheet structure of the hot-rolled steel sheet a homogeneous bainite structure.
  • the concentration distribution of C and Mn is made uniform by a first heat treatment performed thereafter, and the heating rate is set within a predetermined range during the second heat treatment performed thereafter.
  • the present inventors set the Mn content to 2.4 to 3.5%, add B in the range of 0.0002 to 0.0050%, and further control the annealing conditions after hot rolling and cold rolling.
  • the distribution of the cementite particles precipitated can be controlled while the volume fraction of retained austenite is sufficient to ensure elongation while the crystal grain size of ferrite and martensite is refined.
  • the present inventors can improve elongation and stretch flangeability while ensuring a high yield ratio by controlling the volume fraction of ferrite, bainite, tempered martensite, and martensite within a predetermined range. I found it possible.
  • the present invention is based on the above findings, and the gist thereof is as follows.
  • this invention makes object the high strength cold-rolled steel plate whose tensile strength is 1180 Mpa or more.
  • the martensite has an average crystal grain size of 4 ⁇ m or less, a volume fraction of 20% or less (including 0%), and has a microstructure containing bainite and / or tempered martensite in the balance, and the rolling direction of the steel sheet above particle size 0.1 ⁇ m in thickness within the cross section 100 [mu] m 2 per parallel to High-strength cold-rolled steel sheet average particle number of Mentaito particles is 30 or more.
  • a steel slab having the composition described in any one of [1] to [4] above is hot-rolled under conditions of hot rolling start temperature: 1150 to 1300 ° C. and finish rolling end temperature: 850 to 950 ° C.
  • Rolling is performed, cooling is started within 1 second after the end of hot rolling, and cooling is performed at a first average cooling rate of 80 ° C./s or higher as primary cooling to 650 ° C. or lower, and subsequently at 5 ° C./second as secondary cooling.
  • a first heat treatment is performed for holding at a temperature range of 400 to 750 ° C.
  • thermoforming is performed, and then, as a second heat treatment, heating is performed at an average heating rate of 3 to 30 ° C./s to a temperature range of 830 ° C. or more, and a first soaking temperature is 830 ° C. or more for 30 seconds. After being held above, the temperature is 3 ° C./s from the first soaking temperature.
  • the above average cooling rate is cooled to a cooling stop temperature range of Ta ° C. that satisfies the following formula (1), and subsequently heated to a temperature range of Tb ° C. that satisfies the following formula (2).
  • a method for producing a high-strength cold-rolled steel sheet that is subjected to continuous annealing in which the temperature is kept at Tb ° C. satisfying 2) for 20 seconds or more and then cooled to room temperature.
  • Formula (1) 0.35 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21 -Ta) ⁇ ⁇ 0.95
  • Formula (2) ⁇ 3.0 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21-Tb) ⁇ ⁇ 0.35
  • [M] in the formula indicates the content (mass%) of the element M.
  • the tensile strength is 1180 MPa or more
  • the yield ratio is 75% or more
  • the elongation is 17% or more
  • the hole expansion ratio is 30% or more.
  • % notation of the steel component composition means mass%.
  • C 0.15-0.30%
  • C is an element effective for increasing the strength of a steel sheet, and contributes to increasing the strength by participating in the second phase formation such as bainite, tempered martensite, retained austenite and martensite in the present invention. Furthermore, C increases the hardness of martensite and tempered martensite. If the amount of C is less than 0.15%, it is difficult to secure the required volume ratio of bainite, tempered martensite, retained austenite, and martensite. For this reason, the amount of C is made into 0.15% or more. Preferably it is 0.16% or more.
  • the C amount is set to 0.30% or less. Preferably it is 0.26% or less.
  • Si 0.8 to 2.4% Si contributes to the formation of retained austenite by suppressing carbide formation during the bainite transformation.
  • the Si amount needs to be 0.8% or more. Preferably it is 1.2% or more.
  • the Si content is 2.4% or less. Preferably it is 2.1% or less.
  • Mn 2.4 to 3.5%
  • Mn is an element that contributes to increasing the strength by forming solid solution strengthening and the second phase. Moreover, it is an element which stabilizes austenite, and is an element necessary for fraction control of the second phase. Furthermore, it is an element necessary for homogenizing the structure of a hot-rolled steel sheet by bainite transformation. In order to acquire the effect, it is necessary to contain 2.4% or more of Mn. On the other hand, if contained excessively, the volume ratio of martensite becomes excessive, the hardness of martensite and tempered martensite increases, and the stretch flangeability decreases, so the Mn content is 3.5%. The following. Preferably it is 3.3% or less.
  • P 0.08% or less P contributes to high strength by solid solution strengthening. However, when added excessively, segregation to the grain boundary becomes remarkable, and the grain boundary becomes brittle or weldability is increased. Reduce. Therefore, the content of P is set to 0.08% or less. Preferably it is 0.05% or less.
  • the upper limit of the S content is 0.005%.
  • the S content is 0.0045% or less.
  • the lower limit of the S content is 0.0005% because the steelmaking cost increases when the extremely low S is achieved.
  • Al 0.01 to 0.08%
  • Al is an element necessary for deoxidation, and in order to obtain this effect, the Al content needs to be 0.01% or more.
  • the Al content is 0.08% or less. Preferably it is 0.05% or less.
  • N 0.010% or less Since N forms coarse nitrides and deteriorates bendability and stretch flangeability, it is necessary to suppress the content thereof. If the N content exceeds 0.010%, this tendency becomes remarkable, so the N content is set to 0.010% or less. Preferably it is 0.0050% or less.
  • Ti 0.002 to 0.05%
  • Ti is an element that can contribute to an increase in strength by forming fine carbonitrides. Furthermore, Ti is easier to produce nitrides than B, so it is necessary to prevent B, which is an essential element in the present invention, from reacting with N. In order to exert such an effect, the lower limit of the Ti content needs to be 0.002%. Preferably it is 0.005%. On the other hand, when Ti is added in a large amount, the elongation is remarkably lowered, so the Ti content is 0.05% or less. Preferably it is 0.035% or less.
  • B 0.0002 to 0.0050%
  • B is an element that improves the hardenability without lowering the martensitic transformation start point, and is an element that contributes to increasing the strength by generating the second phase. Further, B has an effect of suppressing the formation of ferrite and pearlite when cooling after finish rolling of hot rolling. In order to exert such effects, the B content needs to be 0.0002% or more. Preferably it is 0.0003% or more. On the other hand, even if B is contained in excess of 0.0050%, the effect is saturated, so the content of B is set to 0.0050% or less. Preferably it is 0.0040% or less.
  • V 0.10% or less
  • Nb 0.10% or less
  • Cr 0.50% or less
  • Mo 0.50% or less
  • Cu 0.50% or less
  • Ni 0.50% or less
  • a total of 0.0050% or less of Ca and / or REM individually or simultaneously It may be contained.
  • V 0.10% or less
  • V can contribute to an increase in strength by forming fine carbonitrides. In order to have such an action, it is preferable to contain 0.01% or more of V. On the other hand, even if a large amount of V is added, the effect of increasing the strength exceeding 0.10% is small, and the alloy cost is also increased. Therefore, the V content is 0.10% or less. Preferably it is 0.05% or less.
  • Nb 0.10% or less
  • Nb can contribute to an increase in strength by forming fine carbonitrides, and can be added as necessary.
  • the Nb content is preferably 0.005% or more.
  • the content is made 0.10% or less. Preferably it is 0.05% or less.
  • Cr 0.50% or less Cr is an element that contributes to increasing the strength by generating the second phase, and can be added as necessary. In order to exhibit this effect, it is preferable to make it contain 0.10% or more. On the other hand, if the content exceeds 0.50%, excessive martensite is generated, so the content is 0.50% or less.
  • Mo 0.50% or less
  • Mo is an element that contributes to high strength by generating a second phase. Further, it is also an element that contributes to increasing the strength by generating a part of carbide, and can be added as necessary. In order to exhibit these effects, it is preferable to contain Mo 0.05% or more. Even if the content exceeds 0.50%, the effect is saturated, so the content is made 0.50% or less.
  • Cu 0.50% or less
  • Cu like Cr, is an element that contributes to increasing the strength by generating a second phase. Moreover, it is also an element which contributes to high intensity
  • Ni 0.50% or less
  • Ni, like Cr is an element that contributes to high strength by generating a second phase, and also contributes to high strength by solid solution strengthening like Cu, It can be added as necessary. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. Further, when added simultaneously with Cu, there is an effect of suppressing surface defects caused by Cu, so that it is particularly effective when Cu is added. On the other hand, since the effect is saturated even if the content exceeds 0.50%, the content is made 0.50% or less.
  • Ca and / or REM in total 0.0050% or less are elements that contribute to spheroidizing the shape of sulfides and improving the adverse effects of sulfides on stretch flangeability, and are added as necessary can do. In order to exhibit such an effect, it is preferable to contain 0.0005% or more in total of any one or more of Ca and REM. On the other hand, the effect is saturated even if Ca and / or REM is contained in total exceeding 0.0050%. Therefore, the total content of Ca and REM is 0.0050% or less in either case of single addition or composite addition.
  • the remainder other than the above is Fe and inevitable impurities.
  • inevitable impurities include Sb, Sn, Zn, and Co.
  • the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, and Co: 0.1% or less.
  • ferrite has an average crystal grain size of 3 ⁇ m or less, a volume fraction of 5% or less (including 0%), a residual austenite of 10 to 20%, and martensite Thickness having an average crystal grain size of 4 ⁇ m or less, a volume fraction of 20% or less (including 0%), a microstructure containing bainite and / or tempered martensite in the balance, and parallel to the rolling direction of the steel sheet
  • the average number of cementite particles having a particle size of 0.1 ⁇ m or more per 100 ⁇ m 2 in the cross section is 30 or more.
  • Ferrite Average grain size of 3 ⁇ m or less and volume fraction of 5% or less (including 0%) Ferrite is a soft structure, and as described above, voids are likely to be generated at the time of punching at the interface with martensite or retained austenite having high hardness.
  • the volume fraction of ferrite exceeds 5%, the amount of void generation at the time of punching increases, and stretch flangeability deteriorates.
  • the volume fraction of ferrite exceeds 5%, it is necessary to increase the hardness of martensite and tempered martensite in order to ensure strength, and it becomes difficult to achieve both strength and stretch flangeability. Therefore, the volume fraction of ferrite is 5% or less.
  • the volume fraction of ferrite may be 0%.
  • the average crystal grain size of ferrite exceeds 3 ⁇ m, voids formed on the punched end face are likely to be connected during hole expansion at the time of hole expansion or the like, so that good stretch flangeability cannot be obtained. Therefore, when ferrite is included in the microstructure, the average crystal grain size of the ferrite is 3 ⁇ m or less.
  • Residual austenite 10-20% volume fraction
  • the volume fraction of retained austenite needs to be in the range of 10 to 20%. If the volume fraction of retained austenite is less than 10%, only low elongation can be obtained, so the volume fraction of retained austenite is 10% or more. Preferably it is 11% or more. Further, when the volume fraction of retained austenite exceeds 20%, stretch flangeability deteriorates, so the volume fraction of retained austenite is 20% or less. Preferably it is 18% or less.
  • Martensite Average crystal grain size of 4 ⁇ m or less and volume fraction of 20% or less (including 0%) In order to ensure stretch flangeability while ensuring a desired strength, the martensite volume fraction is set to 20% or less. Preferably it is 15% or less, More preferably, it is 12% or less. The martensite volume fraction may be 0%. Further, if the average crystal grain size of martensite exceeds 4 ⁇ m, voids generated at the interface with the ferrite tend to be connected, and the stretch flangeability deteriorates. Therefore, the average crystal grain size of martensite is set to 4 ⁇ m or less. Preferably, the upper limit of the average grain size of martensite is 3 ⁇ m.
  • Remaining structure structure containing bainite and / or tempered martensite
  • bainite and / or tempered martensite other than the above ferrite, retained austenite, and martensite It is necessary to contain.
  • the volume fraction of bainite is preferably 15 to 50%, and the volume fraction of tempered martensite is preferably 30 to 70%.
  • the average crystal grain size of tempered martensite is preferably 12 ⁇ m or less.
  • the volume fraction of the bainite phase referred to here is the volume fraction of bainitic ferrite (ferrite with high dislocation density) in the observation surface.
  • the average number of cementite particles with a particle size of 0.1 ⁇ m or more per 100 ⁇ m 2 in the plate thickness cross section parallel to the rolling direction of the steel plate is 30 or more.
  • the cementite particles having a particle size of 0.1 ⁇ m or more must have an average of 30 or more per 100 ⁇ m 2 .
  • the inside of a steel plate cross section means here in the board thickness cross section parallel to the rolling direction of a steel plate.
  • the cementite particles are mainly precipitated in bainite or tempered martensite.
  • cementite particles when the number of cementite particles having a particle size of 0.1 ⁇ m or more is less than 30 on average per 100 ⁇ m 2 , the hardness of tempered martensite and bainite increases, and the soft phase (ferrite) And voids tend to be formed at the interface with the hard phase (martensite and retained austenite), and the stretch flangeability deteriorates. Preferably it is 45 or more.
  • the microstructure of the present invention in addition to the above-mentioned ferrite, retained austenite, martensite, bainite and tempered martensite, pearlite and the like may be generated, but the above-mentioned ferrite, retained austenite and martensite volume fraction. If the ratio, the average crystal grain size of ferrite and martensite, and the distribution state of cementite particles are satisfied, the object of the present invention can be achieved.
  • the volume fraction of the structure other than the above-described ferrite such as pearlite, retained austenite, martensite, bainite and tempered martensite is preferably 3% or less in total.
  • the volume fraction and average crystal grain size of the microstructure of the present invention can be measured by the methods described in the examples below. Further, the average number of cementite particles having a size of 0.1 ⁇ m or more can also be measured by the method described in Examples described later.
  • the high-strength cold-rolled steel sheet of the present invention is hot-rolled on a steel slab having the above-described composition under conditions of hot rolling start temperature: 1150-1300 ° C. and finish rolling end temperature: 850-950 ° C., Cooling is started within 1 second after the end of hot rolling, cooling to 650 ° C. or less at the first average cooling rate of 80 ° C./s or more as primary cooling, and subsequently to 5 ° C. or more as secondary cooling. 2 After cooling to 550 ° C. or less at an average cooling rate, after winding at 550 ° C.
  • Formula (1) 0.35 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21 -Ta) ⁇ ⁇ 0.95
  • Formula (2) ⁇ 3.0 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21-Tb) ⁇ ⁇ 0.35
  • [M] in the formula indicates the content (mass%) of the element M.
  • the high-strength cold-rolled steel sheet according to the present invention includes a hot rolling process in which a steel slab having the above-described component composition is hot-rolled, cooled, and wound, and a first heat treatment. It can be manufactured by sequentially performing a heat treatment step, a cold rolling step for performing cold rolling, and a second heat treatment step for performing second heat treatment.
  • a hot rolling process in which a steel slab having the above-described component composition is hot-rolled, cooled, and wound, and a first heat treatment. It can be manufactured by sequentially performing a heat treatment step, a cold rolling step for performing cold rolling, and a second heat treatment step for performing second heat treatment.
  • the steel slab used in the present invention is preferably manufactured by a continuous casting method in order to prevent macro segregation of components, but can also be manufactured by an ingot-making method or a thin slab casting method.
  • a continuous casting method in order to prevent macro segregation of components, but can also be manufactured by an ingot-making method or a thin slab casting method.
  • after manufacturing the steel slab after cooling to room temperature and then reheating it, without cooling, it is charged in a heating furnace as it is without being cooled, or after heat retention Energy-saving processes such as direct rolling and direct rolling, in which rolling is performed immediately or after casting, can be applied without problems.
  • Hot rolling start temperature 1150-1300 ° C
  • the steel slab having the above component composition is cast and then hot rolling is started using a steel slab having a temperature of 1150 to 1300 ° C. without reheating, or the steel slab is reheated to 1150 to 1300 ° C. Then, hot rolling is started.
  • the hot rolling start temperature is lower than 1150 ° C.
  • the rolling load increases and the productivity decreases.
  • the hot rolling start temperature is higher than 1300 ° C.
  • the heating cost only increases. For this reason, the hot rolling start temperature is set to 1150 to 1300 ° C.
  • the slab temperature is the average thickness direction.
  • Finishing rolling finish temperature 850-950 ° C Hot rolling needs to be completed in the austenite single phase region in order to improve the elongation and hole expansion property after annealing by making the structure in the steel sheet uniform and reducing the anisotropy of the material. For this reason, the finish rolling finish temperature of hot rolling shall be 850 degreeC or more. On the other hand, if the finish rolling end temperature exceeds 950 ° C., the microstructure of the hot-rolled steel sheet becomes coarse and the characteristics after annealing deteriorate, so the finish rolling end temperature is set to 950 ° C. or less.
  • the thickness of the hot rolled steel sheet after hot rolling is not particularly limited, but is preferably 1.2 to 8.0 mm.
  • Cooling conditions after hot rolling Cooling is started within 1 second after completion of hot rolling, and is cooled to 650 ° C. or lower at a first average cooling rate of 80 ° C./s or higher as primary cooling, and subsequently secondary cooling. Cooling to 550 ° C. or less at the second average cooling rate of 5 ° C./s or more. After the hot rolling is completed, cooling is started within 1 second and rapidly cooled to the temperature range where the bainite transformation is performed without ferrite transformation. The microstructure of the rolled steel sheet is homogenized as a bainite structure. Such control of the structure of the hot-rolled steel sheet has an effect of mainly refining ferrite and martensite in the final steel sheet structure.
  • cooling is started within 1 second after the end of hot rolling, and primary cooling is performed to 650 ° C. or lower at a first average cooling rate of 80 ° C./s or higher.
  • the first average cooling rate is an average cooling rate from the end of hot rolling to the cooling stop temperature of primary cooling.
  • the second average cooling rate which is the average cooling rate of the secondary cooling
  • the second average cooling rate is an average cooling rate from the cooling stop temperature of the primary cooling to the winding temperature.
  • Winding temperature 550 ° C. or lower
  • primary cooling is performed, then secondary cooling is performed, cooling to 550 ° C. or lower, and winding is performed at a winding temperature of 550 ° C. or lower.
  • the upper limit of the coiling temperature is 550 ° C.
  • the upper limit of the coiling temperature is 550 ° C.
  • the lower limit of the coiling temperature is not particularly defined, but if the coiling temperature becomes too low, hard martensite is excessively generated and the cold rolling load increases, so that the temperature is preferably set to 300 ° C. or higher.
  • the pickling step is not particularly limited, and may be performed according to a conventional method.
  • First heat treatment step First heat treatment: Hold for 30 seconds or more in a temperature range of 400 to 750 ° C.
  • the present invention is the above-described hot rolling, followed by two heat treatments (first heat treatment and second heat treatment) with a cold rolling step in between. Apply. This controls the refinement of crystal grain size and the distribution of cementite precipitation.
  • the first heat treatment is carried out after the hot rolling, and further aims to homogenize the elemental distribution of C and Mn in the bainite homogeneous structure obtained in the hot rolling process.
  • the first heat treatment is important for eliminating segregation of elements such as C and Mn and obtaining a desired structure after the second heat treatment step.
  • the heat treatment temperature of the first heat treatment is less than 400 ° C.
  • the element distribution is insufficient, the influence of the element distribution state after hot rolling cannot be removed, and due to the uneven distribution of C and Mn
  • the second heat treatment which will be described later, the hardenability of the originally high C region is increased, and a desired steel sheet structure cannot be obtained.
  • cementite particles having a particle size of 0.1 ⁇ m or more are reduced, so that sufficient elongation and hole expandability cannot be obtained.
  • the heat treatment temperature of the first heat treatment exceeds 750 ° C., coarse and hard martensite is excessively present, the structure after the second heat treatment becomes non-uniform, and the volume fraction of martensite increases.
  • the first heat treatment has a temperature range of 400 to 750 ° C.
  • Heating that is, the heat treatment temperature of the first heat treatment is in the range of 400 ° C. or higher and 750 ° C. or lower.
  • it is the range of 450 degreeC or more and 700 degrees C or less, More preferably, it is the range of 450 degreeC or more and 650 degrees C or less.
  • the holding time in the temperature range of 400 to 750 ° C. is less than 30 seconds, the influence of the element distribution state after hot rolling cannot be removed, and a desired steel sheet structure cannot be obtained.
  • it is 300 seconds or more, More preferably, it is 600 seconds or more.
  • Cold rolling process A cold rolling step of rolling the hot-rolled steel sheet after the first heat treatment into a cold-rolled sheet having a predetermined thickness is performed.
  • the conditions for the cold rolling step are not particularly limited, and may be carried out by a conventional method.
  • the second heat treatment step is carried out in order to advance recrystallization and to form bainite, tempered martensite, retained austenite and martensite in the steel structure in order to increase the strength.
  • the second heat treatment after heating to a temperature range of 830 ° C. or higher at an average heating rate of 3 to 30 ° C./s, holding the first soaking temperature at a temperature of 830 ° C. or higher for 30 seconds or more, Cooling from 1 soaking temperature to a cooling stop temperature range of Ta ° C satisfying the following formula (1) at an average cooling rate of 3 ° C / s or more, and subsequently heating to a temperature range of Tb ° C satisfying the following formula (2), After maintaining for 20 seconds or more in the temperature range of Tb ° C. satisfying the following formula (2) as the second soaking temperature, continuous annealing for cooling to room temperature is performed.
  • Formula (1) 0.35 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21 -Ta) ⁇ ⁇ 0.95
  • Formula (2) ⁇ 3.0 ⁇ 1-exp ⁇ 0.011 ⁇ (561- [C] ⁇ 474- [Mn] ⁇ 33- [Ni] ⁇ 17- [Cr] ⁇ 17- [Mo] ⁇ 21-Tb) ⁇ ⁇ 0.35
  • [M] in the formula indicates the content (mass%) of the element M.
  • Average heating rate 3-30 ° C / s
  • the recrystallized grains can be refined by increasing the speed of nucleation of ferrite and austenite generated by recrystallization during the temperature rising process during annealing faster than the speed at which the recrystallized crystal grains grow. For this reason, the average heating rate to the temperature range of 830 ° C. or higher in the second heat treatment is set to 3 ° C./s or higher. If this heating rate is too low, ferrite and austenite generated during the heating process are coarsened, and finally obtained ferrite and martensite grains are coarsened, and a desired average crystal grain size cannot be obtained.
  • the average heating rate is 5 ° C./s or more.
  • the average heating rate is 30 ° C./s or less.
  • the average heating rate at the time of heating a cold-rolled sheet to a temperature range of a soaking temperature of 830 ° C. or higher is set to 3 ° C./s or higher and 30 ° C./s or lower.
  • the average heating rate is an average heating rate from the temperature at the start of heating to the first soaking temperature.
  • First soaking temperature 830 ° C. or higher
  • the cold-rolled plate is heated to a temperature range of 830 ° C. or higher at an average heating rate of 3 to 30 ° C./s, and the first soaking temperature is 830 ° C. or higher. Hold and recrystallize.
  • the first soaking temperature is a temperature range that is a two-phase region of ferrite and austenite or an austenite single-phase region. If the first soaking temperature is less than 830 ° C., the ferrite fraction increases, making it difficult to achieve both strength and stretch flangeability. For this reason, the lower limit of the first soaking temperature is 830 ° C.
  • the upper limit of the first soaking temperature is not particularly defined, but if the soaking temperature is too high, the austenite crystal grain size during annealing increases, and it is difficult to ensure the martensite grain size after annealing, so 900 ° C. or less. Is preferred.
  • Holding time at the first soaking temperature 30 seconds or more
  • the holding time at the first soaking temperature (soaking time) for the progress of recrystallization and partial or all austenite transformation Needs to be 30 seconds or longer.
  • the upper limit is not particularly limited, but is preferably within 600 seconds.
  • the austenite is cooled to a temperature range of Ta ° C. satisfying the above formula (1) at an average cooling rate of 3 ° C./s or more. If the average cooling rate from the first soaking temperature to the temperature range of Ta ° C.
  • the lower limit of the average cooling rate from the first soaking temperature is 3 ° C./s.
  • the average cooling rate is an average cooling rate from the first soaking temperature to Ta.
  • the cooling stop temperature Ta is such that A> 0.95, martensite is excessively generated during cooling, and untransformed austenite decreases.
  • the cooling stop temperature Ta ° C. is set to a temperature in a temperature range that satisfies the above-described formula (1).
  • the second soaking temperature is heated to a temperature range of Tb ° C. satisfying the formula (2), and the second soaking temperature is maintained in the temperature range of Tb ° C. satisfying the formula (2) for 20 seconds or more.
  • Tempered martensite is produced, for example, as follows. Untransformed austenite undergoes martensitic transformation during cooling to Ta ° C. during annealing, and is tempered when heated and held at Tb ° C. to produce tempered martensite. Moreover, a martensite is produced
  • temper rolling after the continuous annealing which is the above-mentioned 2nd heat treatment process.
  • a preferable range of the elongation when performing temper rolling is 0.1 to 2.0%.
  • hot dip galvanization may be performed to obtain a hot dip galvanized steel sheet, and alloying treatment may be performed after hot dip galvanization and alloying treatment. It is good also as a plating steel plate.
  • the cold-rolled steel sheet obtained by the present invention may be electroplated to form an electroplated steel sheet.
  • first heat treatment was performed at the first heat treatment temperature and the first heat treatment time (holding time) shown in Table 2. Thereafter, cold rolling was performed to produce a cold-rolled sheet (sheet thickness: 1.4 mm). Thereafter, as the second heat treatment, the sample was heated at the average heating rate shown in Table 2, heated to the first soaking temperature shown in Table 2, and kept at the soaking time shown in Table 2 (first holding time) for annealing.
  • the volume fraction of ferrite and martensite in the steel sheet is 2,000 times and 5,000 times magnification using SEM (scanning electron microscope) after corroding the thickness section parallel to the rolling direction of the steel sheet and corroding with 3% nital.
  • the area ratio was measured by the point count method (based on ASTM E562-83 (1988)), and the area ratio value was defined as the volume fraction value.
  • the average crystal grain size of ferrite and martensite can be determined by importing a photograph in which each ferrite and martensite crystal grain has been identified in advance from a steel sheet structure image using Image-Pro of Media Cybernetics.
  • the area of the site crystal grains can be calculated, the circle equivalent diameter was calculated, and the average value of the ferrite and martensite crystal grains was obtained by averaging those values for each phase.
  • the particle size of cementite was observed at a magnification of 5000, 10000 and 20000 using SEM (scanning electron microscope) and TEM (transmission electron microscope), and using Image-Pro as with ferrite and martensite.
  • the particle diameter was determined by calculating the equivalent circle diameter.
  • the number of cementite particles having a particle size of 0.1 ⁇ m or more per 100 ⁇ m 2 was observed at a magnification of 5000 times, 10000 times, 20000 times using SEM (scanning electron microscope) and TEM (transmission electron microscope). The average number of locations was determined.
  • the volume fraction of retained austenite was determined by polishing the steel plate to a 1 ⁇ 4 plane in the thickness direction and diffracting X-ray intensity on this 1 ⁇ 4 plane.
  • a K ⁇ ray of Mo as a radiation source and an acceleration voltage of 50 keV
  • an X-ray diffraction method (apparatus: RINT2200 manufactured by Rigaku) and a ferrite ferrite ⁇ 200 ⁇ , ⁇ 211 ⁇ , ⁇ 220 ⁇ , and austenite
  • the integrated intensity of X-ray diffraction lines on the ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, and ⁇ 311 ⁇ plane is measured, and using these measured values, “X-ray diffraction handbook” (2000) Rigaku Denki Co., Ltd., p. 26, 62-64, the volume fraction of retained austenite was determined.
  • steel sheet structure was observed by SEM (scanning electron microscope), TEM (transmission electron microscope), and FE-SEM (field emission scanning electron microscope), and the types of steel structures other than ferrite, retained austenite, and martensite were determined. Were determined.
  • Table 3 shows the tensile properties, the hole expansion ratio, the average number of cementite particles, and the results of the steel sheet structure obtained as described above. From the results shown in Table 3, in all of the examples of the present invention, ferrite has an average crystal grain size of 3 ⁇ m or less and a volume fraction of 5% or less, residual austenite has a volume fraction of 10 to 20%, martensite has an average crystal grain size of 4 ⁇ m or less, and The volume fraction is 20% or less, the balance has a composite structure containing bainite and / or tempered martensite, and the number of cementite particles having a particle size of 0.1 ⁇ m or more is 30 or more per 100 ⁇ m 2 in the cross section of the steel sheet. Recognize.
  • Such a steel sheet of the present invention has a good workability such as a tensile strength of 1180 MPa or more and a yield ratio of 75% or more, and an elongation of 17% or more and a hole expansion ratio of 30% or more. It has been.
  • the steel sheet structure does not satisfy the scope of the present invention, and as a result, at least one characteristic of tensile strength, yield ratio, elongation, and hole expansion ratio is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 伸びと伸びフランジ性に優れ、高降伏比を有する引張り強さが1180MPa以上の高強度冷延鋼板およびその製造方法を提供する。 質量%で、C:0.15~0.30%、Si:0.8~2.4%、Mn:2.4~3.5%、P:0.08%以下、S:0.005%以下、Al:0.01~0.08%、N:0.010%以下、Ti:0.002~0.05%、B:0.0002~0.0050%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトが平均結晶粒径3μm以下かつ体積分率5%以下(0%を含む)であり、残留オーステナイトが体積分率10~20%であり、マルテンサイトが平均結晶粒径4μm以下かつ体積分率20%以下(0%を含む)であり、かつ、残部にベイナイト及び/又は焼戻しマルテンサイトを含むミクロ組織を有し、鋼板の圧延方向に平行な板厚断面内100μm当たりにおける粒径0.1μm以上のセメンタイト粒子の平均粒子数が30個以上である高強度冷延鋼板。

Description

高強度冷延鋼板およびその製造方法
 本発明は、高降伏比を有する高強度冷延鋼板およびその製造方法に関し、特に自動車などの構造部品の部材として好適な高強度冷延鋼板に関するものである。
 近年、環境問題の高まりからCO排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、特に引張強さ(TS)が1180MPa以上の高強度冷延鋼板の適用が進められている。
 自動車の構造用部材や補強用部材に使用される高強度鋼板には、成形性に優れることが要求される。特に、複雑形状を有する部品に用いられる高強度鋼板には、伸び又は伸びフランジ性(穴広げ性ともいう)といった特性のみが優れているだけでなく、伸び及び伸びフランジ性の両方が優れていることが求められる。さらに、構造用部材や補強用部材などの自動車用部品には、優れた衝突吸収エネルギー特性が求められている。自動車用部品の衝突吸収エネルギー特性を向上させるためには、素材である鋼板の降伏比を高めることが有効である。降伏比の高い鋼板を用いた自動車用部品は、低い変形量であっても効率よく衝突エネルギーを吸収することが可能である。なお、ここで、降伏比(YR)とは、引張強さ(TS)に対する降伏応力(YS)の比を示す値であり、YR=YS/TSで表される。
 従来、高強度と成形性とを兼ね備えた高強度薄鋼板として、フェライト・マルテンサイト組織のデュアルフェーズ鋼(DP鋼)が知られている(特許文献1)。主相をフェライトとして、マルテンサイトを分散させた複合組織鋼であるDP鋼は、低降伏比でTSも高く、伸びにも優れている。
 また、高強度と優れた延性を兼ね備えた鋼板として、残留オーステナイトの変態誘起塑性(TRansformation Induced Plasticity)を利用したTRIP鋼板が挙げられる(特許文献2)。このTRIP鋼板は、残留オーステナイトを含有した鋼板組織を有しており、マルテンサイト変態開始温度以上の温度で加工変形させると、応力によって残留オーステナイトがマルテンサイトに誘起変態して大きな伸びが得られる。
特開2011-052295号公報 特開2005-240178号公報
 しかしながら、一般的にDP鋼はマルテンサイト変態時にフェライト中に可動転位が導入されるため低降伏比となり、衝突吸収エネルギー特性が低くなってしまう。また、残留オーステナイトを活用した鋼板においても、1180MPa以上もの高強度領域で伸びと伸びフランジ性を高めたものではない。
 上記したように、1180MPa以上の高強度鋼板において、優れた衝突吸収エネルギー特性を保ちつつ、プレス成形性に優れた伸びおよび伸びフランジ性を確保することは困難である。そして、これらの特性(降伏比、強度、伸び、伸びフランジ性)を兼備する鋼板は開発されていないのが実情である。
 本発明はこのような事情に鑑みてなされたものである。上記従来技術の問題点を解消し、伸びと伸びフランジ性に優れ、高降伏比を有する高強度冷延鋼板およびその製造方法を提供することを本発明の目的とする。
 本発明者らは鋭意検討を重ねた結果、鋼板のミクロ組織中のフェライト、残留オーステナイト、マルテンサイトの体積分率を特定の比率で制御し、かつ、フェライトおよびマルテンサイトの平均結晶粒径、さらに析出したセメンタイト粒子の分布状態を制御することで、高降伏比を確保しつつ、高い伸び特性に加えて優れた伸びフランジ性を併せて得られることを見出した。この発明は、上記の知見に立脚するものである。
 まず、本発明者らは、鋼板のミクロ組織と、上記したような引張強さ、降伏比、伸び、伸びフランジ性といった特性との関係について検討し、以下のように考察した。
a)鋼板組織中に高硬度を有するマルテンサイトもしくは残留オーステナイトが存在した場合、穴広げ試験において、打抜き加工時にフェライトとマルテンサイトもしくは残留オーステナイトの界面、特に軟質なフェライトとの界面にボイドが発生し、その後の穴広げ過程でボイド同士が連結、進展することで、き裂が発生する。このため、良好な伸びフランジ性を確保することが困難となる。一方、鋼板組織中に残留オーステナイトや軟質なフェライトを含有することで伸びが向上する。よって、1180MPa以上の強度を確保したうえで、伸びと伸びフランジ性を良好とするという観点からは、残留オーステナイトを含有し、フェライトの体積分率を少なくしたミクロ組織として、ミクロ組織中の各相の硬度差を減少させることが望ましい。
b)転位密度の高いベイナイトや焼戻しマルテンサイトを鋼板組織内に含有することで降伏比が高くなるが、伸びに対する影響は小さい。
 そこで発明者らは鋭意検討を重ねた。その結果、ボイド発生源である軟質相と硬質相の体積分率を調整し、硬質中間相である焼戻しマルテンサイト中もしくはベイナイト中に析出するセメンタイト粒子の分布状態を制御して、硬質相との硬度差を低下させることにより、強度や伸びフランジ性を確保しつつ、伸びの向上と高い降伏比を得ることができるとの知見を得た。
 また、そのためには、Bを適量添加するとともに、熱延鋼板のミクロ組織をベイナイト均質組織(板厚方向1/4位置においてベイナイトの体積分率が100%)とした上で、熱処理(第1の熱処理)を施し、熱延鋼板中の元素や炭化物の分布状態を制御し、次いで、このような熱延鋼板を冷間圧延後、連続焼鈍(第2の熱処理)における冷却条件や冷却後の保持条件等の条件を制御することで、ベイナイト変態や、残留オーステナイト生成、主にベイナイトや焼戻しマルテンサイトに析出するセメンタイトの分布状態を制御することが可能となり、所望のミクロ組織を形成した鋼板が製造できるとの知見を得た。
 ここで、焼入れ元素として、Bを用いることが重要である。すなわち、焼入れ元素として、例えばMnなどを過剰に添加すると、焼戻しマルテンサイトおよびマルテンサイトの硬度が高くなるだけでなく、マルテンサイト変態開始点が低下してしまう。このため、焼戻しマルテンサイトを得るための前段階であるマルテンサイト変態をさせる際の冷却において、冷却停止温度を低下させなければならず、過度の冷却能力が必要となりコストが増大する。Bはマルテンサイト変態開始点を低下させずに焼入れ性を確保することが可能であるため、冷却に必要なコストを低減することができる。さらにBは、熱間圧延時の仕上げ圧延後の冷却においても、フェライトやパーライトの生成を抑制することが可能であり、熱延鋼板の鋼板組織をベイナイト均質組織とする上で効果的である。そして、熱延鋼板の組織をベイナイト均質組織とした上で、その後に施す第1の熱処理によりC、Mnの濃度分配を均一化し、さらにその後に施す第2の熱処理の際、加熱速度を所定範囲とすることで、フェライトやマルテンサイトの結晶粒の微細化およびセメンタイト粒子の分布状態を制御することができ、所望の鋼板組織を形成させることができる。
 本発明者らは、Mn量を2.4~3.5%とし、Bを0.0002~0.0050%の範囲で添加し、さらに熱間圧延、冷間圧延後の焼鈍条件を制御することで、フェライトとマルテンサイトの結晶粒径を微細化しつつ、残留オーステナイトの体積分率を伸びの確保に十分な体積分率としながら、析出するセメンタイト粒子の分布状態を制御できることを見出した。かつ、本発明者らは、フェライト、ベイナイト、焼戻しマルテンサイト、マルテンサイトの体積分率を所定の範囲に制御することで、高降伏比を確保しつつ、伸びと伸びフランジ性を向上させることが可能であることを見出した。
 本発明は上記知見に基づくものであり、その要旨は以下のとおりである。なお、本発明は、引張強さが1180MPa以上の高強度冷延鋼板を対象とする。
 [1]質量%で、C:0.15~0.30%、Si:0.8~2.4%、Mn:2.4~3.5%、P:0.08%以下、S:0.005%以下、Al:0.01~0.08%、N:0.010%以下、Ti:0.002~0.05%、B:0.0002~0.0050%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトが平均結晶粒径3μm以下かつ体積分率5%以下(0%を含む)であり、残留オーステナイトが体積分率10~20%であり、マルテンサイトが平均結晶粒径4μm以下かつ体積分率20%以下(0%を含む)であり、かつ、残部にベイナイト及び/又は焼戻しマルテンサイトを含むミクロ組織を有し、鋼板の圧延方向に平行な板厚断面内100μm当たりにおける粒径0.1μm以上のセメンタイト粒子の平均粒子数が30個以上である高強度冷延鋼板。
 [2]さらに、成分組成として、質量%で、V:0.10%以下、Nb:0.10%以下から選択される一種以上を含有する前記[1]に記載の高強度冷延鋼板。
 [3]さらに、成分組成として、質量%で、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下から選択される一種以上を含有する前記[1]または[2]に記載の高強度冷延鋼板。
 [4]さらに、成分組成として、質量%で、Ca及び/又はREMを合計で0.0050%以下含有する前記[1]~[3]のいずれかに記載の高強度冷延鋼板。
 [5]前記[1]~[4]のいずれかに記載の成分組成を有する鋼スラブに、熱間圧延開始温度:1150~1300℃、仕上げ圧延終了温度:850~950℃の条件で熱間圧延を行い、熱間圧延の終了後1秒以内に冷却を開始し、1次冷却として80℃/s以上の第1平均冷却速度で650℃以下まで冷却し、引き続き2次冷却として5℃/s以上の第2平均冷却速度で550℃以下まで冷却した後に、550℃以下の巻取り温度で巻取った後、400~750℃の温度域で30秒以上保持する第1の熱処理を行い、次いで冷間圧延を行い、次いで、第2の熱処理として、3~30℃/sの平均加熱速度で830℃以上の温度域まで加熱し、第1均熱温度として830℃以上の温度で30秒以上保持した後、第1均熱温度から3℃/s以上の平均冷却速度で下記式(1)を満たすTa℃の冷却停止温度域まで冷却し、引き続き下記式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として下記式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却する連続焼鈍を施す高強度冷延鋼板の製造方法。
 式(1):0.35≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}≦0.95
 式(2):-3.0≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}<0.35
ここで、式中の[M]は元素Mの含有量(質量%)を示す。
 本発明によれば、鋼板の組成およびミクロ組織を制御することにより、引張強さが1180MPa以上、降伏比が75%以上であり、伸びが17%以上および穴広げ率が30%以上である、伸びと伸びフランジ性が共に優れた高強度冷延鋼板を安定して得ることができる。
 まず、本発明の高強度冷延鋼板の成分組成の限定理由を説明する。なお、以下において、鋼の成分組成の「%」表示は質量%を意味する。
 C:0.15~0.30%
 Cは鋼板の高強度化に有効な元素であり、本発明におけるベイナイト、焼戻しマルテンサイト、残留オーステナイト及びマルテンサイトといった第2相形成に関与して高強度化に寄与する。さらに、Cはマルテンサイトおよび焼戻しマルテンサイトの硬度を高くする。C量が0.15%未満では、必要なベイナイト、焼戻しマルテンサイト、残留オーステナイト及びマルテンサイトの体積率の確保が難しい。このため、C量は0.15%以上とする。好ましくは0.16%以上である。一方、C量が0.30%を超えると、フェライト、焼戻しマルテンサイト、マルテンサイトの硬度差が大きくなるため、伸びフランジ性が低下する。このため、C量は0.30%以下とする。好ましくは0.26%以下である。
 Si:0.8~2.4%
 Siはベイナイト変態時に炭化物生成を抑制し残留オーステナイトの形成に寄与する。十分な残留オーステナイトを形成するためには、Si量は0.8%以上とする必要がある。好ましくは1.2%以上である。しかしながら、Siを過剰に添加すると、化成処理性が低下するため、そのSi量は2.4%以下とする。好ましくは2.1%以下である。
 Mn:2.4~3.5%
 Mnは固溶強化および第2相を生成することで高強度化に寄与する元素である。また、オーステナイトを安定化させる元素であり、第2相の分率制御に必要な元素である。さらに、熱延鋼板の組織をベイナイト変態により均質化するために必要な元素である。その効果を得るためにはMnを2.4%以上含有することが必要である。一方、過剰に含有した場合、マルテンサイトの体積率が過剰になり、さらにマルテンサイトおよび焼戻しマルテンサイトの硬度が増加してしまい、伸びフランジ性が低下するため、Mnの含有量は3.5%以下とする。好ましくは3.3%以下である。
 P:0.08%以下
 Pは固溶強化により高強度化に寄与するが、過剰に添加された場合には、粒界への偏析が著しくなって粒界を脆化させたり、溶接性を低下させる。よって、Pの含有量は0.08%以下とする。好ましくは0.05%以下である。
 S:0.005%以下
 Sの含有量が多い場合には、MnSなどの硫化物が多く生成し、伸びフランジ性に代表される局部伸びが低下する。よって、Sの含有量の上限は0.005%とする。好ましくは、S含有量は0.0045%以下である。特に下限は無いが、極低S化は製鋼コストが上昇するため、Sの含有量の下限は0.0005%とすることが好ましい。
 Al:0.01~0.08%
 Alは脱酸に必要な元素であり、この効果を得るためにはAl含有量を0.01%以上とすることが必要である。一方、Alは0.08%を超えて含有しても効果が飽和するため、Al含有量は0.08%以下とする。好ましくは0.05%以下である。
 N:0.010%以下
 Nは粗大な窒化物を形成し、曲げ性や伸びフランジ性を劣化させることから、その含有量を抑える必要がある。N量が0.010%超えでは、この傾向が顕著となることから、Nの含有量を0.010%以下とする。好ましくは0.0050%以下である。
 Ti:0.002~0.05%
 Tiは微細な炭窒化物を形成することで、強度上昇に寄与することができる元素である。さらに、TiはBよりも窒化物を生成しやすいため、本発明に必須な元素であるBをNと反応させないためにも必要である。このような効果を発揮させるためには、Tiの含有量の下限を0.002%とする必要がある。好ましくは0.005%である。一方、多量にTiを添加すると、伸びが著しく低下するため、Tiの含有量は0.05%以下とする。好ましく0.035%以下である。
 B:0.0002~0.0050%
 Bはマルテンサイト変態開始点を低下させることなく焼入れ性を向上させる元素であり、第2相を生成することで高強度化に寄与する元素である。さらに、Bは熱間圧延の仕上げ圧延後に冷却する際、フェライトやパーライトの生成を抑制する効果がある。このような効果を発揮させるためには、Bの含有量を0.0002%以上とする必要がある。好ましくは0.0003%以上である。一方、Bは0.0050%を超えて含有させても、その効果が飽和するため、Bの含有量は0.0050%以下とする。好ましくは0.0040%以下である。
 また、本発明では、上記の成分に加えてさらに、下記の理由により、V:0.10%以下、Nb:0.10%以下から選択される一種以上や、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下から選択される一種以上や、Ca及び/又はREMを合計で0.0050%以下を、個別にあるいは同時に含有しても良い。
 V:0.10%以下
 Vは微細な炭窒化物を形成することで、強度上昇に寄与することができる。このような作用を有するために、Vを0.01%以上含有させることが好ましい。一方、多量のVを添加させても、0.10%を超えた分の強度上昇効果は小さく、そのうえ、合金コストの増加も招いてしまう。したがって、Vの含有量は0.10%以下とする。好ましくは0.05%以下である。
 Nb:0.10%以下
 NbもVと同様に、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて添加することができる。このような効果を発揮させるためには、Nbの含有量を0.005%以上とすることが好ましい。一方、多量にNbを添加すると、伸びが著しく低下するため、その含有量は0.10%以下とする。好ましくは0.05%以下である。
 Cr:0.50%以下
 Crは第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を発揮させるためには、0.10%以上含有させることが好ましい。一方、0.50%を超えて含有させると、過剰にマルテンサイトが生成するため、その含有量は0.50%以下とする。
 Mo:0.50%以下
 MoもCrと同様に、第2相を生成することで高強度化に寄与する元素である。また、さらに一部炭化物を生成して高強度化に寄与する元素でもあり、必要に応じて添加することができる。これら効果を発揮させるためには、Moは0.05%以上含有させることが好ましい。0.50%を超えて含有させても効果が飽和するため、その含有量は0.50%以下とする。
 Cu:0.50%以下
 Cuは、Crと同様に第2相を生成することで高強度化に寄与する元素である。また、固溶強化により高強度化に寄与する元素でもあり、必要に応じて添加することができる。これら効果を発揮するためには0.05%以上含有させることが好ましい。一方、0.50%を超えて含有させても効果が飽和し、またCuに起因する表面欠陥が発生しやすくなるため、その含有量は0.50%以下とする。
 Ni:0.50%以下
 NiもCrと同様に、第2相を生成することで高強度化に寄与する元素であり、また、Cuと同様に固溶強化により高強度化に寄与するため、必要に応じて添加することができる。これら効果を発揮させるためには0.05%以上含有させることが好ましい。また、Cuと同時に添加すると、Cu起因の表面欠陥を抑制する効果があるため、Cu添加時に特に有効である。一方、0.50%を超えて含有させても効果が飽和するため、その含有量を0.50%以下とする。
 Ca及び/又はREMを合計で0.0050%以下
 CaおよびREMは、硫化物の形状を球状化し、伸びフランジ性に対する硫化物の悪影響を改善するのに寄与する元素であり、必要に応じて添加することができる。このような効果を発揮させるためには、Ca、REMのいずれか1種以上を合計で0.0005%以上含有させることが好ましい。一方、Ca及び/又はREMを合計で0.0050%を超えて含有させても効果が飽和する。このため、Ca、REMは、単独添加または複合添加いずれの場合においても、その合計の含有量を0.0050%以下とする。
 上記以外の残部はFe及び不可避的不純物である。不可避的不純物としては、例えば、Sb、Sn、Zn、Co等が挙げられる。これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。また、本発明では、Ta、Mg、Zrを通常の鋼組成の範囲内で含有しても、その効果は失われない。
 次に、本発明の高強度冷延鋼板のミクロ組織について、詳細に説明する。
 本発明の高強度冷延鋼板は、フェライトが平均結晶粒径3μm以下かつ体積分率5%以下(0%を含む)であり、残留オーステナイトが体積分率10~20%であり、マルテンサイトが平均結晶粒径4μm以下かつ体積分率20%以下(0%を含む)であり、かつ、残部にベイナイト及び/又は焼戻しマルテンサイトを含むミクロ組織を有し、鋼板の圧延方向に平行な板厚断面内100μm当たりにおける粒径0.1μm以上のセメンタイト粒子の平均粒子数が30個以上である。
 フェライト:平均結晶粒径3μm以下かつ体積分率5%以下(0%を含む)
 フェライトは軟質な組織であり、前記したように、高硬度を有するマルテンサイトもしくは残留オーステナイトとの界面で打ち抜き時にボイドを生成しやすい。フェライトの体積分率が5%を超えると、打抜き時のボイド生成量が増加して、伸びフランジ性が低下する。さらに、フェライトの体積分率が5%を超えて多くなると、強度確保のため、マルテンサイトや焼戻しマルテンサイトの硬度も高くする必要があり、強度と伸びフランジ性の両立が困難となる。したがって、フェライトの体積分率は5%以下とする。好ましくは3%以下であり、さらに好ましくは1%以下である。なお、フェライトの体積分率は0%であってもよい。また、フェライトの平均結晶粒径が3μm超では、穴広げ時等において、打抜き端面に生成したボイドが穴広げ中に連結しやすくなるため、良好な伸びフランジ性が得られない。そのため、ミクロ組織中にフェライトを有する場合、そのフェライトの平均結晶粒径は3μm以下とする。
 残留オーステナイト:体積分率10~20%
 良好な延性を確保するためには、残留オーステナイトの体積分率を10~20%の範囲とする必要がある。残留オーステナイトの体積分率が10%未満では、低い伸びしか得られないため、残留オーステナイトの体積分率は10%以上とする。好ましくは11%以上である。また、残留オーステナイトの体積分率が20%を超える場合、伸びフランジ性が劣化するため、残留オーステナイトの体積分率は20%以下とする。好ましくは18%以下である。
 マルテンサイト:平均結晶粒径4μm以下かつ体積分率20%以下(0%を含む)
 所望の強度を確保しつつ、伸びフランジ性を確保するためにマルテンサイトの体積分率は20%以下とする。好ましくは15%以下であり、より好ましくは12%以下である。なお、マルテンサイトの体積分率は0%であってもよい。また、マルテンサイトの平均結晶粒径が4μm超ではフェライトとの界面に生成するボイドが連結しやすくなり、伸びフランジ性が劣化するため、マルテンサイトの平均結晶粒径は4μm以下とする。好ましくは、マルテンサイトの平均結晶粒径の上限は3μmである。
 残部組織:ベイナイト及び/又は焼戻しマルテンサイトを含む組織
 良好な伸びフランジ性や高降伏比を確保するために、上記のフェライト、残留オーステナイト、マルテンサイト以外の残部には、ベイナイト及び/又は焼戻しマルテンサイトを含有することが必要である。ベイナイトの体積分率は15~50%、焼戻しマルテンサイトの体積分率は30~70%が好ましい。また、ベイナイト及び焼戻しマルテンサイトを含有することが好ましい。焼戻しマルテンサイトの平均結晶粒径は12μm以下が好ましい。なお、ここで云うベイナイト相の体積分率とは、観察面に占めるベイニティック・フェライト(転位密度の高いフェライト)の体積割合のことである。
 鋼板の圧延方向に平行な板厚断面内100μm当たりにおける粒径0.1μm以上のセメンタイト粒子の平均粒子数が30個以上
 良好な穴広げ性や高降伏比を確保するために、鋼板断面内に粒径0.1μm以上のセメンタイト粒子が、100μm当たり平均で30個以上を有する必要がある。なおここで鋼板断面内とは、鋼板の圧延方向に平行な板厚断面内を意味する。セメンタイト粒子は、主にベイナイト中もしくは焼戻しマルテンサイト中に析出する。このような、セメンタイト粒子のうち、粒径0.1μm以上のセメンタイト粒子の析出数が、100μm当たり平均で30個未満となると、焼戻しマルテンサイトやベイナイトの硬度が高くなり、軟質相(フェライト)や硬質相(マルテンサイトや残留オーステナイト)との界面にボイドが生成しやすいため伸びフランジ性が劣化する。好ましくは45個以上である。
 なお、本発明のミクロ組織において、上記したフェライト、残留オーステナイト、マルテンサイト、ベイナイトおよび焼戻しマルテンサイト以外に、パーライト等が生成される場合があるが、上記のフェライト、残留オーステナイトおよびマルテンサイトの体積分率、フェライト、マルテンサイトの平均結晶粒径、セメンタイト粒子の分布状態が満足されれば、本発明の目的を達成できる。ただし、パーライト等の上記したフェライト、残留オーステナイト、マルテンサイト、ベイナイトおよび焼戻しマルテンサイト以外の組織の体積分率は合計で3%以下が好ましい。
 本発明のミクロ組織の体積分率及び平均結晶粒径は後述の実施例に記載した方法により測定できる。また、0.1μm以上のセメンタイト粒子の平均粒子数も後述の実施例に記載した方法により測定できる。
 次に、本発明の高強度冷延鋼板の製造方法について説明する。
 本発明の高強度冷延鋼板は、上記した成分組成を有する鋼スラブに、熱間圧延開始温度:1150~1300℃、仕上げ圧延の終了温度:850~950℃の条件で熱間圧延を行い、熱間圧延の終了後1秒以内に冷却を開始し、1次冷却として80℃/s以上の第1平均冷却速度で650℃以下まで冷却し、引き続き2次冷却として5℃/s以上の第2平均冷却速度で550℃以下まで冷却した後に、550℃以下の巻取った後、400~750℃の温度域で30秒以上保持する第1の熱処理を行い、次いで冷間圧延を行い、次いで、第2の熱処理として、3~30℃/sの平均加熱速度で830℃以上の温度域まで加熱し、第1均熱温度として830℃以上の温度で30秒以上保持した後、第1均熱温度から3℃/s以上の平均冷却速度で下記式(1)を満たすTa℃の冷却停止温度域まで冷却し、引き続き下記式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として下記式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却する連続焼鈍を施すことにより製造できる。
 式(1):0.35≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}≦0.95
 式(2):-3.0≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}<0.35
ここで、式中の[M]は元素Mの含有量(質量%)を示す。
 上記したように、本発明の高強度冷延鋼板は、上記した成分組成の鋼スラブに、熱間圧延を行い、冷却し、巻き取る熱間圧延工程と、第1の熱処理を行う第1の熱処理工程と、冷間圧延を行う冷間圧延工程と、第2の熱処理を行う第2の熱処理工程を順次施すことにより製造できる。以下、各製造条件について、詳細に説明する。
 なお、本発明で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが好ましいが、造塊法、薄スラブ鋳造法によっても製造することが可能である。本発明では、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再加熱する従来法に加え、冷却しないで、温片のままで加熱炉に装入する、あるいは保熱を行った後に直ちに圧延する、あるいは鋳造後そのまま圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
 [熱間圧延工程]
 熱間圧延開始温度:1150~1300℃
 上記した成分組成の鋼スラブを、鋳造後、再加熱することなく1150~1300℃の温度の鋼スラブを用いて熱間圧延を開始するか、若しくは、鋼スラブを1150~1300℃に再加熱した後、熱間圧延を開始する。熱間圧延開始温度は、1150℃よりも低くなると圧延負荷が増大し生産性が低下する。一方、熱間圧延開始温度が1300℃より高い場合は、加熱コストが増大するだけである。このため、熱間圧延開始温度は1150~1300℃とする。なお、スラブ温度は板厚方向平均温度とする。
 仕上げ圧延終了温度:850~950℃
 熱間圧延は、鋼板内の組織均一化、材質の異方性低減により、焼鈍後の伸びおよび穴広げ性を向上させるため、オーステナイト単相域にて終了する必要がある。このため、熱間圧延の仕上げ圧延終了温度は850℃以上とする。一方、仕上げ圧延終了温度が950℃超えでは、熱延鋼板のミクロ組織が粗大になり、焼鈍後の特性が低下するため、仕上げ圧延終了温度は950℃以下とする。熱間圧延後の熱延鋼板の厚さは特に限定されないが、1.2~8.0mmが好ましい。
 熱間圧延後の冷却条件:熱間圧延の終了後1秒以内に冷却を開始し、1次冷却として80℃/s以上の第1平均冷却速度で650℃以下まで冷却し、引き続き2次冷却として5℃/s以上の第2平均冷却速度で550℃以下まで冷却
 熱間圧延終了後、1秒以内に冷却を開始して、フェライト変態させることなく、ベイナイト変態する温度域まで急冷して熱延鋼板のミクロ組織をベイナイト組織として均質化する。このような熱延鋼板の組織の制御は、最終的な鋼板組織において、主にフェライトやマルテンサイトを微細化させる効果がある。熱間圧延終了後、冷却開始までの時間が1秒を超えると、フェライト変態が開始されるため、ベイナイト変態の均質化が困難となる。このため、熱間圧延終了後、すなわち熱間圧延の仕上げ圧延を終了後、1秒以内に冷却(1次冷却)を開始し、80℃/s以上の平均冷却速度(第1平均冷却速度)で650℃以下まで冷却する。1次冷却の平均冷却速度である第1平均冷却速度が80℃/s未満ではフェライト変態が冷却中に開始されるため、熱延鋼板の鋼板組織が不均質となり、最終的に得られる鋼板の伸びフランジ性が低下する。また1次冷却での冷却の終点の温度が650℃超えではパーライトが過剰に生成し、熱延鋼板の鋼板組織が不均質となり、最終的に得られる鋼板の伸びフランジ性が低下する。そのため、熱間圧延の終了後、1秒以内に冷却を開始し、80℃/s以上の第1平均冷却速度で650℃以下まで1次冷却する。なお、ここで、第1平均冷却速度は、熱間圧延終了から1次冷却の冷却停止温度までの平均冷却速度である。上記した1次冷却の後は、引き続き2次冷却を行い、5℃/s以上の平均冷却速度で550℃以下まで冷却する。2次冷却の平均冷却速度である第2平均冷却速度が5℃/s未満、もしくは550℃超までの2次冷却では、熱延鋼板の鋼板組織にフェライトもしくはパーライトが過剰に生成し、最終的に得られる鋼板の伸びフランジ性が低下する。したがって、2次冷却として5℃/s以上の第2平均冷却速度で550℃以下まで冷却する。なお、ここで、第2平均冷却速度は、1次冷却の冷却停止温度から巻取り温度までの平均冷却速度である。
 巻取り温度:550℃以下
 上記したように、熱間圧延後、1次冷却を行い次いで2次冷却を行って、550℃以下まで冷却した後、550℃以下の巻取り温度で巻き取る。巻取り温度が550℃超では、フェライトおよびパーライトが過剰に生成するため、巻取り温度の上限は550℃とする。好ましくは500℃以下である。巻取り温度の下限は特に規定はしないが、巻取り温度が低温になりすぎると、硬質なマルテンサイトが過剰に生成し、冷間圧延負荷が増大するため、300℃以上とすることが好ましい。
 [酸洗工程]
 熱間圧延工程後、酸洗工程を実施し、熱間圧延工程で形成された熱延鋼板表層のスケールを除去するのが好ましい。酸洗工程は特に限定されず、常法に従って実施すればよい。
 [第1の熱処理工程]
 第1の熱処理:400~750℃の温度域で30秒以上保持
 本発明は、上記した熱間圧延後に、冷間圧延工程を挟んで2回の熱処理(第1の熱処理、第2の熱処理)を施す。これにより、結晶粒径の微細化やセメンタイト析出の分布状態を制御する。第1の熱処理は上記熱間圧延後に実施し、熱間圧延工程で得られたベイナイト均質組織において、さらにCやMnの元素分配の均質化を目的とする。第1の熱処理は、C、Mnなどの元素の偏析を解消し、第2の熱処理工程後に所望の組織を得るために重要である。第1の熱処理の熱処理温度が400℃に満たない場合、元素分配が不十分であり、熱間圧延後の元素分布状態の影響を除去することが出来ず、C、Mnの偏在に起因して、後述する第2の熱処理後に、元々Cの多い領域の焼入性が高くなり、所望の鋼板組織が得られない。さらに第2の熱処理後に、粒径0.1μm以上のセメンタイト粒子が減少するため、十分な伸びおよび穴広げ性が得られない。一方、第1の熱処理の熱処理温度が750℃を超えると、粗大かつ硬質なマルテンサイトが過度に存在し、第2の熱処理後の組織が不均一となり、かつマルテンサイトの体積分率が増加し、過度に高強度化して、伸びおよび穴広げ性が著しく低下する。したがって、冷間圧延前の熱延鋼板を均一な組織とするため、熱延鋼板に施す第1の熱処理には最適な温度範囲が存在し、第1の熱処理では400~750℃の温度域に加熱する、すなわち第1の熱処理の熱処理温度は400℃以上750℃以下の範囲とする。好ましくは450℃以上700℃以下の範囲、より好ましくは450℃以上650℃以下の範囲である。また、400~750℃の温度域における保持時間が30秒未満では、熱間圧延後の元素分布状態の影響を除去することが出来ず、所望の鋼板組織が得られない。好ましくは300秒以上であり、さらに好ましくは600秒以上である。
 [冷間圧延工程]
 第1の熱処理後の熱延鋼板に対し、所定の板厚の冷延板に圧延する冷間圧延工程を行う。冷間圧延工程の条件は特に限定されず常法で実施すればよい。
 [第2の熱処理工程]
 第2の熱処理工程は、再結晶を進行させるとともに、高強度化のため鋼組織にベイナイト、焼戻しマルテンサイト、残留オーステナイトやマルテンサイトを形成するために実施する。
 このため、第2の熱処理として、3~30℃/sの平均加熱速度で830℃以上の温度域まで加熱し、第1均熱温度として830℃以上の温度で30秒以上保持した後、第1均熱温度から3℃/s以上の平均冷却速度で下記式(1)を満たすTa℃の冷却停止温度域まで冷却し、引き続き下記式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として下記式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却する連続焼鈍を施す。
 式(1):0.35≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}≦0.95
 式(2):-3.0≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}<0.35
ここで、式中の[M]は元素Mの含有量(質量%)を示す。
 以下に各条件の限定理由について、説明する。
 平均加熱速度:3~30℃/s
 焼鈍における昇温過程での再結晶で生成するフェライトやオーステナイトの核生成の速度を、再結晶した結晶粒が成長する速度より速めることで、再結晶粒の微細化が可能である。このため、第2の熱処理における830℃以上の温度域までの平均加熱速度を3℃/s以上とする。この加熱速度が、小さすぎると、加熱の過程で生成するフェライトやオーステナイトが粗大化し、最終的に得られるフェライトやマルテンサイト粒が粗大化して所望の平均結晶粒径が得られない。好ましくは、平均加熱速度は5℃/s以上である。一方、急速に加熱しすぎると、再結晶が進行しにくくなるため、平均加熱速度は30℃/s以下とする。このため、冷延板を均熱温度830℃以上の温度域まで加熱する際の平均加熱速度は3℃/s以上30℃/s以下とする。なお、ここで平均加熱速度は加熱開始時の温度から第1均熱温度までの平均加熱速度である。
 第1均熱温度:830℃以上
 冷延板は、前記したように、平均加熱速度:3~30℃/sで830℃以上の温度域に加熱し、830℃以上の第1均熱温度で保持して再結晶させる。第1均熱温度は、フェライトとオーステナイトの2相域もしくはオーステナイト単相域である温度域とする。第1均熱温度が830℃未満ではフェライト分率が多くなるため、強度と伸びフランジ性の両立が困難となる。このため、第1均熱温度の下限は830℃とする。第1均熱温度の上限は特に規定されないが、均熱温度が高すぎると、焼鈍中のオーステナイト結晶粒径が増大し、焼鈍後のマルテンサイト粒径の確保が困難であるため、900℃以下が好ましい。
 第1均熱温度での保持時間:30秒以上
 上記の第1均熱温度において、再結晶の進行および一部もしくは全てオーステナイト変態させるため、第1均熱温度での保持時間(均熱時間)は30秒以上とする必要がある。上限は特に限定されないが、600秒以内が好ましい。
 第1均熱温度から3℃/s以上の平均冷却速度で下記式(1)を満たすTa℃の冷却停止温度域まで冷却
 式(1):0.35≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}≦0.95
 第1均熱温度での保持時に生成したオーステナイトを一部マルテンサイト変態させるために、3℃/s以上の平均冷却速度で上記式(1)を満たすTa℃の温度域まで冷却する。第1均熱温度からTa℃の温度域までの平均冷却速度が3℃/s未満だと、フェライト変態が過剰に進行し、所定の体積分率の確保が困難であることに加え、パーライトが過剰に生成する。このため、第1均熱温度からの平均冷却速度の下限は3℃/sとする。なお、ここで平均冷却速度は第1均熱温度からTaまでの平均冷却速度である。
以下、1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}=Aとして説明する。冷却停止温度Taが、A>0.95となる温度では、冷却時にマルテンサイトが過剰に生成するため、未変態のオーステナイトが減少する。また、ベイナイト変態や残留オーステナイトが減少するため、伸びが低下する。一方、冷却停止温度Ta℃がA<0.35となる温度では、焼戻しマルテンサイトが減少し、セメンタイト粒子を所定の個数得られないため、伸びフランジ性が低下する。このため、冷却停止温度Ta℃は、上記した式(1)を満たす温度域の温度とする。
 Ta℃の温度域まで冷却後、下記式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として下記式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却
 式(2):-3.0≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}<0.35
 上記したTaの温度域まで冷却した後は、冷却途中に生成したマルテンサイトを焼戻して焼戻しマルテンサイトとすることと、未変態のオーステナイトをベイナイト変態させ、ベイナイトおよび残留オーステナイトを鋼板組織中に生成させるために、再加熱し、第2均熱温度域で保持する。式(2)を満たすTb℃の温度域まで再加熱し、保持することで、セメンタイト粒子が成長し、高い降伏比を保持しつつ、伸びと伸びフランジ性を良好とすることができる。
以下、1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}=Bとして説明する。第2均熱温度Tb℃が、B<-3.0となる温度では、パーライトが過剰に生成するため、伸びが低下する。また、第2均熱温度Tb℃が、B≧0.35となる温度では、マルテンサイトの焼戻しが不十分となり、セメンタイト粒子が成長せず、ボイドが生成しやすくなるため、伸びフランジ性が低下する。また、-3.0≦B<0.35を満たすTb℃の温度域での保持時間が20秒未満では、ベイナイト変態が十分に進行しないため、未変態のオーステナイトが多く残り、最終的にマルテンサイトが過剰に生成してしまい、伸びフランジ性が低下する。そのため、第2均熱温度として、式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却する。
 焼戻しマルテンサイトは例えば次のように生成する。焼鈍時のTa℃までの冷却中に未変態のオーステナイトが一部マルテンサイト変態し、Tb℃で加熱後、保持された際に焼戻されて焼戻しマルテンサイトが生成する。また、マルテンサイトは例えば次のように生成する。連続焼鈍時の第2均熱温度域であるTb℃の温度域で保持後も未変態であるオーステナイトが、室温まで冷却した際にマルテンサイトが生成する。
 なお、上記した第2の熱処理工程である連続焼鈍の後に調質圧延を実施しても良い。調質圧延を実施する際の伸長率の好ましい範囲は0.1~2.0%である。
 また、本発明の範囲内であれば、上記した第2の熱処理工程において、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板としてもよく、また、溶融亜鉛めっき後に合金化処理を施して合金化溶融亜鉛めっき鋼板としても良い。さらに本発明で得られた冷延鋼板を電気めっきし、電気めっき鋼板としても良い。
 以下、本発明の実施例を説明する。ただし、本発明は、もとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す化学組成の鋼(残部成分:Feおよび不可避的不純物)を溶製して鋳造し、230mm厚のスラブを製造し、熱間圧延開始温度を1250℃、仕上げ圧延終了温度(FDT)を表2に示す条件として熱間圧延を行い、板厚:3.2mmの熱延鋼板とした後、表2に示す時間(冷却開始までの時間)以内に冷却を開始し、表2で示す第1平均冷却速度(冷速1)で第1冷却温度まで冷却した後、第2平均冷却速度(冷速2)で冷却し、巻取り温度(CT)で巻取った。ついで、得られた熱延鋼板を酸洗した後、引き続き表2に示す第1熱処理温度、第1熱処理時間(保持時間)で第1の熱処理を行った。その後、冷間圧延を施し、冷延板(板厚:1.4mm)を製造した。その後、第2の熱処理として、表2に示す平均加熱速度で加熱し、表2に示す第1均熱温度に加熱して表2に示す均熱時間(第1保持時間)保持して焼鈍した後、表2に示す平均冷却速度(冷速3)で冷却停止温度(Ta℃)まで冷却し、その後、表2に示す第2均熱温度(Tb℃)まで加熱して表2に示す時間(第2保持時間)保持し、室温まで冷却した。
 このようにして製造した鋼板について、以下のように各特性を評価した。結果を表3に示す。
 [引張特性]
 製造した鋼板から、JIS5号引張試験片を圧延直角方向が長手方向(引張方向)となるように採取し、引張試験(JIS Z2241(1998))により、降伏応力(YS)、引張強さ(TS)、全伸び(EL)を測定するとともに、降伏比(YR)を求めた。
 [伸びフランジ性]
 製造した鋼板から採取した試験片について、日本鉄鋼連盟規格(JFS T1001(1996))に準拠し、クリアランス:板厚の12.5%にて、10mmφの穴を打抜き、かえりがダイ側になるように試験機にセットした後、60°の円錐ポンチで成形することにより穴広げ率(λ)を測定した。λ(%)が、30%以上を有するものを良好な伸びフランジ性を有する鋼板とした。
 [鋼板組織]
 鋼板のフェライト、マルテンサイトの体積分率は、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、SEM(走査型電子顕微鏡)を用いて2000倍、5000倍の倍率で観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により、面積率を測定し、その面積率の値を体積分率の値とした。フェライト、マルテンサイトの平均結晶粒径は、Media Cybernetics社のImage-Proを用いて、鋼板組織写真から、予め各々のフェライトおよびマルテンサイト結晶粒を識別しておいた写真を取り込むことでフェライト、マルテンサイト結晶粒の面積が算出可能であり、その円相当直径を算出し、各相ごとにそれらの値を平均して、フェライト、マルテンサイト結晶粒の平均結晶粒径を求めた。
 セメンタイトの粒径はSEM(走査型電子顕微鏡)およびTEM(透過型電子顕微鏡)を用いて5000倍、10000倍、20000倍の倍率で観察し、フェライトとマルテンサイト同様に、Image-Proを用いて、その円相当直径を算出することで粒径を求めた。
 粒径0.1μm以上のセメンタイト粒子の100μmあたりの個数は、SEM(走査型電子顕微鏡)およびTEM(透過型電子顕微鏡)を用いて5000倍、10000倍、20000倍の倍率で観察し、10箇所の平均個数を求めた。
 残留オーステナイトの体積分率は、鋼板を板厚方向の1/4面まで研磨し、この板厚1/4面の回折X線強度により求めた。MoのKα線を線源として、加速電圧50keVにて、X線回折法(装置:Rigaku社製RINT2200)によって、鉄のフェライトの{200}面、{211}面、{220}面と、オーステナイトの{200}面、{220}面、{311}面のX線回折線の積分強度を測定し、これらの測定値を用いて、「X線回折ハンドブック」(2000年)理学電機株式会社、p.26、62-64に記載の計算式から残留オーステナイトの体積分率を求めた。
 また、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)、FE-SEM(電界放出型走査電子顕微鏡)により鋼板組織を観察し、フェライト、残留オーステナイト、マルテンサイト以外の鋼組織の種類を決定した。
 上記のようにして得た、引張特性、穴広げ率、セメンタイト粒子の平均個数および鋼板組織の結果を表3に示す。表3に示す結果から、本発明例は何れもフェライトが平均結晶粒径3μm以下かつ体積分率5%以下、残留オーステナイトが体積分率10~20%、マルテンサイトが平均結晶粒径4μm以下かつ体積分率20%以下、残部にベイナイト及び/又は焼戻しマルテンサイトを含む複合組織を有し、さらに鋼板断面内に粒径0.1μm以上のセメンタイト粒子が、100μm当り30個以上であることがわかる。このような本発明例の鋼板は、1180MPa以上の引張強さと、75%以上の降伏比を確保しつつ、且つ、17%以上の伸びと30%以上の穴広げ率という良好な加工性が得られている。一方、比較例は、鋼板組織が本発明範囲を満足せず、その結果、引張強さ、降伏比、伸び、穴広げ率の少なくとも1つの特性が劣る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1.  質量%で、C:0.15~0.30%、Si:0.8~2.4%、Mn:2.4~3.5%、P:0.08%以下、S:0.005%以下、Al:0.01~0.08%、N:0.010%以下、Ti:0.002~0.05%、B:0.0002~0.0050%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトが平均結晶粒径3μm以下かつ体積分率5%以下(0%を含む)であり、残留オーステナイトが体積分率10~20%であり、マルテンサイトが平均結晶粒径4μm以下かつ体積分率20%以下(0%を含む)であり、かつ、残部にベイナイト及び/又は焼戻しマルテンサイトを含むミクロ組織を有し、鋼板の圧延方向に平行な板厚断面内100μm当たりにおける粒径0.1μm以上のセメンタイト粒子の平均粒子数が30個以上である高強度冷延鋼板。
  2.  さらに、成分組成として、質量%で、V:0.10%以下、Nb:0.10%以下から選択される一種以上を含有する請求項1に記載の高強度冷延鋼板。
  3.  さらに、成分組成として、質量%で、Cr:0.50%以下、Mo:0.50%以下、Cu:0.50%以下、Ni:0.50%以下から選択される一種以上を含有する請求項1または2に記載の高強度冷延鋼板。
  4.  さらに、成分組成として、質量%で、Ca及び/又はREMを合計で0.0050%以下含有する請求項1~3のいずれか1項に記載の高強度冷延鋼板。
  5.  請求項1~4のいずれかに記載の成分組成を有する鋼スラブに、熱間圧延開始温度:1150~1300℃、仕上げ圧延終了温度:850~950℃の条件で熱間圧延を行い、熱間圧延の終了後1秒以内に冷却を開始し、1次冷却として80℃/s以上の第1平均冷却速度で650℃以下まで冷却し、引き続き2次冷却として5℃/s以上の第2平均冷却速度で550℃以下まで冷却した後に、550℃以下の巻取温度で巻取った後、400~750℃の温度域で30秒以上保持する第1の熱処理を行い、次いで冷間圧延を行い、次いで、第2の熱処理として、3~30℃/sの平均加熱速度で830℃以上の温度域まで加熱し、第1均熱温度として830℃以上の温度で30秒以上保持した後、第1均熱温度から3℃/s以上の平均冷却速度で下記式(1)を満たすTa℃の冷却停止温度域まで冷却し、引き続き下記式(2)を満たすTb℃の温度域まで加熱し、第2均熱温度として下記式(2)を満たすTb℃の温度域で20秒以上保持した後、室温まで冷却する連続焼鈍を施す高強度冷延鋼板の製造方法。
     式(1):0.35≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Ta)}≦0.95
     式(2):-3.0≦1-exp{-0.011×(561-[C]×474-[Mn]×33-[Ni]×17-[Cr]×17-[Mo]×21-Tb)}<0.35
    ここで、式中の[M]は元素Mの含有量(質量%)を示す。
PCT/JP2015/000241 2014-01-29 2015-01-21 高強度冷延鋼板およびその製造方法 WO2015115059A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15743100.8A EP3101147B1 (en) 2014-01-29 2015-01-21 High-strength cold-rolled steel sheet and method for manufacturing same
CN201580006501.3A CN105940134B (zh) 2014-01-29 2015-01-21 高强度冷轧钢板及其制造方法
KR1020167023517A KR101912512B1 (ko) 2014-01-29 2015-01-21 고강도 냉연 강판 및 그 제조 방법
US15/115,138 US10174396B2 (en) 2014-01-29 2015-01-21 High-strength cold-rolled steel sheet and method for manufacturing the same (as amended)
MX2016009745A MX2016009745A (es) 2014-01-29 2015-01-21 Lamina de acero laminada en frio de alta resistencia y metodo para la fabricacion de la misma.
JP2015559808A JP6172298B2 (ja) 2014-01-29 2015-01-21 高強度冷延鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014014197 2014-01-29
JP2014-014197 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115059A1 true WO2015115059A1 (ja) 2015-08-06

Family

ID=53756646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000241 WO2015115059A1 (ja) 2014-01-29 2015-01-21 高強度冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10174396B2 (ja)
EP (1) EP3101147B1 (ja)
JP (1) JP6172298B2 (ja)
KR (1) KR101912512B1 (ja)
CN (1) CN105940134B (ja)
MX (1) MX2016009745A (ja)
WO (1) WO2015115059A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524821A (ja) * 2014-07-03 2017-08-31 アルセロールミタル 高強度鋼板を製造する方法および得られた鋼板
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
CN107413848A (zh) * 2017-07-29 2017-12-01 华北理工大学 一种冷轧钢板的制备方法
CN108431271A (zh) * 2015-12-23 2018-08-21 Posco公司 扩孔性优异的超高强度钢板及其制造方法
KR20180095668A (ko) * 2016-01-22 2018-08-27 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20180099867A (ko) * 2016-02-10 2018-09-05 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20180108722A (ko) * 2016-03-07 2018-10-04 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
JP2018162477A (ja) * 2017-03-24 2018-10-18 Jfeスチール株式会社 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材
KR20180124075A (ko) * 2016-04-14 2018-11-20 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
KR20190107089A (ko) * 2017-02-13 2019-09-18 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
EP3517643A4 (en) * 2016-09-21 2020-03-04 Nippon Steel Corporation GALVANISED STEEL
JP2020509202A (ja) * 2016-12-21 2020-03-26 アルセロールミタル 非常に良好な成形性を有する焼戻しされた被覆鋼板及びこの鋼板を製造する方法
JP2020509177A (ja) * 2016-12-16 2020-03-26 ポスコPosco 降伏強度、延性、及び穴拡げ性に優れた高強度冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
WO2020080337A1 (ja) 2018-10-17 2020-04-23 Jfeスチール株式会社 薄鋼板およびその製造方法
WO2020080339A1 (ja) 2018-10-17 2020-04-23 Jfeスチール株式会社 薄鋼板およびその製造方法
WO2020090303A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397437B2 (ja) * 2011-08-31 2014-01-22 Jfeスチール株式会社 加工性と材質安定性に優れた冷延鋼板用熱延鋼板、溶融亜鉛めっき鋼板用熱延鋼板およびその製造方法
US10253389B2 (en) * 2014-03-31 2019-04-09 Jfe Steel Corporation High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
EP3467134B1 (en) 2016-08-10 2020-11-18 JFE Steel Corporation High-strength thin steel sheet and method for manufacturing same
WO2018055425A1 (en) * 2016-09-22 2018-03-29 Arcelormittal High strength and high formability steel sheet and manufacturing method
MX2019006392A (es) * 2016-12-05 2019-08-01 Nippon Steel Corp Placa de acero de resistencia alta.
WO2018115933A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP6860420B2 (ja) 2017-05-24 2021-04-14 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP6849536B2 (ja) * 2017-05-31 2021-03-24 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
WO2019003445A1 (ja) * 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019003449A1 (ja) * 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019003450A1 (ja) 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019003447A1 (ja) 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019092481A1 (en) 2017-11-10 2019-05-16 Arcelormittal Cold rolled steel sheet and a method of manufacturing thereof
WO2019092482A1 (en) 2017-11-10 2019-05-16 Arcelormittal Cold rolled heat treated steel sheet and a method of manufacturing thereof
WO2019092483A1 (en) 2017-11-10 2019-05-16 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP6631760B1 (ja) * 2018-03-30 2020-01-15 Jfeスチール株式会社 高強度亜鉛めっき鋼板および高強度部材
US11939642B2 (en) 2018-10-10 2024-03-26 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
KR102276740B1 (ko) * 2018-12-18 2021-07-13 주식회사 포스코 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
KR102164086B1 (ko) * 2018-12-19 2020-10-13 주식회사 포스코 버링성이 우수한 고강도 냉연강판 및 합금화 용융아연도금강판과 이들의 제조방법
EP3686293B1 (en) * 2019-01-22 2021-06-23 voestalpine Stahl GmbH A high strength high ductility complex phase cold rolled steel strip or sheet
CN113316649A (zh) * 2019-01-22 2021-08-27 奥钢联钢铁有限责任公司 高强度高延展性的复相的冷轧钢带或板
CN109988969B (zh) * 2019-04-01 2021-09-14 山东钢铁集团日照有限公司 一种具有不同屈强比的冷轧q&p1180钢及其生产方法
WO2020262652A1 (ja) * 2019-06-28 2020-12-30 日本製鉄株式会社 鋼板
WO2021019947A1 (ja) * 2019-07-30 2021-02-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP3988679A4 (en) * 2019-08-20 2022-11-02 JFE Steel Corporation HIGH STRENGTH COLD ROLLED STEEL PLATE AND METHOD OF PRODUCTION THEREOF
WO2021070639A1 (ja) * 2019-10-11 2021-04-15 Jfeスチール株式会社 高強度鋼板および衝撃吸収部材ならびに高強度鋼板の製造方法
EP4043594B1 (en) * 2019-10-11 2024-05-22 JFE Steel Corporation High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet
EP4079884A4 (en) * 2020-02-28 2023-05-24 JFE Steel Corporation STEEL SHEET, ELEMENT AND METHOD OF MAKING SUCH STEEL SHEET AND ELEMENT
EP4079882A4 (en) * 2020-02-28 2023-05-24 JFE Steel Corporation STEEL SHEET, ELEMENT AND METHODS RESPECTIVELY FOR THE PRODUCTION OF SAID STEEL SHEET AND SAID ELEMENT
JP7006849B1 (ja) * 2020-02-28 2022-01-24 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
WO2022018498A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2022018497A1 (en) * 2020-07-24 2022-01-27 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
KR102485007B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485006B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485013B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485012B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485004B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485009B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 가공성이 우수한 고강도 강판 및 그 제조방법
CN115558844B (zh) * 2022-09-15 2023-07-11 首钢集团有限公司 1180MPa级钢材、镀锌钢及其制备方法、汽车配件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240178A (ja) 2004-01-28 2005-09-08 Kobe Steel Ltd 伸び及び伸びフランジ性に優れた低降伏比高強度冷延鋼板およびめっき鋼板並びにその製造方法
JP2011052295A (ja) 2009-09-03 2011-03-17 Kobe Steel Ltd 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP2013060657A (ja) * 2011-08-19 2013-04-04 Jfe Steel Corp 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
JP2013072101A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 高強度鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5412182B2 (ja) * 2009-05-29 2014-02-12 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板
US8951366B2 (en) * 2010-01-26 2015-02-10 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and method of manufacturing thereof
US20130133792A1 (en) 2010-08-12 2013-05-30 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
JP5764549B2 (ja) 2012-03-29 2015-08-19 株式会社神戸製鋼所 成形性および形状凍結性に優れた、高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、ならびにそれらの製造方法
JP5632904B2 (ja) * 2012-03-29 2014-11-26 株式会社神戸製鋼所 加工性に優れた高強度冷延鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240178A (ja) 2004-01-28 2005-09-08 Kobe Steel Ltd 伸び及び伸びフランジ性に優れた低降伏比高強度冷延鋼板およびめっき鋼板並びにその製造方法
JP2011052295A (ja) 2009-09-03 2011-03-17 Kobe Steel Ltd 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP2013060657A (ja) * 2011-08-19 2013-04-04 Jfe Steel Corp 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
JP2013072101A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 高強度鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2000: "X-ray Diffraction Handbook", RIGAKU CORPORATION, pages: 26,62 - 64

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524821A (ja) * 2014-07-03 2017-08-31 アルセロールミタル 高強度鋼板を製造する方法および得られた鋼板
JP7068434B2 (ja) 2014-07-03 2022-05-16 アルセロールミタル 高強度鋼板を製造する方法
JP2021059787A (ja) * 2014-07-03 2021-04-15 アルセロールミタル 高強度鋼板を製造する方法および得られた鋼板
EP3395981A4 (en) * 2015-12-23 2018-10-31 Posco Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor
CN108431271A (zh) * 2015-12-23 2018-08-21 Posco公司 扩孔性优异的超高强度钢板及其制造方法
KR102159872B1 (ko) 2016-01-22 2020-09-24 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR20180095668A (ko) * 2016-01-22 2018-08-27 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
US10941476B2 (en) 2016-01-22 2021-03-09 Jfe Steel Corporation High strength steel sheet and method for producing the same
KR20180099867A (ko) * 2016-02-10 2018-09-05 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
US11739392B2 (en) 2016-02-10 2023-08-29 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
KR102119332B1 (ko) 2016-02-10 2020-06-04 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
CN108699660B (zh) * 2016-02-10 2020-09-04 杰富意钢铁株式会社 高强度钢板及其制造方法
CN108699660A (zh) * 2016-02-10 2018-10-23 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20180108722A (ko) * 2016-03-07 2018-10-04 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
US11078552B2 (en) 2016-03-07 2021-08-03 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
KR102115693B1 (ko) * 2016-03-07 2020-05-26 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
KR102121415B1 (ko) * 2016-04-14 2020-06-10 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
US11193180B2 (en) 2016-04-14 2021-12-07 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
CN109072381A (zh) * 2016-04-14 2018-12-21 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20180124075A (ko) * 2016-04-14 2018-11-20 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
WO2017196965A1 (en) * 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
EP3517643A4 (en) * 2016-09-21 2020-03-04 Nippon Steel Corporation GALVANISED STEEL
JP2020509177A (ja) * 2016-12-16 2020-03-26 ポスコPosco 降伏強度、延性、及び穴拡げ性に優れた高強度冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
JP7118972B2 (ja) 2016-12-21 2022-08-16 アルセロールミタル 非常に良好な成形性を有する焼戻しされた被覆鋼板及びこの鋼板を製造する方法
JP2020509202A (ja) * 2016-12-21 2020-03-26 アルセロールミタル 非常に良好な成形性を有する焼戻しされた被覆鋼板及びこの鋼板を製造する方法
KR20190107089A (ko) * 2017-02-13 2019-09-18 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
KR102225998B1 (ko) 2017-02-13 2021-03-09 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
JP2018162477A (ja) * 2017-03-24 2018-10-18 Jfeスチール株式会社 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材
CN107413848A (zh) * 2017-07-29 2017-12-01 华北理工大学 一种冷轧钢板的制备方法
KR20210058918A (ko) 2018-10-17 2021-05-24 제이에프이 스틸 가부시키가이샤 박강판 및 그의 제조 방법
KR20210059746A (ko) 2018-10-17 2021-05-25 제이에프이 스틸 가부시키가이샤 박강판 및 그의 제조 방법
WO2020080339A1 (ja) 2018-10-17 2020-04-23 Jfeスチール株式会社 薄鋼板およびその製造方法
WO2020080337A1 (ja) 2018-10-17 2020-04-23 Jfeスチール株式会社 薄鋼板およびその製造方法
JP6729835B1 (ja) * 2018-10-31 2020-07-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020090303A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11846003B2 (en) 2018-10-31 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
WO2021187321A1 (ja) * 2020-03-17 2021-09-23 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP6973694B1 (ja) * 2020-03-17 2021-12-01 Jfeスチール株式会社 高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3101147A4 (en) 2017-03-01
US20160369369A1 (en) 2016-12-22
EP3101147A1 (en) 2016-12-07
CN105940134B (zh) 2018-02-16
KR20160114660A (ko) 2016-10-05
JPWO2015115059A1 (ja) 2017-03-23
EP3101147B1 (en) 2018-08-15
MX2016009745A (es) 2016-10-31
CN105940134A (zh) 2016-09-14
US10174396B2 (en) 2019-01-08
KR101912512B1 (ko) 2018-10-26
JP6172298B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6172298B2 (ja) 高強度冷延鋼板およびその製造方法
JP5888471B1 (ja) 高降伏比高強度冷延鋼板及びその製造方法
JP5896086B1 (ja) 高降伏比高強度冷延鋼板およびその製造方法
JP6252713B1 (ja) 高強度鋼板およびその製造方法
JP5821912B2 (ja) 高強度冷延鋼板およびその製造方法
JP5821911B2 (ja) 高降伏比高強度冷延鋼板およびその製造方法
JP6048620B1 (ja) 高強度冷延鋼板およびその製造方法
JP5991450B1 (ja) 高強度冷延鋼板及びその製造方法
JP5896085B1 (ja) 材質均一性に優れた高強度冷延鋼板およびその製造方法
KR101569977B1 (ko) 가공성이 우수한 고항복비를 갖는 고강도 냉연 강판 및 그 제조 방법
WO2016135793A1 (ja) 高強度冷延鋼板およびその製造方法
JP5246283B2 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
WO2013179497A1 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559808

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015743100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009745

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15115138

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201605593

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167023517

Country of ref document: KR

Kind code of ref document: A