Nothing Special   »   [go: up one dir, main page]

WO2015108337A1 - 무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2015108337A1
WO2015108337A1 PCT/KR2015/000391 KR2015000391W WO2015108337A1 WO 2015108337 A1 WO2015108337 A1 WO 2015108337A1 KR 2015000391 W KR2015000391 W KR 2015000391W WO 2015108337 A1 WO2015108337 A1 WO 2015108337A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearer
path switch
network entity
enb
switch
Prior art date
Application number
PCT/KR2015/000391
Other languages
English (en)
French (fr)
Inventor
류진숙
김현숙
김래영
슈지안
변대욱
김태현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/108,772 priority Critical patent/US10085201B2/en
Priority to CN201580004579.1A priority patent/CN105917702B/zh
Priority to EP15737516.3A priority patent/EP3096559A4/en
Publication of WO2015108337A1 publication Critical patent/WO2015108337A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the description of the present invention relates to a wireless communication system, and more particularly, to a path switching method for dual connectivity (IV) and an apparatus therefor.
  • LTE 3rd Generat ion Partnership Project Long Term Evolut ion
  • E-U TS Evolved Universal Mobility Telecommuni ions System
  • UMTS Universal Mobility Telecommuni ions System
  • LTE Long Term Evolut ion
  • E—UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connected to an external network (Access Gateway, AG)
  • UE user equipment
  • eNode B eNode B
  • E-UTRAN network
  • a base station can transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information to downlink (DL) data to the corresponding UE.
  • the base station transmits the uplink scheduling information to the terminal for uplink (UL) data, and informs the corresponding time / frequency domain, encoding, data size, HARQ related information, etc. .
  • Core network may be composed of network nodes for AG and terminal user registration.
  • the AG manages the mobility of the UE in units of TA Tracking Areas consisting of a plurality of cells.
  • Wireless communication technology has been developed up to LTE based on CDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological advances are required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • An object of the present invention is to perform a path switch more efficiently in connection with a dual connectivity based communication mechanism.
  • a method of determining a path switch of a first network entity (network ent i ty) in a wireless communication system includes at least one bearer.
  • Receiving bearer setup information including a bearer type for the bearer type includes sending a path switch request to a second network entity based on the bearer setup information step; Receiving a path switch answer corresponding to the path switch request from the second network entity; And determining a path switch according to whether the path switch male answer indicates an admission of a defaul t bearer.
  • the bearer type information may indicate a default bearer or a dedicated bearer.
  • the first network entity may be a source eNB
  • the second network entity is a target eNB
  • the path switch may be a handover.
  • the bearer setup information includes a quality of service (QoS) parameter
  • the path switch request further includes information on a bearer type when a handover is determined according to the QoS parameter.
  • QoS quality of service
  • the second network entity is configured to allow a default bearer to admit to a dedicated bearer prior to a dedicated bearer during an admission control, and does not allow the default bearer. If the path switching response is characterized by indicating a handover failure, or the first network entity, if the path switch response does not indicate the permission of the primary bearer, to the second network entity It can be characterized by stopping the handover.
  • the first network entity is a master eNB (MeNB)
  • the second network entity is a secondary eNB (Se B)
  • the path switch is a path switch procedure for dual connect ivi ty. It can be characterized as being.
  • the bearer type may be included only when it is determined that the dual connectivity is performed by the terminal according to at least one of whether the terminal supports dual connectivity and whether the eNB supports dual connectivity.
  • the path switch request is transmitted only to a dedicated bearer of the bearer of the bearer, or when the path switch is requested for the primary bearer, an ARP (al locat ion and retent ion pr i i ty) is provided.
  • the first network entity may be configured to admit the default bearer when a path switch request for the default bearer is received from the second network entity.
  • the bearer setup information may be characterized by being received from Mobi ty management Ent i ty (E).
  • a first network entity (network ent i ty) for determining a path switch in a wireless communication system which is another aspect of the present invention for solving the above problems, is a radio frequency unit (Radio Frequency unit). Unit); And a processor, wherein the processor receives bearer setup information including a bearer type for at least one bearer, and routes a path based on the bearer setup information.
  • Send a switch request to a second network entity receive a path switch answer corresponding to the path switch request from the second network entity, and wherein the path switch answer indicates an admission of a default bearer It is characterized in that it is configured to determine the path switch according to whether or not.
  • FIG. 1 shows an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates an EPS (Evolved Packet) including an Evolved Packet Core (EPC).
  • EPC Evolved Packet Core
  • FIG 3 shows the structure of a bearer (or EPS bearing).
  • Figure 4 shows the dual connectivity associated with Smal l Cel l.
  • Figure 5 is a reference diagram for explaining handover and X2-based handover.
  • FIG. 6 shows an example of a procedure of a path switch for dual connect ivi ty.
  • Figure 7 shows the initial context setup operation.
  • FIG. 10 shows a terminal device and a network node device according to an example of the present invention.
  • each component or feature may be considered optional unless otherwise stated.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for components or features of other embodiments.
  • Embodiments of the present invention are described in standard documents disclosed in relation to at least one of the Inst ute of Electr i cal and Electronics Engineers (IEEE) 802 series system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system.
  • IEEE Inst ute of Electr i cal and Electronics Engineers
  • 3GPP system 3GPP LTE and LTE-A system
  • 3GPP2 system 3GPP2 system.
  • Steps or portions not described in order to clearly reveal the technical spirit of the present invention may be supported by the above documents.
  • all terms disclosed in this document can be described by the above standard document.
  • the following techniques can be used in various wireless communication systems. For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • EPC Evolved Packet Core
  • IP-based packet switched core network IP-based packet switched core network
  • UMTS is an evolution of the network.
  • [35]-NodeB base station of GERAN / UTRAN. Installed outdoors and coverage is macro cell size.
  • [36]-eNodeB base station of LTE. It is installed outdoors and its coverage is macro cell size.
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or a non-portable device such as a PCXPersonal computer or a vehicle-mounted device.
  • the UE is a UE capable of communicating in a 3GPP spectrum such as LTE and / or non-3GPP spectrum such as WiFi, spectrum for public safety.
  • RANCRadio Access Network A unit including NodeB, eNodeB and RMXRadio Network Controller for controlling them in 3GPP network. It exists between the UE and the core network and provides a connection to the core network.
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • [40]-RANAPCRAN Application Part Node responsible for controlling the RAN and core network ( ⁇ Mobility Management Entities (E) / Serving GPRSC General Packet Radio Service) Interface between Supporting Node (MSC) / Mob i Switch Center (MSC).
  • E Mobility Management Entities
  • GPRSC General Packet Radio Service
  • [41]-PUNCPublic Land Mobile Network A network configured to provide mobile communication services to individuals. It may be configured separately for each operator.
  • [42]-NASCNon-Access Stratum A functional layer for sending and receiving signaling and traffic messages between a UE and a core network in a UMTS protocol stack. The main function is to support mobility of the UE and to support session management procedures for establishing and maintaining an IP connection between the UE and the PDN GW (Packet Data Network Gateway).
  • PDN GW Packet Data Network Gateway
  • CPE Customer Premises Equipment
  • UTRAN UMTS Terrestrial Radio Access Network
  • CSG Closed Subscriber Group
  • PL ⁇ Public Land Mobile Network
  • [46]-LIPA Local IP Access: A UE capable of IP function is used for an entity having another IP function in the same residential / enterprise IP network via H (e) NB. access. LIPA traffic is nothing more than a network of operators. In the 3GPP Release-10 system, the H (e) NB provides access to resources on the local network (ie, the network located in the customer's home or company premises).
  • [47]-SIPT0C Selected IP Traffic Offload In the 3GPP Release-10 system, the carrier supports handing over the traffic of the user by selecting PG Packet data network GateWay (PWW) that is physically near the UE in the EPC network.
  • PWW Packet data network GateWay
  • PDN Packet Data Network
  • APN Access Point Name
  • FIG. 2 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an EKXEvolved Packet Core.
  • EPS Evolved Packet System
  • EPC is a key component of SAE (System Architecture Evolut ion) to improve the performance of 3GPP technologies.
  • SAE is a research project to determine the network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, to support a variety of wireless access technologies based on IP and to provide improved data transfer capability.
  • EPC is a core network (Core Network) of an IP mobile communication system for a 3GPP LTE system and can support packet-based real-time and non-real-time services.
  • Core Network Core Network
  • the core is divided into two distinct sub-domains: circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function of the network has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the connection between the terminal and the terminal having an IP capability includes an IP-based base station (e.g., evolved Node B), an EPC, an application domain (e.g., IMSUP). Mult imedia Subsystem)) can be configured.
  • EPC is an essential structure for implementing end-to-end IP service.
  • the EPC may include various components, and in FIG. 1, a part of the EPC may include a Serving Gateway (SGW), a PDN GW (Packet Data Network Gateway), an MMECM Oblity Management Service (SGMS), and an SGSN.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • SGMS MMECM Oblity Management Service
  • SGSN Serving Gateway
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio Service
  • GPRS General Packet Radio
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets can be routed through the SGW for mobility within the E-UTRAN (Universal Mobile Telecommuni cation Systems (Evolved-UMTS) Terrestrial Radio Access Network (defined in 3GPP Release -8)).
  • E-UTRAN Universal Mobile Telecommuni cation Systems (Evolved-UMTS) Terrestrial Radio Access Network
  • SCT is another 3GPP As an anchor point for mobility with a network (RANs defined before 3GPP release -8, for example, UTRAN or GERANCGSM (Global System for Mobile Co.unicat ion) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network) It can also function.
  • RANs defined before 3GPP release -8 for example, UTRAN or GERANCGSM (Global System for Mobile Co.unicat ion) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network) It can also function.
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-LANs), trusted networks such as Code Division Multiple Access (CDMA) networks or WiMax) Can serve as an anchor point for mobility management.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-LANs)
  • trusted networks such as Code Division Multiple Access (CDMA) networks or WiMax
  • the SGW and the PDN GW are configured as separate gateways, but two gateways may be implemented according to a single gateway configuration option.
  • the MME performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • Element. E controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • ⁇ E also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • the SGSN handles all packet data such as user mobility management and authentication for other 3GPP networks (eg, GPRS networks).
  • 3GPP networks eg, GPRS networks.
  • the ePDG serves as a security node for untrusted non-3GPP networks (eg, I—WLAN, WiFi hot spots, etc.).
  • untrusted non-3GPP networks eg, I—WLAN, WiFi hot spots, etc.
  • a terminal having IP capability may use 3GPP access via various elements in the EPC even on a non-3GPP access basis.
  • Access to an IP service network eg, IMS
  • a vendor ie an operator.
  • FIG. 1 illustrates various reference points (eg, Sl-U, S1- ⁇ E, etc.).
  • a conceptual link is defined as a reference point that links two functions that exist in different functional entities of E-UTRAN and EPC.
  • the reference points shown in FIG. 1 are summarized.
  • a reference point between SGW and SGSN that provides relevant control and mobility support between the GPRS core and SGW's 3GPP anchor functionality. It also provides user plane tunneling if no direct tunnel is formed. Clt provides;
  • Reference point providing user plane tunneling and tunnel management between the SGW and PDN GW. Used for SGW relocation because of UE mobility and for connections to PDN GWs where SGWs are not co-located for required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services.
  • This reference point is the Gi of 3GPP access (It is the reference point between the PDN GW and
  • Packet data network may be an operator external publ ic or pr ivate packet data network or an intra operator packet data network, e.g. for provi sion of IMS services. This reference point corresponds to Gi for 3GPP accesses. )
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is ePDG and A reference point that provides the user plane with relevant control and mobility support between PDN GWs.
  • an EPS bearer may be referred to as a transmission / reception path of up / down IP flows in a user plane path.
  • an IP address is assigned and one default bearer is generated for each PDN connect ion. Also, if a QoS (Quality of Service) is not satisfied as a default bearer, a dedicated bearer is created and available for service. Once created, the default bearer is maintained unless the corresponding PDN is disconnected. In addition, at least one default bearer must be maintained until the UE detaches from the EPS.
  • QoS Quality of Service
  • FIG. 3 is a reference diagram for explaining a structure of a bearer (or EPS bearing).
  • EPS bearer (or EPS bearer) is named under a different name for each section.
  • EPS bearer (EPS bearer) is divided into E-RAB and S5 Bearer according to the section. That is, when the UE is in the idle state (ECM-IDLE), the existing EPS bearer interval is an S5 bearer.
  • ECM—CONNECTED the E-RAT is setup and the connection between the UE eNB and the P-GW ( connect ion).
  • the E-RAB transmits packets of an EPS bearer between the UE and the EPC. If there is an E-RAB, one-to-one mapping is made between the E-RAB and the EPS bearer.
  • a Data Radio Bearer (DRB) transmits patterns of EPS bearers between the UE and the eNB. If a data radio bearer (DRB) exists, one-to-one mapping is performed between the data radio bearer and the EPS bearer / E-RAB.
  • DRB Data Radio Bearer
  • the S1 bearer transmits packets of the E-RAB between the eNodeB and a serving GW (S_GW).
  • the S5 / s8 bearer transmits packets of the EPS bearer between the serving GW (S-GW) and the P-GW (PDN GW).
  • Dual connectivity consists of a UE with one MeNB and at least one SeNB.
  • the 1A solution of the user plane for dual connectivity is described.
  • the 1A solution is an SI—U combination that terminates no bearer split (PDCPs) independent of SeNB.
  • PDCPs no bearer split
  • the 3C solution of the user plane for dual connectivity the 3C solution is divided into MeNB and independent RLCs for split bearers and split bearers within MeNB. Is a S1-U bond.
  • the MeNB has all the control rights to control mobility of the terminal, that is, only the user plane can be transmitted and received to the SeNB.
  • FIG. 5 is an LTE / LTE-A standard.
  • a path switch procedure implemented with an X2-based handover method may be implemented with reference to FIG. 5.
  • the source eNB determines whether the terminal is handed over (eg, 'Step 3 HO decision' of FIG. 5, and mobility of the UE). Source eNB determines whether to handover based on load information) and a handover request to the target eNB together with corresponding information (eg, E-RABs To Be Setup List). ) (Step 4 of FIG. 5).
  • the target eNB When the target eNB receives the handover request, the target eNB performs an authority control (.Admission Control, step 5 of beam 5) on the received E-RAB list. At this time, the authority control of E-RAB setup can be performed according to the resource situation of the target eNBCTarget eNB, and E-RAB Level QoS is given for each GBR / Non-GBR information and E-RAB. This can be determined based on parameters (see Table 2). [80] [Table 21
  • the target eNB may send a handover request ACKCHandover request acknowledgment or a handover preparation failure to the source eNB according to an authorization control result (step 6 of FIG. 5).
  • the handover is considered to be successful, and the other eNB eNB regards the corresponding E-RAT setup information.
  • the target eNB sends a Handover Preparation Failure to the source eNB.
  • the source eNB receives a handover request acknowledgment (ACK) from the target eNB, it performs the steps 7, 8, 9, 10, and 11 of FIG. 5 to cam the UE to the target eNB.
  • 3 ⁇ 4 (camping) Data forwarding is performed through the up ink data path.
  • step 12 of FIG. 5 when the target eNB requests a path switch to ⁇ E, ⁇ E receives it and ⁇ E in section 5.5.1.1.2 of 3GPP TS 23.401 on the LTE / LTE—A standard document. Proceed with the procedure related to Serving GW relocat ion 1 (see Table 3).
  • the MME shall ⁇ ctassp & ciged inste 6.
  • the E shall s & cid a Path Switch l.equest Figure message (see more detail in TS 36.413 [36]) to the taiget eliodeB. Ihe MME performs explicit detach of the TO as desciibed in the MME! initiated detach pro cetfure o f da use 5 ⁇ 8.
  • ⁇ E has already handed over the UE to the target eNB when the X2-handover enhancement eNB side fails to accept the E-RAB all corresponding to the default bearer. After the PDN connect ion is disconnected again or in the worst case, the terminal is detached.
  • FIG. 6 is a reference diagram for explaining an example of a procedure of a path switch for dual connectivity.
  • the SeNB requests authorization control for the corresponding E-RAB, and the SeNB is returned. Is sent to the MeNB. However, route switch If (Path Switch) is allowed ( ⁇ ) The subject requesting a path switch to E is MeNB, not the target eNB.
  • the default bearer is released in the handover authentication (for example, when the admission control is not permitted in the Admission Control at the target eNB). If it receives a path switch request, it determines this and commands the PDN disconnection or the detach of the terminal.
  • the target eNB determines whether the corresponding E-RAB is basic (eg, black or dedicated), and allows the non-GBR bearer, which is the default bearer, instead of the other non-GBR (Non-GBR). If not, if an unsuccessful case like this does not occur, or if the SeNB fails to admit it (e.g. if it was forced to receive another Non-GBR bearer), it may fail. Can have known and proved the procedure.
  • dual connectivity requires more frequent path switches than X2-based handover.
  • X2-based handover there is also load balancing, but in many cases, eNB path switch is required due to the mobility of the UE, but in the case of dual connectivity, mobility as well as load is required.
  • Various path switches are also required depending on load balancing and ongoing services of the terminal.
  • a path switch of a serving MeNB (Serving MeNB) ⁇ — SeNB, Se B ⁇ SeNB, SeNB ⁇ ⁇ > target MeNB, serving MeNB ⁇ " ⁇ target MeNB, etc. may be expected.
  • small coverage and frequent mobility may cause an insecure case, and many trials and errors are expected during initial deployment, which is unnecessary when handling an E-RAB in an access network.
  • service disruption such as PDN disconnection and terminal detachment due to unnecessary default bearer release.
  • the access network is made aware of a parameter (eg, bearer type) related to bearer handling at the core network side.
  • a parameter eg, bearer type
  • the UE can enable service in an optimal eNB (cell).
  • one method of dual connectivity for a small cell environment is traffic offloading for moving a bearer in service by a master eNB (MeNB) having a control right to a secondary eNB (SeNB) capable of dual connectivity.
  • MeNB master eNB
  • SeNB secondary eNB
  • a path switch is possible for each bearer (E-RAB), and all bearers (user planes) of the UE may be bypassed (of floading) to the SeNB. This enables simultaneous service through MeNB and SeNB, thus improving terminal efficiency and avoiding congestion situations.
  • the parameters that the conventional MeNB can use to determine the path switching include load information of the MeNB and load information of the SeNB, and QoS information of a bearer of the corresponding UE, that is, E—RAB.
  • the MeNB can decide whether or not to bypass the SeNB based on this.
  • the MeNB transmits not only QoS information but also a bearer type (ie, default or dedicated) and subscription information to the MeNB. According to the offload situation, the E-RAB can be switched more efficiently to maximize the end user's quality of experience and network efficiency. To be more specific.
  • the basic bearer is minimized to prevent the PDN disconnection of the terminal and the terminal from being detached from the EPS system.
  • the access network determines the failure in advance after all the normal procedures up to the core network (Core Network, MME), and the corresponding cell (eg, The UE may be stably operated by stopping the handover to the target eNB and attempting handover to another E-UTRAN cell or another RAT. Therefore, according to the present invention, by minimizing unnecessary signaling and quickly responding to a network, service interrupt ion of an end user can be reduced and network efficiency can be increased.
  • a core network node e.g., E
  • E is not only an E-RAB level QoS parameter but also an E-RAB bearer per E-RAB. It informs the type (for example, default bearer or dedicated bearer) so that it can be used when determining the path switch for the dual access control and the admission control.
  • the core network node may inform the access network (eg, the source eNB) of the bearer type only in certain cases.
  • the bearer type may be optionally informed according to whether eNB supports dual connectivity or eNB capability or UE capability. That is, for each band combination, whether the dual connectivity capability of the terminal is synchronous and asynchronous is set. This limitation is stored in the UE context of E.
  • the eNB determines whether to perform dual connectivity (Dual Connectivity) for the terminal. You can decide. (At this time, it may be determined according to UE capability and the situation of eNB. For example, it may be determined based on at least one of synchronous, asynchronous, or band combination). Accordingly, according to the present invention, in order to additionally transmit a bearer type during initial context setup, the E may be based on a dual co-ectivity capability of the terminal. In addition, depending on the operation and maintenance (0 & M), depending on the safety of the dual connectivity of the local black operator, You can also configure it.
  • a bearer type may be set so that the MME receives a default bearer from the master eNB (MeNB) to initialize the initial context setup. If the dual connectivity operation of the local area is stable, the EB can be operated so that the default bearer can be offloaded to SeNB (Secondary eNB) without transmitting the bearer type. .
  • MeNB master eNB
  • FIG. 7 is a reference diagram illustrating an initial context setup operation.
  • E denotes handover and stable mobility of dual connectivity during initial context setup (eg, when the terminal switches from idle mode to connected mode).
  • the bearer type of the bearer may be additionally transmitted to the QoS parameter of the initial context setup request message. Therefore, the MME adds a bearer type and transmits a default bearer drop by handling the default bearer when allocating resources of handover and dual connectivity control. It can be used as a means for preventing PDN disconnection and detachment of the terminal due to the PDN disconnection (Detach).
  • step 2 After the paging message is transmitted from ⁇ E to the UE through the eNB (step 1), the UE and the eNB perform a connection by performing a random access procedure.
  • Set (step 2).
  • the UE transmits a non-access stratum (NAS) message for the service request to the eNB (step 3). Accordingly, the eNB sends an S1-AP initial UE message for step E (step 4), which is a service request and an eNB UE signal.
  • An eNB UE signaling connection ID and an L-CT IP address may be included when the LI PA is supported.
  • ⁇ E accordingly sends an S1-AP initial context setup request message to the eNB (step 5).
  • the S1-AP initial context setup request message includes information such as a NAS message, ⁇ E UE signaling connection ID, security E context, security context, UE capability information, and bearer setup.
  • the bearer setup includes a serving SAE-CT TEID, a QoS profile, and a Correlat ion ID.
  • the eNB After receiving the S1-AP initial context setup request message, the eNB delivers a radio bearer setup via RRC signaling (step 6).
  • the UE transmits a radio bearer setup complete to the eNB through RRC signaling (step 7), and the eNB accordingly initiates S1-AP initial context setup complete.
  • Send a message to the MME (step 8).
  • the S1-AP initial context setup complete message includes an eNB-UE signaling connection ID and an bearer setup confirmation (eNB TEID).
  • eNB TEID bearer setup confirmation
  • the S1-AP initial context setup request message may appear as shown in Table 4
  • the E-RAB level QoS parameters may appear as shown in Table 5.
  • whether or not to add a bearer type may be determined based on stability of a corresponding network and dual connectivity capability of a terminal and an eNB during initial context setup. have.
  • the core network node eg, MME
  • the source eNB receives bearer setup information from #E. At this time, the source eNB may receive QoS information for the bearer (that is, the E-RAB) from channel E, and at this time, information about the bearer type may be additionally received from channel E.
  • QoS information for the bearer that is, the E-RAB
  • the use of the bearer type at the time of handover by the source eNB indicates the bearer type to the target eNB, thereby accepting the default bearer (eg , Resource allocation), and further, if the target eNB does not accept the default bearer when the bearer type cannot be transmitted to the X2 interface, the source eNB quickly handes it over. It is intended to determine failure and to stay at the source eNB more or to hand over to another possible eNB.
  • the source eNB transmits a handover request to the target ENB.
  • the target eNB preferentially grants E-RAB, which is an E-RAB enhancement base bearer, in authorization control. (admit) In this case, ARP (al locat ion and retention priority) information may be ignored.
  • the primary bearer's authorization ie resource allocation
  • the target eNB considers it a handover preparation failure and responds to the source eNB even if it can accept Non-GBR. do. Accordingly, the source eNB may determine that the basic bearer is in a released state and may quickly retry handover to another E-UTRAN cell or other-RAT cell.
  • the source eNB may increase the handover procedure without considering this as a handover success. This At this time, if the serving cell (serving cel l) can not stay, you can try a handover to another cel l, or change the RAT (UTRAN, GERAN) handover.
  • the bearer type e.g, default or dedicated
  • ACK handover request acknowledgment
  • FIG. 8 illustrates an example in which a source eNB informs a bearer type when a source eNB transmits a handover request according to the present invention.
  • the source eNB when the handover is determined from the source eNB (step 1 of FIG. 8), the source eNB sends a handover request including a bearer type to the target eNB (step 2 of FIG. 8).
  • the target eNB first accepts the default bearer (admit) to determine whether the handover is possible (step 3 of FIG. 8), and accordingly, a handover request ACK.
  • Step 4-a) or handover preparation failure (Step 4_t> of FIG. 8) is transmitted to the source eNB. That is, if the target eNB does not even accept the basic bearer (admit), it considers this as a handover preparation failure, and transmits a handover preparation failure message to the source eNB.
  • the source eNB may consider the handover preparation success and proceed with an additional procedure.
  • FIG. 9 illustrates an embodiment in which a source eNB does not inform a bearer type when requesting a handover according to the present invention.
  • a source eNB receives a bearer type from ffiE at initial context setup but does not inform the target eNBfh when handing over (step 2 of FIG. 9).
  • the target eNB performs authorization control with only QoS value without any bearer type information and can accept any of the non—GBR bearers, the handover request is confirmed. request ACK) to the source eNB.
  • the source eNB receives the handover request confirmation and checks the admitted state of the primary bearer, if the primary bearer is accepted by another eNB, it is ready to handover (handover preparat i on) is considered successful. If it is determined that the default bearer is not accepted (admi t), handover It is regarded as a failure to prepare (for example, even when a handover request confirmation is received from the target eNB), and a search for another possible eNB is performed (step 5 of FIG. 9).
  • the MeNB receives bearer setup information including a bearer type from UE E based on whether the UE supports the network or the like, as described above with respect to the dual connectivity.
  • the MeNB may maintain the MeNB as much as possible by not switching the path to the SeNB or lowering the priority of the E-RAB determined as the default bearer when determining the path switch.
  • the SeNB If the MeNB requests a path switch of a default bearer (eg, E-RAB) to the SeNB, the SeNB takes priority control of the default bearer (eg, resource allocation). In this case, ARP may be ignored. At this time, if the SeNB does not admit the E-RAB (if it is the default bearer) requesting the route switch, the MeNB may maintain the service by not switching the route or deferring priority. . In addition, if the SeNB requests a path switch to the MeNB from the E-RAB (defaul t bearer) serviced by the SeNB, the MeNB can accept the E-RAB with the highest priority.
  • a default bearer eg, E-RAB
  • the MeNB may continue to service the E-RAB that is not accepted by the target eNB (ie, the SeNB).
  • the default bearer may not move as much as possible.
  • the SeNB can be accommodated as much as possible by transmitting the bearer type SeNB. If the SeNB is unacceptable, the base bearer will not be dropped. It can work to avoid.
  • the terminal device 100 may include a transmission / reception module 110, a processor 120, and a memory 130.
  • the transmission / reception modules 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information to an external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control operations of the entire terminal device 100, and may be configured to perform a function for the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node apparatus 200 may include a transmission / reception module 210, a processor 220, and a memory 230.
  • the transmission / reception module 210 may be configured to transmit various signals, data and information to an external device, and to receive various signal data and information to the external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the processor 220 may control operations of the entire network node device 200, and may be configured to perform a function of the network node device 200 to process and process information to be transmitted and received with an external device.
  • the memory 230 may store the computed information and the like for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • terminal device 100 and the network device 200 as described above may be implemented such that the details described in the above-described various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time. Duplicate content is omitted for clarity.
  • embodiments of the present invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware (f i rmware), software, or a combination thereof.
  • the method according to the embodiments of the present invention may include one or more ASICs (Appl icat ion Speci fic Integrated Cicuits), DSPs (Digital Signal Processors), and DSPDs (Digital Signal Processing Devices). , Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), It may be implemented by a processor, a controller, a microcontroller, a microprocessor, or the like.
  • ASICs Appl icat ion Speci fic Integrated Cicuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code can be stored in the memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 경로 스위치를 결정하는 방법 및 장치에 관한 것이다. 구체적으로, 제 1 네트워크 엔티티(network entity)의 경로 스위치(path switch)를 결정하는 방법에 있어서, 적어도 하나의 베어러(bearer)에 관한 베어러 타입(bearer type)을 포함하는 베어러 셋업(bearer setup) 정보를 수신하는 단계, 베어러 셋업 정보에 기반하여 경로 스위치 요청을 제 2 네트워크 엔티티로 송신하는 단계, 제 2 네트워크 엔티티로부터 경로 스위치 요청에 대응되는 경로 스위치 응답을 수신하는 단계 및 경로 스위치 응답이 기본 베어러(default bearer)의 허가(admit)를 지시하는 지 여부에 따라 경로 스위치를 결정하는 단계를 포함한다.

Description

【명세서】
【발명의명칭】
무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이 를 위한 장치
【기술분야】
[1] 본 발명의 설명은무선 통신 시스템에 대한 것으로, 보다상세하게는듀 얼 커넥티비티 (Dual Connect ivi ty)를 위한 경로 스위치 방법 및 이를 위한 장치 에 관한 것이다.
【배경기술】
[2] 본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generat ion Partnership Proj ect Long Term Evolut ion, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
[3] 도 1 은 무선 통신 시스템의 일례로서 E-LMTS망구조를 개략적으로 도시 한도면이다. E-U TS( Evolved Universal Mobi le Telecommuni cat ions System) 시 스템은 기존 UMTS(Universal Mobi le Telecommunicat ions System)에서 진화한시 스템으로서 현재 3GPP 에서 기초적인 표준화 작업을 진행하고 있다. 일반적으 로 E-UMTS 는 LTE(Long Term Evolut ion) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS 의 기술 규격 (techni cal speci f icat ion)의 상세한 내용은 각각 "3rd Generat ion Partnership Project; Technical Speci f icat ion Group Radio Access Network"의 Release 7과 Release 8을 참조할수 있다.
[4] 도 1 올 참조하면, E— UMTS는 단말 (User Equipment , UE)과 기지국 (eNode B, eNB, 네트워크 (E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이 (Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트서비스 및 /또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동 시에 전송할수 있다.
[5] 한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5 , 10 , 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비 스를 제공한다. 서로 다른 샐은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크 (Downl ink, DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에 게 데이터가 전송될 시간 /주파수 영역, 부호화, 데이터 크기, HARQCHybr id Automat i c Repeat and reQuest ) 관련 정보 둥을 알려준다. 또한, 상향 링크 (Upl ink, UL) 데이터에 대해 기지국은 상향 링크 스케즐링 정보를 해당 단말에 게 전송하여 해당 단말이 사용할수 있는 시간 /주파수 영역, 부호화, 데이터 크 기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트 래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망 (Core Network, CN)은 AG와단말의 사용자등록 등을 위한 네트워크 노드등으로 구성될 수 있다. AG 는 복수의 샐들로 구성되는 TA Tracking Area) 단위로 단말의 이동성을 관리한 다.
[6] 무선 통신 기술은 CDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자 와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술진 화가요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는주파수 밴 드의 사용, 단순구조와개방형 인터페이스, 단말의 적절한 파워 소모등이 요구 된다.
【발명의상세한설명】
【기술적과제 1
[7] 본 발명의 목적은 듀얼 커넥티비티 (Dual Connect ivi ty) 기반의 통신 메 커니즘과 관련하여, 경로 스위치 (path switch)를 보다 효율적으로 수행하는 것 을목적으로 한다.
[8] 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과 제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재 로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이 해될 수 있을 것이다.
【기술적해결방법】 -
[9] 상술한 문제점을 해결하기 위한 본 발명의 일 양상인, 무선 통신 시스템 에서 제 1 네트워크 엔티티 (network ent i ty)의 경로 스위치 (path swi tch)를 결 정하는 방법은 적어도 하나의 베어러 (bearer )에 관한 베어러 타입 (bearer type)을포함하는 베어러 셋업 (bearer setup) 정보를 수신하는 단계; 상기 베어 러 셋업 정보에 기반하여 경로 스위치 요청을 제 2 네트워크 엔티티로 송신하는 단계; 상기 제 2 네트워크 엔티티로부터 상기 경로 스위치 요청에 대응되는 경 로 스위치 웅답을 수신하는 단계; 및 상기 경로 스위치 웅답이 기본 베어러 (defaul t bearer)의 허가 (admit )를 지시하는 지 여부에 따라 경로 스위치를 결 정하는 단계를포함하는, 경로 스위치 결정 방법.
[10] 나아가, 상기 베어러 타입 정보는, 기본 베어러 (default bearer ) 혹은 전용 베어러 (dedicated bearer )을 지시하는 것을 특징으로 한다.
[11] 나아가, 상기 제 1 네트워크 엔티티는 소스 eNB(Source eNB)이고, 상기 제 2 네트워크 엔티티는 타겟 eNB(Target eNB)이며, 상기 경로 스위치는 핸드오 버 (handover)인 것을 특징으로 할 수 있다. 더 나아가, 상기 베어러 셋업 정보 는, QoS(Qual ity of Service) 파라미터를 포함하며, 상기 경로 스위치 요청은, 상기 QoS파라미터에 따라 핸드오버가 결정되는 경우, 베어러 타입에 대한 정보 를 더 포함하는 것을 특징으로 할 수 있다. 더 나아가, 상기 제 2 네트워크 엔 티티는, 권한 제어 (admission control )시 기본 베어러 (default bearer)가 전용 베어러 (dedicated bearer)보다 우선적으로 허가 (admi t )하도록 설정되며, 상기 기본 베어러를 허가하지 않은 경우, 상기 경로 스위칭 응답은 핸드오버 실패를 지시하는 것을특징으로 하거나, 상기 제 1 네트워크 엔티티는, 상기 경로 스위 치 응답이, 상기 기본 베어러의 허가를 지시하지 않는 경우, 상기 제 2 네트워 크 엔티티로의 핸드오버를 중단하는 것을특징으로 할수 있다.
[12] 나아가, 상기 제 1 네트워크 엔티티는 MeNB(Master eNB)이고 상기 제 2 네트워크 엔티티는 Se B( Secondary eNB)이며, 상기 경로 스위치는 듀얼 커넥티 비티 (Dual connect ivi ty)를 위한 경로 스위치 절차인 것올 특징으로 할수 있다. 나아가, 상기 베어러 타입은, 단말의 듀얼 커넥티비티 지원 여부 및 eNB 의 듀 얼 커넥티비티 지원 여부 중 적어도 하나에 따라, 상기 단말의 듀얼 커넥티비티 가수행되는 것으로 결정된 경우에만 포함된 것을 특징으로 하거나, 상기 적어 도 하나의 베어러 중 전용 베어러에 한하여 경로 스위치 요청을 송신하는 것을 특징으로 하거나, 상기 제 2 네트워크 엔티티는, 기본 베어러에 대하여 경로 스 위치가 요청된 경우, ARP(al locat ion and retent ion pr ior i ty)보다 우선시하여 자원 할당하도록 권한 제어 (admi ssion contol )을 수행하는 것을 특징으로 하거 나, 상기 제 1 네트워크 엔티티는, 상기 제 2 네트워크 엔티티가기본 베어러에 대하여 허가 (admi t )하지 않은 경우, 상기 기본 베어러에 대한 서비스를 유지하 도록 설정된 것을 특징으로 하거나, 상기 제 1 네트워크 엔티티는, 상기 제 2 네트워크 엔티티로부터 기본 베어러에 대한 경로 스위치 요청이 수신된 경우, 상기 기본 베어러를 허가 (admi t )하도록 설정된 것을 특징으로 할수 있다.
[13] 나아가, 상기 베어러 셋업 정보는, 顧 E(Mobi l i ty Management Ent i ty)로 부터 수신되는 것을특징으로 할수 있다.
[14] 상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 무선 통신 시스 템에서 경로 스위치 (path swi tch)를 결정하는 제 1 네트워크 엔티티 (network ent i ty)는, 무선 주파수 유닛 (Radio Frequency Unit ) ; 및 프로세서 (Processor) 를 포함하몌 상기 프로세서는, 적어도 하나의 베어러 (bearer)에 관한 베어러 타입 (bearer type)을포함하는 베어러 셋업 (bearer setup) 정보를수신하고, 상 기 베어러 셋업 정보에 기반하여 경로 스위치 요청을 제 2 네트워크 엔티티로 송신하며, 상기 제 2 네트워크 엔티티로부터 상기 경로 스위치 요청에 대응되는 경로 스위치 웅답을 수신하고, 상기 경로 스위치 옹답이 기본 베어러 (default bearer)의 허가 (admit )를 지시하는 지 여부에 따라 경로 스위치를 결정하도록 구성된 것을특징으로 한다.
【유리한효과】
[15] 본 발명에 따르면, 경로 스위치를 효율적으로 수행하여, 서비스 저하를 방지할수 있다.
[16] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을가진 자에게 명확하게 이해될 수 있을 것이다. 【도면의간단한설명】
[17] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술 적 사상을 설명한다.
[18] 도 1은무선 통신 시스템의 일례로서 E-UMTS망구조를 나타낸다.
[19] 도 2 는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet
System)의 개략적인 구조를 나타낸다.
[20] 도 3은 베어러 (또는 EPS베어러)의 구조를 나타낸다.
[21] 도 4는 Smal l Cel l과 관련된 듀얼 커넥티비티를 나타낸다. [22] 도 5는 핸드오버 및 X2—기반 핸드오버를 설명하기 위한 참고도이다.
[23] 도 6 은 듀얼 커넥티비티 (Dual Connect ivi ty)를 위한 경로 스위치의 절 차의 일 예를나타낸다.
[24] 도 7은 초기 컨텍스트 셋업 동작을 나타낸다.
[25] 도 8 및 도 9는 본 발명에 따른 핸드오버의 실시예들을 나타낸다.
[26] 도 10은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치를 나 타낸다.
【발명의실시를위한형태】
[27] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합 한 것들이다. 각구성요소또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각구성요소또는특징은 다른구성요소나특징과 결합 되지 않은 형태로실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결 합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되 는 동작들의 순서는 변경될 수 있다. 어느실시예의 일부 구성이나특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는구성 또는 특징과 교체 될 수 있다.
[28] 이하의 설명에서 사용되는 특정 용어들은본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[29] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구 조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한구성요소에 대해서 는 동일한도면 부호를사용하여 설명한다.
[30] 본 발명의 실시예들은 IEEE( Inst i tute of Electr i cal and Electronics Engineers) 802 계열 시스템, 3GPP시스템, 3GPP LTE 및 LTE-A시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있 다. 즉, 본 발명의 실시예들증 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또 한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. [31] 이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발 명의 기술적 사상이 이에 제한되는 것은 아니다.
[32] 본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
[33] - UMTSCUniversal Mobile Teleco画 unicat ions System): 3GPP 에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대 (Generation) 이동통신 기술.
[34] - EPSCEvolved Packet System): IP 기반의 packet switched 코어 네트워 크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가진화된 형태의 네트워크이다.
[35] - NodeB: GERAN/UTRAN 의 기지국. 옥외에 설치하며 커버리지는 매크로 (macro cell) 규모이다.
[36] - eNodeB: LTE 의 기지국. 옥외에 설치하며 커버리지는 매크로 샐 (macro cell) 규모이다.
[37] - UE Jser Equipment): 사용자 기기. UE 는 단말 (terminal ), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE 는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기 기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PCXPersonal Computer), 차량 탑재 장치와 같이 휴대 불가능한기기일 수도 있다. UE 는 LTE 와 같은 3GPP스 펙트럼 (spectrum) 및 /또는 WiFi, 공공 안전 (Public Safety) 용 스펙트럼과 같은 비 -3GPP스펙트럼으로 통신이 가능한 UE이다.
[38] ᅳ RANCRadio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이 들을 제어하는 RMXRadio Network Controller)를포함하는 단위. UE 와코어 네 트워크사이에 존재하며 코어 네트워크로의 연결을 제공한다.
[39] - HLR(Home Location Register )/HSS(Home Subscriber Server): 3GPP 네 트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS 는 설정 저장 (configuration storage), 아이덴티티 관리 (identity management), 人용자상태' 저장등의 기능을수행할 수 있다.
[40] - RANAPCRAN Application Part): RAN 과 코어 네트워크의 제어를 담당하 는 노드 (醒 E(Mobility Management Ent ity)/SGSN(Serving GPRSCGeneral Packet Radio Service) Supporting Node )/MSC (Mob i les Switchi g Center)) 사이의 인터 페이스.
[41] - PUNCPublic Land Mobile Network): 개인들에게 이동통신 서비스를 제 공할목적으로구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
[42] - NASCNon-Access Stratum): UMTS프로토콜 스택에서 UE 와 코어 네트워 크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. UE 의 이동 성을 지원하고, UE와 PDN GW(Packet Data Network Gateway) 간의 IP연결을 형 성 (establish) 및 유지 (maintain)하는 세션 관리 절차 (procedure)를 지원하는 것을주된 기능으로 한다.
[43] - HNB Home NodeB): UTRAN(UMTS Terrestrial Radio Access Network) 커 버리지를 제공하는 CPE(Customer Premises Equipment). 보다 구체적인 사항은 표준문서 TS 25.467올 참조할수 있다.
[44] - HeNodeB(Home eNodeB): E-UTRAN(Evolved-UTRAN) 커버리지를 제공하는 CPECCustomer Premises Equipment). 보다 구체적인 사항은 표준문서 TS 36.300 올 참조할수 있다.
[45] - CSG(Closed Subscriber Group): H(e)NB 의 CSG 의 구성원으로서 PL丽 (Public Land Mobile Network) 내의 하나 이상의 CSG 셀에 액세스하는 것이 허용되는 가입자그룹.
[46] - LIPA (Local IP Access): IP 기능을 가진 (IP capable) UE가 H(e)NB를 경유하여 동일한 주거 (residential)/기업 (enterprise) IP 네트워크 내의 다른 IP기능을 가진 개체에 대한 액세스. LIPA트래픽은 이동통신 사업자 (operator) 네트워크를 지나지 않는다. 3GPP 릴리즈—10 시스템에서는, H(e)NB를 경유하여 로컬 네트워크 (즉, 고객 (customer)의 집 또는 회사 구내에 위치한 네트워크) 상 의 자원에 대한 액세스를 제공한다.
[47] - SIPT0C Selected IP Traffic Offload): 3GPP 릴리즈 -10 시스템에서는 사업자가 EPC 네트워크에서 UE 에 물리적으로 가까이 존재하는 PG Packet data network GateWay)를 선택함으로써 사용자의 트래픽을 넘기는 것을 지원한다.
[48] - PDN(Packet Data Network) 연결: 하나의 IP주소 (하나의 IPv4주소 및 /또는 하나의 IPv6프리픽스)로 표현되는 IE 와 APN(Access Point Name)으로 표 현되는 PDN간의 논리적인 연결. [49] EPCCEvolved Packet Core)
[50] 도 2 는 EKXEvolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는도면이다.
[51] EPC 는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Archi tecture Evolut ion)의 핵심적인 요소이다. SAE 는 다양한 종류의 네트워크 간의 이동성 을지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들 어, IP기반으로다양한무선 접속 기술들을지원하고보다 향상된 데이터 전송 능력을 제공하는등의 최적화된 패킷 -기반시스템을 제공하는 것을 목표로 한다.
[52] 구체적으로, EPC 는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코 어 네트워크 (Core Network)이며, 패킷 -기반 실시간 및 비실시간 서비스를 지원 할 수 있다. 기존의 이동 통신 시스템 (즉, 2 세대 또는 3 세대 이동 통신 시스 템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet- Swi tched)의 2 개의 구별되는서브-도메인을 통해서 코어 네트워크의 기능이 구 현되었다. 그러나 , 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS 의 서브 -도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE시스템에서는, IP능력 (capabi l ity)올 가지는 단말과단말 간의 연결이, IP 기반의 기지국 (예를 들어, eNodeB(evolved Node B) ) , EPC, 애플리케이션 도메인 (예를 들어, IMSUP Mul t imedia Subsystem))을통하여 구성될 수 있다. 즉, EPC 는 단-대-단 (end-to-end) IP서비스 구현에 필수적인 구조이다.
[53] EPC 는 다양한 구성요소들을 포함할 수 있으며, 도 1 에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway) , PDN GW(Packet Data Network Gateway) , MMECMobi l i ty Management Ent ity) , SGSN(Serving GPRS (General Packet Radio Service) Support ing Node) , ePDG( enhanced Packet Data Gateway)를 도시한다.
[54] SGW 는 무선 접속 네트워크 (RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB 와 PDN GW사이의 데이터 경로를 유지하는 기능을 하는 요소 이다. 또한, 단말이 eNodeB에 의해서 서빙 (serving)되는 영역에 걸쳐 이동하는 경우, SGW 는 로컬 이동성 앵커 포인트 (anchor point )의 역할을 한다. 즉, E- UTRAN (3GPP 릴리즈 -8 이후에서 정의되는 Evolved-UMTS (Universal Mobi le Telecommuni cat ions System) Terrestrial Radio Access Network) 내에서의 이동 성을위해서 SGW를 통해서 패¾들이 라우팅될 수 있다. 또한, SCT는 다른 3GPP 네트워크 (3GPP 릴리즈 -8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERANCGSM (Global System for Mobile Co隱 uni cat ion) /EDGE (Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트 로서 기능할수도 있다.
[55] PDN GW (또는 P-GW)는 패킷 테이터 네트워크를 향한 데이터 인터페이스의 종료점 (termination point)에 해당한다. PDN GW 는 정책 집행 특징 (policy enforcement features) , 패킷 필터링 (packet filtering), 과금 지원 (charging support) 등올 지원할 수 있다. 또한, 3GPP 네트워크와 비 -3GPP 네트워크 (예를 들어 , I- LAN(Interworking Wireless Loc l Area Network)과 같은 신뢰되지 않 는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax 와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할수 있다.
[56] 도 1 의 네트워크 구조의 예시에서는 SGW 와 PDN GW가 별도의 게이트웨 이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션 (Single Gateway Configuration Option)에 따라구현될 수도 있다.
[57] MME 는 , UE 의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트 래킹 (tracking), 페이징 (paging), 로밍 (roaming) 및 핸드오버 등을 지원하기 위 한시그널링 및 제어 기능들을수행하는 요소이다. 醒 E 는 가입자 및 세션 관리 에 관련된 제어 평면 (control plane) 기능들을 제어한다. MME는수많은 eNodeB 들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨 이의 선택을 위한 시그널링을 수행한다. 또한, 麗 E 는 보안 과정 (Security Procedures), 단말-대-네트워크 세션 핸들링 (Terminal-to-network Session Handling), 유휴 단말 위치결정 관리 (Idle Terminal Location Management ) 등의 기능을수행한다.
[58] SGSN 은 다른 3GPP 네트워크 (예를 들어, GPRS 네트워크)에 대한 사용자 의 이동성 관리 및 인증 (authentication)과 같은 모든 패¾ 데이터를 핸들링한 다.
[59] ePDG는 신뢰되지 않는 비 -3GPP 네트워크 (예를 들어, I— WLAN, WiFi 핫스 팟 (hot spot) 등)에 대한 보안 노드로서의 역할을 한다.
[60] 도 1 을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액 세스는물론 비 -3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사 업자 (즉, 오퍼레이터 (operator) )가 제공하는 IP 서비스 네트워크 (예를 돌어, IMS)에 액세스할수 있다.
[61] 또한, 도 1 에서는 다양한 레퍼런스 포인트들 (예를 들어, Sl-U, S1-醒 E 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC 의 상이한 기능 개체 ( funct ional ent i ty)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레 퍼런스포인트 (reference point )라고 정의한다ᅳ 다음의 표 1은 도 1 에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1 의 예시들 외에도 네트워크 구조에 따 라다양한 레퍼런스포인트들이 존재할수 있다:
[62] 【표 1】
Figure imgf000011_0001
GPRS 코어와 SGW 의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지 ' 원을 제공하는 SGW 와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터 널이 형성되지 않으면, 사용자 평면 터널링을 제공함 Clt provides;
S4 related control and mobi l i ty support between GPRS Core and the 3GPP Anchor funct ion of Serving GW. In addit ion, i f Di rect Tunnel i s not establ ished, i t provides the user plane tunnel ing. )
SGW 와 PDN GW 간의 사용자 평면 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. UE 이동성으로 인해 그리고 요구되는 PDN 연결 성을 위해서 SGW 가 함께 위치하지 않은 PDN GW 로의 연결이 필요 한 경우, SGW 재배치를 위해서 사용됨 ( I t provides user plane
S5
tunnel ing and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocat ion due to UE mobi l ity and i f the Serving GW needs to connect to a non-col located PDN GW for the required PDN connect ivity. )
Sll fflE와 SGW간의 레퍼런스포인트
PDN GW와 PDN 간의 레퍼런스포인트. PDN은, 오퍼레이터 외부 공 용또는사설 PDN이거나 예를 들어, IMS서비스의 제공을 위한오 퍼레이터-내 PDN일 수 있음. 이 레퍼런스포인트는 3GPP 액세스의 Gi 에 해당함 ( It is the reference point between the PDN GW and
SGi the packet data network. Packet data network may be an operator external publ ic or pr ivate packet data network or an intra operator packet data network , e .g. for provi sion of IMS services . This reference point corresponds to Gi for 3GPP accesses . )
[63] 도 1에 도시된 레퍼런스포인트 증에서 S2a 및 S2b는 비— 3GPP 인터페이 스에 해당한다. S2a 는 신뢰되는 비 -3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b 는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포 인트이다ᅳ
[64] EPS Bearer Concept
[65] 3GPP EPS(Evolved Packet System)에서 EPS 베어러 (EPS Bearer)는 사용자 평면 경로 (User Plane Path)로상향 /하향 IP플로우 (Up/Down IP f low)의 송수신 통로라고 할수 있다.
[66] 단말이 EPS 시스템에 등록 (Attach)되면 IP 주소가 할당되고 PDN 연결 (PDN connect ion)마다 하나의 기본 베어러 (defaul t bearer)가 생성된다. 또한 기본 베어러 (default bearer)로 QoS(Qual i ty of Service)가 만족되지 않는 경우 전용 베어러 (dedicated bearer)가 생성되어 서비스 가능하다. 기본 베어러 (Default bearer)는 한번 생성되면 해당 PDN 이 단절 (disconnect ion)되지 않는 한 유지된다. 또한, 단말이 EPS 에 분리 (Detach)되기 전 까지는 적어도 하나의 기본 베어러 (default bearer)는 유지되어야 한다.
[67] 도 3은 베어러 (또는 EPS베어러)의 구조를 설명하기 위한참고도이다.
[68] 베어러 (또는 EPS 베어러)는 그 구간별로 다른 이름으로 명명된다. 도 3 에서와 같이, EPS베어러 (EPS bearer)는그 구간에 따라 E-RAB과 S5 Bearer 나 뉜다. 즉 단말이 Idle 상태 (ECM-IDLE)인 경우 존재하는 EPS 베어러 구간은 S5 베어러이고, 연결 모드 (ECM— CONNECTED)로 들어가면 E-RAT 이 설정 (setup)되면서 단말 eNB와 P-GW사이의 연결 (connect ion)이 이루어 진다.
[69] 추가적으로, 도 3 에서, E-RAB는 UE와 EPC사이에서 EPS 베어러의 패킷 들을 전송한다. E-RAB 가존재하는 경우, E-RAB와 EPS 베어러 사이에는 일대일 (one-to-one) 매핑이 이루어진다. 데이터 무선 베어러 (Data Radio Bearer , DRB) 는 UE 와 eNB 사이에서 EPS 베어러의 패¾들을 전송한다. 데이터 무선 베어러 (DRB)가존재하는 경우, 데이터 무선 베어러와 EPS 베어러 /E-RAB사이에는 일대 일 (one-to-one) 매핑이 이루어진다.
[70] 또한, S1 베어러는 eNodeB 및 S_GW(serving GW) 사이에서 E-RAB의 패킷 들을 전송한다. S5/s8 베어러는 S-GW( serving GW)와 P-GW(PDN GW)사이에서 EPS 베어러의 패킷들을 전송한다.
[71] 나아가 상술한 베어러 (bearer)의 구조에 대하여는 LTE/LTE— A 표준 문서 인 36.300의 13. 1 'Bearer service archi tecture' 를 참조할수 있다. [72] Small Cell
[73] Small Cell은 3GPP RAN쪽의 주요 기술로 그표준에 대한논의가진행증 이다. 도 4는 Small Cell 과 관련하여 TR 36.842 을 기준으로 듀얼 커넥티비티 를 설명하기 위한 참고도이다. 듀얼 커넥티비티는 하나의 MeNB와 적어도 하나 의 SeNB를 가지는 UE로 구성된다.
[74] 도 4(a)를 참조하여 듀얼 커넥티비티를 위한사용자 평면 (User Plane)의 1A 솔루션올 설명하면, 1A 솔루션은 SeNB 와 독립적인 PDCPs(no bearer split) 를 종료시키는 SI— U 결합이다. 도 4(b)를 참조하여 듀얼 커넥티비티를 위한 사 용자 평면 (User Plane)의 3C 솔루션을 설명하면, 3C 솔루션은 MeNB 와 MeNB 내 의 분할된 베어러 (bearer split) 및 분할된 베어러들을 위한 독립적인 RLCs 를 종료시키는 S1-U결합이다.
[75] 또한, 제어 평면 (Control Plane)의 경우 MeNB 가 모든 제어권을 가지고 단말의 이동성 (mobility) 등을 제어하며 즉 SeNB로는사용자평면 (User Plane) 만이 송수신 될 수 있다.
[76] X2-based handover
[77] 먼저, X2-based handover 를 설명하기 위하여, LTE/LTE-A표준인 36.300 의 10.1.2.1 'Handover' 상의 도 5를 참조한다. 도 5를 참조하여 X2-기반 핸 드오바방식으로 구현되는 경로 스위치 절차 (Path switch procedure)가구현될 수 있다.
[78] X2-기반 핸드오버에 대하여 설명하면, 표 2 와 같이 소스 eNB(Source eNB)가단말의 핸드오버 여부를 판단하여 (예, 도 5 의 '단계 3 HO decision' , 단말의 이동성 (mobility) 및 부하 (load) 정보들에 의해 소스 eNB 가 핸드오버 여부 판단) 해당 정보 (예, E-RABs To Be Setup List)와 함께 타겟 eNB(Target eNB)로 핸드오버 요청 (handover request)을 전송한다) (도 5의 단계 4).
[79] 타켓 eNB Target eNB)는 핸드오버 요청을 받으면 수산한 E-RAB 리스트 (E-RAB list)에 대해서 권한제어 (.Admission Control, 보 5 의 단계 5)을실시 한다. 이 때, 타겟 eNBCTarget eNB)의 자원 상황에 따라 E-RAB 셋업 (E-RAB setup)에 대한 권한 제어 (admission control)을 할수 있는데 GBR/Non-GBR정보 및 E-RAB 별로 주어지는 E-RAB Level QoS parameters (표 2 참조)를 기준으로 판단할수 있겠다. [80] 【표 21
Figure imgf000015_0001
[81] 타겟 eNB는 권한 제어 (Admission Control) 결과에 의해 소스 eNB 로 핸 드오버 요청 ACKCHandover request acknowledge) 혹은 헨드오버 준비 실패 (Handover Preparation Failure)를 보낼 수 있다 (도 5의 단계 6).
[82] 이 때, 소스 eNB 가 요청한 E— RAB 리스트 (E-RAB list)중 적어도 하나의 non-GBR E-RAB 이 선택되면 핸드오버 성공으로 간주하고 타¾ eNB 는 해당 E- RAT 셋업 정보를 E— RABs 허가 리스트 (E-RABs Admitted List)에 포함해서 소스 eNB로 핸드오버 요청 ACKCHandover request acknowledge)를보낸다.
[83] 만약, 하나의 non-GBR E-RAB 도 수용 (admit)할 수 없다면, 타겟 eNB 는 소스 eNB 로 핸드오버 준비 실패 (Handover Preparation Failure)를 보낸다. 소 스 eNB는 타겟 eNB로부터 핸드오버 요청 ACK(Handover request acknowledge)를 수신하면, 도 5의 단계 7, 8, 9, 10 및 11 을수행하여 단말을 타겟 eNB로 캠 ¾ (camping) 후상향링크 데이터 경로 (upl ink data path)를 통하여 떼이터 포워 딩 (Data forwarding)을수행한다.
[84] 도 5의 단계 12에서 타겟 eNB는醒 E로 경로스위치 (path swi tch)를 요 청하면 濯 E 는 이를 수신하고 LTE/LTE— A 표준 문서 상의 3GPP TS 23.401 의 5.5.1.1.2 절의 ᅳ based handover wi thout Serving GW relocat ion 1 에 관련 된 절차를 진행한다 (표 3 참조) .
[85] 【표 3】
5.5.112 X2-based handover without Serving GW relocation (IS 23.401)
Figure imgf000016_0001
connecfejnfcy triggering the ME requested iPU disconnectionprocedure spe fied in clause 5.10 J.
If none of the defattltEPS beareis have been accepted by the target eNodeB or theie is a LIP A PDN connection that has not eenreleased, the MME shall ^ctassp&ciged inste 6.
If none of the defktit EPS bearers have been switched successfully in tke core network or if they have not been accepted by the target ^iodeB or the LIPA PDN connection has not been released, the E shall s&cid a Path Switch l.equest Figure message (see more detail in TS 36.413 [36]) to the taiget eliodeB. Ihe MME performs explicit detach of the TO as desciibed in the MME! initiated detach pro cetfure o f da use 5 ^8 .
[86] 즉, 腿 E 는 X2-핸드오버 증 eNB 단에서 기본 베어러 (default bearer)에 해당하는 E-RAB 올 수용 (admi t )하지 못한 경우 이미 단말을 타겟 eNB(Target eNB)로 핸드오버 시킨 후에 다시 해당 PDN 연결 (PDN connect ion)올 단절 (disconnect ion) 하거나 최악의 경우에는 해당 단말을丽 E init iated detach 한 다.
[87] 나아가, 이에 대한 보다 구체적인 절차는, 3GPP TS 36.300 문서 상의 10.1.2.1 절의 'Handover' 및 3GPP TS 36.300 문서 상의 10. 1.2.2 절의 'Path Switch' 그리고 3GPP TS 23.401 의 5.5. 1.1 절의 'X2— based handover' 를 참조할수 있다.
[88] Path Switch for Dual Connectivity (Smal l Cel l )
[89] 도 6 은 듀얼 커넥티비티 (Dual Connect ivi ty)를 위한 경로 스위치의 절 차의 일 예를 설명하기 위한참고도이다.
[90] 도 6 에서, 상술한 X2 기반 핸드오버 와 동일하게 Me B 가 경로 스위치 (path switch)를 판단하면 SeNB 로 해당 E-RAB 에 대한 권한 제어 (Admi ssion Control )을 요청하고 SeNB 를 이 결과는 MeNB 로 전송된다. 단, 경로 스위치 (Path Switch)가 허용 (accept)된 경우匪 E로 경로 스위치 (Path switch)를 요청 하는 주체는 타겟 eNB( Target eNB)가 아니라 MeNB가 된다.
[91] 즉, 기존 X2-핸드오버 시에도 핸드오버 증에 기본 베어러가 해제 (release) 된 상태에서 (예를 들어, 타겟 eNB 에서 권한 제어 (Admission Control)중 허가 (admit)되지 않은 경우) MME 가 경로 스위치 요청 (path switch request)를수신 한 경우, 이를 판단하고 PDN단락 (PDN disconnection) 흑은 단 말의 분리 (detach)를 명령한다.
[92] 따라서, 타켓 eNB 가 해당 E-RAB 의 기본 (예, default 흑은 dedicated) 여부를 알아서 다른논 -GBR(Non-GBR)대신 기본 베어러인 논 -GBR 베어러 (Non-GBR bearer)를 허가 (admit)했다면, 이와 같은 비성공적인 경우 (unsuccessful case) 가 생기지 않거나 혹은 SeNB 가 허가 (admit)하지 못했다면 (예를 들어, 다른 Non-GBR bearer 를 받올수 밖에 없었다면) 미리 실패 (failure) 여부를 알고 그 절차를증지할수 있었을 것이다.
[93] 특히, 듀얼 커넥티비티 의 경우 X2-기반 핸드오버 경우보다 더 잦은 경 로 스위치 (path switch)가 요구된다. X2-기반 핸드오버 의 경우 부하 밸런싱 (load balancing)도 있으나 많은 경우 단말의 이동성 (mobi 1 ity)에 의해 eNB 경 로 스위치 (path switch)가 요구되지만, 듀얼 커넥티비티의 경우 이동성 (mobility)은 물론부하 벨런싱 (load balancing) 및 단말의 진행 중 (ongoing)인 서비스에 따라서도 다양한 경로 스위치가요구된다.
[94] 즉, 서빙 MeNB(Serving MeNB)<— SeNB, Se B^^SeNB, SeNB^~>타겟 MeNB, 서빙 MeNB<"^타겟 MeNB 등의 경로 스위치가 예상될 수 있다. 또한 SeNB 의 경우 MeNB 에 비해 커버리지가작고 잦은 이동성 (mobility)으로 인하여 안전 하지 않은 경우 (imsecure case)가 발생할 수 있다. 또한 초기 배치 (deploy)시 많은 시행 착오가 예상되어 액세스 네트워크 단의 E-RAB 핸들링시 불필요한 기 본 베어러 해제 (unnecessary default bearer release)로 인한 PDN 단절 (PDN disconnection) 및 단말 분리 (Detach)등의 서비스 증단 (service disruption)이 발생할 가능성이 존재한다.
[95] 따라서, 이하에서는, 전술한 내용을 바탕으로 본 발명에 따른 스몰 셀 환경 (Small Cell Enhancement )의 i)듀얼 커넥티비티 베어러 우회 (Dual Connectivity Bearer Offloading) ii)흑은 베어러 경로 스위칭 (Bearer Path Switching) 또는 iii)핸드오버시 중 하나의 경우에 있어서, 액세스 네트워크 (Access Network)가 코어 네트워크 (Core Network)단의 베어러 핸들링 (Bearer handling)과 관련된 파라미터 (예, Bearer Type)를 인지하도록 하여 액세스 네트 워크가좀 더 안정적 (robust)인 스몰 샐 핸들링 (Small Cell handling)및 핸드오 버를 가능하는 방안에 대하여 설명한다.
[96] 따라서, 본 발명에 따르면 결과적으로 PDN 연결 해제 (PDN connection release) 등의 사용자 경험도 (User experience) 저하를 방지하는 효과는 물론 핸드오버 준비 부족 (Handover Preparation failure)및 경로 스위칭 실패 (Path switch failure)를 재빨리 감지하여 단말이 최적의 eNB (cell)에서 서비스가가 능하게 할수 있다.
[97] 종래의 경우, 스몰 셀 환경을 위한 듀얼 커넥티비티 중 한 방법은 제어 권을 가지는 MeNB(Master eNB)가 서비스중인 베어러를 듀얼 커넥티비티가 가능 한 SeNB( Secondary eNB)로 이동시키는 트래픽 우회 (Traffic Offloading) 방식이 다. 베어러 (E-RAB)별로 경로 스위치가 가능한데 해당 단말의 모든 베어러 (User Plane)를 SeNB로 우회 (of floading) 할수 있다. 이를 통해 MeNB와 SeNB를 통 한동시 서비스가가능하여 단말의 효율 (Throughput) 향상은물론흔잡상황회 피 등이 가능하다.
[98] 다만, 종래 MeNB 가 경로 스위칭 결정을 위해 사용할 수 있는 파라미터 는, MeNB 의 부하 정보 (load information) 및 SeNB 의 부하 정보 (load information) 그리고 해당 단말의 베어러, 즉 E— RAB에 대한 QoS정보에 불과하 며, MeNB는 이를 기준으로 SeNB로의 우회 (Of floading) 여부를 결정할수 있다.
[99] 따라서, 본 발명에서는 E— RAB 셋업 (setup)시 MeNB에 QoS 정보뿐만 아니 라베어러 타입 (Bearer type, 즉, default 혹은 dedicated) 여부 및 서브스크립 션 (subscription) 정보들은 같이 전송하도록 하여 MeNB 가 우회 (offload)시 상 황에 따라해당 E-RAB의 스위치 (switch)여부를 좀 더 효율적으로 하여 최종사 용자 (End user)의 QoE(Quality of Experience)및 네트워크 효율성을 극대화할 수 있는 방안에 대하여 보다구체적으로설명한다.
[100] 이에 따라, 본 발명에서는, 기본 베어러 해제 (default bearer release) 를 방지하는 방안 및 기본 베어러가 해제 (release)된 경우의 동작을 증심으로 설명한다. [1011 즉, 본 발명에서는, 기본 베어러가 해제되는 것을 최소화 하여 해당 단 말의 PDN 단절 (disconnect ion) 및 단말이 EPS 시스템에서 분리 (detach)되는 것 을 방지한다. 또한 기본 베어러가 해제되는 경우라면, 코어 네트워크 (Core Network, 여ᅵ, MME)까지 모든 정상적인 절차가 진행된 후 뒤늦게 그 실패 (failure)를 판단하기 보다는, 액세스 네트워크에서 이를 미리 판단하고 해당 cell (예, target eNB)로의 핸드오버를 중지하고 다른 E-UTRAN cell 혹은 다른 RAT 으로 핸드오버 시도하여 단말이 안정적으로 동작할수 있도록 할 수 있다. 그러므로, 본 발명에 따르면 불필요한시그널링을 최소화 하고 네트워크가신속 하게 대응함으로써, 최종 사용자 (End User)의 서비스 인터럽션 (service interrupt ion)을줄이고 네트워크 효율성을 증대시킬 수 있다.
[102] 본 발명에 따르면, 베어러 셋업 (Bearer setup)시 코어 네트워크 노드 (Core Network node, 예, 丽 E) 가 E-廳 레벨 QoS 파라미터 (E-RAB level QoS parameter) 뿐만 아니라 E-RAB 별 베어러 타입 (예, default bearer or dedicated bearer)을 같이 알려줘서 , 핸드오버시 권한 제어 (Admission Control ) 및 듀얼 커넥티비티를 위한 경로스위치 결정시 사용할수 있다.
[103] 여기서, 코어 네트워크 노드 (Core Network node, 예, 醒 E) 는특정한 경 우에만 베어러 타입 (bearer type)를 액세스 네트워크 (예, Source eNB)에게 알려 줄 수 있다. 보다 구체적으로 설명하면, 즉, 듀얼 커넥티비티를 eNB 가 지원하 는지 (eNB capability) 흑은 UE 가 지원하는지 (UE capabi 1 ity)여부에 따라 선택 적으로 (optional)하게 베어러 타입을 알려줄 수 있다. 즉, 각각의 band combination 별로 단말의 듀얼 커넥티비티 지원여부 (dual connectivity capability)가 동기 (synchronous)와 비동기 (asynchronous)인지 설정되며, 이러 한정보는醒 E의 UE 컨텍스트 (UE context)에 저장된다.
[104] 즉, 단말이 서비스 요청 (service request)등을 통하여 ECM— CONNECTED 가 되기 위해 초기 컨텍스트 셋업 (Initial Context setup)을 하게 되면, eNB는 해 당 단말에 대한듀얼 커넥티비티 (Dual Connectivity) 수행 여부를 결정할수 있 다. (이때, 단말지원 여부 (UE capability)및 eNB의 상황에 따라 결정될 수 있 다. 예를 들어, synchronous, asynchronous 혹은 band combination 중 적어도 하나에 기초하여 결정될 수 있다). [105] 따라서, 본 발명에 따라 丽 E 가 초기 컨웩스트 셋업 (initial context setup)시 베어러 타입 (bearer type)을 추가적으로 전송하기 위하여, 단말의 듀 얼 커넥티비티 지원 여부 (dual co皿 ectivity capability)등에 기반하여 결정할 수 있고, 더불어 운영 및 관리 (Operation and Maintenance, 0&M)에 따라 해당 지역 흑은오퍼레이터 (operator)의 듀얼 커넥티비티 (dual connectivity)의 안전 (secure) 여부에 따라匿 E단에서 선택적 (optional)으로 설정 (configuration)할 수 도 있다.
[106] 예를 들어, 초기 듀얼커넥티비티 배치 (Dual connectivity deploy)시에는 기본 베어러 (default bearer)를 MeNB(Master eNB)에서 서빙 (serving)받도록 베 어러 타입을 MME 가 초기 컨텍스트 셋업 (initial context setup)중에 전송하지 만, 해당 지역의 듀얼 커넥티비티 (dual connectivity) 운용이 안정적으로 동작 하면 腿 E가베어러 타입을 전송하지 않고 이에 기본 베어러가 SeNB (Secondary eNB)로우회 (offload) 될 수 있도록운용될 수 있다.
[107] 도 7은초기 컨텍스트 셋업 동작을 나타내는 참고도이다.
[108] 즉, 도 7에서 謹 E는초기 컨텍스트 셋업 (Initial Context Setup)시 (예 를들어, 해당단말이 Idle mode 에서 connected mode로 전환시) 핸드오버 및 듀얼 커넥티비티의 안정적인 (robust) 볘어러 이동을 위해 초기 컨텍스트 셋업 요청 메시지 (Initial Context Setup Request message)의 QoS 파라미터에 해당 베어러의 베어러 타입올추가적으로 전송할 수 있다. 따라서, MME가 베어러 타 입을 추가해서 전송하는 의미는 핸드오버 및 듀얼 커넥티비티시 권한 제어 (Admission Control)둥의 자원 할당 시 기본 베어러 (Default bearer)를 우선하 여 대처해서 기본 베어러 드롭 (Default bearer drop)으로 인한 단말의 PDN단절 (PDN disconnection) 및 분리 (Detach)가 일어나지 않도록 하는수단으로 사용될 수 있다.
[109] 도 7 을 참조하여 설명하면, 麗 E 로부터 eNB 를 통하여 UE 로 페이징 (paging) 메시지가 전송된 (단계 1) 이후, UE와 eNB는 랜덤 액세스 절차 (random access procedure)를 수행하여 연결을 설정한다 (단계 2).
[110] UE는 eNB 에 대하여 서비스 요청을 위한 NAS( Non-Ac cess stratum) 메시 지를 송신한다 (단계 3). 이에 따라, eNB는醒 E에 대하여 S1-AP초기 단말 메시 지 (Initial UE Message)를 전송하며 (단계 4), 이는서비스요청, eNB UE 시그널 링 연결 ID(eNB UE signaling connection ID), LI PA 를 지원하는 경우 L-CT IP 주소등이 포함될 수 있다.
[111] 疆 E는 이에 따라 S1-AP초기 컨텍스트 셋업 요청 메시지를 eNB 에게 전 송한다 (단계 5). 이때 S1-AP 초기 컨텍스트 셋업 요청 메시지는 NAS 메시지, 麗 E UE시그널링 연결 ID (醒 E UE signaling connection ID), 시큐리티 컨텍스트 (security context), 단말능력 정보 (UE capability Information), 베어러 셋업 등의 정보를 포함하며, 여기서 베어러 셋업은 서빙 SAE-CT TEID, QoS 프로필 (QoS profile), 코릴레이션 ID(Correlat ion ID)를포함한다.
[112] eNB 는 S1-AP초기 컨텍스트 셋업 요청 메시지를 수신한 후 RRC 시그널 링을 통하여 무선 베어러 셋업 (radio bearer setup)을 전달한다 (단계 6).
[113] 이에 따라, UE 는 RRC 시그널링올 통하여 무선 베어러 셋업 완료 (Radio bearer setup complete)를 eNB로 전달 (단계 7)하며, eNB는 이에 따라 S1-AP초 기 컨텍스트 셋업 완료 (Initial context setup complete)메시지를 MME 로 전송 한다 (단계 8). 여기서, S1-AP초기 컨텍스트 셋업 완료 메시지는 eNB-UE시그널 링 연결 ID(eNB-UE signaling connection ID) 및 베어러 셋업 확인 (eNB TEID)을 포함한다. 나아가, 초기 컨텍스트 셋업 (Initial context setup)에 관한 보다 구체적인 사항은 LTE/LTE-A관련 표준인 36.413의 8.3.1절을 참조할수 있다.
[114] 나아가, 본 발명에 따라, S1-AP초기 컨텍스트 셋업 요청 메시지는 표 4 와같이 나타날수 있으며, E-RAB level QoS 파라미터들은표 5 와 같이 나타날 수 있다.
[115] 【표 4】
IE/Group Name Presence Range IE type Semantics Criti cal i Assigned and description ty Critical referenc ity e
Message Type M 9.2.1.1 YES reject 匪 E UE SIAP ID M 9.2.3.3 YES reject eNB UE SIAP ID M 9.2.3.4 YES reject
UE Aggregate M 9.2.1.20 YES reject Maximum Bit Rate
E-RAB to Be Setup 1 YES reject List
>E-RAB to Be Setup 1 .. EACH reject Item IEs <maxnoof
E-RABs>
»E-RAB ID M 9.2.1.2 -
»E-RAB Level QoS M 9.2.1.15 Includes
Parameters necessary
QoS
parameters.
»Transport Layer M 9.2.2.1 一
Address
»GTP-TEID M 9.2.2.2 -
»NAS-PDU 0 9.2.3.5 ᅳ
»Correlat ion ID 0 9.2.1.80 YES ignore IE/Group Name Presence Range IE type Semantics Critical i Assigned and descri tion ty Critical referenc ity e
»SIPT0 0 Cor r el at YES ignore Correlation ID ion ID
9.2.1.80
UE Security M 9.2.1.40 YES reject Capabilities
Security Key M 9.2.1.41 The KeNB is YES reject provided
after the
key一
generat ion
in the醒 E,
see TS
33.401 [15].
Trace Activation 0 9.2.1.4 YES ignore
Handover 0 9.2.1.22 YES ignore
Restrict ion List
UE Radio 0 9.2.1.27 YES ignore Capability
Subscriber Profile 0 9.2.1.39 YES ignore ID for IE/Group Name Presence Range IE type Semant i cs Criticali Assigned and description ty Critical referenc ity e
RAT/Frequency
priority
CS Fallback 0 9.2.3.21 YES reject Indicator
SRVCC Operation 0 9.2.1.58 YES ignore Possible
CSG Membershi 0 9.2.1.73 YES ignore Status
Registered LAI 0 9.2.3.1 YES ignore
GUMMEI 0 9.2.3.9 This IE YES ignore indicates
the丽 E
serving the
UE.
匪 E UE SIAP ID 2 0 9.2.3.3 This IE YES ignore indicates
the丽 E UE
SIAP ID
assigned by
the匪 E. IE/Group Name Presence Range IE type Semantics Criticali Assi ned and description ty Critical referenc ity e
Management Based 0 9.2.1.83 YES ignore MDT Allowed
Management Based 0 MDT PLMN YES ignore MDT PL丽 List List
9.2.1.89
Additional CS c- 9.2.3.37 YES ignore Fallback Indicator i fCSFBhi ghpr i or i ty
Masked IMEISV 0 9.2.3.38 YES ignore
Expected UE 0 9.2.1.96 YES ignore Behaviour
[116] 【표 5】
IE/Group Name Presenc Range IE type and Semantics description e reference
E-RAB Level QoS Parameters
>QCI M INTEGER QoS Class Identifier (0..255) defined in TS 23.401 [11].
Coding specified in TS 23.203 [13]·
>A1 location and M 9.2.1.60 Retention Priority
>GBR QoS 0 9.2.1.18 This IE applies to GBR Information bearers only and shall be ignored otherwise.
>Bearer Type 0 ENUMERATED This IE is used
(Default identify whether the bearer, bearer type is default
Dedicated bearer or dedicated bearer) bearer .
[117] 더불어, 초기 컨텍스트 셋업 (Initial context setup)시 해당 망의 안정 성 (stability) 및 단말과 eNB 의 듀얼 커넥티비티 지원 (dual connectivity capability) 등으로 베어러 타입의 추가 여부가 결정될 수 있음은상술한 바 있 다.
[118] 나아가, 코어 네트워크 노드 (예, MME)는 베어러 타입 (bearer type) 뿐만 아니라 베어러 . 핸들링 (Bearer handling)에 필요한 단말의 서브스크립션 (subscription) 정보를 추가적으로 전송할수 도 있다. [119] 본 발명에 따른 핸드오버
[120] 먼저, 본 발명에 따른 핸드오버에 대하여 설명한다.
[121] 소스 eNB는 베어러 셋업 (bearer setup) 정보를麗 E로부터 수신한다. 이 때, 소스 eNB는匪 E로부터 베어러 (즉, E-RAB)에 대한 QoS 정보를 수신할수 있 으며, 이 때 麗 E 로부터 베어러 타입에 대한 정보가 추가적으로 수신할 수 도 있다.
[122] 여기서, 핸드오버시 베어러 타입을 소스 eNB (초기 컨텍스트 셋업 (initial context setup을 한 eNB)가사용하는용도는 타겟 eNB에 베어러 타입 을 지시해줌으로써, 기본 베어러 (default bearer)의 수용 (예, 자원 할당)을 우 선시할 것을 요청하기 위함이며, 나아가, 만약 X2 인터페이스로 베어러 타입을 전송하지 못하는 경우에는 타겟 eNB 가 기본 베어러 (default bearer)을 수용하 지 않는 경우소스 eNB에서 이를 재빨리 핸드오버 실패라판단하고 소스 eNB에 더 머물거나 다른 가능한 eNB로 핸드오버할수 있도록 하기 위함이다.
[123] 소스 eNB는 수신된 베어러의 QoS 정보를 고려하여 이에 대한 경로 스위 치 (즉, 핸드오버)가필요하다고관단되는 경우에는, 타겟 ENB로 핸드오버 요청 (Handover request)를 전송한다.
[124] 이러한 경우에, 소스 eNB 가 요청한 베어러 정보 (예, E-RAB list) 에 대 하여, 타겟 eNB는 권한 제어 (admission control)시 E-RAB들 증 기본 베어러인 E-RAB 을 우선시해서 허가 (admit)한다. 이 때, ARP(al locat ion and retention priority)정보를 무시할 수도 있다. 그러나, 기본 베어러의 허가 (즉 자원 할 당)가불가능 한 경우에는 타겟 eNB는 다론 Non-GBR를 수용 (admit)할 수 있더 라도 이를 핸드오버 준비 실패 (handover preparation failure)로 간주하고 소스 eNB로 웅답한다. 이에 따라, 소스 eNB는 기본 베어러가 해제된 상태라고판단 하고 재빨리 다른 E-UTRAN cell이나 other-RAT cell로의 핸드오버를 재시도 할 수 있다.
[125] 만약, 소스 eNB(Source eNB)만 베어러 타입 (예, default or dedicated) 을 알고 있거나, 혹은 타겟 eNB 및 소스 eNB 가 베어러 타입에 대하여 알고 있 음에도, 타겟 eNB 으로 부터 기본 베어러가 수용 (admit)되지 않은 채 핸드오버 요청 ACK(Handover request acknowledge)가수신된 경우, 소스 eNB(Source eNB) 는 이를 핸드오버 성공으로 보지 않고 핸드오버 절차를 증단할 수 도 있다. 이 때, 서빙 샐 (serving cel l )에 머물 수 없는 경우라면 다른 cel l 로의 핸드오버 를 시도하거나, 혹은 RAT 을 바꿔서 (UTRAN, GERAN) 핸드오버를 시도할 수 도 있다.
[126] 도 8은 본 발명에 따라 소스 eNB가 핸드오버 요청을 전송하는 경우 베 어러 타입을 함께 알려준 경우의 실시예이다.
[127] 도 8에서 소스 eNB로부터 핸드오버가 결정된 경우 (도 8의 단계 1) , 소 스 eNB는 타켓 eNB로 베어러 타입을포함하는 핸드오버 요청을 전송한다 (도 8 의 단계 2)
[128] 이에 대하여, 타겟 eNB 는 기본 베어러를 우선하여 수용 (admi t )하여 핸 드오버 가능 여부를 판단하고 (도 8 의 단계 3), 이에 따라 헨드오버 요청 확인 (Handover request ACK. 도 8 의 단계 4-a) 혹은 핸드오버 준비 실패 (Handover preparat ion fai lure, 도 8의 단계 4_t>)를소스 eNB로 송부할지 판단한다. 즉, 타겟 eNB 는 기본 베어러마저 수용 (admit )하지 못하는 경우라면 이를 핸드오버 준비 실패로 간주하고, 소스 eNB로 핸드오버 준비 실패 메시지를 송신한다.
[129] 이에 따라, 소스 eNB 는 베어러 타입을 포함해서 핸드오버 요청 송신시 핸드오버 요청 확인 (Handover request ACK)을 받을면 핸드오버 준비 성공으로 간주하고 추가적인 절차를 진행할수 있다.
[130] 도 9는 본 발명에 따라소스 eNB가 핸드오버 요청시 베어러 타입올 알 려주지 아니하는 경우의 실시예를 나타낸다. 도 9 에서 나타난 단계들 중 도 8 과동일한단계에 대한설명은 상술한 내용을 참조한다.
[131] 도 9 에서는 소스 eNB는 베어러 타입을 초기 컨텍스트 셋업시 ffiE로부 터 수신했지만 핸드오버시 타겟 eNBfh 이를 알려주지 않는 경우를 가정한다 (도 9의 단계 2) .
[132] 이에 따라, 타겟 eNB 는 베어러 타입에 관한 정보없이 QoS 값만으로 권 한 제어 (admi ssion control )을 하고 Non— GBR베어러 중 하나라도 수용 (admi t )할 수 있으면, 핸드오버 요청 확인 (Handover request ACK)을 소스 eNB로 전송한다.
[133] 소스 eNB 는 핸드오버 요청 확인을 수신하예 기본 베어러의 수용 (admi t ) 상태를 확인 후 기본 베어러 (defaul t bearer)가 타¾ eNB 에 의해 수용 (admi t )된 경우, 이를 핸드오버 준비 (handover preparat i on)이 성공했다고 간주 한다. 만약, 기본 베어러가 수용 (admi t )되지 않음을 판단한 경우에는 핸드오버 준비 실패로 간주 (예를 들어, 타겟 eNB로부터 핸드오버 요청 확인을수신한 경 우에도실패로 간주)하고 다른가능한 eNB를 찾는동작을 한다 (도 9의 단계 5)
[134] 본 발명에 따른듀얼 커넥티비티
[135] 본 발명에 따른 듀얼 커넥티비티의 경우를 설명한다.
[136] MeNB 는 듀얼 커넥티비티에 대하여 상술한 바와 같이 단말의 지원 여부 네트워크의 지원 여부등에 기반하여 應 E로부터 베어러 타입을포함하는 베어러 셋업 (bearer setup) 정보를수신한다.
[137] MeNB는 수신된 베어러 타입에 대한 정보에 기반하여, 경로 스위치 결정 시 기본 베어러로 판단되는 E-RAB의 경우 SeNB로의 경로스위치를 하지 않거나 우선 순위를 낮추어 최대한 MeNB에서 유지되도록 할수 있다.
[138] 만약, MeNB 가 기본 베어러 (예, E-RAB)의 경로 스위치를 SeNB 에 요청하 는 경우라면 SeNB 는 기본 베어러를 가장 우선시 하여 권한 제어 (예, 자원 할 당)올수행한다. 이 경우 ARP가무시될 수 있다. 이 때, 만약 SeNB가 경로스 위치를 요청한 E-RAB(default bearer 인 경우)을 수용 (admi t )하지 않는 경우라 면 MeNB 는 경로 스위치를 하지 않거나, 우선순위를 뒤로 해서 계속 서비스를 유지할 수 있다. 또한, SeNB 가 서비스 하고 있던 E-RAB(defaul t bearer 인 경 우)을 MeNB 로 경로 스위치를 요청하는 경우 MeNB 는 가장 높은 우선 순위 (pr iority)로 해당 E-RAB을수용 할 수 있다.
[139] 즉, 본 발명에 따른 듀얼 커넥티비티 방식은 상술한 본 발명에 따른 핸 드오버 시와 달리, 타켓 eNB (즉, SeNB)가수용하지 않는 E-RAB 는 MeNB가 계속 서비스할수 있다.
[140] 따라서, 본 발명에 따르면, 듀얼 커넥티비티시 MeNB는 SeNB로 베어러를 이동하는 경우에도 기본 베어러 (default bearer)는 최대한 이동시키지 않을 수 있다. 또한, 이동이 블가피한 경우일지라도, SeNB쎄 베어러 타입을 함께 전송 함으로쎄 최대한 SeNB가수용할 수 있도록 한다ᅳ SeNB가수용이 불가능하다고 희신하는 경우에는 MeNB가다시 수용하는 등 기본 베어러가드롭 (drop)되지 않 도록 동작할수 있다.
[141] 도 10은 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대 한바람직한실시예의 구성을 도시한도면이다. [142] 도 10을 참조하여 본 발명에 따른 단말 장치 ( 100)는, 송수신모들 ( 110) , 프로세서 (120) 및 메모리 ( 130)를 포함할수 있다. 송수신모들 ( 110)은 외부 장치 로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치 ( 100)는 외부 장치와 유선 및 /또 는 무선으로 연결될 수 있다. 프로세서 ( 120)는 단말 장치 ( 100) 전반의 동작을 제어할 수 있으며, 단말 장치 (100)가 외부 장치와 송수신할 정보 등을 연산 처 리하는 기능을수행하도록구성될 수 있다. 메모리 (130)는 연산 처리된 정보등 을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[143] 도 10 을 참조하여 본 발명에 따른 네트워크 노드 장치 (200)는, 송수신 모듈 (210), 프로세서 (220) 및 메모리 (230)를 포함할 수 있다. 송수신모듈 (210) 은외부 장치로각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치 (200)는 외부 장치와유선 및 /또는무선으로 연결될 수 있다. 프로세서 (220)는 네트워크 노드 장치 (200) 전반의 동작을 제어할 수 있으며 , 네트워크 노드 장치 (200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리 (230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[144] 또한, 위와 같은 단말 장치 (100) 및 네트워크 장치 (200)의 구체적인 구 성은, 전술한본 발명의 다양한실시예에서 설명한사항들이 독립적으로 적용되 거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
[145] 상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 ( f i rmware) , 소프트웨어 또는 그 것들의 결합등에 의해 구현될 수 있다.
[146] 하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Appl icat ion Speci f i c Integrated Ci rcuits) , DSPs(Digital Signal Processors) , DSPDs(Digital Signal Processing Devices) , PLDs(Programmable Logic Devices) , FPGAs(Field Programmable Gate Arrays) , 프로세서, 컨트롤러, 마이크로 컨트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[147] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는동작들을수행하는 모듈, 절차또는 함수등 의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세 서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부 에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을수 있다.
[148] 상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가본 발명을 구현하고 실시할수 있도록 제공되었다. 상기에서는 본 발명의 바람직한실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련 된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다 양하게 수정 및 변경시킬 수 있음을 이해할수 있을 것이다. 예를들어, 당업자 는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있 다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[149] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다 른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에 서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명 의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다ᅳ 본 발명은 여기에 나타난실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범 위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하 거나출원 후의 보정에 의해 새로운 청구항으로 포함할수 있다.
[150] 【산업상 이용가능성】
[151] 상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적 용될 수 있다

Claims

【청구의범위】
【청구항 1】
무선 통신 시스템에서 제 1 네트워크 엔티티 (network ent i ty)의 경로 스위치 (path swi tch)를 결정하는 방법에 있어서,
적어도 하나의 베어러 (bearer)에 관한 베어러 타입 (bearer type)을 포 함하는 베어러 셋업 (bearer setup) 정보를 수신하는 단계;
상기 베어러 셋업 정보에 기반하여 경로 스위치 요청을 제 2 네트워크 엔티티로 송신하는 단계;
상기 제 2 네트워크 엔티티로부터 상기 경로 스위치 요청에 대옹되는 경로 스위치 웅답을 수신하는 단계; 및
상기 경로 스위치 응답이 기본 베어러 (default bearer )의 허가 (admit ) 를 지시하는 지 여부에 따라 경로 스위치를 결정하는 단계를포함하는
경로 스위치 결정 방법 .
【청구항 2】
제 1 항에 있어서,
, 상기 베어러 타입 정보는,
기본 베어러 (defaul t bearer) 혹은 전용 베어러 (dedicated bearer)을 지시하는 것을 특징으로 하는,
경로 스위치 결정 방법 .
【청구항 3】
제 1 항에 있어서,
상기 제 1 네트워크 엔티티는 소스 eNB(Source eNB)이고, 상기 제 2 네 트워크 엔티티는 타겟 eNB(Target eNB)이며,
상기 경로 스위치는 핸드오버 (handover)인 것을 특징으로 하는, 경로 스위치 결정 방법 .
【청구항 4】
제 3 항에 있어서,
상기 베어러 셋업 정보는, QoS(Qual i ty of Servi ce) 파라미터를 포함하 며,
상기 경로 스위치 요청은, 상기 QoS 파라미터에 따라 핸드오버가 결정되는 경우, 베어러 타입에 대한 정보를 더 포함하는 것을특징으로 하는 ,
경로 스위치 결정 방법 .
【청구항 5】
제 4항에 있어서,
상기 제 2 네트워크 엔티티는,
권한 제어 (admi ssion control )시 기본 베어러 (defaul t bearer)가 전용 베어러 (dedicated bearer)보다우선적으로 허가 (admi t )하도록 설정되며 ,
상기 기본 베어러를 허가하지 않은 경우, 상기 경로 스위칭 응답은 핸 드오버 실패를 지시하는 것을 톡징으로 하는,
경로 스위치 결정 방법 .
【청구항 6】
제 4항에 있어서,
상기 제 1 네트워크 엔티티는,
상기 경로 스위치 응답이, 상기 기본 베어러의 허가를 지시하지 않는 경우, 상기 제 2 네트워크 엔티티로의 핸드오버를 중단하는 것을특징으로 하는, 경로 스위치 결정 방법 .
【청구항 7】
제 1 항에 있어세
상기 제 1 네트워크 엔티티는 MeNB(Master eNB)이고, 상기 제 2 네트워 크 엔티티는 SeNB( Secondary eNB)이며,
상기 경로 스위치는 듀얼 커넥티비티 (Dual connect ivi ty)를 위한 경로 스위치 절차인 것을특징으로 하는,
경로 스위치 결정 방법 .
【청구항 8】
제 7항에 있어서,
상기 베어러 타입은,
단말의 듀얼 커넥티비티 지원 여부 및 eNB 의 듀얼 커넥티비티 지원 여 부중 적어도 하나에 따라, 상기 단말의 듀얼 커넥티비티가수행되는 것으로 결 정된 경우에만포함된 것을특징으로 하는, 경로 스위치 결정 방법.
【청구항 91
제 7 항에 있어서 ,
상기 적어도 하나의 베어러 중
전용 베어러에 한하여 경로 스위치 요청을 송신하는 것을 특징으로 하 경로 스위치 결정 방법 .
【청구항 10】
제 7 항에 있어서,
상기 제 2 네트워크 엔티티는,
기본 베어러에 대하여 경로 스위치가 요청된 경우, ARP(al location and retention priority)보다 우선시하여 자원 할당하도록 권한 제어 (admission contol)을 수행하는 것을 특징으로 하는,
경로 스위치 결정 방법 .
【청구항 11】
제 7 항에 있어서,
상기 제 1 네트워크 엔티티는,
상기 제 2 네트워크 엔티티가 기본 베어러에 대하여 허가 (admit)하지 않은 경우, 상기 기본 베어러에 대한 서비스를 유지하도록 설정된 것을 특징으 로 하는,
경로 스위치 결정 방법.
【청구항 12]
제 7 항에 있어서,
상기 제 1 네트워크 엔티티는,
상기 제 2 네트워크 엔티티로부터 기본 베어러에 대한 경로 스위치 요 청이 수신된 경우, 상기 기본 베어러를 허가 (admit)하도록 설정된 것을 특징으 로 하는,
경로 스위치 결정 방법 .
【청구항 13]
제 1 항에 있어서, 상기 베어러 셋업 정보는,
醒 E (Mobility Management Entity)로부터 수신되는 것을특징으로 하는, 경로 스위치 결정 방법.
【청구항 14】
무선 통신 시스템에서 경로 스위치 (path switch)를 결정하는 제 1 네트 워크 엔티티 (network entity)에 있어서,
무선 주파수 유닛 (Radio Frequency Unit); 및
프로세서 (Processor)를포함하며,
상기 프로세서는,
적어도 하나의 베어러 (bearer)에 관한 베어러 타입 (bearer type)을 포 함하는 베어러 셋업 (bearer setup) 정보를 수신하고, 상기 베어러 셋업 정보에 기반하여 경로 스위치 요청을 제 2 네트워크 엔티티로 송신하며, 상기 제 2 네 트워크 엔티티로부터 상기 경로스위치 요청에 대웅되는 경로스위치 웅답을수 섰하고, 상기 경로 스위치 웅답이 기본 베어러 (default bearer)의 허가 (admit) 를 지시하는 지 여부에 따라 경로 스위치를 결정하도록 구성된 것을 특징으로 하는,
제 1 네트워크 엔티티.
PCT/KR2015/000391 2014-01-14 2015-01-14 무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이를 위한 장치 WO2015108337A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/108,772 US10085201B2 (en) 2014-01-14 2015-01-14 Path switch method for dual connectivity in wireless communication system and apparatus for same
CN201580004579.1A CN105917702B (zh) 2014-01-14 2015-01-14 无线通信系统中用于双连接的路径切换方法及其装置
EP15737516.3A EP3096559A4 (en) 2014-01-14 2015-01-14 Path switch method for dual connectivity in wireless communication system and apparatus for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461926959P 2014-01-14 2014-01-14
US61/926,959 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015108337A1 true WO2015108337A1 (ko) 2015-07-23

Family

ID=53543164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000391 WO2015108337A1 (ko) 2014-01-14 2015-01-14 무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10085201B2 (ko)
EP (1) EP3096559A4 (ko)
CN (1) CN105917702B (ko)
WO (1) WO2015108337A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057955A1 (en) * 2015-09-30 2017-04-06 Samsung Electronics Co., Ltd. Methods and devices for supporting release of sipto bearer or lipa bearer in dual-connectivity architecture
WO2018111030A1 (ko) * 2016-12-15 2018-06-21 엘지전자(주) 무선 통신 시스템에서 핸드오버 수행 방법 및 이를 위한 장치
WO2018131904A1 (ko) * 2017-01-12 2018-07-19 주식회사 케이티 이종 네트워크 핸드오버 제어 방법 및 그 장치
WO2019039672A1 (ko) * 2017-08-21 2019-02-28 삼성전자 주식회사 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
US10660004B2 (en) 2017-01-12 2020-05-19 Kt Corporation Method for controlling heterogeneous network handover and apparatus therefor
CN111836407A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 处理方法和设备
CN112567805A (zh) * 2018-08-09 2021-03-26 诺基亚技术有限公司 非同构网络场景中的通信连接控制
US11395197B2 (en) 2018-08-21 2022-07-19 Nokia Technologies Oy Dual connectivity handover
US11438796B2 (en) 2019-05-20 2022-09-06 Samsung Electronics Co., Ltd. Electronic device supporting dual connectivity and method of controlling power of electronic device
WO2023045851A1 (zh) * 2021-09-22 2023-03-30 维沃移动通信有限公司 双连接通信方法和设备

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031256B (zh) * 2014-02-11 2019-07-23 Lg电子株式会社 在无线中控制上行链路功率的方法和设备
KR102298357B1 (ko) 2014-03-21 2021-09-07 삼성전자 주식회사 무선통신 시스템에서 다중 기지국과 랜덤 엑세스 수행 방법 및 장치
CN105325043B (zh) * 2014-05-30 2019-10-25 华为技术有限公司 承载建立装置和方法
US10104705B2 (en) * 2014-11-05 2018-10-16 Intel IP Corporation Apparatus, system and method of communicating between a cellular manager and a user equipment (UE) via a WLAN access device
US10129855B1 (en) * 2015-05-07 2018-11-13 Sprint Spectrum L.P. Systems and methods for efficient transmissions of multicast content to wireless devices
WO2016182580A1 (en) * 2015-05-14 2016-11-17 Nokia Technologies Oy Bearer setup in dual connectivity
KR102106044B1 (ko) * 2015-09-15 2020-04-29 후아웨이 테크놀러지 컴퍼니 리미티드 서비스 처리 방법, 서비스 처리 장치 및 통신 시스템
KR102461757B1 (ko) * 2016-01-25 2022-11-01 삼성전자 주식회사 무선 통신 시스템에서 단말에 대한 추적(trace)을 수행하기 위한 방법 및 장치
US11089519B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated Migration of local gateway function in cellular networks
US10772144B2 (en) * 2016-06-28 2020-09-08 Nokia Technologies Oy Switching of flow separation for new radio in dual connectivity
CN107872878A (zh) * 2016-09-22 2018-04-03 夏普株式会社 用户设备、基站和相关方法
EP3522599B1 (en) * 2016-09-28 2021-05-12 Nec Corporation Communication system, radio-access apparatus, radio communication terminal, and control method therefor
AU2018262068B2 (en) * 2017-05-05 2023-04-06 Sony Corporation Communications device, infrastructure equipment, wireless communications network and methods
EP3643138B1 (en) 2017-06-22 2024-02-07 Telefonaktiebolaget LM Ericsson (PUBL) A method and network node of setting up a wireless connection
US11051239B2 (en) * 2017-07-07 2021-06-29 Nokia Solutions And Networks Oy Multiple air interface aggregation supporting multivendor 4G/5G networks
TWI687122B (zh) * 2017-08-04 2020-03-01 聯發科技股份有限公司 多連接配置之方法及其使用者設備
CN109548096B (zh) * 2017-08-11 2021-12-03 华为技术有限公司 通信方法、基站、终端设备和系统
CN115397037B (zh) 2017-08-11 2024-10-11 北京三星通信技术研究有限公司 建立双连接的方法及装置
CN110099417B (zh) * 2018-01-30 2021-07-23 中国移动通信有限公司研究院 切换方法、信息交互方法、设备及计算机可读存储介质
KR102534537B1 (ko) * 2018-03-08 2023-05-19 삼성전자주식회사 무선 통신 시스템에서 무선 접속 기술을 스위칭하기 위한 장치 및 방법
EP3811667A1 (en) 2018-06-22 2021-04-28 Nokia Solutions and Networks Oy Selective handover or redirection based on interface availability
CN111919462A (zh) * 2018-08-03 2020-11-10 Oppo广东移动通信有限公司 一种保证数传输可靠性的方法及装置、网络设备
CN110831068B (zh) * 2018-08-08 2022-10-11 中兴通讯股份有限公司 负荷均衡方法、装置、存储介质及电子装置
EP3836620A4 (en) 2018-09-19 2021-09-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION PROCESS AND DEVICE, AND STORAGE MEDIA
WO2020087318A1 (en) * 2018-10-31 2020-05-07 Chongqing University Of Posts And Telecommunications Systems and methods for a handover
CN111194085B (zh) * 2018-11-16 2023-12-26 维沃移动通信有限公司 一种通道资源的控制方法、终端和通信网元
CN111436078B (zh) * 2019-01-15 2022-04-29 华为技术有限公司 通信方法和网络设备
MX2020010214A (es) 2019-02-13 2021-01-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo de configuracion de portadores y dispositivo de red.
EP3949513A1 (en) * 2019-04-01 2022-02-09 Apple Inc. Delay and interruption configurations for bandwidth part switching
US11503522B1 (en) 2020-11-24 2022-11-15 Sprint Communications Company Lp Handover based on wireless user equipment (UE) capabilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112128A (ko) * 2005-02-07 2007-11-22 엘지전자 주식회사 향상된 무선링크 제어에러 처리
US20100113022A1 (en) * 2007-03-09 2010-05-06 Ntt Docomo, Inc. Mobile communication method, radio base station and upper node
WO2012141480A2 (ko) * 2011-04-11 2012-10-18 삼성전자 주식회사 이동통신 시스템에서 데이터 송수신 방법 및 장치
KR20130028931A (ko) * 2010-05-21 2013-03-20 애플 인크. 무선 장치에서 다중 무선 액세스 베어러를 제어하는 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7382750B2 (en) * 2003-07-02 2008-06-03 High Tech Computer Corp. Inter-RAT handover to UTRAN with simultaneous PS and CS domain sevices
WO2010088795A1 (zh) * 2009-02-03 2010-08-12 深圳华为通信技术有限公司 承载处理方法、装置及附着方法、装置
CN101998353A (zh) * 2009-08-20 2011-03-30 中兴通讯股份有限公司 承载类型的指示方法、基站及系统
CN106100816B (zh) * 2011-11-25 2019-10-22 华为技术有限公司 实现载波聚合的方法、基站和用户设备
US9332479B2 (en) * 2012-01-04 2016-05-03 Ofinno Technologies, Llc Network site for wireless communications
CN102833802B (zh) * 2012-08-15 2015-09-23 电信科学技术研究院 一种数据转发方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112128A (ko) * 2005-02-07 2007-11-22 엘지전자 주식회사 향상된 무선링크 제어에러 처리
US20100113022A1 (en) * 2007-03-09 2010-05-06 Ntt Docomo, Inc. Mobile communication method, radio base station and upper node
KR20130028931A (ko) * 2010-05-21 2013-03-20 애플 인크. 무선 장치에서 다중 무선 액세스 베어러를 제어하는 방법
WO2012141480A2 (ko) * 2011-04-11 2012-10-18 삼성전자 주식회사 이동통신 시스템에서 데이터 송수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGRAN; E-UTRA; Study on Small Cell Enhancements for E-UTRA and E-UTRAN - Higher layer aspects (Release 12", 3GPP TR 36.842 V1.0.0 R2-134626, 26 November 2013 (2013-11-26), XP050816214, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/specs/archive/36_series/36.842> *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057955A1 (en) * 2015-09-30 2017-04-06 Samsung Electronics Co., Ltd. Methods and devices for supporting release of sipto bearer or lipa bearer in dual-connectivity architecture
US10904809B2 (en) 2015-09-30 2021-01-26 Samsung Electronics Co., Ltd Methods and devices for supporting release of SIPTO bearer or LIPA bearer in dual-connectivity architecture
WO2018111030A1 (ko) * 2016-12-15 2018-06-21 엘지전자(주) 무선 통신 시스템에서 핸드오버 수행 방법 및 이를 위한 장치
US10660004B2 (en) 2017-01-12 2020-05-19 Kt Corporation Method for controlling heterogeneous network handover and apparatus therefor
WO2018131904A1 (ko) * 2017-01-12 2018-07-19 주식회사 케이티 이종 네트워크 핸드오버 제어 방법 및 그 장치
US11323923B2 (en) 2017-08-21 2022-05-03 Samsung Electronics Co., Ltd. Method and system for communication in wireless communication network
KR20200035062A (ko) * 2017-08-21 2020-04-01 삼성전자주식회사 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
WO2019039672A1 (ko) * 2017-08-21 2019-02-28 삼성전자 주식회사 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
KR102401279B1 (ko) 2017-08-21 2022-05-25 삼성전자 주식회사 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
CN112567805A (zh) * 2018-08-09 2021-03-26 诺基亚技术有限公司 非同构网络场景中的通信连接控制
US11395197B2 (en) 2018-08-21 2022-07-19 Nokia Technologies Oy Dual connectivity handover
US11438796B2 (en) 2019-05-20 2022-09-06 Samsung Electronics Co., Ltd. Electronic device supporting dual connectivity and method of controlling power of electronic device
CN111836407A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 处理方法和设备
CN111836407B (zh) * 2019-08-09 2023-09-15 维沃移动通信有限公司 处理方法和设备
WO2023045851A1 (zh) * 2021-09-22 2023-03-30 维沃移动通信有限公司 双连接通信方法和设备

Also Published As

Publication number Publication date
CN105917702A (zh) 2016-08-31
CN105917702B (zh) 2020-03-03
EP3096559A4 (en) 2017-09-20
US10085201B2 (en) 2018-09-25
US20160323805A1 (en) 2016-11-03
EP3096559A1 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2015108337A1 (ko) 무선 통신 시스템에서 듀얼 커넥티비티를 위한 경로 스위치 방법 및 이를 위한 장치
CN110521274B (zh) 改善无线通信系统中的lte/nr交互工作过程的方法和设备
US9648520B2 (en) Method for processing data associated with handover in a wireless network
US9781650B2 (en) Method and apparatus for performing partial handover procedure in wireless communication system
TWI526098B (zh) 選出網際網路協定流量卸載方法及裝置
US8989142B2 (en) Residential/enterprise network connection management and CSFB scenarios
US9167486B2 (en) Inter-VPLMN handover via a handover proxy node
US9432885B2 (en) Method and apparatus for packet-switched service handover in wireless communication system
US20140051443A1 (en) Methods and Apparatus for Enhancing Circuit-Switched Call Fallback (CSFB) Service for a Shared Network Node
US9497678B2 (en) Method and device for handover of packet switched service in wireless communication system
US10560837B2 (en) Method and apparatus for supporting standalone local gateway service for dual connectivity in wireless communication system
JP2020504544A (ja) 無線通信システムにおけるlte/nrインターワーキングのサポートのためのインターフェースを管理する方法及び装置
EP2836016B1 (en) Method and apparatus for handover of packet-switched service in wireless communication systems
AU2014219562A1 (en) Method and system for providing simultaneous connectivity between multiple E-NodeBs and user equipment
US10084693B2 (en) Method for transmitting/receiving signal related to NBIFOM in wireless communication system, and apparatus therefor
US9622104B2 (en) Method and apparatus for transmitting cell load information in wireless communication system
WO2015105383A1 (en) Method and apparatus for obtaining information for 3gpp lte-wlan interworking in wireless communication system
US9503393B2 (en) S-GW relocation and QoS change without mobility
WO2014003348A1 (ko) 로컬 네트워크에서 ip 플로우 별 sipto 지원 방법 및 장치
US9955383B2 (en) Method and apparatus for transmitting cell load information in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015737516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737516

Country of ref document: EP