WO2015106486A1 - 一种重金属废石膏减量化无害化资源处置方法 - Google Patents
一种重金属废石膏减量化无害化资源处置方法 Download PDFInfo
- Publication number
- WO2015106486A1 WO2015106486A1 PCT/CN2014/073416 CN2014073416W WO2015106486A1 WO 2015106486 A1 WO2015106486 A1 WO 2015106486A1 CN 2014073416 W CN2014073416 W CN 2014073416W WO 2015106486 A1 WO2015106486 A1 WO 2015106486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heavy metal
- smelting
- waste gypsum
- lead
- slag
- Prior art date
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 112
- 239000010440 gypsum Substances 0.000 title claims abstract description 77
- 229910052602 gypsum Inorganic materials 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000010814 metallic waste Substances 0.000 title claims abstract description 52
- 238000003723 Smelting Methods 0.000 claims abstract description 172
- 230000004907 flux Effects 0.000 claims abstract description 82
- 230000008569 process Effects 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 38
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002699 waste material Substances 0.000 claims abstract description 32
- 239000002994 raw material Substances 0.000 claims abstract description 27
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000428 dust Substances 0.000 claims abstract description 20
- 239000003546 flue gas Substances 0.000 claims abstract description 20
- 229920000876 geopolymer Polymers 0.000 claims abstract description 19
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- 239000000779 smoke Substances 0.000 claims abstract description 6
- 238000001723 curing Methods 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 56
- 238000010438 heat treatment Methods 0.000 claims description 53
- 239000002893 slag Substances 0.000 claims description 51
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 42
- 239000012190 activator Substances 0.000 claims description 34
- 229910052681 coesite Inorganic materials 0.000 claims description 31
- 229910052906 cristobalite Inorganic materials 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 31
- 229910052682 stishovite Inorganic materials 0.000 claims description 31
- 229910052905 tridymite Inorganic materials 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 25
- 239000011593 sulfur Substances 0.000 claims description 21
- 229910052717 sulfur Inorganic materials 0.000 claims description 21
- 239000012298 atmosphere Substances 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 12
- 238000013035 low temperature curing Methods 0.000 claims description 10
- 239000004115 Sodium Silicate Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 9
- 235000019738 Limestone Nutrition 0.000 claims description 8
- 239000006004 Quartz sand Substances 0.000 claims description 8
- 239000006028 limestone Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 239000003999 initiator Substances 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 2
- 238000003958 fumigation Methods 0.000 claims 5
- 238000000498 ball milling Methods 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- 238000002386 leaching Methods 0.000 abstract description 13
- 230000007613 environmental effect Effects 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 8
- 231100000419 toxicity Toxicity 0.000 abstract description 4
- 230000001988 toxicity Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 2
- 239000005864 Sulphur Substances 0.000 abstract 2
- 238000005245 sintering Methods 0.000 description 18
- 235000012239 silicon dioxide Nutrition 0.000 description 17
- 239000000377 silicon dioxide Substances 0.000 description 17
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 15
- 239000004568 cement Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 238000011160 research Methods 0.000 description 6
- 239000002910 solid waste Substances 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000004566 building material Substances 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- ZODDGFAZWTZOSI-UHFFFAOYSA-N nitric acid;sulfuric acid Chemical compound O[N+]([O-])=O.OS(O)(=O)=O ZODDGFAZWTZOSI-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 aluminum ions Chemical class 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical class O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003500 flue dust Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- ORVGYTXFUWTWDM-UHFFFAOYSA-N silicic acid;sodium Chemical compound [Na].O[Si](O)(O)O ORVGYTXFUWTWDM-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 239000002881 soil fertilizer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
- C04B28/085—Slags from the production of specific alloys, e.g. ferrochrome slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
- C04B28/008—Mineral polymers other than those of the Davidovits type, e.g. from a reaction mixture containing waterglass
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/46—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/22—Glass ; Devitrified glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/0445—Synthetic gypsum, e.g. phosphogypsum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/0463—Hazardous waste
- C04B18/0472—Waste material contaminated by heavy metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C11/00—Alloys based on lead
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the invention provides a process and a technology for preparing a lead smelting flux for heavy metal waste gypsum, a lead smelting lead, a lead slag fuming, and a fuming slag to prepare a geopolymer, and belongs to the technical field of circular economy and environmental protection.
- waste gypsum is mainly concentrated in the following three aspects: The first is the application in the field of construction [Brick World, 2008, (2): 23-2], mainly using waste gypsum as plaster plaster and gypsum board. , gypsum block, etc. for direct use; second is the application in the field of cement [China Building Materials, 1995, (7): 27-2; Chemical Industry and Engineering Technology, 2003, (3): 18-20; Cement, 2007, 8: 16-1; Research on composite modified phosphogypsum as cement setting agent (dissertation), 2007; Cement and Concrete Research, 1989, 19 (3): 377-384], mainly using waste gypsum to prepare cement And cement retarder.
- the third is the application in agriculture [Plant and Soil, 1997, 192: 37-48], mainly using waste gypsum as a soil conditioner and fertilizer.
- the soil improver is the exchange of sodium and soda by soda gypsum.
- Role, while fertilizer is using waste gypsum and ammonium carbonate fertilizer
- the material acts to increase the sulfur nutrients.
- the most critical and difficult problem in the application of heavy metal waste gypsum in the construction field is that heavy metal waste gypsum contains a certain amount of heavy metals. When it is directly used as building materials or mischievous materials, it is not treated for heavy metals, which will directly or potentially Heavy metal pollution, therefore, the preparation of building materials reuse methods can not meet the requirements of heavy metal waste gypsum disposal.
- Waste gypsum is rich in calcium and sulfur, and research on the comprehensive utilization of calcium and sulfur has become a hot topic today. Many researchers have studied the waste gypsum in different atmospheres [Environmental Science & Technology. 2010, 12 (33): 144-148] and different reducing agents [J. Chem. Thermodynamics, 2013, 57: 39-45; chemical engineering research and design, 2011, 89: 2736 _ 2741] Decomposition characteristics under action, by adding a certain amount of reducing agent or heating in a low oxygen atmosphere (reduction atmosphere or nitrogen atmosphere) to reduce the decomposition temperature of waste gypsum, and attempt to apply this In industrial production.
- a low oxygen atmosphere reduction atmosphere or nitrogen atmosphere
- waste gypsum reuse products can not meet the national labeling, resulting in the waste gypsum can not be fully utilized; (4) the byproduct sulfur is easily formed during the decomposition process, resulting in equipment knots Problems such as slag, sticking, blockage, etc. Therefore, the waste gypsum decomposition process without reducing substances and protective atmosphere is a trend of resource utilization of waste gypsum.
- the main elements of the fumed slag obtained by the smelting process are Si, Ca, Fe and 0, and also contain heavy metal elements such as Zn, Pb, Cr and Cu, and the total content of heavy metal elements will reach 5% or more. Direct application to construction or paving will cause secondary pollution to the environment.
- the geopolymer is a three-dimensional network gel characterized by amorphous and quasi-crystalline features polymerized by a silicon tetrahedron and an aluminoxy tetrahedron. In many ways it can be used as a substitute for cement.
- geopolymers Compared with cement in the curing of heavy metals, geopolymers have the following advantages: (1) high early strength, good mechanical properties; (2) acid and alkali corrosion resistance; (3) green energy saving, environmental friend (4) The heavy metal fixing effect is good.
- the structure of the geopolymer is a "crystal-like" structure composed of a cyclic molecular chain, and the cyclic molecules combine to form a closed cavity (cage), which can Other toxic substances are divided into the cavity, and aluminum ions in the skeleton can also adsorb heavy metal ions.
- the object of the present invention is to solve the problems of high temperature and high reaction temperature in the direct preparation of building materials for heavy metal waste gypsum, and the problem of high reaction temperature and harsh reaction atmosphere in the preparation of sulfuric acid by carbothermal reduction, and proposes a waste glass synergistic treatment process to reduce the requirements on reaction temperature and reaction atmosphere.
- Preparing smelting flux pre-sintered material and sulfuric acid, preparing smelting solvent pre-sintered material and other flux together with lead smelting, and the resulting lead slag is subjected to smouldering treatment, and the obtained heavy metal ash slag is used for preparing geopolymer
- the cementing material realizes the harmlessness and resource utilization of the waste residue.
- the secondary heavy metal waste gypsum produced by the acid production process of the present invention can be returned to the smelting flux preparation process, so that the heavy metal waste gypsum is truly reduced.
- the heavy metal dust generated in the smelting flux preparation process and the lead smelting process enters the heavy metal treatment system supported by the lead smelting system, and the soot generated in the smelting process is returned to the lead smelting process to avoid secondary pollution of heavy metals, making the treatment process truly harmless. .
- the invention adopts heavy metal waste gypsum as raw material, through smelting flux preparation, lead smelting, smelting and gelling compounding, etc., finally obtaining sulfuric acid and geopolymer cementing material; specifically including the following steps:
- Preparation of smelting flux The dried heavy metal waste gypsum is ball-milled and mixed with waste glass.
- the SiO2/Ca0 (mass ratio) of the ball mill mixture is 1:1: wide 3: 1, heat treatment is carried out in a heat treatment furnace, and the heat treatment temperature is 800. 5h ⁇ 2h, The heat treatment time is 0. 5h ⁇ 2h,
- the heat treatment atmosphere is air, the smelting flux pre-sintered material is obtained, the sulfur-containing flue gas generated by the heat treatment enters the acid-making system, the sulfuric acid is produced and the secondary heavy metal waste gypsum is produced, and the secondary heavy metal waste gypsum is re-entered into the smelting flux preparation process, and the heat treatment process is generated. Heavy metal dust enters the heavy metal processing system of lead smelting;
- Tobacco The lead slag obtained in the step (2) is placed in a fumigating furnace for flue-curing treatment to produce fumed slag, and the soot generated during the smoulding process enters the lead smelting process;
- the SiO2 in the activator solution accounts for 1% (Tl8wt%, Na20 accounts for 6 ⁇ 25wt%, and the Na20 content of hydrated sodium silicate in the activator solution satisfies the requirement of SiO2 10 ⁇ 183 ⁇ 4 ⁇ %, such as Still less than 6 ⁇ 25wt%, then add NaOH to meet the demand of Na+.
- Maintenance is divided into low temperature curing stage and high temperature curing Stage, wherein the curing temperature in the low temperature curing stage is 3 (T40 °C, curing time is 24h, relative humidity is 20 ⁇ 80%, curing temperature in high temperature curing stage is 6 (T90°C, curing time is 24h, relative humidity is 20 ⁇ 80%) .
- the invention has the advantages that: the waste glass co-processing method is adopted, and heavy metal waste gypsum and waste glass are used as main raw materials, and reacted under a common atmosphere of a lower temperature (glass transition temperature), so that the reaction control process is completely solid-solid. The reaction becomes dominated by a solid-liquid reaction.
- the heavy metal waste gypsum can be decomposed under a common atmosphere of a lower temperature, and the requirements of the reaction temperature and atmosphere of the heavy metal waste gypsum are lowered.
- the prepared geopolymers meet the infiltration standards and are applied to building materials. Therefore, the invention has the characteristics of simple process, stable production process and environmental protection, and has wide economic, environmental and social benefits.
- Figure 1 is a process flow diagram of a method for reducing and eliminating harmless resources of heavy metal waste gypsum.
- the dried heavy metal waste gypsum is ball-milled and mixed with the waste glass, and the mixture is ball milled.
- Si02/Ca0 (mass ratio) 1: 1
- heat treatment in a heat treatment furnace heat treatment temperature is 800 ° C
- heat treatment time 0. 5h
- heat treatment atmosphere air
- smelting flux pre-sintered material sulfur content generated by heat treatment
- the flue gas enters the acid production system, produces sulfuric acid and produces secondary heavy metal waste gypsum, and the secondary heavy metal waste gypsum re-enters the smelting flux preparation process.
- the heavy metal dust generated by the heat treatment process enters the heavy metal treatment system of the lead smelting;
- the smelting flux is pre-fired Materials, other smelting fluxes and lead-smelting raw materials are ball milled, and other smelting fluxes are several mixtures of limestone, quartz sand and iron filings, when smelting flux pre-sintering materials, other smelting fluxes and refining
- the lead material is ball-milled and mixed, the mass ratio between the smelting flux pre-sintering material, the mixture of other smelting flux and the lead-smelting raw material is 10:100; the SiO2: Fe (mass ratio) in the ball mill mixture is 0.88.
- Si02: CaO (mass ratio) 1. 50, placed in a lead smelting furnace for lead smelting, and obtained lead slag.
- the sulfur-containing flue gas and heavy metal dust generated in the lead smelting process enter the acid-making system and the heavy metal treatment system respectively.
- the lead slag is placed in the smelting furnace for flue-curing treatment to produce smelting slag, and the soot generated by the smoulding process enters the lead smelting process; the slag is mechanically ground to a volume median diameter of 90 ⁇ 10 ⁇ ⁇ ,
- the protective geothermal polymer was crushed to a temperature of 60 ° C, a curing time of 2 h, a relative humidity of 20%; the geopolymer after the curing was placed in the air for the 28th day, and the compressive strength was measured to be 31.
- the heat treatment temperature is 1100 ° C
- the heat treatment time is 2 h
- the heat treatment atmosphere is air
- the smelting flux pre-sintered material is obtained
- the sulfur-containing flue gas generated by the heat treatment enters the acid-making system to obtain sulfuric acid and generate secondary heavy metal waste gypsum, secondary heavy metal
- the waste gypsum re-enters the smelting flux preparation process, and the heavy metal dust generated by the heat treatment process enters the heavy metal treatment system of the lead smelting;
- the smelting flux pre-sintering material, other smelting flux and the lead-smelting raw material ball mill are mixed, He smelted the flux to limestone, Mixture of quartz sand and iron filings, when smelting flux pre-sintering material, other smelting flux and lead smelting raw material are ball milled, smelting flux pre-sintering material, other smelting flux mixture and lead smelting raw material
- Si02: CaO (mass ratio) 1. 65, placed in a lead smelting furnace for lead smelting, to obtain lead slag, lead
- the sulfur-containing flue gas and heavy metal dust generated in the smelting process enter the acid-making system and the heavy metal treatment system respectively;
- the lead-slag slag is placed in the smelting furnace for the smouldering process to produce the smelting slag, and the soot generated by the smoulding process enters the lead smelting Process;
- the slag is mechanically ground to a volume median diameter of 70 ⁇ 10 ⁇ ⁇ , added to the activator solution and stirred for 10 min, transferred to a mold for forming and curing, wherein the activator solution is composed of NaOH, H20, hydrated silicic acid Sodium (Na20'nSi02'mH20) composition, the solute in the activator solution is calculated by Na20 (NaOH calculated as Na20) and SiO2.
- the curing temperature is 40°C in the low temperature curing stage, the curing time is 10h, the relative humidity is 40%, the curing temperature in the high temperature curing stage is 65°C, the curing time is 10h, and the relative humidity is 30%.
- the geopolymer after curing is in the air. Placed on the 28th day, the compressive strength is 32.
- the smelting flux pre-sintering material is obtained, the sulfur-containing flue gas generated by the heat treatment enters the acid-making system, the sulfuric acid is produced and the secondary heavy metal waste gypsum is produced, and the secondary heavy metal waste gypsum is re-entered into the smelting flux preparation process, and the heavy metal generated by the heat treatment process Dust enters the heavy metal processing system of lead smelting; pre-burning smelting flux Materials, other smelting fluxes and lead-smelting raw materials are ball milled, and other smelting fluxes are several mixtures of limestone, quartz sand and iron filings.
- the lead slag in the flue gas furnace Tobacco treatment the generation of fuming slag, the smoke generated by the smouldering process enters the lead smelting process;
- the slag is mechanically ground to a volume median diameter of 50 ⁇ 10 ⁇ ⁇
- the heat treatment atmosphere is air
- the smelting flux pre-sintered material is obtained
- the sulfur-containing flue gas generated by the heat treatment enters the acid-making system
- the sulfuric acid is produced and the secondary heavy metal waste gypsum is produced
- the secondary heavy metal waste gypsum re-enters the smelting flux preparation process
- heat At The heavy metal dust generated by the process enters the heavy metal treatment system of the lead smelting;
- the smelting flux pre-sintering, other smelting flux and the lead-smelting raw material are ball milled, and the other smelting fluxes are several mixtures of limestone, quartz sand and iron filings.
- the smelting slag is mechanically ground to the volume
- the median diameter is 50 ⁇ 10 ⁇ ⁇
- the activator solution is added and stirred for 10 min, transferred to a mold for forming and curing, wherein the activator solution is composed of NaOH, H20, hydrated sodium silicate (Na20) , nSi02, mH20) composition, the solute in the activator solution is calculated by Na20 (Na0H calculated as Na20) and SiO2, SiO2 in the activator solution accounts for 16wt%, Na20 accounts for 17wt%
- heat treatment is performed in the heat treatment furnace, the heat treatment temperature is 1050 ° C, and the heat treatment time is 1. 2h, the heat treatment atmosphere is air, the smelting flux pre-sintered material is obtained, and the sulfur-containing flue gas generated by the heat treatment enters the acid-making system, and sulfuric acid is produced and produced twice.
- the flux is a mixture of limestone, quartz sand and iron filings.
- Lead slag, sulfur-containing flue gas and heavy metal dust generated in the lead smelting process enter the acid-making system and the heavy metal treatment system respectively; the lead-slag slag is placed in the smelting furnace for the smouldering process to produce the smelting slag, which is produced by the smelting process.
- low temperature curing stage curing temperature is 35 ° C
- curing time is 20h
- relative humidity is 40%
- the curing time is 24h
- the relative humidity is 60%
- the geopolymer after the curing is placed in the air until the 28th day, the compressive strength is 35.
- the waste gypsum re-enters the smelting flux preparation process, and the heavy metal dust generated in the heat treatment process enters the heavy metal treatment system of lead smelting;
- the smelting flux pre-sintering material, other smelting flux and lead smelting raw material are ball milled, and other smelting fluxes are limestone, quartz sand,
- Lead smelting in a lead smelting furnace to obtain lead slag, lead smelting process The sulfur-containing flue gas and the heavy metal dust enter the acid-making system and the heavy metal treatment system respectively; the lead-slag slag is placed in the flue gasifier for smoke treatment, and the smoke is generated.
- the slag the smoke generated by the smoulding process enters the lead smelting process; the slag is mechanically ground to a volume median diameter of 50 ⁇ 10 ⁇ m, the activator solution is added and stirred for 20 minutes, and transferred to a mold for forming and curing, wherein
- the activator solution consists of NaOH, H20, hydrated sodium silicate (Na20'nSiO2'mH20).
- the solute in the activator solution is calculated by Na20 (NaOH calculated as Na20) and SiO2.
- the curing temperature in the low temperature curing stage is 37 ° C
- the curing time is 15 h
- the relative humidity is 40%
- the curing temperature in the high temperature curing stage is 90 ° C
- curing The time is 24h
- the relative humidity is 40%
- the geopolymer after curing is placed in the air until the 28th day, and the compressive strength is 33.76MPa
- the prepared geopolymer is broken below 5mm according to HJ/ 143.
- the Zn is 0. 143mg / L
- Pb the concentration of Zn in the leaching solution is measured by T 299-2007 "solid waste leaching toxic leaching method" It was 0.056 mg/L, Cu was 0.125 mg/L, and Cr was 0.043 mg/L.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Abstract
一种重金属废石膏减量化无害化资源处置方法,属于循环经济和环境保护技术领域。以含重金属废石膏为原料,经冶炼熔剂制备、铅冶炼、烟化、胶凝复合等工序实现重金属废石膏的减量化无害化和资源化。冶炼熔剂制备过程产生的含硫烟气进入制酸系统,重金属粉尘进入相应的重金属处理系统;铅冶炼过程产生含硫烟气进入制酸系统,产生的重金属粉尘进入相应的重金属处理系统;烟化产生的烟尘返回铅冶炼系统;制酸系统产生的二次重金属废石膏重新返回冶炼熔剂制备工序。最终将得到硫酸、28天抗压强度高于30MPa及满足重金属浸毒标准的地质聚合物胶凝材料,实现了重金属废石膏的减量化无害化处理及烟化渣的资源化利用。本发明工艺简单、生产过程稳定、环保。
Description
一种重金属废石膏减量化无害化资源处置方法 技术领域
本发明提供了重金属废石膏制备铅冶炼熔剂、搭配炼铅、铅渣烟 化、烟化渣制备地质聚合物等工序及技术, 属于循环经济和环境保护 技术领域。
背景技术
随着现代工业的发展, 排放出的副产物石膏堆存量与日俱增, 以 株洲清水塘工业区为例, 截至 2013年, 重金属废石膏已经达到 20多 万吨, 目前并没有得到有效的综合利用, 占地堆存近百亩, 造成湘江 水体严重污染, 资源极大浪费, 迫切需要开发新的资源化处理及工业 化技术。于是人们开始重视工业副产石膏的综合利用问题,一些专家 提出了利用这些副产石膏取代天然石膏作为原料来生产硫酸的想法。
目前废石膏的综合再利用主要集中在以下三个方面:第一是在建 筑领域的应用 [砖瓦世界, 2008, (2): 23-2] , 主要是将废石膏作为 粉刷石膏、 石膏板、 石膏砌块等进行直接利用; 第二是在水泥领域中 的应用 [中国建材, 1995, (7): 27-2; 化学工业与工程技术, 2003, (3): 18-20; 水泥, 2007, 8: 16-1; 复合改磷石膏做水泥调凝剂的 研究 (学位论文), 2007; Cement and Concrete Research, 1989, 19 (3): 377-384] , 主要是利用废石膏制备水泥和水泥缓凝剂。 第三 是在农业领域的应用 [Plant and Soil , 1997, 192: 37-48] , 主要是 利用废石膏作为土壤改良剂和肥料使用,其中土壤改良剂是利用废石 膏对苏打盐碱地钠离子的交换作用,而肥料是利用废石膏与碳酸铵肥
料作用增加硫营养成分。重金属废石膏在建筑领域的应用最关键且最 困难的问题是重金属废石膏中含有一定量的重金属,直接将其作为建 材原料或惨料使用时, 没有针对其中重金属进行处置, 将造成直接或 者潜在的重金属污染, 因此, 制备建筑材料再利用方式无法满足重金 属废石膏处置的要求。今年 3月 1日即将实施的《水泥窑协同处置固 体废物污染控制标准》和《中华人民共和国国家标准水泥工业大气污 染物排放标准》, 将对水泥窑协同处置固体废物提出更高的要求, 重 金属废石膏在制硫酸联产水泥或水泥调凝剂方面将受到严格限制,因 此, 水泥方面应用方法也将无法满足重金属废石膏的处置要求。而在 农业方面的应用, 重金属废石膏的重金属将制约其推广应用。综上所 述, 目前废石膏综合再利用方法无法满足重金属废石膏的处置, 重金 属废石膏无害化处置方法的研究已经刻不容缓。
废石膏中含有丰富的钙和硫,钙和硫的综合利用方面研究成为当 今热点。 不少学者研究了废石膏在不同气氛 [Environmental Science&Technology. 2010, 12 (33): 144-148]以及不同还原剂 [J. Chem. Thermodynamics , 2013, 57: 39 - 45; chemical engineering research and design, 2011 , 89: 2736 _ 2741]作用下的分解特性, 通过加入一定量的还原剂或置于低氧气氛 (还原气氛或氮气保护气 氛)中加热以降低废石膏的分解温度, 并试图将此应用于工业化生产 中。 但传统主流的处理方法存在主要问题如下: (1 )烧结温度高, 气 氛要求苛刻, 传统理论和实践证明, 石膏在 1600°C左右才能分解, 加入煤等还原剂或低氧弱还原气氛并氮气保护气氛下其分解温度仍
达到 1100°C以上; (2 ) 尾气中 S02浓度低, 收集难度提高, 增加了 环保投资, 由于在氮气保护气氛及还原气氛下分解, 降低了尾气中 S02浓度; (3 ) 推广困难, 缺乏科学理论研究、 生产条件苛刻以及反 应过程的不可控性, 绝大多数废石膏再利用产物都不能达到国家标 注, 导致废石膏不能充分利用; (4) 分解过程中容易生成副产物硫, 造成设备结渣、 粘结、 堵塞等问题。 因此, 无需还原物质和保护气氛 的废石膏分解工艺, 是废石膏钙硫资源化的趋势。
铅冶炼工业中, 需要大量的石灰作为造渣剂, 同时具有完备的制 酸系统和重金属处理系统 (烟气、 粉尘、 废液), 重金属废石膏分解 得到的二氧化硫烟气可进入制酸系统进行硫综合利用,而分解得到的 氧化钙成分可作为铅冶炼造渣剂,分解过程产生的重金属烟气和粉尘 可进入相应的重金属处理系统, 避免产生重金属的二次污染。 因此, 将重金属废石膏作为炼铅造渣剂开发利用的资源重新利用起来具有 深远意义, 避免了其对环境的二次污染, 实现了变废为宝, 具有良好 的经济效益和显著的环境效益。
炼铅渣通过烟化处理得到的烟化渣其主要元素为 Si、 Ca、 Fe和 0, 同时还含有 Zn、 Pb、 Cr和 Cu等重金属元素, 其重金属元素总含 量将达到 5%以上, 如果直接应用于建筑或者铺路, 将对环境造成二 次污染。地质聚合物是一种由硅氧四面体和铝氧四面体聚合的具有非 晶态和准晶态特征的三维网络凝胶体。在很多方面可以作为水泥的替 代剂。 与水泥在重金属固化方面相比, 地质聚合物有如下优点: (1 ) 早期强度高, 力学性能好; (2 )耐酸碱腐蚀; (3 )绿色节能, 环境友
好; (4)重金属固定效果好, 地聚合物的结构是由环状分子链构成的 "类晶体"结构, 环状分子之间结合形成密闭的空腔 (笼状), 可以 把金属离子和其他毒性物质分割包围在空腔内,同时骨架中的铝离子 也能吸附重金属离子。
发明内容
本发明的目的是针对重金属废石膏直接制备建筑材料存在重金 属超标, 碳热还原制备硫酸存在反应温度高、 反应气氛苛刻等问题, 提出采用废玻璃协同处理工艺, 降低对反应温度、 反应气氛等要求, 制备冶炼熔剂预烧料和硫酸,制得的冶炼溶剂预烧料和其他熔剂一起 进行搭配铅冶炼, 生成的炼铅渣经过烟化处理后, 所得的重金属烟化 渣用于制备地质聚合物胶凝材料, 从而实现废渣的无害化和资源化。 本发明中制酸过程产生的二次重金属废石膏可以重新返回到冶炼熔 剂制备工序, 使得重金属废石膏真正意义上的减量化。冶炼熔剂制备 工序和铅冶炼工序产生的重金属粉尘进入到铅冶炼系统配套的重金 属处理系统, 烟化工序产生的烟尘返回到铅冶炼工序, 避免重金属的 二次污染, 使得处理过程真正的无害化。
本发明以重金属废石膏为原料, 经冶炼熔剂制备、 铅冶炼、烟化 和胶凝复合等工序, 最终将得到硫酸和地质聚合物胶凝材料; 具体包 括以下歩骤:
( 1 ) 冶炼熔剂制备: 将干燥后的重金属废石膏与废玻璃进行球 磨混合, 球磨混合物中 Si02/Ca0 (质量比) =1 :广 3 : 1, 在热处理炉 中进行热处理,热处理温度为 800°C~1100°C,热处理时间为 0. 5h~2h,
热处理气氛为空气, 得到冶炼熔剂预烧料, 热处理产生的含硫烟气进 入制酸系统, 制得硫酸并产生二次重金属废石膏, 二次重金属废石膏 重新进入冶炼熔剂制备工序,热处理过程产生的重金属粉尘进入铅冶 炼配套的重金属处理系统;
(2)铅冶炼: 将歩骤(1 )得到的冶炼熔剂预烧料、 其他冶炼熔 剂和炼铅原料球磨混合, 其他冶炼熔剂为石灰石、 石英砂、铁屑的几 种混合物, 当冶炼熔剂预烧料、其他冶炼熔剂和炼铅原料三者球磨混 合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合料与炼铅原料两者间的 质量比为 10 : 100^15 : 100; 球磨混合物中 Si02: Fe (质量比) =0. 8- 1. 0, Si02: CaO (质量比) =1· 50〜1· 65, 置于炼铅炉中进行铅冶炼, 得到炼铅渣,铅冶炼过程产生的含硫烟气和重金属粉尘分别进入制酸 系统和重金属处理系统;
(3)烟化: 将歩骤(2) 中得到的炼铅渣置于烟化炉中进行烟化 处理, 产生烟化渣, 烟化过程产生的烟尘进入铅冶炼工序;
(4)胶凝复合: 将歩骤(3 )得到的烟化渣用机械方法磨料至体 积中位径小于 ΙΟΟ μ πι, 加入激发剂溶液搅拌 Γ20πΰη, 转移至模具中 成型并养护, 得到硫酸和地质聚合物胶凝材料; 激发剂溶液: 烟化渣 质量比 =0. 4( θ. 56;其中激发剂溶液由 Na0H、H20、水合硅酸钠即 Na20 •nSi02,mH20组成, 激发剂溶液中溶质以 Na20和 Si02计算, 激发剂 溶液中 Si02占 l(Tl8wt%, Na20占 6~25wt%, 激发剂溶液中水合硅酸 钠的 Na20含量在满足 Si02占 10~18¾^%的前提下,如仍不足 6~25wt%, 则加入 NaOH, 以满足 Na+的需求。养护分为低温养护阶段和高温养护
阶段, 其中低温养护阶段养护温度为 3(T40°C, 养护时间广 24h, 相 对湿度 20~80%,高温养护阶段养护温度为 6(T90°C,养护时间广 24h, 相对湿度 20~80%。
本发明的优点在于: 提出采用废玻璃协同处理方法, 以重金属废 石膏与废玻璃作为主要原料, 于较低温度(玻璃态转变温度)普通气 氛下反应,使得反应控制过程由完全的固-固反应变成由固-液反应主 导。使得重金属废石膏能在较低温度普通气氛下发生分解, 降低重金 属废石膏对反应温度、气氛等条件的要求。制备得到的地质聚合物符 合浸毒标准并应用于建筑材料。 因此, 本发明具有工艺简单、 生产过 程稳定、 环保的特点, 具有广泛的经济、 环境和社会效益。
附图说明
图 1为一种重金属废石膏减量化无害化资源处置方法工艺流程 图。
具体实施方式
实施例 1
将干燥后的重金属废石膏与废玻璃进行球磨混合, 球磨混合物中
Si02/Ca0 (质量比) =1 : 1, 在热处理炉中进行热处理, 热处理温度为 800 °C , 热处理时间为 0. 5h, 热处理气氛为空气, 得到冶炼熔剂预烧 料, 热处理产生的含硫烟气进入制酸系统, 制得硫酸并产生二次重金 属废石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处理过 程产生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼熔剂 预烧料、其他冶炼熔剂和炼铅原料球磨混合,其他冶炼熔剂为石灰石、 石英砂、铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔剂和炼
铅原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合料与 炼铅原料两者间的质量比为 10 : 100; 球磨混合物中 Si02: Fe (质量 比) =0. 8, Si02: CaO (质量比) =1. 50, 置于炼铅炉中进行铅冶炼, 得到炼铅渣,铅冶炼过程产生的含硫烟气和重金属粉尘分别进入制酸 系统和重金属处理系统将炼铅渣置于烟化炉中进行烟化处理,产生烟 化渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用机械方法磨 料至体积中位径为 90 ± 10 μ πι, 加入激发剂溶液并搅拌 5min, 转移至 模具中成型并养护, 其中激发溶液由 NaOH、 H20、 水合硅酸钠 (Na20, nSi02'mH20)组成, 激发剂溶液中溶质以 Na20 (NaOH以 Na20计算) 和 Si02计算, 激发剂溶液中 Si02占 10wt%, Na20占 25wt%, 激发剂 溶液: 烟化渣 (质量比) =0. 50, 在低温养护阶段养护温度 30°C, 养 护时间 lh, 相对湿度 20%, 高温养护阶段养护温度 60°C, 养护时间 2h, 相对湿度 20%; 将养护后的地质聚合物在空气中放置至第 28天, 测其抗压强度为 31. 54MPa; 将制备得到的地质聚合物破碎至 5mm以 下按 HJ/T 299-2007 《固体废物 浸出毒性浸出方法硫酸硝酸法》测 其浸出液中各重金属离子浓度, Zn为 0. 146mg/L, Pb为 0. 054mg/L, Cu为 0. 154mg/L, Cr为 0. 032mg/Lo 实施例 2 将干燥后的重金属废石膏与废玻璃进行球磨混合, 球磨混合物中 Si02/Ca0 (质量比) =3 : 1, 在热处理炉中进行热处理, 热处理温度为 1100°C , 热处理时间为 2h, 热处理气氛为空气, 得到冶炼熔剂预烧 料, 热处理产生的含硫烟气进入制酸系统, 制得硫酸并产生二次重金 属废石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处理过 程产生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼熔剂 预烧料、其他冶炼熔剂和炼铅原料球磨混合,其他冶炼熔剂为石灰石、
石英砂、铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔剂和炼 铅原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合料与 炼铅原料两者间的质量比为 15 : 100; 球磨混合物中 Si02: Fe (质量 比) =1. 0, Si02: CaO (质量比) =1. 65, 置于炼铅炉中进行铅冶炼, 得到炼铅渣,铅冶炼过程产生的含硫烟气和重金属粉尘分别进入制酸 系统和重金属处理系统; 将炼铅渣置于烟化炉中进行烟化处理, 产生 烟化渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用机械方法 磨料至体积中位径为 70± 10 μ πι, 加入激发剂溶液并搅拌 10min, 转 移至模具中成型并养护, 其中激发剂溶液由 NaOH、 H20、 水合硅酸钠 (Na20'nSi02'mH20)组成, 激发剂溶液中溶质以 Na20 (NaOH以 Na20 计算) 和 Si02计算, 激发剂溶液中 Si02占 12wt%, Na20占 25wt%, 激发剂溶液: 烟化渣(质量比) =0. 56; 低温养护阶段养护温度 40°C, 养护时间为 10h, 相对湿度为 40%, 高温养护阶段养护温度为 65°C, 养护时间为 10h, 相对湿度为 30%; 将养护后的地质聚合物在空气中 放置至第 28天, 测其抗压强度为 32. 34MPa; 将制备得到的地质聚合 物破碎至 5mm以下按 HJ/T 299-2007《固体废物 浸出毒性浸出方法硫 酸硝酸法》测其浸出液中各重金属离子浓度, Zn 为 0. 174mg/L, Pb 为 0. 044mg/L, Cu为 0. 186mg/L, Cr为 0. 042mg/L。 实施例 3
将干燥后的重金属废石膏与废玻璃进行球磨混合,球磨混合物中 Si02/Ca0 (质量比) =2 : 1, 在热处理炉中进行热处理, 热处理温度为 900 °C , 热处理时间为 lh, 热处理气氛为空气, 得到冶炼熔剂预烧料, 热处理产生的含硫烟气进入制酸系统,制得硫酸并产生二次重金属废 石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处理过程产 生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼熔剂预烧
料、 其他冶炼熔剂和炼铅原料球磨混合, 其他冶炼熔剂为石灰石、 石 英砂、 铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔剂和炼铅 原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合料与炼 铅原料两者间的质量比为 12: 100; 球磨混合物中 Si02: Fe (质量比) =0. 9, Si02: CaO (质量比) =1. 6, 置于炼铅炉中进行铅冶炼, 得到 炼铅渣,铅冶炼过程产生的含硫烟气和重金属粉尘分别进入制酸系统 和重金属处理系统; 将炼铅渣置于烟化炉中进行烟化处理, 产生烟化 渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用机械方法磨料 至体积中位径为 50± 10 μ πι, 加入激发剂溶液并搅拌 15min, 转移至 模具中成型并养护, 其中激发剂溶液由 NaOH、 H20、水合硅酸钠 (Na20 •nSi02«mH20)组成, 激发剂溶液中溶质以 Na20 (NaOH以 Na20计算) 和 Si02计算, 激发剂溶液中 Si02占 14wt%, Na20占 22wt%, 激发剂 溶液: 烟化渣 (质量比) =0. 46, 低温养护阶段养护温度为 35 °C, 养 护时间为 24h, 相对湿度为 60%, 高温养护阶段养护温度为 85 °C, 养 护时间为 15h, 相对湿度为 60%; 将养护后的地质聚合物在空气中放 置至第 28天, 测其抗压强度为 32. 87MPa; 将制备得到的地质聚合物 破碎至 5mm以下按 HJ/T 299-2007 《固体废物 浸出毒性浸出方法硫 酸硝酸法》测其浸出液中各重金属离子浓度, Zn 为 0. 134mg/L, Pb 为 0. 034mg/L, Cu为 0. 196mg/L, Cr为 0. 048mg/L。 实施例 4
将干燥后的重金属废石膏与废玻璃进行球磨混合,球磨混合物中 Si02/Ca0 (质量比) =1. 5 : 1, 在热处理炉中进行热处理, 热处理温度 为 1000°C, 热处理时间为 1. 5h, 热处理气氛为空气, 得到冶炼熔剂 预烧料, 热处理产生的含硫烟气进入制酸系统, 制得硫酸并产生二次 重金属废石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处
理过程产生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼 熔剂预烧料、其他冶炼熔剂和炼铅原料球磨混合, 其他冶炼熔剂为石 灰石、 石英砂、 铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔 剂和炼铅原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混 合料与炼铅原料两者间的质量比为 14: 100; 球磨混合物中 Si02: Fe (质量比) =0. 95, Si02: CaO (质量比) =1. 55, 置于炼铅炉中进行 铅冶炼, 得到炼铅渣, 铅冶炼过程产生的含硫烟气和重金属粉尘分别 进入制酸系统和重金属处理系统;将炼铅渣置于烟化炉中进行烟化处 理, 产生烟化渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用 机械方法磨料至体积中位径为 50± 10 μ πι, 加入激发剂溶液并搅拌 10min, 转移至模具中成型并养护, 其中激发剂溶液由 NaOH、 H20、 水合硅酸钠(Na20,nSi02,mH20)组成,激发剂溶液中溶质以 Na20(Na0H 以 Na20计算) 和 Si02计算, 激发剂溶液中 Si02占 16wt%, Na20占 17wt%, 激发剂溶液: 烟化渣(质量比) =0. 43, 低温养护阶段养护温 度为 38°C, 养护时间为 24h, 相对湿度为 80%, 高温养护阶段养护温 度为 85°C, 养护时间为 20h, 相对湿度为 80%; 将养护后的地质聚合 物在空气中放置至第 28天, 测其抗压强度为 36. 56MPa; 将制备得到 的地质聚合物破碎至 5匪以下按 HJ/T 299-2007 《固体废物 浸出毒 性浸出方法 硫酸硝酸法》 测其浸出液中各重金属离子浓度, Zn 为 0. 125mg/L, Pb为 0. 035mg/L, Cu为 0. 164mg/L, Cr为 0. 056 mg/L。 实施例 5
将干燥后的重金属废石膏与废玻璃进行球磨混合,球磨混合物中 Si02/Ca0 (质量比) =1. 8 : 1, 在热处理炉中进行热处理, 热处理温度 为 1050°C, 热处理时间为 1. 2h, 热处理气氛为空气, 得到冶炼熔剂 预烧料, 热处理产生的含硫烟气进入制酸系统, 制得硫酸并产生二次
重金属废石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处 理过程产生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼 熔剂预烧料、其他冶炼熔剂和炼铅原料球磨混合, 其他冶炼熔剂为石 灰石、 石英砂、 铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔 剂和炼铅原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混 合料与炼铅原料两者间的质量比为 13 : 100; 球磨混合物中 Si02: Fe (质量比) =0. 95, Si02: CaO (质量比) =1. 63, 置于炼铅炉中进行 铅冶炼, 得到炼铅渣, 铅冶炼过程产生的含硫烟气和重金属粉尘分别 进入制酸系统和重金属处理系统;将炼铅渣置于烟化炉中进行烟化处 理, 产生烟化渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用 机械方法磨料至体积中位径为 90± 10 μ πι, 加入激发剂溶液并搅拌 15min, 转移至模具中成型并养护, 其中激发剂溶液由 NaOH、 H20、 水合硅酸钠(Na20,nSi02,mH20)组成,激发剂溶液中溶质以 Na20(Na0H 以 Na20计算) 和 Si02计算, 激发剂溶液中 Si02占 18wt%, Na20占 12wt%激发剂溶液: 烟化渣(质量比) =0. 40, 低温养护阶段养护温度 为 35°C, 养护时间为 20h, 相对湿度为 40%, 高温养护阶段养护温度 为 90°C, 养护时间为 24h, 相对湿度为 60%; 将养护后的地质聚合物 在空气中放置至第 28天, 测其抗压强度为 35. 93MPa; 将制备得到的 地质聚合物破碎至 5匪以下按 HJ/T 299-2007 《固体废物 浸出毒性 浸出方法 硫酸硝酸法》 测其浸出液中各重金属离子浓度, Zn 为 0. 165mg/L, Pb为 0. 025mg/L, Cu为 0. 143mg/L, Cr为 0. 035mg/L。 实施例 6
将干燥后的重金属废石膏与废玻璃进行球磨混合,球磨混合物中 Si02/Ca0 (质量比) =2. 5 : 1, 在热处理炉中进行热处理, 热处理温度
为 950°C, 热处理时间为 1. 5h, 热处理气氛为空气, 得到冶炼熔剂预 烧料, 热处理产生的含硫烟气进入制酸系统, 制得硫酸并产生二次重 金属废石膏, 二次重金属废石膏重新进入冶炼熔剂制备工序, 热处理 过程产生的重金属粉尘进入铅冶炼配套的重金属处理系统;将冶炼熔 剂预烧料、其他冶炼熔剂和炼铅原料球磨混合, 其他冶炼熔剂为石灰 石、 石英砂、 铁屑的几种混合物, 当冶炼熔剂预烧料、 其他冶炼熔剂 和炼铅原料三者球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合 料与炼铅原料两者间的质量比为 12 : 100;球磨混合物中 Si02: Fe (质 量比) =0. 93, Si02: CaO (质量比) =1. 58, 置于炼铅炉中进行铅冶 炼, 得到炼铅渣, 铅冶炼过程产生的含硫烟气和重金属粉尘分别进入 制酸系统和重金属处理系统; 将炼铅渣置于烟化炉中进行烟化处理, 产生烟化渣, 烟化过程产生的烟尘进入铅冶炼工序; 将烟化渣用机械 方法磨料至体积中位径为 50 ± 10 μ m,加入激发剂溶液并搅拌 20min, 转移至模具中成型并养护, 其中激发剂溶液由 NaOH、 H20、 水合硅酸 钠(Na20'nSi02'mH20)组成,激发剂溶液中溶质以 Na20 (NaOH以 Na20 计算) 和 Si02计算, 激发剂溶液中 Si02占 18wt%、 Na20占 6wt %, 激发剂溶液:烟化渣(质量比) =0. 50,低温养护阶段养护温度为 37°C, 养护时间为 15h, 相对湿度为 40%, 高温养护阶段养护温度为 90°C, 养护时间为 24h, 相对湿度为 40%; 将养护后的地质聚合物在空气中 放置至第 28天, 测其抗压强度为 33. 76MPa; 将制备得到的地质聚合 物破碎至 5mm以下按 HJ/T 299-2007《固体废物 浸出毒性浸出方法硫 酸硝酸法》测其浸出液中各重金属离子浓度, Zn 为 0. 143mg/L, Pb
为 0.056mg/L, Cu为 0.125mg/L, Cr为 0.043mg/L。
Claims
1、 一种重金属废石膏减量化无害化资源处置方法, 其特征在于: 具 体歩骤如下:
( 1 ) 冶炼熔剂制备: 将干燥后的重金属废石膏与废玻璃进行球磨混 合, 在热处理炉中进行热处理, 得到冶炼熔剂预烧料, 热处理产生的 含硫烟气进入制酸系统, 制得硫酸并产生二次重金属废石膏, 二次重 金属废石膏重新进入冶炼熔剂制备工序,热处理过程产生的重金属粉 尘进入铅冶炼配套的重金属处理系统;
(2)铅冶炼: 将歩骤(1 )得到的冶炼熔剂预烧料、 其他冶炼熔剂和 炼铅原料球磨混合置于炼铅炉中进行铅冶炼,得到炼铅渣和铅冶炼过 程产生的含硫烟气和重金属粉尘分别进入制酸系统和重金属处理系 统;
(3)烟化:将歩骤(2)中得到的炼铅渣置于烟化炉中进行烟化处理, 产生烟化渣, 烟化过程产生的烟尘进入铅冶炼工序;
(4)胶凝复合: 将歩骤(3 )得到的烟化渣用机械方法磨料至体积中 位径小于 ΙΟΟ μ πι, 加入激发剂溶液搅拌 Γ20πΰη, 转移至模具中成型 并养护, 得到硫酸和地质聚合物胶凝材料; 激发剂溶液: 烟化渣质量 比 =0. 4(Γθ. 56;其中激发剂溶液由 NaOH、H20、水合硅酸钠即 N¾0'nSi02 •mH20组成,激发剂溶液中溶质以 N¾0和 Si 02计算,激发剂溶液中 Si02 占 l(Tl8wt%, Na20占 6~25wt%, 激发剂溶液中水合硅酸钠的 N¾0含 量在满足 Si02占 10~18¾^%的前提下,如仍不足 6~25wt%,则加入 NaOH, 以满足 Na+的需求。
2、 如权利要求 1所述的一种重金属废石膏减量化无害化资源处置方 法, 其特征在于, 歩骤 (1 ) 中重金属废石膏和废玻璃球磨混合物中
Si02/Ca0质量比 =1:广 3:1, 热处理温度为 800°C~1100°C, 热处理时 间为 0.5h~2h, 热处理气氛为空气。
3、 如权利要求 1所述的一种重金属废石膏减量化无害化资源处置方 法, 其特征在于, 歩骤 (2) 中其他冶炼熔剂为石灰石、 石英砂、 铁 屑的几种混合物; 当冶炼熔剂预烧料、其他冶炼熔剂和炼铅原料三者 球磨混合时, 冶炼熔剂预烧料、其他冶炼熔剂的混合料与炼铅原料两 者间的质量比为 10:10(Γ15:100;球磨混合物中 Si02:Fe质量比 =0.8〜 1.0, Si02: (£10质量比=1.50〜1.65。
4、 如权利要求 1所述的一种重金属废石膏减量化无害化资源处置方 法, 其特征在于, 歩骤 (4) 中养护分为低温养护阶段和高温养护阶 段, 其中低温养护阶段养护温度为 3(T40°C, 养护时间为广 24h, 相 对湿度为 20~80%, 高温养护阶段养护温度为 6(T90°C, 养护时间为 广 24h, 相对湿度为 20^80% o
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/419,255 US9499440B2 (en) | 2014-01-16 | 2014-03-13 | Reduction and harmless method for recycling heavy metal waste |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410019050.4A CN103866137B (zh) | 2014-01-16 | 2014-01-16 | 一种重金属废石膏减量化无害化资源处置方法 |
CN201410019050.4 | 2014-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015106486A1 true WO2015106486A1 (zh) | 2015-07-23 |
Family
ID=50905134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073416 WO2015106486A1 (zh) | 2014-01-16 | 2014-03-13 | 一种重金属废石膏减量化无害化资源处置方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9499440B2 (zh) |
CN (1) | CN103866137B (zh) |
WO (1) | WO2015106486A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104141043B (zh) * | 2014-06-27 | 2016-08-24 | 北京科技大学 | 一种重金属废石膏与铅玻璃协同处置的方法 |
CN104846214B (zh) * | 2015-04-21 | 2017-05-10 | 云南驰宏锌锗股份有限公司 | 一种用富氧顶吹炼铅炉处理含重金属石膏渣的方法 |
CN104926565B (zh) * | 2015-06-12 | 2018-09-25 | 山西农业大学 | 一种酸性土壤改良剂制备及施用方法 |
CN105132669B (zh) * | 2015-08-31 | 2017-09-29 | 北京科技大学 | 一种废石膏、铅玻璃与铅膏协同处置制备铅精矿的方法 |
CN108285281B (zh) * | 2018-03-14 | 2021-10-29 | 广西北港新材料有限公司 | 一种矿热炉渣水泥混合材料及其制备系统、方法和应用 |
CN108707759B (zh) * | 2018-05-30 | 2021-04-27 | 天津仁新玻璃材料有限公司 | 一种从含铅玻璃中回收铅的方法 |
CN112981119A (zh) * | 2019-12-15 | 2021-06-18 | 湖南省桂阳银星有色冶炼有限公司 | 一种氯化铅渣的铅回收工艺 |
CN111533155B (zh) * | 2020-04-23 | 2021-12-14 | 大唐环境产业集团股份有限公司 | 一种脱硫石膏中重金属的固定化方法 |
WO2022047715A1 (zh) * | 2020-09-03 | 2022-03-10 | 杭州铅锂智行科技有限公司 | 一种铅冶炼尾气处理产物利用的方法及其装置 |
CN114672662A (zh) * | 2022-04-14 | 2022-06-28 | 中南大学 | 一种含重金属污酸渣资源化利用的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2528103A (en) * | 1946-01-07 | 1950-10-31 | Robert M Willson | Method of producing sulfuric acid and hydraulic cement from gypsum |
JPH07241441A (ja) * | 1994-03-03 | 1995-09-19 | Chiyoda Corp | 亜硫酸ガスを含むガスを被処理ガスとする脱硫方法 |
CN103482586A (zh) * | 2013-09-06 | 2014-01-01 | 北京科技大学 | 一种重金属化学石膏钙硫资源化的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1131699A (zh) * | 1995-11-06 | 1996-09-25 | 宗复芃 | 铅冶炼工艺 |
CN1197935C (zh) * | 2001-03-29 | 2005-04-20 | Ym兴业株式会社 | 利用废石膏板生产盐碱土壤改良剂的方法及其产品和应用 |
CN1673168A (zh) * | 2004-03-25 | 2005-09-28 | 上海静安新建材科研所有限公司 | 废石膏改性粉煤灰三渣混合料 |
CN1955141A (zh) * | 2005-10-28 | 2007-05-02 | 尹小林 | 工业副石膏制造高强抗水防火免烧砖 |
CN101486446B (zh) * | 2009-01-12 | 2011-02-09 | 王嘉兴 | 废石膏泥制造漂粉精和活性炭联产氯化钠和硫酸的方法 |
CN101509081A (zh) * | 2009-03-30 | 2009-08-19 | 安徽铜冠有色金属(池州)有限责任公司九华冶炼厂 | 一种还原炉直接还原液态高铅渣工艺 |
CN101767932B (zh) * | 2009-12-30 | 2011-07-20 | 陕西乾盛环保建材工程有限公司 | 一种用废石膏渣制造绿色微晶玻璃板材的方法 |
CN103382527B (zh) * | 2013-07-23 | 2014-11-26 | 中南大学 | 硫化锌精矿及含铅锌物料的闪速熔炼方法及设备 |
-
2014
- 2014-01-16 CN CN201410019050.4A patent/CN103866137B/zh not_active Expired - Fee Related
- 2014-03-13 WO PCT/CN2014/073416 patent/WO2015106486A1/zh active Application Filing
- 2014-03-13 US US14/419,255 patent/US9499440B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2528103A (en) * | 1946-01-07 | 1950-10-31 | Robert M Willson | Method of producing sulfuric acid and hydraulic cement from gypsum |
JPH07241441A (ja) * | 1994-03-03 | 1995-09-19 | Chiyoda Corp | 亜硫酸ガスを含むガスを被処理ガスとする脱硫方法 |
CN103482586A (zh) * | 2013-09-06 | 2014-01-01 | 北京科技大学 | 一种重金属化学石膏钙硫资源化的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160257617A1 (en) | 2016-09-08 |
CN103866137B (zh) | 2015-11-18 |
CN103866137A (zh) | 2014-06-18 |
US9499440B2 (en) | 2016-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015106486A1 (zh) | 一种重金属废石膏减量化无害化资源处置方法 | |
CN101386494A (zh) | 一种复合胶凝材料及其制备方法 | |
CN103241966B (zh) | 无熟料钢渣再生微粉复合水泥 | |
WO2021093168A1 (zh) | 一种基于工业尾气-污水处理-绿色高性能土木功能材料协同处置的赤泥利用方法 | |
CN108358478B (zh) | 一种分步煅烧煤气化渣制备胶凝材料的方法 | |
CN104496246A (zh) | 一种水泥混凝土构建物固相填充料表面活性剂及其制造、使用方法 | |
CN105130218A (zh) | 一种低钙硅酸盐水泥及其制备与硬化方法 | |
CN106082731B (zh) | 一种粉煤灰免烧高强陶粒及其制备方法 | |
WO2019174463A1 (zh) | 一种利用高温液态炉渣固定含砷废物的方法 | |
CN114804782A (zh) | 一种利用水泥窑尾烟气制备的碳化钢渣建材制品及其方法 | |
CN101857387A (zh) | 脱硫石膏—高钙粉煤灰地聚合物胶凝材料及其制备方法 | |
CN108178536B (zh) | 一种分步煅烧煤气化渣制备少熟料水泥的方法 | |
CN111943715A (zh) | 一种基于改性污泥烧制陶粒的方法 | |
CN104844022A (zh) | 低钙硅酸盐水泥熟料及其水泥的制备方法 | |
CN114180865B (zh) | 一种资源化利用城市垃圾焚烧飞灰的方法 | |
CN105621909B (zh) | 一种复掺改性脱硫灰和稻壳灰的水泥 | |
CN101357773B (zh) | 一种降低磷石膏分解温度的方法 | |
CN113233797B (zh) | 一种煤矸石基胶凝材料及其制备方法 | |
CN113716931A (zh) | 一种免蒸压硅锰渣加气混凝土保温砌块及其制备方法 | |
CN104861406A (zh) | 一种粉煤灰的接枝改性方法 | |
CN103755182A (zh) | 一种磷石膏胶凝材料及其制备方法 | |
CN101456542B (zh) | 一种一氧化碳还原分解磷石膏的方法 | |
CN101462864B (zh) | 复合胶凝材料及制备方法 | |
CN110143770B (zh) | 一种现排炉渣三元复合无机胶凝材料的制备方法 | |
CN114685069A (zh) | 一种硫酸盐激发粉煤灰胶凝材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14419255 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14878829 Country of ref document: EP Kind code of ref document: A1 |