Nothing Special   »   [go: up one dir, main page]

WO2015198601A1 - Power transmission structure for vehicle - Google Patents

Power transmission structure for vehicle Download PDF

Info

Publication number
WO2015198601A1
WO2015198601A1 PCT/JP2015/003180 JP2015003180W WO2015198601A1 WO 2015198601 A1 WO2015198601 A1 WO 2015198601A1 JP 2015003180 W JP2015003180 W JP 2015003180W WO 2015198601 A1 WO2015198601 A1 WO 2015198601A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
damper
shaft
transmission shaft
universal joint
Prior art date
Application number
PCT/JP2015/003180
Other languages
French (fr)
Japanese (ja)
Inventor
憲一郎 西村
英治 三戸
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014131139A external-priority patent/JP6206341B2/en
Priority claimed from JP2014131141A external-priority patent/JP6206342B2/en
Priority claimed from JP2014131140A external-priority patent/JP6079706B2/en
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201580019655.6A priority Critical patent/CN106458021B/en
Priority to US15/320,715 priority patent/US10023049B2/en
Priority to DE112015003024.7T priority patent/DE112015003024T5/en
Publication of WO2015198601A1 publication Critical patent/WO2015198601A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/68Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/30Arrangement or mounting of transmissions in vehicles the ultimate propulsive elements, e.g. ground wheels, being steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/76Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic ring centered on the axis, surrounding a portion of one coupling part and surrounded by a sleeve of the other coupling part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • F16F15/126Elastomeric springs consisting of at least one annular element surrounding the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/04Arrangement or mounting of internal-combustion or jet-propulsion units with the engine main axis, e.g. crankshaft axis, transversely to the longitudinal centre line of the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/226Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
    • F16D3/227Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/84Shrouds, e.g. casings, covers; Sealing means specially adapted therefor
    • F16D3/843Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers
    • F16D3/845Shrouds, e.g. casings, covers; Sealing means specially adapted therefor enclosed covers allowing relative movement of joint parts due to the flexing of the cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/1207Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by the supporting arrangement of the damper unit
    • F16F15/1208Bearing arrangements

Definitions

  • the present invention relates to a vehicle power transmission structure in which a damper is provided on a drive shaft, and belongs to the field of vehicle power transmission technology.
  • Reduced-cylinder operation may be performed depending on the driving condition for the purpose of improving the fuel efficiency of the engine. Further, development of premixed compression ignition (HCCI) technology for performing self-ignition combustion in a predetermined region in a gasoline engine has been promoted, and fuel efficiency can be improved by performing the HCCI combustion.
  • HCCI premixed compression ignition
  • the combustion of the engine becomes unstable and vibration due to torque fluctuation or the like tends to increase.
  • the vibration of the engine is transmitted to the drive shaft that connects the differential device and the drive wheels via the transmission and the differential device. If the vibration transmitted to the drive shaft is transmitted to the vehicle body via the suspension arm or the like, it will cause unpleasant vibration and noise in the passenger compartment.
  • Vibration transmitted from the engine to the transmission can be absorbed by the torque converter, but the engine and the transmission are directly connected in a locked-up state of the torque converter or in a powertrain that is not equipped with a torque converter in the first place. Vibration absorption by a torque converter cannot be realized. Therefore, when the lockup area is expanded for improving fuel efficiency or the torque converter is abolished due to the multistage automatic transmission or the like, the above vibration and noise problems are promoted.
  • the transmission of the power transmission system includes gear meshing vibrations in transmissions and differentials, and torsion caused by impacts at the time of torque reversal in universal joints on the drive shaft.
  • vibrations and the like When there are vibrations and the like and these vibrations are transmitted to the vehicle body via the drive shaft, the same problem as described above occurs.
  • Patent Document 1 discloses that a damper is disposed on a drive shaft that couples a differential and a drive wheel, and this damper causes an engine, a transmission, and a difference.
  • a technique is disclosed in which vibration from a power source such as a moving device is absorbed.
  • the damper is provided between a pair of universal joints arranged on the drive shaft, and among these, a shaft portion provided at the tip of a shaft extending from the universal joint on the power source side to the wheel side, and the wheel side And a cylindrical portion provided at the tip of a shaft extending from the universal joint to the power source side, and the shaft portion and the cylindrical portion are fitted to each other via an elastic member.
  • an object of the present invention is to dispose a damper on a drive shaft without interfering with surrounding vehicle body side members and effectively absorb vibration transmitted from the power source side to the drive shaft over a wide frequency range.
  • the vehicle power transmission structure according to the present invention is configured as follows.
  • the first invention of the present application is A power source including a differential; A drive shaft connecting the differential and the drive wheel;
  • the drive shaft is A first power transmission shaft having one end connected to the differential;
  • a second power transmission shaft having one end coupled to the other end of the first power transmission shaft via a first universal joint;
  • a vehicle power transmission structure comprising: a third power transmission shaft having one end connected to the other end of the second power transmission shaft via a second universal joint and the other end connected to the driving wheel.
  • At least two of the first, second, and third power transmission shafts are each provided with a damper, Among these dampers, the predetermined damper disposed on the longest power transmission shaft of the at least two power transmission shafts is a damper that functions in a lower frequency region than the remaining dampers.
  • the second invention is the first invention, wherein
  • the power source includes an engine to which an exhaust pipe is connected,
  • the exhaust pipe is disposed above the first power transmission shaft of the drive shaft, and
  • the first power transmission shaft is provided with a metal damper configured to attenuate vibrations by torsion of a small diameter portion formed over a predetermined range in the axial direction as the predetermined damper.
  • the third invention is the second invention, wherein At least one of the second power transmission shaft and the third power transmission shaft is provided with a damper configured to attenuate vibration by a rubber member as the remaining damper.
  • the second power transmission shaft is A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
  • a fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
  • the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft is placed in one of the cylindrical portions provided at one end of the fifth power transmission shaft.
  • An elastic damper is provided that accommodates the provided shaft portion and interposes an elastic member between the tube portion and the shaft portion, In the axial direction, a portion of the elastic damper that is closer to the second universal joint than the elastic member includes a portion of the elastic damper that is provided with the elastic member, and a portion that is closer to the first universal joint than the elastic member. It is characterized by being a small diameter part having a smaller diameter than the above.
  • the fifth invention is the fourth invention, wherein In the axial direction, a distance between the elastic damper and the first universal joint is smaller than a distance between the elastic damper and the second universal joint.
  • a sixth invention is the fourth or fifth invention, wherein The small-diameter portion is provided with a restricting portion that restricts relative rotation between the cylindrical portion and the shaft portion within a predetermined angle range.
  • the seventh invention is the invention according to any one of the fourth to sixth inventions,
  • the elastic damper includes a first bearing interposed between the cylindrical portion and the shaft portion on the first universal joint side with respect to the elastic member in the axial direction.
  • an eighth invention is the seventh invention, wherein
  • the elastic damper includes a second bearing interposed between the cylindrical portion and the shaft portion on the second universal joint side with respect to the elastic member in the axial direction,
  • the second bearing has a smaller diameter than the first bearing.
  • the ninth invention is the first invention, wherein
  • the second power transmission shaft is A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
  • a fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
  • An elastic damper having an elastic member interposed between the cylindrical portion and the shaft portion,
  • the elastic damper has a bearing interposed between an outer periphery of the shaft portion and an inner periphery of the cylindrical portion at an axial position closer to the opening than the elastic member, and is opposite to the opening than the bearing.
  • a diameter-expanded portion projecting radially outward from the outer periphery of the shaft portion at the axial position on the side, and a protrusion projecting radially inward from the inner periphery of the cylindrical portion at the axial position closer to the opening than the bearing A stop, and
  • the elastic damper has a pull-out strength that is greater than a pull-out strength of the first universal joint.
  • the term “pull-out strength” means that the accommodated portion provided at the end of the second shaft is fitted inside the cylindrical portion provided at the end of the first shaft.
  • the magnitude of the tensile force immediately before the retaining function of the accommodated part from the cylindrical part is lost. It means.
  • the tenth invention is the ninth invention, wherein
  • the first universal joint includes a receiving portion provided at one end of the fourth power transmission shaft, and a cylindrical portion provided at the other end of the first power transmission shaft so as to receive the receiving portion.
  • a boot portion provided to extend in the axial direction across the outer periphery of the cylindrical portion and the outer periphery of the fourth power transmission shaft.
  • an eleventh aspect of the invention is the ninth or tenth aspect of the invention,
  • the power source includes an engine;
  • the retaining portion is composed of a snap ring that is mounted in a reduced diameter in a circumferential groove formed on the inner periphery of the cylindrical portion,
  • the elastic damper is disposed on the rear side of the engine in the vehicle longitudinal direction and on the outer side of the first universal joint in the vehicle width direction,
  • the cylindrical portion is disposed so as to extend outward from one end of the fourth power transmission shaft along the vehicle width direction,
  • the opening is arranged on the outer side in the vehicle width direction than the engine.
  • the twelfth aspect of the invention is any of the ninth to eleventh aspects of the invention,
  • the elastic damper includes a bearing arranged on the side opposite to the opening in the axial direction from the elastic member, in addition to the bearing arranged on the opening side in the axial direction from the elastic member,
  • the bearing on the opening side has a larger diameter than the bearing on the side opposite to the opening.
  • At least two dampers are provided on the drive shaft by arranging dampers on at least two of the first, second, and third power transmission shafts.
  • the function frequency range is distributed to each damper, the vibration by the damper is compared with the conventional structure in which vibration over a wide frequency range from low frequency to high frequency is absorbed by one damper. It is possible to suppress an increase in size of individual dampers while maintaining good damping performance.
  • a predetermined damper (hereinafter referred to as a damper) that requires a relatively large axial dimension in order to effectively exhibit the vibration damping function in the low frequency region.
  • a damper also referred to as “low frequency damper”
  • the enlargement of each damper is suppressed as mentioned above, it can suppress that each damper arrange
  • the predetermined damper (low frequency damper) is configured such that the torsional rigidity is lowered by providing the small diameter portion over a predetermined range in the axial direction.
  • the damper can effectively absorb torsional vibrations that are particularly problematic in the low frequency region.
  • the predetermined damper (low frequency damper) is made of metal, even if the predetermined damper (low frequency damper) is provided on the first power transmission shaft that passes below the exhaust pipe of the engine, a change in characteristics due to heat transmitted from the exhaust pipe is not caused. It is difficult to occur and can exhibit a good vibration absorbing function over a long period of time.
  • the remaining damper provided on at least one of the second power transmission shaft or the third power transmission shaft is: Since the vibration is configured to be attenuated by the rubber member, it is possible to effectively absorb vibration in a high frequency region that cannot be absorbed by the predetermined damper. Further, since the damper provided with the rubber member is disposed on the second power transmission shaft or the third power transmission shaft disposed in the axial direction away from the exhaust pipe of the engine, the rubber is heated by heat transmitted from the exhaust pipe. The deterioration of the member can be suppressed, and the vibration absorbing function can be maintained well over a long period.
  • the elastic damper is provided between the first universal joint on the drive shaft and the second universal joint on the drive wheel side, the unevenness on the road surface. Accordingly, when the portion of the drive shaft closer to the drive wheel than the first universal joint swings up and down, if the outer diameter of the elastic damper is uniform, the movable range of the elastic damper in the vertical direction is the first free range. It becomes the maximum at the end of the drive wheel farthest from the joint.
  • the portion of the elastic damper closer to the drive wheel than the elastic member is a small diameter portion, so that the maximum width of the movable range of the elastic damper is suppressed, so the elastic damper and the surrounding vehicle body side It becomes easy to avoid interference with a member.
  • the small diameter portion is provided so as to be shifted in the axial direction from the elastic member, the outer diameter of the small diameter portion can be effectively reduced regardless of the thickness of the elastic member. Accordingly, it is possible to easily avoid interference between the small diameter portion of the elastic damper and the vehicle body side member while realizing effective vibration absorption by the elastic member.
  • the elastic damper is arranged close to the power source side between the first universal joint and the second universal joint, the above-described movable range of the elastic damper can be further suppressed. This makes it easier to avoid interference between the elastic damper and the vehicle body side member.
  • the sixth invention by allowing relative rotation between the cylindrical portion and the shaft portion of the elastic damper within a predetermined angle range, vibration absorption by the elastic member is effectively realized and the small diameter portion is provided.
  • the rotation of the fourth power transmission shaft transmitted from the power source side is transferred to the fifth power transmission shaft on the drive wheel side via the elastic damper. It can be transmitted reliably.
  • the power source side portion of the elastic damper has a larger diameter than the small diameter portion on the drive wheel side, and the first bearing is disposed in the large diameter portion. Therefore, even when a large torque fluctuation due to engine combustion fluctuation or the like is input from the power source side to the elastic damper and a large force in the torsional direction or the bending direction acts on the elastic damper, the elastic damper to which power is input The large-diameter portion can be stably supported by the first bearing.
  • the eighth invention of the pair of bearings interposed between the cylindrical portion and the shaft portion in the elastic damper, compared to the first bearing disposed on the power source side with respect to the elastic member.
  • the second bearing disposed on the drive wheel side with respect to the elastic member has a small diameter. Therefore, even when a large force due to torque fluctuation as described above acts on the elastic damper, the power source side portion of the elastic damper to which power is input can be stably supported by the first bearing having a relatively large diameter. Since the second bearing having a small diameter is arranged closer to the drive wheel than the elastic member, it is possible to contribute to a reduction in the diameter of the small diameter portion.
  • the elastic damper having a greater pulling strength than the first universal joint is provided on the drive shaft, a bending load or power is applied to the drive shaft when a large impact load is applied to the vehicle.
  • a load that expands the axial distance between the source and the drive wheel can be applied to the universal joint that has a lower pulling strength than the elastic damper. Therefore, the load acting on the elastic damper can be reduced, and thereby the strength of the elastic damper required for maintaining the damper function can be reduced. Therefore, it is possible to suppress an increase in the size of the damper while ensuring a good damper function, and it is possible to suppress the deterioration of the mountability of the elastic damper on the vehicle.
  • the first universal joint is provided with the extendable boot portion, when a large impact load is applied to the vehicle, the drive shaft is subjected to a bending load, a power source and a drive wheel. Even when the receiving portion is detached from the cylindrical portion of the first universal joint by applying a load that increases the axial distance between the first universal joint and the boot portion, Can be accommodated.
  • the opening of the cylindrical portion of the elastic damper is disposed on the outer side in the vehicle width direction than the engine, and is disposed in a portion farthest from the engine in the cylindrical portion. For this reason, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine is retracted, and an elastic portion constituted by a snap ring attached to the opening side portion of the cylinder portion and, consequently, the circumferential groove on the inner periphery of the cylinder portion. It is possible to suppress the impact load from being directly applied to the damper retaining portion. Accordingly, since the strength required for the elastic damper is reduced, it is possible to suppress an increase in size of the elastic damper, and it is possible to suppress deterioration of the mounting property of the elastic damper on the vehicle.
  • the diameter-enlarged portion is moved in the removal direction by the opening-side bearing having the larger diameter among the opening-side bearing and the non-opening-side bearing provided in the elastic damper. Therefore, the elastic damper can be more securely prevented from coming off.
  • FIG. 4 is a cross-sectional view showing a part of a stopper mechanism provided in the cross section along line AA in FIG. 3.
  • FIG. 6 is a cross-sectional view taken along the line BB showing the main part of the high-frequency damper shown in FIG.
  • FIG. 9 is a cross-sectional view of the second high-frequency damper shown in FIG. 8 taken along the line DD.
  • FIG. 9 is a cross-sectional view of the second high-frequency damper shown in FIG. 8 taken along the line DD.
  • FIG. 16 It is a top view which shows the power transmission device of the vehicle which concerns on 6th Embodiment. It is a fragmentary sectional view which shows the structure of the damper provided in the power transmission device shown in FIG. It is the figure which looked at the state to which the drive wheel side part of the drive shaft containing the damper shown in FIG. 14 swung up and down from the vehicle rear side. It is the figure which looked at a part of power transmission device of vehicles concerning a 7th embodiment from the vehicles back side. It is the figure which looked at the state which the drive wheel side part of the drive shaft in the power transmission device shown in FIG. 16 swung up and down from the vehicle rear side. It is a top view which shows the power transmission device of the vehicle which concerns on 8th Embodiment.
  • FIG. 21 is a sectional view taken along the line CC of FIG. 20 when the structure of the damper shown in FIG. 20 is viewed from another direction.
  • FIG. 1 is a plan view showing a vehicle power transmission device 1 according to the first embodiment
  • FIG. 2 is a schematic view of the power transmission device 1 as seen from the vehicle rear side.
  • the power transmission device 1 is mounted on a front engine / front drive type vehicle (FF vehicle), for example, a power source 2 mounted in an engine room, and left and right A pair of left and right drive shafts 10 (10a, 10b) for connecting the drive wheels 28 to the power source 2 are provided.
  • FF vehicle front engine / front drive type vehicle
  • the power source 2 includes a horizontally mounted engine 3 and a transaxle 4 arranged side by side in the vehicle width direction of the engine 3, for example.
  • An exhaust device 9 having an exhaust pipe 9 a extending rearward is connected to the engine 3.
  • the transaxle 4 includes, for example, a transmission 6 connected to the output shaft of the engine 3 via a torque converter (not shown), and a differential device that transmits the output of the transmission 6 to the left and right drive shafts 10a and 10b. 8 and.
  • the transmission 6 and the differential device 8 are arranged offset to the left of the center in the vehicle width direction.
  • the configuration of the right drive shaft 10a among the left and right drive shafts 10a and 10b will be described, and the description and illustration of the configuration of the left drive shaft 10b will be omitted.
  • a differential side constant velocity joint 21 as a first universal joint and a wheel side constant velocity joint 22 as a second universal joint are arranged in this order from the differential side.
  • a portion of the drive shaft 10a closer to the drive wheel than the differential-side constant velocity joint 21 can swing up and down around the differential-side constant velocity joint 21 according to the unevenness of the road surface.
  • the drive shaft 10 a has one end connected to the differential shaft 11 as a first power transmission shaft connected to the differential device 8 and one end connected to the other end of the differential shaft 11 via the differential constant velocity joint 21.
  • An intermediate shaft 12 as a second power transmission shaft and one end connected to the other end of the intermediate shaft 12 via a wheel side constant velocity joint 22 and a third power transmission shaft connected to a driving wheel 28 at the other end A wheel side shaft 13.
  • the exhaust pipe 9 a extends rearward through the vicinity of the upper side of the differential shaft 11.
  • the differential device 8 is arranged offset to the left side, the axial distance between the differential device 8 and the right differential-side constant velocity joint 21 is large. Further, the wheel side constant velocity joint 22 and the drive wheel 28 are arranged close to each other in the axial direction. Therefore, the length of the shaft constituting the right drive shaft 10a increases in the order of the differential side shaft 11, the intermediate shaft 12, and the wheel side shaft 13.
  • a low frequency damper 30 that functions in a relatively low frequency region and a high frequency damper (elastic damper) 50 that functions in a higher frequency region than the low frequency damper 30 are provided. ing.
  • the low frequency damper 30 is provided on the differential shaft 11, and the high frequency damper 50 is provided on the intermediate shaft 12.
  • the differential side shaft 11 includes a first differential side shaft 11a extending from the differential device 8 toward the drive wheel side, and a second differential shaft extending from the differential side constant velocity joint 21 toward the differential device side. It is comprised with the differential side shaft 11b.
  • the low frequency damper 30 includes a cylindrical portion 32 provided at the front end of the first differential shaft 11a on the drive wheel side, and a shaft portion 34 integrated with the second differential shaft 11b.
  • the cylinder portion 32 extends in the axial direction, is closed on the differential side, and is open toward the drive wheel side.
  • the shaft portion 34 is accommodated in the cylindrical portion 32.
  • a fitted portion 35 that is spline-fitted to the cylindrical portion 32 so as not to be relatively rotatable is provided.
  • the driving wheel side end portion of the shaft portion 34 is supported by the cylindrical portion 32 via a bearing 38.
  • an enlarged diameter portion 37 having a larger diameter than the fitted portion 35 is provided in the vicinity of the fitted portion 35 on the drive wheel side. Further, the shaft portion 34 is fitted to the inside of the cylindrical portion 32 via a stopper mechanism 40 that restricts the relative rotation of the shaft portion 34 with respect to the cylindrical portion 32 within a predetermined angle range in the vicinity of the bearing 38 on the differential device side. A regulated portion 36 is provided.
  • the stopper mechanism 40 includes a spline 42 provided on the inner periphery of the cylindrical portion 32 and a spline 44 provided on the outer periphery of the regulated portion 36 of the shaft portion 34.
  • the splines 42 of the cylindrical portion 32 and the splines 44 of the shaft portion 34 are alternately arranged in the circumferential direction, and a gap 46 is provided between the adjacent splines 42 and 44.
  • the relative rotation between the cylindrical portion 32 and the regulated portion 36 of the shaft portion 34 is allowed to be within a predetermined angle range by providing the gap 46 between the adjacent splines 42 and 44. And the relative rotation exceeding the range is prevented by the interference of the splines 42 and 44.
  • the shaft portion 34 is provided with a small-diameter portion 39 that is elongated in the axial direction range between the enlarged-diameter portion 37 and the restricted portion 36.
  • the axial range of the small-diameter portion 39 is determined to be a length necessary for ensuring the strength of the small-diameter portion 39, and may be changed according to the engine displacement, for example.
  • the outer diameter of the small diameter portion 39 is smaller than the outer diameters of the enlarged diameter portion 37 and the restricted portion 36.
  • the torsional rigidity of the shaft portion 34 is reduced by providing the small diameter portion 39. Further, the driving wheel side end portion of the small diameter portion 39 is rotatable relative to the cylindrical portion 32 within the predetermined angle range regulated by the stopper mechanism 40. Therefore, the small diameter portion 39 is easily twisted, and the torsional vibration transmitted from the power source side can be absorbed by the twist of the small diameter portion 39.
  • the low-frequency damper 30 is made of a metal that is configured to attenuate vibration by twisting the small-diameter portion 39 by providing the small-diameter portion 39 in the power transmission path from the power source side to the drive wheel side. It is a damper and is configured to have a lower torsional rigidity than the high-frequency damper 50.
  • the low-frequency damper 30 can effectively attenuate low-frequency torsional vibration transmitted from the power source side.
  • the axial dimension of the low frequency damper 30 is larger than the axial dimension of the high frequency damper 50. Thereby, the strength of the small diameter portion 39 can be ensured.
  • An exhaust pipe 9a that discharges high-temperature exhaust gas is disposed in the vicinity of the upper part of the low-frequency damper 30.
  • the low-frequency damper 30 is made of metal, a change in characteristics due to heat transmitted from the exhaust pipe 9a occurs. It is hard to occur. Therefore, the vibration absorption function by the low-frequency damper 30 can be favorably maintained over a long period.
  • the intermediate shaft 12 includes a first intermediate shaft 12 a extending from the differential side constant velocity joint 21 toward the drive wheel side, and a second intermediate shaft 12 extending from the wheel side constant velocity joint 22 toward the differential device side. It is comprised with the intermediate shaft 12b.
  • the high-frequency damper 50 includes a cylindrical portion 60 provided at the differential device side tip of the second intermediate shaft 12b, and a shaft portion 51 provided at the drive wheel side tip of the first intermediate shaft 12a.
  • the cylindrical portion 60 extends in the axial direction, is closed on the drive wheel side, and is open toward the differential device side.
  • the shaft portion 51 is accommodated in the tube portion 60.
  • a restricted portion 53 fitted inside the tube 60 via a stopper mechanism 66 that restricts the relative rotation of the shaft 51 to the tube 60 within a predetermined angle range.
  • the structure of the stopper mechanism 66 is the same as the structure of the stopper mechanism 40 of the low-frequency damper 30 described above (see FIG. 4), the description and illustration thereof are omitted.
  • the shaft portion 51 is provided with a hollow portion 54 at a portion closer to the axial direction differential device than the regulated portion 53, whereby the weight of the shaft portion 51 is reduced.
  • the high-frequency damper 50 further includes an elastic member 70 interposed between the cylindrical portion 60 and the shaft portion 51.
  • the elastic member 70 is disposed closer to the differential device than the regulated portion 53 in the axial direction.
  • the elastic member 70 includes, for example, an inner cylinder 71 and an outer cylinder 72 that are spaced apart in the radial direction, and a bush interposed between the inner cylinder 71 and the outer cylinder 72.
  • Part 73 The inner cylinder 71 and the outer cylinder 72 are made of, for example, metal, and the bush portion 73 is made of, for example, rubber.
  • the bush part 73 is joined to the outer peripheral surface of the inner cylinder 71 and the inner peripheral surface of the outer cylinder 72, for example, by baking.
  • the elastic member 70 is press-fitted between the outer peripheral surface of the shaft portion 51 and the inner peripheral surface of the cylindrical portion 60. Thereby, the inner cylinder 71 is fixed to the outer periphery of the shaft portion 51, and the outer cylinder 72 is fixed to the inner periphery of the cylinder portion 60.
  • the bush portion 73 is elastically deformable so as to allow relative rotation between the inner cylinder 71 and the outer cylinder 72.
  • the high frequency damper 50 is configured to attenuate various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10a by the elastic member 70 provided as described above. Therefore, among the vibrations transmitted from the power source side to the drive shaft 10 a, vibrations that cannot be absorbed by the low frequency damper 30, particularly relatively high frequency vibrations, can be effectively absorbed by the high frequency damper 50. Become.
  • the rubber bush portion 73 of the high-frequency damper 50 is formed by heat transmitted from the exhaust pipe 9a. Deterioration can be suppressed, and thereby the vibration absorbing function of the high frequency damper 50 can be favorably maintained over a long period of time.
  • the high-frequency damper 50 further includes a differential side bearing 77 disposed on the differential device side with respect to the elastic member 70 in the axial direction, and a wheel side bearing 78 disposed on the drive wheel side with respect to the elastic member 70. These bearings 77 and 78 are interposed between the cylindrical portion 60 and the shaft portion 51. The outer diameter of the wheel side bearing 78 is smaller than the outer diameter of the differential side bearing 77.
  • the relative rotation between the cylindrical portion 60 and the shaft portion 51 is allowed in the predetermined angle range, thereby effectively realizing vibration absorption by the elastic member 70.
  • the rotation of the first intermediate shaft 12a transmitted from the power source side can be reliably transmitted to the second intermediate shaft 12b via the high-frequency damper 50.
  • the axial dimension of the high-frequency damper 50 is smaller than the axial dimension of the low-frequency damper 30 on the differential shaft 11 and is small enough to fit on the intermediate shaft 12 shorter than the differential shaft 11. Therefore, it is not necessary to extend the intermediate shaft 12 to provide the high-frequency damper 50 or to change the axial positions of the constant velocity joints 21 and 22 to extend the intermediate shaft 12.
  • the two dampers 30 and 50 on the drive shaft 10a, it is possible to reduce the size of the individual dampers 30 and 50 compared to the case where only one damper is provided. Therefore, it becomes easy to avoid interference between the dampers 30 and 50 and surrounding vehicle body side members such as front side frames.
  • the low-frequency damper 30 and the high-frequency damper 50 having different vibration frequency ranges are provided on the drive shaft 10a.
  • the low frequency damper 30 for absorbing and the high frequency damper 50 for effectively absorbing relatively high frequency vibrations a wide range from a low frequency to a high frequency transmitted from the power source side to the drive shaft 10a can be obtained. Vibrations over the frequency domain can be effectively absorbed. Therefore, vibration over a wide frequency range transmitted from the drive shaft 10a to the vehicle body via the suspension arm or the like can be effectively suppressed, and unpleasant vibration and noise in the passenger compartment can be reduced.
  • damper 30 shown in FIGS. 3 and 4 is used as the low frequency damper and the damper 50 shown in FIGS. 5 and 6 is used as the high frequency damper has been described.
  • the configuration of the high-frequency damper is not limited to these, and dampers having various configurations can be used instead.
  • a second high-frequency damper 80 is provided on the drive shaft 10a as a third damper in addition to the low-frequency damper 30 and the high-frequency damper 50 similar to those in the first embodiment. It has been.
  • the configuration is the same as that of the first embodiment except that a second high-frequency damper 80 is added.
  • a low frequency damper 30 is provided on the differential shaft 11, and a high frequency damper 50 (hereinafter also referred to as “first high frequency damper 50”) is provided on the intermediate shaft 12. Is provided.
  • the second high frequency damper 80 is provided on the wheel side shaft 13.
  • FIGS. 8 is a cross-sectional view of the second high-frequency damper 80 as viewed from the axial differential device side
  • FIG. 9 is a cross-sectional view of the second high-frequency damper 80 taken along the line DD in FIG. .
  • the wheel-side shaft 13 includes a first wheel-side shaft 13 a extending from the wheel-side constant velocity joint 22 toward the drive wheel, and a second wheel connected to the drive wheel 28 (see FIG. 7). It is comprised with the side shaft 13b.
  • the second high-frequency damper 80 includes a cylindrical portion 90 provided at the differential device side tip of the second wheel side shaft 13b, and a shaft portion 82 that is integral with the first wheel side shaft 13a.
  • the cylindrical portion 90 extends in the axial direction, is closed on the drive wheel side, and is open toward the differential device side.
  • the shaft portion 82 is accommodated in the tube portion 90 and is supported on the inner side of the tube portion 90 via a pair of bearings 88 and 89 arranged with a space in the axial direction.
  • a sleeve 84 is spline-fitted to the outer periphery of the shaft portion 82 at an axial position between the pair of bearings 88 and 89.
  • a plurality of fin portions 86 project from the outer periphery of the sleeve 84 at intervals in the circumferential direction.
  • a plurality of concave portions 92 are provided on the inner periphery of the cylindrical portion 90 at intervals in the circumferential direction.
  • a plurality of partition portions 94 protruding radially inward are provided on the inner periphery of the cylindrical portion 90.
  • Each partition portion 94 is disposed at an intermediate portion between a pair of concave portions 92 adjacent in the circumferential direction.
  • the radially inner end of the partition portion 94 is arranged near the outer periphery of the sleeve 84 and BR> U.
  • Each fin part 86 of the axial part 82 is arrange
  • the radially outer end of the fin portion 86 is disposed in the recess 92.
  • a gap 96 is provided between the fin portion 86 and the side wall of the recess 92.
  • the cross-sectional sector-shaped elastic member 98 is interposed, for example.
  • the elastic member 98 is made of rubber, for example.
  • the elastic member 98 is positioned by bonding or other methods on the side surface of the fin portion 86 and the side surface of the partition portion 94, respectively.
  • the elastic member 98 is elastically deformable so as to allow relative rotation between the shaft portion 82 and the cylindrical portion 90. Specifically, when the shaft portion 82 rotates relative to the cylindrical portion 90, one elastic member 98 sandwiching the fin portion 86 is compressed and deformed.
  • the second high-frequency damper 80 is configured to attenuate various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10a by the elastic member 98 provided as described above. Therefore, of the vibrations transmitted from the power source side to the drive shaft 10a, vibrations that cannot be absorbed by the low frequency damper 30 and the first high frequency damper 50 are effectively absorbed by the second high frequency damper 80. It becomes possible. In particular, the first and second high frequency dampers 50 and 80 can reliably absorb high frequency vibrations.
  • the vibration frequency corresponding to the second high-frequency damper 80 may be approximately the same as the vibration frequency corresponding to the first high-frequency damper 50 or may be in a higher frequency region. Good.
  • the axial dimension of the second high-frequency damper 80 is smaller than the axial dimension of the first high-frequency damper 50 and small enough to fit on the wheel-side shaft 13 shorter than the intermediate shaft 12. Therefore, it is not necessary to extend the wheel-side shaft 13 to provide the second high-frequency damper 80 or change the axial position of the constant velocity joints 21, 22 to extend the wheel-side shaft 13.
  • the individual dampers 50, 130 can be further reduced in size. Therefore, it becomes easier to avoid interference between the dampers 30, 50, and 80 and surrounding vehicle body side members such as front side frames.
  • the low frequency damper 30 and the two high frequency dampers 50 and 80 can effectively absorb vibrations over a wide frequency range, unpleasant vibrations and noise in the passenger compartment can be reduced.
  • the damper 30 shown in FIGS. 3 and 4 the damper 50 shown in FIGS. 5 and 6, and the damper 80 shown in FIGS. 8 and 9 have been described.
  • the configurations are not limited to these, and dampers having various configurations can be used instead.
  • a high-frequency damper 50 shown in FIGS. 21 and 22 of an eighth embodiment to be described later may be used instead of the first high-frequency damper 50 and / or the second high-frequency damper 80.
  • the dampers 30 and 50 are provided on the differential side shaft 11 and the intermediate shaft 12 among the differential side shaft 11, the intermediate shaft 12, and the wheel side shaft 13 constituting the drive shaft 10a.
  • the dampers 30, 50, 80 are provided on the three shafts 11, 12, 13, respectively.
  • dampers are provided on the two shafts.
  • two dampers 30 and 80 are provided on the drive shaft 10a.
  • the low frequency damper 30 (see FIGS. 3 and 4) is provided on the differential shaft 11.
  • the high-frequency damper 80 (see FIGS. 8 and 9) is provided on the wheel-side shaft 13.
  • the specific configurations of the low-frequency damper and the high-frequency damper are not particularly limited.
  • the low-frequency damper 30 and the high-frequency damper 80 in combination, it is possible to effectively absorb vibration over a wide frequency range transmitted from the power source side to the drive shaft 10a.
  • ⁇ Fourth embodiment> In the fourth embodiment shown in FIG. 11, two dampers 30 and 80 are provided on the drive shaft 10a. Specifically, the low frequency damper 30 (see FIGS. 3 and 4) is provided on the intermediate shaft 12. ) And a high-frequency damper 80 (see FIGS. 8 and 9) is provided on the wheel-side shaft 13.
  • the specific configurations of the low-frequency damper and the high-frequency damper are not particularly limited.
  • the low-frequency damper 30 and the high-frequency damper 80 in combination, it is possible to effectively absorb vibration over a wide frequency range transmitted from the power source side to the drive shaft 10a.
  • the low frequency damper 30 is disposed on the second longest intermediate shaft 12 among the three shafts 11, 12, and 13.
  • the dimension change of the damper 30 and the shafts 11, 12, and 13 can be suppressed.
  • a plurality of dampers 30 and 80 are arranged on the drive shafts 10a and 10b on the left and right sides.
  • the low-frequency damper 30 and the high-frequency damper 80 are arranged symmetrically, the above-described effects obtained in the fourth embodiment are the same in both the left and right drive shafts 10a and 10b. Therefore, unpleasant vibration and noise in the passenger compartment can be reduced more effectively.
  • a low-frequency damper on the left and right differential-side shafts 11 and 511 and 511 And a high-frequency damper may be disposed on the left and right intermediate shafts 12 and / or on the left and right wheel-side shafts 13.
  • the effects obtained in any one of the first to third embodiments can be similarly obtained in both the left and right drive shafts 10a and 10b.
  • FIG. 13 is a plan view showing a power transmission device 601 for a vehicle according to the sixth embodiment.
  • the drive shaft 10 (10a, 10b) includes a differential side shaft 11 (11c, 11d) as a first power transmission shaft, one end of which is connected to the differential device 8, and a differential end via a differential side constant velocity joint 21.
  • An intermediate shaft 12 as a second power transmission shaft connected to the other end of the side shaft 11, one end is connected to the other end of the intermediate shaft 12 via a wheel side constant velocity joint 22, and a drive wheel 28 is connected to the other end.
  • a wheel side shaft 13 as a third power transmission shaft connected thereto.
  • the intermediate shaft 12 includes a first intermediate shaft 12a that extends from the differential-side constant velocity joint 21 toward the drive wheel, and a second intermediate shaft 12b that extends from the wheel-side constant velocity joint 22 toward the differential device. ing.
  • the constant velocity joints 21 and 22 on the differential side and the wheel side are arranged symmetrically, so that the length of the left and right intermediate shafts 12 and the length of the left and right wheel side shafts 13 are equal. ing. Therefore, regarding the swinging of the drive shaft 10 according to the road surface unevenness described above, the left and right drive shafts 10a and 10b can perform the same behavior.
  • the right drive shaft 10a is longer than the left drive shaft 10b due to the difference in length between the differential side shafts 11c and 11d. Yes.
  • the relatively long right differential shaft 11 c is fixed to the vehicle body via a bracket 29.
  • a damper 50 is disposed between the pair of constant velocity joints 21 and 22, that is, on the intermediate shaft 12.
  • the damper 50 effectively absorbs vibration transmitted from the power source 2 to the drive shaft 10, so that vibration transmission to the vehicle body via a suspension arm (not shown) or the like, and unpleasant vibration and noise in the vehicle interior can be achieved. It is suppressed.
  • FIG. 14 is a partial cross-sectional view showing the structure of the right damper 50 and its peripheral part.
  • the left damper 50 has a symmetrical structure with the right damper 50 shown in FIG.
  • the constant velocity joints 21 and 22 arranged on both sides in the axial direction of the damper 50 include cylindrical outer rings 23 and 26 that house various components such as an inner ring (not shown), Bellows-like boots 24 and 27 for preventing foreign matter from entering the outer rings 23 and 26 are provided.
  • the differential gear side end of the boot 24 of the differential side constant velocity joint 21 is fixed to the outer periphery of the outer ring 23 by a boot band 75, and the drive wheel side end of the boot 24 is fixed to the outer periphery of the first intermediate shaft 12 a by the boot band 76. It is fixed to.
  • the differential gear side end of the boot 27 of the wheel side constant velocity joint 22 is fixed to the outer periphery of the second intermediate shaft 12 b by a boot band 69, and the driving wheel side end of the boot 27 is fixed to the outer periphery of the outer ring 26 by a boot band 79. It is fixed to.
  • the damper 50 includes a cylinder portion 49 provided at the differential device side tip of the second intermediate shaft 12b and a shaft portion 51 provided at the drive wheel side tip of the first intermediate shaft 12a.
  • the cylindrical portion 49 has a bottom 59 at the end on the drive wheel side in the axial direction, and is open toward the differential device side.
  • the cylinder part 49 forms the outer periphery of the damper 50, and the outer diameter of the cylinder part 49 is equal to the outer diameter of the damper 50.
  • the cylindrical portion 49 has a small-diameter portion 55 extending from the bottom portion 59 toward the axial differential device, and a large-diameter portion that is larger in diameter than the small-diameter portion 55 and disposed closer to the axial differential device than the small-diameter portion 55. 56.
  • the small diameter portion 55 provided in the drive wheel side portion of the damper 50 has a smaller diameter than the remaining portion of the damper 50. Further, the outer diameter of the small diameter portion 55 is larger than the outer diameter of the second intermediate shaft 12 b and smaller than the outer diameter of the boot band 69.
  • the large-diameter portion 56 has a larger diameter than the small-diameter portion 55 and a first large-diameter portion 57 connected to the differential device side end of the small-diameter portion 55, and a larger diameter than the first large-diameter portion 57 And a second large-diameter portion 58 connected to the differential device side end of the first large-diameter portion 57.
  • the damper 50 has an outer diameter that gradually decreases toward the drive wheel side in the axial direction.
  • the shaft portion 51 is accommodated in the tube portion 49.
  • the shaft 51 includes a small-diameter portion 61 fitted in the small-diameter portion 55 of the cylindrical portion 49, and a large-diameter that is larger in diameter than the small-diameter portion 61 and disposed closer to the axial differential device than the small-diameter portion 61.
  • the outer diameter of the small diameter portion 61 is substantially equal to the outer diameter of the second intermediate shaft 12b.
  • the small-diameter portion 61 is fitted inside the small-diameter portion 55 of the cylindrical portion 49 via a stopper mechanism 66 described later that restricts relative rotation of the shaft portion 51 with respect to the cylindrical portion 49 within a predetermined angle range.
  • the large-diameter portion 52 of the shaft portion 51 is larger in diameter than the small-diameter portion 61 and is larger than the first large-diameter portion 52a and the first large-diameter portion 52a connected to the differential device side end of the small-diameter portion 61. And a second large-diameter portion 52b that is continuous with the differential device side end of the first large-diameter portion 52a.
  • the first large diameter portion 52 a of the shaft portion 51 is fitted into the first large diameter portion 57 of the tube portion 49, and the second large diameter portion 52 b of the shaft portion 51 is the second large diameter portion of the tube portion 49. 58 is internally fitted.
  • the shaft portion 51 is provided with a hollow portion 54 from the first large diameter portion 52a to the second large diameter portion 52b, thereby reducing the weight of the shaft portion 51.
  • the small-diameter portion 61 is configured by a solid portion and has higher rigidity than the large-diameter portion 52.
  • the damper 50 further includes an elastic member 70 interposed between the tube portion 49 and the shaft portion 51.
  • the elastic member 70 is disposed on the differential device side with respect to the small diameter portion 55 in the axial direction, and is interposed between the first large diameter portion 57 of the cylindrical portion 49 and the first large diameter portion 52a of the shaft portion 51. Yes. In the axial direction, the elastic member 70 is disposed offset to the differential device side so that the distance to the differential side constant velocity joint 21 is smaller than the distance to the wheel side constant velocity joint 22.
  • the elastic member 70 is a substantially cylindrical member and has an outer diameter larger than the outer diameter of the small diameter portion 55.
  • the inner diameter of the elastic member 70 is also larger than the outer diameter of the small diameter portion 55.
  • the elastic member 70 includes, for example, an inner cylinder 71 and an outer cylinder 72 that are spaced apart in the radial direction, and a bush portion 73 that is interposed between the inner cylinder 71 and the outer cylinder 72.
  • the inner cylinder 71 and the outer cylinder 72 are made of, for example, metal, and the bush portion 73 is made of, for example, rubber.
  • the bush part 73 is joined to the outer peripheral surface of the inner cylinder 71 and the inner peripheral surface of the outer cylinder 72, for example, by baking.
  • the elastic member 70 is press-fitted between the outer peripheral surface of the first large diameter portion 52 a of the shaft portion 51 and the inner peripheral surface of the first large diameter portion 57 of the cylindrical portion 49. Thereby, the inner cylinder 71 is fixed to the outer periphery of the shaft part 51, and the outer cylinder 72 is fixed to the inner periphery of the cylinder part 49.
  • the bush portion 73 is elastically deformable so as to allow relative rotation between the inner cylinder 71 and the outer cylinder 72.
  • the elastic member 70 configured as described above can absorb various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10.
  • the damper 50 includes a differential side bearing 77 as a first bearing disposed on the differential device side with respect to the elastic member 70 in the axial direction, and a wheel side as a second bearing disposed on the drive wheel side with respect to the elastic member 70.
  • a bearing 78 is further provided, and these bearings 77 and 78 are interposed between the cylindrical portion 49 and the shaft portion 51.
  • the differential side bearing 77 is interposed between the second large diameter portions 58 and 52 b of the cylindrical portion 49 and the shaft portion 51, and the wheel side bearing 78 is provided for each of the cylindrical portion 49 and the shaft portion 51. It is interposed between the differential side end portions of the small diameter portions 55 and 61.
  • the outer diameter of the wheel side bearing 78 is smaller than the outer diameter of the differential side bearing 77.
  • a large torque fluctuation due to a combustion fluctuation of the engine 3 or the like is input to the damper 50, and a large force in the torsional direction or the bending direction may act.
  • the differential side portion of the damper 50 to which the power of the engine 3 is input is connected to the differential side of the larger diameter than the wheel side bearing 78. It can be stably supported by the bearing 77.
  • FIG. 15 is a view of the drive wheel side portion of the drive shaft 10, specifically, the state in which the drive wheel side portion from the differential side constant velocity joint 21 swings up and down according to the unevenness of the road surface as viewed from the vehicle rear side. It is.
  • the damper 50 swings up and down within a predetermined movable range H. If the outer diameter of the damper 50 is uniform, the movable range H becomes maximum at a portion of the damper 50 farthest from the differential-side constant velocity joint 21, that is, at the end of the damper 50 on the driving wheel side.
  • the driving wheel side end portion of the damper 50 is configured by the small diameter portion 55.
  • the elastic member 70 of the damper 50 is provided so as to be shifted toward the differential device side with respect to the small diameter portion 55, and the outer diameter of the small diameter portion 55 is obtained because the wheel side bearing 78 is smaller in diameter than the differential side bearing 77. Is effectively reduced. Therefore, the movable range H of the damper 50 is effectively suppressed, so that the damper 50 is connected to the vehicle body side member 100 such as a front side frame disposed near the upper portion of the drive wheel side portion of the damper 50 and the damper 50. Interference can be avoided easily.
  • FIGS. 16 and 17 ⁇ Seventh Embodiment> Subsequently, a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17. Note that in the seventh embodiment, detailed description of the same configurations as in the first to sixth embodiments is omitted. In FIG. 16 and FIG. 17, constituent elements having the same functions as those in the first to sixth embodiments are denoted by the same reference numerals.
  • the position of the damper 50 in the axial direction is different from that in the sixth embodiment, and other configurations are the same as those in the sixth embodiment.
  • the distance between the damper 50 and the differential side constant velocity joint 21 is smaller than the distance between the damper 50 and the wheel side constant velocity joint 22.
  • the sixth embodiment is different from the sixth embodiment in which the damper 50 is arranged at substantially the center of the two constant velocity joints 21 and 22.
  • the damper 50 is arranged offset between the two constant velocity joints 21 and 22 toward the differential side constant velocity joint 21 side, as shown in FIG.
  • the movable range H of the damper 50 when the drive wheel side portion of the drive shaft 10 swings in the vertical direction about the speed joint 21 can be further reduced. Accordingly, it becomes easier to avoid interference between the damper 50 and the vehicle body side member 100 such as a front side frame disposed in the vicinity of the upper side of the drive wheel side portion of the damper 50.
  • the cylinder portion 49 of the damper 50 is provided at the power source side tip of the fifth power transmission shaft (second intermediate shaft 12b), and the shaft portion 51 is the fourth power transmission.
  • the case where the shaft (first intermediate shaft 12a) is provided at the front end of the driving wheel has been described.
  • the shaft portion of the damper is provided at the front end of the power source side of the fifth power transmission shaft.
  • the present invention can also be applied to a case where a damper cylinder is provided at the front end of the driving wheel.
  • the damper 50 (high frequency damper 50) is provided only on the intermediate shaft 12 has been described.
  • the low frequency damper 30 may be provided on the differential shaft 11.
  • FIG. 18 is a plan view showing a vehicle power transmission device 801 according to this embodiment.
  • FIG. 19 is a cross-sectional view showing the differential side constant velocity joint 21 provided on the right drive shaft 10c.
  • the differential-side constant velocity joint 21 provided on the left drive shaft 10d has a bilaterally symmetric structure with the differential-side constant velocity joint 21 shown in FIG.
  • the differential side constant velocity joint 21 includes an outer ring 170 provided at the driving wheel side end of the differential side shaft 11c, and an inner ring attached to the differential side end of the first intermediate shaft 12a. 174, a plurality of balls 178 interposed between the outer ring 170 and the inner ring 174, and a cage 180 that holds these balls 178.
  • the outer ring 170 is composed of a cylindrical portion extending in the axial direction so as to open to the drive wheel side.
  • On the inner periphery of the outer ring 170 the same number of ball grooves 172 as the number of balls 178 extend in the axial direction.
  • a circumferential groove 182 is provided on the inner circumference of the outer ring 170 over the entire circumference at an axial position on the drive wheel side with respect to the ball groove 172, and a C-shaped snap ring 184 is provided in the circumferential groove 182. It is mounted in an elastically deformed state so as to reduce the diameter.
  • the snap ring 184 is held in the circumferential groove 182 by being pressed against the bottom of the circumferential groove 182 by a restoring force acting in the diameter expansion direction.
  • the inner ring 174 is provided with an insertion hole 175 that penetrates the inner ring 174 in the axial direction.
  • the end of the first intermediate shaft 12a on the differential device side is press-fitted into the insertion hole 175, and the inner periphery of the insertion hole 175 and the outer periphery of the first intermediate shaft 12a are spline-fitted.
  • On the outer periphery of the inner ring 174 the same number of ball grooves 176 as the number of balls 178 are extended in the axial direction.
  • Each ball 178 is fitted in the ball groove 172 of the outer ring 170 and the ball groove 176 of the inner ring 174, and can roll in the axial direction along these ball grooves 172 and 176.
  • the pull-out strength of the differential-side constant velocity joint 21 is preferably, for example, 900 N or more and 1100 N or less, and the circumferential groove 182 and the snap ring 184 are configured so as to realize such a pull-out strength.
  • the “stripping strength of the differential-side constant velocity joint 21” here refers to the snap ring 184 when the differential-side shaft 11c and the first intermediate shaft 12a are pulled in the axial direction so as to extract the accommodated portion 181 from the outer ring 170. This means the magnitude of the tensile force immediately before the function of preventing the portion to be accommodated 181 from being removed from the outer ring 170 is lost.
  • the differential side constant velocity joint 21 includes a boot 186 provided across the outer periphery of the outer ring 170 and the outer periphery of the first intermediate shaft 12a.
  • the boot 186 is fixed to the outer periphery of the outer ring 170 and the outer periphery of the first intermediate shaft 12a using boot bands 188 and 189, respectively.
  • the boot 186 is formed in a bellows shape so that it can expand and contract in the axial direction.
  • FIGS. 20 and 21 are cross-sectional views of the damper 50 provided on the right intermediate shaft 12 as seen from the axial differential device side
  • FIG. 21 is a cross-sectional view of the damper 50 shown in FIG.
  • the left damper 50 has a symmetrical structure with the right damper 50.
  • the damper 50 has a cylindrical portion 132 provided at the front end of the first intermediate shaft 12 a on the driving wheel side so as to extend in the vehicle width direction, and is accommodated in the cylindrical portion 132. And a shaft portion 150 provided integrally with the second intermediate shaft 12b.
  • a plurality of recesses 134 are provided on the inner periphery of the cylindrical portion 132 at intervals in the circumferential direction.
  • a plurality of partition portions 136 projecting radially inward are provided on the inner periphery of the cylindrical portion 132.
  • Each partition part 136 is arrange
  • the radially inner end of the partition 136 is disposed in the vicinity of the outer periphery of the shaft 150.
  • a plurality of fins 152 project from the outer periphery of the shaft 150 at intervals in the circumferential direction.
  • Each fin part 152 is arrange
  • the radially outer end of the fin portion 152 is disposed in the recess 134.
  • a gap 146 is provided between the fin portion 152 and the side wall of the recess 134.
  • the cross-section sector-shaped elastic member 160 is interposed, for example.
  • the elastic member 160 is made of rubber, for example.
  • the elastic member 160 is positioned on the side surface of the fin portion 152 and the side surface of the partition portion 136 by adhesion or other methods.
  • the elastic member 160 is elastically deformable so as to allow relative rotation between the shaft portion 150 and the cylindrical portion 132. Specifically, when the shaft portion 150 rotates relative to the tube portion 132, one elastic member 160 sandwiching the fin portion 152 is compressed and deformed.
  • Various vibrations such as torsional vibration transmitted from the power source 2 to the drive shafts 10a and 10b can be damped by the elastic member 160 configured as described above.
  • the cylindrical portion 132 includes a bottom portion 132a that closes the axial base end side, and an opening portion 132b that opens the axial distal end side.
  • the opening 132b is sealed by a seal member 144.
  • the cylinder part 132 is arrange
  • the cylindrical portion 132 By arranging the cylindrical portion 132 in this way, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine 3 moves backward, and the cylindrical portion 132 of the damper 50, particularly the peripheral portion of the opening 132b. It is possible to suppress the impact load from directly acting on the attached snap ring (preventing part) 142.
  • the entire cylindrical portion 132 is disposed outside the engine 3 in the vehicle width direction, and the engine 3 and the tubular portion are arranged so that at least the opening 132b is disposed outside the engine 3 in the vehicle width direction. 132 may be overlapped in the vehicle width direction.
  • a first bearing 137 that supports the differential device side end portion of the shaft portion 150, and the shaft portion closer to the drive wheel than the first bearing 137.
  • a second bearing 138 that supports 150 is interposed.
  • the concave portion 134, the partition portion 136, the fin portion 152, and the elastic member 160 described above are provided so as to extend in the axial direction between the first and second bearings 137 and 138.
  • An end portion on the differential device side of the shaft portion 150 is a small-diameter portion 151 that is reduced in diameter compared to the remaining portion, and the small-diameter portion 151 is located at an axial position on the differential device side relative to the elastic member 160.
  • the cylindrical portion 132 is supported via the first bearing 137.
  • An annular diameter-enlarged portion 154 that protrudes radially outward from the outer periphery of the shaft portion 150 is provided at a position in the axial direction closer to the drive wheel than the elastic member 160.
  • the enlarged diameter portion 154 is provided integrally with the shaft portion 150.
  • the configuration of the enlarged diameter portion is not limited to this, and may be constituted by, for example, a snap ring that is mounted in an expanded state in a circumferential groove provided on the outer periphery of the shaft portion 150.
  • 2nd bearing 138 is arrange
  • FIG. The second bearing 138 has a larger diameter than the first bearing 137. More specifically, the inner diameter of the second bearing 138 is larger than the outer diameter of the first bearing 137.
  • a C-shaped snap ring 142 is provided at an axial position on the opening 132b side of the second bearing 138 as a retaining portion protruding radially inward from the inner periphery of the cylindrical portion 132.
  • the snap ring 142 is attached to a circumferential groove 140 provided on the inner circumference of the cylindrical portion 132 over the entire circumference in a state of being elastically deformed so as to reduce the diameter.
  • the snap ring 142 is held in the circumferential groove 140 by being pressed against the bottom of the circumferential groove 140 by a restoring force acting in the diameter expansion direction.
  • the snap ring is attached to a circumferential groove formed on the outer peripheral surface of the shaft portion 150 in an elastically deformed state so that the diameter of the snap ring is expanded, and the retaining portion of the damper 50 is configured by the snap ring.
  • the snap ring 142 attached to the circumferential groove 140 of the cylindrical portion 132 has a larger diameter than such a snap ring.
  • the retaining portion of the present embodiment configured with the relatively large-diameter snap ring 142 can exhibit a higher retaining function than a relatively small-diameter portion.
  • the second bearing 138 is disposed so as to be sandwiched from both sides in the axial direction by the enlarged diameter portion 154 and the snap ring (preventing portion) 142.
  • the movement of the shaft portion 150 toward the opening 132b is restricted by the interference between the enlarged diameter portion 154 and the inner ring of the second bearing 138.
  • the second bearing 138 has a larger diameter than the first bearing 137 as described above, it is possible to reliably prevent the second bearing 138 from coming off due to interference between the enlarged diameter portion 154 and the inner ring of the second bearing 138.
  • the movement of the second bearing 138 and the shaft portion 150 toward the opening 132b is restricted by the interference between the outer ring of the second bearing 138 and the snap ring (preventing portion) 142.
  • the movement restriction (prevention of removal) of the shaft part 150 toward the opening 132b is finally realized by the snap ring (prevention part) 142.
  • the opening 132b is disposed at a portion farthest from the engine 3 in the cylindrical portion 132. Therefore, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine 3 moves backward, It is possible to suppress the impact load from acting on the opening 132b side portion of the cylindrical portion 132, in particular, the snap ring (preventing portion) 142. As a result, the strength of the damper 50 can be reduced, and the damper 50 can be reduced in size, so that the vehicle mountability can be improved.
  • the pull-out strength of the damper 50 by the snap ring (prevention portion) 142 is larger than the pull-out strength of the above-mentioned differential side constant velocity joint 21 (see FIG. 19), specifically, for example, not less than 1200N and not more than 1400N. preferable.
  • Specific configurations such as dimensions and materials of the second bearing 138, the enlarged diameter portion 154, the snap ring 142 (a retaining portion), and the circumferential groove 140 are determined so as to realize such a removal strength of the damper 50. ing.
  • the “stripping strength of the damper 50” here refers to the inner ring of the second bearing 138 when the first intermediate shaft 12a and the second intermediate shaft 12b are pulled in the axial direction so as to extract the shaft portion 150 from the cylindrical portion 132. Since the restriction of the movement of the shaft portion 150 due to the interference with the enlarged diameter portion 154 and the interference between the outer ring of the second bearing 138 and the snap ring 142 cannot be achieved, the function of preventing the shaft portion 150 from coming off from the cylindrical portion 132 is lost. It means the magnitude of the previous tensile force.
  • the pull-out strength of the damper 50 is greater than the pull-out strength of the differential-side constant velocity joint 21, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the bending load or the differential device 8 and the drive wheels 28 are applied to the drive shaft 10. It is possible to apply a load that increases the axial distance between the differential-side constant velocity joint 21 that is less than the damper 50 and has a smaller strength. Therefore, it is possible to reduce the strength of the damper 50 and thereby suppress an increase in the size of the damper 50, thereby suppressing deterioration of the mountability of the damper 50 on the vehicle.
  • the structure of the damper 50 shown in FIGS. 20 and 21 is merely an example, and the specific structure of the damper including the retaining structure is not particularly limited in the present invention. Therefore, in the present invention, various known retaining structures can be employed instead of the retaining structure including the second bearing 138, the enlarged diameter portion 154, and the snap ring 142 described above.
  • the boot 186 can be omitted.
  • the universal joint in the present invention is of a type different from that described above. It may be a universal joint other than a speed joint or a constant velocity joint.
  • the retaining structure of the universal joint is not limited to the one made of the snap ring 184 as described above, and various known retaining structures such as caulking may be adopted.
  • the universal joint is not necessarily provided with a retaining structure.
  • the pull-out strength of the universal joint (difference-side constant velocity joint 21) disposed on the drive shaft on the drive shaft side is smaller than the pull-out strength of the damper.
  • the pull-out strength of the universal joint (in the above-described embodiment, the wheel-side constant velocity joint 22) arranged on the drive wheel side of the damper may be made smaller than the pull-out strength of the damper. The same effect can be obtained.
  • the power transmission device mounted on the engine-side-mounted FF vehicle has been described.
  • the present invention is a vehicle other than the FF type, such as a front engine / rear drive type vehicle (FR vehicle). It can also be applied to a power transmission device mounted on a vertical engine-type vehicle.
  • FR vehicle front engine / rear drive type vehicle
  • the first to eighth embodiments described above can be combined.
  • the damper 50 of the sixth to eighth embodiments may be used, and the differential side constant velocity joints of the first to fifth embodiments.
  • the differential side joint 21 of the sixth to eighth embodiments may be used.
  • the damper is disposed on the drive shaft without interfering with the surrounding vehicle body side member, and the vibration transmitted from the power source side to the drive shaft is effectively absorbed over a wide frequency range. Therefore, there is a possibility that it can be suitably used in the field of manufacturing industries of vehicles in which a damper is disposed on a drive shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

 A transmission structure for a vehicle according to one embodiment of the present invention, wherein dampers (30, 50) are provided in a corresponding manner to two or more of power transmission shafts (11, 12) in a drive shaft (10a) comprising: the first power transmission shaft (11), which has one end coupled with a differential device (8); the second power transmission shaft (12), which has one end coupled with the other end of the first power transmission shaft (11) via a first universal joint (21); and a third power transmission shaft (13) having one end coupled with the other end of the second power transmission shaft (12) via a second universal joint (22), a drive wheel (28) being coupled with the other end. Among the dampers, the prescribed damper (30) disposed on the power transmission shaft (11), which is the longest of the two or more power transmission shafts, is a damper that functions in a lower frequency region than the remaining damper (50).

Description

車両の動力伝達構造Vehicle power transmission structure
 本発明は、ドライブシャフトにダンパが設けられた車両の動力伝達構造に関し、車両の動力伝達技術の分野に属する。 The present invention relates to a vehicle power transmission structure in which a damper is provided on a drive shaft, and belongs to the field of vehicle power transmission technology.
 エンジンの燃費性能の改善を図ることを目的として、運転状態に応じて減筒運転を行うことがある。また、ガソリンエンジンにおいて所定領域で自己着火燃焼を行う予混合圧縮着火(HCCI)技術の開発が進められており、該HCCI燃焼を行うことによっても、燃費性能を改善することができる。 減 Reduced-cylinder operation may be performed depending on the driving condition for the purpose of improving the fuel efficiency of the engine. Further, development of premixed compression ignition (HCCI) technology for performing self-ignition combustion in a predetermined region in a gasoline engine has been promoted, and fuel efficiency can be improved by performing the HCCI combustion.
 ところが、減筒運転やHCCI燃焼を行うと、エンジンの燃焼が不安定化し、トルク変動等による振動が増大しやすくなる。エンジンの振動は、変速機及び差動装置を介して、差動装置と駆動輪とを連結するドライブシャフトに伝達される。ドライブシャフトに伝達された振動がサスペンションアーム等を介して車体に伝達されると、車室内の不快な振動及び騒音の原因となる。 However, if reduced cylinder operation or HCCI combustion is performed, the combustion of the engine becomes unstable and vibration due to torque fluctuation or the like tends to increase. The vibration of the engine is transmitted to the drive shaft that connects the differential device and the drive wheels via the transmission and the differential device. If the vibration transmitted to the drive shaft is transmitted to the vehicle body via the suspension arm or the like, it will cause unpleasant vibration and noise in the passenger compartment.
 エンジンから変速機に伝達される振動は、トルクコンバータによって吸収可能であるが、トルクコンバータのロックアップ状態又はそもそもトルクコンバータが搭載されないパワートレインでは、エンジンと変速機とが直結されることになるため、トルクコンバータによる振動吸収を実現できない。そのため、燃費向上のためにロックアップ領域を拡大したり、自動変速機の多段化等によってトルクコンバータを廃止したりした場合、上記の振動及び騒音の問題を助長することになる。 Vibration transmitted from the engine to the transmission can be absorbed by the torque converter, but the engine and the transmission are directly connected in a locked-up state of the torque converter or in a powertrain that is not equipped with a torque converter in the first place. Vibration absorption by a torque converter cannot be realized. Therefore, when the lockup area is expanded for improving fuel efficiency or the torque converter is abolished due to the multistage automatic transmission or the like, the above vibration and noise problems are promoted.
 また、動力伝達系の振動には、上記のようにエンジンを起振源とするもののほか、変速機や差動装置におけるギヤの噛み合い振動、ドライブシャフト上の自在継手におけるトルク反転時の衝撃によるねじり振動などがあり、これらの振動がドライブシャフトを介して車体に伝わると、上記と同様の問題が起こる。 In addition to the vibration source of the engine as described above, the transmission of the power transmission system includes gear meshing vibrations in transmissions and differentials, and torsion caused by impacts at the time of torque reversal in universal joints on the drive shaft. When there are vibrations and the like and these vibrations are transmitted to the vehicle body via the drive shaft, the same problem as described above occurs.
 以上のような動力伝達系の振動を抑制するために、特許文献1には、差動装置と駆動輪とを連結するドライブシャフト上にダンパを配置し、このダンパによって、エンジンや変速機、差動装置等でなる動力源からの振動を吸収するようにした技術が開示されている。具体的に、このダンパは、ドライブシャフトに配置された一対の自在継手間に設けられ、これらのうち動力源側の自在継手から車輪側に延びるシャフトの先端に設けられた軸部と、車輪側の自在継手から動力源側に延びるシャフトの先端に設けられた筒部とを備え、これら軸部と筒部とは弾性部材を介して互いに嵌合している。 In order to suppress the vibration of the power transmission system as described above, Patent Document 1 discloses that a damper is disposed on a drive shaft that couples a differential and a drive wheel, and this damper causes an engine, a transmission, and a difference. A technique is disclosed in which vibration from a power source such as a moving device is absorbed. Specifically, the damper is provided between a pair of universal joints arranged on the drive shaft, and among these, a shaft portion provided at the tip of a shaft extending from the universal joint on the power source side to the wheel side, and the wheel side And a cylindrical portion provided at the tip of a shaft extending from the universal joint to the power source side, and the shaft portion and the cylindrical portion are fitted to each other via an elastic member.
特開2010-181011号公報JP 2010-181011 A
 しかしながら、特許文献1の技術のようにドライブシャフト上にダンパを設ける場合、低周波数域から高周波数域まで広範囲にわたる周波数領域の振動を1つのダンパによって効果的に吸収しようとすると、該ダンパの大型化を招いてしまう。また、ドライブシャフトにおける動力源側の自在継手よりも車輪側の部分は、路面の凹凸に起因する車輪の上下動に伴って、動力源側の自在継手を中心として上下に大きく振れる。そのため、上記のように大型化したダンパを、フロントサイドフレーム等の車体側部材との干渉を避けながら、自在継手間に配置することが困難になる場合がある。 However, when a damper is provided on the drive shaft as in the technique of Patent Document 1, if a single damper effectively absorbs vibrations in a wide frequency range from a low frequency range to a high frequency range, the large size of the damper is large. Invitation In addition, the wheel side portion of the drive shaft from the power source side universal joint largely swings up and down around the power source side universal joint as the wheel moves up and down due to the unevenness of the road surface. For this reason, it may be difficult to dispose the damper, which has been enlarged as described above, between the universal joints while avoiding interference with a vehicle body side member such as a front side frame.
 そこで、本発明は、ドライブシャフト上においてダンパを周辺の車体側部材に干渉することなく配置し、動力源側からドライブシャフトに伝わる振動を広範囲の周波数領域にわたって効果的に吸収することを課題とする。 Accordingly, an object of the present invention is to dispose a damper on a drive shaft without interfering with surrounding vehicle body side members and effectively absorb vibration transmitted from the power source side to the drive shaft over a wide frequency range. .
 前記課題を解決するため、本発明に係る車両の動力伝達構造は、次のように構成したことを特徴とする。 In order to solve the above-mentioned problems, the vehicle power transmission structure according to the present invention is configured as follows.
 まず、本願の第1の発明は、
 差動装置を含む動力源と、
 前記差動装置と駆動輪とを連結するドライブシャフトとを備え、
 該ドライブシャフトが、
 一端が前記差動装置に連結された第1動力伝達軸と、
 一端が第1自在継手を介して前記第1動力伝達軸の他端に連結された第2動力伝達軸と、
 一端が第2自在継手を介して前記第2動力伝達軸の他端に連結され、他端に前記駆動輪が連結された第3動力伝達軸と、を備えた車両の動力伝達構造であって、
 前記第1、第2、第3動力伝達軸のうちの少なくとも2つの動力伝達軸に、それぞれダンパが設けられ、
 これらのダンパのうち、前記少なくとも2つの動力伝達軸のうち最も長い動力伝達軸に配置された所定のダンパは、残りのダンパよりも低周波数領域にて機能するダンパであることを特徴とする。
First, the first invention of the present application is
A power source including a differential;
A drive shaft connecting the differential and the drive wheel;
The drive shaft is
A first power transmission shaft having one end connected to the differential;
A second power transmission shaft having one end coupled to the other end of the first power transmission shaft via a first universal joint;
A vehicle power transmission structure comprising: a third power transmission shaft having one end connected to the other end of the second power transmission shaft via a second universal joint and the other end connected to the driving wheel. ,
At least two of the first, second, and third power transmission shafts are each provided with a damper,
Among these dampers, the predetermined damper disposed on the longest power transmission shaft of the at least two power transmission shafts is a damper that functions in a lower frequency region than the remaining dampers.
 また、第2の発明は、第1の発明において、
 前記動力源は、排気管が接続されたエンジンを備え、
 前記排気管が前記ドライブシャフトにおける前記第1動力伝達軸の上方を通過して配設されていると共に、
 前記第1動力伝達軸に、前記所定のダンパとして、軸方向の所定範囲に亘って形成された小径部のねじりによって振動を減衰させるように構成された金属製ダンパが設けられていることを特徴とする。
The second invention is the first invention, wherein
The power source includes an engine to which an exhaust pipe is connected,
The exhaust pipe is disposed above the first power transmission shaft of the drive shaft, and
The first power transmission shaft is provided with a metal damper configured to attenuate vibrations by torsion of a small diameter portion formed over a predetermined range in the axial direction as the predetermined damper. And
 さらに、第3の発明は、第2の発明において、
 前記第2動力伝達軸又は第3動力伝達軸の少なくとも一方に、前記残りのダンパとして、ゴム部材によって振動を減衰させるように構成されたダンパが設けられていることを特徴とする。
Furthermore, the third invention is the second invention, wherein
At least one of the second power transmission shaft and the third power transmission shaft is provided with a damper configured to attenuate vibration by a rubber member as the remaining damper.
 また、第4の発明は、第1の発明において、
 前記第2動力伝達軸は、
 一端が前記第1自在継手に連結され、他端側が前記第2自在継手に向かって延びる第4動力伝達軸と、
 他端が前記第2自在継手に連結され、一端側が前記第1自在継手に向かって延びる第5動力伝達軸と、を有し、
 前記第4動力伝達軸の他端又は第5動力伝達軸の一端のうちの一方に設けられた筒部内に前記第4動力伝達軸の他端又は第5動力伝達軸の一端のうちの他方に設けられた軸部を収容すると共に、該筒部と軸部との間に弾性部材を介在させてなる弾性ダンパを備え、
 軸方向において、前記弾性ダンパにおける前記弾性部材よりも前記第2自在継手側の部分は、前記弾性ダンパにおける前記弾性部材が設けられた部分と該弾性部材よりも前記第1自在継手側の部分とに比べて小さな径を有する小径部とされていることを特徴とする。
Moreover, 4th invention is set in 1st invention,
The second power transmission shaft is
A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
A fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
In the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft, the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft is placed in one of the cylindrical portions provided at one end of the fifth power transmission shaft. An elastic damper is provided that accommodates the provided shaft portion and interposes an elastic member between the tube portion and the shaft portion,
In the axial direction, a portion of the elastic damper that is closer to the second universal joint than the elastic member includes a portion of the elastic damper that is provided with the elastic member, and a portion that is closer to the first universal joint than the elastic member. It is characterized by being a small diameter part having a smaller diameter than the above.
 また、第5の発明は、第4の発明において、
 軸方向において、前記弾性ダンパと前記第1自在継手との距離が、前記弾性ダンパと前記第2自在継手との距離に比べて小さいことを特徴とする。
The fifth invention is the fourth invention, wherein
In the axial direction, a distance between the elastic damper and the first universal joint is smaller than a distance between the elastic damper and the second universal joint.
 さらに、第6の発明は、第4又は第5の発明において、
 前記小径部に、前記筒部と前記軸部との相対回転を所定角度範囲に規制する規制部が設けられていることを特徴とする。
Furthermore, a sixth invention is the fourth or fifth invention, wherein
The small-diameter portion is provided with a restricting portion that restricts relative rotation between the cylindrical portion and the shaft portion within a predetermined angle range.
 また、第7の発明は、第4から第6のずれかの発明において、
 前記弾性ダンパは、軸方向における前記弾性部材よりも前記第1自在継手側において前記筒部と前記軸部との間に介装された第1軸受を備えることを特徴とする。
The seventh invention is the invention according to any one of the fourth to sixth inventions,
The elastic damper includes a first bearing interposed between the cylindrical portion and the shaft portion on the first universal joint side with respect to the elastic member in the axial direction.
 さらに、第8の発明は、第7の発明において、
 前記弾性ダンパは、軸方向における前記弾性部材よりも前記第2自在継手側において前記筒部と前記軸部との間に介装された第2軸受を備え、
 前記第2軸受は、前記第1軸受よりも小径とされていることを特徴とする。
Furthermore, an eighth invention is the seventh invention, wherein
The elastic damper includes a second bearing interposed between the cylindrical portion and the shaft portion on the second universal joint side with respect to the elastic member in the axial direction,
The second bearing has a smaller diameter than the first bearing.
 また、第9の発明は、第1の発明において、
 前記第2動力伝達軸は、
 一端が前記第1自在継手に連結され、他端側が前記第2自在継手に向かって延びる第4動力伝達軸と、
 他端が前記第2自在継手に連結され、一端側が前記第1自在継手に向かって延びる第5動力伝達軸と、を有し、
 前記第4動力伝達軸の他端又は第5動力伝達軸の一端の一方に設けられた筒部内に前記第4動力伝達軸の他端又は第5動力伝達軸の一端の他方に設けられた軸部を収容すると共に、該筒部と軸部との間に弾性部材を介在させてなる弾性ダンパを備え、
 前記弾性ダンパは、前記弾性部材よりも前記開口部側の軸方向位置において前記軸部の外周と前記筒部の内周との間に介在する軸受と、前記軸受よりも前記開口部とは反対側の軸方向位置において前記軸部の外周から径方向外側に突出した拡径部と、前記軸受よりも前記開口部側の軸方向位置において前記筒部の内周から径方向内側に突出した抜け止め部と、を備え、
 該抜け止め部による前記弾性ダンパの抜け強度は、前記第1自在継手の抜け強度よりも大きいことを特徴とする。
The ninth invention is the first invention, wherein
The second power transmission shaft is
A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
A fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
A shaft provided on the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft in a cylindrical portion provided on the other end of the fourth power transmission shaft or one end of the fifth power transmission shaft. An elastic damper having an elastic member interposed between the cylindrical portion and the shaft portion,
The elastic damper has a bearing interposed between an outer periphery of the shaft portion and an inner periphery of the cylindrical portion at an axial position closer to the opening than the elastic member, and is opposite to the opening than the bearing. A diameter-expanded portion projecting radially outward from the outer periphery of the shaft portion at the axial position on the side, and a protrusion projecting radially inward from the inner periphery of the cylindrical portion at the axial position closer to the opening than the bearing A stop, and
The elastic damper has a pull-out strength that is greater than a pull-out strength of the first universal joint.
 本明細書において、「抜け強度」という用語は、第1の軸の端部に設けられた筒状部の内側に、第2の軸の端部に設けられた被収容部が嵌合された構造において、筒状部から被収容部を抜き出すように第1及び第2の軸を軸方向に引っ張る場合に、筒状部からの被収容部の抜け止め機能が失われる直前の引張力の大きさを意味するものとする。 In this specification, the term “pull-out strength” means that the accommodated portion provided at the end of the second shaft is fitted inside the cylindrical portion provided at the end of the first shaft. In the structure, when the first and second shafts are pulled in the axial direction so as to extract the accommodated part from the cylindrical part, the magnitude of the tensile force immediately before the retaining function of the accommodated part from the cylindrical part is lost. It means.
 また、第10の発明は、第9の発明において、
 前記第1自在継手は、前記第4動力伝達軸の一端に設けられた被収容部と、該被収容部を収容するように前記第1動力伝達軸の他端に設けられた筒状部と、該筒状部の外周と前記第4動力伝達軸の外周とに跨がって軸方向に伸縮可能に設けられたブーツ部と、を備えていることを特徴とする。
The tenth invention is the ninth invention, wherein
The first universal joint includes a receiving portion provided at one end of the fourth power transmission shaft, and a cylindrical portion provided at the other end of the first power transmission shaft so as to receive the receiving portion. , And a boot portion provided to extend in the axial direction across the outer periphery of the cylindrical portion and the outer periphery of the fourth power transmission shaft.
 さらに、第11の発明は、第9又は第10の発明において、
 前記動力源はエンジンを含み、
 前記抜け止め部は、前記筒部の内周に形成された周溝に縮径された状態で装着されたスナップリングで構成されており、
 前記弾性ダンパは、車両前後方向における前記エンジンよりも後側、且つ、車幅方向における前記第1自在継手よりも外側に配置され、
 前記筒部は、前記第4動力伝達軸の一端から車幅方向に沿って外側へ延びるように配置され、
 前記開口部は、前記エンジンよりも車幅方向外側に配置されていることを特徴とする。
Further, an eleventh aspect of the invention is the ninth or tenth aspect of the invention,
The power source includes an engine;
The retaining portion is composed of a snap ring that is mounted in a reduced diameter in a circumferential groove formed on the inner periphery of the cylindrical portion,
The elastic damper is disposed on the rear side of the engine in the vehicle longitudinal direction and on the outer side of the first universal joint in the vehicle width direction,
The cylindrical portion is disposed so as to extend outward from one end of the fourth power transmission shaft along the vehicle width direction,
The opening is arranged on the outer side in the vehicle width direction than the engine.
 また、第12の発明は、第9から第11のいずれかの発明において、
 前記弾性ダンパは、前記弾性部材よりも軸方向の開口部側に配置された前記軸受に加えて、前記弾性部材よりも軸方向の反開口部側に配置された軸受を備え、
 前記開口部側の軸受は、前記反開口部側の軸受よりも大径であることを特徴とする。
The twelfth aspect of the invention is any of the ninth to eleventh aspects of the invention,
The elastic damper includes a bearing arranged on the side opposite to the opening in the axial direction from the elastic member, in addition to the bearing arranged on the opening side in the axial direction from the elastic member,
The bearing on the opening side has a larger diameter than the bearing on the side opposite to the opening.
 まず、第1の発明によれば、第1、第2、第3動力伝達軸のうち少なくとも2つの動力伝達軸にそれぞれダンパが配置されることで、少なくとも2つのダンパがドライブシャフト上に設けられると共に、個々のダンパに、機能する周波数領域が振り分けられているため、低周波数から高周波数までの広範囲の周波数領域にわたる振動を1つのダンパによって吸収しようとする従来の構造に比べて、ダンパによる振動減衰性能を良好に維持しつつ、個々のダンパの大型化を抑制することが可能になる。 First, according to the first invention, at least two dampers are provided on the drive shaft by arranging dampers on at least two of the first, second, and third power transmission shafts. In addition, since the function frequency range is distributed to each damper, the vibration by the damper is compared with the conventional structure in which vibration over a wide frequency range from low frequency to high frequency is absorbed by one damper. It is possible to suppress an increase in size of individual dampers while maintaining good damping performance.
 また、第1の発明では、ドライブシャフト上の少なくとも2つのダンパのうち、低周波数領域にて振動減衰機能を効果的に発揮するために比較的大きな軸方向寸法を必要とする所定のダンパ(以下、「低周波用ダンパ」ともいう)を、前記少なくとも2つの動力伝達軸のうち最も長い動力伝達軸に配置したので、他の動力伝達軸を延長したり、その周辺の車体側部材のレイアウトを変更したりすることなく、該車体側部材から軸方向にずれた位置で、長尺の低周波用ダンパをドライブシャフト上に設けることができる。しかも、上述のように個々のダンパの大型化が抑制されることから、ドライブシャフト上に配置された各ダンパが車体側部材に干渉することを抑制できる。 In the first invention, among the at least two dampers on the drive shaft, a predetermined damper (hereinafter referred to as a damper) that requires a relatively large axial dimension in order to effectively exhibit the vibration damping function in the low frequency region. , Also referred to as “low frequency damper”) is arranged on the longest power transmission shaft of the at least two power transmission shafts, so that the other power transmission shaft can be extended or the layout of the surrounding vehicle body side members Without changing, a long low-frequency damper can be provided on the drive shaft at a position displaced in the axial direction from the vehicle body side member. And since the enlargement of each damper is suppressed as mentioned above, it can suppress that each damper arrange | positioned on a drive shaft interferes with a vehicle body side member.
 また、第2の発明によれば、前記所定のダンパ(低周波用ダンパ)は、軸方向の所定範囲に亘って小径部が設けられることによって、ねじり剛性が低くなるように構成されているため、該ダンパによって、低周波数領域にて特に問題となるねじり振動を効果的に吸収することができる。さらに、該所定のダンパ(低周波用ダンパ)は、金属製であることから、エンジンの排気管の下方を通る第1動力伝達軸に設けられても、排気管から伝わる熱による特性の変化が生じ難く、長期に亘って良好な振動吸収機能を発揮できる。 Further, according to the second invention, the predetermined damper (low frequency damper) is configured such that the torsional rigidity is lowered by providing the small diameter portion over a predetermined range in the axial direction. The damper can effectively absorb torsional vibrations that are particularly problematic in the low frequency region. Further, since the predetermined damper (low frequency damper) is made of metal, even if the predetermined damper (low frequency damper) is provided on the first power transmission shaft that passes below the exhaust pipe of the engine, a change in characteristics due to heat transmitted from the exhaust pipe is not caused. It is difficult to occur and can exhibit a good vibration absorbing function over a long period of time.
 さらに、第3の発明によれば、金属製の前記所定のダンパ(低周波用ダンパ)とは異なり、第2動力伝達軸又は第3動力伝達軸の少なくとも一方に設けられた残りのダンパは、ゴム部材によって振動を減衰させるように構成されているため、前記所定のダンパで吸収しきれないような高周波数領域の振動を効果的に吸収することが可能になる。また、ゴム部材を備えた当該ダンパは、エンジンの排気管から軸方向にずれて配置された第2動力伝達軸又は第3動力伝達軸に配置されていることから、排気管から伝わる熱によってゴム部材が劣化することを抑制でき、振動吸収機能を長期に亘って良好に維持できる。 Further, according to the third invention, unlike the metal predetermined damper (low frequency damper), the remaining damper provided on at least one of the second power transmission shaft or the third power transmission shaft is: Since the vibration is configured to be attenuated by the rubber member, it is possible to effectively absorb vibration in a high frequency region that cannot be absorbed by the predetermined damper. Further, since the damper provided with the rubber member is disposed on the second power transmission shaft or the third power transmission shaft disposed in the axial direction away from the exhaust pipe of the engine, the rubber is heated by heat transmitted from the exhaust pipe. The deterioration of the member can be suppressed, and the vibration absorbing function can be maintained well over a long period.
 また、第4の発明に係る車両の動力伝達構造では、ドライブシャフトにおける第1自在継手とこれよりも駆動輪側の第2自在継手との間に弾性ダンパが設けられているため、路面の凹凸に応じてドライブシャフトにおける第1自在継手よりも駆動輪側の部分が上下に揺動するとき、仮に弾性ダンパの外径が均一であれば、上下方向の弾性ダンパの可動範囲は、第1自在継手から最も遠い駆動輪側端部において最大となる。本発明によれば、弾性ダンパにおける弾性部材よりも駆動輪側の部分が小径部とされていることによって、弾性ダンパの可動範囲の最大幅が抑制されるため、弾性ダンパとその周辺の車体側部材との干渉を回避しやすくなる。 Further, in the vehicle power transmission structure according to the fourth aspect of the present invention, since the elastic damper is provided between the first universal joint on the drive shaft and the second universal joint on the drive wheel side, the unevenness on the road surface. Accordingly, when the portion of the drive shaft closer to the drive wheel than the first universal joint swings up and down, if the outer diameter of the elastic damper is uniform, the movable range of the elastic damper in the vertical direction is the first free range. It becomes the maximum at the end of the drive wheel farthest from the joint. According to the present invention, the portion of the elastic damper closer to the drive wheel than the elastic member is a small diameter portion, so that the maximum width of the movable range of the elastic damper is suppressed, so the elastic damper and the surrounding vehicle body side It becomes easy to avoid interference with a member.
 しかも、小径部が弾性部材から軸方向にずらして設けられていることにより、弾性部材の厚みに関わらず小径部の外径を効果的に低減できる。したがって、弾性部材による効果的な振動吸収を実現しつつ、弾性ダンパの小径部と車体側部材との干渉を容易に回避することができる。 In addition, since the small diameter portion is provided so as to be shifted in the axial direction from the elastic member, the outer diameter of the small diameter portion can be effectively reduced regardless of the thickness of the elastic member. Accordingly, it is possible to easily avoid interference between the small diameter portion of the elastic damper and the vehicle body side member while realizing effective vibration absorption by the elastic member.
 また、第5の発明によれば、第1自在継手と第2自在継手との間において弾性ダンパが動力源側に寄せて配置されるため、上述した弾性ダンパの可動範囲を更に抑制することができ、弾性ダンパと車体側部材との干渉を更に回避しやすくなる。 According to the fifth invention, since the elastic damper is arranged close to the power source side between the first universal joint and the second universal joint, the above-described movable range of the elastic damper can be further suppressed. This makes it easier to avoid interference between the elastic damper and the vehicle body side member.
 さらに、第6の発明によれば、弾性ダンパにおける筒部と軸部との相対回転を所定角度範囲で許容することで、弾性部材による振動吸収を効果的に実現しつつ、小径部に設けられた規制部によって、前記所定角度範囲を超える相対回転を阻止することで、動力源側から伝えられた第4動力伝達軸の回転を、弾性ダンパを介して駆動輪側の第5動力伝達軸へ確実に伝達することができる。 Further, according to the sixth invention, by allowing relative rotation between the cylindrical portion and the shaft portion of the elastic damper within a predetermined angle range, vibration absorption by the elastic member is effectively realized and the small diameter portion is provided. By restricting relative rotation exceeding the predetermined angle range by the restricting portion, the rotation of the fourth power transmission shaft transmitted from the power source side is transferred to the fifth power transmission shaft on the drive wheel side via the elastic damper. It can be transmitted reliably.
 また、第7の発明によれば、弾性ダンパにおける弾性部材よりも動力源側の部分は駆動輪側の前記小径部に比べて大径であり、該大径部分に第1軸受が配設されているため、エンジンの燃焼変動等による大きなトルク変動が動力源側から弾性ダンパに入力されて、該弾性ダンパにねじり方向や曲げ方向の大きな力が作用する場合でも、動力が入力される弾性ダンパの大径部分を第1軸受によって安定的に支持することができる。 According to the seventh aspect of the invention, the power source side portion of the elastic damper has a larger diameter than the small diameter portion on the drive wheel side, and the first bearing is disposed in the large diameter portion. Therefore, even when a large torque fluctuation due to engine combustion fluctuation or the like is input from the power source side to the elastic damper and a large force in the torsional direction or the bending direction acts on the elastic damper, the elastic damper to which power is input The large-diameter portion can be stably supported by the first bearing.
 さらに、第8の発明によれば、弾性ダンパにおける筒部と軸部との間に介装された一対の軸受のうち、弾性部材よりも動力源側に配設された第1軸受に比べて、弾性部材よりも駆動輪側に配設された第2軸受が小径とされている。そのため、上記のようなトルク変動による大きな力が弾性ダンパに作用する場合でも、動力が入力される弾性ダンパの動力源側部分を比較的大径の第1軸受によって安定的に支持できるとともに、比較的小径の第2軸受が弾性部材よりも駆動輪側に配置されることで、前記小径部の小径化に寄与することができる。 Further, according to the eighth invention, of the pair of bearings interposed between the cylindrical portion and the shaft portion in the elastic damper, compared to the first bearing disposed on the power source side with respect to the elastic member. The second bearing disposed on the drive wheel side with respect to the elastic member has a small diameter. Therefore, even when a large force due to torque fluctuation as described above acts on the elastic damper, the power source side portion of the elastic damper to which power is input can be stably supported by the first bearing having a relatively large diameter. Since the second bearing having a small diameter is arranged closer to the drive wheel than the elastic member, it is possible to contribute to a reduction in the diameter of the small diameter portion.
 また、第9の発明によれば、ドライブシャフト上に、第1自在継手よりも抜け強度が大きい弾性ダンパが設けられるため、車両に大きな衝撃荷重が加わった際に、ドライブシャフトに曲げ荷重や動力源と駆動輪との間の軸方向距離を拡げるような荷重を、弾性ダンパよりも抜け強度が小さい自在継手に作用させることができる。そのため、弾性ダンパに作用する荷重を軽減でき、これにより、ダンパ機能を維持するために要求される弾性ダンパの強度を低減できる。したがって、良好なダンパ機能を確保しつつ、ダンパの大型化を抑制することが可能になり、弾性ダンパの車両への搭載性が悪化することを抑制できる。 According to the ninth aspect of the invention, since the elastic damper having a greater pulling strength than the first universal joint is provided on the drive shaft, a bending load or power is applied to the drive shaft when a large impact load is applied to the vehicle. A load that expands the axial distance between the source and the drive wheel can be applied to the universal joint that has a lower pulling strength than the elastic damper. Therefore, the load acting on the elastic damper can be reduced, and thereby the strength of the elastic damper required for maintaining the damper function can be reduced. Therefore, it is possible to suppress an increase in the size of the damper while ensuring a good damper function, and it is possible to suppress the deterioration of the mountability of the elastic damper on the vehicle.
 また、第10の発明によれば、第1自在継手に伸縮可能なブーツ部が設けられているため、車両に大きな衝撃荷重が加わった際に、ドライブシャフトに曲げ荷重や動力源と駆動輪との間の軸方向距離を拡げるような荷重が第1自在継手に作用することで、該第1自在継手において筒状部から被収容部が抜け外れる場合であっても、被収容部をブーツ部に収容することができる。 According to the tenth invention, since the first universal joint is provided with the extendable boot portion, when a large impact load is applied to the vehicle, the drive shaft is subjected to a bending load, a power source and a drive wheel. Even when the receiving portion is detached from the cylindrical portion of the first universal joint by applying a load that increases the axial distance between the first universal joint and the boot portion, Can be accommodated.
 さらに、第11の発明によれば、弾性ダンパの筒部の開口部は、エンジンよりも車幅方向外側に配置され、筒部におけるエンジンから最も遠い部分に配置される。そのため、例えば車両前方から車両に大きな衝撃荷重が加わった際にエンジンが後退して、筒部における開口部側部分に、ひいては、筒部内周の周溝に装着されたスナップリングで構成された弾性ダンパの抜け止め部に、衝撃荷重が直接的に加わることを抑制できる。したがって、弾性ダンパに必要な強度が低くなることから、弾性ダンパの大型化を抑制することが可能になり、弾性ダンパの車両への搭載性が悪化することを抑制できる。 Further, according to the eleventh aspect, the opening of the cylindrical portion of the elastic damper is disposed on the outer side in the vehicle width direction than the engine, and is disposed in a portion farthest from the engine in the cylindrical portion. For this reason, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine is retracted, and an elastic portion constituted by a snap ring attached to the opening side portion of the cylinder portion and, consequently, the circumferential groove on the inner periphery of the cylinder portion. It is possible to suppress the impact load from being directly applied to the damper retaining portion. Accordingly, since the strength required for the elastic damper is reduced, it is possible to suppress an increase in size of the elastic damper, and it is possible to suppress deterioration of the mounting property of the elastic damper on the vehicle.
 また、第12の発明によれば、弾性ダンパに設けられた開口部側の軸受及び反開口部側の軸受のうち径がより大きな開口部側の軸受によって、拡径部の抜け方向への移動が規制されるため、より確実な弾性ダンパの抜け止めを実現することができる。 Further, according to the twelfth aspect of the present invention, the diameter-enlarged portion is moved in the removal direction by the opening-side bearing having the larger diameter among the opening-side bearing and the non-opening-side bearing provided in the elastic damper. Therefore, the elastic damper can be more securely prevented from coming off.
第1の実施形態に係る車両の動力伝達装置を示す平面図である。It is a top view which shows the power transmission device of the vehicle which concerns on 1st Embodiment. 図1に示す動力伝達装置を車両後方側から見た模式図である。It is the schematic diagram which looked at the power transmission device shown in FIG. 1 from the vehicle rear side. 図1に示す動力伝達装置に設けられた低周波用ダンパの構造の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the structure of the damper for low frequencies provided in the power transmission device shown in FIG. 図3のA-A線断面に設けられたストッパ機構の一部を示す断面図である。FIG. 4 is a cross-sectional view showing a part of a stopper mechanism provided in the cross section along line AA in FIG. 3. 図1に示す動力伝達装置に設けられた高周波用ダンパの構造の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the structure of the damper for high frequency provided in the power transmission device shown in FIG. 図5に示す高周波用ダンパの要部を示すB-B線断面図である。FIG. 6 is a cross-sectional view taken along the line BB showing the main part of the high-frequency damper shown in FIG. 第2の実施形態に係る動力伝達装置を車両後方側から見た模式図である。It is the schematic diagram which looked at the power transmission device which concerns on 2nd Embodiment from the vehicle rear side. 図7に示す動力伝達装置に設けられた第2の高周波用ダンパの構造の一例を軸方向から見た断面図である。It is sectional drawing which looked at an example of the structure of the 2nd damper for high frequency provided in the power transmission device shown in FIG. 7 from the axial direction. 図8に示す第2の高周波用ダンパのD-D線断面図である。FIG. 9 is a cross-sectional view of the second high-frequency damper shown in FIG. 8 taken along the line DD. 第3の実施形態に係る動力伝達装置を車両後方側から見た模式図である。It is the schematic diagram which looked at the power transmission device which concerns on 3rd Embodiment from the vehicle rear side. 第4の実施形態に係る動力伝達装置を車両後方側から見た模式図である。It is the schematic diagram which looked at the power transmission device which concerns on 4th Embodiment from the vehicle rear side. 第5の実施形態に係る動力伝達装置を車両後方側から見た模式図である。It is the schematic diagram which looked at the power transmission device which concerns on 5th Embodiment from the vehicle rear side. 第6の実施形態に係る車両の動力伝達装置を示す平面図である。It is a top view which shows the power transmission device of the vehicle which concerns on 6th Embodiment. 図13に示す動力伝達装置に設けられたダンパの構造を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the damper provided in the power transmission device shown in FIG. 図14に示すダンパを含むドライブシャフトの駆動輪側部分が上下に振れた状態を車両後方側から見た図である。It is the figure which looked at the state to which the drive wheel side part of the drive shaft containing the damper shown in FIG. 14 swung up and down from the vehicle rear side. 第7の実施形態に係る車両の動力伝達装置の一部を車両後方側から見た図である。It is the figure which looked at a part of power transmission device of vehicles concerning a 7th embodiment from the vehicles back side. 図16に示す動力伝達装置におけるドライブシャフトの駆動輪側部分が上下に振れた状態を車両後方側から見た図である。It is the figure which looked at the state which the drive wheel side part of the drive shaft in the power transmission device shown in FIG. 16 swung up and down from the vehicle rear side. 第8の実施形態に係る車両の動力伝達装置を示す平面図である。It is a top view which shows the power transmission device of the vehicle which concerns on 8th Embodiment. 図18に示す動力伝達装置に設けられたデフ側等速ジョイントの構造を示す断面図である。It is sectional drawing which shows the structure of the differential side constant velocity joint provided in the power transmission device shown in FIG. 図18に示す動力伝達装置に設けられたダンパの構造を軸方向から見た断面図である。It is sectional drawing which looked at the structure of the damper provided in the power transmission device shown in FIG. 18 from the axial direction. 図20に示すダンパの構造を別の方向から見た図20のC-C線断面図である。FIG. 21 is a sectional view taken along the line CC of FIG. 20 when the structure of the damper shown in FIG. 20 is viewed from another direction.
 以下、本発明の実施形態について説明する。なお、以下の説明において、「前」、「後」、「前後」、「右」、「左」、「左右」等の方向を示す用語は、特段の説明がある場合を除いて、車両の進行方向を向いた姿勢で見た方向を指すものとする。 Hereinafter, embodiments of the present invention will be described. In the following description, terms indicating directions such as “front”, “rear”, “front / rear”, “right”, “left”, “left / right”, etc. It shall refer to the direction seen with the posture facing the direction of travel.
 <第1の実施形態>
 図1は、第1の実施形態に係る車両の動力伝達装置1を示す平面図であり、図2は、該動力伝達装置1を車両後方側から見た模式図である。
<First Embodiment>
FIG. 1 is a plan view showing a vehicle power transmission device 1 according to the first embodiment, and FIG. 2 is a schematic view of the power transmission device 1 as seen from the vehicle rear side.
 図1及び図2に示すように、該動力伝達装置1は、フロントエンジン・フロントドライブ式の車両(FF車)に搭載されるものであり、例えばエンジンルームに搭載される動力源2と、左右の駆動輪28を動力源2に連結する左右一対のドライブシャフト10(10a,10b)とを備えている。 As shown in FIGS. 1 and 2, the power transmission device 1 is mounted on a front engine / front drive type vehicle (FF vehicle), for example, a power source 2 mounted in an engine room, and left and right A pair of left and right drive shafts 10 (10a, 10b) for connecting the drive wheels 28 to the power source 2 are provided.
 動力源2は、横置き式のエンジン3と、該エンジン3の車幅方向の例えば左側に並設されたトランスアクスル4とを備えている。エンジン3には、後方へ延びる排気管9aを有する排気装置9が接続されている。トランスアクスル4は、例えばトルクコンバータ(図示せず)を介してエンジン3の出力軸に連結された変速機6と、該変速機6の出力を左右のドライブシャフト10a,10bに伝達する差動装置8とを備えている。変速機6及び差動装置8は、車幅方向において中央よりも左側にオフセットして配置されている。 The power source 2 includes a horizontally mounted engine 3 and a transaxle 4 arranged side by side in the vehicle width direction of the engine 3, for example. An exhaust device 9 having an exhaust pipe 9 a extending rearward is connected to the engine 3. The transaxle 4 includes, for example, a transmission 6 connected to the output shaft of the engine 3 via a torque converter (not shown), and a differential device that transmits the output of the transmission 6 to the left and right drive shafts 10a and 10b. 8 and. The transmission 6 and the differential device 8 are arranged offset to the left of the center in the vehicle width direction.
 第1の実施形態では、左右のドライブシャフト10a,10bのうち右側のドライブシャフト10aの構成について説明を行い、左側のドライブシャフト10bについては、その構成の説明及び図示を省略する。 In the first embodiment, the configuration of the right drive shaft 10a among the left and right drive shafts 10a and 10b will be described, and the description and illustration of the configuration of the left drive shaft 10b will be omitted.
 ドライブシャフト10a上には、第1自在継手としてのデフ側等速ジョイント21、第2自在継手としてのホイール側等速ジョイント22が差動装置側からこの順で配設されている。これにより、ドライブシャフト10aにおけるデフ側等速ジョイント21よりも駆動輪側の部分は、路面の凹凸に応じてデフ側等速ジョイント21を軸として上下に揺動可能となっている。 On the drive shaft 10a, a differential side constant velocity joint 21 as a first universal joint and a wheel side constant velocity joint 22 as a second universal joint are arranged in this order from the differential side. As a result, a portion of the drive shaft 10a closer to the drive wheel than the differential-side constant velocity joint 21 can swing up and down around the differential-side constant velocity joint 21 according to the unevenness of the road surface.
 ドライブシャフト10aは、一端が差動装置8に連結された第1動力伝達軸としてのデフ側シャフト11と、一端がデフ側等速ジョイント21を介してデフ側シャフト11の他端に連結された第2動力伝達軸としての中間シャフト12と、一端がホイール側等速ジョイント22を介して中間シャフト12の他端に連結され、他端に駆動輪28が連結された第3動力伝達軸としてのホイール側シャフト13とを備えている。前記排気管9aは、デフ側シャフト11の上方近傍を通って、後方へ延びている。 The drive shaft 10 a has one end connected to the differential shaft 11 as a first power transmission shaft connected to the differential device 8 and one end connected to the other end of the differential shaft 11 via the differential constant velocity joint 21. An intermediate shaft 12 as a second power transmission shaft and one end connected to the other end of the intermediate shaft 12 via a wheel side constant velocity joint 22 and a third power transmission shaft connected to a driving wheel 28 at the other end A wheel side shaft 13. The exhaust pipe 9 a extends rearward through the vicinity of the upper side of the differential shaft 11.
 上述のように差動装置8は左側にオフセットして配置されているため、差動装置8と右側のデフ側等速ジョイント21との軸方向距離が大きくなっている。また、ホイール側等速ジョイント22と駆動輪28とは軸方向に近接して配置されている。したがって、右側のドライブシャフト10aを構成するシャフトの長さは、デフ側シャフト11、中間シャフト12、ホイール側シャフト13の順で大きくなっている。 As described above, since the differential device 8 is arranged offset to the left side, the axial distance between the differential device 8 and the right differential-side constant velocity joint 21 is large. Further, the wheel side constant velocity joint 22 and the drive wheel 28 are arranged close to each other in the axial direction. Therefore, the length of the shaft constituting the right drive shaft 10a increases in the order of the differential side shaft 11, the intermediate shaft 12, and the wheel side shaft 13.
 ドライブシャフト10a上には、比較的低周波数領域にて機能する低周波用ダンパ30と、該低周波用ダンパ30よりも高周波数領域にて機能する高周波用ダンパ(弾性ダンパ)50とが設けられている。本実施形態では、低周波用ダンパ30はデフ側シャフト11上に設けられ、高周波用ダンパ50は中間シャフト12上に設けられている。 On the drive shaft 10 a, a low frequency damper 30 that functions in a relatively low frequency region and a high frequency damper (elastic damper) 50 that functions in a higher frequency region than the low frequency damper 30 are provided. ing. In the present embodiment, the low frequency damper 30 is provided on the differential shaft 11, and the high frequency damper 50 is provided on the intermediate shaft 12.
 図3及び図4を参照しながら、デフ側シャフト11に設けられた低周波用ダンパ30の構造の一例について説明する。 An example of the structure of the low frequency damper 30 provided on the differential shaft 11 will be described with reference to FIGS.
 図3に示すように、デフ側シャフト11は、差動装置8から駆動輪側に向かって延びる第1デフ側シャフト11aと、デフ側等速ジョイント21から差動装置側に向かって延びる第2デフ側シャフト11bとで構成されている。 As shown in FIG. 3, the differential side shaft 11 includes a first differential side shaft 11a extending from the differential device 8 toward the drive wheel side, and a second differential shaft extending from the differential side constant velocity joint 21 toward the differential device side. It is comprised with the differential side shaft 11b.
 低周波用ダンパ30は、第1デフ側シャフト11aの駆動輪側先端に設けられた筒部32と、第2デフ側シャフト11bと一体である軸部34とを備えている。 The low frequency damper 30 includes a cylindrical portion 32 provided at the front end of the first differential shaft 11a on the drive wheel side, and a shaft portion 34 integrated with the second differential shaft 11b.
 筒部32は、軸方向に延びると共に、差動装置側が閉塞しており、駆動輪側に向かって開放している。軸部34は、筒部32内に収容されている。軸部34の差動装置側端部には、筒部32に相対回転不能にスプライン嵌合された被嵌合部35が設けられている。軸部34の駆動輪側端部は、軸受38を介して筒部32に支持されている。 The cylinder portion 32 extends in the axial direction, is closed on the differential side, and is open toward the drive wheel side. The shaft portion 34 is accommodated in the cylindrical portion 32. At the end of the shaft portion 34 on the differential device side, a fitted portion 35 that is spline-fitted to the cylindrical portion 32 so as not to be relatively rotatable is provided. The driving wheel side end portion of the shaft portion 34 is supported by the cylindrical portion 32 via a bearing 38.
 軸部34における被嵌合部35の駆動輪側近傍には、被嵌合部35よりも大径の拡径部37が設けられている。また、軸部34における軸受38の差動装置側近傍には、筒部32に対する軸部34の相対回転を所定角度範囲に規制するストッパ機構40を介して筒部32の内側に嵌合された被規制部36が設けられている。 In the shaft portion 34, an enlarged diameter portion 37 having a larger diameter than the fitted portion 35 is provided in the vicinity of the fitted portion 35 on the drive wheel side. Further, the shaft portion 34 is fitted to the inside of the cylindrical portion 32 via a stopper mechanism 40 that restricts the relative rotation of the shaft portion 34 with respect to the cylindrical portion 32 within a predetermined angle range in the vicinity of the bearing 38 on the differential device side. A regulated portion 36 is provided.
 図4に示すように、ストッパ機構40は、筒部32の内周に設けられたスプライン42と、軸部34の被規制部36の外周に設けられたスプライン44とを備えている。筒部32のスプライン42と、軸部34のスプライン44とは、周方向に交互に配置されており、隣接するスプライン42,44間に間隙46が設けられている。 As shown in FIG. 4, the stopper mechanism 40 includes a spline 42 provided on the inner periphery of the cylindrical portion 32 and a spline 44 provided on the outer periphery of the regulated portion 36 of the shaft portion 34. The splines 42 of the cylindrical portion 32 and the splines 44 of the shaft portion 34 are alternately arranged in the circumferential direction, and a gap 46 is provided between the adjacent splines 42 and 44.
 このように構成されたストッパ機構40によれば、隣接するスプライン42,44間に間隙46が設けられていることによって筒部32と軸部34の被規制部36との相対回転が所定角度範囲で許容されると共に、該範囲を超える相対回転は、スプライン42,44の干渉によって阻止される。 According to the stopper mechanism 40 configured as described above, the relative rotation between the cylindrical portion 32 and the regulated portion 36 of the shaft portion 34 is allowed to be within a predetermined angle range by providing the gap 46 between the adjacent splines 42 and 44. And the relative rotation exceeding the range is prevented by the interference of the splines 42 and 44.
 図3に戻って、軸部34には、拡径部37と被規制部36との間の軸方向範囲に亘って細長く延びる小径部39が設けられている。この小径部39の軸方向範囲は、小径部39の強度を確保する上で必要な長さに決定され、例えば、エンジンの排気量に応じて変えられてもよい。小径部39の外径は、拡径部37及び被規制部36の外径よりも小さい。動力源側から第1デフ側シャフト11aを介して低周波用ダンパ30に伝えられた動力は、筒部32から軸部34の被嵌合部35に伝えられる。このようにして軸部34に入力された動力は小径部39を通って駆動輪側へ伝達される。 Returning to FIG. 3, the shaft portion 34 is provided with a small-diameter portion 39 that is elongated in the axial direction range between the enlarged-diameter portion 37 and the restricted portion 36. The axial range of the small-diameter portion 39 is determined to be a length necessary for ensuring the strength of the small-diameter portion 39, and may be changed according to the engine displacement, for example. The outer diameter of the small diameter portion 39 is smaller than the outer diameters of the enlarged diameter portion 37 and the restricted portion 36. The power transmitted from the power source side to the low frequency damper 30 through the first differential shaft 11a is transmitted from the cylindrical portion 32 to the fitted portion 35 of the shaft portion 34. In this way, the power input to the shaft portion 34 is transmitted to the drive wheel side through the small diameter portion 39.
 軸部34は、小径部39を設けることによってねじれ剛性が低減されている。また、小径部39の駆動輪側端部は、ストッパ機構40によって規制された前記所定角度範囲内で筒部32に対して相対回転可能となっている。そのため、小径部39のねじれが生じやすくなっており、該小径部39のねじれによって、動力源側から伝わるねじれ振動を吸収可能となっている。 The torsional rigidity of the shaft portion 34 is reduced by providing the small diameter portion 39. Further, the driving wheel side end portion of the small diameter portion 39 is rotatable relative to the cylindrical portion 32 within the predetermined angle range regulated by the stopper mechanism 40. Therefore, the small diameter portion 39 is easily twisted, and the torsional vibration transmitted from the power source side can be absorbed by the twist of the small diameter portion 39.
 このように、低周波用ダンパ30は、動力源側から駆動輪側への動力伝達経路に小径部39を設けることで、該小径部39のねじりによって振動を減衰させるように構成された金属製ダンパであり、高周波用ダンパ50よりもねじり剛性が低くなるように構成されている。この低周波用ダンパ30によって、動力源側から伝わる低周波のねじり振動を効果的に減衰させることが可能となっている。また、低周波用ダンパ30の軸方向寸法は、高周波用ダンパ50の軸方向寸法よりも大きい。これにより、小径部39の強度を確保することができる。 As described above, the low-frequency damper 30 is made of a metal that is configured to attenuate vibration by twisting the small-diameter portion 39 by providing the small-diameter portion 39 in the power transmission path from the power source side to the drive wheel side. It is a damper and is configured to have a lower torsional rigidity than the high-frequency damper 50. The low-frequency damper 30 can effectively attenuate low-frequency torsional vibration transmitted from the power source side. The axial dimension of the low frequency damper 30 is larger than the axial dimension of the high frequency damper 50. Thereby, the strength of the small diameter portion 39 can be ensured.
 低周波用ダンパ30の上方近傍には、高温の排ガスを排出する排気管9aが配置されているが、低周波用ダンパ30は金属製であるため、排気管9aから伝わる熱による特性の変化が生じ難い。そのため、低周波用ダンパ30による振動吸収機能を長期に亘って良好に維持できる。 An exhaust pipe 9a that discharges high-temperature exhaust gas is disposed in the vicinity of the upper part of the low-frequency damper 30. However, since the low-frequency damper 30 is made of metal, a change in characteristics due to heat transmitted from the exhaust pipe 9a occurs. It is hard to occur. Therefore, the vibration absorption function by the low-frequency damper 30 can be favorably maintained over a long period.
 図5及び図6を参照しながら、中間シャフト12に設けられた高周波用ダンパ50の構造の一例について説明する。 An example of the structure of the high-frequency damper 50 provided on the intermediate shaft 12 will be described with reference to FIGS.
 図5に示すように、中間シャフト12は、デフ側等速ジョイント21から駆動輪側に向かって延びる第1中間シャフト12aと、ホイール側等速ジョイント22から差動装置側に向かって延びる第2中間シャフト12bとで構成されている。 As shown in FIG. 5, the intermediate shaft 12 includes a first intermediate shaft 12 a extending from the differential side constant velocity joint 21 toward the drive wheel side, and a second intermediate shaft 12 extending from the wheel side constant velocity joint 22 toward the differential device side. It is comprised with the intermediate shaft 12b.
 高周波用ダンパ50は、第2中間シャフト12bの差動装置側先端に設けられた筒部60と、第1中間シャフト12aの駆動輪側先端に設けられた軸部51とを備えている。 The high-frequency damper 50 includes a cylindrical portion 60 provided at the differential device side tip of the second intermediate shaft 12b, and a shaft portion 51 provided at the drive wheel side tip of the first intermediate shaft 12a.
 筒部60は、軸方向に延びると共に、駆動輪側が閉塞しており、差動装置側に向かって開放している。 The cylindrical portion 60 extends in the axial direction, is closed on the drive wheel side, and is open toward the differential device side.
 軸部51は、筒部60内に収容されている。軸部51の駆動輪側端部には、筒部60に対する軸部51の相対回転を所定角度範囲に規制するストッパ機構66を介して、筒部60の内側に嵌合された被規制部53が設けられている。ストッパ機構66の構成は、上述した低周波用ダンパ30のストッパ機構40の構成(図4参照)と同様であるため、その説明及び図示は省略する。ストッパ機構66を介した被規制部53と筒部60との嵌合によって、筒部60と軸部51との相対回転が所定角度範囲で許容されると共に、該範囲を超える相対回転は阻止される。 The shaft portion 51 is accommodated in the tube portion 60. At the end of the shaft 51 on the drive wheel side, a restricted portion 53 fitted inside the tube 60 via a stopper mechanism 66 that restricts the relative rotation of the shaft 51 to the tube 60 within a predetermined angle range. Is provided. Since the structure of the stopper mechanism 66 is the same as the structure of the stopper mechanism 40 of the low-frequency damper 30 described above (see FIG. 4), the description and illustration thereof are omitted. By fitting the regulated portion 53 and the tube portion 60 via the stopper mechanism 66, relative rotation between the tube portion 60 and the shaft portion 51 is allowed in a predetermined angle range, and relative rotation exceeding the range is prevented. The
 軸部51には、被規制部53よりも軸方向差動装置側部分において中空部54が設けられており、これにより、軸部51の軽量化が図られている。 The shaft portion 51 is provided with a hollow portion 54 at a portion closer to the axial direction differential device than the regulated portion 53, whereby the weight of the shaft portion 51 is reduced.
 高周波用ダンパ50は、筒部60と軸部51との間に介装された弾性部材70を更に備えている。弾性部材70は、軸方向において被規制部53よりも差動装置側に配置されている。 The high-frequency damper 50 further includes an elastic member 70 interposed between the cylindrical portion 60 and the shaft portion 51. The elastic member 70 is disposed closer to the differential device than the regulated portion 53 in the axial direction.
 図5及び図6に示すように、弾性部材70は、例えば、径方向に間隔を空けて配置された内筒71及び外筒72と、内筒71と外筒72との間に介在するブッシュ部73とを備えている。内筒71及び外筒72は、それぞれ例えば金属からなり、ブッシュ部73は、例えばゴムからなる。ブッシュ部73は、例えば焼き付けによって内筒71の外周面及び外筒72の内周面にそれぞれ接合されている。 As shown in FIGS. 5 and 6, the elastic member 70 includes, for example, an inner cylinder 71 and an outer cylinder 72 that are spaced apart in the radial direction, and a bush interposed between the inner cylinder 71 and the outer cylinder 72. Part 73. The inner cylinder 71 and the outer cylinder 72 are made of, for example, metal, and the bush portion 73 is made of, for example, rubber. The bush part 73 is joined to the outer peripheral surface of the inner cylinder 71 and the inner peripheral surface of the outer cylinder 72, for example, by baking.
 弾性部材70は、軸部51の外周面と筒部60の内周面との間に圧入されている。これにより、内筒71は軸部51の外周に固定され、外筒72は筒部60の内周に固定されている。ブッシュ部73は、内筒71と外筒72との相対回転を許容するように弾性変形可能となっている。高周波用ダンパ50は、上記のように設けられた弾性部材70によって、動力源2からドライブシャフト10aに伝わるねじり振動等の各種振動を減衰させるように構成されている。したがって、動力源側からドライブシャフト10aに伝達された振動のうち、低周波用ダンパ30によって吸収しきれない振動、特に比較的高周波の振動を高周波用ダンパ50によって効果的に吸収することが可能になる。 The elastic member 70 is press-fitted between the outer peripheral surface of the shaft portion 51 and the inner peripheral surface of the cylindrical portion 60. Thereby, the inner cylinder 71 is fixed to the outer periphery of the shaft portion 51, and the outer cylinder 72 is fixed to the inner periphery of the cylinder portion 60. The bush portion 73 is elastically deformable so as to allow relative rotation between the inner cylinder 71 and the outer cylinder 72. The high frequency damper 50 is configured to attenuate various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10a by the elastic member 70 provided as described above. Therefore, among the vibrations transmitted from the power source side to the drive shaft 10 a, vibrations that cannot be absorbed by the low frequency damper 30, particularly relatively high frequency vibrations, can be effectively absorbed by the high frequency damper 50. Become.
 高周波用ダンパ50は、排気管9aから軸方向駆動輪側にずれて配置された中間シャフト12上に設けられているため、排気管9aから伝わる熱によって高周波用ダンパ50のゴム製ブッシュ部73が劣化することを抑制でき、これにより、高周波用ダンパ50の振動吸収機能を長期に亘って良好に維持できる。 Since the high-frequency damper 50 is provided on the intermediate shaft 12 disposed so as to be shifted from the exhaust pipe 9a toward the axial drive wheel, the rubber bush portion 73 of the high-frequency damper 50 is formed by heat transmitted from the exhaust pipe 9a. Deterioration can be suppressed, and thereby the vibration absorbing function of the high frequency damper 50 can be favorably maintained over a long period of time.
 高周波用ダンパ50は、軸方向において弾性部材70よりも差動装置側に配置されたデフ側軸受77と、弾性部材70よりも駆動輪側に配置されたホイール側軸受78とを更に備えており、これらの軸受77,78は、筒部60と軸部51との間に介装されている。ホイール側軸受78の外径は、デフ側軸受77の外径よりも小さい。 The high-frequency damper 50 further includes a differential side bearing 77 disposed on the differential device side with respect to the elastic member 70 in the axial direction, and a wheel side bearing 78 disposed on the drive wheel side with respect to the elastic member 70. These bearings 77 and 78 are interposed between the cylindrical portion 60 and the shaft portion 51. The outer diameter of the wheel side bearing 78 is smaller than the outer diameter of the differential side bearing 77.
 このように構成された高周波用ダンパ50によれば、筒部60と軸部51との相対回転が前記所定角度範囲で許容されることで、弾性部材70による振動吸収を効果的に実現しつつ、該範囲を超える相対回転が阻止されることで、動力源側から伝えられた第1中間シャフト12aの回転を、高周波用ダンパ50を介して第2中間シャフト12bへ確実に伝達することができる。 According to the high frequency damper 50 configured as described above, the relative rotation between the cylindrical portion 60 and the shaft portion 51 is allowed in the predetermined angle range, thereby effectively realizing vibration absorption by the elastic member 70. By preventing the relative rotation exceeding the range, the rotation of the first intermediate shaft 12a transmitted from the power source side can be reliably transmitted to the second intermediate shaft 12b via the high-frequency damper 50. .
 高周波用ダンパ50の軸方向寸法は、デフ側シャフト11上の低周波用ダンパ30の軸方向寸法よりも小さく、デフ側シャフト11よりも短い中間シャフト12上に収まる程度に小さい。そのため、高周波用ダンパ50を設けるために中間シャフト12を延長したり、中間シャフト12の延長のために等速ジョイント21,22の軸方向位置を変更したりする必要がない。 The axial dimension of the high-frequency damper 50 is smaller than the axial dimension of the low-frequency damper 30 on the differential shaft 11 and is small enough to fit on the intermediate shaft 12 shorter than the differential shaft 11. Therefore, it is not necessary to extend the intermediate shaft 12 to provide the high-frequency damper 50 or to change the axial positions of the constant velocity joints 21 and 22 to extend the intermediate shaft 12.
 第1の実施形態によれば、ドライブシャフト10a上に2つのダンパ30,50を設けることで、ダンパを1つしか設けない場合に比べて個々のダンパ30,50の小型化を図ることができるため、各ダンパ30,50と周辺の例えばフロントサイドフレーム等の車体側部材との干渉を回避しやすくなる。 According to the first embodiment, by providing the two dampers 30 and 50 on the drive shaft 10a, it is possible to reduce the size of the individual dampers 30 and 50 compared to the case where only one damper is provided. Therefore, it becomes easy to avoid interference between the dampers 30 and 50 and surrounding vehicle body side members such as front side frames.
 また、第1の実施形態によれば、ドライブシャフト10a上に、対応する振動の周波数領域が異なる低周波用ダンパ30及び高周波用ダンパ50が設けられるため、比較的低周波の振動を効果的に吸収する低周波用ダンパ30と、比較的高周波の振動を効果的に吸収する高周波用ダンパ50とが併用されることで、動力源側からドライブシャフト10aに伝わる低周波数から高周波数までの広範囲の周波数領域にわたる振動を効果的に吸収することができる。したがって、ドライブシャフト10aからサスペンションアーム等を介して車体に伝わる広範囲の周波数領域にわたる振動を効果的に抑制することができ、車室内の不快な振動や騒音を軽減することができる。 Further, according to the first embodiment, the low-frequency damper 30 and the high-frequency damper 50 having different vibration frequency ranges are provided on the drive shaft 10a. By combining the low frequency damper 30 for absorbing and the high frequency damper 50 for effectively absorbing relatively high frequency vibrations, a wide range from a low frequency to a high frequency transmitted from the power source side to the drive shaft 10a can be obtained. Vibrations over the frequency domain can be effectively absorbed. Therefore, vibration over a wide frequency range transmitted from the drive shaft 10a to the vehicle body via the suspension arm or the like can be effectively suppressed, and unpleasant vibration and noise in the passenger compartment can be reduced.
 なお、以上においては、低周波用ダンパとして図3及び図4に示すダンパ30を用いると共に、高周波用ダンパとして図5及び図6に示すダンパ50を用いる場合について説明したが、低周波用ダンパ及び高周波用ダンパの構成はこれらに限定されるものでなく、これらに代えて、種々の構成のダンパを用いることが可能である。 In the above description, the case where the damper 30 shown in FIGS. 3 and 4 is used as the low frequency damper and the damper 50 shown in FIGS. 5 and 6 is used as the high frequency damper has been described. The configuration of the high-frequency damper is not limited to these, and dampers having various configurations can be used instead.
 <第2の実施形態>
 続いて、図7~図9を参照しながら、本発明の第2の実施形態について説明する。なお、第2の実施形態において、第1の実施形態と同様の構成については詳細な説明を省略する。また、図7~図9において、第1の実施形態と同様の機能を有する構成要素には同符号を付してある。
<Second Embodiment>
Subsequently, a second embodiment of the present invention will be described with reference to FIGS. Note that in the second embodiment, detailed description of the same configuration as in the first embodiment is omitted. In FIG. 7 to FIG. 9, constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals.
 第2の実施形態では、ドライブシャフト10a上に、第1の実施形態と同様の低周波用ダンパ30及び高周波用ダンパ50に加えて、3つ目のダンパとして第2の高周波用ダンパ80が設けられている。第2の実施形態において、第2の高周波用ダンパ80が追加された点を除けば、第1の実施形態と同様の構成となっている。 In the second embodiment, a second high-frequency damper 80 is provided on the drive shaft 10a as a third damper in addition to the low-frequency damper 30 and the high-frequency damper 50 similar to those in the first embodiment. It has been. In the second embodiment, the configuration is the same as that of the first embodiment except that a second high-frequency damper 80 is added.
 第1の実施形態と同様、デフ側シャフト11上には低周波用ダンパ30が設けられ、中間シャフト12上には高周波用ダンパ50(以下、「第1の高周波用ダンパ50」ともいう)が設けられている。そして、第2の高周波用ダンパ80は、ホイール側シャフト13上に設けられている。 As in the first embodiment, a low frequency damper 30 is provided on the differential shaft 11, and a high frequency damper 50 (hereinafter also referred to as “first high frequency damper 50”) is provided on the intermediate shaft 12. Is provided. The second high frequency damper 80 is provided on the wheel side shaft 13.
 図8及び図9を参照しながら、第2の高周波用ダンパ80の構造の一例について説明する。図8は、第2の高周波用ダンパ80を軸方向差動装置側から見た断面図であり、図9は、図8に示す第2の高周波用ダンパ80のD-D線断面図である。 An example of the structure of the second high-frequency damper 80 will be described with reference to FIGS. 8 is a cross-sectional view of the second high-frequency damper 80 as viewed from the axial differential device side, and FIG. 9 is a cross-sectional view of the second high-frequency damper 80 taken along the line DD in FIG. .
 図9に示すように、ホイール側シャフト13は、ホイール側等速ジョイント22から駆動輪側に向かって延びる第1ホイール側シャフト13aと、駆動輪28(図7参照)に連結された第2ホイール側シャフト13bとで構成されている。 As shown in FIG. 9, the wheel-side shaft 13 includes a first wheel-side shaft 13 a extending from the wheel-side constant velocity joint 22 toward the drive wheel, and a second wheel connected to the drive wheel 28 (see FIG. 7). It is comprised with the side shaft 13b.
 第2の高周波用ダンパ80は、第2ホイール側シャフト13bの差動装置側先端に設けられた筒部90と、第1ホイール側シャフト13aと一体である軸部82とを備えている。 The second high-frequency damper 80 includes a cylindrical portion 90 provided at the differential device side tip of the second wheel side shaft 13b, and a shaft portion 82 that is integral with the first wheel side shaft 13a.
 筒部90は、軸方向に延びると共に、駆動輪側が閉塞しており、差動装置側に向かって開放している。軸部82は、筒部90内に収容されており、軸方向に間隔を空けて配置された一対の軸受88,89を介して筒部90の内側に支持されている。 The cylindrical portion 90 extends in the axial direction, is closed on the drive wheel side, and is open toward the differential device side. The shaft portion 82 is accommodated in the tube portion 90 and is supported on the inner side of the tube portion 90 via a pair of bearings 88 and 89 arranged with a space in the axial direction.
 図8及び図9に示すように、一対の軸受88,89間の軸方向位置において、軸部82の外周にスリーブ84がスプライン嵌合している。スリーブ84の外周には、周方向に間隔を空けて複数のフィン部86が突設されている。 8 and 9, a sleeve 84 is spline-fitted to the outer periphery of the shaft portion 82 at an axial position between the pair of bearings 88 and 89. A plurality of fin portions 86 project from the outer periphery of the sleeve 84 at intervals in the circumferential direction.
 筒部90の内周には、周方向に間隔を空けて複数の凹部92が設けられている。また、筒部90の内周には、径方向内側に突出した複数の仕切り部94が設けられている。各仕切り部94は、周方向において隣接する一対の凹部92間の中間部に配置されている。仕切り部94の径方向内側端部はスリーブ84の外周近傍に配・BR>Uされている。 A plurality of concave portions 92 are provided on the inner periphery of the cylindrical portion 90 at intervals in the circumferential direction. In addition, a plurality of partition portions 94 protruding radially inward are provided on the inner periphery of the cylindrical portion 90. Each partition portion 94 is disposed at an intermediate portion between a pair of concave portions 92 adjacent in the circumferential direction. The radially inner end of the partition portion 94 is arranged near the outer periphery of the sleeve 84 and BR> U.
 軸部82の各フィン部86は、周方向において隣接する一対の仕切り部94間の中間部に配置されている。フィン部86の径方向外側端部は凹部92内に配置されている。フィン部86と凹部92の側壁との間には間隙96が設けられている。これにより、筒部90と軸部82との相対回転が所定角度範囲で許容されると共に、該範囲を超える相対回転は、フィン部86と凹部92の側壁との干渉によって阻止され、これにより、動力源側から伝えられた第1ホイール側シャフト13aの回転を、高周波用ダンパ80を介して第2ホイール側シャフト13bへ確実に伝達することができる。 Each fin part 86 of the axial part 82 is arrange | positioned in the intermediate part between a pair of partition parts 94 adjacent in the circumferential direction. The radially outer end of the fin portion 86 is disposed in the recess 92. A gap 96 is provided between the fin portion 86 and the side wall of the recess 92. Thereby, relative rotation between the cylindrical portion 90 and the shaft portion 82 is allowed in a predetermined angle range, and relative rotation exceeding the range is prevented by interference between the fin portion 86 and the side wall of the concave portion 92, thereby The rotation of the first wheel side shaft 13a transmitted from the power source side can be reliably transmitted to the second wheel side shaft 13b via the high frequency damper 80.
 周方向において隣接するフィン部86と仕切り部94との間には、例えば断面扇形の弾性部材98が介装されている。弾性部材98は例えばゴムからなる。弾性部材98は、フィン部86の側面及び仕切り部94の側面にそれぞれ接着又はその他の方法で位置決めされている。弾性部材98は、軸部82と筒部90との相対回転を許容するように弾性変形可能となっている。具体的に、筒部90に対して軸部82が相対回転すると、フィン部86を挟んだ一方の弾性部材98は圧縮変形する。 Between the fin part 86 and the partition part 94 which adjoin in the circumferential direction, the cross-sectional sector-shaped elastic member 98 is interposed, for example. The elastic member 98 is made of rubber, for example. The elastic member 98 is positioned by bonding or other methods on the side surface of the fin portion 86 and the side surface of the partition portion 94, respectively. The elastic member 98 is elastically deformable so as to allow relative rotation between the shaft portion 82 and the cylindrical portion 90. Specifically, when the shaft portion 82 rotates relative to the cylindrical portion 90, one elastic member 98 sandwiching the fin portion 86 is compressed and deformed.
 第2の高周波用ダンパ80は、上記のように設けられた弾性部材98によって、動力源2からドライブシャフト10aに伝わるねじり振動等の各種振動を減衰させるように構成されている。したがって、動力源側からドライブシャフト10aに伝達された振動のうち、低周波用ダンパ30及び第1の高周波用ダンパ50によって吸収しきれない振動を第2の高周波用ダンパ80によって効果的に吸収することが可能になる。特に、第1及び第2の高周波用ダンパ50,80によって、高周波の振動を確実に吸収できる。 The second high-frequency damper 80 is configured to attenuate various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10a by the elastic member 98 provided as described above. Therefore, of the vibrations transmitted from the power source side to the drive shaft 10a, vibrations that cannot be absorbed by the low frequency damper 30 and the first high frequency damper 50 are effectively absorbed by the second high frequency damper 80. It becomes possible. In particular, the first and second high frequency dampers 50 and 80 can reliably absorb high frequency vibrations.
 なお、第2の高周波用ダンパ80が対応する振動の周波数は、第1の高周波用ダンパ50が対応する振動の周波数と比べて同程度であってもよいし、更に高い周波数領域であってもよい。 It should be noted that the vibration frequency corresponding to the second high-frequency damper 80 may be approximately the same as the vibration frequency corresponding to the first high-frequency damper 50 or may be in a higher frequency region. Good.
 第2の高周波用ダンパ80の軸方向寸法は、第1の高周波用ダンパ50の軸方向寸法よりも小さく、中間シャフト12よりも短いホイール側シャフト13上に収まる程度に小さい。そのため、第2の高周波用ダンパ80を設けるためにホイール側シャフト13を延長したり、ホイール側シャフト13の延長のために等速ジョイント21,22の軸方向位置を変更したりする必要がない。 The axial dimension of the second high-frequency damper 80 is smaller than the axial dimension of the first high-frequency damper 50 and small enough to fit on the wheel-side shaft 13 shorter than the intermediate shaft 12. Therefore, it is not necessary to extend the wheel-side shaft 13 to provide the second high-frequency damper 80 or change the axial position of the constant velocity joints 21, 22 to extend the wheel-side shaft 13.
 第2の実施形態によれば、ドライブシャフト10a上に3つのダンパ30,50,80が設けられるため、個々のダンパ50,130の更なる小型化を図ることが可能になる。そのため、各ダンパ30,50,80と周辺の例えばフロントサイドフレーム等の車体側部材との干渉を一層回避しやすくなる。また、低周波用ダンパ30と2つの高周波用ダンパ50,80とによって広範囲の周波数領域にわたる振動を効果的に吸収することができるため、車室内の不快な振動や騒音を軽減することができる。 According to the second embodiment, since the three dampers 30, 50, 80 are provided on the drive shaft 10a, the individual dampers 50, 130 can be further reduced in size. Therefore, it becomes easier to avoid interference between the dampers 30, 50, and 80 and surrounding vehicle body side members such as front side frames. In addition, since the low frequency damper 30 and the two high frequency dampers 50 and 80 can effectively absorb vibrations over a wide frequency range, unpleasant vibrations and noise in the passenger compartment can be reduced.
 なお、第2の実施形態では、図3及び図4に示すダンパ30、図5及び図6に示すダンパ50、及び、図8及び図9に示すダンパ80を用いる場合について説明したが、各ダンパの構成はこれらに限定されるものでなく、これらに代えて、種々の構成のダンパを用いることが可能である。例えば、第1の高周波用ダンパ50又は/及び第2の高周波用ダンパ80に代えて、後述する第8実施形態の図21及び図22に示す高周波用ダンパ50を用いてもよい。 In the second embodiment, the damper 30 shown in FIGS. 3 and 4, the damper 50 shown in FIGS. 5 and 6, and the damper 80 shown in FIGS. 8 and 9 have been described. The configurations are not limited to these, and dampers having various configurations can be used instead. For example, instead of the first high-frequency damper 50 and / or the second high-frequency damper 80, a high-frequency damper 50 shown in FIGS. 21 and 22 of an eighth embodiment to be described later may be used.
 <第3実施形態>
 以下、図10~図12を参照しながら、本発明の第3~第5の実施形態について説明する。なお、第3~第5の実施形態において、第1又は第2の実施形態と同様の構成については詳細な説明を省略する。また、図10~図12において、第1又は第2の実施形態と同様の機能を有する構成要素には同符号を付してある。
<Third Embodiment>
Hereinafter, the third to fifth embodiments of the present invention will be described with reference to FIGS. In the third to fifth embodiments, detailed description of the same configurations as those of the first or second embodiment is omitted. In FIG. 10 to FIG. 12, constituent elements having the same functions as those in the first or second embodiment are denoted by the same reference numerals.
 上述した第1の実施形態では、ドライブシャフト10aを構成するデフ側シャフト11、中間シャフト12及びホイール側シャフト13のうち、デフ側シャフト11及び中間シャフト12上にダンパ30,50が設けられ、第2の実施形態では、3つのシャフト11,12,13上にそれぞれダンパ30,50,80が設けられているが、本発明では、例えば以下の第3~第5の実施形態のように、少なくとも2つのシャフトにダンパが設けられればよい。 In the first embodiment described above, the dampers 30 and 50 are provided on the differential side shaft 11 and the intermediate shaft 12 among the differential side shaft 11, the intermediate shaft 12, and the wheel side shaft 13 constituting the drive shaft 10a. In the second embodiment, the dampers 30, 50, 80 are provided on the three shafts 11, 12, 13, respectively. However, in the present invention, at least as in the following third to fifth embodiments, for example, It is sufficient that dampers are provided on the two shafts.
 図10に示す第3の実施形態では、ドライブシャフト10a上に2つのダンパ30,80が設けられており、具体的には、デフ側シャフト11上に低周波用ダンパ30(図3及び図4参照)が設けられ、ホイール側シャフト13上に高周波用ダンパ80(図8及び図9参照)が設けられている。ただし、低周波用ダンパ及び高周波用ダンパの具体的構成は特に限定されるものでない。 In the third embodiment shown in FIG. 10, two dampers 30 and 80 are provided on the drive shaft 10a. Specifically, the low frequency damper 30 (see FIGS. 3 and 4) is provided on the differential shaft 11. The high-frequency damper 80 (see FIGS. 8 and 9) is provided on the wheel-side shaft 13. However, the specific configurations of the low-frequency damper and the high-frequency damper are not particularly limited.
 第3の実施形態によっても、低周波用ダンパ30と高周波用ダンパ80を併用することで、動力源側からドライブシャフト10aに伝達された広範囲の周波数領域にわたる振動を効果的に吸収することができると共に、1つしかダンパを設けない場合に比べて個々のダンパ30,80の小型化を図ることができ、これにより、各ダンパ30,80と周辺の車体側部材との干渉を回避しやすくなる。 Also according to the third embodiment, by using the low-frequency damper 30 and the high-frequency damper 80 in combination, it is possible to effectively absorb vibration over a wide frequency range transmitted from the power source side to the drive shaft 10a. In addition, it is possible to reduce the size of the individual dampers 30 and 80 as compared with the case where only one damper is provided, thereby making it easier to avoid interference between the dampers 30 and 80 and the surrounding vehicle body side members. .
 また、3つのシャフト11,12,13のうち最も長いデフ側シャフト11上に比較的長尺のダンパ30を配置し、最も短いホイール側シャフト13上に短尺のダンパ80を配置することで、各シャフト11,12,13の寸法変更、及び、等速ジョイント21,22の軸方向位置の変更を回避することができる。 Further, by disposing a relatively long damper 30 on the longest differential shaft 11 among the three shafts 11, 12, and 13 and disposing a short damper 80 on the shortest wheel shaft 13, Changes in the dimensions of the shafts 11, 12, and 13 and changes in the axial positions of the constant velocity joints 21 and 22 can be avoided.
 <第4実施形態>
 図11に示す第4の実施形態では、ドライブシャフト10a上に2つのダンパ30,80が設けられており、具体的には、中間シャフト12上に低周波用ダンパ30(図3及び図4参照)が設けられ、ホイール側シャフト13上に高周波用ダンパ80(図8及び図9参照)が設けられている。ただし、低周波用ダンパ及び高周波用ダンパの具体的構成は特に限定されるものでない。
<Fourth embodiment>
In the fourth embodiment shown in FIG. 11, two dampers 30 and 80 are provided on the drive shaft 10a. Specifically, the low frequency damper 30 (see FIGS. 3 and 4) is provided on the intermediate shaft 12. ) And a high-frequency damper 80 (see FIGS. 8 and 9) is provided on the wheel-side shaft 13. However, the specific configurations of the low-frequency damper and the high-frequency damper are not particularly limited.
 第4の実施形態によっても、低周波用ダンパ30と高周波用ダンパ80を併用することで、動力源側からドライブシャフト10aに伝達された広範囲の周波数領域にわたる振動を効果的に吸収することができると共に、1つしかダンパを設けない場合に比べて個々のダンパ30,80の小型化を図ることができ、これにより、各ダンパ30,80と周辺の車体側部材との干渉を回避しやすくなる。 Also according to the fourth embodiment, by using the low-frequency damper 30 and the high-frequency damper 80 in combination, it is possible to effectively absorb vibration over a wide frequency range transmitted from the power source side to the drive shaft 10a. In addition, it is possible to reduce the size of the individual dampers 30 and 80 as compared with the case where only one damper is provided, thereby making it easier to avoid interference between the dampers 30 and 80 and the surrounding vehicle body side members. .
 第4の実施形態では、3つのシャフト11,12,13のうち2番目に長い中間シャフト12上に低周波用ダンパ30が配置されている。かかる低周波用ダンパ30の配置を実現するためには、最長のデフ側シャフト11上に配置する場合に比べて、ダンパ30の軸方向寸法を縮小したり、中間シャフト12を延長したりする必要があるかもしれないが、ホイール側シャフト13上に低周波用ダンパ30を配置する場合に比べて、ダンパ30及びシャフト11,12,13の寸法変更を抑制できる。 In the fourth embodiment, the low frequency damper 30 is disposed on the second longest intermediate shaft 12 among the three shafts 11, 12, and 13. In order to realize the arrangement of the low-frequency damper 30, it is necessary to reduce the axial dimension of the damper 30 or extend the intermediate shaft 12 compared to the arrangement on the longest differential shaft 11. Although there may exist, compared with the case where the low frequency damper 30 is arrange | positioned on the wheel side shaft 13, the dimension change of the damper 30 and the shafts 11, 12, and 13 can be suppressed.
 <第5実施形態>
 図12に示す第5の実施形態では、左右両側のドライブシャフト10a,10b上に複数のダンパ30,80が配置されている。
<Fifth Embodiment>
In the fifth embodiment shown in FIG. 12, a plurality of dampers 30 and 80 are arranged on the drive shafts 10a and 10b on the left and right sides.
 左右のドライブシャフト10a,10bを比較すると、中間シャフト12及びホイール側シャフト13の長さは同じであるが、左側のデフ側シャフト511は、右側のデフ側シャフト11よりも著しく短く、ダンパの配置が困難となっている。 Comparing the left and right drive shafts 10a and 10b, the lengths of the intermediate shaft 12 and the wheel side shaft 13 are the same, but the left differential shaft 511 is significantly shorter than the right differential shaft 11 and the arrangement of the dampers Has become difficult.
 第5の実施形態では、このような左側のドライブシャフト10bの寸法上の事情に鑑みて、各ドライブシャフト10a,10bにおいて、デフ側シャフト11,511上にはダンパが設けられず、中間シャフト12上に低周波用ダンパ30が、ホイール側シャフト13上に高周波用ダンパ80が設けられている。ただし、低周波用ダンパ及び高周波用ダンパの具体的構成は特に限定されるものでない。 In the fifth embodiment, in view of the dimensional circumstances of the left drive shaft 10b, in each of the drive shafts 10a and 10b, no damper is provided on the differential shafts 11 and 511, and the intermediate shaft 12 is not provided. A low frequency damper 30 is provided on the upper side, and a high frequency damper 80 is provided on the wheel side shaft 13. However, the specific configurations of the low-frequency damper and the high-frequency damper are not particularly limited.
 第5の実施形態によれば、低周波用ダンパ30及び高周波用ダンパ80が左右対称に配置されるため、第4の実施形態で得られる上述の効果を左右両方のドライブシャフト10a,10bにおいて同様に得ることができ、より効果的に車室内の不快な振動や騒音を軽減することができる。 According to the fifth embodiment, since the low-frequency damper 30 and the high-frequency damper 80 are arranged symmetrically, the above-described effects obtained in the fourth embodiment are the same in both the left and right drive shafts 10a and 10b. Therefore, unpleasant vibration and noise in the passenger compartment can be reduced more effectively.
 ただし、差動装置8が車幅方向に中央に配置された車両など、左右両側のデフ側シャフト11,511が十分に長い車両においては、左右のデフ側シャフト11,511上の低周波用ダンパを配置し、左右の中間シャフト12上及び/又は左右のホイール側シャフト13上に高周波用ダンパを配置してもよい。この場合、第1~第3のいずれかの実施形態で得られる効果を左右両方のドライブシャフト10a,10bにおいて同様に得ることができる。 However, in a vehicle in which the differential- side shafts 11 and 511 on both left and right sides are sufficiently long, such as a vehicle in which the differential device 8 is disposed in the center in the vehicle width direction, a low-frequency damper on the left and right differential- side shafts 11 and 511 And a high-frequency damper may be disposed on the left and right intermediate shafts 12 and / or on the left and right wheel-side shafts 13. In this case, the effects obtained in any one of the first to third embodiments can be similarly obtained in both the left and right drive shafts 10a and 10b.
 <第6の実施形態>
 続いて、図13~図15を参照しながら、本発明の第6の実施形態について説明する。なお、第6の実施形態において、第1~第5の実施形態と同様の構成については詳細な説明を省略する。また、図13~図15において、第1~第5の実施形態と同様の機能を有する構成要素には同符号を付してある。第6の実施形態では、ドライブシャフト10の構成の一部が第1の実施形態と異なるが、それを除けば、第1の実施形態と同様の構成となっている。図13は、第6の実施形態に係る車両の動力伝達装置601を示す平面図である。
<Sixth Embodiment>
Next, a sixth embodiment of the present invention will be described with reference to FIGS. Note that in the sixth embodiment, detailed description of the same configurations as those of the first to fifth embodiments will be omitted. In FIG. 13 to FIG. 15, components having the same functions as those in the first to fifth embodiments are denoted by the same reference numerals. In the sixth embodiment, a part of the configuration of the drive shaft 10 is different from that of the first embodiment, but except for this, the configuration is the same as that of the first embodiment. FIG. 13 is a plan view showing a power transmission device 601 for a vehicle according to the sixth embodiment.
 ドライブシャフト10(10a、10b)は、一端が差動装置8に連結された第1動力伝達軸としてのデフ側シャフト11(11c、11d)と、一端がデフ側等速ジョイント21を介してデフ側シャフト11の他端に連結された第2動力伝達軸としての中間シャフト12と、一端がホイール側等速ジョイント22を介して中間シャフト12の他端に連結され、他端に駆動輪28が連結された第3動力伝達軸としてのホイール側シャフト13とを備えている。中間シャフト12は、デフ側等速ジョイント21から駆動輪側に向かって延びる第1中間シャフト12aと、ホイール側等速ジョイント22から差動装置側に向かって延びる第2中間シャフト12bとで構成されている。 The drive shaft 10 (10a, 10b) includes a differential side shaft 11 (11c, 11d) as a first power transmission shaft, one end of which is connected to the differential device 8, and a differential end via a differential side constant velocity joint 21. An intermediate shaft 12 as a second power transmission shaft connected to the other end of the side shaft 11, one end is connected to the other end of the intermediate shaft 12 via a wheel side constant velocity joint 22, and a drive wheel 28 is connected to the other end. And a wheel side shaft 13 as a third power transmission shaft connected thereto. The intermediate shaft 12 includes a first intermediate shaft 12a that extends from the differential-side constant velocity joint 21 toward the drive wheel, and a second intermediate shaft 12b that extends from the wheel-side constant velocity joint 22 toward the differential device. ing.
 デフ側及びホイール側の等速ジョイント21,22はそれぞれ左右対称に配置されており、これにより、左右の中間シャフト12の長さ、及び、左右のホイール側シャフト13の長さは、それぞれ等しくなっている。したがって、上述した路面の凹凸に応じたドライブシャフト10の揺動に関して、左右のドライブシャフト10a,10bで同様の挙動が可能となっている。 The constant velocity joints 21 and 22 on the differential side and the wheel side are arranged symmetrically, so that the length of the left and right intermediate shafts 12 and the length of the left and right wheel side shafts 13 are equal. ing. Therefore, regarding the swinging of the drive shaft 10 according to the road surface unevenness described above, the left and right drive shafts 10a and 10b can perform the same behavior.
 上述のように差動装置8は左側にオフセットして配置されているため、右側のドライブシャフト10aは、デフ側シャフト11c,11dの長さの違いによって、左側のドライブシャフト10bよりも長くなっている。なお、比較的長尺の右側のデフ側シャフト11cは、ブラケット29を介して車体に固定されている。 As described above, since the differential 8 is arranged offset to the left side, the right drive shaft 10a is longer than the left drive shaft 10b due to the difference in length between the differential side shafts 11c and 11d. Yes. The relatively long right differential shaft 11 c is fixed to the vehicle body via a bracket 29.
 また、各ドライブシャフト10上において、一対の等速ジョイント21,22の間、すなわち中間シャフト12上にはダンパ50が配設されている。該ダンパ50が動力源2からドライブシャフト10に伝わる振動を効果的に吸収することで、サスペンションアーム(図示せず)等を介した車体への振動伝達、ひいては車室内の不快な振動及び騒音が抑制される。 Further, on each drive shaft 10, a damper 50 is disposed between the pair of constant velocity joints 21 and 22, that is, on the intermediate shaft 12. The damper 50 effectively absorbs vibration transmitted from the power source 2 to the drive shaft 10, so that vibration transmission to the vehicle body via a suspension arm (not shown) or the like, and unpleasant vibration and noise in the vehicle interior can be achieved. It is suppressed.
 図14は、右側のダンパ50及びその周辺部の構造を示す部分断面図である。なお、左側のダンパ50は、図14に示す右側のダンパ50と左右対称の構造を有する。 FIG. 14 is a partial cross-sectional view showing the structure of the right damper 50 and its peripheral part. The left damper 50 has a symmetrical structure with the right damper 50 shown in FIG.
 図14に示すように、ダンパ50の軸方向両側に配置された各等速ジョイント21,22は、内輪(図示せず)等の各種構成部品を収容する筒状の外輪23,26と、該外輪23,26内への異物の侵入を阻止する蛇腹状のブーツ24,27とを備えている。デフ側等速ジョイント21のブーツ24の差動装置側端部はブーツバンド75によって外輪23の外周に固定され、該ブーツ24の駆動輪側端部はブーツバンド76によって第1中間シャフト12aの外周に固定されている。ホイール側等速ジョイント22のブーツ27の差動装置側端部はブーツバンド69によって第2中間シャフト12bの外周に固定され、該ブーツ27の駆動輪側端部はブーツバンド79によって外輪26の外周に固定されている。 As shown in FIG. 14, the constant velocity joints 21 and 22 arranged on both sides in the axial direction of the damper 50 include cylindrical outer rings 23 and 26 that house various components such as an inner ring (not shown), Bellows- like boots 24 and 27 for preventing foreign matter from entering the outer rings 23 and 26 are provided. The differential gear side end of the boot 24 of the differential side constant velocity joint 21 is fixed to the outer periphery of the outer ring 23 by a boot band 75, and the drive wheel side end of the boot 24 is fixed to the outer periphery of the first intermediate shaft 12 a by the boot band 76. It is fixed to. The differential gear side end of the boot 27 of the wheel side constant velocity joint 22 is fixed to the outer periphery of the second intermediate shaft 12 b by a boot band 69, and the driving wheel side end of the boot 27 is fixed to the outer periphery of the outer ring 26 by a boot band 79. It is fixed to.
 ダンパ50は、第2中間シャフト12bの差動装置側先端に設けられた筒部49と、第1中間シャフト12aの駆動輪側先端に設けられた軸部51とを備えている。 The damper 50 includes a cylinder portion 49 provided at the differential device side tip of the second intermediate shaft 12b and a shaft portion 51 provided at the drive wheel side tip of the first intermediate shaft 12a.
 筒部49は、軸方向の駆動輪側の端部に底部59を有し、差動装置側に向かって開放している。筒部49は、ダンパ50の外周を形成しており、筒部49の外径はダンパ50の外径に等しい。 The cylindrical portion 49 has a bottom 59 at the end on the drive wheel side in the axial direction, and is open toward the differential device side. The cylinder part 49 forms the outer periphery of the damper 50, and the outer diameter of the cylinder part 49 is equal to the outer diameter of the damper 50.
 筒部49は、底部59から軸方向差動装置側に延びる小径部55と、該小径部55よりも大径であり且つ小径部55よりも軸方向差動装置側に配置された大径部56とを備えている。 The cylindrical portion 49 has a small-diameter portion 55 extending from the bottom portion 59 toward the axial differential device, and a large-diameter portion that is larger in diameter than the small-diameter portion 55 and disposed closer to the axial differential device than the small-diameter portion 55. 56.
 ダンパ50の駆動輪側部分に設けられた小径部55は、ダンパ50における残りの部分よりも小径とされている。また、該小径部55の外径は、第2中間シャフト12bの外径よりも大きく、ブーツバンド69の外径よりも小さい。 The small diameter portion 55 provided in the drive wheel side portion of the damper 50 has a smaller diameter than the remaining portion of the damper 50. Further, the outer diameter of the small diameter portion 55 is larger than the outer diameter of the second intermediate shaft 12 b and smaller than the outer diameter of the boot band 69.
 大径部56は、小径部55よりも大径であり且つ小径部55の差動装置側端部に連なる第1大径部57と、該第1大径部57よりも大径であり且つ第1大径部57の差動装置側端部に連なる第2大径部58とを備えている。このように、ダンパ50は、軸方向の駆動輪側に向かって段階的に小さくなる外径を有する。 The large-diameter portion 56 has a larger diameter than the small-diameter portion 55 and a first large-diameter portion 57 connected to the differential device side end of the small-diameter portion 55, and a larger diameter than the first large-diameter portion 57 And a second large-diameter portion 58 connected to the differential device side end of the first large-diameter portion 57. As described above, the damper 50 has an outer diameter that gradually decreases toward the drive wheel side in the axial direction.
 軸部51は、筒部49内に収容されている。軸部51は、筒部49の小径部55に内嵌された小径部61と、該小径部61よりも大径であり且つ小径部61よりも軸方向差動装置側に配置された大径部52とを備えている。小径部61の外径は、第2中間シャフト12bの外径に略等しい。小径部61は、筒部49に対する軸部51の相対回転を所定角度範囲に規制する後述のストッパ機構66を介して、筒部49の小径部55の内側に嵌合されている。 The shaft portion 51 is accommodated in the tube portion 49. The shaft 51 includes a small-diameter portion 61 fitted in the small-diameter portion 55 of the cylindrical portion 49, and a large-diameter that is larger in diameter than the small-diameter portion 61 and disposed closer to the axial differential device than the small-diameter portion 61. Part 52. The outer diameter of the small diameter portion 61 is substantially equal to the outer diameter of the second intermediate shaft 12b. The small-diameter portion 61 is fitted inside the small-diameter portion 55 of the cylindrical portion 49 via a stopper mechanism 66 described later that restricts relative rotation of the shaft portion 51 with respect to the cylindrical portion 49 within a predetermined angle range.
 軸部51の大径部52は、小径部61よりも大径であり且つ小径部61の差動装置側端部に連なる第1大径部52aと、該第1大径部52aよりも大径であり且つ第1大径部52aの差動装置側端部に連なる第2大径部52bとを備えている。軸部51の第1大径部52aは、筒部49の第1大径部57に内嵌されており、軸部51の第2大径部52bは、筒部49の第2大径部58に内嵌されている。 The large-diameter portion 52 of the shaft portion 51 is larger in diameter than the small-diameter portion 61 and is larger than the first large-diameter portion 52a and the first large-diameter portion 52a connected to the differential device side end of the small-diameter portion 61. And a second large-diameter portion 52b that is continuous with the differential device side end of the first large-diameter portion 52a. The first large diameter portion 52 a of the shaft portion 51 is fitted into the first large diameter portion 57 of the tube portion 49, and the second large diameter portion 52 b of the shaft portion 51 is the second large diameter portion of the tube portion 49. 58 is internally fitted.
 軸部51には、第1大径部52aから第2大径部52bにかけて中空部54が設けられており、これにより、軸部51の軽量化が図られている。一方、小径部61は、中実部で構成されており、大径部52に比べて剛性が高められている。 The shaft portion 51 is provided with a hollow portion 54 from the first large diameter portion 52a to the second large diameter portion 52b, thereby reducing the weight of the shaft portion 51. On the other hand, the small-diameter portion 61 is configured by a solid portion and has higher rigidity than the large-diameter portion 52.
 ダンパ50は、筒部49と軸部51との間に介装された弾性部材70を更に備えている。弾性部材70は、軸方向において小径部55よりも差動装置側に配置され、筒部49の第1大径部57と軸部51の第1大径部52aとの間に介装されている。軸方向において、弾性部材70は、デフ側等速ジョイント21までの距離がホイール側等速ジョイント22までの距離に比べて小さくなるように、差動装置側にオフセットして配置されている。 The damper 50 further includes an elastic member 70 interposed between the tube portion 49 and the shaft portion 51. The elastic member 70 is disposed on the differential device side with respect to the small diameter portion 55 in the axial direction, and is interposed between the first large diameter portion 57 of the cylindrical portion 49 and the first large diameter portion 52a of the shaft portion 51. Yes. In the axial direction, the elastic member 70 is disposed offset to the differential device side so that the distance to the differential side constant velocity joint 21 is smaller than the distance to the wheel side constant velocity joint 22.
 図14に示すように、弾性部材70は、略筒状の部材であり、小径部55の外径よりも大きな外径を有する。また、弾性部材70の内径も小径部55の外径よりも大きくなっている。弾性部材70は、例えば、径方向に間隔を空けて配置された内筒71及び外筒72と、内筒71と外筒72との間に介在するブッシュ部73とを備えている。内筒71及び外筒72は、それぞれ例えば金属からなり、ブッシュ部73は、例えばゴムからなる。ブッシュ部73は、例えば焼き付けによって内筒71の外周面及び外筒72の内周面にそれぞれ接合されている。 As shown in FIG. 14, the elastic member 70 is a substantially cylindrical member and has an outer diameter larger than the outer diameter of the small diameter portion 55. The inner diameter of the elastic member 70 is also larger than the outer diameter of the small diameter portion 55. The elastic member 70 includes, for example, an inner cylinder 71 and an outer cylinder 72 that are spaced apart in the radial direction, and a bush portion 73 that is interposed between the inner cylinder 71 and the outer cylinder 72. The inner cylinder 71 and the outer cylinder 72 are made of, for example, metal, and the bush portion 73 is made of, for example, rubber. The bush part 73 is joined to the outer peripheral surface of the inner cylinder 71 and the inner peripheral surface of the outer cylinder 72, for example, by baking.
 弾性部材70は、軸部51の第1大径部52aの外周面と筒部49の第1大径部57の内周面との間に圧入されている。これにより、内筒71は軸部51の外周に固定され、外筒72は筒部49の内周に固定されている。ブッシュ部73は、内筒71と外筒72との相対回転を許容するように弾性変形可能となっている。このように構成された弾性部材70によって、動力源2からドライブシャフト10に伝わるねじり振動等の各種振動を吸収可能となっている。 The elastic member 70 is press-fitted between the outer peripheral surface of the first large diameter portion 52 a of the shaft portion 51 and the inner peripheral surface of the first large diameter portion 57 of the cylindrical portion 49. Thereby, the inner cylinder 71 is fixed to the outer periphery of the shaft part 51, and the outer cylinder 72 is fixed to the inner periphery of the cylinder part 49. The bush portion 73 is elastically deformable so as to allow relative rotation between the inner cylinder 71 and the outer cylinder 72. The elastic member 70 configured as described above can absorb various vibrations such as torsional vibration transmitted from the power source 2 to the drive shaft 10.
 ダンパ50は、軸方向において弾性部材70よりも差動装置側に配置された第1軸受としてのデフ側軸受77と、弾性部材70よりも駆動輪側に配置された第2軸受としてのホイール側軸受78とを更に備えており、これらの軸受77,78は、筒部49と軸部51との間に介装されている。具体的に、デフ側軸受77は、筒部49及び軸部51の各第2大径部58,52b間に介装されており、ホイール側軸受78は、筒部49及び軸部51の各小径部55,61の差動装置側端部間に介装されている。ホイール側軸受78の外径は、デフ側軸受77の外径よりも小さい。 The damper 50 includes a differential side bearing 77 as a first bearing disposed on the differential device side with respect to the elastic member 70 in the axial direction, and a wheel side as a second bearing disposed on the drive wheel side with respect to the elastic member 70. A bearing 78 is further provided, and these bearings 77 and 78 are interposed between the cylindrical portion 49 and the shaft portion 51. Specifically, the differential side bearing 77 is interposed between the second large diameter portions 58 and 52 b of the cylindrical portion 49 and the shaft portion 51, and the wheel side bearing 78 is provided for each of the cylindrical portion 49 and the shaft portion 51. It is interposed between the differential side end portions of the small diameter portions 55 and 61. The outer diameter of the wheel side bearing 78 is smaller than the outer diameter of the differential side bearing 77.
 ところで、ダンパ50には、エンジン3の燃焼変動等による大きなトルク変動が入力されて、ねじり方向や曲げ方向の大きな力が作用することがある。本実施形態によれば、このような大きな力がダンパ50に作用しても、エンジン3の動力が入力されるダンパ50の差動装置側部分を、ホイール側軸受78よりも大径のデフ側軸受77によって安定的に支持することができる。 Incidentally, a large torque fluctuation due to a combustion fluctuation of the engine 3 or the like is input to the damper 50, and a large force in the torsional direction or the bending direction may act. According to this embodiment, even if such a large force acts on the damper 50, the differential side portion of the damper 50 to which the power of the engine 3 is input is connected to the differential side of the larger diameter than the wheel side bearing 78. It can be stably supported by the bearing 77.
 図15は、ドライブシャフト10の駆動輪側部分、具体的には、デフ側等速ジョイント21から駆動輪側部分が、路面の凹凸に応じて上下に振れた状態を車両後方側から見た図である。 FIG. 15 is a view of the drive wheel side portion of the drive shaft 10, specifically, the state in which the drive wheel side portion from the differential side constant velocity joint 21 swings up and down according to the unevenness of the road surface as viewed from the vehicle rear side. It is.
 図15に示すようにドライブシャフト10の駆動輪側部分が上下に揺動するとき、ダンパ50は、所定の可動範囲H内で上下方向に揺動する。この可動範囲Hは、仮にダンパ50の外径が均一であれば、ダンパ50におけるデフ側等速ジョイント21から最も遠い部分、すなわち、ダンパ50の駆動輪側端部において最大となる。 As shown in FIG. 15, when the drive wheel side portion of the drive shaft 10 swings up and down, the damper 50 swings up and down within a predetermined movable range H. If the outer diameter of the damper 50 is uniform, the movable range H becomes maximum at a portion of the damper 50 farthest from the differential-side constant velocity joint 21, that is, at the end of the damper 50 on the driving wheel side.
 本実施形態によれば、上述のように、ダンパ50の駆動輪側端部が小径部55で構成されている。また、ダンパ50の弾性部材70は小径部55よりも差動装置側にずらして設けられていると共に、ホイール側軸受78がデフ側軸受77よりも小径であることによって、小径部55の外径は効果的に低減されている。したがって、ダンパ50の可動範囲Hは効果的に抑制されており、これにより、ダンパ50の駆動輪側部分の例えば上方近傍に配設されたフロントサイドフレーム等の車体側部材100とダンパ50との干渉を回避しやすくなる。 According to the present embodiment, as described above, the driving wheel side end portion of the damper 50 is configured by the small diameter portion 55. Further, the elastic member 70 of the damper 50 is provided so as to be shifted toward the differential device side with respect to the small diameter portion 55, and the outer diameter of the small diameter portion 55 is obtained because the wheel side bearing 78 is smaller in diameter than the differential side bearing 77. Is effectively reduced. Therefore, the movable range H of the damper 50 is effectively suppressed, so that the damper 50 is connected to the vehicle body side member 100 such as a front side frame disposed near the upper portion of the drive wheel side portion of the damper 50 and the damper 50. Interference can be avoided easily.
 <第7の実施形態>
 続いて、図16及び図17を参照しながら、本発明の第7の実施形態について説明する。なお、第7の実施形態において、第1~第6の実施形態と同様の構成については詳細な説明を省略する。また、図16及び図17において、第1~第6の実施形態と同様の機能を有する構成要素には同符号を付してある。
<Seventh Embodiment>
Subsequently, a seventh embodiment of the present invention will be described with reference to FIGS. 16 and 17. Note that in the seventh embodiment, detailed description of the same configurations as in the first to sixth embodiments is omitted. In FIG. 16 and FIG. 17, constituent elements having the same functions as those in the first to sixth embodiments are denoted by the same reference numerals.
 第7の実施形態では、第6の実施形態と比べて、ダンパ50の軸方向位置が異なっており、その他の構成は第6の実施形態と同様である。具体的に、第7の実施形態では、軸方向において、ダンパ50とホイール側等速ジョイント22との距離に比べてダンパ50とデフ側等速ジョイント21との距離が小さくなっており、この点で、2つの等速ジョイント21,22の略中央にダンパ50が配置された第6の実施形態と異なっている。 In the seventh embodiment, the position of the damper 50 in the axial direction is different from that in the sixth embodiment, and other configurations are the same as those in the sixth embodiment. Specifically, in the seventh embodiment, in the axial direction, the distance between the damper 50 and the differential side constant velocity joint 21 is smaller than the distance between the damper 50 and the wheel side constant velocity joint 22. Thus, the sixth embodiment is different from the sixth embodiment in which the damper 50 is arranged at substantially the center of the two constant velocity joints 21 and 22.
 第7の実施形態によれば、2つの等速ジョイント21,22間において、ダンパ50がデフ側等速ジョイント21側にオフセットして配置されているため、図17に示すように、デフ側等速ジョイント21を軸としてドライブシャフト10の駆動輪側部分が上下方向に揺動するときのダンパ50の可動範囲Hを更に低減できる。これにより、ダンパ50の駆動輪側部分の例えば上方近傍に配設されたフロントサイドフレーム等の車体側部材100とダンパ50との干渉を更に回避しやすくなる。 According to the seventh embodiment, since the damper 50 is arranged offset between the two constant velocity joints 21 and 22 toward the differential side constant velocity joint 21 side, as shown in FIG. The movable range H of the damper 50 when the drive wheel side portion of the drive shaft 10 swings in the vertical direction about the speed joint 21 can be further reduced. Accordingly, it becomes easier to avoid interference between the damper 50 and the vehicle body side member 100 such as a front side frame disposed in the vicinity of the upper side of the drive wheel side portion of the damper 50.
 なお、第6及び第7の実施形態では、ダンパ50の筒部49が、第5動力伝達軸(第2中間シャフト12b)の動力源側先端に設けられ、軸部51が、第4動力伝達軸(第1中間シャフト12a)の駆動輪側先端に設けられる場合について説明したが、本発明は、第5動力伝達軸の動力源側先端にダンパの軸部が設けられ、第4動力伝達軸の駆動輪側先端にダンパの筒部が設けられる場合にも適用できる。 In the sixth and seventh embodiments, the cylinder portion 49 of the damper 50 is provided at the power source side tip of the fifth power transmission shaft (second intermediate shaft 12b), and the shaft portion 51 is the fourth power transmission. The case where the shaft (first intermediate shaft 12a) is provided at the front end of the driving wheel has been described. However, in the present invention, the shaft portion of the damper is provided at the front end of the power source side of the fifth power transmission shaft. The present invention can also be applied to a case where a damper cylinder is provided at the front end of the driving wheel.
 また、第6及び第7の実施形態では、中間シャフト12にのみダンパ50(高周波用ダンパ50)を設ける場合について説明したが、デフ側シャフト11に低周波用ダンパ30を設けてもよい。 In the sixth and seventh embodiments, the case where the damper 50 (high frequency damper 50) is provided only on the intermediate shaft 12 has been described. However, the low frequency damper 30 may be provided on the differential shaft 11.
 <第8実施形態>
 続いて、図18~図21を参照しながら、本発明の第8の実施形態について説明する。なお、第8の実施形態において、第1~第7の実施形態と同様の構成については詳細な説明を省略する。また、図18~図21において、第1~第7の実施形態と同様の機能を有する構成要素には同符号を付してある。第8の実施形態では、ダンパ50の構成が異なることを除けば第6及び第7の実施形態と同様の構成となっている。図18は、本実施形態に係る車両の動力伝達装置801を示す平面図である。
<Eighth Embodiment>
Subsequently, an eighth embodiment of the present invention will be described with reference to FIGS. Note that in the eighth embodiment, detailed description of configurations similar to those of the first to seventh embodiments is omitted. In FIG. 18 to FIG. 21, constituent elements having the same functions as those in the first to seventh embodiments are denoted by the same reference numerals. The eighth embodiment has the same configuration as that of the sixth and seventh embodiments except that the configuration of the damper 50 is different. FIG. 18 is a plan view showing a vehicle power transmission device 801 according to this embodiment.
 第1~第7の実施形態では、デフ側等速ジョイント21の構造について詳しい説明は行っていないため、ここでは、図19を参照しながら、デフ側等速ジョイント21の構造について説明する。図19は、右側のドライブシャフト10cに設けられたデフ側等速ジョイント21を示す断面図である。なお、左側のドライブシャフト10dに設けられたデフ側等速ジョイント21は、図19に示すデフ側等速ジョイント21と左右対称の構造を有する。 In the first to seventh embodiments, the structure of the differential side constant velocity joint 21 is not described in detail, so the structure of the differential side constant velocity joint 21 will be described here with reference to FIG. FIG. 19 is a cross-sectional view showing the differential side constant velocity joint 21 provided on the right drive shaft 10c. The differential-side constant velocity joint 21 provided on the left drive shaft 10d has a bilaterally symmetric structure with the differential-side constant velocity joint 21 shown in FIG.
 図19に示すように、デフ側等速ジョイント21は、デフ側シャフト11cの駆動輪側端部に設けられた外輪170と、第1中間シャフト12aの差動装置側端部に取り付けられた内輪174と、外輪170と内輪174との間に介装された複数のボール178と、これらのボール178を保持するケージ180とを備えている。 As shown in FIG. 19, the differential side constant velocity joint 21 includes an outer ring 170 provided at the driving wheel side end of the differential side shaft 11c, and an inner ring attached to the differential side end of the first intermediate shaft 12a. 174, a plurality of balls 178 interposed between the outer ring 170 and the inner ring 174, and a cage 180 that holds these balls 178.
 外輪170は、駆動輪側に開口するように軸方向に延びる筒状部で構成されている。外輪170の内周には、ボール178の個数と同数のボール溝172がそれぞれ軸方向に延設されている。また、外輪170の内周には、ボール溝172よりも駆動輪側の軸方向位置において、周溝182が全周に亘って設けられており、該周溝182に、C形のスナップリング184が縮径するように弾性変形した状態で装着されている。スナップリング184は、拡径方向に作用する復元力によって周溝182の底部に押し当てられることで、該周溝182内に保持されている。 The outer ring 170 is composed of a cylindrical portion extending in the axial direction so as to open to the drive wheel side. On the inner periphery of the outer ring 170, the same number of ball grooves 172 as the number of balls 178 extend in the axial direction. In addition, a circumferential groove 182 is provided on the inner circumference of the outer ring 170 over the entire circumference at an axial position on the drive wheel side with respect to the ball groove 172, and a C-shaped snap ring 184 is provided in the circumferential groove 182. It is mounted in an elastically deformed state so as to reduce the diameter. The snap ring 184 is held in the circumferential groove 182 by being pressed against the bottom of the circumferential groove 182 by a restoring force acting in the diameter expansion direction.
 内輪174には、該内輪174を軸方向に貫通する挿入穴175が設けられている。該挿入穴175には第1中間シャフト12aの差動装置側端部が圧入されており、挿入穴175の内周と第1中間シャフト12aの外周とがスプライン嵌合している。内輪174の外周には、ボール178の個数と同数のボール溝176がそれぞれ軸方向に延設されている。各ボール178は、外輪170のボール溝172と内輪174のボール溝176とに嵌まり込んでおり、これらのボール溝172,176に沿って軸方向に転動可能となっている。 The inner ring 174 is provided with an insertion hole 175 that penetrates the inner ring 174 in the axial direction. The end of the first intermediate shaft 12a on the differential device side is press-fitted into the insertion hole 175, and the inner periphery of the insertion hole 175 and the outer periphery of the first intermediate shaft 12a are spline-fitted. On the outer periphery of the inner ring 174, the same number of ball grooves 176 as the number of balls 178 are extended in the axial direction. Each ball 178 is fitted in the ball groove 172 of the outer ring 170 and the ball groove 176 of the inner ring 174, and can roll in the axial direction along these ball grooves 172 and 176.
 上記のように第1中間シャフト12aの差動装置側端部に固定された内輪174、並びに、上記のように該内輪174に係合したボール178及びケージ180を含む各種部品は、外輪170の内部に収容されており、これらの部品からなる被収容部181は、抜け止め部としてのスナップリング184にボール178が干渉することにより外輪170からの脱落が規制されている。 Various parts including the inner ring 174 fixed to the differential device side end portion of the first intermediate shaft 12a as described above, and the ball 178 and the cage 180 engaged with the inner ring 174 as described above are included in the outer ring 170. The to-be-accommodated portion 181 made of these components is prevented from dropping from the outer ring 170 by the ball 178 interfering with the snap ring 184 as a retaining portion.
 デフ側等速ジョイント21の抜け強度は、例えば900N以上1100N以下であることが好ましく、このような抜け強度が実現されるように周溝182及びスナップリング184が構成されている。ここでいう「デフ側等速ジョイント21の抜け強度」とは、外輪170から被収容部181を抜き出すようにデフ側シャフト11c及び第1中間シャフト12aを軸方向に引っ張る場合に、スナップリング184による外輪170からの被収容部181の抜け止め機能が失われる直前の引張力の大きさを意味する。 The pull-out strength of the differential-side constant velocity joint 21 is preferably, for example, 900 N or more and 1100 N or less, and the circumferential groove 182 and the snap ring 184 are configured so as to realize such a pull-out strength. The “stripping strength of the differential-side constant velocity joint 21” here refers to the snap ring 184 when the differential-side shaft 11c and the first intermediate shaft 12a are pulled in the axial direction so as to extract the accommodated portion 181 from the outer ring 170. This means the magnitude of the tensile force immediately before the function of preventing the portion to be accommodated 181 from being removed from the outer ring 170 is lost.
 また、デフ側等速ジョイント21は、外輪170の外周と第1中間シャフト12aの外周とに跨がって設けられたブーツ186を備えている。ブーツ186は、外輪170の外周及び第1中間シャフト12aの外周に対してそれぞれブーツバンド188,189を用いて固定されている。ブーツ186は、軸方向に伸縮可能なように蛇腹状に形成されている。 Further, the differential side constant velocity joint 21 includes a boot 186 provided across the outer periphery of the outer ring 170 and the outer periphery of the first intermediate shaft 12a. The boot 186 is fixed to the outer periphery of the outer ring 170 and the outer periphery of the first intermediate shaft 12a using boot bands 188 and 189, respectively. The boot 186 is formed in a bellows shape so that it can expand and contract in the axial direction.
 続いて、図20及び図21を参照しながら、ダンパ50の構造について説明する。図20は、右側の中間シャフト12に設けられたダンパ50を軸方向差動装置側から見た断面図であり、図21は、図20に示すダンパ50のC-C線断面図である。なお、左側のダンパ50は、右側のダンパ50と左右対称の構造を有する。 Subsequently, the structure of the damper 50 will be described with reference to FIGS. 20 and 21. 20 is a cross-sectional view of the damper 50 provided on the right intermediate shaft 12 as seen from the axial differential device side, and FIG. 21 is a cross-sectional view of the damper 50 shown in FIG. The left damper 50 has a symmetrical structure with the right damper 50.
 図20及び図21に示すように、ダンパ50は、第1中間シャフト12aの駆動輪側先端に車幅方向に延びるように設けられた筒部132と、該筒部132内に収容されるように第2中間シャフト12bと一体に設けられた軸部150とを備えている。 As shown in FIGS. 20 and 21, the damper 50 has a cylindrical portion 132 provided at the front end of the first intermediate shaft 12 a on the driving wheel side so as to extend in the vehicle width direction, and is accommodated in the cylindrical portion 132. And a shaft portion 150 provided integrally with the second intermediate shaft 12b.
 図20に示すように、筒部132の内周には、周方向に間隔を空けて複数の凹部134が設けられている。また、筒部132の内周には、径方向内側に突出した複数の仕切り部136が設けられている。各仕切り部136は、周方向において隣接する一対の凹部134間の中間部に配置されている。仕切り部136の径方向内側端部は軸部150の外周近傍に配置されている。 As shown in FIG. 20, a plurality of recesses 134 are provided on the inner periphery of the cylindrical portion 132 at intervals in the circumferential direction. In addition, a plurality of partition portions 136 projecting radially inward are provided on the inner periphery of the cylindrical portion 132. Each partition part 136 is arrange | positioned in the intermediate part between a pair of recessed parts 134 adjacent in the circumferential direction. The radially inner end of the partition 136 is disposed in the vicinity of the outer periphery of the shaft 150.
 軸部150の外周には、周方向に間隔を空けて複数のフィン部152が突設されている。各フィン部152は、周方向において隣接する一対の仕切り部136間の中間部に配置されている。フィン部152の径方向外側端部は凹部134内に配置されている。フィン部152と凹部134の側壁との間には間隙146が設けられている。これにより、筒部132と軸部150との相対回転が所定角度範囲で許容されると共に、該範囲を超える相対回転は、フィン部152と凹部134の側壁との干渉によって阻止され、これにより、動力源側から伝えられた第1中間シャフト12aの回転を、ダンパ50を介して第2中間シャフト12bへ確実に伝達することができる。 A plurality of fins 152 project from the outer periphery of the shaft 150 at intervals in the circumferential direction. Each fin part 152 is arrange | positioned in the intermediate part between a pair of partition parts 136 adjacent in the circumferential direction. The radially outer end of the fin portion 152 is disposed in the recess 134. A gap 146 is provided between the fin portion 152 and the side wall of the recess 134. Thereby, relative rotation between the cylindrical portion 132 and the shaft portion 150 is allowed in a predetermined angle range, and relative rotation exceeding the range is prevented by interference between the fin portion 152 and the side wall of the concave portion 134, thereby The rotation of the first intermediate shaft 12a transmitted from the power source side can be reliably transmitted to the second intermediate shaft 12b via the damper 50.
 周方向において隣接するフィン部152と仕切り部136との間には、例えば断面扇形の弾性部材160が介装されている。弾性部材160は例えばゴムからなる。弾性部材160は、フィン部152の側面及び仕切り部136の側面にそれぞれ接着又はその他の方法で位置決めされている。弾性部材160は、軸部150と筒部132との相対回転を許容するように弾性変形可能となっている。具体的に、筒部132に対して軸部150が相対回転すると、フィン部152を挟んだ一方の弾性部材160は圧縮変形する。このように構成された弾性部材160によって、動力源2からドライブシャフト10a,10bに伝わるねじり振動等の各種振動を減衰させることができる。 Between the fin part 152 and the partition part 136 which adjoin in the circumferential direction, the cross-section sector-shaped elastic member 160 is interposed, for example. The elastic member 160 is made of rubber, for example. The elastic member 160 is positioned on the side surface of the fin portion 152 and the side surface of the partition portion 136 by adhesion or other methods. The elastic member 160 is elastically deformable so as to allow relative rotation between the shaft portion 150 and the cylindrical portion 132. Specifically, when the shaft portion 150 rotates relative to the tube portion 132, one elastic member 160 sandwiching the fin portion 152 is compressed and deformed. Various vibrations such as torsional vibration transmitted from the power source 2 to the drive shafts 10a and 10b can be damped by the elastic member 160 configured as described above.
 図21に示すように、筒部132は、軸方向基端側を閉塞する底部132aと、軸方向末端側を開放する開口部132bとを備えている。なお、開口部132bは、シール部材144によってシールされている。 As shown in FIG. 21, the cylindrical portion 132 includes a bottom portion 132a that closes the axial base end side, and an opening portion 132b that opens the axial distal end side. The opening 132b is sealed by a seal member 144.
 筒部132は、車幅方向に沿って、エンジン3よりも車幅方向外側に配置されている(図18参照)。筒部132は車幅方向外側に開口しているため、該開口部132bは、筒部132におけるエンジン3から最も遠い部分に配置されている。このように筒部132が配置されていることによって、例えば車両前方から車両に大きな衝撃荷重が加わった際にエンジン3が後退して、ダンパ50の筒部132、特に開口部132bの周辺部に装着されたスナップリング(抜け止め部)142に衝撃荷重が直接的に作用することを抑制できるようになっている。 The cylinder part 132 is arrange | positioned along the vehicle width direction on the vehicle width direction outer side rather than the engine 3 (refer FIG. 18). Since the cylindrical part 132 is opened to the outside in the vehicle width direction, the opening part 132 b is arranged at a part of the cylindrical part 132 farthest from the engine 3. By arranging the cylindrical portion 132 in this way, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine 3 moves backward, and the cylindrical portion 132 of the damper 50, particularly the peripheral portion of the opening 132b. It is possible to suppress the impact load from directly acting on the attached snap ring (preventing part) 142.
 なお、必ずしも筒部132の全体がエンジン3よりも車幅方向外側に配置される必要はなく、少なくとも開口部132bがエンジン3よりも車幅方向外側に配置されるように、エンジン3と筒部132を車幅方向にオーバーラップして配置してもよい。 Note that it is not always necessary that the entire cylindrical portion 132 is disposed outside the engine 3 in the vehicle width direction, and the engine 3 and the tubular portion are arranged so that at least the opening 132b is disposed outside the engine 3 in the vehicle width direction. 132 may be overlapped in the vehicle width direction.
 軸部150の外周と筒部132の内周との間には、軸部150の差動装置側端部を支持する第1軸受137と、該第1軸受137よりも駆動輪側において軸部150を支持する第2軸受138とが介装されている。上述した凹部134、仕切り部136、フィン部152及び弾性部材160は、第1及び第2の軸受137,138間において軸方向に延びるように設けられている。 Between the outer periphery of the shaft portion 150 and the inner periphery of the cylindrical portion 132, a first bearing 137 that supports the differential device side end portion of the shaft portion 150, and the shaft portion closer to the drive wheel than the first bearing 137. A second bearing 138 that supports 150 is interposed. The concave portion 134, the partition portion 136, the fin portion 152, and the elastic member 160 described above are provided so as to extend in the axial direction between the first and second bearings 137 and 138.
 軸部150の差動装置側端部は、残りの部分に比べて縮径された小径部151となっており、該小径部151は、弾性部材160よりも差動装置側の軸方向位置において第1軸受137を介して筒部132に支持されている。 An end portion on the differential device side of the shaft portion 150 is a small-diameter portion 151 that is reduced in diameter compared to the remaining portion, and the small-diameter portion 151 is located at an axial position on the differential device side relative to the elastic member 160. The cylindrical portion 132 is supported via the first bearing 137.
 弾性部材160よりも駆動輪側の軸方向位置には、軸部150の外周から径方向外側に突出した環状の拡径部154が設けられている。拡径部154は、軸部150と一体に設けられている。ただし、拡径部の構成はこれに限定されるものでなく、例えば、軸部150の外周に設けた周溝に拡径された状態で装着されたスナップリングで構成されてもよい。 An annular diameter-enlarged portion 154 that protrudes radially outward from the outer periphery of the shaft portion 150 is provided at a position in the axial direction closer to the drive wheel than the elastic member 160. The enlarged diameter portion 154 is provided integrally with the shaft portion 150. However, the configuration of the enlarged diameter portion is not limited to this, and may be constituted by, for example, a snap ring that is mounted in an expanded state in a circumferential groove provided on the outer periphery of the shaft portion 150.
 第2軸受138は、拡径部154よりも開口部132b側の軸方向位置に配置されている。第2軸受138は第1軸受137よりも大径となっている。より詳細には、第2軸受138の内径が第1軸受137の外径よりも大きくなっている。 2nd bearing 138 is arrange | positioned in the axial direction position of the opening part 132b side rather than the enlarged diameter part 154. FIG. The second bearing 138 has a larger diameter than the first bearing 137. More specifically, the inner diameter of the second bearing 138 is larger than the outer diameter of the first bearing 137.
 第2軸受138よりも更に開口部132b側の軸方向位置には、筒部132の内周から径方向内側に突出した抜け止め部として、C形のスナップリング142が設けられている。スナップリング142は、縮径するように弾性変形した状態で、筒部132の内周に全周に亘って設けられた周溝140に装着されている。このスナップリング142は、拡径方向に作用する復元力によって周溝140の底部に押し当てられることで、該周溝140内に保持されている。 A C-shaped snap ring 142 is provided at an axial position on the opening 132b side of the second bearing 138 as a retaining portion protruding radially inward from the inner periphery of the cylindrical portion 132. The snap ring 142 is attached to a circumferential groove 140 provided on the inner circumference of the cylindrical portion 132 over the entire circumference in a state of being elastically deformed so as to reduce the diameter. The snap ring 142 is held in the circumferential groove 140 by being pressed against the bottom of the circumferential groove 140 by a restoring force acting in the diameter expansion direction.
 ところで、例えば、軸部150の外周面に形成された周溝にスナップリングを拡径するように弾性変形した状態で装着し、該スナップリングでダンパ50の抜け止め部を構成することも考えられるが、このようなスナップリングに比べて、筒部132の周溝140に装着された上記スナップリング142は大径となる。該比較的大径のスナップリング142で構成された本実施形態の抜け止め部は、比較的小径のものに比べて、より高い抜け止め機能を発揮することができる。 By the way, for example, it is conceivable that the snap ring is attached to a circumferential groove formed on the outer peripheral surface of the shaft portion 150 in an elastically deformed state so that the diameter of the snap ring is expanded, and the retaining portion of the damper 50 is configured by the snap ring. However, the snap ring 142 attached to the circumferential groove 140 of the cylindrical portion 132 has a larger diameter than such a snap ring. The retaining portion of the present embodiment configured with the relatively large-diameter snap ring 142 can exhibit a higher retaining function than a relatively small-diameter portion.
 このように、第2軸受138は、拡径部154とスナップリング(抜け止め部)142とによって軸方向の両側から挟み込まれるように配置されている。開口部132b側への軸部150の移動は、拡径部154と第2軸受138の内輪との干渉によって規制される。ここで、第2軸受138は、上記のように第1軸受137よりも大径であるため、拡径部154と第2軸受138の内輪との干渉による抜け止めを確実に行うことができる。また、開口部132b側への第2軸受138及び軸部150の移動は、第2軸受138の外輪とスナップリング(抜け止め部)142との干渉によって規制されている。このように、軸部150の開口部132b側への移動規制(抜け止め)は、最終的に、スナップリング(抜け止め部)142により実現されている。 Thus, the second bearing 138 is disposed so as to be sandwiched from both sides in the axial direction by the enlarged diameter portion 154 and the snap ring (preventing portion) 142. The movement of the shaft portion 150 toward the opening 132b is restricted by the interference between the enlarged diameter portion 154 and the inner ring of the second bearing 138. Here, since the second bearing 138 has a larger diameter than the first bearing 137 as described above, it is possible to reliably prevent the second bearing 138 from coming off due to interference between the enlarged diameter portion 154 and the inner ring of the second bearing 138. Further, the movement of the second bearing 138 and the shaft portion 150 toward the opening 132b is restricted by the interference between the outer ring of the second bearing 138 and the snap ring (preventing portion) 142. As described above, the movement restriction (prevention of removal) of the shaft part 150 toward the opening 132b is finally realized by the snap ring (prevention part) 142.
 また、上述したように、開口部132bは、筒部132におけるエンジン3から最も遠い部分に配置されているため、例えば車両前方から車両に大きな衝撃荷重が加わった際にエンジン3が後退して、筒部132における開口部132b側部分、特にスナップリング(抜け止め部)142に衝撃荷重が作用することを抑制できる。これにより、ダンパ50の強度を低くすることが可能となり、ダンパ50の小型化を実現できるので、車両搭載性を向上することができる。 Further, as described above, the opening 132b is disposed at a portion farthest from the engine 3 in the cylindrical portion 132. Therefore, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the engine 3 moves backward, It is possible to suppress the impact load from acting on the opening 132b side portion of the cylindrical portion 132, in particular, the snap ring (preventing portion) 142. As a result, the strength of the damper 50 can be reduced, and the damper 50 can be reduced in size, so that the vehicle mountability can be improved.
 スナップリング(抜け止め部)142によるダンパ50の抜け強度は、上述したデフ側等速ジョイント21(図19参照)の抜け強度よりも大きく、具体的には、例えば1200N以上1400N以下であることが好ましい。第2軸受138、拡径部154、スナップリング142(抜け止め部)及び周溝140の寸法や素材等の具体的な構成は、このようなダンパ50の抜け強度が実現されるように決定されている。 The pull-out strength of the damper 50 by the snap ring (prevention portion) 142 is larger than the pull-out strength of the above-mentioned differential side constant velocity joint 21 (see FIG. 19), specifically, for example, not less than 1200N and not more than 1400N. preferable. Specific configurations such as dimensions and materials of the second bearing 138, the enlarged diameter portion 154, the snap ring 142 (a retaining portion), and the circumferential groove 140 are determined so as to realize such a removal strength of the damper 50. ing.
 ここでいう「ダンパ50の抜け強度」とは、筒部132から軸部150を抜き出すように第1中間シャフト12a及び第2中間シャフト12bを軸方向に引っ張る場合に、第2軸受138の内輪と拡径部154との干渉及び第2軸受138の外輪とスナップリング142との干渉による軸部150の移動の規制が果たせなくなることによって、筒部132からの軸部150の抜け止め機能が失われる直前の引張力の大きさを意味する。 The “stripping strength of the damper 50” here refers to the inner ring of the second bearing 138 when the first intermediate shaft 12a and the second intermediate shaft 12b are pulled in the axial direction so as to extract the shaft portion 150 from the cylindrical portion 132. Since the restriction of the movement of the shaft portion 150 due to the interference with the enlarged diameter portion 154 and the interference between the outer ring of the second bearing 138 and the snap ring 142 cannot be achieved, the function of preventing the shaft portion 150 from coming off from the cylindrical portion 132 is lost. It means the magnitude of the previous tensile force.
 ダンパ50の抜け強度はデフ側等速ジョイント21の抜け強度よりも大きいため、例えば車両前方から車両に大きな衝撃荷重が加わった際に、ドライブシャフト10に曲げ荷重や差動装置8と駆動輪28との間の軸方向距離を拡げるような荷重を、ダンパ50よりも抜け強度が小さいデフ側等速ジョイント21に作用させることができる。そのため、ダンパ50の強度を低くすることが可能となり、これにより、ダンパ50の大型化を抑制できるため、ダンパ50の車両への搭載性が悪化することを抑制できる。 Since the pull-out strength of the damper 50 is greater than the pull-out strength of the differential-side constant velocity joint 21, for example, when a large impact load is applied to the vehicle from the front of the vehicle, the bending load or the differential device 8 and the drive wheels 28 are applied to the drive shaft 10. It is possible to apply a load that increases the axial distance between the differential-side constant velocity joint 21 that is less than the damper 50 and has a smaller strength. Therefore, it is possible to reduce the strength of the damper 50 and thereby suppress an increase in the size of the damper 50, thereby suppressing deterioration of the mountability of the damper 50 on the vehicle.
 また、車両に大きな衝撃荷重が加わった際に、ドライブシャフト10に曲げ荷重や差動装置8と駆動輪28との間の軸方向距離を拡げるような荷重がデフ側等速ジョイント21に作用して、仮に、デフ側等速ジョイント21の外輪170から被収容部181を含む各種部品が脱落した場合であっても、該部品をブーツ186に収容することができる。 Further, when a large impact load is applied to the vehicle, a bending load on the drive shaft 10 or a load that expands the axial distance between the differential 8 and the drive wheel 28 acts on the differential side constant velocity joint 21. Even if various parts including the accommodated portion 181 are dropped from the outer ring 170 of the differential-side constant velocity joint 21, the parts can be accommodated in the boot 186.
 なお、図20及び図21に示すダンパ50の構造は一例に過ぎず、本発明において、抜け止め構造を含むダンパの具体的な構造は特に限定されるものでない。したがって、本発明では、上述した第2軸受138、拡径部154及びスナップリング142からなる抜け止め構造に代えて、公知の種々の抜け止め構造を採用可能である。 Note that the structure of the damper 50 shown in FIGS. 20 and 21 is merely an example, and the specific structure of the damper including the retaining structure is not particularly limited in the present invention. Therefore, in the present invention, various known retaining structures can be employed instead of the retaining structure including the second bearing 138, the enlarged diameter portion 154, and the snap ring 142 described above.
 さらに、上述の実施形態では、車両に大きな衝撃荷重が加わった際に、ドライブシャフト10に曲げ荷重や差動装置8と駆動輪28との間の軸方向距離を拡げるような荷重がデフ側等速ジョイント21に作用して、デフ側等速ジョイント21の外輪170から被収容部181が抜け外れる場合に、該被収容部181がブーツ186に収容され得る形態について説明したが、本発明には、被収容部181がブーツ186に収容されない形態も含まれるものとする。この場合、例えば、外輪170と被収容部181との嵌合状態における軸方向の外輪170と被収容部181との許容相対移動量を大きくすることで、外輪170と被収容部181との嵌合状態を維持しやすくなる。したがって、この場合、ブーツ186を省略することが可能である。 Furthermore, in the above-described embodiment, when a large impact load is applied to the vehicle, a bending load or a load that increases the axial distance between the differential 8 and the drive wheel 28 is applied to the drive shaft 10. In the present invention, the case where the accommodated portion 181 is accommodated in the boot 186 when the accommodated portion 181 is detached from the outer ring 170 of the differential constant velocity joint 21 by acting on the speed joint 21 has been described. In addition, a form in which the accommodated portion 181 is not accommodated in the boot 186 is also included. In this case, for example, by increasing the allowable relative movement amount of the outer ring 170 in the axial direction in the fitted state between the outer ring 170 and the accommodated portion 181 and the accommodated portion 181, the fit between the outer ring 170 and the accommodated portion 181 is achieved. It becomes easy to maintain the combined state. Therefore, in this case, the boot 186 can be omitted.
 またさらに、上述の実施形態では、ドライブシャフト上に設けられる自在継手として、図19に示す等速ジョイント21を用いる場合について説明したが、本発明における自在継手は、上述したものと異なるタイプの等速ジョイント、又は、等速ジョイント以外の自在継手であってもよい。 Furthermore, in the above-described embodiment, the case where the constant velocity joint 21 shown in FIG. 19 is used as the universal joint provided on the drive shaft has been described. However, the universal joint in the present invention is of a type different from that described above. It may be a universal joint other than a speed joint or a constant velocity joint.
 また、本発明において、自在継手の抜け止め構造は、上述したようなスナップリング184からなるものに限定されるものでなく、例えばかしめ等、公知の種々の抜け止め構造を採用してもよいし、自在継手には、必ずしも抜け止め構造を設けなくてもよい。 Further, in the present invention, the retaining structure of the universal joint is not limited to the one made of the snap ring 184 as described above, and various known retaining structures such as caulking may be adopted. The universal joint is not necessarily provided with a retaining structure.
 さらに、上述の実施形態では、ドライブシャフト上においてダンパよりも動力源側に配置された自在継手(デフ側等速ジョイント21)の抜け強度が、ダンパの抜け強度よりも小さい場合について説明したが、本発明では、ダンパよりも駆動輪側に配置された自在継手(上述の実施形態では、ホイール側等速ジョイント22)の抜け強度をダンパの抜け強度よりも小さくするようにしてもよく、これによっても、同様の効果を得ることができる。 Furthermore, in the above-described embodiment, a case has been described in which the pull-out strength of the universal joint (difference-side constant velocity joint 21) disposed on the drive shaft on the drive shaft side is smaller than the pull-out strength of the damper. In the present invention, the pull-out strength of the universal joint (in the above-described embodiment, the wheel-side constant velocity joint 22) arranged on the drive wheel side of the damper may be made smaller than the pull-out strength of the damper. The same effect can be obtained.
 以上、上述の実施形態を挙げて本発明を説明したが、本発明は上述の実施形態に限定されるものではない。 As mentioned above, although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment.
 例えば、上述の実施形態では、ドライブシャフト上に設けられる自在継手として等速ジョイントを用いる場合について説明したが、本発明は、等速ジョイント以外の自在継手を備えた動力伝達装置にも適用できる。 For example, in the above-described embodiment, the case where a constant velocity joint is used as the universal joint provided on the drive shaft has been described, but the present invention can also be applied to a power transmission device including a universal joint other than the constant velocity joint.
 さらに、上述の実施形態では、エンジン横置き式のFF車に搭載される動力伝達装置について説明したが、本発明は、フロントエンジン・リヤドライブ式の車両(FR車)等、FF式以外の車両や、エンジン縦置き式の車両に搭載される動力伝達装置にも適用できる。 Further, in the above-described embodiment, the power transmission device mounted on the engine-side-mounted FF vehicle has been described. However, the present invention is a vehicle other than the FF type, such as a front engine / rear drive type vehicle (FR vehicle). It can also be applied to a power transmission device mounted on a vertical engine-type vehicle.
 また、上述した第1~第8の実施形態はそれぞれ組合せが可能である。例えば、第1~第5の実施形態の高周波用ダンパ50、80として、第6~第8の実施形態のダンパ50を用いてもよく、第1~第5の実施形態のデフ側等速ジョイント21として、第6~第8の実施形態のデフ側等ジョイント21を用いてもよい。 In addition, the first to eighth embodiments described above can be combined. For example, as the high frequency dampers 50 and 80 of the first to fifth embodiments, the damper 50 of the sixth to eighth embodiments may be used, and the differential side constant velocity joints of the first to fifth embodiments. For example, the differential side joint 21 of the sixth to eighth embodiments may be used.
 以上のように、本発明によれば、ドライブシャフト上においてダンパを周辺の車体側部材に干渉することなく配置し、動力源側からドライブシャフトに伝わる振動を広範囲の周波数領域にわたって効果的に吸収することが可能となるから、ドライブシャフト上にダンパが配設された車両の製造産業分野において好適に利用される可能性がある。 As described above, according to the present invention, the damper is disposed on the drive shaft without interfering with the surrounding vehicle body side member, and the vibration transmitted from the power source side to the drive shaft is effectively absorbed over a wide frequency range. Therefore, there is a possibility that it can be suitably used in the field of manufacturing industries of vehicles in which a damper is disposed on a drive shaft.
  1:動力伝達装置
  2:動力源
  3:エンジン
  4:トランスアクスル
  6:変速機
  8:差動装置
  9:排気装置
 9a:排気管
 10:ドライブシャフト
 11:デフ側シャフト(第1動力伝達軸)
 12:中間シャフト(第2動力伝達軸)
 12a:第1中間シャフト(第4動力伝達軸)
 12b:第2中間シャフト(第5動力伝達軸)
 13:ホイール側シャフト(第3動力伝達軸)
 21:デフ側等速ジョイント(第1自在継手)
 22:ホイール側等速ジョイント(第2自在継手)
 28:駆動輪
 30:低周波用ダンパ(所定のダンパ)
 39:小径部
 40:ストッパ機構(規制部)
 49:筒部
 50:高周波用ダンパ(他のダンパ、弾性ダンパ)
 55:小径部
 56:大径部
 57:第1大径部
 58:第2大径部
 71:内筒
 72:外筒
 73:ブッシュ部(弾性部材、ゴム部材)
 77:デフ側軸受(第1軸受)
 78:ホイール側軸受(第2軸受)
 80:高周波用ダンパ(他のダンパ)
 98:弾性部材(ゴム部材)
 132:筒部
 132a:筒部の底部
 132b:筒部の開口部
 137:第1軸受(反開口部側の軸受)
 138:第2軸受(開口部側の軸受)
 140:周溝
 142:スナップリング(抜け止め部)
 154:拡径部
 160:弾性部材(ゴム部材)
 170:外輪(筒状部)
 174:内輪
 178:ボール
 181:被収容部
 182:周溝
 184:スナップリング
 186:ブーツ
 
1: Power transmission device 2: Power source 3: Engine 4: Transaxle 6: Transmission 8: Differential device 9: Exhaust device 9a: Exhaust pipe 10: Drive shaft 11: Differential shaft (first power transmission shaft)
12: Intermediate shaft (second power transmission shaft)
12a: first intermediate shaft (fourth power transmission shaft)
12b: second intermediate shaft (fifth power transmission shaft)
13: Wheel side shaft (third power transmission shaft)
21: Differential side constant velocity joint (first universal joint)
22: Wheel side constant velocity joint (second universal joint)
28: Drive wheel 30: Low frequency damper (predetermined damper)
39: Small diameter part 40: Stopper mechanism (regulation part)
49: Tube portion 50: High-frequency damper (other damper, elastic damper)
55: Small diameter part 56: Large diameter part 57: First large diameter part 58: Second large diameter part 71: Inner cylinder 72: Outer cylinder 73: Bush part (elastic member, rubber member)
77: Differential bearing (first bearing)
78: Wheel-side bearing (second bearing)
80: High-frequency damper (other dampers)
98: Elastic member (rubber member)
132: cylindrical portion 132a: bottom portion of the cylindrical portion 132b: opening portion of the cylindrical portion 137: first bearing (bearing on the side opposite to the opening portion)
138: Second bearing (opening side bearing)
140: Circumferential groove 142: Snap ring (preventing part)
154: Expanded diameter portion 160: Elastic member (rubber member)
170: Outer ring (cylindrical part)
174: Inner ring 178: Ball 181: Contained part 182: Circumferential groove 184: Snap ring 186: Boot

Claims (12)

  1.  差動装置を含む動力源と、
     前記差動装置と駆動輪とを連結するドライブシャフトとを備え、
     該ドライブシャフトが、
     一端が前記差動装置に連結された第1動力伝達軸と、
     一端が第1自在継手を介して前記第1動力伝達軸の他端に連結された第2動力伝達軸と、
     一端が第2自在継手を介して前記第2動力伝達軸の他端に連結され、他端に前記駆動輪が連結された第3動力伝達軸と、を備えた車両の動力伝達構造であって、
     前記第1、第2、第3動力伝達軸のうちの少なくとも2つの動力伝達軸に、それぞれダンパが設けられ、
     これらのダンパのうち、前記少なくとも2つの動力伝達軸のうち最も長い動力伝達軸に配置された所定のダンパは、残りのダンパよりも低周波数領域にて機能するダンパであることを特徴とする車両の動力伝達構造。
    A power source including a differential;
    A drive shaft connecting the differential and the drive wheel;
    The drive shaft is
    A first power transmission shaft having one end connected to the differential;
    A second power transmission shaft having one end coupled to the other end of the first power transmission shaft via a first universal joint;
    A vehicle power transmission structure comprising: a third power transmission shaft having one end connected to the other end of the second power transmission shaft via a second universal joint and the other end connected to the driving wheel. ,
    At least two of the first, second, and third power transmission shafts are each provided with a damper,
    Among these dampers, the predetermined damper disposed on the longest power transmission shaft of the at least two power transmission shafts is a damper that functions in a lower frequency region than the remaining dampers. Power transmission structure.
  2.  前記動力源は、排気管が接続されたエンジンを備え、
     前記排気管が前記ドライブシャフトにおける前記第1動力伝達軸の上方を通過して配設されていると共に、
     前記第1動力伝達軸に、前記所定のダンパとして、軸方向の所定範囲に亘って形成された小径部のねじりによって振動を減衰させるように構成された金属製ダンパが設けられていることを特徴とする請求項1に記載の車両の動力伝達構造。
    The power source includes an engine to which an exhaust pipe is connected,
    The exhaust pipe is disposed above the first power transmission shaft of the drive shaft, and
    The first power transmission shaft is provided with a metal damper configured to attenuate vibrations by torsion of a small diameter portion formed over a predetermined range in the axial direction as the predetermined damper. The power transmission structure for a vehicle according to claim 1.
  3.  前記第2動力伝達軸又は第3動力伝達軸の少なくとも一方に、前記残りのダンパとして、ゴム部材によって振動を減衰させるように構成されたダンパが設けられていることを特徴とする請求項2に記載の車両の動力伝達構造。  3. The damper according to claim 2, wherein at least one of the second power transmission shaft and the third power transmission shaft is provided with a damper configured to dampen vibration by a rubber member as the remaining damper. The vehicle power transmission structure described.
  4.  前記第2動力伝達軸は、
     一端が前記第1自在継手に連結され、他端側が前記第2自在継手に向かって延びる第4動力伝達軸と、
     他端が前記第2自在継手に連結され、一端側が前記第1自在継手に向かって延びる第5動力伝達軸と、を有し、
     前記第4動力伝達軸の他端又は第5動力伝達軸の一端のうちの一方に設けられた筒部内に前記第4動力伝達軸の他端又は第5動力伝達軸の一端のうちの他方に設けられた軸部を収容すると共に、該筒部と軸部との間に弾性部材を介在させてなる弾性ダンパを備え、
     軸方向において、前記弾性ダンパにおける前記弾性部材よりも前記第2自在継手側の部分は、前記弾性ダンパにおける前記弾性部材が設けられた部分と該弾性部材よりも前記第1自在継手側の部分とに比べて小さな径を有する小径部とされていることを特徴とする請求項1に記載の車両の動力伝達構造。
    The second power transmission shaft is
    A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
    A fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
    In the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft, the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft is placed in one of the cylindrical portions provided at one end of the fifth power transmission shaft. An elastic damper is provided that accommodates the provided shaft portion and interposes an elastic member between the tube portion and the shaft portion,
    In the axial direction, a portion of the elastic damper that is closer to the second universal joint than the elastic member includes a portion of the elastic damper that is provided with the elastic member, and a portion that is closer to the first universal joint than the elastic member. The power transmission structure for a vehicle according to claim 1, wherein the power transmission structure is a small-diameter portion having a smaller diameter than that of the vehicle.
  5.  軸方向において、前記弾性ダンパと前記第1自在継手との距離が、前記弾性ダンパと前記第2自在継手との距離に比べて小さいことを特徴とする請求項4に記載の車両の動力伝達構造。 The power transmission structure for a vehicle according to claim 4, wherein a distance between the elastic damper and the first universal joint is smaller than a distance between the elastic damper and the second universal joint in the axial direction. .
  6.  前記小径部に、前記筒部と前記軸部との相対回転を所定角度範囲に規制する規制部が設けられていることを特徴とする請求項4又は請求項5に記載の車両の動力伝達構造。 The power transmission structure for a vehicle according to claim 4 or 5, wherein a restriction portion for restricting relative rotation between the cylindrical portion and the shaft portion within a predetermined angle range is provided in the small diameter portion. .
  7.  前記弾性ダンパは、軸方向における前記弾性部材よりも前記第1自在継手側において前記筒部と前記軸部との間に介装された第1軸受を備えることを特徴とする請求項4から請求項6のいずれか1項に記載の車両の動力伝達構造。 The said elastic damper is provided with the 1st bearing interposed between the said cylinder part and the said shaft part in the said 1st universal joint side rather than the said elastic member in an axial direction, The Claim 4 characterized by the above-mentioned. 7. The power transmission structure for a vehicle according to any one of items 6.
  8.  前記弾性ダンパは、軸方向における前記弾性部材よりも前記第2自在継手側において前記筒部と前記軸部との間に介装された第2軸受を備え、
     前記第2軸受は、前記第1軸受よりも小径とされていることを特徴とする請求項7に記載の車両の動力伝達構造。
    The elastic damper includes a second bearing interposed between the cylindrical portion and the shaft portion on the second universal joint side with respect to the elastic member in the axial direction,
    The power transmission structure for a vehicle according to claim 7, wherein the second bearing has a smaller diameter than the first bearing.
  9.  前記第2動力伝達軸は、
     一端が前記第1自在継手に連結され、他端側が前記第2自在継手に向かって延びる第4動力伝達軸と、
     他端が前記第2自在継手に連結され、一端側が前記第1自在継手に向かって延びる第5動力伝達軸と、を有し、
     前記第4動力伝達軸の他端又は第5動力伝達軸の一端の一方に設けられた筒部内に前記第4動力伝達軸の他端又は第5動力伝達軸の一端の他方に設けられた軸部を収容すると共に、該筒部と軸部との間に弾性部材を介在させてなる弾性ダンパを備え、
     前記弾性ダンパは、前記弾性部材よりも前記開口部側の軸方向位置において前記軸部の外周と前記筒部の内周との間に介在する軸受と、前記軸受よりも前記開口部とは反対側の軸方向位置において前記軸部の外周から径方向外側に突出した拡径部と、前記軸受よりも前記開口部側の軸方向位置において前記筒部の内周から径方向内側に突出した抜け止め部と、を備え、
     該抜け止め部による前記弾性ダンパの抜け強度は、前記第1自在継手の抜け強度よりも大きいことを特徴とする請求項1に記載の車両の動力伝達構造。
    The second power transmission shaft is
    A fourth power transmission shaft having one end connected to the first universal joint and the other end extending toward the second universal joint;
    A fifth power transmission shaft having the other end connected to the second universal joint and one end side extending toward the first universal joint;
    A shaft provided on the other end of the fourth power transmission shaft or the other end of the fifth power transmission shaft in a cylindrical portion provided on the other end of the fourth power transmission shaft or one end of the fifth power transmission shaft. An elastic damper having an elastic member interposed between the cylindrical portion and the shaft portion,
    The elastic damper has a bearing interposed between an outer periphery of the shaft portion and an inner periphery of the cylindrical portion at an axial position closer to the opening than the elastic member, and is opposite to the opening than the bearing. A diameter-expanded portion projecting radially outward from the outer periphery of the shaft portion at the axial position on the side, and a protrusion projecting radially inward from the inner periphery of the cylindrical portion at the axial position closer to the opening than the bearing A stop, and
    2. The vehicle power transmission structure according to claim 1, wherein a removal strength of the elastic damper by the retaining portion is greater than a removal strength of the first universal joint. 3.
  10.  前記第1自在継手は、前記第4動力伝達軸の一端に設けられた被収容部と、該被収容部を収容するように前記第1動力伝達軸の他端に設けられた筒状部と、該筒状部の外周と前記第4動力伝達軸の外周とに跨がって軸方向に伸縮可能に設けられたブーツ部と、を備えていることを特徴とする請求項9に記載の車両の動力伝達構造。 The first universal joint includes a receiving portion provided at one end of the fourth power transmission shaft, and a cylindrical portion provided at the other end of the first power transmission shaft so as to receive the receiving portion. The boot portion provided to extend in the axial direction straddling the outer periphery of the cylindrical portion and the outer periphery of the fourth power transmission shaft. Vehicle power transmission structure.
  11.  前記動力源はエンジンを含み、
     前記抜け止め部は、前記筒部の内周に形成された周溝に縮径された状態で装着されたスナップリングで構成されており、
     前記弾性ダンパは、車両前後方向における前記エンジンよりも後側、且つ、車幅方向における前記第1自在継手よりも外側に配置され、
     前記筒部は、前記第4動力伝達軸の一端から車幅方向に沿って外側へ延びるように配置され、
     前記開口部は、前記エンジンよりも車幅方向外側に配置されていることを特徴とする請求項9又は請求項10に記載の車両の動力伝達構造。
    The power source includes an engine;
    The retaining portion is composed of a snap ring that is mounted in a reduced diameter in a circumferential groove formed on the inner periphery of the cylindrical portion,
    The elastic damper is disposed on the rear side of the engine in the vehicle longitudinal direction and on the outer side of the first universal joint in the vehicle width direction,
    The cylindrical portion is disposed so as to extend outward from one end of the fourth power transmission shaft along the vehicle width direction,
    The power transmission structure for a vehicle according to claim 9 or 10, wherein the opening is disposed on the outer side in the vehicle width direction with respect to the engine.
  12.  前記弾性ダンパは、前記弾性部材よりも軸方向の開口部側に配置された前記軸受に加えて、前記弾性部材よりも軸方向の反開口部側に配置された軸受を備え、
     前記開口部側の軸受は、前記反開口部側の軸受よりも大径であることを特徴とする請求項9から請求項11のいずれか1項に記載の車両の動力伝達構造。
    The elastic damper includes a bearing arranged on the side opposite to the opening in the axial direction from the elastic member, in addition to the bearing arranged on the opening side in the axial direction from the elastic member,
    The power transmission structure for a vehicle according to any one of claims 9 to 11, wherein the bearing on the opening side has a larger diameter than the bearing on the opposite opening side.
PCT/JP2015/003180 2014-06-26 2015-06-24 Power transmission structure for vehicle WO2015198601A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580019655.6A CN106458021B (en) 2014-06-26 2015-06-24 The power transmission structure of vehicle
US15/320,715 US10023049B2 (en) 2014-06-26 2015-06-24 Power transfer structure of vehicle
DE112015003024.7T DE112015003024T5 (en) 2014-06-26 2015-06-24 Power transmission structure of a vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-131141 2014-06-26
JP2014131139A JP6206341B2 (en) 2014-06-26 2014-06-26 Vehicle power transmission structure
JP2014131141A JP6206342B2 (en) 2014-06-26 2014-06-26 Vehicle power transmission structure
JP2014-131140 2014-06-26
JP2014-131139 2014-06-26
JP2014131140A JP6079706B2 (en) 2014-06-26 2014-06-26 Vehicle power transmission structure

Publications (1)

Publication Number Publication Date
WO2015198601A1 true WO2015198601A1 (en) 2015-12-30

Family

ID=54937708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003180 WO2015198601A1 (en) 2014-06-26 2015-06-24 Power transmission structure for vehicle

Country Status (4)

Country Link
US (1) US10023049B2 (en)
CN (1) CN106458021B (en)
DE (1) DE112015003024T5 (en)
WO (1) WO2015198601A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853543B1 (en) * 2016-05-19 2018-04-30 주식회사 만도 Reducer for vehicle
DE102017221601B4 (en) * 2017-11-30 2020-03-19 Ford Global Technologies, Llc Lateral drive shaft of a drive train comprising an internal combustion engine and a transmission
DE102018209356A1 (en) * 2018-06-12 2019-12-12 Bayerische Motoren Werke Aktiengesellschaft Output shaft of a vehicle
ES2894144T3 (en) * 2019-03-15 2022-02-11 Siemens Ag Machine tool with optimized orientation of vibration dampers
JP7456243B2 (en) * 2020-04-01 2024-03-27 マツダ株式会社 power transmission device
CN113386828A (en) * 2021-06-18 2021-09-14 南京涵铭置智能科技有限公司 Stable carrying robot and carrying method thereof
US20240018858A1 (en) * 2022-07-12 2024-01-18 Caterpillar Inc. Electric fracturing drivetrain

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025282B2 (en) * 1976-11-09 1985-06-17 本田技研工業株式会社 Automotive wheel drive shaft device
JPS616027U (en) * 1984-06-15 1986-01-14 マツダ株式会社 Vehicle drive axle device
JPS62162125U (en) * 1986-04-05 1987-10-15
JPH0694075A (en) * 1992-09-14 1994-04-05 Daihatsu Motor Co Ltd Dynamic damper of rotator
JP2010036821A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Vehicular power transmission member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891394A (en) * 1957-04-17 1959-06-23 Caterpillar Tractor Co Flexible and vibration damping coupling
GB1267838A (en) * 1969-06-24 1972-03-22 Fuji Heavy Ind Ltd A front wheel drive vehicle including an independent front suspension system
DE3017757C2 (en) * 1980-05-09 1982-07-01 Löhr & Bromkamp GmbH, 6050 Offenbach Storage arrangement
JPH1089373A (en) * 1996-09-11 1998-04-07 Koyo Seiko Co Ltd Elastic shaft joint
ATE415307T1 (en) * 2003-12-11 2008-12-15 Shaft Form Engineering Gmbh TELESCOPIC DRIVE JOINT
US7308840B2 (en) * 2005-07-19 2007-12-18 Ford Global Technologies, Llc Torsional damper for a transmission output shaft
JP2010181011A (en) 2009-02-09 2010-08-19 Ntn Corp Shaft for constant velocity universal joint
JP2011002032A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Shaft coupling and vehicular shaft driving type power transmission device having shaft coupling
CN202833700U (en) * 2012-09-03 2013-03-27 北京汽车股份有限公司 Transmission half shaft assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025282B2 (en) * 1976-11-09 1985-06-17 本田技研工業株式会社 Automotive wheel drive shaft device
JPS616027U (en) * 1984-06-15 1986-01-14 マツダ株式会社 Vehicle drive axle device
JPS62162125U (en) * 1986-04-05 1987-10-15
JPH0694075A (en) * 1992-09-14 1994-04-05 Daihatsu Motor Co Ltd Dynamic damper of rotator
JP2010036821A (en) * 2008-08-07 2010-02-18 Toyota Motor Corp Vehicular power transmission member

Also Published As

Publication number Publication date
DE112015003024T5 (en) 2017-06-01
CN106458021A (en) 2017-02-22
CN106458021B (en) 2019-01-08
US20170129332A1 (en) 2017-05-11
US10023049B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2015198601A1 (en) Power transmission structure for vehicle
US9316264B2 (en) Propeller shaft
JP6354860B2 (en) Support structure for vehicle rotation shaft
US6666771B2 (en) Crash optimized plunging CV joint
US8118683B2 (en) Joint shaft and roller displacement UNIT THEREFOR
US7288029B1 (en) Propshaft with crash-worthiness
JP6206341B2 (en) Vehicle power transmission structure
KR20090017562A (en) Torque transmission device for the low vibration transmission of torque via at least one shaft
JP6079706B2 (en) Vehicle power transmission structure
KR101746578B1 (en) Dynamic damper use for a drive shaft of a car
JP6206342B2 (en) Vehicle power transmission structure
JP2019108049A (en) Vehicular propulsion shaft
CN108644310A (en) Torsional vibration damper for automobile driving shaft
CN209888655U (en) Transmission shaft and vehicle
JP2010221862A (en) Axle hub
CN207080496U (en) Center bearing assemblies and drive shaft assembly
JP4844095B2 (en) Vibration transmissibility reduction device
JP2004322816A (en) Impact drag reducing structure of propeller shaft for vehicle
JP7434820B2 (en) Intermediate shaft for steering device and steering device
JP4388421B2 (en) Propeller shaft for automobile
JP4766236B2 (en) Vehicle drive shaft and manufacturing method thereof
JP2007120544A (en) Drive shaft
JP6453604B2 (en) Long structural member
JP4422565B2 (en) Propeller shaft for automobile
CN106402179A (en) Transmission shaft and vehicle with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15320715

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003024

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812353

Country of ref document: EP

Kind code of ref document: A1