Nothing Special   »   [go: up one dir, main page]

WO2015190281A1 - Brittle substrate cleavage method and brittle substrate cleavage device - Google Patents

Brittle substrate cleavage method and brittle substrate cleavage device Download PDF

Info

Publication number
WO2015190281A1
WO2015190281A1 PCT/JP2015/065073 JP2015065073W WO2015190281A1 WO 2015190281 A1 WO2015190281 A1 WO 2015190281A1 JP 2015065073 W JP2015065073 W JP 2015065073W WO 2015190281 A1 WO2015190281 A1 WO 2015190281A1
Authority
WO
WIPO (PCT)
Prior art keywords
brittle material
material substrate
crack
cleaving
cutting line
Prior art date
Application number
PCT/JP2015/065073
Other languages
French (fr)
Japanese (ja)
Inventor
山田 淳一
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201580009533.9A priority Critical patent/CN106029317A/en
Priority to KR1020167025812A priority patent/KR101836025B1/en
Priority to JP2016527730A priority patent/JP6269830B2/en
Publication of WO2015190281A1 publication Critical patent/WO2015190281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/102Glass-cutting tools, e.g. scoring tools involving a focussed radiation beam, e.g. lasers

Definitions

  • the present invention relates to a brittle material substrate cleaving method and a brittle material substrate cleaving apparatus.
  • This application claims priority based on Japanese Patent Application No. 2014-120915 for which it applied to Japan on June 11, 2014, and uses the content here.
  • a laser irradiation unit that irradiates the brittle material substrate with a laser beam and locally heats it, and jets a coolant onto the brittle material substrate heated by the laser beam.
  • An apparatus including a coolant injection unit is proposed.
  • such a cleaving apparatus only forms a scribe line along the planned cutting line on the brittle material substrate, and by performing a break process on the brittle material substrate along the scribe line as a post process, Finally, the brittle material substrate is fully cut.
  • Patent Document 1 it is difficult to specifically configure the apparatus for applying the deformation stress, and the conditions for applying the deformation stress that can surely perform a full cut along the planned cutting line are determined. It can be difficult. Therefore, it is desired to provide a technique that has a relatively simple apparatus configuration and that can reliably perform a full cut on a brittle material substrate.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a brittle material substrate cleaving method and a brittle material substrate cleaving apparatus that can reliably perform full cutting on a brittle material substrate by a relatively simple method. It is to provide.
  • the present inventor for example, for an extremely thin brittle material substrate having a thickness of 300 ⁇ m or less, appropriately selects heating / cooling conditions, and moves the laser and cooling.
  • the knowledge that a full cut could be performed to the middle of the planned cutting line by appropriately generating thermal stress due to the temperature distribution in the direction was obtained.
  • a first aspect of the present invention is a method for cleaving a brittle material substrate along a planned cutting line, and the brittle material substrate on the planned cutting line of the brittle material substrate with respect to the laser beam irradiation source. Forming a crack at the leading end in the moving direction and a terminal crack at the trailing end in the moving direction, and moving the brittle material substrate with respect to the laser beam irradiation source.
  • the brittle material substrate has a non-product quality area at the periphery, a product quality area inside the non-product quality area, In the step of forming the end crack, both the start crack and the end crack are formed in the non-product quality area.
  • the brittle material substrate is subjected to heat treatment and thermal treatment so that the temperature gradient in the cutting line direction of the brittle material substrate is larger than the temperature gradient in the thickness direction of the brittle material substrate. Cooling process is performed.
  • a fourth aspect of the present invention is a brittle material substrate cleaving apparatus for cleaving a brittle material substrate along a planned cutting line, on a processing table on which the brittle material substrate is arranged, on the planned cutting line of the brittle material substrate, At the front end in the moving direction when moving the brittle material substrate, at the start end crack forming portion for forming the start crack, and at the rear end in the moving direction when moving the brittle material substrate on the planned cutting line of the brittle material substrate A terminal crack forming part for forming a terminal crack, a laser irradiation part for irradiating a laser beam onto the brittle material substrate, a coolant injection part for injecting a coolant onto the brittle material substrate, and a laser irradiation part for the brittle material substrate And a moving means for moving in a preset direction with respect to the coolant injection unit.
  • the moving means is configured to move the laser irradiation unit and the coolant injection unit with respect to the brittle material substrate. Is configured to move on the same movement path as the laser irradiation unit.
  • a starting crack is formed as an initial crack at the tip in the moving direction when moving the brittle material substrate on the planned cutting line of the brittle material substrate, and the moving direction Since a terminal crack is formed as an initial crack at the rear end portion in FIG. 2, a full cut can be performed even at the cut terminal portion, particularly starting from the terminal crack. Therefore, a simple method of simply forming the end crack can eliminate the uncut portion at the cut end portion and perform a full cut on the entire cutting planned line.
  • a terminal crack forming portion that forms a terminal crack as an initial crack at the rear end portion in the movement direction when the brittle material substrate is moved on the planned cutting line of the brittle material substrate. Therefore, a full cut can be performed even at the cut end portion, particularly starting from the end crack. Therefore, a simple method of simply providing the terminal crack forming part can eliminate the uncut residue at the cut terminal part and perform the full cut on the entire cutting planned line.
  • FIG. 1 is a plan view showing a schematic configuration of an example of a transport apparatus provided with a brittle material substrate cleaving apparatus according to the present invention.
  • reference numeral 1 is a transport apparatus
  • 20 is a brittle material substrate cleaving apparatus (hereinafter referred to as “crushing apparatus”). (Referred to as a cleaving device).
  • the transfer device 1 is a device that transfers a brittle material substrate W made of ultrathin glass having a thickness of 300 ⁇ m or less, for example.
  • a brittle material substrate W made of ultrathin glass having a thickness of 300 ⁇ m or less, for example.
  • a peripheral portion called an “ear” that is outside the product quality area, that is, a non-product quality area at both ends in the width direction of about 5 mm to 10 mm is directly held. It becomes an area to be.
  • the transport device 1 does not directly hold the product quality area of the brittle material substrate W in this way, but directly holds and transports only both end portions that become non-product quality areas, and also uses the cleaving device 20 to carry the brittle material substrate W. Is a device that performs full cutting (cutting) into a desired dimension. That is, as shown in FIG. 1, the transport device 1 includes an unwinding roll 2 and a transport path 3 that transports the brittle material substrate W fed from the unwinding roll 2, and further includes a pair of fixed holding members 4, A pair of first movable holding members 5, a cleaving device 20, and a pair of second movable holding members 7 are provided.
  • the unwinding roll 2 includes a roll shaft 2a around which the brittle material substrate W is wound, and a drive source 8 such as a motor that is connected to the roll shaft 2a and rotates the roll shaft 2a.
  • the drive source 8 is provided with a control unit (not shown) that controls the rotation speed of the roll shaft 2 a, and the control unit intermittently unwinds the brittle material substrate W from the unwinding roll 2. It is formed as follows. As the brittle material substrate W, as described above, ultrathin glass having a thickness of 300 ⁇ m or less is used.
  • a height adjusting roller 9 is disposed on the downstream side of the unwinding roll 2.
  • the height adjusting roller 9 is a transport roller that transports the brittle material substrate W unwound from the unwinding roll 2.
  • the upper end of the height adjusting roller 9 is disposed slightly higher than the upper surface of the transport path 3. With such a configuration, the height adjusting roller 9 transports the brittle material substrate W unwound from the unwinding roll 2 onto the upper surface (transport surface) of the transport path 3.
  • the conveyance path 3 is arranged on the delivery side of the height adjusting roller 9.
  • a plurality of long and thin plate-like conveyance units 10 are arranged in alignment along the conveyance direction of the brittle material substrate W.
  • the transport unit 10 is preferably transported in a non-contact manner with respect to the product quality area so as not to directly hold the product quality area which is the central portion of the brittle material substrate W, levitation by blowing out air is preferable.
  • the formula is adopted.
  • a large number of air ejection holes are provided on the upper surface of the floating transport unit 10, and an air supply source is connected to the air ejection holes via a pipe so that a predetermined amount of air is discharged from the air ejection holes. Erupted.
  • the air is thus ejected to form an air layer on the transport unit 10, and the brittle material substrate W floats above the upper surface of the transport unit 10 (transport path 3) by the air layer.
  • the shape of the air ejection hole is not particularly limited, and may be a slit-like elongated hole in addition to a general circular hole.
  • suction holes are formed in a processing region heated or cooled by a laser irradiation unit 23 or a coolant injection unit 24, which will be described later, and a region near the processing region, in addition to the air ejection holes. It may be formed.
  • a vacuum pump (not shown) as a negative pressure source is connected to these suction holes via a pipe (not shown), and the brittle material substrate W is sucked by the vacuum pump to suck the brittle material substrate W. Pull on.
  • the suction force by the suction hole is set to be weaker than the force of floating the brittle material substrate W by the air ejection hole.
  • the air ejection from the air ejection holes and the suction by the suction holes are balanced, so that the brittle material substrate W is held at a predetermined interval between the upper surface of the transport path 3 and thus transported.
  • the path 3 is held with high accuracy.
  • the first clamp rail 11 and the second clamp rail 12 are arranged on both sides of the transport path 3 along the transport direction of the transport path 3.
  • the fixed holding member 4 is provided on the upstream side (the unwinding roll 2 side) of the first clamp rail 11, and the first movable holding member 5 is provided on the downstream side of the fixed holding member 4.
  • the fixed holding member 4 is attached to the first clamp rail 11 in a fixed state via an attachment member (not shown). That is, the fixed holding member 4 is fixed without moving along the length direction of the first clamp rail 11 (the transport direction of the transport path 3).
  • the fixed holding member 4 is a general clamp having a lower plate and an upper plate, and the brittle material substrate W can be attached and detached by forming the lower plate and the upper plate so that they can be contacted and separated by an air cylinder. Hold on.
  • substrate W is the front-end
  • the first movable holding member 5 is also a general clamp having a lower plate and an upper plate, and the lower plate and the upper plate are formed so as to be able to contact and separate by the air cylinder in the same manner as the fixed holding member 4.
  • the brittle material substrate W is detachably held. Note that, similarly to the fixed holding member 4, the first movable holding member 5 does not directly hold the product quality area of the brittle material substrate W, but directly holds both end portions that are non-product quality areas.
  • the pair of first movable holding members 5 are both attached to the first clamp rail 11 so as to be reciprocally movable. That is, the pair of first movable holding members 5 can reciprocate along the length direction of the first clamp rail 11 (the conveyance direction of the conveyance path 3).
  • the 1st clamp rail 11 is provided with the ball screw mechanism and the linear motor mechanism, for example, and the moving speed and the moving distance of the 1st movable holding member 5 are controlled with high precision by this.
  • the second clamp rail 12 is provided with a pair of second movable holding members 7.
  • the second movable holding member 7 is also a clamp configured similarly to the first movable holding member 5, and is movably attached to the second clamp rail 12. That is, the pair of second movable holding members 7 can reciprocate along the length direction of the second clamp rail 12 (the conveyance direction of the conveyance path 3). Note that the second movable holding member 7 does not directly hold the product quality area of the brittle material substrate W as in the case of the fixed holding member 4 and the first movable holding member 5, but only the end portions on both sides that become non-product quality areas. Hold directly.
  • the second clamp rail 12 is also provided with a ball screw mechanism and a linear motor mechanism so that the moving speed and moving distance of the second movable holding member 7 can be made with high accuracy. It is controlled.
  • the transport device 1 is provided with a holding frame 13 on the unwinding roll 2 side of the transport path 3, and a cleaving device 20 is movably provided on the holding frame 13.
  • the cleaving apparatus 20 is an embodiment of the cleaving apparatus for a brittle material substrate according to the present invention, and includes main components on the lower surface of the movable plate 20a shown in FIG.
  • the movable plate 20a is provided on the holding frame 13 so as to be movable, and can thereby be moved in a direction perpendicular to the transport direction of the transport path 3, that is, in the width direction of the brittle material substrate W.
  • the cleaving apparatus 20 uses the conveyance path 3 as a processing table according to the present invention, that is, a processing table on which the brittle material substrate W is arranged, , A terminal crack forming unit 22, a laser irradiation unit 23, a coolant injection unit 24, and a moving mechanism 25 that moves the laser irradiation unit 23 and the coolant injection unit 24 relative to the brittle material substrate W on the transport path 3. Moving means).
  • the moving mechanism 25 has a movable plate 20a, a pair of guide rails 13a of a holding frame 13 that holds the movable plate 20 movably, and a movable plate 20a for running on the pair of guide rails 13a.
  • a drive source 20b such as a motor.
  • a ball screw is used as the guide rail 13a.
  • the movable plate 20a can move in the forward and reverse directions by rotating the guide rail 13a by the drive source 20b.
  • the moving mechanism 25 is not limited to a mechanism using such a ball screw, and for example, a mechanism using a linear motor can also be adopted.
  • the start-end crack forming portion 21 is disposed behind the moving direction of the movable plate 20a indicated by the arrow P in FIG. Therefore, the start-end crack forming portion 21 is disposed at the tip portion in the moving direction of the brittle material substrate W.
  • the terminal crack formation part 22 is arrange
  • the start-end crack forming portion 21 is a brittle material on the planned cutting line L of the brittle material substrate W as shown in FIG.
  • a start-end crack 41 is formed as an initial crack at the tip in the moving direction when the substrate W is moved, in this embodiment, at the tip in the moving direction of the movable plate 20a indicated by the arrow P in FIG.
  • the start-end crack forming unit 21 includes a diamond cutter 21a and a moving mechanism 21b including an air cylinder or the like that can be moved up and down and moved in the horizontal direction.
  • the start-end crack forming unit 21 plans to cleave the brittle material substrate W stopped on the transport path 3 as shown in FIG. 3 when the diamond cutter 21a is moved in a predetermined path by the moving mechanism 21b.
  • a start-end crack 41 is formed at the tip on the line L.
  • the depth of the start end crack 41 is not particularly limited, and is about several ⁇ m to several tens of ⁇ m.
  • the length of the start crack 41 is about 2 to 3 mm because the cut surface of the crack formed by the diamond cutter 21a is rougher than the cut surface based on laser light irradiation described later. It is as follows.
  • such a starting crack 41 is formed to the inside of the virtual boundary line K between the product quality area and the non-product quality area of the brittle material substrate W indicated by a two-dot chain line in FIG. Instead, it is formed in a non-product quality area called “ear” that is outside the product quality area.
  • the terminal crack forming portion 22 is a rear end portion in the moving direction when the brittle material substrate W is moved on the cutting line L of the brittle material substrate W as shown in FIG. 3, and in this embodiment, an arrow in FIG.
  • a terminal crack 42 is formed as an initial crack at the rear end of the movable plate 20a in the moving direction indicated by P.
  • the end crack forming part 22 also includes a diamond cutter 22a and a moving mechanism 22b made up of an air cylinder or the like that can move up and down and move in the horizontal direction.
  • the terminal crack forming unit 22 causes the planned cutting line of the brittle material substrate W stopped on the transport path 3 as shown in FIG. 3 when the diamond cutter 22a moves in a predetermined path by the moving mechanism 22b.
  • a terminal crack 42 is formed at the rear end on L.
  • the depth of the end crack 42 is set to about several ⁇ m to several tens of ⁇ m, like the start end crack 41.
  • the length of the end crack 42 is set to about 2 to 3 mm or less, similarly to the start end crack 41.
  • the terminal crack 42 may be located slightly ahead of the rear end edge without being formed up to the rear end edge on the planned cutting line L of the brittle material substrate W as shown in FIG. .
  • the end crack 42 is also formed in a non-product quality area in the same manner as the start end crack 41. Therefore, the end edge of the end crack 42 on the start end crack 41 side is the position of the virtual boundary line K, for example, a brittle material substrate. It is outside from the position of 5 mm from the side edge of W. If formed in this way, the relatively rough cut surface formed by the diamond cutter 22a is formed only in the non-product quality area without being formed in the product quality area. No loss of quality.
  • a laser irradiation unit 23 (laser light irradiation source) is disposed on the lower surface of the movable plate 20a.
  • the laser irradiation unit 23 is disposed so as to cross the brittle material substrate W on the transport path 3 in the width direction of the brittle material substrate W along with the movement of the movable plate 20a, and a laser oscillator (not shown).
  • optical system equipment (not shown) for guiding the laser light C oscillated from the laser oscillator.
  • the laser oscillator for example, a carbon dioxide laser oscillator having an output of 100 W to several hundred W is preferably used. However, laser oscillators with other output ranges or other oscillation mechanisms can be used.
  • the optical system device includes a mirror, a lens, and the like, and guides and condenses the laser light C oscillated from the laser oscillator to a preset region (heating region).
  • the laser irradiation unit 23 irradiates the brittle material substrate W held on the conveyance path 3 with laser light C on the planned cutting line L shown in FIG. Heat up.
  • a space through which the laser beam C passes between the laser irradiation unit 23 and the brittle material substrate W as shown in FIG. 2 is set as a laser beam passage region 28, and the brittle material substrate W as shown in FIG. 3.
  • the upper region irradiated with the laser beam C is defined as a heating region 29.
  • the heating area 29 is set to a substantially rectangular area that is elongated along the planned cutting line L in the present embodiment. That is, in the laser irradiation unit 23, a laser oscillator and an optical system device are configured so as to form the elongated substantially rectangular heating area 29 in this way.
  • a coolant injection unit 24 is disposed on the lower surface of the movable plate 20 a behind the laser irradiation unit 23 in the moving direction of the movable plate 20 a at a predetermined distance from the laser irradiation unit 23.
  • the coolant injection unit 24 (coolant injection source) includes an injection nozzle 24a that is disposed vertically downward with respect to the transport path 3, a liquid feed pump 24b, and a tank 24c that stores the coolant. ing. Under such a configuration, the coolant injecting unit 24 injects the coolant R having fluidity from the injection nozzle 24 a toward the brittle material substrate W.
  • a space through which the coolant R passes between the coolant injection unit 24 and the brittle material substrate W is set as a coolant passage region 30, and the coolant on the brittle material substrate W as shown in FIG. 3.
  • a region where R is injected is referred to as a cooling region 31.
  • the cooling area 31 is set to a small circular area formed on the planned cutting line L, and is formed and arranged at a predetermined distance behind the heating area 29 in the moving direction of the movable plate 20a.
  • the coolant R sprayed from the spray nozzle 24a is formed by rapidly cooling the heating area 29 formed on the brittle material substrate W by the laser irradiation unit 23, and gas such as air is mixed into water.
  • the transport device 1 having the cleaving device 20 having such a configuration In order to cleave while transporting the brittle material substrate W by the transport device 1 having the cleaving device 20 having such a configuration, first, the brittle material substrate W is sent out (unwinded) from the unwinding roll 2 shown in FIG. ), The front end of the brittle material substrate W is held by the first movable holding member 5. Then, when the first movable holding member 5 is moved and the brittle material substrate W is transported to a predetermined position, the movement of the first movable holding member 5 is stopped and the travel of the brittle material substrate W is stopped.
  • the both ends of the brittle material substrate W on the side of the unwinding roll 2 are held by the fixed holding member 4.
  • the distal end portion of the brittle material substrate W is also held by the second movable holding member 7. That is, the second movable holding member 7 holds the part ahead of the portion held by the first movable holding member 5.
  • the movement direction (arrow P and A start-end crack 41 is formed at the tip in the opposite direction).
  • the end crack 42 is formed at the rear end in the moving direction on the planned cutting line L of the brittle material substrate W by the end crack forming portion 22.
  • the lower end of the laser beam passing region 28 is made to reach the tip of the laser beam.
  • the heating area 29 is formed on the brittle material substrate W, and the front end portion of the brittle material substrate W is irradiated with the laser beam C and subjected to heat treatment.
  • the leading end portion of the brittle material substrate W has not reached the coolant passage region 30, it has not been subjected to cooling processing, and therefore, initial processing in which only heat treatment is performed is performed.
  • the movable plate 20a is further moved (advanced) by the moving mechanism 25 while the laser irradiation unit 23 and the coolant injection unit 24 are operated, and the leading end part where the start crack 41 is formed.
  • the lower part of the laser beam passing area 30 is made to reach the lower part of the laser beam passing area 28 slightly behind the front end.
  • the movable mechanism 20 is moved at a constant speed without stopping while moving from the initial machining to the medium-term machining.
  • the heating area 29 heated by the irradiation of the laser beam C and the cooling area 31 cooled by the coolant R continuously move (change) on the brittle material substrate W at a constant speed. That is, the heating area 29 and the cooling area 31 move (change) continuously at a constant speed in the same direction as the movement direction of the movable plate 20a.
  • the brittle material substrate W is an ultra-thin glass plate, by appropriately selecting the heating conditions of the laser irradiation unit 23 and the cooling conditions of the coolant injection unit 24, the brittle material substrate W is not a scribe line but a brittle line. A breaking line obtained by full-cutting the material substrate W can be formed.
  • the movable plate 20a is further moved (advanced) by the moving mechanism 25 while the laser irradiation unit 23 and the coolant injection unit 24 are operated, and a terminal crack 42 is formed.
  • the lower end of the laser beam passage region 28 and the lower portion of the coolant passage region 30 are sequentially reached and passed through the rear end portion of the brittle material substrate W.
  • the movable plate 20a is moved at a constant speed by the moving mechanism 25 without stopping. Accordingly, the heating area 29 and the cooling area 31 continuously move at a constant speed on the brittle material substrate W.
  • the heat treatment by the laser irradiation unit 23 and the cooling treatment by the coolant injection unit 24 are continuously performed along the planned cutting line L, whereby the brittle material substrate W is fully cut (cut) by the planned cutting line L. It can be performed.
  • the mechanism by which a brittle material substrate such as a glass plate is cleaved by an initial crack is generally considered as follows.
  • FIG. 4A and 4B are diagrams showing cross sections of the brittle material substrate W.
  • the symbol t indicates the thickness of the brittle material substrate W
  • the symbol A indicates the initial crack formed on the upper surface of the brittle material substrate W. Show.
  • the initial crack A is irradiated with laser light and heated as shown in FIG. Is formed.
  • the vicinity of the initial crack A of the brittle material substrate W is cooled by coolant injection, the vicinity of the initial crack A is cooled, and a cooling region 31 is formed in the surface layer portion of the brittle material substrate W as shown in FIG.
  • the heating area 29 previously formed by heating expands in the thickness direction of the brittle material substrate W by heat conduction.
  • the heating area 29 tends to extend due to thermal expansion. However, since the surroundings of the heating area 29 are hardly affected by heating, the thermal expansion in the heating area 29 is suppressed. As a result, a compressive stress is applied to the heating zone 29 as indicated by an arrow in FIG. 4B.
  • the cooling zone 31 tends to shrink due to heat shrinkage, but the periphery of the cooling zone 31 is not greatly affected by the cooling, and thus acts to suppress the heat shrinkage in the cooling zone 31, and thereby, in FIG. As shown by the arrows in FIG.
  • the tensile stress acts on the cooling region 31 of the surface layer portion of the brittle material substrate W
  • the tensile stress acts on the initial crack A, so that the brittle material substrate W is cleaved starting from the initial crack A.
  • the brittle material substrate W is cleaved as if an initial crack A grows, so that a marking line is made on the surface of the brittle material substrate W.
  • 5A to 5C are perspective views showing the upper surface of the ultrathin brittle material substrate W.
  • reference numeral 41 denotes a crack at the starting end formed on the upper surface of the brittle material substrate W
  • reference symbol L denotes the brittle material.
  • substrate W is shown.
  • the brittle material substrate W is moved in the direction of the arrow Q (the direction opposite to the moving direction of the movable plate 20a in FIG. 2), and the start crack 41
  • the ultrathin brittle material substrate W having a thickness of 300 ⁇ m or less conducts heat to the lower surface immediately after laser light irradiation.
  • the temperature is almost uniform in the thickness direction of the brittle material substrate W, whereas the width of the temperature distribution is larger in the direction of the planned cutting line L of the brittle material substrate W than in the thickness direction of the brittle material substrate W.
  • the brittle material substrate W has a gentle temperature gradient with a small change rate in the thickness direction
  • the brittle material substrate W has a steep temperature gradient with a large change rate in the cutting line L direction (brittleness).
  • the temperature gradient in the cutting line L direction of the brittle material substrate W is larger than the temperature gradient in the thickness direction of the material substrate W). For this reason, the growth of the start-end crack 41 is performed with the temperature distribution in the cutting line L direction being dominant over the temperature distribution in the thickness direction of the brittle material substrate W.
  • the heating area 29 tends to expand due to thermal expansion, but the area around the heating area 29, particularly the area opposite to the direction of the arrow Q, is hardly affected by the heating. This acts to suppress expansion, and thereby compressive stress acts on the heating zone 29 as shown by the arrows in FIG. 5A.
  • the cooling zone 31 tends to shrink due to heat shrinkage
  • the periphery of the cooling zone 31 is not greatly affected by the cooling, and thus acts to suppress the heat shrinkage in the cooling zone 31, and thereby, in FIG. As shown by the arrows in FIG.
  • the tensile stress acts on the starting crack 41, so that the brittle material substrate W is cleaved from the starting crack 41.
  • the brittle material substrate W is moved in the direction of the arrow Q, and heating by laser light irradiation and cooling by coolant injection are continuously advanced along the planned cutting line L, the brittle material substrate W starting from the starting crack 41 is used.
  • the cleaving proceeds along the planned breaking line L.
  • the cooling zone 31 tends to shrink by heat as indicated by an arrow in FIG. 5B.
  • the terminal crack 42 is formed in the terminal part of the brittle material substrate W.
  • the tensile stress generated on the planned cutting line L acts on the terminal crack 42 shown in FIG. 5C, so that the brittle material substrate W is cleaved starting from the terminal crack 42.
  • a terminal crack 42 is formed at the terminal part of the planned cutting line L.
  • the cleaving of the brittle material substrate W starting from is progressed along the planned cutting line L, and is connected to the breaking line S starting from the previously formed start-end crack 41. Therefore, by forming the terminal crack 42 in this way, the cutting line S starting from the starting crack 41 on the planned cutting line L and the cutting of the brittle material substrate W starting from the terminal crack 42 are continuous.
  • the brittle material substrate W is fully cut by one continuous breaking line.
  • the movable plate 20a of the cleaving device 20 is moved in the direction opposite to the arrow P direction to return to the initial position. Then, the holding of the first movable holding member 5 with respect to the brittle material substrate W after cutting is released, the first movable holding member 5 is moved to the fixed holding member 4 side, and the subsequent brittleness that the fixed holding member 4 holds. The tip of the material substrate W is held.
  • the brittle material substrate W after being cut is further moved (conveyed) on the conveyance path 3 by moving the second movable holding member 7 to the downstream side in the conveyance direction.
  • the brittle material substrate W unwound from the unwinding roll 2 can be continuously fully cut by the cleaving device 20 to have a desired size.
  • the terminal crack 42 is formed as an initial crack at the rear end portion in the moving direction when the brittle material substrate W is moved on the planned cutting line L of the brittle material substrate W. Since the terminal crack forming portion 22 is provided, a full cut can be performed even at the cut end portion of the brittle material substrate W, particularly starting from the terminal crack 42. Therefore, a simple method of simply including the terminal crack forming portion 22 eliminates the uncut portion at the cut terminal portion, and can surely perform a full cut over the entire cutting line L.
  • both the start crack 41 and the end crack 42 were formed in the non-product quality area of the brittle material substrate W. Therefore, although the cut surfaces of the start end crack 41 and the end crack 42 are relatively rough, the start end crack 41 and the end crack 42 are not formed in the product quality area, so that the quality of the final product composed of the product quality area is impaired. Can be prevented.
  • the start-end crack forming unit 21 and the end-end crack forming unit 22 are configured to be movable by the original moving mechanism 21b and the moving mechanism 22b, respectively.
  • the diamond cutter 21a and the diamond cutter 22a are attached to the movable plate 20a, or attached to the laser irradiation unit 23, so that the moving plate 25a moves the moving plate 25a to move the starting end crack forming portion 21 (diamond cutter 21a) and the terminal crack forming portion. 22 (diamond cutter 22a) may be moved.
  • the laser irradiation part 23 and the coolant injection part 24 were moved with respect to the brittle material board
  • substrate W is divided
  • the laser irradiation unit 23 and the coolant injection unit 24 may be fixedly arranged, and the brittle material substrate W may be moved with respect to the laser irradiation unit 23 and the coolant injection unit 24.
  • the diamond cutter 21a and the diamond cutter 22a which are cutter wheels were used as the start end crack formation part 21 and the end crack formation part 22, this invention is not limited to this,
  • the start end crack 41 and the end crack 42 may be formed by ablation processing using a short pulse laser. When such a short pulse laser is used, since the start end crack 41 and the end crack 42 can be formed in a non-contact manner, generation of micro cracks can be suppressed.
  • the brittle material substrate cleaving apparatus and cleaving method of the present invention can perform a full cut even at the cut end portion, particularly starting from the end crack. Therefore, a simple method of simply forming the end crack can eliminate the uncut portion at the cut end portion and perform a full cut on the entire cutting planned line.
  • Conveying device 3 Conveying path (processing stand) 20 Brittle material substrate cleaving device 20a Movable plate 21 Start-end crack forming section 22 End-end crack forming section 23 Laser irradiation section (laser beam irradiation source) 24 Coolant injection part (coolant injection source) 25 Moving mechanism (moving means) 29 Heating area 31 Cooling area 41 Start crack 42 End crack L Split line W Brittle material substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

The present invention is a brittle substrate (W) cleavage device (20) for cleaving a brittle substrate (W) along an intended cleavage line (L). The cleavage device is equipped with: a processing pedestal (3) on which the brittle substrate (W) is placed; a leading end fissure-forming unit (21) for forming a leading end fissure (41) as an initial fissure on the intended cleavage line (L) of the brittle substrate (W) at the leading end in the direction of movement when moving the brittle substrate (W); an end fissure-forming unit (22) for forming an end fissure (42) as an initial fissure on the intended cleavage line (L) of the brittle substrate (W) at the back end in the direction of movement when moving the brittle substrate (W); a laser irradiation unit (23) for irradiating laser light (C) on the brittle substrate (W); a refrigerant-spraying unit (24) for spraying a refrigerant (R) on the brittle substrate (W); and a movement means (25) for moving the brittle substrate (W) in a previously set direction with respect to the laser irradiation unit (23) and the refrigerant-spraying unit (24).

Description

脆性材料基板の割断方法及び脆性材料基板の割断装置Brittle material substrate cleaving method and brittle material substrate cleaving apparatus
本発明は、脆性材料基板の割断方法及び脆性材料基板の割断装置に関する。
本願は、2014年6月11日に日本国に出願された特願2014-120915号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a brittle material substrate cleaving method and a brittle material substrate cleaving apparatus.
This application claims priority based on Japanese Patent Application No. 2014-120915 for which it applied to Japan on June 11, 2014, and uses the content here.
 従来、ガラス板などの脆性材料基板を割断する割断装置として、脆性材料基板にレーザ光を照射して局部的に加熱するレーザ照射部と、レーザ光によって加熱された脆性材料基板に冷却剤を噴射する冷却剤噴射部と、を備えた装置が提案されている。しかし、一般にこのような割断装置は、脆性材料基板上の割断予定線に沿ってスクライブラインを形成するだけであり、後工程としてこのスクライブラインに沿って脆性材料基板にブレーク処理を行うことにより、最終的に脆性材料基板のフルカットを行っている。 Conventionally, as a cleaving device for cleaving a brittle material substrate such as a glass plate, a laser irradiation unit that irradiates the brittle material substrate with a laser beam and locally heats it, and jets a coolant onto the brittle material substrate heated by the laser beam. An apparatus including a coolant injection unit is proposed. However, in general, such a cleaving apparatus only forms a scribe line along the planned cutting line on the brittle material substrate, and by performing a break process on the brittle material substrate along the scribe line as a post process, Finally, the brittle material substrate is fully cut.
 このような割断装置に対し、単にスクライブラインを形成するだけでなく脆性材料基板のフルカットを行う割断方法として、脆性材料基板の割断予定線に沿って厚み方向に作用する変形応力を印可し、割断予定線に沿って局所熱源を操作して脆性材料基板のフルカットを行う割断方法が提案されている(特許文献1参照)。 For such a cleaving device, as a cleaving method for full cutting of a brittle material substrate as well as simply forming a scribe line, a deformation stress acting in the thickness direction is applied along the planned fracture line of the brittle material substrate, A cleaving method has been proposed in which a brittle material substrate is fully cut by operating a local heat source along a planned cutting line (see Patent Document 1).
日本国特開2009-107301号公報Japanese Unexamined Patent Publication No. 2009-107301
 しかしながら、特許文献1の技術では、具体的に変形応力を印可するための装置構成が難しく、また、割断予定線に沿って確実にフルカットを行うことができる変形応力の印可の条件を決定するのも難しい可能性がある。従って、装置構成が比較的簡易であり、かつ、脆性材料基板に確実にフルカットを行うことができる技術の提供が望まれている。 However, in the technology of Patent Document 1, it is difficult to specifically configure the apparatus for applying the deformation stress, and the conditions for applying the deformation stress that can surely perform a full cut along the planned cutting line are determined. It can be difficult. Therefore, it is desired to provide a technique that has a relatively simple apparatus configuration and that can reliably perform a full cut on a brittle material substrate.
 本発明は上記事情に鑑みてなされ、その目的は、比較的簡易な手法で脆性材料基板に対して確実にフルカットを行うことができる、脆性材料基板の割断方法及び脆性材料基板の割断装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a brittle material substrate cleaving method and a brittle material substrate cleaving apparatus that can reliably perform full cutting on a brittle material substrate by a relatively simple method. It is to provide.
 本発明者は、上記目的を達成すべく鋭意研究を進めた結果、例えば厚みが300μm以下の極薄の脆性材料基板に対しては、加熱・冷却条件を適切に選択し、レーザ及び冷却の移動方向の温度分布に起因する熱応力を適切に発生させることにより、割断予定線の途中まではフルカットを行うことができるとの知見を得た。ところが、このように加熱・冷却を適切に選択しても、カット終端部では必ず切れ残りが発生する可能性があることも分かった。そこで、本発明者はカット終端部での切れ残りを無くすべくさらに研究を続けた結果、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventor, for example, for an extremely thin brittle material substrate having a thickness of 300 μm or less, appropriately selects heating / cooling conditions, and moves the laser and cooling. The knowledge that a full cut could be performed to the middle of the planned cutting line by appropriately generating thermal stress due to the temperature distribution in the direction was obtained. However, it has also been found that even if heating / cooling is appropriately selected in this way, there is a possibility that uncut portions may occur at the cut end portion. Therefore, the present inventor completed the present invention as a result of further research to eliminate the uncut portion at the cut end portion.
 本発明の第1の態様は、脆性材料基板を割断予定線に沿って割断する脆性材料基板の割断方法であって、脆性材料基板の割断予定線上の、脆性材料基板をレーザ光照射源に対して移動させる際の移動方向における先端部に、始端亀裂を形成し、かつ、移動方向における後端部に、終端亀裂を形成する工程と、脆性材料基板をレーザ光照射源に対して移動させつつ、レーザ光照射源から割断予定線上にレーザ光を照射して加熱処理を行う工程と、レーザ光による脆性材料基板の加熱処理した部位に対して冷却剤噴射源から冷却剤を噴射し、冷却処理を行って割断予定線で脆性材料基板を割断する工程と、を備える。 A first aspect of the present invention is a method for cleaving a brittle material substrate along a planned cutting line, and the brittle material substrate on the planned cutting line of the brittle material substrate with respect to the laser beam irradiation source. Forming a crack at the leading end in the moving direction and a terminal crack at the trailing end in the moving direction, and moving the brittle material substrate with respect to the laser beam irradiation source. , A process of performing a heat treatment by irradiating a laser beam on a planned cutting line from a laser beam irradiation source, and a cooling process by injecting a coolant from a coolant injection source to a heat-treated portion of a brittle material substrate by a laser beam And cutting the brittle material substrate along the planned cutting line.
 本発明の第2の態様は、第1の態様において、脆性材料基板が、周縁部に非製品品質エリアを有し、非製品品質エリアの内側に製品品質エリアを有しており、始端亀裂及び終端亀裂を形成する工程では、これら始端亀裂及び終端亀裂を共に非製品品質エリアに形成する。
本発明の第3の態様は、第1の態様において、脆性材料基板の厚み方向の温度勾配より、脆性材料基板の割断予定線方向の温度勾配が大きくなるように、脆性材料基板に加熱処理及び冷却処理を行う。
According to a second aspect of the present invention, in the first aspect, the brittle material substrate has a non-product quality area at the periphery, a product quality area inside the non-product quality area, In the step of forming the end crack, both the start crack and the end crack are formed in the non-product quality area.
According to a third aspect of the present invention, in the first aspect, the brittle material substrate is subjected to heat treatment and thermal treatment so that the temperature gradient in the cutting line direction of the brittle material substrate is larger than the temperature gradient in the thickness direction of the brittle material substrate. Cooling process is performed.
 本発明の第4の態様は、脆性材料基板を割断予定線に沿って割断する脆性材料基板の割断装置であって、脆性材料基板を配置する加工台と、脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における先端部に、始端亀裂を形成する始端亀裂形成部と、脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における後端部に、終端亀裂を形成する終端亀裂形成部と、脆性材料基板上にレーザ光を照射するレーザ照射部と、脆性材料基板上に冷却剤を噴射する冷却剤噴射部と、脆性材料基板をレーザ照射部及び冷却剤噴射部に対して予め設定された方向に移動させる移動手段と、を備えることを特徴とする。 A fourth aspect of the present invention is a brittle material substrate cleaving apparatus for cleaving a brittle material substrate along a planned cutting line, on a processing table on which the brittle material substrate is arranged, on the planned cutting line of the brittle material substrate, At the front end in the moving direction when moving the brittle material substrate, at the start end crack forming portion for forming the start crack, and at the rear end in the moving direction when moving the brittle material substrate on the planned cutting line of the brittle material substrate A terminal crack forming part for forming a terminal crack, a laser irradiation part for irradiating a laser beam onto the brittle material substrate, a coolant injection part for injecting a coolant onto the brittle material substrate, and a laser irradiation part for the brittle material substrate And a moving means for moving in a preset direction with respect to the coolant injection unit.
 本発明の第5の態様は、第4の態様において、移動手段は、脆性材料基板に対してレーザ照射部及び冷却剤噴射部を移動させるように構成され、始端亀裂形成部及び終端亀裂形成部は、レーザ照射部と同じ移動路上を移動するように構成されている。 According to a fifth aspect of the present invention, in the fourth aspect, the moving means is configured to move the laser irradiation unit and the coolant injection unit with respect to the brittle material substrate. Is configured to move on the same movement path as the laser irradiation unit.
 本発明の脆性材料基板の割断方法によれば、脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における先端部に、初期亀裂として始端亀裂を形成し、かつ、移動方向における後端部に、初期亀裂として終端亀裂を形成するようにしたので、特に終端亀裂を起点としてカット終端部でもフルカットを行うことができる。従って、単に終端亀裂の形成を加えるといった簡易な手法により、カット終端部での切れ残りを無くして割断予定線全域のフルカットを行うことができる。
 本発明の脆性材料基板の割断装置によれば、脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における後端部に、初期亀裂として終端亀裂を形成する終端亀裂形成部を備えているので、特に終端亀裂を起点としてカット終端部でもフルカットを行うことができる。従って、単に終端亀裂形成部を備えるといった簡易な手法により、カット終端部での切れ残りを無くして割断予定線全域のフルカットを行うことができる。
According to the cleaving method of the brittle material substrate of the present invention, a starting crack is formed as an initial crack at the tip in the moving direction when moving the brittle material substrate on the planned cutting line of the brittle material substrate, and the moving direction Since a terminal crack is formed as an initial crack at the rear end portion in FIG. 2, a full cut can be performed even at the cut terminal portion, particularly starting from the terminal crack. Therefore, a simple method of simply forming the end crack can eliminate the uncut portion at the cut end portion and perform a full cut on the entire cutting planned line.
According to the cleaving apparatus for a brittle material substrate of the present invention, a terminal crack forming portion that forms a terminal crack as an initial crack at the rear end portion in the movement direction when the brittle material substrate is moved on the planned cutting line of the brittle material substrate. Therefore, a full cut can be performed even at the cut end portion, particularly starting from the end crack. Therefore, a simple method of simply providing the terminal crack forming part can eliminate the uncut residue at the cut terminal part and perform the full cut on the entire cutting planned line.
本実施形態に係る脆性材料基板の割断装置を備えた搬送装置の一例の概略構成を示す平面図である。It is a top view which shows schematic structure of an example of the conveying apparatus provided with the cleaving apparatus of the brittle material board | substrate which concerns on this embodiment. 割断装置の概略構成を示す側面図である。It is a side view which shows schematic structure of a cleaving apparatus. 脆性材料基板の要部を示す平面図である。It is a top view which shows the principal part of a brittle material board | substrate. 脆性材料基板の初期亀裂をきっかけにして割断されるメカニズムの説明図である。It is explanatory drawing of the mechanism cleaved by the initial crack of a brittle material board | substrate. 脆性材料基板の初期亀裂をきっかけにして割断されるメカニズムの説明図である。It is explanatory drawing of the mechanism cleaved by the initial crack of a brittle material board | substrate. 極薄の脆性材料基板に初期亀裂をきっかけにしてフルカット(割断)が行われるメカニズムの説明図である。It is explanatory drawing of the mechanism in which a full cut (cleaving) is performed triggered by an initial crack in a very thin brittle material substrate. 極薄の脆性材料基板に初期亀裂をきっかけにしてフルカット(割断)が行われるメカニズムの説明図である。It is explanatory drawing of the mechanism in which a full cut (cleaving) is performed triggered by an initial crack in a very thin brittle material substrate. 極薄の脆性材料基板に初期亀裂をきっかけにしてフルカット(割断)が行われるメカニズムの説明図である。It is explanatory drawing of the mechanism in which a full cut (cleaving) is performed triggered by an initial crack in a very thin brittle material substrate.
 以下、図面を参照して本発明に係る脆性材料基板の割断装置を詳しく説明する。なお、以下の図面においては、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
 図1は本発明に係る脆性材料基板の割断装置を備えた搬送装置の一例の概略構成を示す平面図であり、図1中符号1は搬送装置、20は脆性材料基板の割断装置(以下、割断装置と記す)である。
Hereinafter, a brittle material substrate cleaving apparatus according to the present invention will be described in detail with reference to the drawings. In the following drawings, the scale of each member is appropriately changed to make each member a recognizable size.
FIG. 1 is a plan view showing a schematic configuration of an example of a transport apparatus provided with a brittle material substrate cleaving apparatus according to the present invention. In FIG. 1, reference numeral 1 is a transport apparatus, and 20 is a brittle material substrate cleaving apparatus (hereinafter referred to as “crushing apparatus”). (Referred to as a cleaving device).
 搬送装置1は、例えば厚みが300μm以下の極薄ガラスからなる脆性材料基板Wを搬送する装置である。なお、通常は、脆性材料基板Wの中央部が製品品質エリアとなることから、このような製品品質エリアを直接保持することは避けるのが普通である。従って、このような脆性材料基板Wでは、一般に、製品品質エリアの外側となる「耳」と呼ばれる周縁部、すなわち幅5mm~10mm程度の幅方向における両側端部の非製品品質エリアが、直接保持される領域となる。 The transfer device 1 is a device that transfers a brittle material substrate W made of ultrathin glass having a thickness of 300 μm or less, for example. Normally, since the central portion of the brittle material substrate W is a product quality area, it is usual to avoid holding such a product quality area directly. Therefore, in such a brittle material substrate W, generally, a peripheral portion called an “ear” that is outside the product quality area, that is, a non-product quality area at both ends in the width direction of about 5 mm to 10 mm is directly held. It becomes an area to be.
 搬送装置1は、このように脆性材料基板Wの製品品質エリアを直接保持することなく、非製品品質エリアとなる両側端部のみを直接保持して搬送するとともに、割断装置20によって脆性材料基板Wを所望寸法にフルカット(割断)を行う装置である。すなわち、図1に示すように搬送装置1は、巻き出しロール2と、巻き出しロール2から送り出された脆性材料基板Wを搬送する搬送路3とを備え、さらに一対の固定保持部材4と、一対の第1可動保持部材5と、割断装置20と、一対の第2可動保持部材7とを備えている。 The transport device 1 does not directly hold the product quality area of the brittle material substrate W in this way, but directly holds and transports only both end portions that become non-product quality areas, and also uses the cleaving device 20 to carry the brittle material substrate W. Is a device that performs full cutting (cutting) into a desired dimension. That is, as shown in FIG. 1, the transport device 1 includes an unwinding roll 2 and a transport path 3 that transports the brittle material substrate W fed from the unwinding roll 2, and further includes a pair of fixed holding members 4, A pair of first movable holding members 5, a cleaving device 20, and a pair of second movable holding members 7 are provided.
 巻き出しロール2は、脆性材料基板Wを巻き取ったロール軸2aと、このロール軸2aに連結してこれを回転させるモータ等の駆動源8とを備えている。駆動源8には、ロール軸2aの回転速度を制御する制御部(図示せず)が設けられており、制御部は、巻き出しロール2からの脆性材料基板Wの巻き出しを間欠的に行うように形成されている。なお、脆性材料基板Wとしては、前述したように厚みが300μm以下の極薄ガラスが用いられる。 The unwinding roll 2 includes a roll shaft 2a around which the brittle material substrate W is wound, and a drive source 8 such as a motor that is connected to the roll shaft 2a and rotates the roll shaft 2a. The drive source 8 is provided with a control unit (not shown) that controls the rotation speed of the roll shaft 2 a, and the control unit intermittently unwinds the brittle material substrate W from the unwinding roll 2. It is formed as follows. As the brittle material substrate W, as described above, ultrathin glass having a thickness of 300 μm or less is used.
 巻き出しロール2の下流側には、高さ調整ローラ9が配置されている。高さ調整ローラ9は、巻き出しロール2から巻き出された脆性材料基板Wを搬送する搬送ローラである。高さ調整ローラ9の上端は搬送路3の上面より僅かに高く配置されている。このような構成によって高さ調整ローラ9は、巻き出しロール2から巻き出された脆性材料基板Wを搬送路3の上面(搬送面)上に搬送する。 A height adjusting roller 9 is disposed on the downstream side of the unwinding roll 2. The height adjusting roller 9 is a transport roller that transports the brittle material substrate W unwound from the unwinding roll 2. The upper end of the height adjusting roller 9 is disposed slightly higher than the upper surface of the transport path 3. With such a configuration, the height adjusting roller 9 transports the brittle material substrate W unwound from the unwinding roll 2 onto the upper surface (transport surface) of the transport path 3.
 搬送路3は、高さ調整ローラ9の送り出し側に配置されたもので、例えば脆性材料基板Wの搬送方向に沿って長細い板状の搬送ユニット10が複数整列して配置されている。搬送ユニット10は、本例では特に脆性材料基板Wの中心部である製品品質エリアを直接保持しないよう、製品品質エリアに対して非接触で搬送するのが好ましいことから、空気を噴き出すことによる浮上式が採用されている。 The conveyance path 3 is arranged on the delivery side of the height adjusting roller 9. For example, a plurality of long and thin plate-like conveyance units 10 are arranged in alignment along the conveyance direction of the brittle material substrate W. In this example, since the transport unit 10 is preferably transported in a non-contact manner with respect to the product quality area so as not to directly hold the product quality area which is the central portion of the brittle material substrate W, levitation by blowing out air is preferable. The formula is adopted.
 浮上式の搬送ユニット10の上面に多数の空気噴き出し孔(図示せず)が設けられ、空気噴き出し孔に配管を介して空気供給源が接続されることにより、空気噴き出し孔から所定量の空気が噴き出される。そして、このように空気が噴き出されることで搬送ユニット10上に空気層が形成され、この空気層によって脆性材料基板Wが搬送ユニット10(搬送路3)の上面より上方に浮上する。なお、空気噴き出し孔の形状については特に限定されることなく、一般的な円形の孔以外にも、スリット状の細長い孔でもよい。 A large number of air ejection holes (not shown) are provided on the upper surface of the floating transport unit 10, and an air supply source is connected to the air ejection holes via a pipe so that a predetermined amount of air is discharged from the air ejection holes. Erupted. The air is thus ejected to form an air layer on the transport unit 10, and the brittle material substrate W floats above the upper surface of the transport unit 10 (transport path 3) by the air layer. Note that the shape of the air ejection hole is not particularly limited, and may be a slit-like elongated hole in addition to a general circular hole.
 また、後述するレーザ照射部23や冷却剤噴射部24によって加熱や冷却がなされる加工領域や、この加工領域の近傍領域には、空気噴き出し孔とは別に多数の吸引孔(図示せず)を形成してもよい。これら吸引孔には、配管(図示せず)を介して負圧源としての真空ポンプ(図示せず)を接続しておき、この真空ポンプによって吸引することにより、脆性材料基板Wを吸引孔側に引っ張る。ただし、吸引孔による吸引力は、空気噴き出し孔により脆性材料基板Wを浮上させる力よりは弱く設定されている。これにより、空気噴き出し孔からの空気噴き出しと吸引孔による吸引とが釣り合うことにより、脆性材料基板Wは搬送路3の上面との間の隙間が予め設定された一定の間隔に保持され、従って搬送路3に対して高精度に保持される。 In addition, a large number of suction holes (not shown) are formed in a processing region heated or cooled by a laser irradiation unit 23 or a coolant injection unit 24, which will be described later, and a region near the processing region, in addition to the air ejection holes. It may be formed. A vacuum pump (not shown) as a negative pressure source is connected to these suction holes via a pipe (not shown), and the brittle material substrate W is sucked by the vacuum pump to suck the brittle material substrate W. Pull on. However, the suction force by the suction hole is set to be weaker than the force of floating the brittle material substrate W by the air ejection hole. As a result, the air ejection from the air ejection holes and the suction by the suction holes are balanced, so that the brittle material substrate W is held at a predetermined interval between the upper surface of the transport path 3 and thus transported. The path 3 is held with high accuracy.
 図1に示すように搬送路3の両側には、それぞれ第1クランプレール11と第2クランプレール12とが、搬送路3の搬送方向に沿って配置されている。第1クランプレール11の上流側(巻き出しロール2側)に固定保持部材4が設けられ、固定保持部材4より下流側に第1可動保持部材5が設けられている。 As shown in FIG. 1, the first clamp rail 11 and the second clamp rail 12 are arranged on both sides of the transport path 3 along the transport direction of the transport path 3. The fixed holding member 4 is provided on the upstream side (the unwinding roll 2 side) of the first clamp rail 11, and the first movable holding member 5 is provided on the downstream side of the fixed holding member 4.
 固定保持部材4は、第1クランプレール11に対し、取付部材(図示せず)を介して固定された状態に取り付けられている。すなわち、固定保持部材4は第1クランプレール11の長さ方向(搬送路3の搬送方向)に沿って移動することなく、固定されている。この固定保持部材4は、下板と上板とを有する一般的なクランプであり、これら下板と上板とがエアシリンダーによって接離可能に形成されたことにより、脆性材料基板Wを着脱可能に保持する。なお、脆性材料基板Wを保持する部位は下板、上板の先端部であり、これによって固定保持部材4は、脆性材料基板Wの製品品質エリアを直接保持することなく、非製品品質エリアとなる両側端部のみを直接保持する。 The fixed holding member 4 is attached to the first clamp rail 11 in a fixed state via an attachment member (not shown). That is, the fixed holding member 4 is fixed without moving along the length direction of the first clamp rail 11 (the transport direction of the transport path 3). The fixed holding member 4 is a general clamp having a lower plate and an upper plate, and the brittle material substrate W can be attached and detached by forming the lower plate and the upper plate so that they can be contacted and separated by an air cylinder. Hold on. In addition, the site | part which hold | maintains the brittle material board | substrate W is the front-end | tip part of a lower board and an upper board, and, thereby, the fixed holding member 4 does not hold | maintain the product quality area of the brittle material board | substrate W directly, Directly hold only the ends on both sides.
 第1可動保持部材5も、下板と上板とを有する一般的なクランプであり、これら下板と上板とがエアシリンダーによって固定保持部材4と同様に接離可能に形成されたことにより、脆性材料基板Wを着脱可能に保持する。なお、第1可動保持部材5も固定保持部材4と同様に、脆性材料基板Wの製品品質エリアを直接保持することなく、非製品品質エリアとなる両側端部のみを直接保持する。 The first movable holding member 5 is also a general clamp having a lower plate and an upper plate, and the lower plate and the upper plate are formed so as to be able to contact and separate by the air cylinder in the same manner as the fixed holding member 4. The brittle material substrate W is detachably held. Note that, similarly to the fixed holding member 4, the first movable holding member 5 does not directly hold the product quality area of the brittle material substrate W, but directly holds both end portions that are non-product quality areas.
 また、一対の第1可動保持部材5は、共に第1クランプレール11に往復移動可能に取り付けられている。すなわち、一対の第1可動保持部材5は、第1クランプレール11の長さ方向(搬送路3の搬送方向)に沿って往復移動できる。ここで、第1クランプレール11は例えばボール螺子機構やリニアモータ機構を備えており、これによって第1可動保持部材5の移動速度や移動距離が高精度に制御されている。 The pair of first movable holding members 5 are both attached to the first clamp rail 11 so as to be reciprocally movable. That is, the pair of first movable holding members 5 can reciprocate along the length direction of the first clamp rail 11 (the conveyance direction of the conveyance path 3). Here, the 1st clamp rail 11 is provided with the ball screw mechanism and the linear motor mechanism, for example, and the moving speed and the moving distance of the 1st movable holding member 5 are controlled with high precision by this.
 第2クランプレール12には、一対の第2可動保持部材7が設けられている。第2可動保持部材7も、第1可動保持部材5と同様に構成されたクランプであり、第2クランプレール12に移動可能に取り付けられている。すなわち、一対の第2可動保持部材7は、第2クランプレール12の長さ方向(搬送路3の搬送方向)に沿って往復移動できる。なお、第2可動保持部材7も固定保持部材4や第1可動保持部材5と同様に、脆性材料基板Wの製品品質エリアを直接保持することなく、非製品品質エリアとなる両側端部のみを直接保持する。また、第2クランプレール12も、第1クランプレール11と同様にボール螺子機構やリニアモータ機構を備えて構成されており、これによって第2可動保持部材7の移動速度や移動距離が高精度に制御されている。 The second clamp rail 12 is provided with a pair of second movable holding members 7. The second movable holding member 7 is also a clamp configured similarly to the first movable holding member 5, and is movably attached to the second clamp rail 12. That is, the pair of second movable holding members 7 can reciprocate along the length direction of the second clamp rail 12 (the conveyance direction of the conveyance path 3). Note that the second movable holding member 7 does not directly hold the product quality area of the brittle material substrate W as in the case of the fixed holding member 4 and the first movable holding member 5, but only the end portions on both sides that become non-product quality areas. Hold directly. Similarly to the first clamp rail 11, the second clamp rail 12 is also provided with a ball screw mechanism and a linear motor mechanism so that the moving speed and moving distance of the second movable holding member 7 can be made with high accuracy. It is controlled.
 また、搬送装置1には、搬送路3の巻き出しロール2側に保持フレーム13が設けられ、この保持フレーム13に割断装置20が移動可能に設けられている。割断装置20は、前述したように本発明に係る脆性材料基板の割断装置の一実施形態であり、図1に示す可動板20aの下面に主要な構成部材を備えている。なお、可動板20aは保持フレーム13に移動可能に設けられており、これによって搬送路3の搬送方向と直交する方向、すなわち脆性材料基板Wの幅方向に移動可能である。 Further, the transport device 1 is provided with a holding frame 13 on the unwinding roll 2 side of the transport path 3, and a cleaving device 20 is movably provided on the holding frame 13. As described above, the cleaving apparatus 20 is an embodiment of the cleaving apparatus for a brittle material substrate according to the present invention, and includes main components on the lower surface of the movable plate 20a shown in FIG. The movable plate 20a is provided on the holding frame 13 so as to be movable, and can thereby be moved in a direction perpendicular to the transport direction of the transport path 3, that is, in the width direction of the brittle material substrate W.
 この割断装置20は、図2に概略構成を示す側面図が示されるように、搬送路3を本発明に係る加工台、すなわち脆性材料基板Wを配置する加工台とし、始端亀裂形成部21と、終端亀裂形成部22と、レーザ照射部23と、冷却剤噴射部24と、レーザ照射部23及び冷却剤噴射部24を搬送路3上の脆性材料基板Wに対して移動させる移動機構25(移動手段)と、を備えている。 As shown in the side view of the schematic configuration in FIG. 2, the cleaving apparatus 20 uses the conveyance path 3 as a processing table according to the present invention, that is, a processing table on which the brittle material substrate W is arranged, , A terminal crack forming unit 22, a laser irradiation unit 23, a coolant injection unit 24, and a moving mechanism 25 that moves the laser irradiation unit 23 and the coolant injection unit 24 relative to the brittle material substrate W on the transport path 3. Moving means).
 移動機構25は、図1に示すように可動板20aと、これを移動可能に保持する保持フレーム13の一対のガイドレール13aと、一対のガイドレール13a上にて可動板20aを走行させるためのモータ等の駆動源20bとを備えている。ガイドレール13aとしては、例えばボール螺子が用いられている。このような構成によって可動板20aは、駆動源20bによってガイドレール13aが回転させられることにより、正逆方向に移動可能となっている。なお、移動機構25としては、このようなボール螺子を用いた機構に限定されることなく、例えばリニアモータを用いた機構を採用することもできる。 As shown in FIG. 1, the moving mechanism 25 has a movable plate 20a, a pair of guide rails 13a of a holding frame 13 that holds the movable plate 20 movably, and a movable plate 20a for running on the pair of guide rails 13a. And a drive source 20b such as a motor. For example, a ball screw is used as the guide rail 13a. With such a configuration, the movable plate 20a can move in the forward and reverse directions by rotating the guide rail 13a by the drive source 20b. Note that the moving mechanism 25 is not limited to a mechanism using such a ball screw, and for example, a mechanism using a linear motor can also be adopted.
 始端亀裂形成部21は、本実施形態では図2中に矢印Pで示す可動板20aの移動方向、すなわち割断動作時における移動方向の後方に配置される。そのため、始端亀裂形成部21は、脆性材料基板Wの移動方向における先端部に配置されている。また、終端亀裂形成部22は、可動板20aの移動方向における前方に配置されている。そのため、終端亀裂形成部22は、脆性材料基板Wの移動方向における後端部に配置されている。 In the present embodiment, the start-end crack forming portion 21 is disposed behind the moving direction of the movable plate 20a indicated by the arrow P in FIG. Therefore, the start-end crack forming portion 21 is disposed at the tip portion in the moving direction of the brittle material substrate W. Moreover, the terminal crack formation part 22 is arrange | positioned ahead in the moving direction of the movable plate 20a. Therefore, the terminal crack forming part 22 is arranged at the rear end part in the moving direction of the brittle material substrate W.
 始端亀裂形成部21は、搬送路3(加工台)上の脆性材料基板Wの要部を示す平面図である図3に示すように、脆性材料基板Wの割断予定線L上の、脆性材料基板Wを移動させる際の移動方向における先端部、本実施形態では図2中に矢印Pで示す可動板20aの移動方向に対する先端に、初期亀裂として始端亀裂41を形成する。
 始端亀裂形成部21は、本実施形態ではダイヤモンドカッタ21aと、これを昇降可能、かつ水平方向に移動させるエアシリンダー等からなる移動機構21bと、を備えている。
The start-end crack forming portion 21 is a brittle material on the planned cutting line L of the brittle material substrate W as shown in FIG. A start-end crack 41 is formed as an initial crack at the tip in the moving direction when the substrate W is moved, in this embodiment, at the tip in the moving direction of the movable plate 20a indicated by the arrow P in FIG.
In this embodiment, the start-end crack forming unit 21 includes a diamond cutter 21a and a moving mechanism 21b including an air cylinder or the like that can be moved up and down and moved in the horizontal direction.
 このような構成によって始端亀裂形成部21は、ダイヤモンドカッタ21aが移動機構21bによって所定軌道で移動することにより、図3に示すように搬送路3上にて停止した脆性材料基板Wの、割断予定線L上の先端部に、始端亀裂41を形成する。始端亀裂41の深さについては、特に限定されることなく、数μm~数十μm程度とされる。また、始端亀裂41の長さについては、このようなダイヤモンドカッタ21aによって形成される亀裂の切断面は後述するレーザ光照射に基づく切断面に比べて粗くなることから、2~3mm程度、またはそれ以下とされる。従って、このような始端亀裂41は、図3中に二点鎖線で示す脆性材料基板Wの製品品質エリアと非製品品質エリアとの仮想境界線Kの内側、すなわち製品品質エリアにまで形成されることなく、製品品質エリアの外側となる「耳」と呼ばれる非製品品質エリアに形成される。 With such a configuration, the start-end crack forming unit 21 plans to cleave the brittle material substrate W stopped on the transport path 3 as shown in FIG. 3 when the diamond cutter 21a is moved in a predetermined path by the moving mechanism 21b. A start-end crack 41 is formed at the tip on the line L. The depth of the start end crack 41 is not particularly limited, and is about several μm to several tens of μm. The length of the start crack 41 is about 2 to 3 mm because the cut surface of the crack formed by the diamond cutter 21a is rougher than the cut surface based on laser light irradiation described later. It is as follows. Therefore, such a starting crack 41 is formed to the inside of the virtual boundary line K between the product quality area and the non-product quality area of the brittle material substrate W indicated by a two-dot chain line in FIG. Instead, it is formed in a non-product quality area called “ear” that is outside the product quality area.
 終端亀裂形成部22は、図3に示すように脆性材料基板Wの割断予定線L上の、脆性材料基板Wを移動させる際の移動方向における後端部、本実施形態では図2中に矢印Pで示す可動板20aの移動方向に対する後端部に、初期亀裂として終端亀裂42を形成する。この終端亀裂形成部22も、始端亀裂形成部21と同様に、ダイヤモンドカッタ22aと、これを昇降可能、かつ水平方向に移動させるエアシリンダー等からなる移動機構22bと、を備えている。 The terminal crack forming portion 22 is a rear end portion in the moving direction when the brittle material substrate W is moved on the cutting line L of the brittle material substrate W as shown in FIG. 3, and in this embodiment, an arrow in FIG. A terminal crack 42 is formed as an initial crack at the rear end of the movable plate 20a in the moving direction indicated by P. Similarly to the start end crack forming part 21, the end crack forming part 22 also includes a diamond cutter 22a and a moving mechanism 22b made up of an air cylinder or the like that can move up and down and move in the horizontal direction.
 このような構成によって終端亀裂形成部22は、ダイヤモンドカッタ22aが移動機構22bによって所定軌道で移動することにより、図3に示すように搬送路3上に停止した脆性材料基板Wの、割断予定線L上の後端部に、終端亀裂42を形成する。終端亀裂42の深さについては、始端亀裂41と同様に、数μm~数十μm程度とされる。 With such a configuration, the terminal crack forming unit 22 causes the planned cutting line of the brittle material substrate W stopped on the transport path 3 as shown in FIG. 3 when the diamond cutter 22a moves in a predetermined path by the moving mechanism 22b. A terminal crack 42 is formed at the rear end on L. The depth of the end crack 42 is set to about several μm to several tens of μm, like the start end crack 41.
 また、終端亀裂42の長さについても、始端亀裂41と同様に、2~3mm程度、またはそれ以下とされる。ただし、この終端亀裂42については、図3に示すように脆性材料基板Wの割断予定線L上の後端縁にまで形成されることなく、後端縁よりやや前方に位置していてもよい。ただし、終端亀裂42も始端亀裂41と同様に非製品品質エリアに形成されるのが好ましく、従って、終端亀裂42の始端亀裂41側の端縁は、仮想境界線Kの位置、例えば脆性材料基板Wの側縁から5mmの位置より外側とされる。このように形成すれば、ダイヤモンドカッタ22aによって形成される比較的粗い切断面は、製品品質エリアに形成されることなく非製品品質エリアのみに形成されるため、製品品質エリアからなる最終的な製品の品質を損なうことがない。 Also, the length of the end crack 42 is set to about 2 to 3 mm or less, similarly to the start end crack 41. However, the terminal crack 42 may be located slightly ahead of the rear end edge without being formed up to the rear end edge on the planned cutting line L of the brittle material substrate W as shown in FIG. . However, it is preferable that the end crack 42 is also formed in a non-product quality area in the same manner as the start end crack 41. Therefore, the end edge of the end crack 42 on the start end crack 41 side is the position of the virtual boundary line K, for example, a brittle material substrate. It is outside from the position of 5 mm from the side edge of W. If formed in this way, the relatively rough cut surface formed by the diamond cutter 22a is formed only in the non-product quality area without being formed in the product quality area. No loss of quality.
 図2に示すように可動板20aの下面には、レーザ照射部23(レーザ光照射源)が配設されている。レーザ照射部23は、可動板20aの移動に伴われて搬送路3上の脆性材料基板Wの上方を、脆性材料基板Wの幅方向に横切るように配置され、レーザ発振器(図示せず)と、レーザ発振器から発振されたレーザ光Cを導く光学系機器(図示せず)とを備えている。 As shown in FIG. 2, a laser irradiation unit 23 (laser light irradiation source) is disposed on the lower surface of the movable plate 20a. The laser irradiation unit 23 is disposed so as to cross the brittle material substrate W on the transport path 3 in the width direction of the brittle material substrate W along with the movement of the movable plate 20a, and a laser oscillator (not shown). And optical system equipment (not shown) for guiding the laser light C oscillated from the laser oscillator.
 レーザ発振器としては、例えば100W~数百Wの出力を有する炭酸ガスレーザ発振器が好適に用いられる。ただし、他の出力範囲、または他の発振機構によるレーザ発振器を用いることもできる。光学系機器は、ミラーやレンズ等からなり、レーザ発振器から発振されたレーザ光Cを予め設定された領域(加熱域)に導き、集光させる。 As the laser oscillator, for example, a carbon dioxide laser oscillator having an output of 100 W to several hundred W is preferably used. However, laser oscillators with other output ranges or other oscillation mechanisms can be used. The optical system device includes a mirror, a lens, and the like, and guides and condenses the laser light C oscillated from the laser oscillator to a preset region (heating region).
 すなわち、レーザ照射部23は、搬送路3上に保持された脆性材料基板Wに対して、斜め上方から図3に示す割断予定線L上にレーザ光Cを照射し、脆性材料基板Wを局部的に加熱する。ここで、図2に示すようにレーザ照射部23と脆性材料基板Wとの間の、レーザ光Cが通過する空間をレーザ光通過領域28と設定し、図3に示すように脆性材料基板W上の、レーザ光Cが照射される領域を加熱域29とする。加熱域29は、本実施形態では割断予定線Lに沿って細長く形成される略長方形の領域に設定される。すなわち、レーザ照射部23では、このように細長い略長方形の加熱域29を形成するように、レーザ発振器や光学系機器が構成されている。 That is, the laser irradiation unit 23 irradiates the brittle material substrate W held on the conveyance path 3 with laser light C on the planned cutting line L shown in FIG. Heat up. Here, a space through which the laser beam C passes between the laser irradiation unit 23 and the brittle material substrate W as shown in FIG. 2 is set as a laser beam passage region 28, and the brittle material substrate W as shown in FIG. 3. The upper region irradiated with the laser beam C is defined as a heating region 29. The heating area 29 is set to a substantially rectangular area that is elongated along the planned cutting line L in the present embodiment. That is, in the laser irradiation unit 23, a laser oscillator and an optical system device are configured so as to form the elongated substantially rectangular heating area 29 in this way.
 また、図2に示すように可動板20aの下面には、レーザ照射部23より可動板20aの移動方向後方に、冷却剤噴射部24がレーザ照射部23に対して所定距離離れて配置されている。この冷却剤噴射部24(冷却剤噴射源)は、搬送路3に対して鉛直方向下方に向けて配置された噴射ノズル24aと、送液ポンプ24bと、冷却剤を貯留するタンク24cとを備えている。このような構成のもとに冷却剤噴射部24は、脆性材料基板Wに向けて噴射ノズル24aから流動性を有する冷却剤Rを噴射する。 In addition, as shown in FIG. 2, a coolant injection unit 24 is disposed on the lower surface of the movable plate 20 a behind the laser irradiation unit 23 in the moving direction of the movable plate 20 a at a predetermined distance from the laser irradiation unit 23. Yes. The coolant injection unit 24 (coolant injection source) includes an injection nozzle 24a that is disposed vertically downward with respect to the transport path 3, a liquid feed pump 24b, and a tank 24c that stores the coolant. ing. Under such a configuration, the coolant injecting unit 24 injects the coolant R having fluidity from the injection nozzle 24 a toward the brittle material substrate W.
 ここで、冷却剤噴射部24と脆性材料基板Wとの間の、冷却剤Rが通過する空間を冷却剤通過領域30と設定し、図3に示すように脆性材料基板W上の、冷却剤Rが噴射される領域を冷却域31とする。冷却域31は、本実施形態では割断予定線L上に形成される小さな円形の領域に設定され、加熱域29より可動板20aの移動方向後方に所定距離離れて形成配置される。噴射ノズル24aから噴射される冷却剤Rは、レーザ照射部23によって脆性材料基板Wに形成された加熱域29を急激に冷却し、水に空気などのガスが混入されて形成される。 Here, a space through which the coolant R passes between the coolant injection unit 24 and the brittle material substrate W is set as a coolant passage region 30, and the coolant on the brittle material substrate W as shown in FIG. 3. A region where R is injected is referred to as a cooling region 31. In this embodiment, the cooling area 31 is set to a small circular area formed on the planned cutting line L, and is formed and arranged at a predetermined distance behind the heating area 29 in the moving direction of the movable plate 20a. The coolant R sprayed from the spray nozzle 24a is formed by rapidly cooling the heating area 29 formed on the brittle material substrate W by the laser irradiation unit 23, and gas such as air is mixed into water.
 このような構成を有する割断装置20を備えた搬送装置1によって脆性材料基板Wを搬送しつつ、割断するには、まず、図1に示す巻き出しロール2から脆性材料基板Wを送り出し(巻き出し)、脆性材料基板Wの先端部を第1可動保持部材5で保持する。そして、第1可動保持部材5を移動させ、脆性材料基板Wを所定位置まで搬送したら、第1可動保持部材5の移動を停止して脆性材料基板Wの走行を停止させる。 In order to cleave while transporting the brittle material substrate W by the transport device 1 having the cleaving device 20 having such a configuration, first, the brittle material substrate W is sent out (unwinded) from the unwinding roll 2 shown in FIG. ), The front end of the brittle material substrate W is held by the first movable holding member 5. Then, when the first movable holding member 5 is moved and the brittle material substrate W is transported to a predetermined position, the movement of the first movable holding member 5 is stopped and the travel of the brittle material substrate W is stopped.
 このようにして脆性材料基板Wの走行を停止したら、固定保持部材4によって脆性材料基板Wの巻き出しロール2側の両側端部を保持する。また、固定保持部材4による脆性材料基板Wの保持とは別に、第2可動保持部材7によっても脆性材料基板Wの先端部を保持する。すなわち、第1可動保持部材5が保持している部位より先方を、第2可動保持部材7によって保持する。 When the travel of the brittle material substrate W is stopped in this manner, the both ends of the brittle material substrate W on the side of the unwinding roll 2 are held by the fixed holding member 4. In addition to the holding of the brittle material substrate W by the fixed holding member 4, the distal end portion of the brittle material substrate W is also held by the second movable holding member 7. That is, the second movable holding member 7 holds the part ahead of the portion held by the first movable holding member 5.
 続いて、割断装置20によって脆性材料基板Wを幅方向に切断するべく、まず、図3に示すように始端亀裂形成部21によって脆性材料基板Wの割断予定線L上の移動方向(矢印Pと反対の方向)における先端部に、始端亀裂41を形成する。また、これと同時に、あるいは前後して、終端亀裂形成部22によって脆性材料基板Wの割断予定線L上の移動方向における後端部に、終端亀裂42を形成する。このようにして始端亀裂41、終端亀裂42を形成したら、後述する可動板20aの移動に先立ち、この可動板20aに干渉しないよう、始端亀裂形成部21、終端亀裂形成部22をそれぞれの移動機構21b、移動機構22bによって搬送路3上から退避させる。 Subsequently, in order to cut the brittle material substrate W in the width direction by the cleaving device 20, first, as shown in FIG. 3, the movement direction (arrow P and A start-end crack 41 is formed at the tip in the opposite direction). At the same time or before and after this, the end crack 42 is formed at the rear end in the moving direction on the planned cutting line L of the brittle material substrate W by the end crack forming portion 22. When the start-end crack 41 and the end-end crack 42 are formed in this way, prior to the movement of the movable plate 20a described later, the start-end crack formation portion 21 and the end-end crack formation portion 22 are moved to the respective moving mechanisms so as not to interfere with the movable plate 20a. 21b and the moving mechanism 22b are retracted from the conveyance path 3.
 次いで、レーザ照射部23、冷却剤噴射部24をそれぞれ作動させつつ、図2に示す移動機構25によって可動板20aを矢印P方向に移動(前進)させ、始端亀裂41を形成した脆性材料基板Wの先端部にレーザ光通過領域28の下方を到達させる。すると、加熱域29(図3参照)は脆性材料基板W上に形成され、脆性材料基板Wの先端部がレーザ光Cの照射を受けて加熱処理される。その際、脆性材料基板Wの先端部は冷却剤通過領域30に到達していないため、冷却処理は受けておらず、従って加熱処理のみがなされる初期加工が行われる。 Next, while operating the laser irradiation unit 23 and the coolant injection unit 24, the brittle material substrate W on which the movable plate 20a is moved (advanced) in the direction of arrow P by the moving mechanism 25 shown in FIG. The lower end of the laser beam passing region 28 is made to reach the tip of the laser beam. Then, the heating area 29 (see FIG. 3) is formed on the brittle material substrate W, and the front end portion of the brittle material substrate W is irradiated with the laser beam C and subjected to heat treatment. At that time, since the leading end portion of the brittle material substrate W has not reached the coolant passage region 30, it has not been subjected to cooling processing, and therefore, initial processing in which only heat treatment is performed is performed.
 次いで、初期加工に続く中期加工として、レーザ照射部23、冷却剤噴射部24をそれぞれ作動させたまま、移動機構25によって可動板20aをさらに移動(前進)させ、始端亀裂41を形成した先端部に冷却剤通過領域30の下方を到達させるとともに、先端部よりやや後方にレーザ光通過領域28の下方を到達させる。なお、便宜上初期加工、中期加工と表現しているが、これら初期加工から中期加工に移行する間では可動板20aを停止させることなく移動機構25によって一定速度で移動させる。従って、レーザ光Cの照射によって加熱される加熱域29や冷却剤Rによって冷却される冷却域31は、脆性材料基板W上において一定速度で連続的に移動(変化)する。すなわち、これら加熱域29や冷却域31は、可動板20aの移動方向と同じ方向に、一定速度で連続的に移動(変化)する。 Next, as a medium-term process following the initial process, the movable plate 20a is further moved (advanced) by the moving mechanism 25 while the laser irradiation unit 23 and the coolant injection unit 24 are operated, and the leading end part where the start crack 41 is formed. The lower part of the laser beam passing area 30 is made to reach the lower part of the laser beam passing area 28 slightly behind the front end. In addition, although expressed as initial machining and medium-term machining for the sake of convenience, the movable mechanism 20 is moved at a constant speed without stopping while moving from the initial machining to the medium-term machining. Therefore, the heating area 29 heated by the irradiation of the laser beam C and the cooling area 31 cooled by the coolant R continuously move (change) on the brittle material substrate W at a constant speed. That is, the heating area 29 and the cooling area 31 move (change) continuously at a constant speed in the same direction as the movement direction of the movable plate 20a.
 このようにして脆性材料基板Wの先端部に冷却剤Rを噴射し、冷却を行うと、先に加熱された部位が急冷される。すると、加熱・冷却作用によって脆性材料基板Wの上面には引張応力が生じ、始端亀裂41の切欠底には応力集中が生じる。そのため、所定の応力が作用すると、始端亀裂41を起点として割断予定線Lに沿って割断線が、進展していく。その際、脆性材料基板Wは極薄のガラス板であるため、レーザ照射部23の加熱条件、冷却剤噴射部24の冷却条件を適切に選択することにより、割断線としてスクライブ線ではなく、脆性材料基板Wにフルカットを行った割断線を形成することができる。 In this way, when the coolant R is sprayed to the tip of the brittle material substrate W and cooled, the previously heated portion is rapidly cooled. Then, a tensile stress is generated on the upper surface of the brittle material substrate W by the heating / cooling action, and a stress concentration is generated on the notch bottom of the start-end crack 41. For this reason, when a predetermined stress is applied, the cutting line progresses along the planned cutting line L with the starting crack 41 as a starting point. At that time, since the brittle material substrate W is an ultra-thin glass plate, by appropriately selecting the heating conditions of the laser irradiation unit 23 and the cooling conditions of the coolant injection unit 24, the brittle material substrate W is not a scribe line but a brittle line. A breaking line obtained by full-cutting the material substrate W can be formed.
 そして、このような中期加工に続く終期加工として、レーザ照射部23、冷却剤噴射部24をそれぞれ作動させたまま、移動機構25によって可動板20aをさらに移動(前進)させ、終端亀裂42を形成した脆性材料基板Wの後端部にレーザ光通過領域28の下方、冷却剤通過領域30の下方を順次到達させ、通過させる。なお、これら中期加工から終期加工に移行する間でも、可動板20aを停止させることなく移動機構25によって一定速度で移動させる。従って、加熱域29や冷却域31は、脆性材料基板W上において一定速度で連続的に移動する。 Then, as a final process following such a medium-term process, the movable plate 20a is further moved (advanced) by the moving mechanism 25 while the laser irradiation unit 23 and the coolant injection unit 24 are operated, and a terminal crack 42 is formed. The lower end of the laser beam passage region 28 and the lower portion of the coolant passage region 30 are sequentially reached and passed through the rear end portion of the brittle material substrate W. Even during the transition from the intermediate process to the final process, the movable plate 20a is moved at a constant speed by the moving mechanism 25 without stopping. Accordingly, the heating area 29 and the cooling area 31 continuously move at a constant speed on the brittle material substrate W.
 このようにしてレーザ照射部23による加熱処理、冷却剤噴射部24による冷却処理を割断予定線Lに沿って連続的に行うことにより、割断予定線Lで脆性材料基板Wのフルカット(割断)を行うことができる。
 ここで、ガラス板等の脆性材料基板の、初期亀裂をきっかけにして割断されるメカニズムは、一般に、以下のように考えられる。
In this way, the heat treatment by the laser irradiation unit 23 and the cooling treatment by the coolant injection unit 24 are continuously performed along the planned cutting line L, whereby the brittle material substrate W is fully cut (cut) by the planned cutting line L. It can be performed.
Here, the mechanism by which a brittle material substrate such as a glass plate is cleaved by an initial crack is generally considered as follows.
 図4A、図4Bは脆性材料基板Wの断面を示す図であり、これらの図において符号tは脆性材料基板Wの厚みを示し、符号Aは脆性材料基板Wの上面に形成された初期亀裂を示している。
 このような脆性材料基板Wを割断するべく、図4Aに示すように初期亀裂Aにレーザ光を照射して加熱すると、初期亀裂A近傍が加熱され、脆性材料基板Wの表層部に加熱域29が形成される。続いて、冷却剤噴射によって脆性材料基板Wの初期亀裂A近傍を冷却すると、初期亀裂A近傍が冷却され、図4Bに示すように脆性材料基板Wの表層部に冷却域31が形成される。その際、先に加熱によって形成された加熱域29は、熱伝導によって脆性材料基板Wの厚み方向に拡がる。
4A and 4B are diagrams showing cross sections of the brittle material substrate W. In these drawings, the symbol t indicates the thickness of the brittle material substrate W, and the symbol A indicates the initial crack formed on the upper surface of the brittle material substrate W. Show.
In order to cleave such a brittle material substrate W, when the initial crack A is irradiated with laser light and heated as shown in FIG. Is formed. Subsequently, when the vicinity of the initial crack A of the brittle material substrate W is cooled by coolant injection, the vicinity of the initial crack A is cooled, and a cooling region 31 is formed in the surface layer portion of the brittle material substrate W as shown in FIG. At that time, the heating area 29 previously formed by heating expands in the thickness direction of the brittle material substrate W by heat conduction.
 このような図4Bに示す状態において、加熱域29は熱膨張によって伸びようとするが、加熱域29の周囲は加熱による影響をほとんど受けていないため、加熱域29での熱膨張を抑えるように作用し、これによって図4B中に矢印で示すように加熱域29には圧縮応力が働く。 In the state shown in FIG. 4B, the heating area 29 tends to extend due to thermal expansion. However, since the surroundings of the heating area 29 are hardly affected by heating, the thermal expansion in the heating area 29 is suppressed. As a result, a compressive stress is applied to the heating zone 29 as indicated by an arrow in FIG. 4B.
 一方、冷却域31は熱収縮によって縮もうとするが、冷却域31の周囲は冷却による影響を大きく受けていないため、冷却域31での熱収縮を抑えるように作用し、これによって図4B中に矢印で示すように冷却域31には引っ張り応力が働く。このように脆性材料基板Wの表層部の冷却域31に引っ張り応力が働くと、この引っ張り応力が初期亀裂Aに作用することにより、初期亀裂Aを起点として脆性材料基板Wを割断させるように作用する。これにより、脆性材料基板Wは初期亀裂Aが成長することにより、脆性材料基板Wの表面にケガキ線を入れたように割断される。 On the other hand, the cooling zone 31 tends to shrink due to heat shrinkage, but the periphery of the cooling zone 31 is not greatly affected by the cooling, and thus acts to suppress the heat shrinkage in the cooling zone 31, and thereby, in FIG. As shown by the arrows in FIG. Thus, when tensile stress acts on the cooling region 31 of the surface layer portion of the brittle material substrate W, the tensile stress acts on the initial crack A, so that the brittle material substrate W is cleaved starting from the initial crack A. To do. As a result, the brittle material substrate W is cleaved as if an initial crack A grows, so that a marking line is made on the surface of the brittle material substrate W.
 また、特に厚みが300μm以下の極薄の脆性材料基板Wの場合、この脆性材料基板Wに初期亀裂をきっかけにしてフルカット(割断)が行われるメカニズムは、以下のように考えられる。
 図5A~図5Cは極薄の脆性材料基板Wの上面を示す斜視図であり、これらの図においても符号41は脆性材料基板Wの上面に形成された始端亀裂を示し、符号Lは脆性材料基板Wの割断予定線を示している。
In particular, in the case of an extremely thin brittle material substrate W having a thickness of 300 μm or less, the mechanism by which a full cut (cleaving) is performed on the brittle material substrate W as an initial crack is considered as follows.
5A to 5C are perspective views showing the upper surface of the ultrathin brittle material substrate W. In these drawings, reference numeral 41 denotes a crack at the starting end formed on the upper surface of the brittle material substrate W, and reference symbol L denotes the brittle material. The cutting planned line of the board | substrate W is shown.
 このような脆性材料基板Wを割断するべく、図5Aに示すように脆性材料基板Wを矢印Q方向(図2中の可動板20aの移動方向と反対の方向)に移動させつつ、始端亀裂41を含む割断予定線Lに沿ってレーザ光照射による加熱、冷却剤噴射による冷却を順次行うと、厚みが300μm以下の極薄の脆性材料基板Wではレーザ光照射後、速やかに下面まで熱伝導する。即ち、脆性材料基板Wの厚み方向では温度がほぼ均一であるのに対し、脆性材料基板Wの割断予定線L方向では、脆性材料基板Wの厚み方向と比べ温度分布の幅が大きくなる。換言すると、脆性材料基板Wの厚み方向では、変化率の小さい緩やかな温度勾配を持つのに対し、脆性材料基板Wの割断予定線L方向では、変化率の大きい急な温度勾配を持つ(脆性材料基板Wの厚み方向の温度勾配より、脆性材料基板Wの割断予定線L方向の温度勾配が大きい)。そのため、始端亀裂41の成長は、脆性材料基板Wの厚み方向の温度分布よりも、割断予定線L方向の温度分布が支配的となって行われる。 In order to cleave such a brittle material substrate W, as shown in FIG. 5A, the brittle material substrate W is moved in the direction of the arrow Q (the direction opposite to the moving direction of the movable plate 20a in FIG. 2), and the start crack 41 When heating by laser light irradiation and cooling by jetting coolant are sequentially performed along the planned cutting line L including, the ultrathin brittle material substrate W having a thickness of 300 μm or less conducts heat to the lower surface immediately after laser light irradiation. . That is, the temperature is almost uniform in the thickness direction of the brittle material substrate W, whereas the width of the temperature distribution is larger in the direction of the planned cutting line L of the brittle material substrate W than in the thickness direction of the brittle material substrate W. In other words, the brittle material substrate W has a gentle temperature gradient with a small change rate in the thickness direction, whereas the brittle material substrate W has a steep temperature gradient with a large change rate in the cutting line L direction (brittleness). The temperature gradient in the cutting line L direction of the brittle material substrate W is larger than the temperature gradient in the thickness direction of the material substrate W). For this reason, the growth of the start-end crack 41 is performed with the temperature distribution in the cutting line L direction being dominant over the temperature distribution in the thickness direction of the brittle material substrate W.
 このような状態において、加熱域29は熱膨張によって伸びようとするが、加熱域29の周囲、特に矢印Q方向と反対の領域では加熱による影響をほとんど受けていないため、加熱域29での熱膨張を抑えるように作用し、これによって図5A中に矢印で示すように加熱域29には圧縮応力が働く。 In such a state, the heating area 29 tends to expand due to thermal expansion, but the area around the heating area 29, particularly the area opposite to the direction of the arrow Q, is hardly affected by the heating. This acts to suppress expansion, and thereby compressive stress acts on the heating zone 29 as shown by the arrows in FIG. 5A.
 一方、冷却域31は熱収縮によって縮もうとするが、冷却域31の周囲は冷却による影響を大きく受けていないため、冷却域31での熱収縮を抑えるように作用し、これによって図5A中に矢印で示すように冷却域31には引っ張り応力が働く。このように脆性材料基板Wの表層部の冷却域31に引っ張り応力が働くと、この引っ張り応力が始端亀裂41に作用することにより、始端亀裂41を起点として脆性材料基板Wに割断が生じる。 On the other hand, although the cooling zone 31 tends to shrink due to heat shrinkage, the periphery of the cooling zone 31 is not greatly affected by the cooling, and thus acts to suppress the heat shrinkage in the cooling zone 31, and thereby, in FIG. As shown by the arrows in FIG. When tensile stress is applied to the cooling region 31 in the surface layer portion of the brittle material substrate W in this way, the tensile stress acts on the starting crack 41, so that the brittle material substrate W is cleaved from the starting crack 41.
 従って、脆性材料基板Wを矢印Q方向に移動させ、レーザ光照射による加熱、冷却剤噴射による冷却を割断予定線Lに沿って連続的に進めると、始端亀裂41を起点とした脆性材料基板Wの割断が割断予定線Lに沿って進行する。 Therefore, when the brittle material substrate W is moved in the direction of the arrow Q, and heating by laser light irradiation and cooling by coolant injection are continuously advanced along the planned cutting line L, the brittle material substrate W starting from the starting crack 41 is used. The cleaving proceeds along the planned breaking line L.
 ところが、脆性材料基板Wの矢印Q方向への移動が進み、図5Bに示すように加熱域29が脆性材料基板Wの終端にまで到達すると、加熱域29の周囲には加熱による影響をほとんど受けていない領域が少なく、特に矢印Q方向と反対の側の脆性材料基板Wの領域が存在しない。そのため、加熱域29での熱膨張を抑える力がほとんど働かず、これによって図5B中に矢印で示すように加熱域29は自由に熱膨張しようとする。 However, when the movement of the brittle material substrate W in the direction of the arrow Q proceeds and the heating area 29 reaches the end of the brittle material substrate W as shown in FIG. 5B, the area around the heating area 29 is almost affected by the heating. There are few unoccupied regions, and in particular, there is no region of the brittle material substrate W on the side opposite to the arrow Q direction. Therefore, the force which suppresses the thermal expansion in the heating area 29 hardly works, and as a result, the heating area 29 tends to expand freely as shown by an arrow in FIG. 5B.
 同様に、冷却域31では冷却域31の周囲に冷却による影響を大きく受けていない領域が少なく、特に矢印Q方向と反対の側の領域が減少するため、冷却域31での熱収縮を抑える力が弱まり、これによって図5B中に矢印で示すように冷却域31は熱収縮しようとする。 Similarly, in the cooling region 31, there are few regions around the cooling region 31 that are not greatly affected by the cooling, and in particular, the region on the side opposite to the arrow Q direction is reduced. As a result, the cooling zone 31 tends to shrink by heat as indicated by an arrow in FIG. 5B.
 よって、特に冷却域31での引っ張り応力が緩和されるため、始端亀裂41を起点として進行した割断線に十分な引っ張り応力が作用せず、従ってこの割断線の割断予定線Lに沿う進行が停止する。すなわち、脆性材料基板Wの割断予定線L終端部で、始端亀裂41を起点とした割断線Sの進行が停止する。よって、単に始端亀裂41だけを形成してレーザ光照射による加熱、冷却剤噴射による冷却を割断予定線Lに沿って連続的に進めても、カット終端部では必ず切れ残りが発生してしまう。その結果、この脆性材料基板Wの切れ残り部分を割断してフルカットを行うためには、従来と同様にブレーク処理を行う必要がある。 Therefore, particularly the tensile stress in the cooling region 31 is relaxed, so that a sufficient tensile stress does not act on the breaking line that has started from the start crack 41, and therefore the progress of the breaking line along the planned breaking line L is stopped. To do. That is, the progress of the breaking line S starting from the starting crack 41 is stopped at the end portion of the planned breaking line L of the brittle material substrate W. Therefore, even if only the start-end crack 41 is formed and the heating by laser light irradiation and the cooling by the coolant injection are continuously progressed along the planned cutting line L, the cut end portion will always be cut off. As a result, in order to cut the remaining portion of the brittle material substrate W and perform a full cut, it is necessary to perform a break process as in the prior art.
 そこで、本実施形態では、図5Cに示すように脆性材料基板Wの終端部に終端亀裂42を形成している。このように終端亀裂42を形成することで、割断予定線L上に生じる引っ張り応力が図5Cに示す終端亀裂42に作用することにより、終端亀裂42を起点として脆性材料基板Wに割断が生じる。 Therefore, in this embodiment, as shown in FIG. 5C, the terminal crack 42 is formed in the terminal part of the brittle material substrate W. By forming the terminal crack 42 in this way, the tensile stress generated on the planned cutting line L acts on the terminal crack 42 shown in FIG. 5C, so that the brittle material substrate W is cleaved starting from the terminal crack 42.
 従って、脆性材料基板Wを矢印Q方向に移動させ、レーザ光照射による加熱、冷却剤噴射による冷却を割断予定線Lに沿って連続的に進めると、割断予定線Lの終端部では終端亀裂42を起点とした脆性材料基板Wの割断が割断予定線Lに沿って進行し、先に形成された始端亀裂41を起点とした割断線Sに繋がる。よって、このように終端亀裂42を形成したことにより、割断予定線L上にて始端亀裂41を起点とした割断線Sと終端亀裂42を起点とした脆性材料基板Wの割断とが連続し、脆性材料基板Wが一つの連続した割断線によってフルカットが行はれる。 Therefore, when the brittle material substrate W is moved in the direction of the arrow Q and heating by laser light irradiation and cooling by the coolant injection are continuously advanced along the planned cutting line L, a terminal crack 42 is formed at the terminal part of the planned cutting line L. The cleaving of the brittle material substrate W starting from is progressed along the planned cutting line L, and is connected to the breaking line S starting from the previously formed start-end crack 41. Therefore, by forming the terminal crack 42 in this way, the cutting line S starting from the starting crack 41 on the planned cutting line L and the cutting of the brittle material substrate W starting from the terminal crack 42 are continuous. The brittle material substrate W is fully cut by one continuous breaking line.
 このようにして脆性材料基板Wを切断したら、割断装置20の可動板20aを矢印P方向と反対の方向に移動させ、初期位置に戻す。そして、切断後の脆性材料基板Wに対する第1可動保持部材5の保持を解除して第1可動保持部材5を固定保持部材4側に移動させ、固定保持部材4が保持している後続の脆性材料基板Wの先端部を保持する。一方、切断後の脆性材料基板Wについては、第2可動保持部材7を搬送方向下流側に移動させることにより、搬送路3上をさらに走行させる(搬送する)。
 以下、このような工程を繰り返すことにより、巻き出しロール2から巻き出された脆性材料基板Wを割断装置20によって連続的にフルカットし、所望の寸法にすることができる。
When the brittle material substrate W is cut in this way, the movable plate 20a of the cleaving device 20 is moved in the direction opposite to the arrow P direction to return to the initial position. Then, the holding of the first movable holding member 5 with respect to the brittle material substrate W after cutting is released, the first movable holding member 5 is moved to the fixed holding member 4 side, and the subsequent brittleness that the fixed holding member 4 holds. The tip of the material substrate W is held. On the other hand, the brittle material substrate W after being cut is further moved (conveyed) on the conveyance path 3 by moving the second movable holding member 7 to the downstream side in the conveyance direction.
Hereinafter, by repeating such steps, the brittle material substrate W unwound from the unwinding roll 2 can be continuously fully cut by the cleaving device 20 to have a desired size.
 本実施形態に係る割断装置20にあっては、脆性材料基板Wの割断予定線L上の、脆性材料基板Wを移動させる際の移動方向における後端部に、初期亀裂として終端亀裂42を形成する終端亀裂形成部22を備えているので、特に終端亀裂42を起点として脆性材料基板Wのカット終端部でもフルカットを行うことができる。従って、単に終端亀裂形成部22を備えるといった簡易な手法により、カット終端部での切れ残りを無くして割断予定線L全域で確実にフルカットを行うことができる。 In the cleaving apparatus 20 according to the present embodiment, the terminal crack 42 is formed as an initial crack at the rear end portion in the moving direction when the brittle material substrate W is moved on the planned cutting line L of the brittle material substrate W. Since the terminal crack forming portion 22 is provided, a full cut can be performed even at the cut end portion of the brittle material substrate W, particularly starting from the terminal crack 42. Therefore, a simple method of simply including the terminal crack forming portion 22 eliminates the uncut portion at the cut terminal portion, and can surely perform a full cut over the entire cutting line L.
 また、このような割断装置20による脆性材料基板の割断方法にあっても、初期亀裂として終端亀裂42を形成したので、この終端亀裂42を起点としてカット終端部でもフルカットを行うことができる。従って、単に終端亀裂42の形成を加えるといった簡易な手法により、カット終端部での切れ残りを無くして割断予定線全域でフルカットを行うことができる。 Further, even in the method of cleaving the brittle material substrate using such a cleaving apparatus 20, since the terminal crack 42 is formed as the initial crack, it is possible to perform a full cut even at the cut terminal part starting from the terminal crack 42. Therefore, by a simple method such as simply forming the end crack 42, it is possible to perform a full cut over the entire planned cutting line without any uncut portion at the cut end portion.
 また、始端亀裂41及び終端亀裂42を、共に脆性材料基板Wの非製品品質エリアに形成した。そのため、これら始端亀裂41及び終端亀裂42の切断面が比較的粗いものの、始端亀裂41及び終端亀裂42は、製品品質エリアには形成されないため、製品品質エリアからなる最終的な製品の品質が損なわれるのを防止することができる。 Further, both the start crack 41 and the end crack 42 were formed in the non-product quality area of the brittle material substrate W. Therefore, although the cut surfaces of the start end crack 41 and the end crack 42 are relatively rough, the start end crack 41 and the end crack 42 are not formed in the product quality area, so that the quality of the final product composed of the product quality area is impaired. Can be prevented.
 なお、本発明は上記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
 例えば、上記実施形態では、始端亀裂形成部21、終端亀裂形成部22をそれぞれ独自の移動機構21b、移動機構22bによって移動可能に構成したが、始端亀裂形成部21、終端亀裂形成部22のそれぞれのダイヤモンドカッタ21a、ダイヤモンドカッタ22aを可動板20aに取り付け、あるいはレーザ照射部23に取り付けることにより、可動板20aを移動させる移動機構25によって始端亀裂形成部21(ダイヤモンドカッタ21a)、終端亀裂形成部22(ダイヤモンドカッタ22a)をそれぞれ移動させてもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
For example, in the above-described embodiment, the start-end crack forming unit 21 and the end-end crack forming unit 22 are configured to be movable by the original moving mechanism 21b and the moving mechanism 22b, respectively. The diamond cutter 21a and the diamond cutter 22a are attached to the movable plate 20a, or attached to the laser irradiation unit 23, so that the moving plate 25a moves the moving plate 25a to move the starting end crack forming portion 21 (diamond cutter 21a) and the terminal crack forming portion. 22 (diamond cutter 22a) may be moved.
 その場合に、始端亀裂形成部21、終端亀裂形成部22を共に設けることなく、一方の亀裂形成部のみを可動板20aあるいはレーザ照射部23に取り付け、この亀裂形成部によって始端亀裂41の形成と終端亀裂42の形成とを共に行ってもよい。 In that case, without providing both the starting crack forming part 21 and the terminal crack forming part 22, only one crack forming part is attached to the movable plate 20 a or the laser irradiation part 23, and the formation of the starting crack 41 is performed by this crack forming part. The formation of the terminal crack 42 may be performed together.
 また、上記実施形態では可動板20aを移動させることにより、脆性材料基板Wに対してレーザ照射部23、冷却剤噴射部24を移動させたが、例えば大判の脆性材料基板Wを複数枚に分割したい場合などでは、レーザ照射部23、冷却剤噴射部24を固定して配置しておき、これらレーザ照射部23、冷却剤噴射部24に対して脆性材料基板Wを移動させてもよい。 Moreover, in the said embodiment, the laser irradiation part 23 and the coolant injection part 24 were moved with respect to the brittle material board | substrate W by moving the movable plate 20a. For example, the large brittle material board | substrate W is divided | segmented into several sheets. For example, the laser irradiation unit 23 and the coolant injection unit 24 may be fixedly arranged, and the brittle material substrate W may be moved with respect to the laser irradiation unit 23 and the coolant injection unit 24.
 また、上記実施形態では、始端亀裂形成部21、終端亀裂形成部22として、カッタホイールであるダイヤモンドカッタ21aやダイヤモンドカッタ22aを用いたが、本発明はこれに限定されることなく、他に例えば、短パルスレーザを用いたアブレーション加工により、始端亀裂41や終端亀裂42を形成してもよい。このような短パルスレーザを用いた場合、非接触で始端亀裂41や終端亀裂42を形成することができるため、マイクロクラックの発生を抑えることができる。 Moreover, in the said embodiment, although the diamond cutter 21a and the diamond cutter 22a which are cutter wheels were used as the start end crack formation part 21 and the end crack formation part 22, this invention is not limited to this, For example, The start end crack 41 and the end crack 42 may be formed by ablation processing using a short pulse laser. When such a short pulse laser is used, since the start end crack 41 and the end crack 42 can be formed in a non-contact manner, generation of micro cracks can be suppressed.
 本発明の脆性材料基板の割断装置、及び割断方法によれば、特に終端亀裂を起点としてカット終端部でもフルカットを行うことができる。従って、単に終端亀裂の形成を加えるといった簡易な手法により、カット終端部での切れ残りを無くして割断予定線全域のフルカットを行うことができる。 The brittle material substrate cleaving apparatus and cleaving method of the present invention can perform a full cut even at the cut end portion, particularly starting from the end crack. Therefore, a simple method of simply forming the end crack can eliminate the uncut portion at the cut end portion and perform a full cut on the entire cutting planned line.
1 搬送装置
3 搬送路(加工台)
20 脆性材料基板の割断装置
20a 可動板
21 始端亀裂形成部
22 終端亀裂形成部
23 レーザ照射部(レーザ光照射源)
24 冷却剤噴射部(冷却剤噴射源)
25 移動機構(移動手段)
29 加熱域
31 冷却域
41 始端亀裂
42 終端亀裂
L 割断予定線
W 脆性材料基板
1 Conveying device 3 Conveying path (processing stand)
20 Brittle material substrate cleaving device 20a Movable plate 21 Start-end crack forming section 22 End-end crack forming section 23 Laser irradiation section (laser beam irradiation source)
24 Coolant injection part (coolant injection source)
25 Moving mechanism (moving means)
29 Heating area 31 Cooling area 41 Start crack 42 End crack L Split line W Brittle material substrate

Claims (5)

  1.  脆性材料基板を割断予定線に沿って割断する脆性材料基板の割断方法であって、
     脆性材料基板の割断予定線上の、脆性材料基板をレーザ光照射源に対して移動させる際の移動方向における先端部に、始端亀裂を形成し、かつ、移動方向における後端部に、終端亀裂を形成する工程と、
     前記脆性材料基板をレーザ光照射源に対して移動させつつ、レーザ光照射源から前記割断予定線上にレーザ光を照射して加熱処理を行う工程と、
     レーザ光による脆性材料基板の加熱処理した部位に対して冷却剤噴射源から冷却剤を噴射し、冷却処理を行って前記割断予定線で前記脆性材料基板を割断する工程と、
     を備える脆性材料基板の割断方法。
    A method of cleaving a brittle material substrate that cleaves the brittle material substrate along a planned cleaving line,
    A crack at the leading end in the moving direction when the brittle material substrate is moved relative to the laser beam irradiation source on the cutting line of the brittle material substrate is formed, and a terminal crack is formed at the trailing end in the moving direction. Forming, and
    A step of performing a heat treatment by irradiating a laser beam from the laser light irradiation source onto the planned cutting line while moving the brittle material substrate with respect to the laser light irradiation source;
    A step of injecting a coolant from a coolant injection source to a heat-treated portion of the brittle material substrate by laser light, performing a cooling treatment, and cleaving the brittle material substrate along the planned cutting line;
    A method for cleaving a brittle material substrate.
  2.  前記脆性材料基板が、周縁部に非製品品質エリアを有し、非製品品質エリアの内側に製品品質エリアを有しており、
     前記始端亀裂及び前記終端亀裂を形成する工程では、これら始端亀裂及び終端亀裂を共に非製品品質エリアに形成する請求項1記載の脆性材料基板の割断方法。
    The brittle material substrate has a non-product quality area at the periphery, and a product quality area inside the non-product quality area;
    2. The method for cleaving a brittle material substrate according to claim 1, wherein in the step of forming the start end crack and the end crack, both the start end crack and the end crack are formed in a non-product quality area.
  3. 前記脆性材料基板の厚み方向の温度勾配より、前記脆性材料基板の割断予定線方向の温度勾配が大きくなるように、前記脆性材料基板に前記加熱処理及び前記冷却処理を行う請求項1記載の脆性材料基板の割断方法。 2. The brittleness according to claim 1, wherein the heat treatment and the cooling treatment are performed on the brittle material substrate such that a temperature gradient in a cutting line direction of the brittle material substrate is larger than a temperature gradient in the thickness direction of the brittle material substrate. Material substrate cleaving method.
  4.  脆性材料基板を割断予定線に沿って割断する脆性材料基板の割断装置であって、
     脆性材料基板を配置する加工台と、
     前記脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における先端部に、始端亀裂を形成する始端亀裂形成部と、
     前記脆性材料基板の割断予定線上の、脆性材料基板を移動させる際の移動方向における後端部に、終端亀裂を形成する終端亀裂形成部と、
     前記脆性材料基板上にレーザ光を照射するレーザ照射部と、
     前記脆性材料基板上に冷却剤を噴射する冷却剤噴射部と、
     前記脆性材料基板を前記レーザ照射部及び前記冷却剤噴射部に対して予め設定された方向に移動させる移動手段と、
     を備える脆性材料基板の割断装置。
    A brittle material substrate cleaving apparatus for cleaving a brittle material substrate along a planned cutting line,
    A processing table on which a brittle material substrate is placed;
    A start-end crack forming part that forms a start-end crack at a tip end in a moving direction when the brittle material substrate is moved on the planned cutting line of the brittle material substrate,
    A terminal crack forming portion that forms a terminal crack at a rear end portion in a moving direction when the brittle material substrate is moved on the planned cutting line of the brittle material substrate,
    A laser irradiation unit for irradiating the brittle material substrate with laser light;
    A coolant injection unit for injecting a coolant onto the brittle material substrate;
    Moving means for moving the brittle material substrate in a preset direction with respect to the laser irradiation unit and the coolant injection unit;
    A brittle material substrate cleaving apparatus comprising:
  5.  前記移動手段は、前記脆性材料基板に対して前記レーザ照射部及び前記冷却剤噴射部を移動させるように構成され、
     前記始端亀裂形成部及び前記終端亀裂形成部は、前記レーザ照射部と同じ移動路上を移動するように構成されている請求項4記載の脆性材料基板の割断装置。
    The moving means is configured to move the laser irradiation unit and the coolant injection unit with respect to the brittle material substrate,
    The brittle material substrate cleaving apparatus according to claim 4, wherein the start-end crack forming section and the end-end crack forming section are configured to move on the same moving path as the laser irradiation section.
PCT/JP2015/065073 2014-06-11 2015-05-26 Brittle substrate cleavage method and brittle substrate cleavage device WO2015190281A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580009533.9A CN106029317A (en) 2014-06-11 2015-05-26 Brittle substrate cleavage method and brittle substrate cleavage device
KR1020167025812A KR101836025B1 (en) 2014-06-11 2015-05-26 Brittle substrate cleavage method and brittle substrate cleavage device
JP2016527730A JP6269830B2 (en) 2014-06-11 2015-05-26 Brittle material substrate cleaving method and brittle material substrate cleaving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-120915 2014-06-11
JP2014120915 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190281A1 true WO2015190281A1 (en) 2015-12-17

Family

ID=54833384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065073 WO2015190281A1 (en) 2014-06-11 2015-05-26 Brittle substrate cleavage method and brittle substrate cleavage device

Country Status (5)

Country Link
JP (1) JP6269830B2 (en)
KR (1) KR101836025B1 (en)
CN (1) CN106029317A (en)
TW (1) TWI607976B (en)
WO (1) WO2015190281A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025792A (en) * 2017-07-31 2019-02-21 三星ダイヤモンド工業株式会社 Break device
US20200324429A1 (en) * 2016-05-31 2020-10-15 Faurecia (China) Holding Co., Ltd. Release agent supply device for cold knife weakening and a cold knife system comprising such a device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153219A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for cutting liquid crystal display device and method for fabricating liquid crystal display device using the same
JP2010116272A (en) * 2008-11-11 2010-05-27 Sharp Corp Glass substrate cutting device and glass substrate cutting method
JP2012006795A (en) * 2010-06-25 2012-01-12 Asahi Glass Co Ltd Cutting method and cutting apparatus
JP2013043803A (en) * 2011-08-24 2013-03-04 Mitsuboshi Diamond Industrial Co Ltd Scribing method for glass substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007005018A (en) * 2004-10-25 2008-02-19 Mitsuboshi Diamond Ind Co Ltd Method and device for forming crack.
JP2009107301A (en) 2007-10-31 2009-05-21 Lemi Ltd Full body cutting method for brittle material
JP5627201B2 (en) * 2009-06-17 2014-11-19 三星ダイヤモンド工業株式会社 Cleaving method of brittle material substrate
JP5478957B2 (en) * 2009-06-30 2014-04-23 三星ダイヤモンド工業株式会社 Cleaving method of brittle material substrate
JP5669001B2 (en) * 2010-07-22 2015-02-12 日本電気硝子株式会社 Glass film cleaving method, glass roll manufacturing method, and glass film cleaving apparatus
KR101396989B1 (en) * 2011-08-24 2014-05-21 미쓰보시 다이야몬도 고교 가부시키가이샤 Scribe method for glass substrate
JP5437333B2 (en) * 2011-08-30 2014-03-12 三星ダイヤモンド工業株式会社 Glass substrate scribing method and processing apparatus
JP5979600B2 (en) * 2011-12-12 2016-08-24 日本電気硝子株式会社 Sheet glass breaking and separating method
JP2013163626A (en) * 2012-02-13 2013-08-22 Asahi Glass Co Ltd Cut line processing apparatus for plate-shaped substance and cut line processing method for plate-shaped substance, and manufacturing apparatus for glass sheet and manufacturing method for glass sheet
JP6255595B2 (en) * 2012-10-12 2018-01-10 株式会社Ihi Cleaving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153219A1 (en) * 2005-12-29 2007-07-05 Lg.Philips Lcd Co., Ltd. Apparatus and method for cutting liquid crystal display device and method for fabricating liquid crystal display device using the same
JP2010116272A (en) * 2008-11-11 2010-05-27 Sharp Corp Glass substrate cutting device and glass substrate cutting method
JP2012006795A (en) * 2010-06-25 2012-01-12 Asahi Glass Co Ltd Cutting method and cutting apparatus
JP2013043803A (en) * 2011-08-24 2013-03-04 Mitsuboshi Diamond Industrial Co Ltd Scribing method for glass substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200324429A1 (en) * 2016-05-31 2020-10-15 Faurecia (China) Holding Co., Ltd. Release agent supply device for cold knife weakening and a cold knife system comprising such a device
JP2019025792A (en) * 2017-07-31 2019-02-21 三星ダイヤモンド工業株式会社 Break device

Also Published As

Publication number Publication date
TWI607976B (en) 2017-12-11
JPWO2015190281A1 (en) 2017-04-20
JP6269830B2 (en) 2018-01-31
CN106029317A (en) 2016-10-12
KR101836025B1 (en) 2018-03-07
KR20160124198A (en) 2016-10-26
TW201602028A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP6255595B2 (en) Cleaving device
TWI380963B (en) Method for processing brittle material substrates
TWI392550B (en) Method for processing brittle material substrates
JP2008132616A (en) Method and apparatus for cutting brittle material
TWI491573B (en) Method for scribing a glass board and a processing device
JP2012528772A (en) Method and apparatus for producing an elastically deformable glass plate
US10889519B2 (en) Method for manufacturing glass roll
KR101200789B1 (en) Method for dividing brittle material substrate
JP2007090860A (en) System and method for cutting and working fragile material
JP2011230940A (en) Cutting method for brittle material substrate
JP6269830B2 (en) Brittle material substrate cleaving method and brittle material substrate cleaving apparatus
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
JP2007246298A (en) Method and apparatus for cutting brittle material
JP5849606B2 (en) Scribing equipment
JP2009067618A (en) Apparatus and method for breaking substrate made of brittle material
KR20130040696A (en) Scribing apparatus
JP4149746B2 (en) Method and apparatus for scribing hard brittle plate
JP5017900B2 (en) Workpiece processing method and apparatus
JP5993684B2 (en) Method for dividing brittle material substrate and scribing apparatus
JP6269876B2 (en) Cleaving device
JP2007182338A (en) Method for cutting glass substrate, and cutting apparatus
JP2005247600A (en) System and method of cutting brittle material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527730

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806877

Country of ref document: EP

Kind code of ref document: A1