Nothing Special   »   [go: up one dir, main page]

WO2015186685A1 - Protective adhesive film, image display device, and portable electronic terminal - Google Patents

Protective adhesive film, image display device, and portable electronic terminal Download PDF

Info

Publication number
WO2015186685A1
WO2015186685A1 PCT/JP2015/065852 JP2015065852W WO2015186685A1 WO 2015186685 A1 WO2015186685 A1 WO 2015186685A1 JP 2015065852 W JP2015065852 W JP 2015065852W WO 2015186685 A1 WO2015186685 A1 WO 2015186685A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hard coat
acrylate
thickness
meth
Prior art date
Application number
PCT/JP2015/065852
Other languages
French (fr)
Japanese (ja)
Inventor
大亮 渡辺
佑輔 高橋
祐也 北出
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015557108A priority Critical patent/JP6002969B2/en
Publication of WO2015186685A1 publication Critical patent/WO2015186685A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a protective adhesive film for protecting the surface of an information display device such as a liquid crystal display or an organic electroluminescence display.
  • a liquid crystal module having a touch panel function called a so-called on-cell type or in-cell type is known.
  • the liquid crystal module has a problem that the polarizing plate constituting the liquid crystal module is likely to cause dents and scratches due to pressure that can be generated during touch input.
  • a method for preventing damage to the polarizing plate due to the pressure for example, a method is known in which a glass substrate is provided on the surface side of the polarizing plate, and a hard coat film is provided on the surface of the glass substrate (for example, , See Patent Document 1).
  • the glass substrate is relatively expensive, and the portable electronic terminal obtained using the glass substrate tends to be thicker and heavier. There was a case that could not be supported.
  • a conventional hard coat film is pasted on the surface of an optical film such as a polarizing plate constituting the information display device without using a rigid body such as the glass substrate. The thing which was done is mentioned.
  • the conventional hard coat film is generally thin and flexible, it is likely to be deformed by the pressure when touch-inputting the information display device, and as a result, the polarizing plate may be easily damaged.
  • the pressure-sensitive adhesive layer is a thin film, it may generally cause damage such as dents in the optical film, and if the pressure-sensitive adhesive layer is a thick film, generally the surface of the hard coat film is scratched. There was a problem that it was easy to stick.
  • the problem to be solved by the present invention is to prevent damage to the optical film due to touch input, etc. even when it is attached to the surface of an optical film such as a polarizing plate without using a rigid body such as a glass substrate. It is possible to provide a protective adhesive film that can be made and is not easily damaged.
  • the present inventors provide a protective adhesive film having a total thickness of 150 ⁇ m or more having an adhesive layer (B) having a thickness of 15 ⁇ m or more on at least one surface side of the hard coat film (A), the hard coat film (A) has a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 ⁇ m or more, and a ridge angle 136 on the surface of the hard coat layer (a2).
  • the above problem was solved by a protective adhesive film characterized by having a Martens hardness of 250 N / mm 2 or more measured by pushing a Vickers indenter at a load of 1 mN.
  • the protective adhesive film of the present invention can prevent damage to the surface of the protective adhesive film even when a local pressure is applied due to impact, touch input, etc. Scratches and deformation (such as dents) can be prevented.
  • the protective adhesive film of the present invention is a protective adhesive film having a total thickness of 150 ⁇ m or more having an adhesive layer (B) having a thickness of 15 ⁇ m or more on at least one surface side of the hard coat film (A),
  • the coat film (A) has a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 ⁇ m or more, and a ridge is formed on the surface of the hard coat layer (a2).
  • the Martens hardness measured by pushing a 136 V angle Vickers indenter with a load of 1 mN is 250 N / mm 2 or more.
  • the surface of the protective adhesive film is prevented from being scratched, and the optical film is damaged or deformed even when it is directly attached to the surface of an adherend such as an optical film.
  • a material having a total thickness of 150 ⁇ m or more is used.
  • the protective adhesive film can be suitably used exclusively as an adhesive film for protecting the surface of the information display device, and an optical film such as a polarizing plate constituting the surface of a so-called in-cell type and on-cell type information display device. It can be more suitably used as an adhesive film for protecting the film.
  • a film having a thickness of 150 ⁇ m to 500 ⁇ m is preferably used, a film having a thickness of 150 ⁇ m to 400 ⁇ m is more preferably used, and a film having a thickness of 150 ⁇ m to 350 ⁇ m is used.
  • a film having a thickness of 150 ⁇ m to 500 ⁇ m is preferably used, a film having a thickness of 150 ⁇ m to 400 ⁇ m is more preferably used, and a film having a thickness of 150 ⁇ m to 350 ⁇ m is used.
  • the optical film can be prevented from being damaged, and the final product such as a portable electronic terminal can be made thinner and lighter.
  • the hard coat film (A) constituting the protective adhesive film one having a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 ⁇ m or more is used.
  • the hard coat film (A) it is preferable to use a film provided with the hard coat layer (a2) on one side of the resin film (a1) directly or via another layer, It is more preferable to use a resin film (a1) provided with the hard coat layer (a2) directly on one side in order to reduce the thickness and weight of a portable electronic terminal or the like.
  • the hard coat film (A) has a Martens hardness of 250 N / mm 2 or more measured by pushing a Vickers indenter having a ridge angle of 136 ° into the surface of the hard coat layer (a2) with a load of 1 mN.
  • a Martens hardness of 250 N / mm 2 or more measured by pushing a Vickers indenter having a ridge angle of 136 ° into the surface of the hard coat layer (a2) with a load of 1 mN.
  • the Martens hardness is preferably in the range of 250N / mm 2 ⁇ 800N / mm 2, more preferably in the range of 250N / mm 2 ⁇ 500N / mm 2, 250N / mm 2 ⁇ 450N / mm 2 It is preferable that the thickness is within the range because it is possible to prevent the hard coat film (A) from being damaged, and even when directly attached to an optical film or the like, cracks during cutting can be effectively suppressed.
  • the Martens hardness is prepared by preparing a hard coat film (A) provided with a hard coat layer (a2) on one side or both sides of the resin film (a1), and applying it to the surface of a smooth glass plate. The value is measured by placing the hard coat layer (a2) on the upper surface and pushing a Vickers indenter with a ridge angle of 136 ° into the surface (surface made of the hard coat layer (a2)) with a load of 1 mN.
  • said hard coat film (A) it is preferable to use what the pencil hardness of the surface which consists of a hard coat layer (a2) which comprises it is 3H or more, and uses what is 4H or more. Even when the adhesive layer (B) is laminated on the hard coat film (A) to form a protective adhesive film, the decrease in the surface hardness can be suppressed. As a result, the hard coat film (A) This is preferable because it is possible to achieve both higher levels of prevention of damage and prevention of deformation and damage to optical films and the like.
  • the resin film (a1) constituting the hard coat film (A) a film having a thickness of 130 ⁇ m or more is used. Thereby, even if it is a case where it affixes directly on an optical film etc., the protective adhesive film which can prevent the damage of an optical film effectively can be obtained.
  • the thickness is preferably in the range of 130 ⁇ m to 300 ⁇ m, and in the range of 150 ⁇ m to 250 ⁇ m effectively prevents damage to the optical film even when directly attached to an optical film or the like. It is more preferable when obtaining the protective adhesive film which can be performed.
  • the resin film which can design the Martens hardness of the said hard coat film (A) to 250 N / mm ⁇ 2 > or more can be selected suitably, and can be used.
  • Examples of the resin film (a1) include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, polypropylene film, cellophane film, diacetyl cellulose film, triacetyl cellulose film, acetyl cellulose butyrate film, and polychlorinated.
  • Vinyl film polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyether ether ketone film, polyether sulfone film, polyetherimide film , Polyimide film, fluorine resin film, Nylon film, it is possible to use an acrylic resin film or the like.
  • the resin film (a1) it is preferable to select and use one having an elastic modulus in the range of 3 GPa to 15 GPa in order to obtain a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more, Moreover, when using a protective adhesive film, since the said resin film cannot change easily and the fall of the surface hardness of a protective adhesive film can be suppressed effectively, it is preferable. Further, by using the resin film (a1) having an elastic modulus in the above range, the finally obtained protective adhesive film becomes relatively flexible, and as a result, the protective adhesive film is affixed to, for example, a gentle curved surface portion. This is preferable because it easily follows the curved surface portion.
  • the total light transmittance of the resin film (a1) is preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more.
  • a resin film provided with a primer layer can be used for the purpose of further improving the adhesion with the hard coat layer (a2).
  • the resin film (a1) has surface irregularities by a sandblasting method or a solvent treatment method for the purpose of further improving the adhesion with the hard coat layer (a2) or the pressure-sensitive adhesive layer (B).
  • a sandblasting method or a solvent treatment method for the purpose of further improving the adhesion with the hard coat layer (a2) or the pressure-sensitive adhesive layer (B).
  • surface treatment such as chemical treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and oxidation treatment can be used.
  • the resin film (a1) a resin film containing an antistatic agent or the like can be used.
  • antistatic agent examples include, as nonionic antistatic agents, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol, polyoxyethylene alkylamine, polyoxyethylene alkylamide, fatty acid polyethylene glycol ester, fatty acid sorbitan ester, polyoxyethylene fatty acid Examples include sorbitan ester, fatty acid glycerin ester, and alkyl polyethyleneimine.
  • examples of the cationic antistatic agent include alkylamine salts, alkyl quaternary ammonium salts, and alkyl imidazoline derivatives. An acrylate compound having ethylene oxide as a skeleton can also be used.
  • antistatic agent polyaniline, polypyrrole, polythiophene, poly3,4-ethylenedioxythiophene and derivatives thereof can be used as the conductive polymer.
  • metal oxide antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), aluminum-doped zinc oxide, antimony suboxide, or the like can be used.
  • ATO antimony-doped tin oxide
  • ITO tin-doped indium oxide
  • zinc oxide aluminum-doped zinc oxide
  • antimony suboxide or the like
  • an ion conduction type antistatic agent in which metal ions such as lithium ions are mixed can also be used.
  • the hard coat layer (a2) constituting the hard coat film (A) is measured by pushing a Vickers indenter with an edge angle of 136 ° into the surface of the hard coat layer (a2) with a load of 1 mN.
  • the one whose Martens hardness can be 250 N / mm 2 or more is used.
  • cured material layer formed using various hard-coat agents is mentioned,
  • the layer formed using the hard-coat agent containing an active energy ray-curable composition is mentioned. It is done.
  • the hard coat layer (a2) preferably has a thickness of 3 ⁇ m to 25 ⁇ m, more preferably a thickness of 4 ⁇ m to 20 ⁇ m, and a thickness of 5 ⁇ m to 16 ⁇ m. It is possible to obtain a protective film that can prevent the hard coat film (A) from being damaged and can effectively prevent the optical film from being damaged even when it is directly attached to the optical film or the like. This is more preferable in preventing warpage of the hard coat film (A) and the protective adhesive film due to the curing shrinkage of the hard coat agent when the hard coat layer (a2) is formed.
  • a hard coat agent that can be used for forming the hard coat layer (a2), a hard coat agent containing (meth) acrylate for obtaining a hard coat film (A) having a Martens hardness in the above-described range. It is preferable to use urethane (meth) acrylate (X) for suppressing the curing shrinkage of the hard coat agent and forming a hard coat layer excellent in high surface hardness and durability. It is more preferable to use a hard coat agent.
  • urethane (meth) acrylate (X) various urethane (meth) acrylates can be used. Among them, urethane (meth) acrylate having 4 or more (meth) acryloyl groups in the molecule is used. Is preferable for obtaining a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more.
  • urethane (meth) acrylate having 4 or more (meth) acryloyl groups in the molecule it is preferable to use, for example, those obtained by reacting polyisocyanate and (meth) acrylate having a hydroxyl group.
  • polyisocyanate examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, Alicyclic polyisocyanates such as 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane can be used.
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate
  • norbornane diisocyanate isophorone diisocyanate
  • methylene bis (4-cyclohexyl isocyanate) 1,3-bis (isocyanatomethyl
  • polyisocyanate a trimer of the aliphatic polyisocyanate or alicyclic polyisocyanate may be used.
  • hexamethylene diisocyanate which is an aliphatic diisocyanate
  • norbornane diisocyanate which is an alicyclic diisocyanate
  • isophorone diisocyanate is used to obtain a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more. It is preferable in that it is possible to prevent the hard coat film (A) from being damaged, and even if it is applied directly to the optical film or the like, it is preferable because the optical film can be more effectively prevented from being damaged.
  • Examples of the (meth) acrylate having a hydroxyl group that can be used in the production of the urethane (meth) acrylate (X) include trimethylolpropane di (meth) acrylate, ethylene oxide-modified trimethylolpropane di (meth) acrylate, and propylene oxide.
  • Modified trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, bis ((meth) acryloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipenta Erythritol penta (meth) acrylate or the like can be used alone or in combination of two or more.
  • the (meth) acrylate having a hydroxyl group use of pentaerythritol tri (meth) acrylate or dipentaerythritol penta (meth) acrylate makes it possible to further improve the hard coat layer (a2) due to durability such as scratch resistance. It is preferable when obtaining the hard coat film provided with.
  • the urethane (meth) acrylate (X) can be produced by subjecting the polyisocyanate and the (meth) acrylate having a hydroxyl group to a urethanization reaction in the presence of a urethanization catalyst.
  • urethanization catalyst examples include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, and dibutyltin.
  • Organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate can be used.
  • the urethane (meth) acrylate (X) obtained by the above method can be used alone or in combination of two or more.
  • the urethane (meth) acrylate (X) it is possible to use a combination of a urethane acrylate obtained using norbornane diisocyanate as the polyisocyanate and a urethane acrylate obtained using isophorone diisocyanate as the polyisocyanate, Even when the hard coat film (A) having a Martens hardness of 250 N / mm 2 or more is preferred, the hard coat film (A) can be prevented from being damaged, and even when directly attached to an optical film or the like. It is preferable because the optical film can be more effectively prevented from being damaged.
  • urethane (meth) acrylate (X) urethane (meth) acrylate obtained by using isocyanurate such as bis ((meth) acryloxyethyl) hydroxyethyl isocyanurate
  • isocyanurate such as bis ((meth) acryloxyethyl) hydroxyethyl isocyanurate
  • the above urethane (meth) Use in combination with acrylate is preferable for obtaining a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more, can prevent the hard coat film (A) from being damaged, and is directly applied to an optical film or the like. Even if it is affixed, it is preferable because the optical film can be more effectively prevented from being damaged.
  • urethane (meth) acrylate By using urethane (meth) acrylate in a combination as described above, it has a Martens hardness in the above range, can effectively suppress warpage of the hard coat film due to the curing shrinkage, and has high surface hardness and durability. A hard coat film excellent in properties can be obtained.
  • those containing other (meth) acrylates other than the urethane (meth) acrylate (X) can be used.
  • Examples of the other (meth) acrylates include polyfunctional (meth) acrylate (Y) having three or more (meth) acryloyl groups in the molecule.
  • Examples of the polyfunctional (meth) acrylate (Y) include trimethylolpropane tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, propylene oxide-modified trimethylolpropane tri (meth) acrylate, and ditrimethylolpropane.
  • the polyfunctional (meth) acrylate (Y) has a (meth) acryloyl group equivalent of 50 g / eq.
  • ⁇ 200 g / eq. In the range of 70 g / eq. ⁇ 150 g / eq. In the range of 80 g / eq. To 120 g / eq. It is more preferable to use the thing of the range.
  • Examples of the polyfunctional (meth) acrylate having a (meth) acryloyl group equivalent within the above range include pentaerythritol tetraacrylate (acryloyl group equivalent: 88 g / eq.), Dipentaerythritol hexa (meth) acrylate (acryloyl group equivalent: 118 g / eq.) and the like.
  • the polyfunctional (meth) acrylate (Y) is preferably used in combination with the urethane (meth) acrylate (X).
  • the mass ratio [(X) / (Y)] of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y) is a hard coat film having a Martens hardness in the above-described range (A )
  • the durability of the hard coat layer (a2), such as scratch resistance, is further improved, preferably in the range of 90/10 to 10/90, and 80/20 to 20/80.
  • the range is more preferable, and the range of 75/25 to 25/75 is more preferable.
  • the total amount of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y) used is 10 to 99.95 parts by mass with respect to 100 parts by mass of the nonvolatile content of the hard coat agent.
  • the amount is preferably 20 parts by mass to 99.5 parts by mass.
  • a hard coat agent that can be used for forming the hard coat layer (a2), in addition to those described above, a mono (meth) acryloyl group having one (meth) acryloyl group in the molecule within the range not impairing the effects of the present invention
  • Those containing other (meth) acrylates such as (meth) acrylate and di (meth) acrylate having two (meth) acryloyl groups in the molecule can be used. They are preferably used at 40 parts by mass or less, and at 20 parts by mass or less, with respect to 100 parts by mass in total of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y). It is more preferable.
  • a hard coat agent containing a photopolymerization initiator capable of initiating a curing reaction by irradiation with active energy rays can be used.
  • Examples of the photopolymerization initiator include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo [2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone], benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • the hard coat agent one containing a photosensitizer can be used.
  • the photosensitizer examples include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine, and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothuronium-p-toluene. Sulfur compounds such as sulfonates can be used.
  • the amount of the photopolymerization initiator and photosensitizer used is preferably 0.05 parts by mass to 20 parts by mass, and preferably 0.5 parts by mass to 100 parts by mass of the nonvolatile component of the hard coat agent. It is more preferable that it is 10 mass parts.
  • ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, and ⁇ ray is used as the active energy ray, it is not necessary to use a photopolymerization initiator or a photosensitizer.
  • the hard coat agent one containing a solvent can be used.
  • the solvent examples include acetone, isobutyl alcohol, 2-propanol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, ethylene glycol monomethyl ether, ortho -Dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, methyl acetate, cyclohexanol, cyclohexanone, 1,4 -Dioxane, dichloromethane, N, N-dimethylformamide, styrene, tetrachloroethylene, tetrahydrofuran, 1,1, -
  • an antifouling agent containing an active energy ray-curable compound (Z) having a fluorine atom and a silicon atom can be used for the purpose of imparting stain resistance, fingerprint resistance and the like.
  • the active energy ray-curable compound (Z) having a fluorine atom and a silicon atom for example, a compound having a fluorocarbon chain, a siloxane chain, a hydrocarbon chain, or the like can be used.
  • a compound having one or both of a fluorocarbon chain and a siloxane chain can be used.
  • the active energy ray-curable compound (Z) it is preferable to use a compound having a poly (perfluoroalkylene ether) chain as a fluorocarbon chain and a cyclopolysiloxane structure, and a poly (perfluoroalkylene ether).
  • Compound (z1) having a structure in which a cyclopolysiloxane structure is bonded to both ends of the chain via a divalent linking group, and a (meth) acryloyl group is bonded to the cyclopolysiloxane structure via a divalent linking group
  • Examples of the poly (perfluoroalkylene ether) chain of the compound (z1) include those having a structure in which a divalent fluorocarbon group having 1 to 3 carbon atoms and oxygen atoms are alternately connected.
  • the divalent fluorocarbon group having 1 to 3 carbon atoms may be one kind or a combination of two or more kinds. Specifically, those represented by the following general formula (1) may be used. Can be mentioned.
  • X is the following formulas (1-1) to (1-5), and X is one of the following formulas (1-1) to (1-5) In addition, two or more of the following formulas (1-1) to (1-5) may be present in a random or block form, and n is a repeating unit. Represents an integer of 2 to 200.
  • poly (perfluoroalkylene ether) chains among the above, a perfluoromethylene group represented by the formula (1-1), a perfluoroethylene group represented by the formula (1-2), and A poly (perfluoroalkylene ether) chain constituted by is preferable in terms of improving antifouling properties and slipperiness.
  • the molar ratio of the perfluoromethylene group represented by the formula (1-1) to the perfluoroethylene group represented by the formula (1-2) [the perfluoromethylene represented by the formula (1-1) Methylene group / perfluoroethylene group represented by the formula (1-2)] is preferably in the range of 1/10 to 10/1.
  • the value of n in the general formula (1) is preferably in the range of 2 to 200, more preferably in the range of 10 to 100, and still more preferably in the range of 20 to 80.
  • Examples of the cyclopolysiloxane structure possessed by the compound (z1) include a structure represented by the following general formula (2).
  • R 1 is a methyl group
  • R 3 is a divalent organic group bonded to a poly (perfluoroalkylene ether) chain
  • R 4 is a 1 having a (meth) acryloyl group.
  • m is an integer of 2 to 5.
  • the cyclopolysiloxane structure is preferably a cyclotetrasiloxane structure in which m in the general formula (2) is 3, among the above-described cyclopolysiloxane structures.
  • the divalent linking group that connects the poly (perfluoroalkylene ether) chain and the cyclopolysiloxane structure is not particularly limited as long as it is a divalent organic group.
  • the divalent linking group is represented by the following general formula (3). Can be mentioned.
  • Y is an alkylene group having 1 to 6 carbon atoms.
  • the divalent linking group that bonds the cyclopolysiloxane structure and the (meth) acryloyl group is not particularly limited as long as it is a divalent organic group.
  • it is represented by the following general formula (4). Things.
  • Z 1 , Z 2 and Z 3 are each independently an alkylene group having 1 to 6 carbon atoms.
  • the compound (z1) can be produced, for example, through the following steps (1) to (3).
  • a compound having an allyl group at both ends of a poly (perfluoroalkylene ether) chain and a cyclopolysiloxane compound having a hydrosilyl group are reacted in the presence of a platinum-based catalyst to form both poly (perfluoroalkylene ether) chains.
  • (2) A step of reacting the compound obtained in (1) with allyloxyalkanol in the presence of a platinum-based catalyst and adding a hydroxyl group to the cyclopolysiloxane structure portion of the compound obtained in (1).
  • the active energy ray-curable compound (Z) such as the compound (z1) obtained by the above method is contained in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the nonvolatile content of the hard coat agent. It is more preferable that it is contained in the range of 0.1 to 2 parts by mass in order to achieve both excellent surface hardness and antifouling properties.
  • a polymerization inhibitor if necessary, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, a viscosity adjuster, a light resistance stabilizer, a weather resistance stabilizer, a heat resistance stabilizer, an ultraviolet absorber, Additives such as antioxidants, leveling agents, organic pigments, inorganic pigments, pigment dispersants, silica beads, organic beads; inorganic fillers such as silicon oxide, aluminum oxide, titanium oxide, zirconia, antimony pentoxide, etc. You can use what you want.
  • the hard coat film (A) used in the present invention can be produced, for example, by forming the hard coat layer (a2) by applying and curing the hard coat agent on one or both sides of the resin film (a1). it can.
  • Examples of the method for applying the hard coating agent to the resin film (a1) include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, wheeler coating, Examples thereof include brush coating, silk screen solid coating, wire bar coating, flow coating and the like, and printing methods such as offset printing and letterpress printing.
  • a method for applying the hard coat agent to the resin film (a1) among those described above, a method using a gravure coat, roll coat, comma coat, air knife coat, kiss coat, wire bar coat, flow coat, etc. It is preferable because a hard coat layer (a2) having a uniform thickness can be formed.
  • the hard coat agent is an active agent such as the urethane (meth) acrylate (X), polyfunctional (meth) acrylate (Y), or active energy ray-curable compound (Z).
  • an active agent such as the urethane (meth) acrylate (X), polyfunctional (meth) acrylate (Y), or active energy ray-curable compound (Z).
  • X urethane
  • Y polyfunctional
  • Z active energy ray-curable compound
  • a method of irradiating and curing an active energy ray on the coated surface on which the hard coat agent has been applied and dried may be mentioned.
  • Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
  • the irradiation with the ultraviolet rays is preferably performed in an inert gas atmosphere such as nitrogen gas in order to suppress oxygen inhibition of radical polymerization.
  • the pressure-sensitive adhesive layer (B) has a suitable adhesive force to an adherend such as a polarizing plate, can prevent the hard coat film (A) from being damaged, and is directly attached to an optical film or the like. Even if it is a case, in order to prevent those damages more effectively, a thing with a thickness of 15 micrometers or more is used.
  • the pressure-sensitive adhesive layer (B) preferably has a thickness in the range of 15 ⁇ m to 150 ⁇ m, more preferably has a thickness in the range of 20 ⁇ m to 140 ⁇ m, and more preferably 20 ⁇ m to 130 ⁇ m. It is more preferable to use a material having a thickness in the range of 20 ⁇ m to 110 ⁇ m, even more preferable to use a material having a thickness in the range of 20 ⁇ m to 110 ⁇ m. More preferably, the use of a film having a thickness in the range of 20 ⁇ m to 45 ⁇ m has a suitable adhesive force to an adherend such as an optical film and has a high surface hardness and a protective adhesive film It is further preferable in obtaining.
  • the above-mentioned problem to be solved by the present invention cannot be solved simply by setting the thickness of the pressure-sensitive adhesive layer (B) to 15 ⁇ m or more, but the hard coat film having a specific Martens hardness ( It can be solved only by combining with A) and technical matters such as the total thickness of the protective adhesive film.
  • the pressure-sensitive adhesive layer (B) preferably has a storage elastic modulus at 20 ° C. in a dynamic viscoelastic spectrum at a frequency of 1 Hz of 1.0 ⁇ 10 5 Pa to 5.0 ⁇ 10 5 Pa. More preferably, it is 5 ⁇ 10 5 Pa to 4.5 ⁇ 10 5 Pa, and 2.0 ⁇ 10 5 Pa to 4.0 ⁇ 10 5 Pa can maintain the high surface hardness of the protective adhesive film. For example, even when local pressure is generated on the surface of the protective adhesive film due to touch input or impact, damage to the adherend such as an optical film can be alleviated and deformation of the polarizing plate etc. It is more preferable because it can effectively prevent dents and dents.
  • the pressure-sensitive adhesive layer (B) can be formed by applying a pressure-sensitive adhesive.
  • a pressure-sensitive adhesive an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, or the like can be used.
  • the use of an acrylic pressure-sensitive adhesive containing an acrylic polymer as the pressure-sensitive adhesive can further improve the adhesion to the hard coat film (A), transparency, weather resistance, and the like. Therefore, it is preferable.
  • the acrylic polymer a polymer obtained by polymerizing a (meth) acrylic monomer can be used.
  • the (meth) acrylic monomer include (meth) acrylate, and it is preferable to use a monomer containing (meth) acrylate having an alkyl group having 2 to 14 carbon atoms.
  • Examples of the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, and n-hexyl.
  • alkyl (meth) acrylates having an alkyl group having 4 to 9 carbon atoms
  • alkyl acrylates having an alkyl group having 4 to 9 carbon atoms More preferably, is used.
  • alkyl acrylate having an alkyl group having 4 to 9 carbon atoms n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, and ethyl acrylate are more preferable because it is easy to ensure suitable adhesive strength. .
  • the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms is preferably used in a range of 90 to 99 parts by mass with respect to 100 parts by mass of the total amount of the (meth) acrylic monomer. It is more preferable to use in the range of 90 to 96 parts by mass because it is easy to ensure a suitable adhesive force.
  • acrylic polymer for example, a polymer having a polar group such as a hydroxyl group, a carboxyl group, and an amide group can be used.
  • the acrylic polymer can be produced by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a polar group such as a hydroxyl group, a carboxyl group, or an amide group.
  • Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, Examples include caprolactone-modified (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate are preferably used.
  • Examples of the (meth) acrylate monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, acrylic acid or methacrylic acid dimer, ethylene oxide-modified succinic acid acrylate, and the like. Can be mentioned. Among these, it is preferable to use acrylic acid.
  • Examples of the (meth) acrylate monomer having an amide group include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimide-N -Yl) ethyl acrylate and the like.
  • N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used.
  • Examples of the other vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
  • the (meth) acrylic monomer having a polar group should be used in the range of 0.1% by mass to 20% by mass with respect to the total amount of the (meth) acrylic monomer used for the production of the acrylic polymer. It is preferable to use in the range of 1% by mass to 13% by mass, and it is preferable to use in the range of 1.5% by mass to 8% by mass in a suitable range of cohesive strength, holding power, and adhesiveness. It is more preferable because it is easy to adjust.
  • the weight average molecular weight of the acrylic polymer is preferably 400,000 to 1,400,000, and more preferably 600,000 to 1,200,000.
  • the adhesive force can be easily adjusted to a specific range, and when a protective adhesive film is formed, a local pressure at the time of impact or touch input can be easily relaxed.
  • the weight average molecular weight can be measured by gel permeation chromatograph (GPC). More specifically, as a GPC measurement device, “SC8020” manufactured by Tosoh Corporation can be used to measure and obtain the following GPC measurement conditions based on polystyrene conversion values. (GPC measurement conditions) Sample concentration: 0.5% by mass (tetrahydrofuran solution) Sample injection volume: 100 ⁇ L ⁇ Eluent: Tetrahydrofuran (THF) ⁇ Flow rate: 1.0 mL / min Column temperature (measurement temperature): 40 ° C ⁇ Column: “TSKgel GMHHR-H” manufactured by Tosoh Corporation ⁇ Detector: Differential refraction
  • the pressure-sensitive adhesive it is preferable to use a material containing a crosslinking agent in addition to the acrylic polymer in order to further increase the cohesive force.
  • crosslinking agent examples include isocyanate crosslinking agents, epoxy crosslinking agents, chelate crosslinking agents, and the like.
  • the crosslinking agent is preferably used in a range where the gel fraction of the pressure-sensitive adhesive layer to be formed is 25% by mass to 85% by mass, and is used in a range where the gel fraction is 40% by mass to 80% by mass. More preferably, use in the range of 50% by mass to 75% by mass can suppress a decrease in surface pencil hardness when the protective adhesive film of the present invention is attached to an adherend such as a polarizing plate. And the adhesiveness can be sufficient.
  • the gel fraction in the present invention is expressed as a percentage of the original mass by immersing the cured pressure-sensitive adhesive layer in toluene, measuring the mass after drying of the insoluble matter remaining after standing for 24 hours, and the original mass. Is.
  • a material containing a tackifying resin can be used to further increase the adhesive strength.
  • the tackifying resin is preferably used in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the acrylic polymer. Further, when importance is attached to adhesiveness, it is preferably added in the range of 20 to 50 parts by mass.
  • the pressure-sensitive adhesive those containing known and commonly used additives other than the above can be used.
  • the silane cup for example, when it is desired to improve the adhesion to a glass substrate or a metal member, the silane cup is in the range of 0.001 to 0.005 parts by mass with respect to 100 parts by mass of the adhesive. It is preferable to add a ring agent. Furthermore, as necessary, plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added as other additives.
  • the protective adhesive film of the present invention forms the adhesive layer (B) by directly applying and drying the adhesive on one or both sides, preferably one side, of the hard coat film (A) produced by the above method. Can be manufactured by.
  • the protective adhesive film of the present invention was obtained by applying the adhesive to the surface of the release liner in advance on one or both sides, preferably one side, of the hard coat film (A) produced by the above method and drying it. It can manufacture by transferring an adhesive layer (B).
  • the pressure-sensitive adhesive layer (B) is preferably provided on the surface side of the hard coat layer on one side thereof.
  • the pressure-sensitive adhesive layer (B) is the resin on the side where the hard coat layer (a2) is not provided. It is preferable to be provided on the surface side of the film (a1).
  • the protective adhesive film of the present invention has a structure in which the physical property value and thickness of the hard coat film (A) and the pressure-sensitive adhesive layer (B) are adjusted to a specific range and combined, so that the protective adhesive film is impacted or touched. Even when a local pressure is applied by the input, the stress can be appropriately relaxed, so that damage to the adherend can be suppressed, and the surface hardness of the protective adhesive film can be impaired. Therefore, high scratch resistance can be realized.
  • the protective adhesive film of the present invention has a high surface hardness. Specifically, the pencil hardness of the protective adhesive protective film in a state where the protective adhesive film is attached to a glass plate is preferably 2H or higher, more preferably 3H or higher. Therefore, the protective adhesive film of the present invention can be suitably used mainly as a protective adhesive film for image display portions of portable electronic terminals and protective adhesive films for various displays.
  • the laminate of the present invention is a laminate of the protective adhesive film of the present invention and a polarizing plate.
  • a protective adhesive film and a polarizing plate may be laminated via a glass substrate.
  • the glass substrate is a rigid body, there is a problem that the laminated body cannot be rolled up.
  • the glass substrate is relatively thick and heavy, it may be impossible to reduce the thickness and weight of the information display device.
  • the laminate of the present invention is obtained by pasting the protective adhesive film directly or through a flexible resin film on a polarizing plate without using a conventional thick glass substrate, it is wound up in a roll shape or the like.
  • the laminate can be manufactured by so-called roll-to-roll, and the production efficiency can be improved as compared with the conventional one.
  • polarizing plate used in the present invention a general polarizing plate in which a polarizer protective layer is laminated on both sides of the polarizer can be used.
  • a polarizer obtained by using a polyvinyl alcohol-based resin can be used.
  • the polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin.
  • the polarizer can be produced, for example, by adsorbing and orienting a dichroic dye on a formed polyvinyl alcohol resin film.
  • the polarizing plate can be produced by laminating a polarizer protective layer such as a triacetyl cellulose film on both surfaces of the polarizer obtained above via an adhesive layer.
  • a polarizer protective layer such as a triacetyl cellulose film
  • the dichroic dye iodine or a dichroic organic dye can be used.
  • the polyvinyl alcohol-based resin film can be immersed in an aqueous solution containing these dyes.
  • iodine a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the polarizer protective layer is not particularly limited, but it is preferable to use a protective layer obtained by using a resin having excellent transparency on the assumption that it is used as a display material.
  • the polarizer protective layer examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, diacetyl cellulose film, triacetyl cellulose film, acetyl cellulose butyrate film, polyvinyl chloride film, poly Vinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, cycloolefin resin film, polymethylpentene film, polysulfone film, polyetheretherketone film, polyethersulfone film, polyether Imide film, polyimide film, fluorine resin film, Niro Film, acrylic resin film or the like.
  • a polarizer protective layer is formed on both sides of the polarizer layer, it is possible to form a polarizer protective layer made of a different resin on each side.
  • a polarizer protective layer made of a triacetyl cellulose film can be formed on one side of the polarizer layer, and a polarizer protective layer made of a cycloolefin-based resin film can be formed on the other side.
  • the polarizing plate it is preferable to use a polarizing plate having a thickness of 50 ⁇ m to 200 ⁇ m because it can contribute to weight reduction and thinning of the information display device and the portable electronic terminal.
  • Examples of the information display device of the present invention include a device in which a liquid crystal display module (LCD module) and the protective adhesive film of the present invention are laminated, and the protective adhesive film is formed on the surface of the polarizing plate constituting the liquid crystal display module. It is preferable that the device is directly stacked.
  • LCD module liquid crystal display module
  • the protective adhesive film is formed on the surface of the polarizing plate constituting the liquid crystal display module. It is preferable that the device is directly stacked.
  • liquid crystal display module for example, a liquid crystal display module having an in-cell type or on-cell type touch panel function can be suitably used.
  • the outermost surface of the information display unit is often a polarizing plate. Therefore, in the information display device of the present invention, it is preferable that the protective adhesive film is directly attached to the surface of the polarizing plate constituting the liquid crystal display module.
  • the information display device in which the protective adhesive film is directly attached to the polarizing plate can be suitably used for, for example, a portable electronic terminal, a large display, an in-vehicle display, and the like.
  • a portable electronic terminal a large display
  • an in-vehicle display and the like.
  • portable electronic terminals and in-vehicle displays that often have a touch panel function.
  • the information display device of the present invention can be manufactured, for example, by laminating a liquid crystal display module manufactured in advance and the protective adhesive film.
  • the information display device of the present invention is manufactured by bonding the laminate composed of the protective adhesive film and the polarizing plate and a liquid crystal display panel (LCD) with, for example, a highly transparent adhesive tape.
  • a liquid crystal display panel LCD
  • the above-described configuration has a configuration composed of the laminate, the surface layer is hardly scratched, and the polarizing plate is less likely to be depressed due to local stress. For this reason, it is preferable that the above configuration is employed in a portable electronic terminal that is susceptible to local stress due to dropping or the like.
  • urethane acrylate (A1) solution A solution (non-volatile content 80 mass%, hereinafter abbreviated as “urethane acrylate (A1) solution”) was obtained.
  • the molecular weight (calculated value) of the urethane acrylate (A1) was 802.
  • urethane acrylate (A2) solution was obtained.
  • the molecular weight (calculated value) of the urethane acrylate (A2) was 818.
  • urethane acrylate (A3) solution A solution (non-volatile content 80 mass%, hereinafter abbreviated as “urethane acrylate (A3) solution”) was obtained.
  • the molecular weight (calculated value) of the urethane acrylate (A3) was 889.
  • non-volatile content 20% by mass 2.0 parts by mass and photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone) 4.5 parts by mass
  • photopolymerization initiator Irgacure 184 manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone
  • dilute with ethyl acetate Te was nonvolatile content of 40% by weight of the hard coat agent (HC1) was prepared.
  • non-volatile content 20% by mass 2.0 parts by mass and photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone) 4.5 parts by mass
  • photopolymerization initiator Irgacure 184 manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone
  • HC2 hard coat agent
  • the adhesive is applied to a release liner having a silicone compound release layer formed on one side of a 75 ⁇ m thick polyethylene terephthalate film, and dried at 75 ° C. for 5 minutes. By doing so, the adhesive layer (1) was formed.
  • Production Example 2 A pressure-sensitive adhesive layer (2) was obtained in the same manner as in Production Example 1, except that the thickness of the pressure-sensitive adhesive layer was changed from 25 ⁇ m to 50 ⁇ m.
  • an adhesive having a solid content of 30% by mass was obtained by mixing the acrylic copolymer and ethyl acetate.
  • Example 1 The hard coat agent (1) is applied to one side of a polyethylene terephthalate film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 188 ⁇ m using a bar coater, dried at 80 ° C. for 90 seconds, and then exposed to ultraviolet rays in an air atmosphere Hard coat with a thickness of 12 ⁇ m by irradiating ultraviolet rays with an irradiation light amount of 0.5 J / cm 2 using an irradiation device (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) A hard coat film with a layer was obtained.
  • a polyethylene terephthalate film Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.
  • the pressure-sensitive adhesive layer (1) is pressed and bonded to the surface of the hard coat film made of the polyethylene terephthalate film at a pressure of 4 kg / cm, and cured at 40 ° C. for 2 days, thereby providing a protective adhesive having a thickness of 225 ⁇ m.
  • a film (1) was obtained.
  • Example 2 A protective adhesive film (2) having a thickness of 287 ⁇ m was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 250 ⁇ m was used instead of the polyethylene terephthalate film having a thickness of 188 ⁇ m.
  • Example 3 A protective adhesive film (3) having a thickness of 250 ⁇ m was obtained in the same manner as in Example 1 except that the adhesive layer (2) was used instead of the adhesive layer (1).
  • Example 4 A protective adhesive film (4) having a thickness of 300 ⁇ m was obtained in the same manner as in Example 1 except that the adhesive layer (3) was used instead of the adhesive layer (1).
  • Example 5 (Example 5) Implemented except that a polyethylene terephthalate film having a thickness of 250 ⁇ m was used instead of a polyethylene terephthalate film having a thickness of 188 ⁇ m, and that the adhesive layer (2) was used instead of the adhesive layer (1).
  • a protective adhesive film (5) having a thickness of 312 ⁇ m was obtained in the same manner as in Example 1.
  • Example 6 (Example 6) Implemented except that a polyethylene terephthalate film with a thickness of 250 ⁇ m was used instead of a polyethylene terephthalate film with a thickness of 188 ⁇ m, and that the adhesive layer (3) was used instead of the adhesive layer (1). In the same manner as in Example 1, a protective adhesive film (6) having a thickness of 362 ⁇ m was obtained.
  • Example 7 A protective adhesive film (7) having a thickness of 225 ⁇ m was obtained in the same manner as in Example 1 except that the hard coat agent (2) was used instead of the hard coat agent (1).
  • Example 8 The thickness is the same as in Example 1 except that the hard coat agent (2) is used instead of the hard coat agent (1) and the thickness of the hard coat layer is changed from 12 ⁇ m to 6 ⁇ m. A protective adhesive film (8) having a thickness of 219 ⁇ m was obtained.
  • Example 9 A protective adhesive film (9) having a thickness of 225 ⁇ m was obtained in the same manner as in Example 1 except that the adhesive layer (5) was used instead of the adhesive layer (1).
  • Example 10 A protective adhesive film (10) having a thickness of 228 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 ⁇ m to 15 ⁇ m.
  • Example 11 A protective adhesive film (11) having a thickness of 219 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 ⁇ m to 6 ⁇ m.
  • Example 12 A protective adhesive film (12) having a thickness of 217 ⁇ m was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 ⁇ m to 4 ⁇ m.
  • the hard coat agent (1) is applied to one side of a 125 ⁇ m-thick polyethylene terephthalate film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) using a bar coater, dried at 80 ° C. for 90 seconds, and then exposed to ultraviolet light in an air atmosphere.
  • F450 manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb
  • the adhesive layer (1) is pressed and bonded to the surface of the hard coat film made of the polyethylene terephthalate film at a pressure of 4 kg / cm, and cured at 40 ° C. for 2 days, thereby providing a protective adhesive having a thickness of 162 ⁇ m.
  • a film (13) was obtained.
  • Example 2 A protective adhesive film (14) having a thickness of 137 ⁇ m was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 100 ⁇ m was used instead of the polyethylene terephthalate film having a thickness of 188 ⁇ m.
  • Example 3 A protective adhesive film (15) having a thickness of 112 ⁇ m was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 75 ⁇ m was used instead of the polyethylene terephthalate film having a thickness of 188 ⁇ m.
  • Example 4 A protective adhesive film (16) having a thickness of 213 ⁇ m was obtained in the same manner as in Example 1 except that the hard coat layer was not formed.
  • Example 5 The thickness is the same as in Example 1 except that the thickness of the hard coat layer is changed from 12 ⁇ m to 1 ⁇ m and the pressure-sensitive adhesive layer (4) is used instead of the pressure-sensitive adhesive layer (1). A 214 ⁇ m protective adhesive film (17) was obtained.
  • Example 6 A protective adhesive having a thickness of 210 ⁇ m was used in the same manner as in Example 1 except that the adhesive layer (4) was used instead of the adhesive layer (1) and the thickness was changed from 25 ⁇ m to 10 ⁇ m. A film (18) was obtained.
  • the storage elastic modulus of the pressure-sensitive adhesive layer was measured using a viscoelasticity tester (manufactured by Rheometrics, trade name: Ares 2KSTD). Specifically, a test piece was sandwiched between parallel disks, which are measurement parts of the test machine, and the storage elastic modulus (G ′) at 20 ° C. was measured at a frequency of 1 Hz. As the test piece used in the above measurement, the pressure-sensitive adhesive layer obtained in the above production example was cut into a circle having a thickness of 1 mm and a diameter of 8 mm.
  • a test piece was prepared by laminating a polyethylene terephthalate film having a thickness of 6 ⁇ m, one side of which is a black matte surface, as an alternative to the polarizing plate on the surface of the pressure-sensitive adhesive layer constituting the protective pressure-sensitive adhesive film. The pasting was performed so that the black matte surface constituting the polyethylene terephthalate film was on the front side (the side not in contact with the surface of the pressure-sensitive adhesive layer).
  • the glass plate was placed so that the hard coat layer of the protective adhesive film constituting the test piece was on the upper side, and its four corners were fixed with cellophane adhesive tape.
  • the surface consisting of the hard coat layer of the fixed test piece was subjected to JIS K 5600-5-4 (1999 version) using a pencil scratch tester for coating film (manual type) manufactured by Imoto Seisakusho Co., Ltd. It was scratched with a pencil having a hardness of 4H by a method according to the regulations.
  • the black matte surface corresponding to the back surface of the portion scratched with the pencil was visually observed to see if the scratch mark could be seen. Evaluation was performed according to the following criteria.
  • PET refers to polyethylene terephthalate.
  • the protective adhesive film of the present invention can realize excellent stress relaxation properties while having a suitable surface hardness.
  • the protective adhesive films of Comparative Examples 1 to 3 use the same hard coat agent and adhesive as in Example 1, they do not satisfy the constitution of the present invention, so that the surface hardness or the stress relaxation property It was inferior to.
  • the protective adhesive film of Comparative Example 4 had a low surface hardness because there was no hard coat layer.
  • the protective adhesive film of Comparative Example 5 was inferior in both surface hardness and stress relaxation properties.
  • the protective adhesive film of Comparative Example 6 caused a decrease in stress relaxation when the load increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Adhesive Tapes (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The problem to be solved by the present invention is to provide a protective adhesive film that can prevent damage to a polarized plate or the like caused by touch entry or the like even if disposed on the surface of the polarized plate without an interposed glass substrate. The present invention relates to a protective adhesive film comprising an adhesive layer with a thickness of at least 15 µm on at least one surface of a hard-coated film and having a total thickness of at least 150 µm, wherein the hard-coated film comprises a hard-coating layer on at least one surface of a resin film with a thickness of at least 130 µm, and the hard-coating layer has on the surface thereof a Martens hardness of at least 250 N/mm2, such hardness being measured by pressing a Vickers indenter that has face angles of 136° into the surface of the hard-coating layer with a load of 1 mN.

Description

保護粘着フィルム、画像表示装置及び携帯電子端末Protective adhesive film, image display device and portable electronic terminal
 本発明は、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等の情報表示装置の表面を保護するための保護粘着フィルムに関する。 The present invention relates to a protective adhesive film for protecting the surface of an information display device such as a liquid crystal display or an organic electroluminescence display.
 携帯型パソコン、電子手帳、携帯電話機等の携帯電子端末には、より一層の軽量化及び薄型化が求められている。それに伴って、前記携帯電子端末に設置される情報表示装置にも軽量化及び薄型化が求められている。 Further reduction in weight and thickness is required for portable electronic terminals such as portable personal computers, electronic notebooks, and mobile phones. Accordingly, information display devices installed in the portable electronic terminal are also required to be reduced in weight and thickness.
 前記情報表示装置としては、いわゆるオンセル型またはインセル型と称されるタッチパネル機能の搭載された液晶モジュールが知られている。 As the information display device, a liquid crystal module having a touch panel function called a so-called on-cell type or in-cell type is known.
 しかし、前記液晶モジュールは、タッチ入力の際に生じうる圧力によって、それを構成する偏光板の凹みや傷つきを引き起こしやすいという課題があった。 However, the liquid crystal module has a problem that the polarizing plate constituting the liquid crystal module is likely to cause dents and scratches due to pressure that can be generated during touch input.
 前記圧力による偏光板の損傷を防止する方法としては、例えば前記偏光板よりも表面側にガラス基材を設け、前記ガラス基材の表面に、ハードコートフィルムを設ける方法が知られている(例えば、特許文献1参照。)。 As a method for preventing damage to the polarizing plate due to the pressure, for example, a method is known in which a glass substrate is provided on the surface side of the polarizing plate, and a hard coat film is provided on the surface of the glass substrate (for example, , See Patent Document 1).
 しかし、前記ガラス基材は比較的高価であり、また、前記ガラス基材を用いて得られた携帯電子端末は、厚く、重くなる傾向にあるため、産業界から求められる薄型化や軽量化に対応できない場合があった。 However, the glass substrate is relatively expensive, and the portable electronic terminal obtained using the glass substrate tends to be thicker and heavier. There was a case that could not be supported.
 前記軽量化と薄型化とを両立した情報表示装置としては、例えばそれを構成する偏光板等の光学フィルムの表面に、前記ガラス基材等の剛体を介さずに、従来のハードコートフィルムを貼付したものが挙げられる。 As an information display device that achieves both weight reduction and thickness reduction, for example, a conventional hard coat film is pasted on the surface of an optical film such as a polarizing plate constituting the information display device without using a rigid body such as the glass substrate. The thing which was done is mentioned.
 しかし、従来のハードコートフィルムは、一般に薄く柔軟であるため、前記情報表示装置へタッチ入力する際の圧力によって変形しやすく、その結果、偏光板の損傷を引き起こしやすい場合があった。 However, since the conventional hard coat film is generally thin and flexible, it is likely to be deformed by the pressure when touch-inputting the information display device, and as a result, the polarizing plate may be easily damaged.
 ところで、前記ハードコートフィルムを、例えば偏光板等の光学フィルムの表面に貼付する場合、それらの間に粘着剤層を設けることが多い。 By the way, when the hard coat film is attached to the surface of an optical film such as a polarizing plate, an adhesive layer is often provided between them.
 しかし、粘着剤層が薄膜であると、一般に、前記光学フィルムの凹み等の損傷を引き起こす場合があり、また、前記粘着剤層が厚膜であると、一般に、ハードコートフィルムの表面に傷がつきやすくなるという問題があった。 However, if the pressure-sensitive adhesive layer is a thin film, it may generally cause damage such as dents in the optical film, and if the pressure-sensitive adhesive layer is a thick film, generally the surface of the hard coat film is scratched. There was a problem that it was easy to stick.
 このように、ガラス基材等の剛体を介することなく、ハードコートフィルムを偏光板等の光学フィルムに貼付した場合であっても、前記光学フィルムの凹み等の損傷を引き起こすことがなく、かつ、ハードコートフィルム自体の傷つきも防止可能なフィルムが、産業界から求められていた。 In this way, even when a hard coat film is attached to an optical film such as a polarizing plate without using a rigid body such as a glass substrate, without causing damage such as dents in the optical film, and A film capable of preventing the hard coat film itself from being damaged has been demanded by the industry.
特開2008-095064号公報JP 2008-095064 A
 本発明が解決しようとする課題は、ガラス基材等の剛体を介することなく、偏光板等の光学フィルムの表面に貼付した場合であっても、タッチ入力等に起因した光学フィルムの損傷を防止することができ、かつ、傷つきにくい保護粘着フィルムを提供することである。 The problem to be solved by the present invention is to prevent damage to the optical film due to touch input, etc. even when it is attached to the surface of an optical film such as a polarizing plate without using a rigid body such as a glass substrate. It is possible to provide a protective adhesive film that can be made and is not easily damaged.
 本発明者等は、ハードコートフィルム(A)の少なくとも一方の面側に、厚さ15μm以上の粘着剤層(B)を有する総厚さ150μm以上の保護粘着フィルムであって、前記ハードコートフィルム(A)が、厚さ130μm以上の樹脂フィルム(a1)の少なくとも一方の面側にハードコート層(a2)を有するものであり、かつ、前記ハードコート層(a2)の表面に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定されるマルテンス硬さが250N/mm以上であることを特徴とする保護粘着フィルムによって、前記課題を解決した。 The present inventors provide a protective adhesive film having a total thickness of 150 μm or more having an adhesive layer (B) having a thickness of 15 μm or more on at least one surface side of the hard coat film (A), the hard coat film (A) has a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 μm or more, and a ridge angle 136 on the surface of the hard coat layer (a2). The above problem was solved by a protective adhesive film characterized by having a Martens hardness of 250 N / mm 2 or more measured by pushing a Vickers indenter at a load of 1 mN.
 本発明の保護粘着フィルムは、衝撃やタッチ入力等に起因した局所的な圧力が加わった場合であっても、前記保護粘着フィルムの表面の傷つきを防止でき、かつ、偏光板等の光学フィルムの傷つきや変形(凹み等)を防止することができる。 The protective adhesive film of the present invention can prevent damage to the surface of the protective adhesive film even when a local pressure is applied due to impact, touch input, etc. Scratches and deformation (such as dents) can be prevented.
 本発明の保護粘着フィルムは、ハードコートフィルム(A)の少なくとも一方の面側に、厚さ15μm以上の粘着剤層(B)を有する総厚さ150μm以上の保護粘着フィルムであって、前記ハードコートフィルム(A)が、厚さ130μm以上の樹脂フィルム(a1)の少なくとも一方の面側にハードコート層(a2)を有するものであり、かつ、前記ハードコート層(a2)の表面に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定されるマルテンス硬さが250N/mm以上であることを特徴とするものである。 The protective adhesive film of the present invention is a protective adhesive film having a total thickness of 150 μm or more having an adhesive layer (B) having a thickness of 15 μm or more on at least one surface side of the hard coat film (A), The coat film (A) has a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 μm or more, and a ridge is formed on the surface of the hard coat layer (a2). The Martens hardness measured by pushing a 136 V angle Vickers indenter with a load of 1 mN is 250 N / mm 2 or more.
 本発明の保護粘着フィルムとしては、前記保護粘着フィルムの表面の傷つきを防止し、かつ、光学フィルム等の被着体の表面に、直接、貼付した場合であっても、光学フィルムの傷つきや変形(凹み等)を防止するうえで、総厚さ150μm以上のものを使用する。前記保護粘着フィルムは、もっぱら前記情報表示装置の表面を保護するための粘着フィルムとして好適に使用することができ、いわゆるインセル型及びオンセル型の情報表示装置の表面を構成する偏光板等の光学フィルムを保護するための粘着フィルムとしてより好適に使用することができる。 As the protective adhesive film of the present invention, the surface of the protective adhesive film is prevented from being scratched, and the optical film is damaged or deformed even when it is directly attached to the surface of an adherend such as an optical film. In order to prevent (dents and the like), a material having a total thickness of 150 μm or more is used. The protective adhesive film can be suitably used exclusively as an adhesive film for protecting the surface of the information display device, and an optical film such as a polarizing plate constituting the surface of a so-called in-cell type and on-cell type information display device. It can be more suitably used as an adhesive film for protecting the film.
 前記保護粘着フィルムとしては、150μm~500μmの厚さのものを使用することが好ましく、150μm~400μmの厚さのものを使用することがより好ましく、150μm~350μmの厚さのものを使用することが、前記光学フィルムの表面に、直接、貼付した場合であっても、光学フィルムの傷つきを防止でき、かつ、携帯電子端末等の最終製品の薄型化及び軽量化に貢献できるためさらに好ましい。 As the protective adhesive film, a film having a thickness of 150 μm to 500 μm is preferably used, a film having a thickness of 150 μm to 400 μm is more preferably used, and a film having a thickness of 150 μm to 350 μm is used. However, even when it is directly affixed to the surface of the optical film, it is more preferable because the optical film can be prevented from being damaged, and the final product such as a portable electronic terminal can be made thinner and lighter.
 前記保護粘着フィルムを構成するハードコートフィルム(A)としては、厚さ130μm以上の樹脂フィルム(a1)の少なくとも一方の面側にハードコート層(a2)を有するものを使用する。 As the hard coat film (A) constituting the protective adhesive film, one having a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 μm or more is used.
 前記ハードコートフィルム(A)としては、前記樹脂フィルム(a1)の片面側に、直接または他の層を介して、前記ハードコート層(a2)が設けられたものを使用することが好ましく、前記樹脂フィルム(a1)の片面に、直接、前記ハードコート層(a2)が設けられたものを使用することが、携帯電子端末等の薄型化及び軽量化を図るうえでより好ましい。 As the hard coat film (A), it is preferable to use a film provided with the hard coat layer (a2) on one side of the resin film (a1) directly or via another layer, It is more preferable to use a resin film (a1) provided with the hard coat layer (a2) directly on one side in order to reduce the thickness and weight of a portable electronic terminal or the like.
 また、前記ハードコートフィルム(A)としては、前記ハードコート層(a2)の表面に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定されるマルテンス硬さが250N/mm以上であるものを使用する。ここで、前記マルテンス硬さが250N/mm未満であるハードコートフィルムを用いて製造した保護粘着フィルムは、その表面硬度が著しく低下するため、前記課題を解決できない場合がある。 The hard coat film (A) has a Martens hardness of 250 N / mm 2 or more measured by pushing a Vickers indenter having a ridge angle of 136 ° into the surface of the hard coat layer (a2) with a load of 1 mN. Use things. Here, since the surface hardness of the protective adhesive film produced using a hard coat film having a Martens hardness of less than 250 N / mm 2 is significantly reduced, the above problem may not be solved.
-
 前記マルテンス硬さは、250N/mm~800N/mmの範囲であることが好ましく、250N/mm~500N/mmの範囲であることがより好ましく、250N/mm~450N/mmの範囲であることが、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、切断加工時のクラックを効果的に抑制できるため好ましい。
-
The Martens hardness is preferably in the range of 250N / mm 2 ~ 800N / mm 2, more preferably in the range of 250N / mm 2 ~ 500N / mm 2, 250N / mm 2 ~ 450N / mm 2 It is preferable that the thickness is within the range because it is possible to prevent the hard coat film (A) from being damaged, and even when directly attached to an optical film or the like, cracks during cutting can be effectively suppressed.
 ここで、前記マルテンス硬さは、前記樹脂フィルム(a1)の片面または両面にハードコート層(a2)が設けられたハードコートフィルム(A)を用意し、それを平滑なガラス板の表面に、前記ハードコート層(a2)が上面となるように置き、その表面(ハードコート層(a2)からなる面)に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定される値を指す。 Here, the Martens hardness is prepared by preparing a hard coat film (A) provided with a hard coat layer (a2) on one side or both sides of the resin film (a1), and applying it to the surface of a smooth glass plate. The value is measured by placing the hard coat layer (a2) on the upper surface and pushing a Vickers indenter with a ridge angle of 136 ° into the surface (surface made of the hard coat layer (a2)) with a load of 1 mN.
 また、前記ハードコートフィルム(A)としては、それを構成するハードコート層(a2)からなる表面の鉛筆硬度が、3H以上であるものを使用することが好ましく、4H以上であるものを使用することが、前記ハードコートフィルム(A)に粘着剤層(B)を積層し保護粘着フィルムとした場合であっても、その表面硬度の低下を抑制でき、その結果、ハードコートフィルム(A)の傷つき防止と、光学フィルム等の変形や傷つきの防止とをより高いレベルで両立できるため好ましい。 Moreover, as said hard coat film (A), it is preferable to use what the pencil hardness of the surface which consists of a hard coat layer (a2) which comprises it is 3H or more, and uses what is 4H or more. Even when the adhesive layer (B) is laminated on the hard coat film (A) to form a protective adhesive film, the decrease in the surface hardness can be suppressed. As a result, the hard coat film (A) This is preferable because it is possible to achieve both higher levels of prevention of damage and prevention of deformation and damage to optical films and the like.
 前記ハードコートフィルム(A)を構成する樹脂フィルム(a1)としては、厚さ130μm以上のものを使用する。これにより、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきを効果的に防止できる保護粘着フィルムを得ることができる。 As the resin film (a1) constituting the hard coat film (A), a film having a thickness of 130 μm or more is used. Thereby, even if it is a case where it affixes directly on an optical film etc., the protective adhesive film which can prevent the damage of an optical film effectively can be obtained.
 前記厚さは、130μm~300μmの範囲であることが好ましく、150μm~250μmの範囲であることが、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきを効果的に防止できる保護粘着フィルムを得るうえでより好ましい。 The thickness is preferably in the range of 130 μm to 300 μm, and in the range of 150 μm to 250 μm effectively prevents damage to the optical film even when directly attached to an optical film or the like. It is more preferable when obtaining the protective adhesive film which can be performed.
 前記樹脂フィルム(a1)としては、前記ハードコートフィルム(A)のマルテンス硬さを250N/mm以上に設計できる樹脂フィルムを適宜選択し使用することができる。 As said resin film (a1), the resin film which can design the Martens hardness of the said hard coat film (A) to 250 N / mm < 2 > or more can be selected suitably, and can be used.
 前記樹脂フィルム(a1)としては、例えばポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファンフィルム、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッソ樹脂フィルム、ナイロンフィルム、アクリル樹脂フィルム等を使用することができる。 Examples of the resin film (a1) include polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polyethylene film, polypropylene film, cellophane film, diacetyl cellulose film, triacetyl cellulose film, acetyl cellulose butyrate film, and polychlorinated. Vinyl film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyether ether ketone film, polyether sulfone film, polyetherimide film , Polyimide film, fluorine resin film, Nylon film, it is possible to use an acrylic resin film or the like.
 前記樹脂フィルム(a1)としては、3GPa~15GPaの範囲の弾性率を有するものを選択し使用することが、マルテンス硬さが250N/mm以上のハードコートフィルム(A)を得るうえで好ましく、また、保護粘着フィルムを使用する際に、前記樹脂フィルムが変形しにくく、保護粘着フィルムの表面硬度の低下を効果的に抑制することができるため好ましい。また、前記範囲の弾性率を有する樹脂フィルム(a1)を用いることによって、最終的に得られる保護粘着フィルムが比較的柔軟となり、その結果、前記保護粘着フィルムを、例えば穏やかな曲面部等に貼付する際に、前記曲面部へ追従しやすいため好ましい。 As the resin film (a1), it is preferable to select and use one having an elastic modulus in the range of 3 GPa to 15 GPa in order to obtain a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more, Moreover, when using a protective adhesive film, since the said resin film cannot change easily and the fall of the surface hardness of a protective adhesive film can be suppressed effectively, it is preferable. Further, by using the resin film (a1) having an elastic modulus in the above range, the finally obtained protective adhesive film becomes relatively flexible, and as a result, the protective adhesive film is affixed to, for example, a gentle curved surface portion. This is preferable because it easily follows the curved surface portion.
 前記樹脂フィルム(a1)としては、透明性の高いものを使用することが、前記保護粘着フィルムを情報表示装置であるディスプレイの表面に設置した場合であっても、良好な視認性を確保できるため好ましい。前記樹脂フィルム(a1)の全光線透過率は、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることが特に好ましい。 As the resin film (a1), use of a highly transparent film can ensure good visibility even when the protective adhesive film is installed on the surface of a display which is an information display device. preferable. The total light transmittance of the resin film (a1) is preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more.
 前記樹脂フィルム(a1)としては、ハードコート層(a2)との密着性をより一層向上させることを目的として、プライマー層が設けられたものを使用することができる。 As the resin film (a1), a resin film provided with a primer layer can be used for the purpose of further improving the adhesion with the hard coat layer (a2).
 また、前記樹脂フィルム(a1)としては、前記ハードコート層(a2)や粘着剤層(B)との密着性をより一層向上させることを目的として、サンドブラスト法や溶剤処理法などによる表面の凹凸化処理、コロナ放電処理、クロム酸処理、火炎処理、熱風処理、オゾン処理、紫外線照射処理、酸化処理などの表面処理が施されたものを使用することができる。 Further, the resin film (a1) has surface irregularities by a sandblasting method or a solvent treatment method for the purpose of further improving the adhesion with the hard coat layer (a2) or the pressure-sensitive adhesive layer (B). Those subjected to surface treatment such as chemical treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and oxidation treatment can be used.
 前記樹脂フィルム(a1)としては、帯電防止剤等を含有する樹脂フィルムを使用することができる。 As the resin film (a1), a resin film containing an antistatic agent or the like can be used.
 前記帯電防止剤としては、例えばノニオン系帯電防止剤としてポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノール、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド、脂肪酸ポリエチレングリコールエステル、脂肪酸ソルビタンエステル、ポリオキシエチレン脂肪酸ソルビタンエステル、脂肪酸グリセリンエステル、アルキルポリエチレンイミン等を挙げることができる。カチオン系帯電防止剤としては、アルキルアミン塩、アルキル第4級アンモニウム塩、アルキルイミダゾリン誘導体等を挙げることができる。また、エチレンオキサイドを骨格に持つアクリレート化合物なども使用することができる。 Examples of the antistatic agent include, as nonionic antistatic agents, polyoxyethylene alkyl ether, polyoxyethylene alkylphenol, polyoxyethylene alkylamine, polyoxyethylene alkylamide, fatty acid polyethylene glycol ester, fatty acid sorbitan ester, polyoxyethylene fatty acid Examples include sorbitan ester, fatty acid glycerin ester, and alkyl polyethyleneimine. Examples of the cationic antistatic agent include alkylamine salts, alkyl quaternary ammonium salts, and alkyl imidazoline derivatives. An acrylate compound having ethylene oxide as a skeleton can also be used.
 また、前記帯電防止剤としては、導電性高分子としてポリアニリン、ポリピロール、ポリチオフェン、ポリ3,4-エチレンジオキシチオフェン及びこれらの誘導体を使用することができる。金属酸化物としてアンチモンドープ型酸化錫(ATO)、錫ドープ型酸化インジウム(ITO)、アルミニウムドープ型酸化亜鉛、アンチモン副酸化物などを使用することができる。また、前記帯電防止剤としては、その他にリチウムイオンなどの金属イオンを混合するイオン伝導型の帯電防止剤も用いることができる。 In addition, as the antistatic agent, polyaniline, polypyrrole, polythiophene, poly3,4-ethylenedioxythiophene and derivatives thereof can be used as the conductive polymer. As the metal oxide, antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), aluminum-doped zinc oxide, antimony suboxide, or the like can be used. Further, as the antistatic agent, an ion conduction type antistatic agent in which metal ions such as lithium ions are mixed can also be used.
 前記ハードコートフィルム(A)を構成するハードコート層(a2)としては、前記したとおり、前記ハードコート層(a2)の表面に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定されるマルテンス硬さが250N/mm以上となりうるものを使用する。 As described above, the hard coat layer (a2) constituting the hard coat film (A) is measured by pushing a Vickers indenter with an edge angle of 136 ° into the surface of the hard coat layer (a2) with a load of 1 mN. The one whose Martens hardness can be 250 N / mm 2 or more is used.
 前記ハードコート層(a2)としては、各種ハードコート剤を用いて形成される硬化物層が挙げられ、例えば活性エネルギー線硬化性組成物を含有するハードコート剤を用いて形成された層が挙げられる。 As said hard-coat layer (a2), the hardened | cured material layer formed using various hard-coat agents is mentioned, For example, the layer formed using the hard-coat agent containing an active energy ray-curable composition is mentioned. It is done.
 前記ハードコート層(a2)としては、3μm~25μmの厚さのものを使用することが好ましく、4μm~20μmの厚さのものを使用することがより好ましく、5μm~16μmの厚さのものを使用することが、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきを効果的に防止できる保護フィルムを得ることができ、前記ハードコート層(a2)が形成される際の、ハードコート剤の硬化収縮に起因したハードコートフィルム(A)及び保護粘着フィルムの反りの発生を防止するうえでさらに好ましい。 The hard coat layer (a2) preferably has a thickness of 3 μm to 25 μm, more preferably a thickness of 4 μm to 20 μm, and a thickness of 5 μm to 16 μm. It is possible to obtain a protective film that can prevent the hard coat film (A) from being damaged and can effectively prevent the optical film from being damaged even when it is directly attached to the optical film or the like. This is more preferable in preventing warpage of the hard coat film (A) and the protective adhesive film due to the curing shrinkage of the hard coat agent when the hard coat layer (a2) is formed.
 前記ハードコート層(a2)の形成に使用可能なハードコート剤としては、前記した範囲のマルテンス硬さを備えたハードコートフィルム(A)を得るうえで、(メタ)アクリレートを含有するハードコート剤を使用することが好ましく、前記ハードコート剤の硬化収縮を抑制し、かつ、高い表面硬度と耐久性とに優れたハードコート層を形成するうえで、ウレタン(メタ)アクリレート(X)を含有するハードコート剤を使用することがより好ましい。 As a hard coat agent that can be used for forming the hard coat layer (a2), a hard coat agent containing (meth) acrylate for obtaining a hard coat film (A) having a Martens hardness in the above-described range. It is preferable to use urethane (meth) acrylate (X) for suppressing the curing shrinkage of the hard coat agent and forming a hard coat layer excellent in high surface hardness and durability. It is more preferable to use a hard coat agent.
 前記ウレタン(メタ)アクリレート(X)としては、各種ウレタン(メタ)アクリレートを使用することができ、なかでも、分子中に4個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートを使用することが、マルテンス硬さが250N/mm以上のハードコートフィルム(A)を得るうえで好ましい。 As the urethane (meth) acrylate (X), various urethane (meth) acrylates can be used. Among them, urethane (meth) acrylate having 4 or more (meth) acryloyl groups in the molecule is used. Is preferable for obtaining a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more.
 前記分子中に4個以上の(メタ)アクリロイル基を有するウレタン(メタ)アクリレートとしては、例えばポリイソシアネートと水酸基を有する(メタ)アクリレートとを反応させて得られるものを使用することが好ましい。 As the urethane (meth) acrylate having 4 or more (meth) acryloyl groups in the molecule, it is preferable to use, for example, those obtained by reacting polyisocyanate and (meth) acrylate having a hydroxyl group.
 前記ポリイソシアネートとしては、例えばヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネートなどの脂肪族ポリイソシアネート;ノルボルナンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサンなどの脂環式ポリイソシアネートなどを使用することができる。 Examples of the polyisocyanate include aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, and lysine triisocyanate; norbornane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, Alicyclic polyisocyanates such as 2-methyl-1,3-diisocyanatocyclohexane and 2-methyl-1,5-diisocyanatocyclohexane can be used.
 前記ポリイソシアネートとしては、前記脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートの3量体を使用することもできる。 As the polyisocyanate, a trimer of the aliphatic polyisocyanate or alicyclic polyisocyanate may be used.
 前記ポリイソシアネートとしては、脂肪族ジイソシアネートであるヘキサメチレンジイソシアネート、脂環式ジイソシアネートであるノルボルナンジイソシアネート、イソホロンジイソシアネートを使用することが、マルテンス硬さが250N/mm以上のハードコートフィルム(A)を得るうえで好ましく、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきをより効果的に防止できるため好ましい。 As the polyisocyanate, hexamethylene diisocyanate, which is an aliphatic diisocyanate, norbornane diisocyanate, which is an alicyclic diisocyanate, or isophorone diisocyanate is used to obtain a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more. It is preferable in that it is possible to prevent the hard coat film (A) from being damaged, and even if it is applied directly to the optical film or the like, it is preferable because the optical film can be more effectively prevented from being damaged.
 前記ウレタン(メタ)アクリレート(X)の製造に使用可能な前記水酸基を有する(メタ)アクリレートとしては、例えばトリメチロールプロパンジ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス((メタ)アクリロキシエチル)ヒドロキシエチルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートなどを単独または2種以上組み合わせ使用することができる。 Examples of the (meth) acrylate having a hydroxyl group that can be used in the production of the urethane (meth) acrylate (X) include trimethylolpropane di (meth) acrylate, ethylene oxide-modified trimethylolpropane di (meth) acrylate, and propylene oxide. Modified trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, bis ((meth) acryloxyethyl) hydroxyethyl isocyanurate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipenta Erythritol penta (meth) acrylate or the like can be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリレートとしては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートを使用することが、耐擦傷性などの耐久性により一層優れたハードコート層(a2)を備えたハードコートフィルムを得るうえで好ましい。 As the (meth) acrylate having a hydroxyl group, use of pentaerythritol tri (meth) acrylate or dipentaerythritol penta (meth) acrylate makes it possible to further improve the hard coat layer (a2) due to durability such as scratch resistance. It is preferable when obtaining the hard coat film provided with.
 前記ウレタン(メタ)アクリレート(X)は、前記ポリイソシアネートと前記水酸基を有する(メタ)アクリレートとを、ウレタン化触媒の存在下、常法でウレタン化反応させることによって製造することができる。 The urethane (meth) acrylate (X) can be produced by subjecting the polyisocyanate and the (meth) acrylate having a hydroxyl group to a urethanization reaction in the presence of a urethanization catalyst.
 前記ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン化合物;トリフェニルホスフィン、トリエチルホスフィンなどのリン化合物;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機亜鉛化合物を使用することができる。 Examples of the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine; phosphorus compounds such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, and dibutyltin. Organic tin compounds such as diacetate and tin octylate, and organic zinc compounds such as zinc octylate can be used.
 前記方法で得られたウレタン(メタ)アクリレート(X)は、1種を単独で使用、または2種以上を組み合わせ使用することができる。 The urethane (meth) acrylate (X) obtained by the above method can be used alone or in combination of two or more.
 前記ウレタン(メタ)アクリレート(X)としては、前記ポリイソシアネートとしてノルボルナンジイソシアネートを用いて得られたウレタンアクリレートと、前記ポリイソシアネートとしてイソホロンジイソシアネートを用いて得られたウレタンアクリレートとを組み合わせ使用することが、マルテンス硬さが250N/mm以上のハードコートフィルム(A)を得るうえで好ましく、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきをより効果的に防止できるため好ましい。 As the urethane (meth) acrylate (X), it is possible to use a combination of a urethane acrylate obtained using norbornane diisocyanate as the polyisocyanate and a urethane acrylate obtained using isophorone diisocyanate as the polyisocyanate, Even when the hard coat film (A) having a Martens hardness of 250 N / mm 2 or more is preferred, the hard coat film (A) can be prevented from being damaged, and even when directly attached to an optical film or the like. It is preferable because the optical film can be more effectively prevented from being damaged.
 また、前記ウレタン(メタ)アクリレート(X)としては、ビス((メタ)アクリロキシエチル)ヒドロキシエチルイソシアヌレート等のイソシアヌレートを用いて得られたウレタン(メタ)アクリレートを、前記したウレタン(メタ)アクリレートと組み合わせ使用することが、マルテンス硬さが250N/mm以上のハードコートフィルム(A)を得るうえで好ましく、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、光学フィルムの傷つきをより効果的に防止できるため好ましい。 Further, as the urethane (meth) acrylate (X), urethane (meth) acrylate obtained by using isocyanurate such as bis ((meth) acryloxyethyl) hydroxyethyl isocyanurate, the above urethane (meth) Use in combination with acrylate is preferable for obtaining a hard coat film (A) having a Martens hardness of 250 N / mm 2 or more, can prevent the hard coat film (A) from being damaged, and is directly applied to an optical film or the like. Even if it is affixed, it is preferable because the optical film can be more effectively prevented from being damaged.
 前記したような組み合わせのウレタン(メタ)アクリレートを使用することで、前記した範囲のマルテンス硬さを備え、前記硬化収縮によるハードコートフィルムの反りを効果的に抑制でき、かつ、高い表面硬度と耐久性とに優れたハードコートフィルムを得ることができる。 By using urethane (meth) acrylate in a combination as described above, it has a Martens hardness in the above range, can effectively suppress warpage of the hard coat film due to the curing shrinkage, and has high surface hardness and durability. A hard coat film excellent in properties can be obtained.
 前記ハードコート層(a2)の形成に使用可能なハードコート剤としては、前記ウレタン(メタ)アクリレート(X)以外のその他の(メタ)アクリレートを含有するものを使用することができる。 As the hard coat agent that can be used for forming the hard coat layer (a2), those containing other (meth) acrylates other than the urethane (meth) acrylate (X) can be used.
 前記その他の(メタ)アクリレートとしては、例えば分子中に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート(Y)が挙げられる。 Examples of the other (meth) acrylates include polyfunctional (meth) acrylate (Y) having three or more (meth) acryloyl groups in the molecule.
 前記多官能(メタ)アクリレート(Y)としては、例えばトリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどを、単独または2種以上組み合わせ使用することができる。 Examples of the polyfunctional (meth) acrylate (Y) include trimethylolpropane tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, propylene oxide-modified trimethylolpropane tri (meth) acrylate, and ditrimethylolpropane. Tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri ( (Meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaeryth Toruhekisa etc. (meth) acrylate, it can be combined used alone or two or more.
 前記多官能(メタ)アクリレート(Y)としては、前記ハードコート層(a2)の耐擦傷性などの耐久性をより一層向上させるうえで、その(メタ)アクリロイル基当量が50g/eq.~200g/eq.の範囲のものを使用することが好ましく、70g/eq.~150g/eq.の範囲のものを使用することがより好ましく、80g/eq.~120g/eq.の範囲のものを使用することがさらに好ましい。前記範囲の(メタ)アクリロイル基当量を有する多官能(メタ)アクリレートとしては、ペンタエリスリトールテトラアクリレート(アクロイル基当量:88g/eq.)、ジペンタエリスリトールヘキサ(メタ)アクリレート(アクロイル基当量:118g/eq.)などが挙げられる。 The polyfunctional (meth) acrylate (Y) has a (meth) acryloyl group equivalent of 50 g / eq. For further improving durability such as scratch resistance of the hard coat layer (a2). ~ 200 g / eq. In the range of 70 g / eq. ~ 150 g / eq. In the range of 80 g / eq. To 120 g / eq. It is more preferable to use the thing of the range. Examples of the polyfunctional (meth) acrylate having a (meth) acryloyl group equivalent within the above range include pentaerythritol tetraacrylate (acryloyl group equivalent: 88 g / eq.), Dipentaerythritol hexa (meth) acrylate (acryloyl group equivalent: 118 g / eq.) and the like.
 前記多官能(メタ)アクリレート(Y)は、前記ウレタン(メタ)アクリレート(X)と組み合わせ使用することが好ましい。 The polyfunctional (meth) acrylate (Y) is preferably used in combination with the urethane (meth) acrylate (X).
 前記ウレタン(メタ)アクリレート(X)と前記多官能(メタ)アクリレート(Y)との質量比[(X)/(Y)]は、前記した範囲のマルテンス硬さを備えたハードコートフィルム(A)を形成し、ハードコート層(a2)の耐擦傷性などの耐久性をより一層向上するうえで、90/10~10/90の範囲であることが好ましく、80/20~20/80の範囲であることがより好ましく、75/25~25/75の範囲であることがさらに好ましい。 The mass ratio [(X) / (Y)] of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y) is a hard coat film having a Martens hardness in the above-described range (A ) And the durability of the hard coat layer (a2), such as scratch resistance, is further improved, preferably in the range of 90/10 to 10/90, and 80/20 to 20/80. The range is more preferable, and the range of 75/25 to 25/75 is more preferable.
前記ウレタン(メタ)アクリレート(X)と前記多官能(メタ)アクリレート(Y)との合計使用量は、前記ハードコート剤の不揮発分100質量部に対し、10質量部~99.95質量部であることが好ましく、20質量部~99.5質量部であることが好ましい。 The total amount of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y) used is 10 to 99.95 parts by mass with respect to 100 parts by mass of the nonvolatile content of the hard coat agent. The amount is preferably 20 parts by mass to 99.5 parts by mass.
 前記ハードコート層(a2)の形成に使用可能なハードコート剤としては、前記したもののほかに、本発明の効果を損なわない範囲で、分子中に1個の(メタ)アクリロイル基を有するモノ(メタ)アクリレート、分子中に2個の(メタ)アクリロイル基を有するジ(メタ)アクリレートなどのその他の(メタ)アクリレートを含有するものを使用することができる。それらは、前記ウレタン(メタ)アクリレート(X)及び前記多官能(メタ)アクリレート(Y)の合計100質量部に対して、40質量部以下で使用することが好ましく、20質量部以下で使用することがより好ましい。 As a hard coat agent that can be used for forming the hard coat layer (a2), in addition to those described above, a mono (meth) acryloyl group having one (meth) acryloyl group in the molecule within the range not impairing the effects of the present invention ( Those containing other (meth) acrylates such as (meth) acrylate and di (meth) acrylate having two (meth) acryloyl groups in the molecule can be used. They are preferably used at 40 parts by mass or less, and at 20 parts by mass or less, with respect to 100 parts by mass in total of the urethane (meth) acrylate (X) and the polyfunctional (meth) acrylate (Y). It is more preferable.
 前記ハードコート層(a2)の形成に使用可能なハードコート剤としては、活性エネルギー線を照射することによって硬化反応を開始しうる光重合開始剤を含有するものを使用することができる。 As the hard coat agent that can be used for forming the hard coat layer (a2), a hard coat agent containing a photopolymerization initiator capable of initiating a curing reaction by irradiation with active energy rays can be used.
 前記光重合開始剤としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン]、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノンなどのアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシドなどのアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステルなどが挙げられる。 Examples of the photopolymerization initiator include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo [2-hydroxy-2-methyl-1- [4- ( 1-methylvinyl) phenyl] propanone], benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy -2-propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) ) -Acetophenone compounds such as butanone; benzoin, benzoin methyl ether, ben Benzoin such as inisopropyl ether; Acylphosphine oxide compounds such as 2,4,6-trimethylbenzoin diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; benzyl, methylphenylglyoxyester, etc. Is mentioned.
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノンなどのベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントンなどのチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノンなどのアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、1-[4-(4-ベンゾイルフェニルサルファニル)フェニル]-2-メチル-2-(4-メチルフェニルサルフォニル)プロパン-1-オンなどが挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 On the other hand, examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide. Acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone Benzophenone compounds such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, etc .; Michler-ketone, 4,4′-di Aminobenzophenone compounds such as tilaminobenzophenone; 10-butyl-2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, 1- [4- (4-benzoylphenylsulfanyl) ) Phenyl] -2-methyl-2- (4-methylphenylsulfonyl) propan-1-one. These photopolymerization initiators can be used alone or in combination of two or more.
 また、前記ハードコート剤としては、光増感剤を含有するものを使用することができる。 Further, as the hard coat agent, one containing a photosensitizer can be used.
 前記光増感剤としては、例えば、ジエタノールアミン、N-メチルジエタノールアミン、トリブチルアミンなどの3級アミン化合物、o-トリルチオ尿素などの尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネートなどの硫黄化合物等を使用することができる。 Examples of the photosensitizer include tertiary amine compounds such as diethanolamine, N-methyldiethanolamine, and tributylamine, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothuronium-p-toluene. Sulfur compounds such as sulfonates can be used.
 前記光重合開始剤及び光増感剤の使用量は、前記ハードコート剤の不揮発成分100質量部に対し、各々0.05質量部~20質量部であることが好ましく、0.5質量部~10質量部であることがより好ましい。なお、前記活性エネルギー線として電子線、α線、β線、γ線などの電離放射線を用いる場合には、光重合開始剤や光増感剤を使用する必要はない。 The amount of the photopolymerization initiator and photosensitizer used is preferably 0.05 parts by mass to 20 parts by mass, and preferably 0.5 parts by mass to 100 parts by mass of the nonvolatile component of the hard coat agent. It is more preferable that it is 10 mass parts. In the case where ionizing radiation such as electron beam, α ray, β ray, and γ ray is used as the active energy ray, it is not necessary to use a photopolymerization initiator or a photosensitizer.
 前記ハードコート剤としては、溶媒を含有するものを使用することができる。 As the hard coat agent, one containing a solvent can be used.
 前記溶媒としては、例えば、アセトン、イソブチルアルコール、2-プロパノール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、オルト-ジクロルべンゼン、キシレン、クレゾール、クロルベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、ジクロルメタン、N,N-ジメチルホルムアミド、スチレン、テトラクロルエチレン、テトラヒドロフラン、1,1,1-トリクロルエタン、トルエン、ノルマルヘキサン、1-ブタノール、2-ブタノール、メタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン等を、単独または2種以上組合せ使用することができる。 Examples of the solvent include acetone, isobutyl alcohol, 2-propanol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, ethylene glycol monomethyl ether, ortho -Dichlorobenzene, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, methyl acetate, cyclohexanol, cyclohexanone, 1,4 -Dioxane, dichloromethane, N, N-dimethylformamide, styrene, tetrachloroethylene, tetrahydrofuran, 1,1, -Trichloroethane, toluene, normal hexane, 1-butanol, 2-butanol, methanol, methyl isobutyl ketone, methyl ethyl ketone, methyl cyclohexanol, methyl cyclohexanone, methyl-normal-butyl ketone, etc. may be used alone or in combination of two or more. it can.
 前記ハードコート剤としては、耐汚染性や耐指紋性等を付与する目的で、フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(Z)を含有する防汚剤を使用することができる。 As the hard coating agent, an antifouling agent containing an active energy ray-curable compound (Z) having a fluorine atom and a silicon atom can be used for the purpose of imparting stain resistance, fingerprint resistance and the like.
 前記フッ素原子及びケイ素原子を有する活性エネルギー線硬化性化合物(Z)としては、例えばフルオロカーボン鎖、シロキサン鎖、または、ハイドロカーボン鎖等を有する化合物を使用することができる。特に、活性エネルギー線硬化性化合物(Z)としては、フルオロカーボン鎖、シロキサン鎖のいずれか一方または両方を有するものを使用することができる。 As the active energy ray-curable compound (Z) having a fluorine atom and a silicon atom, for example, a compound having a fluorocarbon chain, a siloxane chain, a hydrocarbon chain, or the like can be used. In particular, as the active energy ray-curable compound (Z), a compound having one or both of a fluorocarbon chain and a siloxane chain can be used.
 前記活性エネルギー線硬化性化合物(Z)としては、フルオロカーボン鎖としてポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ、シクロポリシロキサン構造を有するものを使用することが好ましく、ポリ(パーフルオロアルキレンエーテル)鎖の両末端に2価の連結基を介してシクロポリシロキサン構造が結合し、前記シクロポリシロキサン構造に2価の連結基を介して(メタ)アクリロイル基が結合した構造を有する化合物(z1)を使用することが好ましい。 As the active energy ray-curable compound (Z), it is preferable to use a compound having a poly (perfluoroalkylene ether) chain as a fluorocarbon chain and a cyclopolysiloxane structure, and a poly (perfluoroalkylene ether). ) Compound (z1) having a structure in which a cyclopolysiloxane structure is bonded to both ends of the chain via a divalent linking group, and a (meth) acryloyl group is bonded to the cyclopolysiloxane structure via a divalent linking group ) Is preferably used.
 前記化合物(z1)が有するポリ(パーフルオロアルキレンエーテル)鎖としては、炭素原子数1~3個の2価フッ化炭素基と酸素原子が交互に連結した構造を有するものが挙げられる。炭素原子数1~3個の2価フッ化炭素基は、1種類であっても2種類以上の組み合わせであってもよく、具体的には、下記一般式(1)で表されるものが挙げられる。 Examples of the poly (perfluoroalkylene ether) chain of the compound (z1) include those having a structure in which a divalent fluorocarbon group having 1 to 3 carbon atoms and oxygen atoms are alternately connected. The divalent fluorocarbon group having 1 to 3 carbon atoms may be one kind or a combination of two or more kinds. Specifically, those represented by the following general formula (1) may be used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(上記一般式(1)中、Xは下記式(1-1)~(1-5)であり、Xが下記式(1-1)~(1-5)のいずれか1種類のものであっても良いし、また、下記式(1-1)~(1-5)のうち、2種類以上のものがランダム状又はブロック状に存在していてもよい。また、nは繰り返し単位を表す2~200の整数である。) (In the above general formula (1), X is the following formulas (1-1) to (1-5), and X is one of the following formulas (1-1) to (1-5) In addition, two or more of the following formulas (1-1) to (1-5) may be present in a random or block form, and n is a repeating unit. Represents an integer of 2 to 200.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記ポリ(パーフルオロアルキレンエーテル)鎖としては、前記したなかでも、前記式(1-1)で表されるパーフルオロメチレン基と、前記式(1-2)で表されるパーフルオロエチレン基とによって構成されるポリ(パーフルオロアルキレンエーテル)鎖であることが、防汚性と滑り性を向上させるうえで好ましい。 Among the poly (perfluoroalkylene ether) chains, among the above, a perfluoromethylene group represented by the formula (1-1), a perfluoroethylene group represented by the formula (1-2), and A poly (perfluoroalkylene ether) chain constituted by is preferable in terms of improving antifouling properties and slipperiness.
 前記式(1-1)で表されるパーフルオロメチレン基と、前記式(1-2)で表されるパーフルオロエチレン基とのモル比率[前記式(1-1)で表されるパーフルオロメチレン基/前記式(1-2)で表されるパーフルオロエチレン基]は、1/10~10/1の範囲であることが好ましい。また、前記一般式(1)中のnの値は、2~200の範囲であることが好ましく、10~100の範囲であることがより好ましく、20~80の範囲であることがさらに好ましい。 The molar ratio of the perfluoromethylene group represented by the formula (1-1) to the perfluoroethylene group represented by the formula (1-2) [the perfluoromethylene represented by the formula (1-1) Methylene group / perfluoroethylene group represented by the formula (1-2)] is preferably in the range of 1/10 to 10/1. Further, the value of n in the general formula (1) is preferably in the range of 2 to 200, more preferably in the range of 10 to 100, and still more preferably in the range of 20 to 80.
 前記化合物(z1)が有するシクロポリシロキサン構造としては、例えば、下記一般式(2)で表される構造が挙げられる。 Examples of the cyclopolysiloxane structure possessed by the compound (z1) include a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(上記一般式(2)中、Rはメチル基であり、Rはポリ(パーフルオロアルキレンエーテル)鎖と結合する2価の有機基であり、Rは(メタ)アクリロイル基を有する1価の有機基である。また、mは2~5の整数である。) (In the general formula (2), R 1 is a methyl group, R 3 is a divalent organic group bonded to a poly (perfluoroalkylene ether) chain, and R 4 is a 1 having a (meth) acryloyl group. And m is an integer of 2 to 5.)
 前記シクロポリシロキサン構造としては、前記したなかでも、上記一般式(2)中のmが3であるシクロテトラシロキサン構造であることが好ましい。 The cyclopolysiloxane structure is preferably a cyclotetrasiloxane structure in which m in the general formula (2) is 3, among the above-described cyclopolysiloxane structures.
 前記ポリ(パーフルオロアルキレンエーテル)鎖とシクロポリシロキサン構造とを結合する2価の連結基としては、2価の有機基であれば特に限定されないが、例えば、下記一般式(3)で表されるものが挙げられる。 The divalent linking group that connects the poly (perfluoroalkylene ether) chain and the cyclopolysiloxane structure is not particularly limited as long as it is a divalent organic group. For example, the divalent linking group is represented by the following general formula (3). Can be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(上記一般式(3)中、Yは炭素原子数1~6のアルキレン基である。) (In the above general formula (3), Y is an alkylene group having 1 to 6 carbon atoms.)
 また、前記シクロポリシロキサン構造と(メタ)アクリロイル基とを結合する2価の連結基としては、2価の有機基であれば特に限定されないが、例えば、下記一般式(4)で表されるものが挙げられる。 In addition, the divalent linking group that bonds the cyclopolysiloxane structure and the (meth) acryloyl group is not particularly limited as long as it is a divalent organic group. For example, it is represented by the following general formula (4). Things.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記一般式(4)中、Z、Z及びZは、それぞれ独立に炭素原子数1~6のアルキレン基である。) (In the general formula (4), Z 1 , Z 2 and Z 3 are each independently an alkylene group having 1 to 6 carbon atoms.)
 前記化合物(z1)は、例えば、下記の(1)~(3)の工程を経ることによって製造することができる。
(1)ポリ(パーフルオロアルキレンエーテル)鎖の両末端にアリル基を有する化合物とヒドロシリル基を有するシクロポリシロキサン化合物とを白金系触媒存在下で反応させ、ポリ(パーフルオロアルキレンエーテル)鎖の両末端にシクロポリシロキサン構造を有する化合物を得る工程。
(2)(1)で得られた化合物とアリルオキシアルカノールとを白金系触媒存在下で反応させ、(1)で得られた化合物のシクロポリシロキサン構造部位に水酸基を付加する工程。
(3)(2)で付加した水酸基にイソシアネート基を有する(メタ)アクリレートを反応させ、(メタ)アクリロイル基を導入する工程。
The compound (z1) can be produced, for example, through the following steps (1) to (3).
(1) A compound having an allyl group at both ends of a poly (perfluoroalkylene ether) chain and a cyclopolysiloxane compound having a hydrosilyl group are reacted in the presence of a platinum-based catalyst to form both poly (perfluoroalkylene ether) chains. A step of obtaining a compound having a cyclopolysiloxane structure at the terminal.
(2) A step of reacting the compound obtained in (1) with allyloxyalkanol in the presence of a platinum-based catalyst and adding a hydroxyl group to the cyclopolysiloxane structure portion of the compound obtained in (1).
(3) A step of reacting a hydroxyl group added in (2) with a (meth) acrylate having an isocyanate group to introduce a (meth) acryloyl group.
 前記方法で得られた化合物(z1)等の活性エネルギー線硬化性化合物(Z)は、前記ハードコート剤の不揮発分100質量部に対して0.05質量部~5質量部の範囲で含まれることが好ましく、0.1質量部~2質量部の範囲で含まれることが、より一層優れた表面硬度と防汚性とを両立するうえでより好ましい。 The active energy ray-curable compound (Z) such as the compound (z1) obtained by the above method is contained in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the nonvolatile content of the hard coat agent. It is more preferable that it is contained in the range of 0.1 to 2 parts by mass in order to achieve both excellent surface hardness and antifouling properties.
 また、前記ハードコート剤としては、必要に応じて、重合禁止剤、表面調整剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、有機顔料、無機顔料、顔料分散剤、シリカビーズ、有機ビーズなどの添加剤;酸化ケイ素、酸化アルミニウム、酸化チタン、ジルコニア、五酸化アンチモンなどの無機系充填剤などを含有するものを使用することができる。 Further, as the hard coat agent, if necessary, a polymerization inhibitor, a surface conditioner, an antistatic agent, an antifoaming agent, a viscosity adjuster, a light resistance stabilizer, a weather resistance stabilizer, a heat resistance stabilizer, an ultraviolet absorber, Additives such as antioxidants, leveling agents, organic pigments, inorganic pigments, pigment dispersants, silica beads, organic beads; inorganic fillers such as silicon oxide, aluminum oxide, titanium oxide, zirconia, antimony pentoxide, etc. You can use what you want.
 本発明で使用するハードコートフィルム(A)は、例えば前記樹脂フィルム(a1)の片面または両面に、前記ハードコート剤を塗布し硬化させハードコート層(a2)を形成することによって製造することができる。 The hard coat film (A) used in the present invention can be produced, for example, by forming the hard coat layer (a2) by applying and curing the hard coat agent on one or both sides of the resin film (a1). it can.
 前記ハードコート剤を前記樹脂フィルム(a1)に塗布する方法としては、例えば、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等を用いる方法、オフセット印刷法、活版印刷法等の印刷法で塗布する方法が挙げられる。 Examples of the method for applying the hard coating agent to the resin film (a1) include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, transfer coating, dip coating, spinner coating, wheeler coating, Examples thereof include brush coating, silk screen solid coating, wire bar coating, flow coating and the like, and printing methods such as offset printing and letterpress printing.
 前記ハードコート剤を前記樹脂フィルム(a1)に塗布する方法としては、前記したなかでも、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、ワイヤーバーコート、フローコート等を用いる方法が、より均一な厚さのハードコート層(a2)を形成するできるため好ましい。 As the method for applying the hard coat agent to the resin film (a1), among those described above, a method using a gravure coat, roll coat, comma coat, air knife coat, kiss coat, wire bar coat, flow coat, etc. It is preferable because a hard coat layer (a2) having a uniform thickness can be formed.
 前記ハードコート剤を硬化させる方法としては、例えば前記ハードコート剤が、前記ウレタン(メタ)アクリレート(X)や多官能(メタ)アクリレート(Y)や活性エネルギー線硬化性化合物(Z)等の活性エネルギー線硬化性組成物を含有するものであれば、前記ハードコート剤を塗布し乾燥させた塗布面に活性エネルギー線を照射し硬化させる方法が挙げられる。 As a method for curing the hard coat agent, for example, the hard coat agent is an active agent such as the urethane (meth) acrylate (X), polyfunctional (meth) acrylate (Y), or active energy ray-curable compound (Z). As long as it contains an energy ray-curable composition, a method of irradiating and curing an active energy ray on the coated surface on which the hard coat agent has been applied and dried may be mentioned.
 前記活性エネルギー線としては、例えば紫外線、電子線、α線、β線、γ線のような電離放射線が挙げられる。 Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron rays, α rays, β rays, and γ rays.
 前記活性エネルギー線を照射する装置としては、例えば紫外線であれば、その発生源として低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LEDなどが挙げられる。 As an apparatus for irradiating the active energy ray, for example, in the case of ultraviolet rays, the generation source thereof is a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an electrodeless lamp (fusion lamp), a chemical lamp, a black light Lamps, mercury-xenon lamps, short arc lamps, helium / cadmium lasers, argon lasers, sunlight, LEDs and the like.
 前記紫外線を照射することでハードコート層(a2)を形成する場合、前記紫外線の照射は、ラジカル重合の酸素阻害を抑制するうえで、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。 When the hard coat layer (a2) is formed by irradiating with the ultraviolet rays, the irradiation with the ultraviolet rays is preferably performed in an inert gas atmosphere such as nitrogen gas in order to suppress oxygen inhibition of radical polymerization.
 また、前記ハードコート層(a2)を形成する際には、必要に応じて、前記活性エネルギー線を照射した後、加熱等してもよく、また、加熱後に、活性エネルギー線を照射してもよい。 Moreover, when forming the said hard-coat layer (a2), after irradiating the said active energy ray as needed, you may heat etc. Moreover, after irradiating an active energy ray after a heating Good.
 次に、本発明の保護粘着フィルムを構成する粘着剤層(B)について説明する。 Next, the pressure-sensitive adhesive layer (B) constituting the protective pressure-sensitive adhesive film of the present invention will be described.
 前記粘着剤層(B)としては、偏光板等の被着体に対して好適な接着力を有し、ハードコートフィルム(A)の傷つきを防止でき、かつ、光学フィルム等に、直接、貼付した場合であっても、それらの傷つきをより効果的に防止するうえで、厚さ15μm以上のものを使用する。 The pressure-sensitive adhesive layer (B) has a suitable adhesive force to an adherend such as a polarizing plate, can prevent the hard coat film (A) from being damaged, and is directly attached to an optical film or the like. Even if it is a case, in order to prevent those damages more effectively, a thing with a thickness of 15 micrometers or more is used.
 前記粘着剤層(B)としては、15μm~150μmの範囲の厚さを有するものを使用することが好ましく、20μm~140μmの範囲の厚さを有するものを使用することがより好ましく、20μm~130μmの範囲の厚さを有するものを使用することがより好ましく、20μm~110μmの範囲の厚さを有するものを使用することがさらに好ましく、20μm~60μmの範囲の厚さを有するものを使用することがさらに好ましく、20μm~45μmの範囲の厚さを有するものを使用することが、光学フィルム等の被着体に対して好適な接着力を有し、かつ、高い表面硬度を備えた保護粘着フィルムを得るうえでさらに好ましい。 The pressure-sensitive adhesive layer (B) preferably has a thickness in the range of 15 μm to 150 μm, more preferably has a thickness in the range of 20 μm to 140 μm, and more preferably 20 μm to 130 μm. It is more preferable to use a material having a thickness in the range of 20 μm to 110 μm, even more preferable to use a material having a thickness in the range of 20 μm to 110 μm. More preferably, the use of a film having a thickness in the range of 20 μm to 45 μm has a suitable adhesive force to an adherend such as an optical film and has a high surface hardness and a protective adhesive film It is further preferable in obtaining.
 本発明が解決しようとする上記課題は、単に、前記粘着剤層(B)の厚さを15μm以上に設定することによって解決できるのではなく、特定のマルテンス硬さを備えた前記ハードコートフィルム(A)や、保護粘着フィルムの総厚さ等の技術事項と組み合わせることによって、はじめて解決できるものである。 The above-mentioned problem to be solved by the present invention cannot be solved simply by setting the thickness of the pressure-sensitive adhesive layer (B) to 15 μm or more, but the hard coat film having a specific Martens hardness ( It can be solved only by combining with A) and technical matters such as the total thickness of the protective adhesive film.
 前記粘着剤層(B)は、周波数1Hzでの動的粘弾性スペクトルにおける20℃での貯蔵弾性率が1.0×10Pa~5.0×10Paであることが好ましく、1.5×10Pa~4.5×10Paであることがより好ましく、2.0×10Pa~4.0×10Paであることが、保護粘着フィルムの高い表面硬度を維持でき、例えば、保護粘着フィルムの表面にタッチ入力や衝撃などにより局所的な圧力が生じた場合であっても、光学フィルム等の被着体へのダメージを緩和することができ、偏光板等の変形や凹みを効果的に防止することができるためさらに好ましい。 The pressure-sensitive adhesive layer (B) preferably has a storage elastic modulus at 20 ° C. in a dynamic viscoelastic spectrum at a frequency of 1 Hz of 1.0 × 10 5 Pa to 5.0 × 10 5 Pa. More preferably, it is 5 × 10 5 Pa to 4.5 × 10 5 Pa, and 2.0 × 10 5 Pa to 4.0 × 10 5 Pa can maintain the high surface hardness of the protective adhesive film. For example, even when local pressure is generated on the surface of the protective adhesive film due to touch input or impact, damage to the adherend such as an optical film can be alleviated and deformation of the polarizing plate etc. It is more preferable because it can effectively prevent dents and dents.
 前記粘着剤層(B)は、粘着剤を塗布等することによって形成することができる。前記粘着剤としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を使用することができる。 The pressure-sensitive adhesive layer (B) can be formed by applying a pressure-sensitive adhesive. As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, or the like can be used.
 なかでも、前記粘着剤としては、アクリル系重合体を含有するアクリル系粘着剤を使用することが、前記ハードコートフィルム(A)との密着性や、透明性、耐候性などをより一層向上できるため好ましい。 Among them, the use of an acrylic pressure-sensitive adhesive containing an acrylic polymer as the pressure-sensitive adhesive can further improve the adhesion to the hard coat film (A), transparency, weather resistance, and the like. Therefore, it is preferable.
 前記アクリル系重合体としては、(メタ)アクリル単量体を重合して得られるものを使用することができる。前記(メタ)アクリル単量体としては、例えば(メタ)アクリレートが挙げられ、炭素原子数2~14のアルキル基を有する(メタ)アクリレートを含有するものを使用することが好ましい。 As the acrylic polymer, a polymer obtained by polymerizing a (meth) acrylic monomer can be used. Examples of the (meth) acrylic monomer include (meth) acrylate, and it is preferable to use a monomer containing (meth) acrylate having an alkyl group having 2 to 14 carbon atoms.
 前記炭素原子数2~14のアルキル基を有する(メタ)アクリレートとしては、例えば、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、t-ブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-オクチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、イソデシルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、n-オクチルメタクリレート、イソオクチルメタクリレート、2-エチルヘキシルメタクリレート、イソノニルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレートなどが挙げられる。 Examples of the (meth) acrylate having an alkyl group having 2 to 14 carbon atoms include ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, and n-hexyl. Acrylate, cyclohexyl acrylate, n-octyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, isodecyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec -Butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl meta Relate, n- octyl methacrylate, isooctyl methacrylate, 2-ethylhexyl methacrylate, isononyl methacrylate, isodecyl methacrylate, lauryl methacrylate.
 前記の(メタ)アクリレートとしては、前記したなかでも、炭素原子数4~9のアルキル基を有するアルキル(メタ)アクリレートを使用することが好ましく、炭素原子数4~9のアルキル基を有するアルキルアクリレートを使用することがより好ましい。 Among the above-mentioned (meth) acrylates, it is preferable to use alkyl (meth) acrylates having an alkyl group having 4 to 9 carbon atoms, and alkyl acrylates having an alkyl group having 4 to 9 carbon atoms. More preferably, is used.
 前記炭素原子数4~9のアルキル基を有するアルキルアクリレートとしては、n-ブチルアクリレート、イソオクチルアクリレート、2-エチルヘキシルアクリレート、イソノニルアクリレート、エチルアクリレートが、好適な粘着力を確保しやすいためさらに好ましい。 As the alkyl acrylate having an alkyl group having 4 to 9 carbon atoms, n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, isononyl acrylate, and ethyl acrylate are more preferable because it is easy to ensure suitable adhesive strength. .
 前記炭素原子数2~14のアルキル基を有する(メタ)アクリレートは、前記(メタ)アクリル単量体の全量100質量部に対して90質量部~99質量部の範囲で使用することが好ましく、90質量部~96質量部の範囲で使用することが好適な粘着力を確保しやすいためより好ましい。 The (meth) acrylate having an alkyl group having 2 to 14 carbon atoms is preferably used in a range of 90 to 99 parts by mass with respect to 100 parts by mass of the total amount of the (meth) acrylic monomer. It is more preferable to use in the range of 90 to 96 parts by mass because it is easy to ensure a suitable adhesive force.
 前記アクリル系重合体としては、例えば水酸基、カルボキシル基、アミド基などの極性基を有するものを使用することができる。 As the acrylic polymer, for example, a polymer having a polar group such as a hydroxyl group, a carboxyl group, and an amide group can be used.
 前記アクリル系重合体は、例えば水酸基、カルボキシル基、アミド基などの極性基を有する(メタ)アクリル単量体を含有する(メタ)アクリル単量体を重合することによって製造することができる。 The acrylic polymer can be produced by polymerizing a (meth) acrylic monomer containing a (meth) acrylic monomer having a polar group such as a hydroxyl group, a carboxyl group, or an amide group.
 前記水酸基を有する(メタ)アクリレート単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらのなかでも、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレートを使用することが好ましい。 Examples of the (meth) acrylate monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, hydroxypropyl (meth) acrylate, Examples include caprolactone-modified (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate are preferably used.
 前記カルボキシル基を有する(メタ)アクリレート単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、クロトン酸、アクリル酸又はメタクリル酸の2量体、エチレンオキサイド変性コハク酸アクリレートなどが挙げられる。これらのなかでも、アクリル酸を使用することが好ましい。 Examples of the (meth) acrylate monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid, acrylic acid or methacrylic acid dimer, ethylene oxide-modified succinic acid acrylate, and the like. Can be mentioned. Among these, it is preferable to use acrylic acid.
 前記アミド基を有する(メタ)アクリレート単量体としては、例えば、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリン、アクリルアミド、N,N-ジメチルアクリルアミド、2-(パーヒドロフタルイミド-N-イル)エチルアクリレートなどが挙げられる。これらのなかでも、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリンを使用することが好ましい。 Examples of the (meth) acrylate monomer having an amide group include N-vinyl-2-pyrrolidone, N-vinylcaprolactam, acryloylmorpholine, acrylamide, N, N-dimethylacrylamide, and 2- (perhydrophthalimide-N -Yl) ethyl acrylate and the like. Of these, N-vinyl-2-pyrrolidone, N-vinylcaprolactam, and acryloylmorpholine are preferably used.
 前記その他の極性基を有するビニル系単量体としては、例えば、酢酸ビニル、アクリロニトリル、無水マレイン酸、無水イタコン酸などが挙げられる。 Examples of the other vinyl monomers having a polar group include vinyl acetate, acrylonitrile, maleic anhydride, itaconic anhydride and the like.
 極性基を有する(メタ)アクリル単量体は、前記アクリル系重合体の製造に使用する(メタ)アクリル単量体の全量に対して0.1質量%~20質量%の範囲で使用することが好ましく、1質量%~13質量%の範囲で使用することがより好ましく、1.5質量%~8質量%の範囲で使用することが、凝集力、保持力、接着性を好適な範囲に調整しやすいためさらに好ましい。 The (meth) acrylic monomer having a polar group should be used in the range of 0.1% by mass to 20% by mass with respect to the total amount of the (meth) acrylic monomer used for the production of the acrylic polymer. It is preferable to use in the range of 1% by mass to 13% by mass, and it is preferable to use in the range of 1.5% by mass to 8% by mass in a suitable range of cohesive strength, holding power, and adhesiveness. It is more preferable because it is easy to adjust.
 前記アクリル系重合体の重量平均分子量は40万~140万であることが好ましく、60万~120万であることがより好ましい。当該重量平均分子量とすることで、接着力を特定範囲に調整しやすく、保護粘着フィルムとした際に、衝撃やタッチ入力時などの局所的な圧力を好適に緩和しやすい。 The weight average molecular weight of the acrylic polymer is preferably 400,000 to 1,400,000, and more preferably 600,000 to 1,200,000. By setting it as the weight average molecular weight, the adhesive force can be easily adjusted to a specific range, and when a protective adhesive film is formed, a local pressure at the time of impact or touch input can be easily relaxed.
 なお、前記重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)により測定することができる。より具体的には、GPC測定装置として、東ソー株式会社製「SC8020」を用いて、ポリスチレン換算値により、次のGPC測定条件で測定して求めることができる。
(GPCの測定条件)
・サンプル濃度:0.5質量%(テトラヒドロフラン溶液)
・サンプル注入量:100μL
・溶離液:テトラヒドロフラン(THF)
・流速:1.0mL/min
・カラム温度(測定温度):40℃
・カラム:東ソー株式会社製「TSKgel GMHHR-H」
・検出器:示差屈折
The weight average molecular weight can be measured by gel permeation chromatograph (GPC). More specifically, as a GPC measurement device, “SC8020” manufactured by Tosoh Corporation can be used to measure and obtain the following GPC measurement conditions based on polystyrene conversion values.
(GPC measurement conditions)
Sample concentration: 0.5% by mass (tetrahydrofuran solution)
Sample injection volume: 100 μL
・ Eluent: Tetrahydrofuran (THF)
・ Flow rate: 1.0 mL / min
Column temperature (measurement temperature): 40 ° C
・ Column: “TSKgel GMHHR-H” manufactured by Tosoh Corporation
・ Detector: Differential refraction
 前記粘着剤としては、より一層凝集力を高めるうえで、前記アクリル系重合体などのほかに、架橋剤を含有するものを使用することが好ましい。 As the pressure-sensitive adhesive, it is preferable to use a material containing a crosslinking agent in addition to the acrylic polymer in order to further increase the cohesive force.
 前記架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、キレート系架橋剤などが挙げられる。 Examples of the crosslinking agent include isocyanate crosslinking agents, epoxy crosslinking agents, chelate crosslinking agents, and the like.
 前記架橋剤は、形成される粘着剤層のゲル分率が25質量%~85質量%となる範囲で使用することが好ましく、ゲル分率が40質量%~80質量%となる範囲で使用することがより好ましく、50質量%~75質量%となる範囲で使用することが、本発明の保護粘着フィルムを偏光板などの被着体に貼付した際の表面鉛筆硬度の低下を抑制することができ、接着性も十分なものとすることができる。なお、本発明におけるゲル分率は、養生後の粘着剤層をトルエン中に浸漬し、24時間放置後に残った不溶分の乾燥後の質量を測定し、元の質量に対して百分率で表したものである。 The crosslinking agent is preferably used in a range where the gel fraction of the pressure-sensitive adhesive layer to be formed is 25% by mass to 85% by mass, and is used in a range where the gel fraction is 40% by mass to 80% by mass. More preferably, use in the range of 50% by mass to 75% by mass can suppress a decrease in surface pencil hardness when the protective adhesive film of the present invention is attached to an adherend such as a polarizing plate. And the adhesiveness can be sufficient. The gel fraction in the present invention is expressed as a percentage of the original mass by immersing the cured pressure-sensitive adhesive layer in toluene, measuring the mass after drying of the insoluble matter remaining after standing for 24 hours, and the original mass. Is.
 前記粘着剤としては、より一層接着力を高めるうえで、粘着付与樹脂を含有するものを使用することができる。 As the pressure-sensitive adhesive, a material containing a tackifying resin can be used to further increase the adhesive strength.
 前記粘着付与樹脂は、前記アクリル系重合体100質量部に対して、10質量部~60質量部の範囲で使用することが好ましい。さらに接着性を重視する場合は、20質量部~50質量部の範囲で添加するのが好ましい。 The tackifying resin is preferably used in the range of 10 to 60 parts by mass with respect to 100 parts by mass of the acrylic polymer. Further, when importance is attached to adhesiveness, it is preferably added in the range of 20 to 50 parts by mass.
 前記粘着剤としては、前記以外に公知慣用の添加剤を含有するものを使用することができる。 As the pressure-sensitive adhesive, those containing known and commonly used additives other than the above can be used.
 前記添加剤としては、例えばガラス基材や金属部材への接着性を向上させたい場合には、粘着剤100質量部に対して、0.001質量部~0.005質量部の範囲でシランカップリング剤を添加することが好ましい。さらに、必要に応じて、その他の添加剤として、可塑剤、軟化剤、充填剤、顔料、難燃剤などを添加することもできる。 As the additive, for example, when it is desired to improve the adhesion to a glass substrate or a metal member, the silane cup is in the range of 0.001 to 0.005 parts by mass with respect to 100 parts by mass of the adhesive. It is preferable to add a ring agent. Furthermore, as necessary, plasticizers, softeners, fillers, pigments, flame retardants, and the like can be added as other additives.
 本発明の保護粘着フィルムは、前記方法で製造したハードコートフィルム(A)の片面または両面、好ましくは片面に、直接、前記粘着剤を塗布及び乾燥等し粘着剤層(B)を形成することによって製造することができる。 The protective adhesive film of the present invention forms the adhesive layer (B) by directly applying and drying the adhesive on one or both sides, preferably one side, of the hard coat film (A) produced by the above method. Can be manufactured by.
 また、本発明の保護粘着フィルムは、前記方法で製造したハードコートフィルム(A)の片面または両面、好ましくは片面に、予め離型ライナーの表面に前記粘着剤を塗布し乾燥等して得た粘着剤層(B)を転写することによって製造することができる。 In addition, the protective adhesive film of the present invention was obtained by applying the adhesive to the surface of the release liner in advance on one or both sides, preferably one side, of the hard coat film (A) produced by the above method and drying it. It can manufacture by transferring an adhesive layer (B).
 前記ハードコートフィルム(A)が両面にハードコート層を有するものである場合、前記粘着剤層(B)はその一方の側のハードコート層の表面側に設けられていることが好ましい。また、前記ハードコートフィルム(A)が片面にハードコート層(a2)を有するものである場合、前記粘着剤層(B)は、前記ハードコート層(a2)が設けられていない側の前記樹脂フィルム(a1)の表面側に設けられていることが好ましい。 When the hard coat film (A) has a hard coat layer on both sides, the pressure-sensitive adhesive layer (B) is preferably provided on the surface side of the hard coat layer on one side thereof. When the hard coat film (A) has a hard coat layer (a2) on one side, the pressure-sensitive adhesive layer (B) is the resin on the side where the hard coat layer (a2) is not provided. It is preferable to be provided on the surface side of the film (a1).
 本発明の保護粘着フィルムは、ハードコートフィルム(A)や粘着剤層(B)の物性値と厚さとを特定範囲に調整して組み合わせた構成とすることにより、保護粘着フィルムに対し衝撃やタッチ入力によって局所的な圧力がかかった場合にも、その応力を適切に緩和させることができるため、被着部材へのダメージを抑制することができ、かつ、保護粘着フィルムの表面硬度を損なうことがないため、高い傷付き防止性を実現できる。 The protective adhesive film of the present invention has a structure in which the physical property value and thickness of the hard coat film (A) and the pressure-sensitive adhesive layer (B) are adjusted to a specific range and combined, so that the protective adhesive film is impacted or touched. Even when a local pressure is applied by the input, the stress can be appropriately relaxed, so that damage to the adherend can be suppressed, and the surface hardness of the protective adhesive film can be impaired. Therefore, high scratch resistance can be realized.
 本発明の保護粘着フィルムは、高い表面硬度を有する。具体的には、保護粘着フィルムをガラス板に貼り付けた状態での、前記保護粘着保護フィルムの鉛筆硬度は、好ましくは2H以上、より好ましくは3H以上である。したがって、本発明の保護粘着フィルムは、主に、携帯電子端末の画像表示部の保護粘着フィルム、各種ディスプレイの保護粘着フィルムとして好適に使用することができる。 The protective adhesive film of the present invention has a high surface hardness. Specifically, the pencil hardness of the protective adhesive protective film in a state where the protective adhesive film is attached to a glass plate is preferably 2H or higher, more preferably 3H or higher. Therefore, the protective adhesive film of the present invention can be suitably used mainly as a protective adhesive film for image display portions of portable electronic terminals and protective adhesive films for various displays.
 本発明の積層体は、本発明の保護粘着フィルムと偏光板との積層体である。 The laminate of the present invention is a laminate of the protective adhesive film of the present invention and a polarizing plate.
 従来、主に情報表示装置の製造場面においては、保護粘着フィルムと偏光板とをガラス基材を介して積層する場合があった。 Conventionally, mainly in the manufacturing scene of information display devices, a protective adhesive film and a polarizing plate may be laminated via a glass substrate.
 しかし、前記ガラス基材は剛体であるため、上記積層体をロール状に巻き取ることできない等の課題があった。 However, since the glass substrate is a rigid body, there is a problem that the laminated body cannot be rolled up.
 また、前記ガラス基材は、比較的厚く、重いため、情報表示装置の薄型化や軽量化を図ることができない場合があった。 In addition, since the glass substrate is relatively thick and heavy, it may be impossible to reduce the thickness and weight of the information display device.
 本発明の積層体は、従来の厚いガラス基材を使用せず、偏光板に、直接または柔軟な樹脂フィルムを介して、前記保護粘着フィルムを貼付したものであるため、ロール状等に巻き取ることができ、いわゆるロールトゥーロールで前記積層体を製造することができ、その生産効率を従来よりも向上させることができる。 Since the laminate of the present invention is obtained by pasting the protective adhesive film directly or through a flexible resin film on a polarizing plate without using a conventional thick glass substrate, it is wound up in a roll shape or the like. The laminate can be manufactured by so-called roll-to-roll, and the production efficiency can be improved as compared with the conventional one.
 本発明に用いる偏光板としては、通常、偏光子の両面に偏光子保護層を積層した一般的なものを使用することができる。 As the polarizing plate used in the present invention, a general polarizing plate in which a polarizer protective layer is laminated on both sides of the polarizer can be used.
 偏光子はポリビニルアルコール系樹脂を用いて得られるものを使用することができる。前記ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をけん化することによって製造することができる。 A polarizer obtained by using a polyvinyl alcohol-based resin can be used. The polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin.
 偏光子は、例えば、製膜したポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させることによって製造することができる。 The polarizer can be produced, for example, by adsorbing and orienting a dichroic dye on a formed polyvinyl alcohol resin film.
 また、偏光板は、前記で得た偏光子の両面に、接着剤層を介して、トリアセチルセルロースフィルム等の偏光子保護層を積層することによって製造することができる。 Further, the polarizing plate can be produced by laminating a polarizer protective layer such as a triacetyl cellulose film on both surfaces of the polarizer obtained above via an adhesive layer.
 前記二色性色素としては、ヨウ素や二色性有機染料を用いることができる。二色性色素でポリビニルアルコール系樹脂フィルムを染色するには、これらの色素を含有する水溶液に前記ポリビニルアルコール系樹脂フィルムを浸漬することでできる。二色性色素にヨウ素を用いる場合は通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。 As the dichroic dye, iodine or a dichroic organic dye can be used. In order to dye the polyvinyl alcohol-based resin film with a dichroic dye, the polyvinyl alcohol-based resin film can be immersed in an aqueous solution containing these dyes. When iodine is used as the dichroic dye, a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
 前記偏光子保護層としては、特に限定はされないが、ディスプレイ材料として使用することを想定したうえで、透明性に優れる樹脂を用いて得られるものを使用することが好ましい。 The polarizer protective layer is not particularly limited, but it is preferable to use a protective layer obtained by using a resin having excellent transparency on the assumption that it is used as a display material.
 前記偏光子保護層としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、シクロオレフィン系樹脂フィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッソ樹脂フィルム、ナイロンフィルム、アクリル樹脂フィルム等を挙げることができる。 Examples of the polarizer protective layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, diacetyl cellulose film, triacetyl cellulose film, acetyl cellulose butyrate film, polyvinyl chloride film, poly Vinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, cycloolefin resin film, polymethylpentene film, polysulfone film, polyetheretherketone film, polyethersulfone film, polyether Imide film, polyimide film, fluorine resin film, Niro Film, acrylic resin film or the like.
 また、前記偏光子層の両面に偏光子保護層を形成する場合、それぞれの面に異なる樹脂から構成される偏光子保護層を形成することが可能である。例えば、前記偏光子層の片面にトリアセチルセルロースフィルムからなる偏光子保護層を形成し、もう一方の面に、シクロオレフィン系樹脂フィルムからなる偏光子保護層を形成することができる。 Further, when a polarizer protective layer is formed on both sides of the polarizer layer, it is possible to form a polarizer protective layer made of a different resin on each side. For example, a polarizer protective layer made of a triacetyl cellulose film can be formed on one side of the polarizer layer, and a polarizer protective layer made of a cycloolefin-based resin film can be formed on the other side.
 前記偏光板としては、50μm~200μmの厚さを有するものを使用することが、情報表示装置や携帯電子端末の軽量化及び薄型化に貢献できるため好ましい。 As the polarizing plate, it is preferable to use a polarizing plate having a thickness of 50 μm to 200 μm because it can contribute to weight reduction and thinning of the information display device and the portable electronic terminal.
 [情報表示装置及び携帯電子端末]
 本発明の情報表示装置としては、例えば液晶ディスプレイモジュール(LCDモジュール)と本発明の保護粘着フィルムとが積層された装置が挙げられ、前記液晶ディスプレイモジュールを構成する偏光板の表面に前記保護粘着フィルムが直接積層された装置であることが好ましい。
[Information display device and portable electronic terminal]
Examples of the information display device of the present invention include a device in which a liquid crystal display module (LCD module) and the protective adhesive film of the present invention are laminated, and the protective adhesive film is formed on the surface of the polarizing plate constituting the liquid crystal display module. It is preferable that the device is directly stacked.
 前記液晶ディスプレイモジュールとしては、例えばインセル型またはオンセル型のタッチパネル機能を備えた液晶ディスプレイモジュールを好適に使用することができる。前記インセル型またはオンセル型のタッチパネル機能を備えた液晶ディスプレイモジュールは、その情報表示部の最表面が偏光板である場合が多い。そのため、本発明の情報表示装置は、前記液晶ディスプレイモジュールを構成する前記偏光板の表面に、前記保護粘着フィルムが直接、貼付されたものであることが好ましい。 As the liquid crystal display module, for example, a liquid crystal display module having an in-cell type or on-cell type touch panel function can be suitably used. In the liquid crystal display module having the in-cell type or on-cell type touch panel function, the outermost surface of the information display unit is often a polarizing plate. Therefore, in the information display device of the present invention, it is preferable that the protective adhesive film is directly attached to the surface of the polarizing plate constituting the liquid crystal display module.
 前記保護粘着フィルムが偏光板に直接貼付された情報表示装置は、例えば携帯電子端末、大型ディスプレイ、車載用ディスプレイ等に好適に使用することができる。とりわけ、タッチパネル機能を有する場合が多い携帯電子端末や車載用ディスプレイに使用されることが好ましい。 The information display device in which the protective adhesive film is directly attached to the polarizing plate can be suitably used for, for example, a portable electronic terminal, a large display, an in-vehicle display, and the like. In particular, it is preferably used for portable electronic terminals and in-vehicle displays that often have a touch panel function.
 本発明の情報表示装置は、例えば予め製造された液晶ディスプレイモジュールと、前記保護粘着フィルムとを貼り合わせることによって製造することができる。 The information display device of the present invention can be manufactured, for example, by laminating a liquid crystal display module manufactured in advance and the protective adhesive film.
 また、本発明の情報表示装置は、前記保護粘着フィルム及び偏光板から構成される前記積層体と、液晶ディスプレイパネル(LCD)とを、例えば透明性の高い粘着テープで貼り合わせることによって製造することができる。前記積層体は、屈曲可能な程度の柔軟性を有するため、それを、一般に剛体である液晶ディスプレイパネルに貼り合わせる際に、それらの界面に気泡を巻き込みにくく、その結果、情報表示装置の生産効率を格段に向上させることができる。 In addition, the information display device of the present invention is manufactured by bonding the laminate composed of the protective adhesive film and the polarizing plate and a liquid crystal display panel (LCD) with, for example, a highly transparent adhesive tape. Can do. Since the laminate is flexible enough to be bent, when it is bonded to a liquid crystal display panel, which is generally a rigid body, it is difficult for air bubbles to be caught in the interface between them, resulting in production efficiency of the information display device. Can be significantly improved.
 前記構成は、前記積層体からなる構成を有するため、その表層に傷が付きにくく、局所的な応力による偏光板の凹み等を生じにくい。そのため、前記構成は、落下等によって局所的な応力を受けやすい携帯電子端末に採用されることが好ましい。 Since the above-described configuration has a configuration composed of the laminate, the surface layer is hardly scratched, and the polarizing plate is less likely to be depressed due to local stress. For this reason, it is preferable that the above configuration is employed in a portable electronic terminal that is susceptible to local stress due to dropping or the like.
 以下に実施例および比較例により本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
 (合成例1:ウレタンアクリレート(A1)の合成)
 攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル250質量部、ノルボルナンジイソシアネート206質量部、p-メトキシフェノール0.5質量部、ジブチル錫ジアセテート0.5質量部を仕込み、空気を吹き込みながら、70℃に昇温した後、ペンタエリスリトールトリアクリレート(以下、「PE3A」と省略。)とペンタエリスリトールテトラアクリレート(以下、「PE4A」と省略。)との混合物(質量比75/25の混合物)795質量部を1時間かけて滴下した。
(Synthesis Example 1: Synthesis of urethane acrylate (A1))
In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 250 parts by mass of butyl acetate, 206 parts by mass of norbornane diisocyanate, 0.5 parts by mass of p-methoxyphenol, and 0.5 parts by mass of dibutyltin diacetate After charging and heating to 70 ° C. while blowing air, a mixture (mass ratio) of pentaerythritol triacrylate (hereinafter abbreviated as “PE3A”) and pentaerythritol tetraacrylate (hereinafter abbreviated as “PE4A”). 75/25 mixture) 795 parts by mass were added dropwise over 1 hour.
 滴下終了後、70℃で3時間、前記反応を継続させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応させることによって、ウレタンアクリレート(A1)とPE4Aとを含有する酢酸ブチル溶液(不揮発分80質量%、以下、「ウレタンアクリレート(A1)溶液」と省略。)を得た。前記ウレタンアクリレート(A1)の分子量(計算値)は802であった。 After completion of the dropwise addition, the reaction is continued for 3 hours at 70 ° C., and further reacted until the infrared absorption spectrum of 2250 cm −1 showing the isocyanate group disappears, whereby butyl acetate containing urethane acrylate (A1) and PE4A is contained. A solution (non-volatile content 80 mass%, hereinafter abbreviated as “urethane acrylate (A1) solution”) was obtained. The molecular weight (calculated value) of the urethane acrylate (A1) was 802.
 (合成例2:ウレタンアクリレート(A2)の合成)
 攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル254質量部、イソホロンジイソシアネート222質量部、p-メトキシフェノール0.5質量部、ジブチル錫ジアセテート0.5質量部を仕込み、70℃に昇温した後、PE3AとPE4Aとの混合物(質量比75/25の混合物)795質量部を1時間かけて滴下した。
(Synthesis Example 2: Synthesis of urethane acrylate (A2))
In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 254 parts by mass of butyl acetate, 222 parts by mass of isophorone diisocyanate, 0.5 parts by mass of p-methoxyphenol, and 0.5 parts by mass of dibutyltin diacetate After charging and heating to 70 ° C., 795 parts by mass of a mixture of PE3A and PE4A (a mixture with a mass ratio of 75/25) was added dropwise over 1 hour.
 滴下終了後、70℃で3時間、前記反応を継続させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応させることによって、ウレタンアクリレート(A2)とPE4Aとを含有する酢酸ブチル溶液(不揮発分80質量%、以下、「ウレタンアクリレート(A2)溶液」と省略。)を得た。前記ウレタンアクリレート(A2)の分子量(計算値)は818であった。 After completion of the dropwise addition, the reaction is continued for 3 hours at 70 ° C., and further reacted until the infrared absorption spectrum of 2250 cm −1 showing the isocyanate group disappears, whereby butyl acetate containing urethane acrylate (A2) and PE4A is contained. A solution (non-volatile content 80 mass%, hereinafter abbreviated as “urethane acrylate (A2) solution”) was obtained. The molecular weight (calculated value) of the urethane acrylate (A2) was 818.
 (合成例3:ウレタンアクリレート(A3)の合成)
 攪拌機、ガス導入管、冷却管、及び温度計を備えたフラスコに、酢酸ブチル254質量部、イソホロンジイソシアネート222質量部、p-メトキシフェノール0.5質量部、ジブチル錫ジアセテート0.5質量部を仕込み、70℃に昇温した後、ビス(アクリロキシエチル)ヒドロキシエチルイソシアヌレート369質量部、及び、PE3AとPE4Aとの混合物(質量比75/25の混合物)398質量部を1時間かけて滴下した。
(Synthesis Example 3: Synthesis of urethane acrylate (A3))
In a flask equipped with a stirrer, a gas introduction tube, a cooling tube, and a thermometer, 254 parts by mass of butyl acetate, 222 parts by mass of isophorone diisocyanate, 0.5 parts by mass of p-methoxyphenol, and 0.5 parts by mass of dibutyltin diacetate After charging and heating to 70 ° C., 369 parts by mass of bis (acryloxyethyl) hydroxyethyl isocyanurate and 398 parts by mass of a mixture of PE3A and PE4A (mass ratio 75/25) were added dropwise over 1 hour. did.
 滴下終了後、70℃で3時間、前記反応を継続させ、さらにイソシアネート基を示す2250cm-1の赤外線吸収スペクトルが消失するまで反応させることによって、ウレタンアクリレート(A3)とPE4Aとを含有する酢酸ブチル溶液(不揮発分80質量%、以下、「ウレタンアクリレート(A3)溶液」と省略。)を得た。前記ウレタンアクリレート(A3)の分子量(計算値)は889であった。 After completion of dropping, the reaction is continued at 70 ° C. for 3 hours, and further, the reaction is continued until the infrared absorption spectrum of 2250 cm −1 showing the isocyanate group disappears, whereby butyl acetate containing urethane acrylate (A3) and PE4A is contained. A solution (non-volatile content 80 mass%, hereinafter abbreviated as “urethane acrylate (A3) solution”) was obtained. The molecular weight (calculated value) of the urethane acrylate (A3) was 889.
 (調製例1:ハードコート剤(HC1)の調製)
 合成例1で得られたウレタンアクリレート(A1)溶液31.3質量部、合成例2で得られたウレタンアクリレート(A2)溶液31.3質量部、合成例3で得られたウレタンアクリレート(A3)溶液25質量部、ジペンタエリスリトールヘキサアクリレート及びジペンタエリスリトールペンタアクリレートの混合物(ジペンタエリスリトールヘキサアクリレート/ジペンタエリスリトールペンタアクリレート=60/40(質量比))30質量部、反応性フッ素防汚剤(オプツールDAC-HP;ダイキン工業株式会社製、不揮発分20質量%)2.0質量部及び光重合開始剤(BASFジャパン株式会社製「イルガキュア184」、1-ヒドロキシシクロヘキシルフェニルケトン)4.5質量部を均一に攪拌した後、酢酸エチルで希釈して、不揮発分40質量%のハードコート剤(HC1)を調製した。
(Preparation Example 1: Preparation of hard coat agent (HC1))
31.3 parts by mass of the urethane acrylate (A1) solution obtained in Synthesis Example 1, 31.3 parts by mass of the urethane acrylate (A2) solution obtained in Synthesis Example 2, and the urethane acrylate (A3) obtained in Synthesis Example 3 25 parts by mass of a solution, 30 parts by mass of a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (dipentaerythritol hexaacrylate / dipentaerythritol pentaacrylate = 60/40 (mass ratio)), a reactive fluorine antifouling agent ( Optool DAC-HP; manufactured by Daikin Industries, Ltd. (non-volatile content 20% by mass) 2.0 parts by mass and photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone) 4.5 parts by mass After stirring uniformly, dilute with ethyl acetate Te was nonvolatile content of 40% by weight of the hard coat agent (HC1) was prepared.
 (調製例2:ハードコート剤(HC2)の調製)
 合成例1で得られたウレタンアクリレート(A1)溶液31.3質量部、合成例2で得られたウレタンアクリレート(A2)溶液31.3質量部、合成例3で得られたウレタンアクリレート(A3)溶液25質量部、ジペンタエリスリトールヘキサアクリレート及びジペンタエリスリトールペンタアクリレートの混合物(ジペンタエリスリトールヘキサアクリレート/ジペンタエリスリトールペンタアクリレート=60/40(質量比))105質量部、反応性フッ素防汚剤(オプツールDAC-HP;ダイキン工業株式会社製、不揮発分20質量%)2.0質量部及び光重合開始剤(BASFジャパン株式会社製「イルガキュア184」、1-ヒドロキシシクロヘキシルフェニルケトン)4.5質量部を均一に攪拌した後、酢酸エチルで希釈して、不揮発分40質量%のハードコート剤(HC2)を調製した。
(Preparation Example 2: Preparation of hard coat agent (HC2))
31.3 parts by mass of the urethane acrylate (A1) solution obtained in Synthesis Example 1, 31.3 parts by mass of the urethane acrylate (A2) solution obtained in Synthesis Example 2, and the urethane acrylate (A3) obtained in Synthesis Example 3 25 parts by mass of a solution, 105 parts by mass of a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (dipentaerythritol hexaacrylate / dipentaerythritol pentaacrylate = 60/40 (mass ratio)), a reactive fluorine antifouling agent ( Optool DAC-HP; manufactured by Daikin Industries, Ltd. (non-volatile content 20% by mass) 2.0 parts by mass and photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan Ltd., 1-hydroxycyclohexyl phenyl ketone) 4.5 parts by mass After stirring uniformly, dilute with ethyl acetate. There was a non-volatile content 40% by weight of the hard coat agent (HC2) was prepared.
 (製造例1)
 SKダイン909A(綜研化学株式会社製、アクリル系粘着剤)100質量部と、コロネートL-45(日本ポリウレタン工業株式会社製、イソシアネート系架橋剤、固形分45質量%)0.7質量部とを混合し、15分攪拌することによって粘着剤を調製した。
(Production Example 1)
100 parts by mass of SK Dyne 909A (manufactured by Soken Chemical Co., Ltd., acrylic adhesive) and 0.7 parts by mass of Coronate L-45 (manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate cross-linking agent, solid content 45% by mass) An adhesive was prepared by mixing and stirring for 15 minutes.
 次に、厚さ75μmのポリエチレンテレフタレートフィルムの片面にシリコーン化合物の剥離層を形成した剥離ライナーに、前記粘着剤を、乾燥後の厚さが25μmとなるように塗工し75℃で5分間乾燥することによって粘着剤層(1)を形成した。 Next, the adhesive is applied to a release liner having a silicone compound release layer formed on one side of a 75 μm thick polyethylene terephthalate film, and dried at 75 ° C. for 5 minutes. By doing so, the adhesive layer (1) was formed.
 (製造例2)
 粘着剤層の厚さを25μmから50μmに変更すること以外は、製造例1と同様の方法で粘着剤層(2)を得た。
(Production Example 2)
A pressure-sensitive adhesive layer (2) was obtained in the same manner as in Production Example 1, except that the thickness of the pressure-sensitive adhesive layer was changed from 25 μm to 50 μm.
 (製造例3)
 粘着剤層の厚さを25μmから100μmに変更すること以外は、製造例1と同様の方法で粘着剤層(3)を得た。
(Production Example 3)
A pressure-sensitive adhesive layer (3) was obtained in the same manner as in Production Example 1, except that the thickness of the pressure-sensitive adhesive layer was changed from 25 μm to 100 μm.
 (製造例4)
 粘着剤層の厚さを25μmから10μmに変更すること以外は、製造例1と同様の方法で粘着剤層(4)を得た。
(Production Example 4)
A pressure-sensitive adhesive layer (4) was obtained in the same manner as in Production Example 1, except that the thickness of the pressure-sensitive adhesive layer was changed from 25 μm to 10 μm.
 (製造例5)
 攪拌機、還流冷却器、温度計、滴下漏斗及び窒素ガス導入口を備えた反応容器に、n-ブチルアクリレート24質量部、2-メトキシエチルアクリレート75質量部、2-ヒドロキシエチルアクリレート1質量部、重合開始剤として2,2’-アゾビスイソブチルニトリル0.2質量部、及び、酢酸エチル100質量部を混合し、反応容器内を窒素置換した後、80℃で8時間重合させることによって、重量平均分子量70万のアクリル共重合体を得た。
(Production Example 5)
In a reaction vessel equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen gas inlet, 24 parts by mass of n-butyl acrylate, 75 parts by mass of 2-methoxyethyl acrylate, 1 part by mass of 2-hydroxyethyl acrylate, polymerization By mixing 0.2 parts by mass of 2,2′-azobisisobutylnitrile as an initiator and 100 parts by mass of ethyl acetate, the inside of the reaction vessel was purged with nitrogen, and then polymerized at 80 ° C. for 8 hours to obtain a weight average. An acrylic copolymer having a molecular weight of 700,000 was obtained.
 次に、前記アクリル共重合体と酢酸エチルとを混合することによってアクリル共重合体の固形分が30質量%の粘着剤を得た。 Next, an adhesive having a solid content of 30% by mass was obtained by mixing the acrylic copolymer and ethyl acetate.
 次に、上記粘着剤100質量部と、コロネートHX(日本ポリウレタン工業株式会社製、イソシアネート系架橋剤、固形分75質量%)0.1質量部とを混合し、15分攪拌したものを、厚さ75μmのポリエチレンテレフタレート製フィルムの片面にシリコーン化合物の剥離層を形成した剥離ライナーに、乾燥後の厚さが50μmになるように塗工し、75℃で5分間乾燥することによって粘着剤層(5)を形成した。 Next, 100 parts by mass of the above-mentioned pressure-sensitive adhesive and 0.1 part by mass of Coronate HX (manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate-based crosslinking agent, solid content: 75% by mass) were mixed and stirred for 15 minutes. A pressure-sensitive adhesive layer (coated with a release layer of a silicone compound on one side of a 75 μm-thick polyethylene terephthalate film was applied to a thickness of 50 μm after drying and dried at 75 ° C. for 5 minutes. 5) was formed.
 (実施例1)
 厚さ188μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製 コスモシャインA4300)の片面に、バーコーターを用いて前記ハードコート剤(1)を塗布し、80℃で90秒間乾燥した後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用い、照射光量0.5J/cmで紫外線を照射することによって、厚さが12μmのハードコート層を備えたハードコートフィルムを得た。
Example 1
The hard coat agent (1) is applied to one side of a polyethylene terephthalate film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 188 μm using a bar coater, dried at 80 ° C. for 90 seconds, and then exposed to ultraviolet rays in an air atmosphere Hard coat with a thickness of 12 μm by irradiating ultraviolet rays with an irradiation light amount of 0.5 J / cm 2 using an irradiation device (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) A hard coat film with a layer was obtained.
 次に、前記ハードコートフィルムの前記ポリエチレンテレフタレートフィルムからなる面に、前記粘着剤層(1)を4kg/cmの加圧し貼り合わせ、40℃で2日間養生することによって、厚さ225μmの保護粘着フィルム(1)を得た。 Next, the pressure-sensitive adhesive layer (1) is pressed and bonded to the surface of the hard coat film made of the polyethylene terephthalate film at a pressure of 4 kg / cm, and cured at 40 ° C. for 2 days, thereby providing a protective adhesive having a thickness of 225 μm. A film (1) was obtained.
 (実施例2)
 厚さ188μmのポリエチレンテレフタレートフィルムの代わりに、厚さ250μmのポリエチレンテレフタレートフィルムを使用すること以外は、実施例1と同様の方法で、厚さ287μmの保護粘着フィルム(2)を得た。
(Example 2)
A protective adhesive film (2) having a thickness of 287 μm was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 250 μm was used instead of the polyethylene terephthalate film having a thickness of 188 μm.
 (実施例3)
 前記粘着剤層(1)の代わりに前記粘着剤層(2)を使用すること以外は、実施例1と同様の方法で、厚さ250μmの保護粘着フィルム(3)を得た。
Example 3
A protective adhesive film (3) having a thickness of 250 μm was obtained in the same manner as in Example 1 except that the adhesive layer (2) was used instead of the adhesive layer (1).
 (実施例4)
 前記粘着剤層(1)の代わりに前記粘着剤層(3)を使用すること以外は、実施例1と同様の方法で、厚さ300μmの保護粘着フィルム(4)を得た。
Example 4
A protective adhesive film (4) having a thickness of 300 μm was obtained in the same manner as in Example 1 except that the adhesive layer (3) was used instead of the adhesive layer (1).
 (実施例5)
 厚さ188μmのポリエチレンテレフタレートフィルムの代わりに、厚さ250μmのポリエチレンテレフタレートフィルムを使用すること、及び、前記粘着剤層(1)の代わりに前記粘着剤層(2)を使用すること以外は、実施例1と同様の方法で厚さ312μmの保護粘着フィルム(5)を得た。
(Example 5)
Implemented except that a polyethylene terephthalate film having a thickness of 250 μm was used instead of a polyethylene terephthalate film having a thickness of 188 μm, and that the adhesive layer (2) was used instead of the adhesive layer (1). A protective adhesive film (5) having a thickness of 312 μm was obtained in the same manner as in Example 1.
 (実施例6)
 厚さ188μmのポリエチレンテレフタレートフィルムの代わりに、厚さ250μmのポリエチレンテレフタレートフィルムを使用すること、及び、前記粘着剤層(1)の代わりに前記粘着剤層(3)を使用すること以外は、実施例1と同様の方法で、厚さ362μmの保護粘着フィルム(6)を得た。
(Example 6)
Implemented except that a polyethylene terephthalate film with a thickness of 250 μm was used instead of a polyethylene terephthalate film with a thickness of 188 μm, and that the adhesive layer (3) was used instead of the adhesive layer (1). In the same manner as in Example 1, a protective adhesive film (6) having a thickness of 362 μm was obtained.
 (実施例7)
 前記ハードコート剤(1)の代わりにハードコート剤(2)を使用すること以外は、実施例1と同様の方法で、厚さ225μmの保護粘着フィルム(7)を得た。
(Example 7)
A protective adhesive film (7) having a thickness of 225 μm was obtained in the same manner as in Example 1 except that the hard coat agent (2) was used instead of the hard coat agent (1).
 (実施例8)
 前記ハードコート剤(1)の代わりにハードコート剤(2)を用いること、及び、ハードコート層の厚さを12μmから6μmに変更すること以外は、実施例1と同様の方法で、厚さ219μmの保護粘着フィルム(8)を得た。
(Example 8)
The thickness is the same as in Example 1 except that the hard coat agent (2) is used instead of the hard coat agent (1) and the thickness of the hard coat layer is changed from 12 μm to 6 μm. A protective adhesive film (8) having a thickness of 219 μm was obtained.
 (実施例9)
 前記粘着剤層(1)の代わりに粘着剤層(5)を使用すること以外は、実施例1と同様の方法で、厚さ225μmの保護粘着フィルム(9)を得た。
Example 9
A protective adhesive film (9) having a thickness of 225 μm was obtained in the same manner as in Example 1 except that the adhesive layer (5) was used instead of the adhesive layer (1).
 (実施例10)
 ハードコート層の厚さを12μmから15μmに変更すること以外は、実施例1と同様の方法で、厚さ228μmの保護粘着フィルム(10)を得た。
(Example 10)
A protective adhesive film (10) having a thickness of 228 μm was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 μm to 15 μm.
 (実施例11)
 ハードコート層の厚さを12μmから6μmに変更すること以外は、実施例1と同様の方法で、厚さ219μmの保護粘着フィルム(11)を得た。
(Example 11)
A protective adhesive film (11) having a thickness of 219 μm was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 μm to 6 μm.
 (実施例12)
 ハードコート層の厚さを12μmから4μmに変更すること以外は、実施例1と同様の方法で、厚さ217μmの保護粘着フィルム(12)を得た。
Example 12
A protective adhesive film (12) having a thickness of 217 μm was obtained in the same manner as in Example 1 except that the thickness of the hard coat layer was changed from 12 μm to 4 μm.
 (比較例1)
 厚さ125μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製 コスモシャインA4300)の片面に、バーコーターを用いて前記ハードコート剤(1)を塗布し、80℃で90秒間乾燥した後、空気雰囲気下で紫外線照射装置(フュージョンUVシステムズ・ジャパン株式会社製「F450」、ランプ:120W/cm、Hバルブ)を用い、照射光量0.5J/cmで紫外線を照射することによって、厚さが12μmのハードコート層を備えたハードコートフィルムを得た。
(Comparative Example 1)
The hard coat agent (1) is applied to one side of a 125 μm-thick polyethylene terephthalate film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) using a bar coater, dried at 80 ° C. for 90 seconds, and then exposed to ultraviolet light in an air atmosphere. Hard coat with a thickness of 12 μm by irradiating ultraviolet rays with an irradiation light amount of 0.5 J / cm 2 using an irradiation device (“F450” manufactured by Fusion UV Systems Japan Co., Ltd., lamp: 120 W / cm, H bulb) A hard coat film with a layer was obtained.
 次に、前記ハードコートフィルムの前記ポリエチレンテレフタレートフィルムからなる面に、前記粘着剤層(1)を4kg/cmの加圧し貼り合わせ、40℃で2日間養生することによって、厚さ162μmの保護粘着フィルム(13)を得た。 Next, the adhesive layer (1) is pressed and bonded to the surface of the hard coat film made of the polyethylene terephthalate film at a pressure of 4 kg / cm, and cured at 40 ° C. for 2 days, thereby providing a protective adhesive having a thickness of 162 μm. A film (13) was obtained.
 (比較例2)
 厚さ188μmのポリエチレンテレフタレートフィルムの代わりに、厚さ100μmのポリエチレンテレフタレートフィルムを使用すること以外は、実施例1と同様の方法で、厚さ137μmの保護粘着フィルム(14)を得た。
(Comparative Example 2)
A protective adhesive film (14) having a thickness of 137 μm was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 100 μm was used instead of the polyethylene terephthalate film having a thickness of 188 μm.
 (比較例3)
 厚さ188μmのポリエチレンテレフタレートフィルムの代わりに、厚さ75μmのポリエチレンテレフタレートフィルムを使用すること以外は、実施例1と同様の方法で、厚さ112μmの保護粘着フィルム(15)を得た。
(Comparative Example 3)
A protective adhesive film (15) having a thickness of 112 μm was obtained in the same manner as in Example 1 except that a polyethylene terephthalate film having a thickness of 75 μm was used instead of the polyethylene terephthalate film having a thickness of 188 μm.
 (比較例4)
 ハードコート層を形成しなかったこと以外は、実施例1と同様の方法で、厚さ213μmの保護粘着フィルム(16)を得た。
(Comparative Example 4)
A protective adhesive film (16) having a thickness of 213 μm was obtained in the same manner as in Example 1 except that the hard coat layer was not formed.
 (比較例5)
 ハードコート層の厚さを12μmから1μmに変更すること、及び、粘着剤層(1)の代わりに粘着剤層(4)を使用すること以外は、実施例1と同様の方法で、厚さ214μmの保護粘着フィルム(17)を得た。
(Comparative Example 5)
The thickness is the same as in Example 1 except that the thickness of the hard coat layer is changed from 12 μm to 1 μm and the pressure-sensitive adhesive layer (4) is used instead of the pressure-sensitive adhesive layer (1). A 214 μm protective adhesive film (17) was obtained.
 (比較例6)
 前記粘着剤層(1)の代わりに前記粘着剤層(4)を使用し、その厚さを25μmから10μmに変更したこと以外は、実施例1と同様の方法で、厚さ210μmの保護粘着フィルム(18)を得た。
(Comparative Example 6)
A protective adhesive having a thickness of 210 μm was used in the same manner as in Example 1 except that the adhesive layer (4) was used instead of the adhesive layer (1) and the thickness was changed from 25 μm to 10 μm. A film (18) was obtained.
 上記実施例及び比較例にて得られた保護粘着フィルムについて以下の評価を行った。得られた結果を表1~3に示す。 The following evaluations were performed on the protective adhesive films obtained in the above examples and comparative examples. The obtained results are shown in Tables 1 to 3.
 (貯蔵弾性率の測定方法)
 前記粘着剤層の貯蔵弾性率は、粘弾性試験機(レオメトリックス社製、商品名:アレス2KSTD)を用いて測定した。具体的には、前記試験機の測定部である平行円盤の間に試験片を挟み込み、周波数1Hzで20℃での貯蔵弾性率(G’)を測定した。上記測定で使用する試験片としては、前記製造例で得た粘着剤層を厚さ1mm及び直径8mmの大きさからなる円状に裁断したものを使用した。
(Measurement method of storage modulus)
The storage elastic modulus of the pressure-sensitive adhesive layer was measured using a viscoelasticity tester (manufactured by Rheometrics, trade name: Ares 2KSTD). Specifically, a test piece was sandwiched between parallel disks, which are measurement parts of the test machine, and the storage elastic modulus (G ′) at 20 ° C. was measured at a frequency of 1 Hz. As the test piece used in the above measurement, the pressure-sensitive adhesive layer obtained in the above production example was cut into a circle having a thickness of 1 mm and a diameter of 8 mm.
 (ハードコートフィルムのマルテンス硬さ)
 粘着剤層を積層していないハードコートフィルムを、そのハードコート層が上になるようにガラス板の上に置き、4隅をセロハンテープで固定した。その後、フィッシャースコープHM2000Xyp(フィッシャーインストルメンツ社)を用いてハードコート層表面のマルテンス硬さを、稜間角136°のビッカース圧子を20秒間かけて1mN荷重に押し込んで測定した。
(Martens hardness of hard coat film)
The hard coat film on which the adhesive layer was not laminated was placed on a glass plate so that the hard coat layer was on top, and the four corners were fixed with cellophane tape. Thereafter, the Martens hardness on the surface of the hard coat layer was measured using a Fischer scope HM2000Xyp (Fischer Instruments) by pushing a Vickers indenter with a ridge angle of 136 ° into a 1 mN load over 20 seconds.
 保護粘着フィルムの表面鉛筆硬度及び応力緩和性を測定することによって、前記タッチ入力等に起因した偏光板等の損傷を防止できるか否かを評価した。 It was evaluated whether or not damage to the polarizing plate or the like due to the touch input could be prevented by measuring the surface pencil hardness and stress relaxation property of the protective adhesive film.
 (保護粘着フィルムの鉛筆硬度の測定)
 上記の実施例及び比較例で得られた保護粘着フィルムをガラス板に貼り付け、その表面(ハードコート層)の鉛筆硬度を、JIS K 5600-5-4(1999年版)の規定に基づき、硬度H~4Hの鉛筆と、株式会社井元製作所製の塗膜用鉛筆引掻き試験機(手動式)を用いて測定した。
(Measurement of pencil hardness of protective adhesive film)
The protective adhesive films obtained in the above Examples and Comparative Examples were attached to a glass plate, and the pencil hardness of the surface (hard coat layer) was determined based on the provisions of JIS K 5600-5-4 (1999 edition). Measurement was performed using a pencil of H to 4H and a pencil scratch tester (manual type) for coating film manufactured by Imoto Seisakusho Co., Ltd.
 (応力緩和性1の評価)
 保護粘着フィルムを構成する粘着剤層の表面に、偏光板の代替として、片面が黒マット面である厚さ6μmのポリエチレンテレフタレートフィルムを貼り合わせたものを試験片とした。前記貼付は、ポリエチレンテレフタレートフィルムを構成する黒マット面が表側(前記粘着剤層の表面に接触しない側)となるように行った。
(Evaluation of stress relaxation 1)
A test piece was prepared by laminating a polyethylene terephthalate film having a thickness of 6 μm, one side of which is a black matte surface, as an alternative to the polarizing plate on the surface of the pressure-sensitive adhesive layer constituting the protective pressure-sensitive adhesive film. The pasting was performed so that the black matte surface constituting the polyethylene terephthalate film was on the front side (the side not in contact with the surface of the pressure-sensitive adhesive layer).
 次に、ガラス板上に、前記試験片を構成する保護粘着フィルムのハードコート層が上側になるように載置し、その4隅をセロハン粘着テープで固定した。 Next, the glass plate was placed so that the hard coat layer of the protective adhesive film constituting the test piece was on the upper side, and its four corners were fixed with cellophane adhesive tape.
 次に、前記固定した試験片のハードコート層からなる面を、株式会社井元製作所製の塗膜用鉛筆引掻き試験機(手動式)を用いて、JIS K 5600-5-4(1999年版)の規定に倣った方法で、硬度4Hの鉛筆で引っ掻いた。 Next, the surface consisting of the hard coat layer of the fixed test piece was subjected to JIS K 5600-5-4 (1999 version) using a pencil scratch tester for coating film (manual type) manufactured by Imoto Seisakusho Co., Ltd. It was scratched with a pencil having a hardness of 4H by a method according to the regulations.
 前記鉛筆で引っ掻いた箇所の裏面にあたる、前記黒マット面を目視で観察し、その引っ掻き跡が見えるかどうかを観察した。評価は下記基準で行った。 The black matte surface corresponding to the back surface of the portion scratched with the pencil was visually observed to see if the scratch mark could be seen. Evaluation was performed according to the following criteria.
 ◎ 引っ掻き跡は全く観察されなかった。 ◎ No scratch marks were observed.
 ○ 引っ掻き跡に起因した薄白色の線が確認された。 ○ A pale white line due to scratch marks was observed.
 △ 引っ掻き跡に起因した白色の線が明確に確認された。 △ A white line due to scratch marks was clearly confirmed.
 × 引っ掻き跡に起因した凸形状の線が明確に確認された。 X Convex line due to scratch marks was clearly confirmed.
 (応力緩和性2の評価)
 荷重を750gから1kgに変更したこと以外は、上記「(応力緩和性1の評価)」の欄に記載した方法と同様の方法及び基準で評価した。
(Evaluation of stress relaxation property 2)
Except that the load was changed from 750 g to 1 kg, the evaluation was performed by the same method and standard as the method described in the column “(Evaluation of stress relaxation 1)”.
 評価結果を、以下の表1~3に示す。なお、表中のPETはポリエチレンテレフタレートを指す。 Evaluation results are shown in Tables 1 to 3 below. In the table, PET refers to polyethylene terephthalate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記表1~3から明らかなように、本願発明の保護粘着フィルムは、好適な表面硬度を有しながらも優れた応力緩和性を実現できる。一方、比較例1~3の保護粘着フィルムは、実施例1と同様のハードコート剤や粘着剤を使用しているにもかかわらず、本発明の構成を充足しないため、表面硬度または応力緩和性に劣るものであった。また、比較例4の保護粘着フィルムは、ハードコート層が無いため表面硬度が低いものであった。比較例5の保護粘着フィルムは、表面硬度、応力緩和性ともに劣るものであった。比較例6の保護粘着フィルムは、荷重が大きくなった場合に、応力緩和性の低下を引き起こした。 As is apparent from Tables 1 to 3, the protective adhesive film of the present invention can realize excellent stress relaxation properties while having a suitable surface hardness. On the other hand, since the protective adhesive films of Comparative Examples 1 to 3 use the same hard coat agent and adhesive as in Example 1, they do not satisfy the constitution of the present invention, so that the surface hardness or the stress relaxation property It was inferior to. Further, the protective adhesive film of Comparative Example 4 had a low surface hardness because there was no hard coat layer. The protective adhesive film of Comparative Example 5 was inferior in both surface hardness and stress relaxation properties. The protective adhesive film of Comparative Example 6 caused a decrease in stress relaxation when the load increased.

Claims (7)

  1. ハードコートフィルム(A)の少なくとも一方の面側に、厚さ15μm以上の粘着剤層(B)を有する総厚さ150μm以上の保護粘着フィルムであって、
    前記ハードコートフィルム(A)が、厚さ130μm以上の樹脂フィルム(a1)の少なくとも一方の面側にハードコート層(a2)を有するものであり、
    かつ、前記ハードコート層(a2)の表面に稜間角136°のビッカース圧子を荷重1mNで押し込んで測定されるマルテンス硬さが250N/mm以上であることを特徴とする保護粘着フィルム。
    A protective adhesive film having a total thickness of 150 μm or more having an adhesive layer (B) having a thickness of 15 μm or more on at least one surface side of the hard coat film (A),
    The hard coat film (A) has a hard coat layer (a2) on at least one surface side of a resin film (a1) having a thickness of 130 μm or more,
    And the Martens hardness measured by pushing a Vickers indenter of 136 degrees of edge angles into the surface of the said hard-coat layer (a2) with a load of 1 mN is 250 N / mm < 2 > or more, It is characterized by the above-mentioned.
  2. 前記ハードコート層(a2)の厚さが3μm~25μmである請求項1に記載の保護粘着フィルム。 The protective adhesive film according to claim 1, wherein the thickness of the hard coat layer (a2) is 3 袖 m to 25 袖 m.
  3. 前記粘着剤層(B)の、周波数1Hzでの動的粘弾性スペクトルにおける20℃での貯蔵弾性率が1.0×10Pa~5.0×10Paである請求項1または2に記載の保護粘着フィルム。 3. The storage elastic modulus at 20 ° C. in the dynamic viscoelastic spectrum at a frequency of 1 Hz of the pressure-sensitive adhesive layer (B) is 1.0 × 10 5 Pa to 5.0 × 10 5 Pa. The protective adhesive film as described.
  4. 前記ハードコートフィルム(A)の、前記ハードコート層(a2)側から測定される鉛筆硬度が3H以上である請求項1~3のいずれか1項に記載の保護粘着フィルム。 The protective adhesive film according to any one of claims 1 to 3, wherein the hard coat film (A) has a pencil hardness measured from the hard coat layer (a2) side of 3H or more.
  5. 請求項1~4のいずれか1項に記載の保護粘着フィルムと、偏光板とが積層された積層体。 A laminate in which the protective adhesive film according to any one of claims 1 to 4 and a polarizing plate are laminated.
  6. 厚さ50μm~200μmの偏光板の少なくとも一方の面に、請求項1~4のいずれか1項に記載の保護粘着フィルムが貼付された構成を有する情報表示装置。 5. An information display device having a configuration in which the protective adhesive film according to claim 1 is attached to at least one surface of a polarizing plate having a thickness of 50 μm to 200 μm.
  7. 厚さ50μm~200μmの偏光板の少なくとも一方の面に、請求項1~4のいずれか1項に記載の保護粘着フィルムが貼付された構成を有する携帯電子端末。 A portable electronic terminal having a configuration in which the protective adhesive film according to any one of claims 1 to 4 is attached to at least one surface of a polarizing plate having a thickness of 50 袖 m to 200 袖 m.
PCT/JP2015/065852 2014-06-05 2015-06-02 Protective adhesive film, image display device, and portable electronic terminal WO2015186685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557108A JP6002969B2 (en) 2014-06-05 2015-06-02 Protective adhesive film, image display device and portable electronic terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116821 2014-06-05
JP2014116821 2014-06-05

Publications (1)

Publication Number Publication Date
WO2015186685A1 true WO2015186685A1 (en) 2015-12-10

Family

ID=54766755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065852 WO2015186685A1 (en) 2014-06-05 2015-06-02 Protective adhesive film, image display device, and portable electronic terminal

Country Status (3)

Country Link
JP (2) JP6002969B2 (en)
TW (1) TW201601907A (en)
WO (1) WO2015186685A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114027A (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Resin film roll, method for producing resin film roll, polarizing plate and image display device
WO2021060107A1 (en) * 2019-09-27 2021-04-01 日東電工株式会社 Optical film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018349B2 (en) * 2018-04-13 2022-02-10 日東電工株式会社 Manufacturing method of machined optical laminate with adhesive layer
JP7018348B2 (en) * 2018-04-13 2022-02-10 日東電工株式会社 Manufacturing method of machined optical laminate with hardcourt layer
JP7119977B2 (en) 2018-12-19 2022-08-17 トヨタ車体株式会社 Vehicle cowl structure
KR102672215B1 (en) 2020-08-18 2024-06-04 주식회사 엘지화학 Adhesive composition comprising antistatic agent and surface protection film
EP4303241A1 (en) * 2022-07-06 2024-01-10 Daikin Industries, Ltd. Uv-curable composition, hard coat and hard coated article
WO2024117215A1 (en) * 2022-12-02 2024-06-06 リンテック株式会社 Pressure-sensitive adhesive, pressure-sensitive adhesive sheet, laminated member, and display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287308A (en) * 2000-02-04 2001-10-16 Toray Ind Inc Plastic laminate and image display protecting film
JP2003001703A (en) * 2001-06-25 2003-01-08 Teijin Ltd Biaxially stretched polyester film for optical application
WO2008038794A1 (en) * 2006-09-29 2008-04-03 Dai Nippon Printing Co., Ltd. Pressure-sensitive adhesive compositon for optical filter, optical filter, and display device
JP2008115235A (en) * 2006-11-02 2008-05-22 Toppan Cosmo Inc Pressure-sensitive adhesive sheet for chipping-resistance
WO2010095349A1 (en) * 2009-02-20 2010-08-26 株式会社日本触媒 Near-infrared absorbing pressure-sensitive adhesive composition
WO2010110135A1 (en) * 2009-03-23 2010-09-30 Dic株式会社 Adhesive protective film, screen panel, and portable electronic terminal
WO2010113604A1 (en) * 2009-03-31 2010-10-07 株式会社 きもと Functional film and laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594860B2 (en) * 2009-03-27 2014-09-24 リンテック株式会社 Hard coat film processing method, hard coat film and protective film
JP5472685B2 (en) * 2009-05-27 2014-04-16 Dic株式会社 Anti-scattering adhesive sheet
TWI439763B (en) * 2011-06-17 2014-06-01 Ind Tech Res Inst Liquid crystal display
JP6057121B2 (en) * 2012-11-02 2017-01-11 Dic株式会社 Active energy ray curable composition, cured product thereof and article having cured coating film thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287308A (en) * 2000-02-04 2001-10-16 Toray Ind Inc Plastic laminate and image display protecting film
JP2003001703A (en) * 2001-06-25 2003-01-08 Teijin Ltd Biaxially stretched polyester film for optical application
WO2008038794A1 (en) * 2006-09-29 2008-04-03 Dai Nippon Printing Co., Ltd. Pressure-sensitive adhesive compositon for optical filter, optical filter, and display device
JP2008115235A (en) * 2006-11-02 2008-05-22 Toppan Cosmo Inc Pressure-sensitive adhesive sheet for chipping-resistance
WO2010095349A1 (en) * 2009-02-20 2010-08-26 株式会社日本触媒 Near-infrared absorbing pressure-sensitive adhesive composition
WO2010110135A1 (en) * 2009-03-23 2010-09-30 Dic株式会社 Adhesive protective film, screen panel, and portable electronic terminal
WO2010113604A1 (en) * 2009-03-31 2010-10-07 株式会社 きもと Functional film and laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114027A (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Resin film roll, method for producing resin film roll, polarizing plate and image display device
WO2021060107A1 (en) * 2019-09-27 2021-04-01 日東電工株式会社 Optical film
JP2021056306A (en) * 2019-09-27 2021-04-08 日東電工株式会社 Optical film
JP7548651B2 (en) 2019-09-27 2024-09-10 日東電工株式会社 Optical Film

Also Published As

Publication number Publication date
JP2016210995A (en) 2016-12-15
JP6222304B2 (en) 2017-11-01
TW201601907A (en) 2016-01-16
JP6002969B2 (en) 2016-10-05
JPWO2015186685A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6222304B2 (en) LAMINATE AND INFORMATION DISPLAY DEVICE
JP5446071B2 (en) Protective adhesive film, screen panel and portable electronic terminal
JP5939449B2 (en) Hard coat film and information display device
JP5472685B2 (en) Anti-scattering adhesive sheet
JP6057121B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
JP4807604B2 (en) Protective adhesive film, screen panel, and portable electronic terminal
JP6361913B2 (en) Hard coat film, decorative film, protective film and image display device
JP5954505B2 (en) Active energy ray curable composition, cured product thereof and article having cured coating film thereof
JP6623653B2 (en) Active energy ray-curable adhesive composition with excellent insulation properties
JP6820705B2 (en) Adhesive sheets, display bodies and their manufacturing methods
JP2014106275A (en) Hard coat film, decorative film, and protective film
JPWO2014141866A1 (en) Hard coat film, protective film, and image display device
JP2014109712A (en) Hard coat film, decorative film and protective film
JP5082354B2 (en) Protective adhesive film
JP2016081004A (en) Hard coat film and information display device
TW202219225A (en) Image display device
JP6725864B2 (en) Active energy ray curable composition and film using the same
JP2016177163A (en) Hard coat film and information display device
JP2015120253A (en) Hard coat film and image display device
JP2016085451A (en) Hard coat film and information display device
WO2016152644A1 (en) Hard coat film, information display device, and portable electronic terminal
JP2016112834A (en) Hard coat film and information display device
JP6503817B2 (en) Hard coat film and information display device
JP2020097660A (en) Method for manufacturing laminate
JP7148369B2 (en) Construct manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015557108

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803449

Country of ref document: EP

Kind code of ref document: A1