Nothing Special   »   [go: up one dir, main page]

WO2015182776A1 - Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet - Google Patents

Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet Download PDF

Info

Publication number
WO2015182776A1
WO2015182776A1 PCT/JP2015/065688 JP2015065688W WO2015182776A1 WO 2015182776 A1 WO2015182776 A1 WO 2015182776A1 JP 2015065688 W JP2015065688 W JP 2015065688W WO 2015182776 A1 WO2015182776 A1 WO 2015182776A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
copper alloy
alloy sheet
work hardening
mass
Prior art date
Application number
PCT/JP2015/065688
Other languages
French (fr)
Japanese (ja)
Inventor
岳己 磯松
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020167033528A priority Critical patent/KR101935987B1/en
Priority to CN201580028223.1A priority patent/CN106460099B/en
Priority to JP2015556305A priority patent/JP5972484B2/en
Publication of WO2015182776A1 publication Critical patent/WO2015182776A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy sheet and a manufacturing method thereof.
  • it has excellent bending workability and strength, as well as spring characteristics after bending, and is a copper alloy plate material applied to lead frames, connectors, terminal materials, relays, switches, sockets, etc. for automotive parts and electrical / electronic devices. And a manufacturing method thereof.
  • a low deflection coefficient is required as one of the characteristic items required for copper alloy materials used for electrical / electronic equipment and automotive parts applications.
  • the dimensional accuracy of terminals and the tolerance of press work have become severe.
  • the influence of the dimensional variation on the contact pressure of the contact portion can be reduced, so that the design becomes easy.
  • in-vehicle components and electrical / electronic equipment are applied to the materials used for connectors, terminals, lead frames, relays, switches, and other components that make up in-vehicle components and electrical / electronic components. High strength that can withstand is required.
  • copper-based materials such as phosphor bronze, red brass and brass have been widely used as materials for electric and electronic devices.
  • These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and a high strength is obtained by applying cold working at a high rolling rate, so that bending workability and stress relaxation resistance are insufficient.
  • the design is such that a number of GW and BW bends can be made at one terminal.
  • a conventional material having anisotropy in bending, strength, and work hardening index is cracked by either GW or BW bending and cannot be used as a terminal or a connector.
  • the spring characteristics after processing also vary depending on the bending direction, and cannot be used as terminals or connectors.
  • Patent Document 1 controls the tensile strength, yield strength, uniform elongation, total elongation, and work hardening index in both the rolling parallel direction (LD) and the rolling vertical direction (TD) in a Cu—Ni—Si alloy. It has been proposed to improve the bending workability of GW and BW.
  • Patent Document 2 proposes that bending workability is improved by controlling the crystal orientation and work hardening index of a Cu—Ni—Si alloy.
  • Patent Document 3 proposes that both strength and bending workability can be achieved by controlling the Cube orientation area ratio to 10% or more.
  • Patent Document 1 by controlling the mechanical characteristics in the rolling parallel direction and the rolling vertical direction, excellent characteristics in which strength and bending workability are balanced are obtained. However, there is no description about control of crystal orientation and crystal grain size.
  • both strength and bending workability are achieved by controlling the crystal orientation and the work hardening index.
  • the anisotropy in the rolling parallel direction and the rolling vertical direction is not controlled, and each crystal orientation is controlled, but there is no description about the distribution in the plate thickness direction.
  • Patent Document 3 bending workability is improved by accumulating the Cube orientation area ratio.
  • the work hardening index is not controlled, and the anisotropy in both the rolling parallel direction and the rolling vertical direction is not controlled.
  • the present invention has excellent bending workability and excellent strength, and has a low deflection coefficient as a spring characteristic after bending, and these bending workability and strength.
  • High quality that can perform complicated processing such as both GW bending and BW bending on one member with little anisotropy in the rolling parallel direction and rolling vertical direction of each characteristic of the deflection coefficient
  • the present inventors have repeatedly studied copper alloy sheets suitable for electric / electronic parts applications and automotive parts applications, which have greatly improved bending workability and strength in Cu—Ni—Si alloy copper alloy sheets. As a result of intensive studies, it was found that there is a correlation between work hardening index, bending workability and strength and their anisotropy. Further, it has been found that both the bending and strength anisotropy can be reduced by appropriately controlling the relationship between the work hardening indices of the plate material in the rolling parallel direction and the rolling vertical direction. Furthermore, when it examined, it discovered that bending workability and its anisotropy could be improved by controlling a texture appropriately about bending workability and its anisotropy. The present invention has been completed based on these findings.
  • (1) Contains 1.0 to 6.0% by mass of Ni and 0.2 to 2.0% by mass of Si, and contains B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag and Sn
  • a copper alloy sheet material containing a total of at least one selected from the group consisting of 0.000 to 3.000 mass%, with the balance being composed of copper and inevitable impurities (provided that B, Mg, P above) , Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn are optional additional components that may contain one or more of them, or none of them.
  • the work hardening index n RD in the rolling parallel direction (RD) is 0.010 to 0.150
  • the ratio n RD / n TD and work hardening coefficient n TD of the direction parallel to the rolling direction of the work hardening coefficient n RD to the rolling direction perpendicular (TD) is from 0.500 to 1.500
  • the thickness of the copper alloy sheet is t
  • the depth in the thickness direction from the rolled surface of the copper alloy sheet is D
  • the surface parallel to the rolled surface at the depth D of the copper alloy sheet is Cube.
  • a copper alloy sheet A copper alloy sheet.
  • (2) Contains at least 0.005 to 3.000 mass% in total of at least one selected from the group consisting of B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn.
  • the copper alloy sheet material according to the item).
  • the deflection coefficient in the rolling parallel direction and the rolling vertical direction are both 140 GPa or less, and the ratio E TD / E RD between the deflection coefficient (E RD ) in the rolling parallel direction and the deflection coefficient (E TD ) in the rolling vertical direction is The copper-based alloy sheet according to any one of (1) to (3), which is 1.05 or less.
  • a connector comprising the copper alloy sheet according to any one of (1) to (4).
  • the rolling process per pass is performed at least once at a processing rate of 1.0% or more
  • an average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 30% or more
  • the average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 50% or more
  • the intermediate solution treatment step a solution treatment is performed in a high temperature range of an ultimate temperature of 600 to 1100 ° C.
  • the copper alloy sheet of the present invention is excellent in bending workability, exhibits excellent strength, and has little anisotropy in the rolling parallel direction and the vertical direction of rolling in the respective characteristics of bending workability and strength. Therefore, the copper alloy sheet material of the present invention has properties particularly suitable for relays, switches, sockets, etc. in addition to connectors and terminal materials for automotive in-vehicle parts, such as lead frames, connectors, and terminal materials for electrical and electronic equipment. It is a copper alloy sheet material. Moreover, according to the manufacturing method of this invention, the said copper alloy board
  • FIG. 1 is an explanatory diagram showing the relationship between the copper alloy sheet 1 of the present invention, the rolling direction RD, the rolling vertical direction (width direction) TD, and the rolling surface normal direction (sheet thickness direction) ND.
  • the main surface of the copper alloy sheet 1 is referred to as a rolled surface 2.
  • FIG. 2 is an explanatory diagram showing a surface 3 parallel to the surface of the rolled surface at a depth D less than the plate thickness t of the copper alloy sheet material.
  • the “plate material” in the present invention includes “strip material”.
  • the present invention by properly controlling the work hardening index in the rolling parallel direction and the rolling vertical direction of the plate material, it is possible to improve the bending workability while increasing the strength.
  • material strength proof strength, tensile strength
  • the greater the work hardening index of a metal material the greater the increase in strength due to work hardening of that material.
  • the smaller the work hardening index of the metal material the smaller the work hardening amount in plastic deformation such as bending or pressing, and the less the influence of the work. That is, when the deformation amount is the same, a material having a large work hardening index can be easily strengthened.
  • the amount of plastic deformation is larger in the vicinity of the apex portion of the bending than in other portions. For this reason, when a material having a relatively high work hardening index is subjected to bending, the work hardening amount is increased and the strength is easily increased. Generally, when the material becomes stronger, the bending workability tends to deteriorate. For this reason, if the strength is increased locally on the bent surface of the terminal or the connector, a crack is generated starting from the location where the strength is increased. Therefore, in order to obtain good bending workability, it is necessary to control the work hardening index to a certain value or less.
  • both GW bending in which the bending axis is perpendicular to the rolling direction and BW bending in which the bending axis is parallel to the rolling direction are included. Since it may have a complicated shape, it is desirable to appropriately control both the work hardening indexes in both the rolling parallel direction and the rolling vertical direction of the plate material.
  • the texture state of the copper alloy sheet is also controlled.
  • the plate thickness of the copper alloy plate material is t
  • the depth in the plate thickness direction from the rolled surface surface of the copper alloy plate material is D
  • the average value Sa of S (D) in the plate thickness direction is 5.0-30.
  • Ni is an element that is contained together with Si, which will be described later, and that contributes to improving the strength of the copper alloy sheet material by forming a Ni 2 Si phase precipitated by aging precipitation heat treatment.
  • the Ni content is 1.00 to 6.00 mass%, preferably 1.20 to 5.80 mass%, more preferably 1.50 to 5.50 mass%.
  • (Si) Si is contained together with the Ni and forms a Ni 2 Si phase precipitated by an aging precipitation heat treatment, thereby contributing to an improvement in the strength of the copper alloy sheet.
  • the Si content is 0.20 to 2.00% by mass, preferably 0.25 to 1.90% by mass, and more preferably 0.50 to 1.70% by mass.
  • Preferred secondary additive elements include B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn.
  • the total amount of these elements is preferably 3.000% by mass or less because no adverse effect of decreasing the electrical conductivity occurs.
  • the total amount is preferably 0.005 to 3.000% by mass, more preferably 0.010 to 2.800% by mass, It is particularly preferable that the content be 0.030 to 2.500% by mass.
  • the effect of adding each element is shown below.
  • Mg, Sn, Zn additive of Mg, Sn and Zn improves the stress relaxation resistance.
  • the stress relaxation resistance is further improved by the synergistic effect when added together than when they are added.
  • the solder embrittlement is remarkably improved.
  • the content of each of Mg, Sn, and Zn is preferably 0.00 to 2.00% by mass, more preferably 0.10 to 1.80% by mass.
  • Mn, Ag, B, P When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved.
  • the contents of Mn, Ag, B, and P are each preferably 0.00 to 1.00% by mass, and more preferably 0.050 to 0.70% by mass.
  • Cr, Zr, Fe, Co Cr, Zr, Fe, and Co are finely precipitated as a compound or simple substance, and contribute to precipitation hardening. Further, it precipitates as a compound with a size of 50 to 500 nm, and has an effect of making the crystal grain size fine by suppressing grain growth, thereby improving the bending workability.
  • the content of each of Cr, Zr, Fe, and Co is preferably 0.00 to 1.50 mass%, more preferably 0.10 to 1.30 mass%.
  • the copper alloy sheet of the present invention the work hardening coefficient n RD of the direction parallel to the rolling direction of the plate material, 0.01 to 0.15, preferably 0.01 to 0.10 or less, more preferably 0.01 or more 0. It is 08 or less, more preferably 0.01 or more and 0.06 or less.
  • the work hardening index n TD in the vertical direction of rolling of the plate material is preferably 0.01 or more and 0.15 or less, more preferably 0.01 or more and 0.10 or less, and still more preferably 0.01 or more and 0.08 or less. Particularly preferably, it is 0.01 or more and 0.06 or less.
  • the ratio n RD / n TD of the work hardening index n RD in the rolling parallel direction to the work hardening index n TD in the rolling vertical direction is 0.50 to 1.50, preferably 0.70 to 1.40, more preferably. Is 0.75 to 1.35, more preferably 0.80 to 1.30.
  • the Cube azimuth area ratio can be easily controlled.
  • the reason for setting the work hardening index within this range is that the work hardening index tends to be relatively small and good workability can be obtained by controlling the work hardening index to a certain level or less. It is.
  • the thickness of the copper alloy sheet is t
  • the depth in the sheet thickness direction from the rolled surface of the copper alloy sheet is D
  • the surface of the copper alloy sheet is parallel to the rolled surface at the depth D.
  • the average value Sa of S (D) in the plate thickness direction is 5.0. % Or more and 30.0% or less.
  • the area ratio of the crystal grains whose deviation angle from the Cube orientation ⁇ 001 ⁇ ⁇ 100> is within 15 ° (including 0 °) means the area ratio of the Cube orientation. This means the ratio of the area of the crystal grain region whose deviation angle from the Cube orientation is 15 ° or less in the total area of the surface when the surface is observed from the plate thickness direction.
  • FIG. 1 is a diagram showing the relationship between the copper alloy sheet 1 of the present invention, the rolling direction RD, the rolling vertical direction (width direction) TD, and the rolling surface normal direction (sheet thickness direction) ND.
  • the main surface of the copper alloy sheet is referred to as a rolling surface 2.
  • FIG. 2 shows a surface 3 parallel to the surface of the rolled surface at a depth D of the copper alloy sheet.
  • a copper alloy sheet is usually manufactured by repeating rolling and has a texture associated with the rolling direction and the like. This texture is expressed using RD, TD, and ND perpendicular to each other as reference axes.
  • the crystal grains of Cube orientation ⁇ 001 ⁇ ⁇ 100> in the present invention are the crystal of copper (plane-extended cubic lattice) in the crystal grains, the ⁇ 001 ⁇ plane of the crystal is perpendicular to ND, and the crystal The ⁇ 100> direction is a state parallel to the RD.
  • the copper alloy sheet material of the present invention has an area ratio S (D) in the sheet thickness direction with respect to the area ratio S (D) of crystal grains having a Cube orientation in the plane 3 parallel to the surface of the rolled surface at a depth D from the surface.
  • the value of the depth D takes a value from 0 to t. Therefore, if the concept of Sa is expressed as a mathematical expression, it is expressed as follows.
  • the average value Sa of the area ratio is also referred to as “the average value of the area ratio of the Cube orientation in the plate thickness direction”.
  • the average value of the area ratio of the Cube orientation in the plate thickness direction is preferably 8.0% or more and 30.0% or less. Bending workability can be improved by controlling Sa to 5.0% or more. This is thought to be because the generation of shear bands that occur during bending can be suppressed. Similarly, on the back surface in the plate thickness direction at the time of bending, the occurrence of a shear band accompanying compression deformation can be suppressed by setting the Cube orientation area ratio to 5.0% or more.
  • each value of the area ratio S (D) of the crystal grains having the Cube orientation in the plane 3 parallel to the rolling surface at the depth D is also preferably 5.0% or more and 30.0% or less. .
  • the area ratio of the Cube-oriented crystal grains in the copper alloy is measured by changing the polishing amount in order to investigate the distribution in the plate thickness direction.
  • one side of the test piece is masked and only the opposite side is electropolished.
  • polishing is performed while paying attention to the fact that the surface of the test piece has a mirror finish.
  • EBSD analysis it became possible to grasp the structure by fine adjustment of the polishing amount by electrolytic polishing here, and it was found that detailed analysis can be performed by EBSD analysis.
  • the prepared test piece is measured by scanning an area of 300 ⁇ m ⁇ 300 ⁇ m in 0.1 ⁇ m steps by orientation analysis by EBSD, and measuring the area ratio of Cube-oriented crystal grains.
  • the EBSD method is used for the analysis of the crystal orientation in the present invention.
  • the EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a sample area of 300 ⁇ m ⁇ 300 ⁇ m containing 200 or more crystal grains is scanned in 0.1 ⁇ m steps, and the crystal orientation of each crystal grain is analyzed.
  • the measurement area and scan step are set to 300 ⁇ 300 ⁇ m and 0.1 ⁇ m from the size of the crystal grains of the sample.
  • the area ratio of each orientation is obtained by calculating the area of a crystal grain having a normal line of the crystal grain within a range of ⁇ 15 ° from the ideal orientation of the Cube orientation ⁇ 001 ⁇ ⁇ 100>, and with respect to the total measurement area of the obtained area. It can be calculated as a percentage.
  • the information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It is described as area ratio.
  • OIM Analysis product name
  • OIM Analysis product name
  • the conventional method for producing a precipitation-type copper alloy is to melt and cast a copper alloy material [Step 1] to obtain an ingot, which is subjected to homogenization heat treatment [Step 3], hot rolling [Step 4], Water cooling [Step 5], chamfering [Step 6], and cold rolling [Step 7] are performed in this order to form a thin plate, and an intermediate solution treatment [Step 10], aging precipitation heat treatment [Step] in a temperature range of 700 to 1000 ° C. 11] and finish cold rolling [Step 13] satisfy the required strength.
  • final annealing [step 14] for removing strain may be performed after finish cold rolling [step 13].
  • an oxide film removal step pickling and polishing [step 12]) may be inserted between the aging precipitation heat treatment [step 11] and the finish cold rolling [step 13].
  • the texture of the material is roughly determined by recrystallization that occurs during the intermediate solution treatment, and finally determined by the orientation rotation that occurs during finish cold rolling.
  • the average value Sa of the Cube orientation area ratio in the plate thickness direction and the work hardening index in both the rolling parallel direction and the rolling vertical direction is controlled.
  • melting / casting [step 1], ingot rolling [step 2], homogenization heat treatment [step 3], hot rolling [step 4], water cooling [step 5], face milling [Step 6], cold rolling 1 [step 7], slit trimming [step 8], cold rolling 2 [step 9], intermediate solution treatment [step 10], water cooling [step 10-2], aging precipitation Heat treatment [Step 11], pickling / polishing [Step 12], cold rolling 3 [Step 13], and final annealing [Step 14] are performed in this order. If the plate material having desired properties is obtained, the pickling / polishing [Step 12], cold rolling 3 [Step 13], and final annealing [Step 14] may be omitted.
  • Step 1 in melting and casting [Step 1], a predetermined additive element is added to obtain an ingot.
  • the cooling rate during casting is usually 0.1 to 100 ° C./second.
  • Step 2 in the ingot rolling [Step 2], a constant cold rolling is applied to the ingot, so that it is partially recrystallized in the vicinity of the grain boundary during the homogenization heat treatment. This contributes to the formation of equiaxed crystal grains in recrystallization.
  • the rolling processing rate per pass in the ingot rolling [Step 2] is 1.0% or more (preferably 5.0% or less), and the number of passes is 1 or more.
  • a homogenization heat treatment [step 3] is performed so that the ultimate temperature is 800 ° C. or higher and 1100 ° C. or lower and the holding time is 5 minutes to 20 hours.
  • hot rolling [Step 4] is performed by a plurality of passes up to a predetermined plate thickness in a processing temperature range of 1100 ° C. or lower (preferably 800 ° C. or higher), and immediately after the hot rolling is completed by water cooling [Step 5]. Cool (rapid cooling, so-called quenching). Then, in order to remove the oxide film on the surface of the hot-rolled material, face milling [Step 6] is performed, and then cold rolling 1 [Step 7] is performed.
  • cold rolling is performed in several to several tens of passes so that the total rolling ratio is 30% or more (preferably 60% or less).
  • the average rolling pressure during rolling per rolling pass is controlled to 50 N / mm 2 or more.
  • slit [Step 8] is performed and unnecessary ends are removed by trimming.
  • cold rolling 2 [step 9] cold rolling is performed in several to several tens of passes so that the total rolling ratio is 50% or more (preferably 80% or less).
  • the average rolling pressure during rolling per rolling pass is controlled to 50 N / mm 2 or more.
  • the solute raw element is solid-solubilized at a temperature increase rate of 5.0 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C.
  • an aging precipitation heat treatment [Step 11] at a holding temperature of 400 to 700 ° C. and a holding time of 5 min to 10 h.
  • pickling and polishing [Step 12] are performed to remove the oxide film on the surface of the plate material, if necessary.
  • final finish rolling is performed in cold rolling 3 [step 13].
  • the rolling process rate is as low as 1.0% or more.
  • the upper limit of the rolling rate in the cold rolling 3 [Step 13] is preferably 40% or less.
  • the internal strain of the plate material is removed in the final annealing (temper annealing) that is maintained at 200 to 700 ° C. for 1 minute to 5 hours [Step 14].
  • This final annealing is also called strain relief annealing.
  • the cold rolling processing rate per pass is 1.0% or more, and the number of passes is one or more times.
  • the cold rolling process rate per pass is 2.0% or more and the number of passes is 3 times or more, more preferably the cold rolling process rate per pass is 3.0% or more and the number of passes is 5 times or more.
  • the total processing rate is set to 30% or more. Rolling of several tens of passes is performed, and the average rolling pressure per pass is controlled to 50 N / mm 2 or more. Preferably, the average rolling pressure is at 60N / mm 2 or more, more preferably 70N / mm 2 or more.
  • the Cube orientation area ratio and work hardening index during recrystallization in the subsequent intermediate solution treatment [step 10] are controlled.
  • Rolling of several to several tens of passes is performed so that the processing rate becomes 50%, and the average rolling pressure per pass is controlled to 50 N / mm 2 or more.
  • the average rolling pressure is at 60N / mm 2 or more, more preferably 70N / mm 2 or more.
  • the average particle size (dimension) a in the rolling parallel direction is obtained by recrystallization in a high temperature region at a temperature increase rate of 5 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C.
  • Equiaxial crystal grains having a vertical average grain diameter b ratio a / b of 0.8 or more are obtained.
  • the large number of equiaxed crystal grains reduces the anisotropy of the work hardening index.
  • the grain size ratio a / b of the crystal grains is 0.85 or more, more preferably a / b is 0.9 or more (preferably 1.1 or less).
  • a / b is 0.8 or more.
  • processing rate (or cross-sectional reduction rate in rolling) is a value defined by the following equation.
  • Processing rate (%) ⁇ (t1-t2) / t1 ⁇ ⁇ 100
  • t1 represents the thickness before rolling
  • t2 represents the thickness after rolling.
  • the thickness of the copper alloy sheet of the present invention is not particularly limited, but is preferably 0.04 to 0.50 mm, and more preferably 0.05 to 0.45 mm.
  • the copper alloy sheet of the present invention can satisfy the characteristics required for a copper alloy sheet for connectors, for example.
  • the copper alloy sheet of the present invention preferably has the following characteristics.
  • the bending axis is perpendicular to the rolling direction (GW bending) and parallel (BW bending). In any case, it is preferable that no cracks are generated on the surface after bending.
  • the tensile strength (TS) of the plate material is 650 MPa or more for both the tensile strength (TS-RD) in the rolling parallel direction (RD) and the tensile strength (TS-TD) in the vertical direction (TD) of the plate material.
  • TS-RD tensile strength
  • TS-TD tensile strength
  • the ratio TS-RD / TS-TD is preferably 1.10 or less, more preferably 1.08 or less.
  • limiting in particular in the upper limit of tensile strength For example, it is 1020 Mpa or less.
  • the 0.2% yield strength (YS) of the plate material is 600 MPa or more in both the 0.2% yield strength (YS-RD) in the rolling parallel direction and the 0.2% yield strength (YS-TD) in the vertical direction of the plate. Preferably there is. Further, the ratio YS-RD / YS-TD is preferably 1.10 or less, more preferably 1.08 or less. Although there is no restriction
  • the deflection coefficient (E) after 180 ° bending is preferably 140 GPa or less for both the deflection coefficient (E-RD) in the rolling parallel direction and the deflection coefficient (E-TD) in the rolling vertical direction of the plate material. Further, the ratio E-RD / E-TD is preferably 1.05 or less, more preferably 1.03 or less. Although there is no restriction
  • electrical conductivity is 20.0% ICAS or more.
  • % IACS represents the electrical conductivity when the resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m of universal standard copper (International Annealed Copper Standard) is 100% IACS.
  • % IACS represents the electrical conductivity when the resistivity 1.7241 ⁇ 10 ⁇ 8 ⁇ m of universal standard copper (International Annealed Copper Standard) is 100% IACS.
  • Examples 1 to 16 and Comparative Examples 1 to 14 For each of the examples and comparative examples, the respective amounts of Ni and Si shown in Table 1 and, if necessary, secondary additive elements and the like are contained, and the alloy material consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cooled at a cooling rate of 0.1 ° C./second to 100 ° C./second and casted [Step 1] to obtain an ingot.
  • This ingot was subjected to ingot rolling [step 2] for cold rolling at a processing rate of 1.0% or more and the number of passes once or more. Thereafter, the ingot was subjected to a homogenization heat treatment [step 3] at 800 ° C. to 1100 ° C. for 5 minutes to 20 hours. Thereafter, hot rolling [Step 4] as hot working was performed at 800 ° C. or higher and 1100 ° C. or lower, and further, water quenching cooling [Step 5] was performed to obtain a hot rolled sheet. Next, the surface of the hot-rolled sheet was chamfered [Step 6] to remove the oxide film.
  • cold rolling 1 rolling was performed in several to several tens of passes so that the total processing rate was 30% or more. At this time, the average rolling pressure per pass was 50 N / mm 2 or more.
  • cold rolling 2 rolling was performed in several to several tens of passes so that the total processing rate was 50% or more, and the average rolling pressure per pass was 50 N / mm 2 or more.
  • the intermediate solution treatment a heat treatment was performed by holding at a temperature rising rate of 5 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C.
  • Step 10-2 For 1 second to 5 hours, and then rapidly cooling [Step 10-2]. .
  • a ratio of the dimension a in the rolling parallel direction to the dimension b in the rolling vertical direction, a / b was 0.8 or more, and equiaxed crystal grains were obtained.
  • the required strength was satisfied by an aging precipitation heat treatment [Step 11] at a holding temperature of 400 to 700 ° C. and a holding time of 5 min to 10 h.
  • pickling and polishing [Step 12] were performed.
  • the final finish rolling was performed by cold rolling 3 [process 13].
  • cold rolling 3 in order to maintain the equiaxed grains formed in the intermediate solution treatment [step 10], the rolling was performed at a rolling reduction rate as low as 1.0% or more. Specifically, the rolling rate in cold rolling 3 [step 13] was set to 1.0 to 40.0%. Thereafter, strain in the plate material was removed by final annealing [Step 14] in which the temperature was maintained at 200 to 700 ° C. for 1 minute to 5 hours.
  • the crystal orientation was measured by the EBSD method under the conditions of a measurement area of 300 ⁇ m ⁇ 300 ⁇ m and a scan step of 0.1 ⁇ m.
  • the EBSD measurement result of 300 ⁇ m ⁇ 300 ⁇ m was divided into 25 blocks, and the area ratio of the crystal grains having the Cube orientation of each block was confirmed as follows.
  • the electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope.
  • OIM5.0 product name manufactured by TSL Solutions Co., Ltd. was used, and OIM Analysis was used for analysis.
  • the target part tissue was exposed by electrolytic polishing in order to observe the structure.
  • the occupancy (that is, the area ratio) of the Cube-oriented crystal grains with respect to the measurement visual field was determined at all five locations.
  • the average value Sa of these five area ratios was calculated
  • BW (Bad Way) is W bent to 90 ° W in accordance with Japan Copper and Brass Association Technical Standard JCBA-T307 (2007), then 180 ° contact without attaching inner radius with compression tester Bending was performed.
  • the bent surface was observed with a 100 ⁇ scanning electron microscope to investigate the presence of cracks. Those with no cracks were represented as “A” as “good”, and those with cracks were represented as “D” as “bad”. When generated, the cracks had a maximum width of 30 ⁇ m to 100 ⁇ m and a maximum depth of 10 ⁇ m or more.
  • (F) Deflection coefficient [E] According to Japan Copper and Brass Association Technical Standard JCBA T312, the specimens of the examples and comparative examples were punched by a press so that the width was 0.25 mm and the length was 1.5 mm perpendicular to the rolling direction. From the test piece, the deflection coefficient (E TD ) in the rolling vertical direction was determined. Separately, a rolling parallel direction deflection coefficient (E RD ) was determined from a rolled parallel direction test piece punched out by a press so as to have a width of 0.25 mm and a length of 1.5 mm parallel to the rolling parallel direction. Sampling was taken from five locations in the width direction of the coil, and the average value of the measurement results was taken.
  • the deflection coefficient E (GPa) is expressed by the following formula (1).
  • E 4a / b ⁇ (L / t) 3
  • a is the displacement (indentation depth) f and the slope of the stress w
  • b is the width of the specimen
  • L is the distance between the fixed end and the load point
  • t is the thickness of the specimen.
  • the fixed end at L was the apex of the bend.
  • the anisotropy of the deflection coefficient between the rolling parallel direction and the rolling vertical direction was confirmed.
  • E passed 110 GPa or more, and E was rejected when less than 110 GPa.
  • E the deflection coefficient
  • t the plate thickness
  • L the distance between the fixed end and the load point
  • f the displacement.
  • Anisotropy of 0.2% proof stress in the rolling parallel direction and the rolling vertical direction was confirmed. A YS of 600 MPa or more was accepted and a YS of less than 600 MPa was rejected.
  • the samples of the respective examples according to the present invention had good bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient.
  • bending workability no crack occurred at the top of the bending in the 180 ° U bending test.
  • all of bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient had small anisotropy in the rolling parallel direction and the rolling vertical direction. Therefore, the copper alloy sheet material of the present invention is suitable as a copper alloy sheet material suitable for connectors, terminal materials, relays, switches, sockets, etc. for automobiles, such as lead frames, connectors, and terminal materials for electric and electronic devices. is there.
  • Comparative Examples 1 to 7 are test examples manufactured outside the manufacturing conditions defined in the present invention. In each of Comparative Examples 1 to 7, both the work hardening index and the average value Sa of the Cube orientation area ratio were outside the range specified in the present invention. Comparative Examples 2 to 7 are inferior in bending workability. In Comparative Examples 1 to 7, all of tensile strength, 0.2% proof stress, conductivity, and deflection coefficient are anisotropic in the rolling parallel direction and the vertical direction of rolling. It was greatly inferior. Comparative Examples 8 to 14 are test examples that deviate from the alloy composition defined in the present invention.
  • Comparative Examples 8 to 14 the average value Sa of the Cube orientation area ratio was outside the range specified in the present invention.
  • the bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient were inferior in at least one or more including the anisotropy in the rolling parallel direction and the rolling vertical direction. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Metal Rolling (AREA)

Abstract

 Provided is a copper alloy sheet having a composition containing 1.0 to 6.0 mass% Ni, and 0.2 to 2.0 mass% Si, further containing a total of 0 to 3.000 mass% of at least one type of element selected from the group comprising B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag and Sn, with the remainder comprising copper and unavoidable impurities, wherein: the strain hardening exponent, nRD, in the rolling direction, RD, is 0.010 to 0.150; and the ratio, nRD/nTD, between nRD and the strain hardening component, nTD, in the transverse direction, TD, is 0.500 to 1.500. On the surface parallel to the rolled surface of the copper alloy sheet at a depth D, the average value, Sa, of the area ratio, S(D), of crystal grains in which the angle of deviation from cube orientation {001}<100> is within 15° is 5.0 to 30.0%. Thus, the copper alloy sheet has: excellent bendability; excellent strength; a low deflection coefficient as a spring property after bending work; and little specificity for each of the properties of bendability, strength and deflection coefficient in the rolling direction and transverse direction.

Description

銅合金板材、銅合金板材からなるコネクタ、および銅合金板材の製造方法Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
 本発明は、銅合金板材およびその製造方法に関する。特に、曲げ加工性と強度、さらに曲げ加工後のばね特性に優れて、車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy sheet and a manufacturing method thereof. In particular, it has excellent bending workability and strength, as well as spring characteristics after bending, and is a copper alloy plate material applied to lead frames, connectors, terminal materials, relays, switches, sockets, etc. for automotive parts and electrical / electronic devices. And a manufacturing method thereof.
 車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性等がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や使用環境の高温化に伴って、この要求特性が高まっている。特に、車載部品用や電気・電子機器用部品に用いられる銅や銅合金の板材には、薄肉化の要求が高まっているため、要求される強度レベルはより高度になってきている。 Characteristic items required for copper alloy sheets used in automotive parts and lead frames, connectors, terminal materials, relays, switches, sockets, etc. for electric components, electrical conductivity, yield strength, There are tensile strength and bending workability. In recent years, the required characteristics have been increased with the reduction in size, weight, functionality, high-density mounting, and use environment of electric / electronic devices. In particular, since a demand for thinning a copper or copper alloy plate material used for in-vehicle components or electrical / electronic equipment components, the required strength level is becoming higher.
 また、電気・電子機器、車載部品用途に使用される銅合金材料に要求される特性項目の1つとして、たわみ係数が低いことが要求されている。近年、コネクタ、車載部品の小型化の進行に伴い、端子の寸法精度やプレス加工の公差が厳しくなっている。材料のたわみ係数を低減することで、接点部の接圧に及ぼす寸法変動の影響を低減できるため、設計が容易となる。 Also, a low deflection coefficient is required as one of the characteristic items required for copper alloy materials used for electrical / electronic equipment and automotive parts applications. In recent years, with the progress of miniaturization of connectors and in-vehicle components, the dimensional accuracy of terminals and the tolerance of press work have become severe. By reducing the deflection coefficient of the material, the influence of the dimensional variation on the contact pressure of the contact portion can be reduced, so that the design becomes easy.
 また、車載部品や電気・電子部品を構成するコネクタ、端子、リードフレーム、リレー、スイッチなどの部品に使用される材料には、車載部品や電気・電子機器の組み立て時や作動時に付与される応力に耐えうる高い強度が要求される。 In addition, the stress applied during the assembly and operation of in-vehicle components and electrical / electronic equipment is applied to the materials used for connectors, terminals, lead frames, relays, switches, and other components that make up in-vehicle components and electrical / electronic components. High strength that can withstand is required.
 従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅系材料も広く用いられている。これらの合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この方法では、導電率が不十分であり、また、高い圧延率の冷間加工を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。 Conventionally, as materials for electrical and electronic devices, copper-based materials such as phosphor bronze, red brass and brass have been widely used as materials for electric and electronic devices. These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and a high strength is obtained by applying cold working at a high rolling rate, so that bending workability and stress relaxation resistance are insufficient.
 銅合金の強化法として材料中に微細な第二相を析出させる析出強化法がある。この強化方法は、強度が高くなることに加えて、導電率を同時に向上させる利点があるため、多くの合金系で行われている。しかし、昨今の電気・電子機器や自動車用の車載部品の小型化に伴って、銅合金は、より高強度な材料により小さい半径の曲げ加工を施す様になっており、曲げ加工性に優れた銅合金板材が強く要求されている。さらに、高強度、高ばね性と良好な曲げ加工性を有する板材でも、圧延平行方向(RD、圧延方向)と圧延垂直方向(TD、幅方向)とで特性差があることは好ましくなく、いずれの方向でも良好な特性を示すことが重要である。特に、超小型端子として用いられる際、狭幅でピン型に微細な加工が施され、ここでも圧延平行方向と圧延垂直方向のいずれの方向でも良好な特性を示すことが重要である。従来のCu-Ni-Si系銅合金において、高い強度を得るには、圧延率を高めて大きな加工硬化を得ていた。しかし、この方法は先述した様に曲げ加工性を劣化させてしまい、高強度と良好な曲げ加工性を両立することが困難であった。 There is a precipitation strengthening method in which a fine second phase is precipitated in the material as a strengthening method of the copper alloy. This strengthening method has the advantage of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. However, with the recent miniaturization of electrical and electronic equipment and on-vehicle components for automobiles, copper alloys are designed to bend with a smaller radius to a higher-strength material and have excellent bending workability. There is a strong demand for copper alloy sheets. Furthermore, it is not preferable that there is a difference in characteristics between the rolling parallel direction (RD, rolling direction) and the rolling vertical direction (TD, width direction) even for a plate material having high strength, high spring property and good bending workability. It is important to show good characteristics even in the direction of. In particular, when it is used as a microminiature terminal, it is important that fine processing is applied to the pin type with a narrow width, and here, it is important to show good characteristics in both the rolling parallel direction and the rolling vertical direction. In a conventional Cu—Ni—Si based copper alloy, in order to obtain high strength, a large work hardening was obtained by increasing the rolling rate. However, this method deteriorates bending workability as described above, and it is difficult to achieve both high strength and good bending workability.
 近年、電気・電子機器用の端子やコネクタ、車載用端子等は、モジュール全体の小型化、電装部品の高密度化に伴い、これまで以上に小さい半径で曲げ加工され、さらに複雑な形状に加工されている。曲げの軸が圧延方向に垂直(GW曲げ)あるいは平行(BW曲げ)のいずれの場合にも、曲げ半径の小さい複雑な加工が入り、さらに加工後のばね特性(接圧、たわみ量)は均一(設計値通り)でなくてはならない。従来は、コルソン系合金(Cu-Ni-Si系合金)の板材を加工し、端子の接点部として使用する際は、特定の方向(GWもしくはBW)のみの加工であった。しかし最近では、上記のように複雑な形状に加工されるため、1つの端子でGW曲げ、BW曲げがいくつも入る設計になっている。この場合には、従来の、曲げ、強度、加工硬化指数の異方性がある材料では、GW、BW曲げのどちらかでクラックが発生してしまい、端子やコネクタとして使用できない。また、異方性があると、加工後のばね特性も曲げ加工方向によってばらついてしまい、端子やコネクタとして使用できなくなってしまう。 In recent years, terminals and connectors for electrical and electronic equipment, in-vehicle terminals, etc. have been bent with a smaller radius than ever and processed into more complex shapes as the entire module has become smaller and the density of electrical components has increased. Has been. Whether the bending axis is perpendicular to the rolling direction (GW bending) or parallel (BW bending), complicated processing with a small bending radius is included, and the spring characteristics (contact pressure, deflection amount) after processing are uniform. (As designed) Conventionally, when a Corson alloy (Cu—Ni—Si alloy) plate material is processed and used as a contact portion of a terminal, it is processed only in a specific direction (GW or BW). However, recently, since it is processed into a complicated shape as described above, the design is such that a number of GW and BW bends can be made at one terminal. In this case, a conventional material having anisotropy in bending, strength, and work hardening index is cracked by either GW or BW bending and cannot be used as a terminal or a connector. In addition, if there is anisotropy, the spring characteristics after processing also vary depending on the bending direction, and cannot be used as terminals or connectors.
 従来、曲げ加工性の向上の要求に対して、加工硬化指数、結晶方位の制御によって解決する提案がいくつかなされている。例えば、特許文献1には、Cu-Ni-Si系合金において、圧延平行方向(LD)と圧延垂直方向(TD)の両方における引張強度、耐力、均一伸び、全伸び、および加工硬化指数を制御することで、GW、BWの曲げ加工性を改善することが提案されている。また、特許文献2には、Cu-Ni-Si系合金の結晶方位と加工硬化指数を制御することで、曲げ加工性が改善することが提案されている。また、特許文献3には、Cube方位面積率を10%以上に制御することで、強度と曲げ加工性が両立できることが提案されている。 Conventionally, several proposals have been made to solve the demand for improvement in bending workability by controlling the work hardening index and crystal orientation. For example, Patent Document 1 controls the tensile strength, yield strength, uniform elongation, total elongation, and work hardening index in both the rolling parallel direction (LD) and the rolling vertical direction (TD) in a Cu—Ni—Si alloy. It has been proposed to improve the bending workability of GW and BW. Patent Document 2 proposes that bending workability is improved by controlling the crystal orientation and work hardening index of a Cu—Ni—Si alloy. Patent Document 3 proposes that both strength and bending workability can be achieved by controlling the Cube orientation area ratio to 10% or more.
特開2010-031379号公報JP 2010-031379 A 特開2013-047360号公報JP 2013-047360 A 特開2011-117034号公報JP 2011-1117034 A
 特許文献1に記載された発明においては、圧延平行方向、圧延垂直方向での機械特性を制御することで、強度と曲げ加工性のバランスがとれた優れた特性を得ている。しかし、結晶方位や結晶粒径の制御については記載がない。特許文献2に記載された発明においては、結晶方位と加工硬化指数を制御することで、強度と曲げ加工性を両立させている。しかし、圧延平行方向と圧延垂直方向の異方性の制御はなされておらず、また、各結晶方位は制御しているものの、その板厚方向での分布についての記載はない。特許文献3では、Cube方位面積率の集積で曲げ加工性を改善している。しかし、加工硬化指数の制御はなされておらず、また、圧延平行方向と圧延垂直方向の両方における異方性を制御するものではない。 In the invention described in Patent Document 1, by controlling the mechanical characteristics in the rolling parallel direction and the rolling vertical direction, excellent characteristics in which strength and bending workability are balanced are obtained. However, there is no description about control of crystal orientation and crystal grain size. In the invention described in Patent Document 2, both strength and bending workability are achieved by controlling the crystal orientation and the work hardening index. However, the anisotropy in the rolling parallel direction and the rolling vertical direction is not controlled, and each crystal orientation is controlled, but there is no description about the distribution in the plate thickness direction. In Patent Document 3, bending workability is improved by accumulating the Cube orientation area ratio. However, the work hardening index is not controlled, and the anisotropy in both the rolling parallel direction and the rolling vertical direction is not controlled.
 上記のような従来技術の問題点に鑑み、本発明は、曲げ加工性に優れ、優れた強度を有するとともに、曲げ加工後のばね特性としてたわみ係数が低く、かつ、これらの曲げ加工性、強度およびたわみ係数の各特性の圧延平行方向と圧延垂直方向での異方性の少ない、1つの部材に対してGW曲げとBW曲げを両方行うような複雑な加工を施すことが可能な高品質の電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチ、ソケットなどに適した銅合金板材を提供することを課題とする。 In view of the problems of the prior art as described above, the present invention has excellent bending workability and excellent strength, and has a low deflection coefficient as a spring characteristic after bending, and these bending workability and strength. High quality that can perform complicated processing such as both GW bending and BW bending on one member with little anisotropy in the rolling parallel direction and rolling vertical direction of each characteristic of the deflection coefficient It is an object of the present invention to provide a copper alloy plate material suitable for connectors and terminal materials, relays, switches, sockets, and the like for lead frames, connectors, terminal materials, etc. for automobiles, etc.
 本発明者らは、Cu-Ni-Si系合金の銅合金板材において、曲げ加工性と強度を大きく向上させた、電気・電子部品用途や自動車車載部品用途に適した銅合金板材について研究を重ね、鋭意検討した結果、加工硬化指数、曲げ加工性および強度とそれらの異方性とには相関があることを見出した。また、板材の圧延平行方向および圧延垂直方向の加工硬化指数の関係を適正に制御することによって、曲げ加工と強度の異方性をいずれも低くすることができることを見出した。さらに、検討したところ、曲げ加工性とその異方性については、集合組織を適正に制御することによって曲げ加工性とその異方性を向上させることができることを見出した。本発明は、これらの知見に基づき完成するに至ったものである。 The present inventors have repeatedly studied copper alloy sheets suitable for electric / electronic parts applications and automotive parts applications, which have greatly improved bending workability and strength in Cu—Ni—Si alloy copper alloy sheets. As a result of intensive studies, it was found that there is a correlation between work hardening index, bending workability and strength and their anisotropy. Further, it has been found that both the bending and strength anisotropy can be reduced by appropriately controlling the relationship between the work hardening indices of the plate material in the rolling parallel direction and the rolling vertical direction. Furthermore, when it examined, it discovered that bending workability and its anisotropy could be improved by controlling a texture appropriately about bending workability and its anisotropy. The present invention has been completed based on these findings.
 すなわち、本発明によれば、下記に記載の手段が提供される。
(1)Niを1.0~6.0質量%、Siを0.2~2.0質量%含有し、B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1種を合計で0.000~3.000質量%含有し、残部が銅および不可避不純物からなる組成を有する銅合金板材であって(ただし、上記B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnは、いずれか1種以上を含有させてもよいし、いずれの種も含有させなくてもよい任意添加成分である。)、
 圧延平行方向(RD)の加工硬化指数nRDが0.010~0.150であり、
 圧延平行方向の加工硬化指数nRDと圧延垂直方向(TD)の加工硬化指数nTDとの比nRD/nTDが0.500~1.500であり、
 前記銅合金板材の板厚をtとし、前記銅合金板材の圧延面表面から板厚方向における深さをDとし、前記銅合金板材の深さDにおける前記圧延面表面と平行な面において、Cube方位{001}<100>からのずれ角度が15°以内の結晶粒の面積率をS(D)としたとき、板厚方向におけるS(D)の平均値Saが5.0~30.0%であることを特徴とする、銅合金板材。
(2)B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1種を合計で0.005~3.000質量%含有する、(1)項に記載の銅合金板材。
(3)母材の結晶粒について、圧延平行方向の平均粒径aと圧延垂直方向の平均粒径bの比a/bが0.8以上である、(1)または(2)項に記載の銅合金板材。
(4)圧延平行方向と圧延垂直方向のたわみ係数がいずれも140GPa以下であり、圧延平行方向のたわみ係数(ERD)と圧延垂直方向のたわみ係数(ETD)の比ETD/ERDが1.05以下である、(1)~(3)のいずれか1項に記載の銅基合金板材。
(5)(1)~(4)のいずれか1項に記載の銅合金板材からなるコネクタ。
(6)(1)~(4)のいずれか1項に記載の銅合金板材の製造方法であって、
 溶解・鋳造工程、鋳塊圧延工程、均質化熱処理工程、熱間圧延工程、急冷工程、冷間圧延1工程、スリット・トリミング工程、冷間圧延2工程、中間溶体化処理工程、急冷工程、時効熱処理工程の各工程をこの順で行い、
 前記鋳塊圧延工程では、1パスあたりの圧延加工を1.0%以上の加工率で1回以上の圧延を行い、
 前記冷間圧延1工程では、1パスあたりの平均圧延圧力を50N/mm以上で、合計の加工率が30%以上となるように圧延し、
 前記冷間圧延2工程では、1パスあたりの平均圧延圧力を50N/mm以上で、合計の加工率が50%以上となるように圧延し、
 前記中間溶体化処理工程では、昇温速度5℃/sec以上で、到達温度600~1100℃の高温域で溶体化処理を行うことを特徴とする、銅合金板材の製造方法。
(7)前記時効熱処理工程の後に、酸洗・研磨工程、冷間圧延3工程、最終焼鈍工程をこの順で行う、(6)項に記載の銅合金板材の製造方法。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
That is, according to the present invention, the following means are provided.
(1) Contains 1.0 to 6.0% by mass of Ni and 0.2 to 2.0% by mass of Si, and contains B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag and Sn A copper alloy sheet material containing a total of at least one selected from the group consisting of 0.000 to 3.000 mass%, with the balance being composed of copper and inevitable impurities (provided that B, Mg, P above) , Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn are optional additional components that may contain one or more of them, or none of them.
The work hardening index n RD in the rolling parallel direction (RD) is 0.010 to 0.150,
The ratio n RD / n TD and work hardening coefficient n TD of the direction parallel to the rolling direction of the work hardening coefficient n RD to the rolling direction perpendicular (TD) is from 0.500 to 1.500,
The thickness of the copper alloy sheet is t, the depth in the thickness direction from the rolled surface of the copper alloy sheet is D, and the surface parallel to the rolled surface at the depth D of the copper alloy sheet is Cube. When the area ratio of crystal grains whose deviation angle from the orientation {001} <100> is within 15 ° is S (D), the average value Sa of S (D) in the plate thickness direction is 5.0 to 30.0. %, A copper alloy sheet.
(2) Contains at least 0.005 to 3.000 mass% in total of at least one selected from the group consisting of B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn. The copper alloy sheet material according to the item).
(3) About the crystal grain of a base material, ratio a / b of the average particle diameter a of a rolling parallel direction and the average particle diameter b of a rolling perpendicular direction is 0.8 or more, It describes in (1) or (2) term Copper alloy sheet material.
(4) The deflection coefficient in the rolling parallel direction and the rolling vertical direction are both 140 GPa or less, and the ratio E TD / E RD between the deflection coefficient (E RD ) in the rolling parallel direction and the deflection coefficient (E TD ) in the rolling vertical direction is The copper-based alloy sheet according to any one of (1) to (3), which is 1.05 or less.
(5) A connector comprising the copper alloy sheet according to any one of (1) to (4).
(6) A method for producing a copper alloy sheet according to any one of (1) to (4),
Melting / casting process, ingot rolling process, homogenizing heat treatment process, hot rolling process, rapid cooling process, cold rolling 1 process, slit / trimming process, cold rolling 2 process, intermediate solution treatment process, rapid cooling process, aging We perform each process of heat treatment process in this order,
In the ingot rolling process, the rolling process per pass is performed at least once at a processing rate of 1.0% or more,
In the cold rolling 1 step, an average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 30% or more,
In the two cold rolling processes, the average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 50% or more,
In the intermediate solution treatment step, a solution treatment is performed in a high temperature range of an ultimate temperature of 600 to 1100 ° C. at a temperature increase rate of 5 ° C./sec or more.
(7) The method for producing a copper alloy sheet according to (6), wherein the pickling / polishing step, the cold rolling step 3 and the final annealing step are performed in this order after the aging heat treatment step.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
 本発明の銅合金板材は、曲げ加工性に優れ、優れた強度を示し、曲げ加工性と強度の各特性の圧延平行方向と圧延垂直方向の異方性が少ない。従って、本発明の銅合金板材は、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載部品用のコネクタや端子材などの他、リレー、スイッチ、ソケットなどに特に適した性質を有する銅合金板材である。
 また、本発明の製造方法によれば、上記銅合金板材を好適に製造することができる。
The copper alloy sheet of the present invention is excellent in bending workability, exhibits excellent strength, and has little anisotropy in the rolling parallel direction and the vertical direction of rolling in the respective characteristics of bending workability and strength. Therefore, the copper alloy sheet material of the present invention has properties particularly suitable for relays, switches, sockets, etc. in addition to connectors and terminal materials for automotive in-vehicle parts, such as lead frames, connectors, and terminal materials for electrical and electronic equipment. It is a copper alloy sheet material.
Moreover, according to the manufacturing method of this invention, the said copper alloy board | plate material can be manufactured suitably.
図1は、本発明の銅合金板材1と圧延方向RD、圧延垂直方向(幅方向)TD、圧延面法線方向(板厚方向)NDとの関係を表した説明図である。なお、銅合金板材1の板の主面を圧延面2と呼ぶ。FIG. 1 is an explanatory diagram showing the relationship between the copper alloy sheet 1 of the present invention, the rolling direction RD, the rolling vertical direction (width direction) TD, and the rolling surface normal direction (sheet thickness direction) ND. The main surface of the copper alloy sheet 1 is referred to as a rolled surface 2. 図2は、銅合金板材の板厚t未満の深さDにおける圧延面表面と平行な面3を示す説明図である。FIG. 2 is an explanatory diagram showing a surface 3 parallel to the surface of the rolled surface at a depth D less than the plate thickness t of the copper alloy sheet material.
 本発明の銅合金板材の好ましい一実施形態について説明する。なお、本発明における「板材」には、「条材」も含むものとする。 A preferred embodiment of the copper alloy sheet material of the present invention will be described. The “plate material” in the present invention includes “strip material”.
 本発明では、加工硬化指数を板材の圧延平行方向と圧延垂直方向で適正に制御することによって、高強度化しながら、曲げ加工性を改良することができる。
 一般に、金属材料への塑性変形により、金属組織(結晶)内へひずみが蓄積し、加工硬化が起こり、材料強度(耐力、引張強さ)が上昇する。ここで、金属材料の加工硬化指数が大きい程、その材料の加工硬化による強度の上昇が大きい。一方、金属材料の加工硬化指数が小さい程、曲げ加工やプレス加工などの塑性変形における加工硬化量は小さく、加工の影響を受けにくくなる。つまり、変形量を同じにした場合、加工硬化指数が大きい材料の方が、高強度化しやすくなる。
In the present invention, by properly controlling the work hardening index in the rolling parallel direction and the rolling vertical direction of the plate material, it is possible to improve the bending workability while increasing the strength.
In general, due to plastic deformation to a metal material, strain accumulates in a metal structure (crystal), work hardening occurs, and material strength (proof strength, tensile strength) increases. Here, the greater the work hardening index of a metal material, the greater the increase in strength due to work hardening of that material. On the other hand, the smaller the work hardening index of the metal material, the smaller the work hardening amount in plastic deformation such as bending or pressing, and the less the influence of the work. That is, when the deformation amount is the same, a material having a large work hardening index can be easily strengthened.
 この点で、例えば、端子やコネクタ用の曲げ加工では、曲げの頂点部付近は、それ以外の箇所に比べて塑性変形量が大きい。この為、加工硬化指数の比較的高い材料を曲げ加工に付すと、加工硬化量が大きくなり、高強度化しやすい。一般的に、材料が高強度化すると曲げ加工性が悪化する傾向である。この為、端子やコネクタの曲げ表面で局所的に高強度化が進むと、高強度化した箇所を起点にクラックが発生してしまう。そのため、良好な曲げ加工性を得るためには、加工硬化指数を一定以下に制御する必要がある。特に、近年の電気・電子機器用コネクタや車載部品用コネクタなどでは、前述のとおり、曲げの軸が圧延方向に垂直なGW曲げと曲げの軸が圧延方向に平行なBW曲げのいずれも入った複雑な形状であることがあるので、板材の圧延平行方向と圧延垂直方向の両方の加工硬化指数をいずれも適正に制御することが望ましい。 In this respect, for example, in the bending process for terminals and connectors, the amount of plastic deformation is larger in the vicinity of the apex portion of the bending than in other portions. For this reason, when a material having a relatively high work hardening index is subjected to bending, the work hardening amount is increased and the strength is easily increased. Generally, when the material becomes stronger, the bending workability tends to deteriorate. For this reason, if the strength is increased locally on the bent surface of the terminal or the connector, a crack is generated starting from the location where the strength is increased. Therefore, in order to obtain good bending workability, it is necessary to control the work hardening index to a certain value or less. In particular, in recent electrical and electronic equipment connectors and in-vehicle component connectors, as described above, both GW bending in which the bending axis is perpendicular to the rolling direction and BW bending in which the bending axis is parallel to the rolling direction are included. Since it may have a complicated shape, it is desirable to appropriately control both the work hardening indexes in both the rolling parallel direction and the rolling vertical direction of the plate material.
 また、本発明では、上記の加工硬化指数の制御に加えて、銅合金板材の集合組織状態も制御する。具体的には、銅合金板材の板厚をtとし、銅合金板材の圧延面表面から板厚方向における深さをDとし、銅合金板材の深さDにおける圧延面表面と平行な面において、Cube方位{001}<100>からのずれ角度が15°以内の結晶粒の面積率をS(D)としたとき、この板厚方向におけるS(D)の平均値Saを5.0~30.0%とすることで、材料強度を維持したまま曲げ加工性を改善し、その異方性も低減する。このように、前記加工硬化指数と集合組織の2つを制御することで、曲げ加工後のばね特性としてたわみ係数にも優れる。 In addition, in the present invention, in addition to controlling the work hardening index, the texture state of the copper alloy sheet is also controlled. Specifically, the plate thickness of the copper alloy plate material is t, the depth in the plate thickness direction from the rolled surface surface of the copper alloy plate material is D, and in a plane parallel to the rolled surface surface at the depth D of the copper alloy plate material, When the area ratio of crystal grains whose deviation angle from the Cube orientation {001} <100> is within 15 ° is S (D), the average value Sa of S (D) in the plate thickness direction is 5.0-30. By setting the content to 0.0%, bending workability is improved while maintaining material strength, and the anisotropy is also reduced. In this way, by controlling the work hardening index and the texture, the deflection coefficient is excellent as a spring characteristic after bending.
[合金組成]
 まず、本発明の板材を構成する銅合金の組成を説明する。
[Alloy composition]
First, the composition of the copper alloy constituting the plate material of the present invention will be described.
(必須添加元素)
 本発明の板材を構成する銅合金への必須添加元素NiとSiの含有量とその作用ついて示す。
(Essential additive element)
The contents of the essential addition elements Ni and Si to the copper alloy constituting the plate material of the present invention and the action thereof will be shown.
(Ni)
 Niは、後述するSiとともに含有されて、時効析出熱処理で析出したNiSi相を形成して、銅合金板材の強度の向上に寄与する元素である。Niの含有量は1.00~6.00質量%であり、好ましくは1.20~5.80質量%、さらに好ましくは1.50~5.50質量%である。Niの含有量を前記範囲とすることによって、前記NiSi相を適正に形成させ、銅合金板材の機械的強度(引張強さや0.2%耐力)を高めることができる。また、導電率も高い。また、熱間圧延加工性も良好である。
(Ni)
Ni is an element that is contained together with Si, which will be described later, and that contributes to improving the strength of the copper alloy sheet material by forming a Ni 2 Si phase precipitated by aging precipitation heat treatment. The Ni content is 1.00 to 6.00 mass%, preferably 1.20 to 5.80 mass%, more preferably 1.50 to 5.50 mass%. By setting the Ni content in the above range, the Ni 2 Si phase can be appropriately formed, and the mechanical strength (tensile strength and 0.2% yield strength) of the copper alloy sheet can be increased. Also, the conductivity is high. Moreover, hot rolling workability is also favorable.
(Si)
 Siは、前記Niとともに含有されて、時効析出熱処理で析出したNiSi相を形成して、銅合金板材の強度の向上に寄与する。Siの含有量は0.20~2.00質量%であり、好ましくは0.25~1.90質量%、さらに好ましくは0.50~1.70質量%である。Siの含有量は化学量論比でNi/Si=4.2とするのが最も導電率と強度のバランスがよい。そのためSiの含有量は、Ni/Siが2.50~7.00の範囲となるようにするのが好ましく、より好ましくは3.00~6.50である。Siの含有量を前記範囲とすることによって、銅合金板材の引張強さを高くすることができる。この場合、過剰なSiが銅のマトリックス中に固溶して、銅合金板材の導電率を低下させることがない。また、鋳造時の鋳造性や、熱間および冷間での圧延加工性も良好であり、鋳造割れや圧延割れが生じることもない。
(Si)
Si is contained together with the Ni and forms a Ni 2 Si phase precipitated by an aging precipitation heat treatment, thereby contributing to an improvement in the strength of the copper alloy sheet. The Si content is 0.20 to 2.00% by mass, preferably 0.25 to 1.90% by mass, and more preferably 0.50 to 1.70% by mass. The balance between conductivity and strength is best when the Si content is stoichiometrically Ni / Si = 4.2. Therefore, the content of Si is preferably such that Ni / Si is in the range of 2.50 to 7.00, more preferably 3.00 to 6.50. By setting the Si content in the above range, the tensile strength of the copper alloy sheet can be increased. In this case, excess Si does not dissolve in the copper matrix and the electrical conductivity of the copper alloy sheet is not lowered. Moreover, the castability at the time of casting and the hot and cold rolling workability are also good, and no casting crack or rolling crack occurs.
(副添加元素)
 次に本発明の板材を構成する銅合金における副添加元素の種類とその添加効果について説明する。好ましい副添加元素としては、B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnが挙げられる。これらの元素は総量で3.000質量%以下であると導電率を低下させる弊害を生じないため好ましい。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で、0.005~3.000質量%であることが好ましく、0.010~2.800質量%がさらに好ましく、0.030~2.500質量%であることが特に好ましい。以下に、各元素の添加効果を示す。
(Sub-added element)
Next, the types of sub-addition elements in the copper alloy constituting the plate material of the present invention and the effect of addition will be described. Preferred secondary additive elements include B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn. The total amount of these elements is preferably 3.000% by mass or less because no adverse effect of decreasing the electrical conductivity occurs. In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount is preferably 0.005 to 3.000% by mass, more preferably 0.010 to 2.800% by mass, It is particularly preferable that the content be 0.030 to 2.500% by mass. The effect of adding each element is shown below.
(Mg、Sn、Zn)
 Mg、Sn、Znは、添加することで耐応力緩和特性を向上する。それぞれを添加した場合よりも併せて添加した場合に相乗効果によって更に耐応力緩和特性が向上する。また、半田脆化が著しく改善する効果がある。Mg、Sn、Znそれぞれの含有量は、好ましくは0.00~2.00質量%、さらに好ましくは0.10~1.80質量%である。
(Mg, Sn, Zn)
Addition of Mg, Sn and Zn improves the stress relaxation resistance. The stress relaxation resistance is further improved by the synergistic effect when added together than when they are added. In addition, the solder embrittlement is remarkably improved. The content of each of Mg, Sn, and Zn is preferably 0.00 to 2.00% by mass, more preferably 0.10 to 1.80% by mass.
(Mn、Ag、B、P)
 Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。Mn、Ag、B、Pそれぞれの含有量は、好ましくは0.00~1.00質量%、さらに好ましくは0.050~0.70質量%である。
(Mn, Ag, B, P)
When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved. The contents of Mn, Ag, B, and P are each preferably 0.00 to 1.00% by mass, and more preferably 0.050 to 0.70% by mass.
(Cr、Zr、Fe、Co)
 Cr、Zr、Fe、Coは、化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50~500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。Cr、Zr、Fe、Coそれぞれの含有量は、好ましくは0.00~1.50質量%、さらに好ましくは0.10~1.30質量%である。
(Cr, Zr, Fe, Co)
Cr, Zr, Fe, and Co are finely precipitated as a compound or simple substance, and contribute to precipitation hardening. Further, it precipitates as a compound with a size of 50 to 500 nm, and has an effect of making the crystal grain size fine by suppressing grain growth, thereby improving the bending workability. The content of each of Cr, Zr, Fe, and Co is preferably 0.00 to 1.50 mass%, more preferably 0.10 to 1.30 mass%.
[加工硬化指数]
 本発明の銅合金板材では、板材の圧延平行方向の加工硬化指数nRDは、0.01以上0.15以下、好ましくは0.01以上0.10以下、より好ましくは0.01以上0.08以下、さらに好ましくは0.01以上0.06以下である。
 また、板材の圧延垂直方向の加工硬化指数nTDは、好ましくは0.01以上0.15以下、より好ましくは0.01以上0.10以下、さらに好ましくは0.01以上0.08以下、特に好ましくは0.01以上0.06以下である。
 また、圧延平行方向の加工硬化指数nRDの圧延垂直方向の加工硬化指数nTDに対する比nRD/nTDは、0.50~1.50、好ましくは0.70~1.40、より好ましくは0.75~1.35、さらに好ましくは0.80~1.30である。以上の加工硬化指数に制御することによって、Cube方位面積率の制御が容易となる。
[Work hardening index]
The copper alloy sheet of the present invention, the work hardening coefficient n RD of the direction parallel to the rolling direction of the plate material, 0.01 to 0.15, preferably 0.01 to 0.10 or less, more preferably 0.01 or more 0. It is 08 or less, more preferably 0.01 or more and 0.06 or less.
The work hardening index n TD in the vertical direction of rolling of the plate material is preferably 0.01 or more and 0.15 or less, more preferably 0.01 or more and 0.10 or less, and still more preferably 0.01 or more and 0.08 or less. Particularly preferably, it is 0.01 or more and 0.06 or less.
The ratio n RD / n TD of the work hardening index n RD in the rolling parallel direction to the work hardening index n TD in the rolling vertical direction is 0.50 to 1.50, preferably 0.70 to 1.40, more preferably. Is 0.75 to 1.35, more preferably 0.80 to 1.30. By controlling to the above work hardening index, the Cube azimuth area ratio can be easily controlled.
 加工硬化指数をこの範囲とする理由は、加工硬化指数を一定以下に制御することで、端子の曲げ加工の際の加工硬化量が比較的小さくなり、良好な加工性が得られる傾向であるためである。 The reason for setting the work hardening index within this range is that the work hardening index tends to be relatively small and good workability can be obtained by controlling the work hardening index to a certain level or less. It is.
[集合組織]
 本発明の銅合金板材は、銅合金板材の板厚をtとし、銅合金板材の圧延面表面から板厚方向における深さをDとし、銅合金板材の深さDにおける圧延面表面と平行な面において、Cube方位{001}<100>からのずれ角度が15°以内の結晶粒の面積率をS(D)としたとき、板厚方向におけるS(D)の平均値Saが5.0%以上30.0%以下である。Cube方位の解析には、EBSD測定における結晶方位解析を用いる。なお、Cube方位{001}<100>からのずれ角度が15°以内(0°を含む)の結晶粒の面積率とは、Cube方位の面積率を意味する。これは、面を板厚方向から観察した場合において、面の全面積のうちCube方位からのずれ角度が15°以内の結晶粒の領域の面積が占める割合のことをいう。
[Organization]
In the copper alloy sheet of the present invention, the thickness of the copper alloy sheet is t, the depth in the sheet thickness direction from the rolled surface of the copper alloy sheet is D, and the surface of the copper alloy sheet is parallel to the rolled surface at the depth D. In the plane, when the area ratio of crystal grains whose deviation angle from the Cube orientation {001} <100> is within 15 ° is S (D), the average value Sa of S (D) in the plate thickness direction is 5.0. % Or more and 30.0% or less. For analysis of the Cube orientation, crystal orientation analysis in EBSD measurement is used. In addition, the area ratio of the crystal grains whose deviation angle from the Cube orientation {001} <100> is within 15 ° (including 0 °) means the area ratio of the Cube orientation. This means the ratio of the area of the crystal grain region whose deviation angle from the Cube orientation is 15 ° or less in the total area of the surface when the surface is observed from the plate thickness direction.
 図1は、本発明の銅合金板材1と圧延方向RD、圧延垂直方向(幅方向)TD、圧延面法線方向(板厚方向)NDとの関係を表した図である。なお、銅合金板材の板の主面を圧延面2と呼ぶ。図2は、銅合金板材の深さDにおける圧延面表面と平行な面3を示している。 FIG. 1 is a diagram showing the relationship between the copper alloy sheet 1 of the present invention, the rolling direction RD, the rolling vertical direction (width direction) TD, and the rolling surface normal direction (sheet thickness direction) ND. The main surface of the copper alloy sheet is referred to as a rolling surface 2. FIG. 2 shows a surface 3 parallel to the surface of the rolled surface at a depth D of the copper alloy sheet.
 銅合金板材は、通常圧延を繰り返すことで製造され、圧延方向等と関連づいた集合組織を有する。互いに垂直なRD、TD、NDを規準軸として、この集合組織を表現する。本発明でいうCube方位{001}<100>の結晶粒とは、その結晶粒内の銅の結晶(面伸立方格子)について、結晶の{001}面がNDと垂直であり、かつ、結晶の<100>方向がRDと平行である状態を指す。 A copper alloy sheet is usually manufactured by repeating rolling and has a texture associated with the rolling direction and the like. This texture is expressed using RD, TD, and ND perpendicular to each other as reference axes. The crystal grains of Cube orientation {001} <100> in the present invention are the crystal of copper (plane-extended cubic lattice) in the crystal grains, the {001} plane of the crystal is perpendicular to ND, and the crystal The <100> direction is a state parallel to the RD.
 本発明の銅合金板材は、表面からの深さDでの圧延面表面と平行な面3におけるCube方位を有する結晶粒の面積率S(D)について、この板厚方向における面積率S(D)の平均値Saが5.0~30.0%である。つまり、図2における深さDにおける圧延面表面と平行な面3について、この面のCube方位の面積率がS(D)であり、このS(D)の平均値がSaである。深さDの値は0~tまでの値をとる。従って、Saの概念を数式として表現するのであれば、下記のように表される。 The copper alloy sheet material of the present invention has an area ratio S (D) in the sheet thickness direction with respect to the area ratio S (D) of crystal grains having a Cube orientation in the plane 3 parallel to the surface of the rolled surface at a depth D from the surface. ) Is an average value Sa of 5.0 to 30.0%. That is, for the surface 3 parallel to the surface of the rolled surface at the depth D in FIG. 2, the area ratio of the Cube orientation of this surface is S (D), and the average value of this S (D) is Sa. The value of the depth D takes a value from 0 to t. Therefore, if the concept of Sa is expressed as a mathematical expression, it is expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、銅合金板材表面(D=0)から裏面(D=t)までのすべての面におけるCube方位の面積率S(D)を測定してSaを算出するのは物理的に困難である。従って、本発明では、5種以上の深さD1、D2、・・・におけるS(D1)、S(D2)、・・・を測定し、これらの平均値を算出することでSaとする。特に、深さDは、D=1/20t、1/4t、1/2t、3/4t、19/20tの5種を採用するのが好ましい。また、板厚方向において、板厚の中心(D=1/2t)を対象にして複数の深さDを選択するのが好ましい。 However, it is physically difficult to calculate Sa by measuring the area ratio S (D) of the Cube orientation on all the surfaces from the copper alloy plate material surface (D = 0) to the back surface (D = t). Therefore, in the present invention, S (D1), S (D2),... At five or more depths D1, D2,... Are measured, and the average value thereof is calculated as Sa. In particular, the depth D is preferably 5 types: D = 1 / 20t, 1 / 4t, 1 / 2t, 3 / 4t, 19 / 20t. In the thickness direction, it is preferable to select a plurality of depths D with respect to the center of the thickness (D = 1 / 2t).
 以下、前記面積率の平均値Saを、「板厚方向のCube方位の面積率の平均値」ともいう。この板厚方向のCube方位の面積率の平均値は、好ましくは8.0%以上30.0%以下である。Saを5.0%以上に制御することで、曲げ加工性を改善することができる。これは曲げ加工にて発生するせん断帯の発生を抑制することができるためと考えられる。また、曲げ加工の際の板厚方向裏面も同様に、Cube方位面積率を5.0%以上とすることで、圧縮変形に伴うせん断帯発生を抑制することができる。さらに、板厚中央付近のCube方位面積率を5.0%以上に制御することで、表裏面同様に、変形に伴うクラックへの発達を抑制することができる。したがって、深さDでの圧延面表面と平行な面3におけるCube方位を有する結晶粒の面積率S(D)のそれぞれ個々の値も5.0%以上30.0%以下であることが好ましい。 Hereinafter, the average value Sa of the area ratio is also referred to as “the average value of the area ratio of the Cube orientation in the plate thickness direction”. The average value of the area ratio of the Cube orientation in the plate thickness direction is preferably 8.0% or more and 30.0% or less. Bending workability can be improved by controlling Sa to 5.0% or more. This is thought to be because the generation of shear bands that occur during bending can be suppressed. Similarly, on the back surface in the plate thickness direction at the time of bending, the occurrence of a shear band accompanying compression deformation can be suppressed by setting the Cube orientation area ratio to 5.0% or more. Further, by controlling the Cube azimuth area ratio in the vicinity of the center of the plate thickness to 5.0% or more, it is possible to suppress the development of cracks accompanying deformation as in the case of the front and back surfaces. Therefore, each value of the area ratio S (D) of the crystal grains having the Cube orientation in the plane 3 parallel to the rolling surface at the depth D is also preferably 5.0% or more and 30.0% or less. .
(板厚方向の集合組織分布評価)
 銅合金中のCube方位結晶粒の面積率について、板厚方向での分布を調査するため、研磨量を変更して測定を行う。板厚方向から組織を観察するためには、試験片の片面をマスキングし、反対側の面だけ電解研磨を行う。この際、試験片表面が鏡面仕上げになっている点に注意しながら研磨を行う。実際には、ここでの電解研磨による研磨量の微調整により、組織を把握することが出来るようになり、EBSD解析にて詳細な解析が可能となることがわかった。準備した試験片の測定は、EBSDによる方位解析にて300μm×300μmの範囲を0.1μmステップでスキャンし、Cube方位結晶粒の面積率を測定する。
(Evaluation of texture distribution in the thickness direction)
The area ratio of the Cube-oriented crystal grains in the copper alloy is measured by changing the polishing amount in order to investigate the distribution in the plate thickness direction. In order to observe the structure from the thickness direction, one side of the test piece is masked and only the opposite side is electropolished. At this time, polishing is performed while paying attention to the fact that the surface of the test piece has a mirror finish. Actually, it became possible to grasp the structure by fine adjustment of the polishing amount by electrolytic polishing here, and it was found that detailed analysis can be performed by EBSD analysis. The prepared test piece is measured by scanning an area of 300 μm × 300 μm in 0.1 μm steps by orientation analysis by EBSD, and measuring the area ratio of Cube-oriented crystal grains.
(EBSD法)
 本発明における上記結晶方位の解析には、EBSD法を用いる。EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。結晶粒を200個以上含む、300μm×300μmの試料面積に対し、0.1μmステップでスキャンし、各結晶粒の結晶方位を解析する。測定面積およびスキャンステップは試料の結晶粒の大きさから300×300μmと0.1μmとする。各方位の面積率は、Cube方位{001}<100>の理想方位から±15°以内の範囲にその結晶粒の法線を有する結晶粒の面積を求め、得られた面積の全測定面積に対する割合として求めることができる。EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載する。なお、EBSD測定結果の解析には、OIM Analysis(製品名)を用いる。
(EBSD method)
The EBSD method is used for the analysis of the crystal orientation in the present invention. The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). A sample area of 300 μm × 300 μm containing 200 or more crystal grains is scanned in 0.1 μm steps, and the crystal orientation of each crystal grain is analyzed. The measurement area and scan step are set to 300 × 300 μm and 0.1 μm from the size of the crystal grains of the sample. The area ratio of each orientation is obtained by calculating the area of a crystal grain having a normal line of the crystal grain within a range of ± 15 ° from the ideal orientation of the Cube orientation {001} <100>, and with respect to the total measurement area of the obtained area. It can be calculated as a percentage. The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It is described as area ratio. In addition, OIM Analysis (product name) is used for the analysis of the EBSD measurement result.
[銅合金板材の製造方法]
 まず、従来の析出型銅合金の製造方法を説明する。
 従来の析出型銅合金の製造方法は、銅合金素材を溶解・鋳造[工程1]して、鋳塊を得て、これを均質化熱処理[工程3]し、熱間圧延[工程4]、水冷[工程5]、面削[工程6]、冷間圧延[工程7]をこの順に行って薄板化し、700~1000℃の温度範囲で中間溶体化処理[工程10]、時効析出熱処理[工程11]と仕上げ冷間圧延[工程13]によって必要な強度を満足させるものである。また、仕上げ冷間圧延[工程13]後に歪取りのための最終焼鈍[工程14]を行うこともある。さらに、時効析出熱処理[工程11]と仕上げ冷間圧延[工程13]の間に、酸化膜除去工程(酸洗・研磨[工程12])が入ることもある。この一連の工程の中で、材料の集合組織は、中間溶体化処理中に起きる再結晶によっておおよそが決定し、仕上げ冷間圧延中に起きる方位の回転により、最終的に決定される。
[Method for producing copper alloy sheet]
First, a conventional method for producing a precipitation-type copper alloy will be described.
The conventional method for producing a precipitation-type copper alloy is to melt and cast a copper alloy material [Step 1] to obtain an ingot, which is subjected to homogenization heat treatment [Step 3], hot rolling [Step 4], Water cooling [Step 5], chamfering [Step 6], and cold rolling [Step 7] are performed in this order to form a thin plate, and an intermediate solution treatment [Step 10], aging precipitation heat treatment [Step] in a temperature range of 700 to 1000 ° C. 11] and finish cold rolling [Step 13] satisfy the required strength. Further, final annealing [step 14] for removing strain may be performed after finish cold rolling [step 13]. Furthermore, an oxide film removal step (pickling and polishing [step 12]) may be inserted between the aging precipitation heat treatment [step 11] and the finish cold rolling [step 13]. In this series of steps, the texture of the material is roughly determined by recrystallization that occurs during the intermediate solution treatment, and finally determined by the orientation rotation that occurs during finish cold rolling.
 これに対して、本発明方法においては、前記従来法とは異なる製造工程を経て、板厚方向のCube方位面積率の平均値Saと、圧延平行方向及び圧延垂直方向の両方の加工硬化指数とを、それぞれ制御した銅合金板材を製造する。
 具体的には、本発明においては、溶解・鋳造[工程1]、鋳塊圧延[工程2]、均質化熱処理[工程3]、熱間圧延[工程4]、水冷[工程5]、面削[工程6]、冷間圧延1[工程7]、スリット・トリミング[工程8]、冷間圧延2[工程9]、中間溶体化処理[工程10]、水冷[工程10-2]、時効析出熱処理[工程11]、酸洗・研磨[工程12]、冷間圧延3[工程13]、最終焼鈍[工程14]の順に行う。所望の性状の板材が得られていれば、前記酸洗・研磨[工程12]、冷間圧延3[工程13]、最終焼鈍[工程14]は省略して行わなくてもよい。
On the other hand, in the method of the present invention, through the manufacturing process different from the conventional method, the average value Sa of the Cube orientation area ratio in the plate thickness direction and the work hardening index in both the rolling parallel direction and the rolling vertical direction The copper alloy sheet material is controlled.
Specifically, in the present invention, melting / casting [step 1], ingot rolling [step 2], homogenization heat treatment [step 3], hot rolling [step 4], water cooling [step 5], face milling [Step 6], cold rolling 1 [step 7], slit trimming [step 8], cold rolling 2 [step 9], intermediate solution treatment [step 10], water cooling [step 10-2], aging precipitation Heat treatment [Step 11], pickling / polishing [Step 12], cold rolling 3 [Step 13], and final annealing [Step 14] are performed in this order. If the plate material having desired properties is obtained, the pickling / polishing [Step 12], cold rolling 3 [Step 13], and final annealing [Step 14] may be omitted.
 この中で、溶解・鋳造[工程1]では、所定の添加元素を入れ鋳塊を得る。鋳造時の冷却速度は通常0.1~100℃/秒とする。
 次に、鋳塊圧延[工程2]では、鋳塊に対して一定の冷間圧延を加えることで、均質化熱処理時に結晶粒界付近で部分的に再結晶し、さらに、後の中間溶体化での再結晶において、等軸な結晶粒の形成に寄与する。鋳塊圧延[工程2]での1パスあたりの圧延加工率は1.0%以上(好ましくは5.0%以下)であり、パス数は1回以上である。
Among these, in melting and casting [Step 1], a predetermined additive element is added to obtain an ingot. The cooling rate during casting is usually 0.1 to 100 ° C./second.
Next, in the ingot rolling [Step 2], a constant cold rolling is applied to the ingot, so that it is partially recrystallized in the vicinity of the grain boundary during the homogenization heat treatment. This contributes to the formation of equiaxed crystal grains in recrystallization. The rolling processing rate per pass in the ingot rolling [Step 2] is 1.0% or more (preferably 5.0% or less), and the number of passes is 1 or more.
 次に、到達温度が800℃以上1100℃以下で保持時間が5分~20時間となるように均質化熱処理[工程3]を行う。その後、1100℃以下(好ましくは800℃以上)の加工温度域で所定の板厚まで複数パスにて熱間圧延[工程4]を行い、熱間圧延終了後すぐに水冷[工程5]にて冷却(急冷、いわゆる焼き入れ)する。その後、熱間圧延材表面の酸化膜を除去するために面削[工程6]を行った後、冷間圧延1[工程7]を行う。
 冷間圧延1[工程7]では、合計圧延加工率が30%以上(好ましくは60%以下)となるよう、数~数十パスで冷間圧延を施す。再結晶時に一定のCube方位結晶粒を成長させるとともに、加工硬化指数を制御するため、1圧延パスあたりの圧延時の平均圧延圧力を50N/mm以上に制御する。
Next, a homogenization heat treatment [step 3] is performed so that the ultimate temperature is 800 ° C. or higher and 1100 ° C. or lower and the holding time is 5 minutes to 20 hours. Thereafter, hot rolling [Step 4] is performed by a plurality of passes up to a predetermined plate thickness in a processing temperature range of 1100 ° C. or lower (preferably 800 ° C. or higher), and immediately after the hot rolling is completed by water cooling [Step 5]. Cool (rapid cooling, so-called quenching). Then, in order to remove the oxide film on the surface of the hot-rolled material, face milling [Step 6] is performed, and then cold rolling 1 [Step 7] is performed.
In cold rolling 1 [Step 7], cold rolling is performed in several to several tens of passes so that the total rolling ratio is 30% or more (preferably 60% or less). In order to grow certain Cube-oriented crystal grains during recrystallization and to control the work hardening index, the average rolling pressure during rolling per rolling pass is controlled to 50 N / mm 2 or more.
 次に、冷間圧延時の材料端部の形状を整えるため、スリット[工程8]を行って不要な両端部をトリミングにより取り除く。
 その後、冷間圧延2[工程9]にて、合計圧延加工率が50%以上(好ましくは80%以下)となるよう、数~数十パスにて冷間圧延を行う。ここでも、再結晶時にCube方位結晶粒を成長させるとともに、加工硬化指数を制御するために、1圧延パスあたりの圧延時の平均圧延圧力を50N/mm以上に制御する。
 その後、中間溶体化処理[工程10]にて、昇温速度5.0℃/sec以上、到達温度600~1100℃にて溶質原元素を固溶させ、到達温度で一定時間(好ましくは1秒~5時間)保持することで、粒成長に伴いCube方位の結晶粒を形成する。中間溶体化処理[工程10]前の冷間圧延1および冷間圧延2では、一旦、加工組織を形成したが、この中間溶体化処理[工程10]で再結晶させることによって、以下に説明する等軸の結晶粒を得ることができる。到達温度、時間を満たしたら、急速に冷却(いわゆる焼き入れ)する水冷[工程10-2]を行う。
Next, in order to adjust the shape of the material end during cold rolling, slit [Step 8] is performed and unnecessary ends are removed by trimming.
Thereafter, in cold rolling 2 [step 9], cold rolling is performed in several to several tens of passes so that the total rolling ratio is 50% or more (preferably 80% or less). Also here, in order to grow the Cube-oriented crystal grains during recrystallization and to control the work hardening index, the average rolling pressure during rolling per rolling pass is controlled to 50 N / mm 2 or more.
Thereafter, in the intermediate solution treatment [Step 10], the solute raw element is solid-solubilized at a temperature increase rate of 5.0 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C. (About 5 hours), Cube orientation crystal grains are formed as the grains grow. In the cold rolling 1 and the cold rolling 2 before the intermediate solution treatment [Step 10], a processed structure was once formed. The following description will be made by recrystallization in the intermediate solution treatment [Step 10]. Equiaxial crystal grains can be obtained. When the ultimate temperature and time are satisfied, water cooling [step 10-2] for rapid cooling (so-called quenching) is performed.
 その後、保持温度400~700℃、保持時間5min~10hの時効析出熱処理[工程11]にて必要な強度を満足させる。
 その後、必要により、板材表面の酸化膜を除去するために、酸洗・研磨[工程12]を行う。その後、必要により、冷間圧延3[工程13]で最終仕上げ圧延を行う。中間溶体化処理[工程10]で形成した等軸粒を維持するため、冷間圧延3[工程13]を行う場合であっても、1.0%以上でなるべく低い圧延加工率で行う。この冷間圧延3[工程13]での圧延加工率の上限値は、好ましくは40%以下である。
 その後、必要により、200~700℃で1分~5時間保持する最終焼鈍(調質焼鈍)[工程14]にて、板材内部のひずみをとる。この最終焼鈍は歪取り焼鈍ともいう。
Thereafter, the required strength is satisfied by an aging precipitation heat treatment [Step 11] at a holding temperature of 400 to 700 ° C. and a holding time of 5 min to 10 h.
Thereafter, pickling and polishing [Step 12] are performed to remove the oxide film on the surface of the plate material, if necessary. Thereafter, if necessary, final finish rolling is performed in cold rolling 3 [step 13]. In order to maintain the equiaxed grains formed in the intermediate solution treatment [Step 10], even when the cold rolling 3 [Step 13] is performed, the rolling process rate is as low as 1.0% or more. The upper limit of the rolling rate in the cold rolling 3 [Step 13] is preferably 40% or less.
Thereafter, if necessary, the internal strain of the plate material is removed in the final annealing (temper annealing) that is maintained at 200 to 700 ° C. for 1 minute to 5 hours [Step 14]. This final annealing is also called strain relief annealing.
 以下に、各工程の好ましい条件をより詳細に説明する。
 鋳塊圧延[工程2]では、鋳塊に対して冷間圧延を加えることで、次工程の均質化熱処理における再熱時に粒界近傍で核生成し、さらに、後の中間溶体化での再結晶において、等軸な結晶粒の形成に寄与する。ここでの1パスあたりの冷間圧延加工率は、1.0%以上であり、パス数は1回以上である。好ましくは、1パスあたりの冷間圧延加工率2.0%以上、パス数3回以上、より好ましくは1パスあたりの冷間圧延加工率3.0%以上、パス数5回以上である。
Below, the preferable conditions of each process are demonstrated in detail.
In the ingot rolling [Step 2], cold rolling is applied to the ingot to cause nucleation near the grain boundary during reheating in the next step of homogenization heat treatment, and further in the subsequent intermediate solution treatment. In crystals, it contributes to the formation of equiaxed crystal grains. Here, the cold rolling processing rate per pass is 1.0% or more, and the number of passes is one or more times. Preferably, the cold rolling process rate per pass is 2.0% or more and the number of passes is 3 times or more, more preferably the cold rolling process rate per pass is 3.0% or more and the number of passes is 5 times or more.
 冷間圧延1[工程7]では、後の中間溶体化処理[工程10]における再結晶時のCube方位面積率と加工硬化指数を制御するため、合計加工率を30%以上となるよう、数~数十パスの圧延を施し、さらに1パスあたりの平均圧延圧力を50N/mm以上に制御する。好ましくは、平均圧延圧力は60N/mm以上であり、より好ましくは70N/mm以上である。
 冷間圧延2[工程9]では、冷間圧延1[工程7]と同じく、後の中間溶体化処理[工程10]における再結晶時のCube方位面積率と加工硬化指数を制御するため、合計加工率を50%となるよう、数~数十パスの圧延を施し、さらに1パスあたりの平均圧延圧力を50N/mm以上に制御する。好ましくは、平均圧延圧力は60N/mm以上であり、より好ましくは70N/mm以上である。
In the cold rolling 1 [Step 7], in order to control the Cube orientation area ratio and the work hardening index during recrystallization in the subsequent intermediate solution treatment [Step 10], the total processing rate is set to 30% or more. Rolling of several tens of passes is performed, and the average rolling pressure per pass is controlled to 50 N / mm 2 or more. Preferably, the average rolling pressure is at 60N / mm 2 or more, more preferably 70N / mm 2 or more.
In cold rolling 2 [step 9], in the same manner as in cold rolling 1 [step 7], the Cube orientation area ratio and work hardening index during recrystallization in the subsequent intermediate solution treatment [step 10] are controlled. Rolling of several to several tens of passes is performed so that the processing rate becomes 50%, and the average rolling pressure per pass is controlled to 50 N / mm 2 or more. Preferably, the average rolling pressure is at 60N / mm 2 or more, more preferably 70N / mm 2 or more.
 その後の中間溶体化処理[工程10]では、昇温速度5℃/sec以上、到達温度600~1100℃の高温域での再結晶により、圧延平行方向の平均粒径(寸法)aと、圧延垂直方向の平均粒径bの比a/bが0.8以上の等軸の結晶粒が得られる。この等軸な結晶粒が多いことで、加工硬化指数の異方性が低減される。好ましくは、この結晶粒の粒径比a/bが0.85以上であり、より好ましくはa/bが0.9以上(好ましくは1.1以下)である。なお、中間溶体化処理後の冷間圧延3の加工率が小さいため、本発明の銅合金板材の母材の結晶粒径は冷間圧延3[工程13]の条件の範囲内で圧延しても、a/bが0.8以上となる。 In the subsequent intermediate solution treatment [Step 10], the average particle size (dimension) a in the rolling parallel direction is obtained by recrystallization in a high temperature region at a temperature increase rate of 5 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C. Equiaxial crystal grains having a vertical average grain diameter b ratio a / b of 0.8 or more are obtained. The large number of equiaxed crystal grains reduces the anisotropy of the work hardening index. Preferably, the grain size ratio a / b of the crystal grains is 0.85 or more, more preferably a / b is 0.9 or more (preferably 1.1 or less). Since the processing rate of the cold rolling 3 after the intermediate solution treatment is small, the crystal grain size of the base material of the copper alloy sheet of the present invention is rolled within the range of the conditions of the cold rolling 3 [Step 13]. However, a / b is 0.8 or more.
 ここで、加工率(又は圧延での断面減少率)は次式によって定義される値である。
 加工率(%)={(t1-t2)/t1}×100
 式中、t1は圧延加工前の厚さを、t2は圧延加工後の厚さをそれぞれ表わす。
Here, the processing rate (or cross-sectional reduction rate in rolling) is a value defined by the following equation.
Processing rate (%) = {(t1-t2) / t1} × 100
In the formula, t1 represents the thickness before rolling, and t2 represents the thickness after rolling.
[板材の厚さ]
 本発明の銅合金板材の厚さには、特に制限はないが、好ましくは0.04~0.50mm、さらに好ましくは0.05~0.45mmである。
[Thickness of plate material]
The thickness of the copper alloy sheet of the present invention is not particularly limited, but is preferably 0.04 to 0.50 mm, and more preferably 0.05 to 0.45 mm.
[銅合金板材の特性]
 本発明の銅合金板材は、例えばコネクタ用銅合金板材に要求される特性を満足することができる。本発明の銅合金板材は下記の特性を有することが好ましい。
[Characteristics of copper alloy sheet]
The copper alloy sheet of the present invention can satisfy the characteristics required for a copper alloy sheet for connectors, for example. The copper alloy sheet of the present invention preferably has the following characteristics.
・曲げ加工性が、曲げ半径Rと板厚tで表わされるR/t=1.0となる180°U曲げ試験において、曲げの軸が圧延方向に垂直(GW曲げ)と平行(BW曲げ)のいずれの場合にも、曲げ加工後の表面にクラックが発生しないことが好ましい。また、幅1.0mm以下の狭幅の供試材を同様にR/t=1.0となる180°U曲げに付した場合にも、GW曲げとBW曲げのいずれの曲げ加工後にも表面にクラックが生じない曲げ加工性を有することがさらに好ましい。 In the 180 ° U bending test where the bending workability is R / t = 1.0 expressed by the bending radius R and the sheet thickness t, the bending axis is perpendicular to the rolling direction (GW bending) and parallel (BW bending). In any case, it is preferable that no cracks are generated on the surface after bending. In addition, when a specimen having a narrow width of 1.0 mm or less is similarly subjected to 180 ° U bending where R / t = 1.0, the surface is also subjected to either GW bending or BW bending. It is more preferable to have bending workability that does not cause cracks.
・板材の引張強度(TS)は、板材の圧延平行方向(RD)の引張強度(TS-RD)と圧延垂直方向(TD)の引張強度(TS-TD)のいずれも650MPa以上であることが好ましい。また、これらの比TS-RD/TS-TDが、1.10以下であることが好ましく、さらに好ましくは1.08以下である。引張強度の上限値には特に制限はないが、例えば1020MPa以下である。 -The tensile strength (TS) of the plate material is 650 MPa or more for both the tensile strength (TS-RD) in the rolling parallel direction (RD) and the tensile strength (TS-TD) in the vertical direction (TD) of the plate material. preferable. The ratio TS-RD / TS-TD is preferably 1.10 or less, more preferably 1.08 or less. Although there is no restriction | limiting in particular in the upper limit of tensile strength, For example, it is 1020 Mpa or less.
・板材の0.2%耐力(YS)は、板材の圧延平行方向の0.2%耐力(YS-RD)と圧延垂直方向の0.2%耐力(YS-TD)のいずれも600MPa以上であることが好ましい。また、これらの比YS-RD/YS-TDが、1.10以下であることが好ましく、さらに好ましくは1.08以下である。0.2%耐力の上限値には特に制限はないが、例えば1000MPa以下である。 -The 0.2% yield strength (YS) of the plate material is 600 MPa or more in both the 0.2% yield strength (YS-RD) in the rolling parallel direction and the 0.2% yield strength (YS-TD) in the vertical direction of the plate. Preferably there is. Further, the ratio YS-RD / YS-TD is preferably 1.10 or less, more preferably 1.08 or less. Although there is no restriction | limiting in particular in the upper limit of 0.2% yield strength, For example, it is 1000 Mpa or less.
・180°曲げ加工後のたわみ係数(E)は、板材の圧延平行方向のたわみ係数(E-RD)と圧延垂直方向のたわみ係数(E-TD)のいずれも140GPa以下であることが好ましい。また、これらの比E-RD/E-TDが、1.05以下であることが好ましく、さらに好ましくは1.03以下である。このたわみ係数の上限値には特に制限はないが、例えば140GPa以下である。 -The deflection coefficient (E) after 180 ° bending is preferably 140 GPa or less for both the deflection coefficient (E-RD) in the rolling parallel direction and the deflection coefficient (E-TD) in the rolling vertical direction of the plate material. Further, the ratio E-RD / E-TD is preferably 1.05 or less, more preferably 1.03 or less. Although there is no restriction | limiting in particular in the upper limit of this deflection coefficient, For example, it is 140 GPa or less.
・導電率は、20.0%ICAS以上であることが好ましい。ここで、「%IACS」とは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10-8Ωmを100%IACSとした場合の導電率を表したものである。導電率の上限値には特に制限はないが、例えば50%IACS以下である。
 なお、各特性の詳細な測定条件は特に断らない限り実施例に記載のとおりとする。
-It is preferable that electrical conductivity is 20.0% ICAS or more. Here, “% IACS” represents the electrical conductivity when the resistivity 1.7241 × 10−8 Ωm of universal standard copper (International Annealed Copper Standard) is 100% IACS. Although there is no restriction | limiting in particular in the upper limit of electrical conductivity, For example, it is 50% IACS or less.
Unless otherwise specified, detailed measurement conditions for each characteristic are as described in the examples.
 以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
(実施例1~実施例16、比較例1~比較例14)
 各実施例と比較例について、表1に示したそれぞれの量のNi、Si、及び必要により副添加元素等を含有し、残部がCuと不可避不純物から成る合金素材を高周波溶解炉にて溶解し、これを0.1℃/秒~100℃/秒の冷却速度で冷却して鋳造[工程1]し、鋳塊を得た。
(Examples 1 to 16 and Comparative Examples 1 to 14)
For each of the examples and comparative examples, the respective amounts of Ni and Si shown in Table 1 and, if necessary, secondary additive elements and the like are contained, and the alloy material consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cooled at a cooling rate of 0.1 ° C./second to 100 ° C./second and casted [Step 1] to obtain an ingot.
 この鋳塊を、加工率1.0%以上、パス数1回以上で冷間圧延する鋳塊圧延[工程2]を施した。その後、鋳塊を800℃以上1100℃以下で5分~20時間の均質化熱処理[工程3]した。その後、800℃以上1100℃以下で熱間加工としての熱間圧延[工程4]を行い、さらに水焼入れ冷却[工程5]を行って熱間圧延板を得た。次に、この熱間圧延板の表面の面削[工程6]を行って酸化被膜を除去した。その後、冷間圧延1[工程7]にて、合計加工率30%以上となるよう、数~数十パスで圧延した。このときの1パスあたりの平均圧延圧力は50N/mm以上であった。次に、圧延材の両端部をスリット[工程8]した。その後、冷間圧延2[工程9]にて、合計加工率50%以上となるよう、数~数十パスで圧延し、1パスあたりの平均圧延圧力は50N/mm以上とした。その後、中間溶体化処理[工程10]にて、昇温速度5℃/sec以上、到達温度600~1100℃で1秒~5時間保持する熱処理を施し、その後、急冷[工程10-2]した。ここでは、高温域での再結晶により、圧延平行方向の寸法aと、圧延垂直方向の寸法bの比、a/bが0.8以上で、等軸の結晶粒を得た。その後、保持温度400~700℃、保持時間5min~10hの時効析出熱処理[工程11]にて必要な強度を満足させた。その後、板材表面の酸化膜を除去するために、酸洗・研磨[工程12]を行った。その後、冷間圧延3[工程13]で、最終仕上げ圧延を行った。冷間圧延3[工程13]では、中間溶体化処理[工程10]で形成した等軸粒を維持するため、1.0%以上でなるべく低い圧延加工率で行った。具体的には、冷間圧延3[工程13]での圧延加工率を1.0~40.0%とした。その後、200~700℃で1分~5時間保持する最終焼鈍[工程14]にて、板材内部のひずみを除いた。 This ingot was subjected to ingot rolling [step 2] for cold rolling at a processing rate of 1.0% or more and the number of passes once or more. Thereafter, the ingot was subjected to a homogenization heat treatment [step 3] at 800 ° C. to 1100 ° C. for 5 minutes to 20 hours. Thereafter, hot rolling [Step 4] as hot working was performed at 800 ° C. or higher and 1100 ° C. or lower, and further, water quenching cooling [Step 5] was performed to obtain a hot rolled sheet. Next, the surface of the hot-rolled sheet was chamfered [Step 6] to remove the oxide film. Thereafter, in cold rolling 1 [Step 7], rolling was performed in several to several tens of passes so that the total processing rate was 30% or more. At this time, the average rolling pressure per pass was 50 N / mm 2 or more. Next, both ends of the rolled material were slit [step 8]. Thereafter, in cold rolling 2 [Step 9], rolling was performed in several to several tens of passes so that the total processing rate was 50% or more, and the average rolling pressure per pass was 50 N / mm 2 or more. Thereafter, in the intermediate solution treatment [Step 10], a heat treatment was performed by holding at a temperature rising rate of 5 ° C./sec or more and an ultimate temperature of 600 to 1100 ° C. for 1 second to 5 hours, and then rapidly cooling [Step 10-2]. . Here, by recrystallization in a high temperature region, a ratio of the dimension a in the rolling parallel direction to the dimension b in the rolling vertical direction, a / b was 0.8 or more, and equiaxed crystal grains were obtained. Thereafter, the required strength was satisfied by an aging precipitation heat treatment [Step 11] at a holding temperature of 400 to 700 ° C. and a holding time of 5 min to 10 h. Thereafter, in order to remove the oxide film on the surface of the plate material, pickling and polishing [Step 12] were performed. Then, the final finish rolling was performed by cold rolling 3 [process 13]. In cold rolling 3 [step 13], in order to maintain the equiaxed grains formed in the intermediate solution treatment [step 10], the rolling was performed at a rolling reduction rate as low as 1.0% or more. Specifically, the rolling rate in cold rolling 3 [step 13] was set to 1.0 to 40.0%. Thereafter, strain in the plate material was removed by final annealing [Step 14] in which the temperature was maintained at 200 to 700 ° C. for 1 minute to 5 hours.
 表2に示すように、各実施例と比較例の製造条件については、前記条件から変更したものを「工程X」(Xは工程の番号)の欄に示した。
 以上のようにして、最終板厚(t)が0.15mmの銅合金板を得た。
As shown in Table 2, the production conditions of each Example and Comparative Example were changed from the above conditions and shown in the column of “Process X” (X is the number of the process).
As described above, a copper alloy plate having a final plate thickness (t) of 0.15 mm was obtained.
 各供試材について下記の特性調査を行った。 The following characteristic survey was conducted for each specimen.
(a)加工硬化指数[n値]
 各実施例と比較例の供試材について、加工硬化指数はJIS5号試験片の引張試験にて、応力ひずみ曲線の塑性変形域の傾きによって測定した。なお、引張試験は、JIS Z 2241に準拠して測定した。その評価基準は、圧延平行方向の加工硬化指数(nRD)が0.010~0.150を合格、圧延垂直方向の加工硬化指数(nTD)が0.010~0.150を合格、圧延平行方向の加工硬化指数(nRD)と圧延垂直方向の加工硬化指数(nTD)との比nRD/nTDが0.500~1.500を合格とし、この範囲から外れたものを不合格とした。
(A) Work hardening index [n value]
About the test material of each Example and a comparative example, the work hardening index | exponent was measured with the inclination of the plastic deformation area | region of a stress-strain curve by the tension test of a JIS5 test piece. In addition, the tensile test was measured based on JISZ2241. The evaluation criteria were that the work hardening index (n RD ) in the rolling parallel direction passed 0.010 to 0.150, and the work hardening index (n TD ) in the rolling vertical direction passed 0.010 to 0.150. The ratio n RD / n TD between the work hardening index (n RD ) in the parallel direction and the work hardening index (n TD ) in the vertical direction of the rolling is 0.500 to 1.500. Passed.
(b)Cube方位面積率
 各実施例と比較例の供試材について、EBSD法により、測定面積300μm×300μm、スキャンステップ0.1μmの条件で結晶方位の測定を行った。解析では、300μm×300μmのEBSD測定結果を、25ブロックに分割し、各ブロックのCube方位を有する結晶粒の面積率を以下のとおり確認した。電子線は走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。EBSD法の測定装置は、(株)TSLソリューションズ製 OIM5.0(製品名)を用い、解析には、OIM Analysisを用いた。
 さらに、EBSD測定前の研磨では、組織観察を行うため、電解研磨にて目的部組織を露出させた。この研磨して露出させた部分として、板厚tに対して、深さD=1/20t、1/4t、1/2t、3/4t、19/20tの5か所についてEBSDにて観察した。全5か所において、Cube方位結晶粒の測定視野に対する占有率(すなわち面積率)をそれぞれ求めた。そしてこの5か所の面積率の平均値Saを求め、これを表中に「Cube方位面積率の板厚方向の平均値(%)」として示した。
(B) Cube orientation area ratio With respect to the test materials of the examples and comparative examples, the crystal orientation was measured by the EBSD method under the conditions of a measurement area of 300 μm × 300 μm and a scan step of 0.1 μm. In the analysis, the EBSD measurement result of 300 μm × 300 μm was divided into 25 blocks, and the area ratio of the crystal grains having the Cube orientation of each block was confirmed as follows. The electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope. As a measuring device of the EBSD method, OIM5.0 (product name) manufactured by TSL Solutions Co., Ltd. was used, and OIM Analysis was used for analysis.
Further, in the polishing before the EBSD measurement, the target part tissue was exposed by electrolytic polishing in order to observe the structure. As the parts exposed by polishing, five locations of depths D = 1 / 20t, 1 / 4t, 1 / 2t, 3 / 4t, 19 / 20t with respect to the plate thickness t were observed by EBSD. . The occupancy (that is, the area ratio) of the Cube-oriented crystal grains with respect to the measurement visual field was determined at all five locations. And the average value Sa of these five area ratios was calculated | required, and this was shown as "average value (%) of the thickness direction of Cube azimuth | direction area ratio" in the table | surface.
(c)180°U曲げ試験
 各実施例と比較例の供試材について、圧延方向に垂直に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延垂直方向試験片と、圧延方向に平行に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延平行方向試験片を、試験に供した。圧延平行方向試験片に対して曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延垂直方向試験片に対して曲げの軸が圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、日本伸銅協会技術標準JCBA―T307(2007)に準拠して90°W曲げ加工後、圧縮試験機にて内側半径を付けずに180°密着曲げ加工を行った。曲げ加工表面を100倍の走査型電子顕微鏡で観察し、クラックの有無を調査した。クラックの無かったものを「良」として「A」で表し、クラックの有ったものを「不良」として「D」で表した。生じた場合、クラックのサイズは、最大幅が30μm~100μm、最大深さが10μm以上であった。
(C) 180 degree U bending test About the test material of each Example and a comparative example, the perpendicular | vertical rolling direction test piece punched with the press so that it may become width 0.25mm and length 1.5mm perpendicularly to a rolling direction, A rolled parallel direction test piece punched out by a press so as to have a width of 0.25 mm and a length of 1.5 mm parallel to the rolling direction was subjected to the test. GW (Good Way) obtained by bending W so that the bending axis is perpendicular to the rolling direction with respect to the rolling parallel direction test piece, and so that the bending axis is parallel to the rolling direction with respect to the rolling vertical direction test piece. BW (Bad Way) is W bent to 90 ° W in accordance with Japan Copper and Brass Association Technical Standard JCBA-T307 (2007), then 180 ° contact without attaching inner radius with compression tester Bending was performed. The bent surface was observed with a 100 × scanning electron microscope to investigate the presence of cracks. Those with no cracks were represented as “A” as “good”, and those with cracks were represented as “D” as “bad”. When generated, the cracks had a maximum width of 30 μm to 100 μm and a maximum depth of 10 μm or more.
(d)引張強度[TS]
 各実施例と比較例の供試材について、圧延方向に垂直に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延垂直方向試験片を引張試験に供して、圧延垂直方向引張強度(TS-TD)を求めた。別に、圧延方向に平行に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延平行方向試験片を引張試験に供して、圧延平行方向引張強度(TS-RD)を求めた。引張強度はJIS Z 2241に基づいて測定した。
 引張強度の圧延平行方向と圧延垂直方向の異方性を確認した。TSが600MPa以上を合格とし、TSが600MPa未満を不合格とした。
(D) Tensile strength [TS]
About the test material of each Example and a comparative example, the rolling vertical direction test piece punched by the press so that it may become width 0.25mm and length 1.5mm perpendicularly to a rolling direction is used for a tension test, and a rolling vertical direction Tensile strength (TS-TD) was determined. Separately, a rolling parallel direction test piece punched out by a press so as to have a width of 0.25 mm and a length of 1.5 mm parallel to the rolling direction was subjected to a tensile test to obtain a rolling parallel direction tensile strength (TS-RD). . The tensile strength was measured based on JIS Z 2241.
The anisotropy of tensile strength between the rolling parallel direction and the rolling vertical direction was confirmed. A TS of 600 MPa or more was accepted and a TS of less than 600 MPa was rejected.
(e)導電率[EC]
 20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。ECが20%IACS以上を合格とし、TSが20%IACS未満を不合格とした。
(E) Conductivity [EC]
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm. An EC of 20% IACS or higher was accepted, and a TS of less than 20% IACS was rejected.
(f)たわみ係数[E]
 日本伸銅協会技術標準 JCBA T312に準じて、各実施例と比較例の供試材について、圧延方向に垂直に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延垂直方向試験片から、圧延垂直方向たわみ係数(ETD)を求めた。別に、圧延平行方向に平行に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延平行方向試験片から、圧延平行方向たわみ係数(ERD)を求めた。なお、サンプリングは、コイルの幅方向5箇所から採取し、その測定結果の平均値をとった。
 前記の各180°U曲げ試験片を治具に固定し、試験片を10回ずつ押し込み、その変位(押込み深さ)fと応力wの平均値を求めた。
 たわみ係数E(GPa)は下記式(1)で表される。
 E=4a/b×(L/t)3  (1)
 aは変位(押込み深さ)fと応力wの傾き、bは供試材の幅、Lは固定端と荷重点の距離、tは供試材の板厚である。Lでの固定端は、曲げの頂点部とした。
 たわみ係数の圧延平行方向と圧延垂直方向の異方性を確認した。Eが110GPa以上を合格とし、Eが110GPa未満を不合格とした。
(F) Deflection coefficient [E]
According to Japan Copper and Brass Association Technical Standard JCBA T312, the specimens of the examples and comparative examples were punched by a press so that the width was 0.25 mm and the length was 1.5 mm perpendicular to the rolling direction. From the test piece, the deflection coefficient (E TD ) in the rolling vertical direction was determined. Separately, a rolling parallel direction deflection coefficient (E RD ) was determined from a rolled parallel direction test piece punched out by a press so as to have a width of 0.25 mm and a length of 1.5 mm parallel to the rolling parallel direction. Sampling was taken from five locations in the width direction of the coil, and the average value of the measurement results was taken.
Each of the 180 ° U-bending test pieces was fixed to a jig, and the test pieces were pushed in 10 times, and the average value of displacement (pushing depth) f and stress w was obtained.
The deflection coefficient E (GPa) is expressed by the following formula (1).
E = 4a / b × (L / t) 3 (1)
a is the displacement (indentation depth) f and the slope of the stress w, b is the width of the specimen, L is the distance between the fixed end and the load point, and t is the thickness of the specimen. The fixed end at L was the apex of the bend.
The anisotropy of the deflection coefficient between the rolling parallel direction and the rolling vertical direction was confirmed. E passed 110 GPa or more, and E was rejected when less than 110 GPa.
(g)0.2%耐力[YS]
 各実施例と比較例の供試材について、圧延方向に垂直に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延垂直方向試験片から、圧延垂直方向0.2%耐力(YS-TD)を求めた。別に、圧延方向に平行に幅0.25mm、長さ1.5mmとなるようにプレスにより打ち抜きした圧延平行方向試験片から、圧延平行方向0.2%耐力(YS-RD)を求めた。
 前記たわみ係数の測定において、各試験片の弾性限界までの押し込み量(変位)から0.2%耐力Y(MPa)を下記式(2)から算出した。
 Y={(3E/2)×t×(f/L)×1000}/L  (2)
 Eはたわみ係数、tは板厚、Lは固定端と荷重点の距離、fは変位である。
 0.2%耐力の圧延平行方向と圧延垂直方向の異方性を確認した。YSが600MPa以上を合格とし、YSが600MPa未満を不合格とした。
(G) 0.2% yield strength [YS]
About the test material of each Example and Comparative Example, 0.2% proof stress in the vertical direction of rolling from a vertical test piece of a punch that was punched by a press so that the width was 0.25 mm perpendicular to the rolling direction and the length was 1.5 mm. (YS-TD) was determined. Separately, 0.2% proof stress (YS-RD) in the rolling parallel direction was determined from a rolling parallel direction test piece punched out by a press so that the width was 0.25 mm and the length was 1.5 mm parallel to the rolling direction.
In the measurement of the deflection coefficient, 0.2% proof stress Y (MPa) was calculated from the following formula (2) from the amount of displacement (displacement) up to the elastic limit of each test piece.
Y = {(3E / 2) × t × (f / L) × 1000} / L (2)
E is the deflection coefficient, t is the plate thickness, L is the distance between the fixed end and the load point, and f is the displacement.
Anisotropy of 0.2% proof stress in the rolling parallel direction and the rolling vertical direction was confirmed. A YS of 600 MPa or more was accepted and a YS of less than 600 MPa was rejected.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示した結果から、本発明に従った各実施例の試料では、曲げ加工性、引張強度、0.2%耐力、導電率、たわみ係数のいずれも良好であったことがわかる。曲げ加工性では、180°U曲げ試験において、曲げの頂部に割れが発生しなかった。特に、曲げ加工性、引張強度、0.2%耐力、導電率、たわみ係数のいずれも、圧延平行方向と圧延垂直方向での異方性が小さかった。
 従って、本発明の銅合金板材は、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチ、ソケットなどに適した銅合金板材として好適である。
From the results shown in Table 2, it can be seen that the samples of the respective examples according to the present invention had good bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient. In bending workability, no crack occurred at the top of the bending in the 180 ° U bending test. In particular, all of bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient had small anisotropy in the rolling parallel direction and the rolling vertical direction.
Therefore, the copper alloy sheet material of the present invention is suitable as a copper alloy sheet material suitable for connectors, terminal materials, relays, switches, sockets, etc. for automobiles, such as lead frames, connectors, and terminal materials for electric and electronic devices. is there.
 一方、表2に示した結果から、各比較例の試料では、いずれかの特性が劣る結果となったことがわかる。
 比較例1~比較例7は、本発明で規定する製造条件を外れて製造した試験例である。比較例1~7は、いずれも加工硬化指数とCube方位面積率の平均値Saのどちらも本発明の規定の範囲外であった。比較例2~7は曲げ加工性に劣り、比較例1~7はいずれも引張強度、0.2%耐力、導電率、たわみ係数のいずれも圧延平行方向と圧延垂直方向での異方性が大きく劣っていた。
 また、比較例8~比較例14は、本発明で規定する合金組成を外れた試験例である。比較例8~14は、いずれもCube方位面積率の平均値Saが本発明の規定の範囲外であった。比較例8~14では、曲げ加工性、引張強度、0.2%耐力、導電率、たわみ係数が、その圧延平行方向と圧延垂直方向の異方性を含めて、少なくとも1つ以上で劣った。
On the other hand, from the results shown in Table 2, it can be seen that the samples of the respective comparative examples were inferior in any of the characteristics.
Comparative Examples 1 to 7 are test examples manufactured outside the manufacturing conditions defined in the present invention. In each of Comparative Examples 1 to 7, both the work hardening index and the average value Sa of the Cube orientation area ratio were outside the range specified in the present invention. Comparative Examples 2 to 7 are inferior in bending workability. In Comparative Examples 1 to 7, all of tensile strength, 0.2% proof stress, conductivity, and deflection coefficient are anisotropic in the rolling parallel direction and the vertical direction of rolling. It was greatly inferior.
Comparative Examples 8 to 14 are test examples that deviate from the alloy composition defined in the present invention. In each of Comparative Examples 8 to 14, the average value Sa of the Cube orientation area ratio was outside the range specified in the present invention. In Comparative Examples 8 to 14, the bending workability, tensile strength, 0.2% proof stress, electrical conductivity, and deflection coefficient were inferior in at least one or more including the anisotropy in the rolling parallel direction and the rolling vertical direction. .
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年5月30日に日本国で特許出願された特願2014-112974に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-112974 filed in Japan on May 30, 2014, which is hereby incorporated herein by reference. Capture as part.
 1 銅合金板材
 2 圧延面
 3 銅合金板材(1)の板厚t未満の深さDにおける圧延面表面と平行な面
DESCRIPTION OF SYMBOLS 1 Copper alloy board | plate material 2 Rolling surface 3 A surface parallel to the rolling surface surface in the depth D of the copper alloy board | plate material (1) less than board thickness t

Claims (7)

  1.  Niを1.0~6.0質量%、Siを0.2~2.0質量%含有し、B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1種を合計で0.000~3.000質量%含有し、残部が銅および不可避不純物からなる組成を有する銅合金板材であって(ただし、上記B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnは、いずれか1種以上を含有させてもよいし、いずれの種も含有させなくてもよい任意添加成分である。)、
     圧延平行方向の加工硬化指数(nRD)が0.010~0.150であり、
     圧延平行方向の加工硬化指数(nRD)と圧延垂直方向の加工硬化指数(nTD)との比nRD/nTDが0.500~1.500であり、
     前記銅合金板材の板厚をtとし、前記銅合金板材の圧延面表面から板厚方向における深さをDとし、前記銅合金板材の深さDにおける前記圧延面表面と平行な面において、Cube方位{001}<100>からのずれ角度が15°以内の結晶粒の面積率をS(D)としたとき、板厚方向におけるS(D)の平均値Saが5.0~30.0%であることを特徴とする、銅合金板材。
    A group containing 1.0 to 6.0% by mass of Ni and 0.2 to 2.0% by mass of Si, and consisting of B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag and Sn A copper alloy sheet having a total composition of at least one selected from the group consisting of 0.000 to 3.000% by mass, the balance being composed of copper and inevitable impurities (wherein B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag, and Sn are optional additional components that may contain one or more of them, or none of them.
    The work hardening index (n RD ) in the rolling parallel direction is 0.010 to 0.150,
    The ratio n RD / n TD between the work hardening index (n RD ) in the rolling parallel direction and the work hardening index (n TD ) in the rolling vertical direction is 0.500 to 1.500,
    The thickness of the copper alloy sheet is t, the depth in the thickness direction from the rolled surface of the copper alloy sheet is D, and the surface parallel to the rolled surface at the depth D of the copper alloy sheet is Cube. When the area ratio of crystal grains whose deviation angle from the orientation {001} <100> is within 15 ° is S (D), the average value Sa of S (D) in the plate thickness direction is 5.0 to 30.0. %, A copper alloy sheet.
  2.  B、Mg、P、Cr、Mn、Fe、Co、Zn、Zr、AgおよびSnからなる群から選ばれる少なくとも1種を合計で0.005~3.000質量%含有する、請求項1に記載の銅合金板材。 The total content of at least one selected from the group consisting of B, Mg, P, Cr, Mn, Fe, Co, Zn, Zr, Ag and Sn is 0.005 to 3.000% by mass. Copper alloy sheet material.
  3.  母材の結晶粒について、圧延平行方向の平均粒径aと圧延垂直方向の平均粒径bの比a/bが0.8以上である、請求項1または2に記載の銅合金板材。 The copper alloy sheet according to claim 1 or 2, wherein the ratio of a / b between the average grain size a in the rolling parallel direction and the average grain size b in the rolling vertical direction is 0.8 or more for the crystal grains of the base material.
  4.  圧延平行方向と圧延垂直方向のたわみ係数がいずれも140GPa以下であり、圧延平行方向のたわみ係数E-RDと圧延垂直方向のたわみ係数E-TDの比E-TD/E-RDが1.05以下である、請求項1~3のいずれか1項に記載の銅合金板材。 The deflection coefficient in the rolling parallel direction and the rolling vertical direction are both 140 GPa or less, and the ratio E-TD / E-RD between the deflection coefficient E-RD in the rolling parallel direction and the deflection coefficient E-TD in the rolling vertical direction is 1.05. The copper alloy sheet according to any one of claims 1 to 3, wherein:
  5.  請求項1~4のいずれか1項に記載の銅合金板材からなるコネクタ。 A connector comprising the copper alloy sheet according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の銅合金板材の製造方法であって、
     溶解・鋳造工程、鋳塊圧延工程、均質化熱処理工程、熱間圧延工程、急冷工程、冷間圧延1工程、スリット・トリミング工程、冷間圧延2工程、中間溶体化処理工程、急冷工程、時効熱処理工程の各工程をこの順で行い、
     前記鋳塊圧延工程では、1パスあたりの圧延加工を1.0%以上の加工率で1回以上の圧延を行い、
     前記冷間圧延1工程では、1パスあたりの平均圧延圧力を50N/mm以上で、合計の加工率が30%以上となるように圧延し、
     前記冷間圧延2工程では、1パスあたりの平均圧延圧力を50N/mm以上で、合計の加工率が50%以上となるように圧延し、
     前記中間溶体化処理工程では、昇温速度5℃/sec以上で、到達温度600~1100℃の高温域で溶体化処理を行うことを特徴とする、銅合金板材の製造方法。
    A method for producing a copper alloy sheet according to any one of claims 1 to 4,
    Melting / casting process, ingot rolling process, homogenizing heat treatment process, hot rolling process, rapid cooling process, cold rolling 1 process, slit / trimming process, cold rolling 2 process, intermediate solution treatment process, rapid cooling process, aging We perform each process of heat treatment process in this order,
    In the ingot rolling process, the rolling process per pass is performed at least once at a processing rate of 1.0% or more,
    In the cold rolling 1 step, an average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 30% or more,
    In the two cold rolling processes, the average rolling pressure per pass is 50 N / mm 2 or more, and the total processing rate is 50% or more,
    In the intermediate solution treatment step, a solution treatment is performed in a high temperature range of an ultimate temperature of 600 to 1100 ° C. at a temperature increase rate of 5 ° C./sec or more.
  7.  前記時効熱処理工程の後に、酸洗・研磨工程、冷間圧延3工程、最終焼鈍工程をこの順で行う、請求項6に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 6, wherein the pickling / polishing step, the cold rolling step 3 and the final annealing step are performed in this order after the aging heat treatment step.
PCT/JP2015/065688 2014-05-30 2015-05-29 Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet WO2015182776A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167033528A KR101935987B1 (en) 2014-05-30 2015-05-29 Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
CN201580028223.1A CN106460099B (en) 2014-05-30 2015-05-29 Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
JP2015556305A JP5972484B2 (en) 2014-05-30 2015-05-29 Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112974 2014-05-30
JP2014-112974 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182776A1 true WO2015182776A1 (en) 2015-12-03

Family

ID=54699093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065688 WO2015182776A1 (en) 2014-05-30 2015-05-29 Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet

Country Status (4)

Country Link
JP (1) JP5972484B2 (en)
KR (1) KR101935987B1 (en)
CN (1) CN106460099B (en)
WO (1) WO2015182776A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625403B (en) * 2016-03-31 2018-06-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si series copper alloy bar and manufacturing method thereof
CN109072341A (en) * 2016-03-31 2018-12-21 同和金属技术有限公司 Cu-Ni-Si series copper alloy plate and autofrettage
US20210130931A1 (en) * 2018-07-12 2021-05-06 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
CN113549786A (en) * 2021-05-12 2021-10-26 芜湖楚江合金铜材有限公司 High-precision Y-shaped bus and production process thereof
CN114867875A (en) * 2020-01-14 2022-08-05 古河电气工业株式会社 Copper alloy sheet material, method for producing same, and member for electric/electronic component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3604580A4 (en) * 2017-03-29 2021-01-13 Furukawa Electric Co., Ltd. Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
JP6378819B1 (en) * 2017-04-04 2018-08-22 Dowaメタルテック株式会社 Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet
KR102520007B1 (en) * 2018-03-27 2023-04-10 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy materials and conductive members using them, battery members, fastening components, spring components and structural components
EP3778947A4 (en) * 2018-03-27 2022-03-09 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2019244842A1 (en) * 2018-06-20 2019-12-26 古河電気工業株式会社 Resistance material for resistors and method for producing same, and resistor
KR102499087B1 (en) * 2020-11-30 2023-02-15 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy using Metaheuristic
KR102499059B1 (en) * 2020-11-30 2023-02-15 한국생산기술연구원 Manufacturing method of beryllium(Be) free copper alloy
CN113215439A (en) * 2021-04-16 2021-08-06 安徽绿能技术研究院有限公司 High-strength copper alloy plate and production process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040389A (en) * 2011-08-18 2013-02-28 Furukawa Electric Co Ltd:The Copper alloy sheet material low in deflection coefficient and excellent in bendability
JP2013047360A (en) * 2011-08-29 2013-03-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2015120949A (en) * 2013-12-20 2015-07-02 古河電気工業株式会社 Copper alloy sheet material and manufacturing method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128292A (en) * 1982-01-26 1983-07-30 Furukawa Electric Co Ltd:The Thin strip of phosphorus copper brazing filler metal
JP2002038227A (en) * 2000-05-16 2002-02-06 Nippon Mining & Metals Co Ltd Phosphor bronze bar excellent in deep drawing and its production method
JP4610765B2 (en) * 2001-03-21 2011-01-12 株式会社神戸製鋼所 Hot-rollable phosphor bronze
JP5028657B2 (en) * 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
JP5097970B2 (en) * 2006-07-24 2012-12-12 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5140045B2 (en) * 2009-08-06 2013-02-06 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy plate or strip for electronic materials
JP4503696B2 (en) 2009-10-28 2010-07-14 株式会社神戸製鋼所 Electronic parts made of copper alloy sheets with excellent bending workability
JP5448763B2 (en) 2009-12-02 2014-03-19 古河電気工業株式会社 Copper alloy material
CN103443309B (en) * 2011-05-02 2017-01-18 古河电气工业株式会社 Copper alloy sheet material and process for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040389A (en) * 2011-08-18 2013-02-28 Furukawa Electric Co Ltd:The Copper alloy sheet material low in deflection coefficient and excellent in bendability
JP2013047360A (en) * 2011-08-29 2013-03-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2015120949A (en) * 2013-12-20 2015-07-02 古河電気工業株式会社 Copper alloy sheet material and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625403B (en) * 2016-03-31 2018-06-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si series copper alloy bar and manufacturing method thereof
CN109072341A (en) * 2016-03-31 2018-12-21 同和金属技术有限公司 Cu-Ni-Si series copper alloy plate and autofrettage
US20210130931A1 (en) * 2018-07-12 2021-05-06 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
JP7574176B2 (en) 2018-07-12 2024-10-28 マテリオン コーポレイション Copper-nickel-silicon alloy with high strength and high electrical conductivity
CN114867875A (en) * 2020-01-14 2022-08-05 古河电气工业株式会社 Copper alloy sheet material, method for producing same, and member for electric/electronic component
CN114867875B (en) * 2020-01-14 2023-07-21 古河电气工业株式会社 Copper alloy sheet material, method for producing same, and member for electric/electronic component
CN113549786A (en) * 2021-05-12 2021-10-26 芜湖楚江合金铜材有限公司 High-precision Y-shaped bus and production process thereof

Also Published As

Publication number Publication date
JPWO2015182776A1 (en) 2017-04-20
CN106460099B (en) 2020-03-17
CN106460099A (en) 2017-02-22
KR20170012282A (en) 2017-02-02
KR101935987B1 (en) 2019-01-07
JP5972484B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
KR101419147B1 (en) Copper alloy sheet and process for producing same
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5448763B2 (en) Copper alloy material
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
WO2012026611A1 (en) Copper alloy sheet and method for producing same
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
KR101579629B1 (en) Copper alloy sheet and method for producing same
JP5690979B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
KR20190018661A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
WO2015001683A1 (en) Copper alloy for electrical and electronic equipment, copper alloy thin sheet for electrical and electronic equipment, and component and terminal for electrical and electronic equipment
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2013069376A1 (en) Cu-co-si-based alloy and method for producing same
WO2013058083A1 (en) Corson alloy and method for producing same
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015556305

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167033528

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800114

Country of ref document: EP

Kind code of ref document: A1