Nothing Special   »   [go: up one dir, main page]

WO2015182298A1 - Method for splitting brittle substrate - Google Patents

Method for splitting brittle substrate Download PDF

Info

Publication number
WO2015182298A1
WO2015182298A1 PCT/JP2015/062223 JP2015062223W WO2015182298A1 WO 2015182298 A1 WO2015182298 A1 WO 2015182298A1 JP 2015062223 W JP2015062223 W JP 2015062223W WO 2015182298 A1 WO2015182298 A1 WO 2015182298A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
brittle substrate
trench line
trench
substrate
Prior art date
Application number
PCT/JP2015/062223
Other languages
French (fr)
Japanese (ja)
Inventor
曽山 浩
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201580028975.8A priority Critical patent/CN106715347B/en
Priority to JP2016523384A priority patent/JP6288260B2/en
Priority to KR1020167033459A priority patent/KR101856558B1/en
Publication of WO2015182298A1 publication Critical patent/WO2015182298A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0017Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing using moving tools
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets

Definitions

  • the present invention relates to a method for dividing a brittle substrate.
  • a scribe line is formed on the substrate, and then the substrate is divided along the scribe line.
  • Japanese Patent Laid-Open No. 9-188534 discloses a method of forming a scribe line with a glass cutter wheel. When the glass cutter rolls on the substrate, a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process. The substrate is divided by causing the cracks to advance completely in the thickness direction by the break process.
  • the process of dividing the substrate is often performed immediately after the process of forming a scribe line on the substrate.
  • a scribe line is formed on a glass substrate for each region to be an organic EL display before mounting a sealing cap. For this reason, the contact between the sealing cap and the glass cutter, which becomes a problem when the scribe line is formed on the glass substrate after the sealing cap is provided, can be avoided.
  • the step of providing the sealing cap (member) on the glass substrate (brittle substrate) is performed after the scribe line is formed. Therefore, if this technique is used, a brittle board
  • vertical cracks already exist during the process of providing a sealing cap on a brittle substrate further extension in the thickness direction of the vertical cracks tends to occur unintentionally. Therefore, the brittle substrate that should be integrated during this process may be unintentionally divided.
  • the present invention has been made in order to solve the above-described problems, and its purpose is to prevent the brittle substrate from being unintentionally divided during the process of providing the member on the brittle substrate. It is an object of the present invention to provide a method for dividing a brittle substrate, which can divide the brittle substrate with a narrow region as a boundary.
  • the brittle substrate cutting method of the present invention includes a step of preparing a brittle substrate having a surface and a thickness direction perpendicular to the surface, a step of pressing a blade edge against the surface of the brittle substrate, and the pressing step. Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the pressed blade edge on the surface of the brittle substrate. The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected immediately below the trench line in a direction intersecting the trench line.
  • the brittle substrate cutting method of the present invention further includes a step of providing a member on the surface after the step of forming the trench line.
  • the member has portions separated from each other via the trench line on the surface.
  • the method for dividing a brittle substrate of the present invention further includes a step of forming a crack line by extending a crack of the brittle substrate in the thickness direction along the trench line after the step of disposing the member. .
  • the brittle substrate is disconnected continuously in the direction intersecting the trench line immediately below the trench line by the crack line.
  • the method for dividing a brittle substrate of the present invention further includes a step of dividing the brittle substrate along the crack line.
  • pressing the blade edge against the surface means pressing the blade edge at an arbitrary position on the “surface”, and thus it can also mean pressing the blade edge against the edge of the “surface”.
  • a trench line having no crack is formed immediately below the line that defines the position where the brittle substrate is divided.
  • the crack line to be used as a direct trigger for the division is formed by extending the crack along the trench line in a self-aligning manner. Therefore, the brittle substrate after the formation of the trench line and before the formation of the crack line is in a stable state in which the position to be divided is defined by the trench line, but the crack line has not yet been formed and the division is not easily caused. Since the step of providing the member on the brittle substrate is performed in this stable state, it is possible to prevent the brittle substrate from being unintentionally divided during this step.
  • the movement of the blade edge for forming the trench line is not hindered by the member.
  • positioning of a member can be freely defined mutually. Therefore, it is possible to obtain a structure in which the trench line passes through a narrow region between the members.
  • the brittle substrate can be divided with a narrow region between the members as a boundary. As described above, the brittle substrate can be divided at a narrow region between the members as a boundary while avoiding the brittle substrate being unintentionally divided during the step of providing the member on the brittle substrate.
  • FIG. 2 is a top view schematically showing a method for cutting a brittle substrate in Embodiment 1 of the present invention ((A) to (E)).
  • 1A is a schematic end view along line IIA-IIA in FIG. 1A
  • a schematic end view along line IIB-IIB in FIG. 1B is taken along line IIC-IIC in FIG.
  • FIG. 2 is a schematic end view (C), a schematic end view (D) along line IID-IID in FIG. 1 (D), and a schematic end view (E) along line IIE-IIE in FIG. 1 (E).
  • FIG. 5A is a side view schematically showing the configuration of the instrument used in the brittle substrate cutting method according to Embodiment 2 of the present invention, and the configuration of the blade edge of the instrument is the viewpoint of arrow VB in FIG. It is a top view (B) shown roughly by.
  • a glass substrate 4 (brittle substrate) is prepared (FIG. 4: step S10).
  • the glass substrate 4 has an upper surface SF1 (front surface) and an opposite lower surface SF2.
  • the glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1.
  • a cutting instrument 50 having a cutting edge 51 and a shank 52 is prepared. The blade edge 51 is held by being fixed to a shank 52 as its holder. A more detailed structure of the cutting tool will be described in the second and sixth embodiments.
  • step S20 the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 (FIG. 4: step S20).
  • the pressed blade edge 51 is slid on the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 1A).
  • the step of forming trench line TL is a direction in which glass substrate 4 intersects the extending direction of trench line TL (lateral direction in FIG. 1B) immediately below trench line TL. This is performed so as to obtain a crackless state in which DC are continuously connected. In the crackless state, the trench line TL is formed by plastic deformation, but no crack is formed along the trench line TL.
  • the crackless state is maintained for a necessary time (FIG. 4: Step S40).
  • an operation in which excessive stress is applied to the glass substrate 4 in the trench line TL for example, heating with application of a large external stress that causes damage to the substrate or a large temperature change, Should be avoided.
  • the glass substrate 4 can be transported to a place where the next step is performed. Further, the glass substrate 4 can be stored until the next step while the crackless state is maintained.
  • laminated material 11 (member) is provided on upper surface SF1 while maintaining a crackless state.
  • the step of providing the laminated material 11 can be performed, for example, by joining members prepared in advance or by depositing raw materials.
  • the laminated material 11 has portions 11a and 11b separated from each other via the trench line TL on the upper surface SF1. In other words, the portions 11a and 11b sandwich the trench line TL on the upper surface SF1.
  • the portions 11a and 11b may be disposed on the upper surface SF1 of the glass substrate 4 with a gap W via the trench line TL.
  • the interval W may be so small that the operation of sliding the blade edge 51 so as to pass between the portions 11a and 11b on the surface SF1 is impossible. This is because according to the present embodiment, such an operation is unnecessary.
  • the cause that the above operation of the blade edge 51 becomes impossible is a collision between the member 11 and the blade edge 51 or the shank 52.
  • the interval W can be set to 100 ⁇ m or less, for example.
  • Each of the portions 11a and 11b may be in close proximity to the trench line TL.
  • the laminated material 11 is preferably provided so that the trench line TL protrudes from between the portions 11a and 11b on the upper surface SF1.
  • each of the right end portion and the left end portion of the trench line TL protrudes from the region between the portions 11a and 11b. Only one end of the trench line TL may protrude.
  • the laminated material 12 may also be provided on the lower surface SF2.
  • the laminate 12 may have portions 12a and 12b separated from each other.
  • the crack of the glass substrate 4 in the thickness direction DT is extended along the trench line TL.
  • the crack line CL is formed in a self-aligned manner with respect to the trench line TL (FIG. 4: Step S50).
  • the glass substrate 4 is continuous in the direction DC intersecting the extending direction of the trench line TL (lateral direction in FIG. 1B) immediately below the trench line TL by the crack line CL.
  • the connection is broken.
  • continuous connection means a connection that is not interrupted by a crack.
  • the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
  • Formation of the crack line CL is started, for example, by applying a stress to the glass substrate 4 at the end of the trench line TL so as to release the distortion of the internal stress in the vicinity of the trench line TL.
  • stress is applied to the glass substrate 4 at the right end or the left end of the trench line TL.
  • the portions 11a and 11b are unlikely to become obstacles when stress is applied.
  • the stress can be applied, for example, by applying an external stress by pressing the blade edge again onto the formed trench line TL, or by heating with laser light irradiation.
  • glass substrate 4 is divided into substrate pieces 4a and 4b along crack line CL (FIG. 4: step S60). That is, a so-called break process is performed.
  • the break process can be performed, for example, by applying an external force FB (FIG. 2D) to the glass substrate 4.
  • FB FIG. 2D
  • a trench line TL having no cracks is formed immediately below the line that defines the position where the glass substrate 4 is divided.
  • the crack line CL to be used as a direct trigger for the division is formed by extending the crack in a self-aligned manner along the trench line TL. Therefore, the glass substrate 4 after the formation of the trench line TL and before the formation of the crack line CL is not easily divided because the position to be divided is defined by the trench line TL but the crack line CL is not yet formed. It is in a stable state. Since the step of providing the laminated material 11 on the glass substrate 4 is performed in this stable state, it is possible to avoid the glass substrate 4 being unintentionally divided during this step.
  • this step is performed after the trench line TL is formed, the movement of the blade edge for forming the trench line TL is not hindered by the laminated material 11.
  • positioning of the laminated material 11 can be freely defined mutually. Therefore, it is possible to obtain a structure in which the trench line TL passes through a narrow region between the laminated materials 11.
  • the crack line CL is formed using the trench line TL, and the glass substrate 4 is divided along the crack line CL, thereby narrowing the region between the laminated materials 11 (the region between the portions 11a and 11b in FIG. 1D). ) As a boundary, the glass substrate 4 can be divided.
  • the glass substrate 4 is divided at a narrow region between the laminated materials 11 while avoiding the glass substrate 4 being unintentionally divided during the step of providing the laminated material 11 on the glass substrate 4. be able to.
  • the width W between the portions 11a and 11b of the laminated material 11 can be arbitrarily reduced. Thereby, the parts 11a and 11b can be arranged more densely. Therefore, the glass substrate 4 can be used more efficiently.
  • this embodiment is particularly advantageous when the laminated material 11 includes a portion made of a material having low heat resistance, for example, a synthetic resin. This is because in such a case, using a technique of scribing with a laser beam having a narrow width corresponding to a narrow gap between the laminated materials in place of the method of the present embodiment may adversely affect the laminated materials. This is because it is difficult to consider.
  • the process of forming the crack line CL in the present embodiment is essentially different from a so-called break process.
  • the already formed cracks are further extended in the thickness direction to completely separate the substrate.
  • the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has.
  • the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1.
  • the plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface).
  • the top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other.
  • the blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex.
  • the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51.
  • the side part PS extends linearly from the protrusion part PP.
  • the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
  • the cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a ⁇ 001 ⁇ plane, and each of the side surfaces SD2 and SD3 is a ⁇ 111 ⁇ plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
  • Diamond that is not a single crystal may be used.
  • polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used.
  • sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
  • the shank 52 extends along the axial direction AX.
  • the blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
  • the protrusion PP and the side PS of the blade edge 51 on the upper surface SF1 of the glass substrate 4 have a thickness that the glass substrate 4 has. Pressed in the direction DT.
  • the blade edge 51 is slid on the upper surface SF1 substantially along the direction in which the side portion PS is projected onto the upper surface SF1.
  • a groove-like trench line TL without a vertical crack is formed on the upper surface SF1.
  • the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
  • the crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the upper surface SF1. According to the method described later, after only the trench line TL is formed, the crack line CL can be formed along the trench line TL.
  • glass substrate 4 is first prepared in step S10 (FIG. 4).
  • the glass substrate 4 has a flat upper surface SF1.
  • the edge surrounding the upper surface SF1 includes a side ED1 (first side) and a side ED2 (second side) that face each other.
  • the edges are rectangular. Therefore, the sides ED1 and ED2 are sides parallel to each other.
  • the sides ED1 and ED2 are rectangular short sides.
  • the glass substrate 4 has a thickness direction DT (FIG. 5A) perpendicular to the upper surface SF1.
  • step S20 the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later.
  • the cutting edge 51 is pressed such that the projection PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed.
  • the side PS is arranged between the protrusion PP and the side ED2.
  • step S30 a plurality of trench lines TL (five lines in the figure) are formed on the upper surface SF1.
  • the formation of the trench line TL is performed between the position N1 (first position) and the position N3.
  • a position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3.
  • the positions N1 and N3 may be located away from the edge of the upper surface SF1 of the glass substrate 4 as shown in FIG. 6A, or one or both of them may be located at the edge of the upper surface SF1.
  • the formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
  • the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2.
  • the position N1 is close to the side ED1 of the sides ED1 and ED2
  • the position N2 is close to the side ED2 of the sides ED1 and ED2
  • both the positions N1 and N2 are the side ED1 or It may be located near either one of ED2.
  • the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, referring to FIG. 5A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2.
  • the direction DA corresponds to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF ⁇ b> 1 by the shank 52.
  • step S40 the laminated material 11 is provided as in the first embodiment.
  • the laminated material 11 is provided on the upper surface SF1 so that the trench line TL protrudes from between the portions of the laminated material 11 toward the side ED2.
  • step S50 the position of the glass substrate 4 in the thickness direction DT (FIG. 3B) from the position N2 to the position N1 along the trench line TL (see the broken line arrow in the figure).
  • a crack line CL is formed by extending the crack. Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2.
  • the assist line AL is formed after the trench line TL is formed.
  • the assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL.
  • the method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG. 6B.
  • the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur.
  • the present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
  • step S60 the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
  • the glass substrate 4 is divided.
  • the first modified example relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 6B). Is. With reference to FIG. 7B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started.
  • the assist line AL is formed on the upper surface SF1 of the glass substrate 4.
  • the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4. Good.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • the assist line AL itself may be a crack line CL formed by applying stress to the trench line TL.
  • the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3 in step S20 (FIG. 4).
  • step S30 (FIG. 4) when the trench line TL is formed, in the present modification, the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, referring to FIG. 5, the blade edge 51 is displaced in the direction DB that is the direction from the side ED2 toward the side ED1.
  • the direction DB corresponds to a direction opposite to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
  • the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 relative to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • the crack line CL can be more reliably formed from the trench line TL.
  • the assist line AL has not yet been formed at the time when the trench line TL is formed (FIG. 6A). Therefore, the crackless state can be maintained more stably without being affected by the assist line AL. If stability in the crackless state is not a problem, lamination is performed in the state of FIG. 7A where the assist line AL is formed instead of the state of FIG. 6A where the assist line AL is not formed. A material 11 may be provided.
  • assist line AL is formed before formation of trench line TL.
  • the method of forming the assist line AL is the same as that in FIG. 6B (Embodiment 2).
  • step S20 the blade edge 51 is pressed against the upper surface SF1 in step S20 (FIG. 4), and the trench line TL is formed in step S30 (FIG. 4).
  • the formation method itself of the trench line TL is the same as that in FIG. 6A (Embodiment 2).
  • the assist line AL and the trench line TL intersect each other at the position N2.
  • step S40 (FIG. 4) is performed as in the second embodiment.
  • step S40 the laminated material 11 is provided as in the second embodiment.
  • the glass substrate 4 is separated along the assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to the glass substrate 4.
  • step S50 formation of the crack line CL similar to that of the first embodiment is started (see the broken line arrow in the figure).
  • the assist line AL is formed on the upper surface SF ⁇ b> 1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF ⁇ b> 2 of the glass substrate 4.
  • the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
  • assist line AL is formed on lower surface SF2 of glass substrate 4.
  • trench line TL is formed from position N3 to position N1.
  • FIG. 13B after the laminated material 11 is provided, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
  • the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 relative to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
  • a trench line TL reaching from the position N1 to the side ED2 via the position N2 is formed in step S30 (FIG. 4). Is done.
  • step S40 the laminated material 11 is provided as step S40 (FIG. 4).
  • a stress is applied between the position N2 and the side ED2 so as to release the distortion of the internal stress near the trench line TL. This induces formation of a crack line along the trench line TL (FIG. 4: step S50).
  • the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached.
  • the cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first.
  • the length of this second sliding is, for example, about 0.5 mm.
  • This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 15A) after they are formed, or the formation and re-sliding of one trench line TL may be performed. The process to be performed may be sequentially performed for each trench line TL.
  • a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
  • step S30 Referring to FIG. 16 (A), in the brittle substrate cutting method according to the present embodiment, in step S30 (FIG. 4), blade edge 51 is displaced from position N1 to position N2, and further to position N3. Thus, a trench line TL separated from the edge of the upper surface SF1 is formed. The method of forming the trench line TL itself is almost the same as that in FIG. 6A (Embodiment 2).
  • step S40 the laminated material 11 is provided as step S40 (FIG. 4).
  • stress application similar to that in FIG. 15B (Embodiment 4 or a modification thereof) is performed. This induces formation of a crack line along the trench line TL (FIG. 4: step S50).
  • the blade edge 51 may be displaced from the position N3 to the position N2 and from the position N2 to the position N1 in the formation of the trench line TL.
  • blade edge 51v may be used instead of blade edge 51 (FIGS. 5A and 5B).
  • the blade edge 51v has a conical shape having a vertex and a conical surface SC.
  • the protruding part PPv of the blade edge 51v is constituted by a vertex.
  • the side part PSv of the blade edge is configured along a virtual line (broken line in FIG. 18B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
  • the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides.
  • the shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
  • the brittle substrate is not limited to the glass substrate.
  • the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A cutting edge (51) is slid across the surface (SF1) of a brittle substrate (4) so as to cause plastic deformation and form a trench line (TL) in the form of a groove. The brittle substrate (4) is connected in a continuous fashion directly underneath the trench line (TL). A member (11) is then placed on the aforementioned surface (SF1). Said member (11) has sections that are separated by the trench line (TL). Next, a crack is made to extend in the thickness direction (DT) through the brittle substrate (4) along the trench line (TL), forming a crack line (CL). The continuous connection in the brittle substrate (4) directly underneath the trench line (TL) in a direction that intersects the trench line (TL) is broken by the crack line (CL), and the brittle substrate (4) is split along the crack line (CL).

Description

脆性基板の分断方法Method for dividing brittle substrate
 本発明は脆性基板の分断方法に関する。 The present invention relates to a method for dividing a brittle substrate.
 フラットディスプレイパネルまたは太陽電池パネルなどの電気機器の製造において、ガラス基板などの脆性基板を分断することがしばしば必要となる。まず基板上にスクライブラインが形成され、次にこのスクライブラインに沿って基板が分断される。たとえば特開平9-188534号公報によれば、スクライブラインをガラスカッターホイールによって形成する方法が開示されている。ガラスカッターが基板上を転動することで、基板上に塑性変形によるトレンチが形成されると同時に、このトレンチの直下に垂直クラックが形成される。その後、ブレーク工程と称される応力付与がなされる。ブレーク工程によりクラックを厚さ方向に完全に進行させることで基板が分断される。 In the manufacture of electrical devices such as flat display panels or solar cell panels, it is often necessary to break a brittle substrate such as a glass substrate. First, a scribe line is formed on the substrate, and then the substrate is divided along the scribe line. For example, Japanese Patent Laid-Open No. 9-188534 discloses a method of forming a scribe line with a glass cutter wheel. When the glass cutter rolls on the substrate, a trench due to plastic deformation is formed on the substrate, and at the same time, a vertical crack is formed immediately below the trench. Thereafter, stress is applied, which is called a break process. The substrate is divided by causing the cracks to advance completely in the thickness direction by the break process.
 基板が分断される工程は、基板にスクライブラインを形成する工程の直後に行なわれることが多い。しかしながら、スクライブラインを形成する工程とブレーク工程との間において基板上に何らかの部材を設ける工程を行なうことも提案されている。 The process of dividing the substrate is often performed immediately after the process of forming a scribe line on the substrate. However, it has also been proposed to perform a process of providing any member on the substrate between the process of forming the scribe line and the break process.
 たとえば国際公開第2002/104078号の技術によれば、有機ELディスプレイの製造方法において、封止キャップを装着する前に各有機ELディスプレイとなる領域毎にガラス基板上にスクライブラインが形成される。このため、封止キャップを設けた後にガラス基板上にスクライブラインを形成したときに問題となる封止キャップとガラスカッターとの接触を回避することができる。 For example, according to the technique of International Publication No. 2002/104078, in the method of manufacturing an organic EL display, a scribe line is formed on a glass substrate for each region to be an organic EL display before mounting a sealing cap. For this reason, the contact between the sealing cap and the glass cutter, which becomes a problem when the scribe line is formed on the glass substrate after the sealing cap is provided, can be avoided.
特開平9-188534号公報JP-A-9-188534 国際公開第2002/104078号International Publication No. 2002/104078
 上記従来の技術によれば、ガラス基板(脆性基板)上に封止キャップ(部材)を設ける工程がスクライブラインの形成後に行なわれる。よってこの技術を用いれば、部材間の狭い領域を境界として脆性基板を分断することができる。一方で、脆性基板上へ封止キャップを設ける工程時に垂直クラックが既に存在することから、この垂直クラックの厚さ方向におけるさらなる伸展が意図せず発生しやすい。よって、この工程中は一体であるべき脆性基板が、意図せず分断されてしまうことがあり得る。 According to the above conventional technique, the step of providing the sealing cap (member) on the glass substrate (brittle substrate) is performed after the scribe line is formed. Therefore, if this technique is used, a brittle board | substrate can be parted on the boundary of the narrow area | region between members. On the other hand, since vertical cracks already exist during the process of providing a sealing cap on a brittle substrate, further extension in the thickness direction of the vertical cracks tends to occur unintentionally. Therefore, the brittle substrate that should be integrated during this process may be unintentionally divided.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、脆性基板上に部材を設ける工程中に脆性基板が意図せず分断してしまうことを避けつつ、部材間の狭い領域を境界として脆性基板を分断することができる、脆性基板の分断方法を提供することである。 The present invention has been made in order to solve the above-described problems, and its purpose is to prevent the brittle substrate from being unintentionally divided during the process of providing the member on the brittle substrate. It is an object of the present invention to provide a method for dividing a brittle substrate, which can divide the brittle substrate with a narrow region as a boundary.
 本発明の脆性基板の分断方法は、表面を有し、前記表面に垂直な厚さ方向を有する脆性基板を準備する工程と、前記脆性基板の前記表面に刃先を押し付ける工程と、前記押し付ける工程によって押し付けられた前記刃先を前記脆性基板の前記表面上で摺動させることによって前記脆性基板の前記表面上に塑性変形を発生させることで、溝形状を有するトレンチラインを形成する工程とを備える。前記トレンチラインを形成する工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行なわれる。本発明の脆性基板の分断方法はさらに、前記トレンチラインを形成する工程の後、前記表面上に部材を設ける工程を備える。前記部材は、前記表面上において前記トレンチラインを介して互いに分離した部分を有する。本発明の脆性基板の分断方法はさらに、前記部材を配置する工程の後に、前記トレンチラインに沿って前記厚さ方向における前記脆性基板のクラックを伸展させることによって、クラックラインを形成する工程を備える。前記クラックラインによって前記トレンチラインの直下において前記脆性基板は前記トレンチラインと交差する方向において連続的なつながりが断たれている。本発明の脆性基板の分断方法はさらに、前記クラックラインに沿って前記脆性基板を分断する工程を備える。 The brittle substrate cutting method of the present invention includes a step of preparing a brittle substrate having a surface and a thickness direction perpendicular to the surface, a step of pressing a blade edge against the surface of the brittle substrate, and the pressing step. Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the pressed blade edge on the surface of the brittle substrate. The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected immediately below the trench line in a direction intersecting the trench line. The brittle substrate cutting method of the present invention further includes a step of providing a member on the surface after the step of forming the trench line. The member has portions separated from each other via the trench line on the surface. The method for dividing a brittle substrate of the present invention further includes a step of forming a crack line by extending a crack of the brittle substrate in the thickness direction along the trench line after the step of disposing the member. . The brittle substrate is disconnected continuously in the direction intersecting the trench line immediately below the trench line by the crack line. The method for dividing a brittle substrate of the present invention further includes a step of dividing the brittle substrate along the crack line.
 なお上記「表面に刃先を押し付ける」とは、「表面」の任意の位置に刃先を押し付けることを意味するものであり、よって、「表面」の縁に刃先を押し付けることも意味し得る。 The above-mentioned “pressing the blade edge against the surface” means pressing the blade edge at an arbitrary position on the “surface”, and thus it can also mean pressing the blade edge against the edge of the “surface”.
 本発明によれば、脆性基板が分断される位置を規定するラインとして、その直下にクラックを有しないトレンチラインが形成される。分断の直接のきっかけとして用いられることになるクラックラインは、トレンチラインに沿ってクラックを自己整合的に伸展させることで形成される。よってトレンチラインの形成後かつクラックラインの形成前の脆性基板は、分断される位置がトレンチラインによって規定されつつも、クラックラインが未だ形成されていないので容易に分断は生じない安定状態にある。脆性基板上に部材を設ける工程がこの安定状態において行なわれることにより、この工程時に脆性基板が意図せず分断してしまうことを避けることができる。またこの工程はトレンチラインの形成後に行なわれるので、トレンチラインの形成のための刃先の移動が部材によって妨げられることがない。これにより、トレンチラインの配置と部材の配置とは互いに自由に定められ得る。よってトレンチラインが部材間の狭い領域を通る構造を得ることが可能である。その後、トレンチラインを用いてクラックラインを形成し、そしてそれに沿って脆性基板を分断することにより、部材間の狭い領域を境界として脆性基板を分断することができる。以上のように、脆性基板上に部材を設ける工程中に脆性基板が意図せず分断してしまうことを避けつつ、部材間の狭い領域を境界として脆性基板を分断することができる。 According to the present invention, a trench line having no crack is formed immediately below the line that defines the position where the brittle substrate is divided. The crack line to be used as a direct trigger for the division is formed by extending the crack along the trench line in a self-aligning manner. Therefore, the brittle substrate after the formation of the trench line and before the formation of the crack line is in a stable state in which the position to be divided is defined by the trench line, but the crack line has not yet been formed and the division is not easily caused. Since the step of providing the member on the brittle substrate is performed in this stable state, it is possible to prevent the brittle substrate from being unintentionally divided during this step. Further, since this step is performed after the trench line is formed, the movement of the blade edge for forming the trench line is not hindered by the member. Thereby, arrangement | positioning of a trench line and arrangement | positioning of a member can be freely defined mutually. Therefore, it is possible to obtain a structure in which the trench line passes through a narrow region between the members. Thereafter, by forming a crack line using the trench line and dividing the brittle substrate along the trench line, the brittle substrate can be divided with a narrow region between the members as a boundary. As described above, the brittle substrate can be divided at a narrow region between the members as a boundary while avoiding the brittle substrate being unintentionally divided during the step of providing the member on the brittle substrate.
本発明の実施の形態1における脆性基板の分断方法を概略的に示す上面図である((A)~(E))。FIG. 2 is a top view schematically showing a method for cutting a brittle substrate in Embodiment 1 of the present invention ((A) to (E)). 図1(A)の線IIA-IIAに沿う概略端面図(A)、図1(B)の線IIB-IIBに沿う概略端面図(B)、図1(C)の線IIC-IICに沿う概略端面図(C)、図1(D)の線IID-IIDに沿う概略端面図(D)、および図1(E)の線IIE-IIEに沿う概略端面図(E)である。1A is a schematic end view along line IIA-IIA in FIG. 1A, a schematic end view along line IIB-IIB in FIG. 1B is taken along line IIC-IIC in FIG. FIG. 2 is a schematic end view (C), a schematic end view (D) along line IID-IID in FIG. 1 (D), and a schematic end view (E) along line IIE-IIE in FIG. 1 (E). 本発明の実施の形態1における脆性基板の分断方法において形成されるトレンチラインの構成を概略的に示す端面図(A)、およびクラックラインの構成を概略的に示す端面図(B)である。It is the end view (A) which shows roughly the structure of the trench line formed in the cutting method of the brittle board | substrate in Embodiment 1 of this invention, and the end view (B) which shows the structure of a crack line roughly. 本発明の実施の形態1における脆性基板の分断方法の構成を概略的に示すフロー図である。It is a flowchart which shows schematically the structure of the brittle board | substrate parting method in Embodiment 1 of this invention. 本発明の実施の形態2における脆性基板の分断方法に用いられる器具の構成を概略的に示す側面図(A)、および、上記器具が有する刃先の構成を図5(A)の矢印VBの視点で概略的に示す平面図(B)である。FIG. 5A is a side view schematically showing the configuration of the instrument used in the brittle substrate cutting method according to Embodiment 2 of the present invention, and the configuration of the blade edge of the instrument is the viewpoint of arrow VB in FIG. It is a top view (B) shown roughly by. 本発明の実施の形態2における脆性基板の分断方法を概略的に示す上面図である((A)および(B))。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 2 of this invention ((A) and (B)). 本発明の実施の形態2の第1の変形例の脆性基板の分断方法を概略的に示す上面図である((A)および(B))。It is a top view which shows roughly the cutting method of the brittle board | substrate of the 1st modification of Embodiment 2 of this invention ((A) and (B)). 本発明の実施の形態2の第2の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態2の第3の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 3rd modification of Embodiment 2 of this invention. 本発明の実施の形態3における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of the brittle board | substrate in Embodiment 3 of this invention. 本発明の実施の形態3における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 3 of this invention. 本発明の実施の形態3における脆性基板の分断方法の第3の工程を概略的に示す上面図である。It is a top view which shows roughly the 3rd process of the cutting method of a brittle board | substrate in Embodiment 3 of this invention. 本発明の実施の形態3の第1の変形例の脆性基板の分断方法を概略的に示す上面図である((A)および(B))。It is a top view which shows roughly the cutting method of the brittle board | substrate of the 1st modification of Embodiment 3 of this invention ((A) and (B)). 本発明の実施の形態3の第2の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the division | segmentation method of the brittle board | substrate of the 2nd modification of Embodiment 3 of this invention. 本発明の実施の形態4における脆性基板の分断方法を概略的に示す上面図である((A)および(B))。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 4 of this invention ((A) and (B)). 本発明の実施の形態5における脆性基板の分断方法を概略的に示す上面図である((A)および(B))。It is a top view which shows roughly the cutting method of the brittle board | substrate in Embodiment 5 of this invention ((A) and (B)). 本発明の実施の形態5の変形例の脆性基板の分断方法を概略的に示す上面図である。It is a top view which shows roughly the cutting method of the brittle board | substrate of the modification of Embodiment 5 of this invention. 本発明の実施の形態6における脆性基板の分断方法に用いられる器具の構成を概略的に示す側面図(A)、および、上記器具が有する刃先の構成を図18(A)の矢印XVIIIBの視点で概略的に示す平面図(B)である。A side view (A) schematically showing the configuration of the instrument used in the method for cutting a brittle substrate in Embodiment 6 of the present invention, and the configuration of the blade edge of the instrument shown in FIG. 18 (A) as viewed from arrow XVIIIB It is a top view (B) shown roughly by.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 本実施の形態の脆性基板の分断方法について、以下に説明する。
(Embodiment 1)
A method for dividing a brittle substrate according to this embodiment will be described below.
 図1(A)および図2(A)を参照して、まずガラス基板4(脆性基板)が準備される(図4:ステップS10)。ガラス基板4は、上面SF1(表面)と、その反対の下面SF2とを有する。ガラス基板4は、上面SF1に垂直な厚さ方向DTを有する。また刃先51およびシャンク52を有するカッティング器具50が準備される。刃先51は、そのホルダとしてのシャンク52に固定されることによって保持されている。なおカッティング器具のより詳しい構造は実施の形態2および6において説明される。 1A and 2A, first, a glass substrate 4 (brittle substrate) is prepared (FIG. 4: step S10). The glass substrate 4 has an upper surface SF1 (front surface) and an opposite lower surface SF2. The glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1. A cutting instrument 50 having a cutting edge 51 and a shank 52 is prepared. The blade edge 51 is held by being fixed to a shank 52 as its holder. A more detailed structure of the cutting tool will be described in the second and sixth embodiments.
 次に、ガラス基板4の上面SF1に刃先51が押し付けられる(図4:ステップS20)。次に、押し付けられた刃先51がガラス基板4の上面SF1上で摺動させられる(図1(A)中の矢印参照)。 Next, the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 (FIG. 4: step S20). Next, the pressed blade edge 51 is slid on the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 1A).
 図1(B)および図2(B)を参照して、刃先51の上記摺動によってガラス基板4の上面SF1上に塑性変形が発生させられる。これにより上面SF1上に、溝形状を有するトレンチラインTLが形成される(図4:ステップS30)。図3(A)を参照して、トレンチラインTLを形成する工程は、トレンチラインTLの直下においてガラス基板4がトレンチラインTLの延在方向(図1(B)における横方向)と交差する方向DCにおいて連続的につながっている状態であるクラックレス状態が得られるように行なわれる。クラックレス状態においては、塑性変形によるトレンチラインTLは形成されているものの、それに沿ったクラックは形成されていない。よって従来のブレーク工程のようにガラス基板4に単純に曲げモーメントなどを発生させる外力を加えても、トレンチラインTLに沿った分断は容易には生じない。このためクラックレス状態においてはトレンチラインTLに沿った分断工程は行われない。クラックレス状態を得るために、刃先51に加えられる荷重は、クラックが発生しない程度に小さく、かつ塑性変形が発生する程度に大きくされる。 1 (B) and 2 (B), plastic deformation is generated on the upper surface SF1 of the glass substrate 4 by the sliding of the blade edge 51. As a result, a trench line TL having a groove shape is formed on the upper surface SF1 (FIG. 4: Step S30). Referring to FIG. 3A, the step of forming trench line TL is a direction in which glass substrate 4 intersects the extending direction of trench line TL (lateral direction in FIG. 1B) immediately below trench line TL. This is performed so as to obtain a crackless state in which DC are continuously connected. In the crackless state, the trench line TL is formed by plastic deformation, but no crack is formed along the trench line TL. Therefore, even if an external force that simply generates a bending moment or the like is applied to the glass substrate 4 as in the conventional break process, the division along the trench line TL does not easily occur. For this reason, in the crackless state, the dividing step along the trench line TL is not performed. In order to obtain a crackless state, the load applied to the blade edge 51 is so small that cracks do not occur and is large enough to cause plastic deformation.
 クラックレス状態は、必要な時間に渡って維持される(図4:ステップS40)。クラックレス状態の維持のためには、トレンチラインTLにおいてガラス基板4に対して過度の応力が加わるような操作、たとえば基板に破損を生じるような大きな外部応力の印加または大きな温度変化を伴う加熱、が避けられればよい。クラックレス状態が維持されつつ、ガラス基板4が次の工程の実施場所へと搬送され得る。またクラックレス状態が維持されつつ、ガラス基板4が次の工程の実施まで保管され得る。 The crackless state is maintained for a necessary time (FIG. 4: Step S40). In order to maintain the crackless state, an operation in which excessive stress is applied to the glass substrate 4 in the trench line TL, for example, heating with application of a large external stress that causes damage to the substrate or a large temperature change, Should be avoided. While the crackless state is maintained, the glass substrate 4 can be transported to a place where the next step is performed. Further, the glass substrate 4 can be stored until the next step while the crackless state is maintained.
 図1(C)および図2(C)を参照して、トレンチラインTLの形成後、クラックレス状態が維持されつつ、上面SF1上に積層材11(部材)が設けられる。積層材11を設ける工程は、たとえば、予め準備された部材を接合することによって、または、原料を堆積することによって行い得る。 Referring to FIGS. 1C and 2C, after forming trench line TL, laminated material 11 (member) is provided on upper surface SF1 while maintaining a crackless state. The step of providing the laminated material 11 can be performed, for example, by joining members prepared in advance or by depositing raw materials.
 積層材11は、上面SF1上においてトレンチラインTLを介して互いに分離した部分11aおよび11bを有する。言い換えれば、上面SF1上において部分11aおよび11bはトレンチラインTLを挟んでいる。部分11aおよび11bはガラス基板4の上面SF1上にトレンチラインTLを介して間隔Wで配置されてもよい。間隔Wは、表面SF1上において部分11aおよび11bの間を通るように刃先51を摺動させる動作が不可能な程度に小さくてもよい。なぜならば本実施の形態によればそのような動作が不要なためである。刃先51の上記動作が不可能となる原因は、部材11と、刃先51またはシャンク52との衝突である。間隔Wは、たとえば100μm以下とされ得る。部分11aおよび11bの各々はトレンチラインTLにごく近接していてもよい。 The laminated material 11 has portions 11a and 11b separated from each other via the trench line TL on the upper surface SF1. In other words, the portions 11a and 11b sandwich the trench line TL on the upper surface SF1. The portions 11a and 11b may be disposed on the upper surface SF1 of the glass substrate 4 with a gap W via the trench line TL. The interval W may be so small that the operation of sliding the blade edge 51 so as to pass between the portions 11a and 11b on the surface SF1 is impossible. This is because according to the present embodiment, such an operation is unnecessary. The cause that the above operation of the blade edge 51 becomes impossible is a collision between the member 11 and the blade edge 51 or the shank 52. The interval W can be set to 100 μm or less, for example. Each of the portions 11a and 11b may be in close proximity to the trench line TL.
 積層材11は、上面SF1上において部分11aおよび11bの間からトレンチラインTLが突出するように設けられることが好ましい。図1(C)においては、部分11aおよびbの間の領域からトレンチラインTLの右端部および左端部の各々が突出している。トレンチラインTLの一方端のみが突出していてもよい。 The laminated material 11 is preferably provided so that the trench line TL protrudes from between the portions 11a and 11b on the upper surface SF1. In FIG. 1C, each of the right end portion and the left end portion of the trench line TL protrudes from the region between the portions 11a and 11b. Only one end of the trench line TL may protrude.
 なお下面SF2上にも積層材12が設けられてもよい。積層材12は、互いに分離した部分12aおよび12bを有してもよい。 Note that the laminated material 12 may also be provided on the lower surface SF2. The laminate 12 may have portions 12a and 12b separated from each other.
 さらに図1(D)および図2(D)を参照して、積層材11が設けられた後、トレンチラインTLに沿って厚さ方向DTにおけるガラス基板4のクラックが伸展させられる。これにより、トレンチラインTLに対して自己整合的にクラックラインCLが形成される(図4:ステップS50)。図3(B)を参照して、クラックラインCLによってトレンチラインTLの直下においてガラス基板4はトレンチラインTLの延在方向(図1(B)における横方向)と交差する方向DCにおいて連続的なつながりが断たれている。ここで「連続的なつながり」とは、言い換えれば、クラックによって遮られていないつながりのことである。なお、上述したように連続的なつながりが断たれている状態において、クラックラインCLのクラックを介してガラス基板4の部分同士が接触していてもよい。 Further, referring to FIGS. 1D and 2D, after the laminated material 11 is provided, the crack of the glass substrate 4 in the thickness direction DT is extended along the trench line TL. Thereby, the crack line CL is formed in a self-aligned manner with respect to the trench line TL (FIG. 4: Step S50). Referring to FIG. 3B, the glass substrate 4 is continuous in the direction DC intersecting the extending direction of the trench line TL (lateral direction in FIG. 1B) immediately below the trench line TL by the crack line CL. The connection is broken. Here, “continuous connection” means a connection that is not interrupted by a crack. In addition, in the state where the continuous connection is cut as described above, the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
 クラックラインCLの形成は、たとえば、トレンチラインTLの端部においてガラス基板4に、トレンチラインTL付近の内部応力の歪みを解放するような応力を印加することによって開始される。図1(C)の例においては、トレンチラインTLの右端部または左端部においてガラス基板4に応力が印加される。図1(C)に示すように部分11aおよび11bの間からトレンチラインTLが突出している場合、応力印加の際に部分11aおよび11bが障害となりにくい。なお詳しくは実施の形態2以降で後述するが、上記の両端部のうち応力が印加されるのにより好ましい方が存在し得る。また応力の印加は、たとえば、形成されたトレンチラインTL上に再度刃先を押し付けることによる外部応力の印加、または、レーザ光の照射などによる加熱によって行ない得る。 Formation of the crack line CL is started, for example, by applying a stress to the glass substrate 4 at the end of the trench line TL so as to release the distortion of the internal stress in the vicinity of the trench line TL. In the example of FIG. 1C, stress is applied to the glass substrate 4 at the right end or the left end of the trench line TL. As shown in FIG. 1C, when the trench line TL protrudes from between the portions 11a and 11b, the portions 11a and 11b are unlikely to become obstacles when stress is applied. Although details will be described later in the second and subsequent embodiments, there may be a more preferable one of the both end portions to which stress is applied. The stress can be applied, for example, by applying an external stress by pressing the blade edge again onto the formed trench line TL, or by heating with laser light irradiation.
 さらに図1(E)および図2(E)を参照して、次に、クラックラインCLに沿ってガラス基板4が基板片4aおよび4bへ分断される(図4:ステップS60)。すなわち、いわゆるブレーク工程が行なわれる。ブレーク工程は、たとえば、ガラス基板4への外力FB(図2(D))の印加によって行ない得る。これにより部分11aおよび12aが設けられた基板片4aと、部分11bおよび12bが設けられた基板片4bとが得られる。 Further referring to FIG. 1 (E) and FIG. 2 (E), next, glass substrate 4 is divided into substrate pieces 4a and 4b along crack line CL (FIG. 4: step S60). That is, a so-called break process is performed. The break process can be performed, for example, by applying an external force FB (FIG. 2D) to the glass substrate 4. Thereby, the board | substrate piece 4a provided with the parts 11a and 12a and the board | substrate piece 4b provided with the parts 11b and 12b are obtained.
 本実施の形態によれば、ガラス基板4が分断される位置を規定するラインとして、その直下にクラックを有しないトレンチラインTLが形成される。分断の直接のきっかけとして用いられることになるクラックラインCLは、トレンチラインTLに沿ってクラックを自己整合的に伸展させることで形成される。よってトレンチラインTLの形成後かつクラックラインCLの形成前のガラス基板4は、分断される位置がトレンチラインTLによって規定されつつも、クラックラインCLが未だ形成されていないので容易に分断は生じない安定状態にある。ガラス基板4上に積層材11を設ける工程がこの安定状態において行なわれることにより、この工程時にガラス基板4が意図せず分断してしまうことを避けることができる。 According to the present embodiment, a trench line TL having no cracks is formed immediately below the line that defines the position where the glass substrate 4 is divided. The crack line CL to be used as a direct trigger for the division is formed by extending the crack in a self-aligned manner along the trench line TL. Therefore, the glass substrate 4 after the formation of the trench line TL and before the formation of the crack line CL is not easily divided because the position to be divided is defined by the trench line TL but the crack line CL is not yet formed. It is in a stable state. Since the step of providing the laminated material 11 on the glass substrate 4 is performed in this stable state, it is possible to avoid the glass substrate 4 being unintentionally divided during this step.
 またこの工程はトレンチラインTLの形成後に行なわれるので、トレンチラインTLの形成のための刃先の移動が積層材11によって妨げられることがない。これにより、トレンチラインTLの配置と積層材11の配置とは互いに自由に定められ得る。よってトレンチラインTLが積層材11間の狭い領域を通る構造を得ることが可能である。その後、トレンチラインTLを用いてクラックラインCLを形成し、そしてそれに沿ってガラス基板4を分断することにより、積層材11間の狭い領域(図1(D)における部分11aおよび11bの間の領域)を境界としてガラス基板4を分断することができる。 Further, since this step is performed after the trench line TL is formed, the movement of the blade edge for forming the trench line TL is not hindered by the laminated material 11. Thereby, arrangement | positioning of the trench line TL and arrangement | positioning of the laminated material 11 can be freely defined mutually. Therefore, it is possible to obtain a structure in which the trench line TL passes through a narrow region between the laminated materials 11. Thereafter, the crack line CL is formed using the trench line TL, and the glass substrate 4 is divided along the crack line CL, thereby narrowing the region between the laminated materials 11 (the region between the portions 11a and 11b in FIG. 1D). ) As a boundary, the glass substrate 4 can be divided.
 以上のように、ガラス基板4上に積層材11を設ける工程中にガラス基板4が意図せず分断してしまうことを避けつつ、積層材11間の狭い領域を境界としてガラス基板4を分断することができる。 As described above, the glass substrate 4 is divided at a narrow region between the laminated materials 11 while avoiding the glass substrate 4 being unintentionally divided during the step of providing the laminated material 11 on the glass substrate 4. be able to.
 また本実施の形態によれば、積層材11の部分11aおよび11b間の幅Wを任意に狭くできる。これにより部分11aおよび11bがより密集して配置され得る。よってガラス基板4をより効率的に利用し得る。 Further, according to the present embodiment, the width W between the portions 11a and 11b of the laminated material 11 can be arbitrarily reduced. Thereby, the parts 11a and 11b can be arranged more densely. Therefore, the glass substrate 4 can be used more efficiently.
 また本実施の形態は、積層材11が耐熱性の低い材料、たとえば合成樹脂、からなる部分を含む場合に、特に有利である。なぜならばそのような場合、積層材の間の狭い隙間に対応して狭い幅を有するレーザ光によるスクライブを行なう技術を本実施の形態の方法に代わって用いることが、積層材への熱的悪影響を考慮すれば困難だからである。 Further, this embodiment is particularly advantageous when the laminated material 11 includes a portion made of a material having low heat resistance, for example, a synthetic resin. This is because in such a case, using a technique of scribing with a laser beam having a narrow width corresponding to a narrow gap between the laminated materials in place of the method of the present embodiment may adversely affect the laminated materials. This is because it is difficult to consider.
 なお本実施の形態におけるクラックラインCLの形成工程は、いわゆるブレーク工程と本質的に異なっている。ブレーク工程は、既に形成されているクラックを厚さ方向にさらに伸展させ、基板を完全に分離するものである。一方、クラックラインCLの形成工程は、トレンチラインTLの形成によって得られたクラックレス状態から、クラックを有する状態への変化をもたらすものである。この変化は、クラックレス状態が有する内部応力の開放によって生じると考えられる。トレンチラインTLの形成時の塑性変形の状態、およびトレンチラインTLの形成によって生成される内部応力の大きさや方向性などの状態は、回転刃の転動が用いられる場合と、本実施の形態のように刃先の摺動が用いられる場合とでは異なると考えられ、刃先の摺動が用いられる場合には、より広いスクライブ条件においてクラックが発生しやすくなる。また内部応力の開放には何らかのきっかけが必要であり、上述したような外部からの応力印加によるトレンチラインTL上のクラックの発生がそのようなきっかけとして作用すると考えられる。トレンチラインTLおよびクラックラインCLの好適な形成方法の詳細は、以下の実施の形態2~6において説明する。 Note that the process of forming the crack line CL in the present embodiment is essentially different from a so-called break process. In the break process, the already formed cracks are further extended in the thickness direction to completely separate the substrate. On the other hand, the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has. The state of plastic deformation at the time of forming the trench line TL and the state of the internal stress generated by the formation of the trench line TL, such as the direction and the direction of the rolling blade rolling, and the state of this embodiment Thus, it is considered that this is different from the case where sliding of the cutting edge is used, and when sliding of the cutting edge is used, cracks are likely to occur under wider scribe conditions. Moreover, some kind of trigger is necessary to release the internal stress, and it is considered that the occurrence of cracks on the trench line TL due to the application of external stress as described above acts as such a trigger. Details of a preferable method of forming the trench line TL and the crack line CL will be described in the following second to sixth embodiments.
 (実施の形態2)
 はじめに、本実施の形態における脆性基板の分断方法において用いられる刃先について、以下に説明する。
(Embodiment 2)
First, the cutting edge used in the brittle substrate cutting method according to the present embodiment will be described below.
 図5(A)および(B)を参照して、刃先51には、天面SD1(第1の面)と、天面SD1を取り囲む複数の面とが設けられている。これら複数の面は側面SD2(第2の面)および側面SD3(第3の面)を含む。天面SD1、側面SD2およびSD3(第1~第3の面)は、互いに異なる方向を向いており、かつ互いに隣り合っている。刃先51は、天面SD1、側面SD2およびSD3が合流する頂点を有し、この頂点によって刃先51の突起部PPが構成されている。また側面SD2およびSD3は、刃先51の側部PSを構成する稜線をなしている。側部PSは突起部PPから線状に延びている。また側部PSは、上述したように稜線であることから、線状に延びる凸形状を有する。 5A and 5B, the blade edge 51 is provided with a top surface SD1 (first surface) and a plurality of surfaces surrounding the top surface SD1. The plurality of surfaces include a side surface SD2 (second surface) and a side surface SD3 (third surface). The top surface SD1, the side surfaces SD2, and SD3 (first to third surfaces) face different directions and are adjacent to each other. The blade edge 51 has a vertex at which the top surface SD1, the side surfaces SD2 and SD3 merge, and the protrusion PP of the blade edge 51 is configured by this vertex. Further, the side surfaces SD2 and SD3 form ridge lines constituting the side portion PS of the blade edge 51. The side part PS extends linearly from the protrusion part PP. Moreover, since the side part PS is a ridgeline as mentioned above, it has the convex shape extended linearly.
 刃先51はダイヤモンドポイントであることが好ましい。すなわち刃先51は、硬度および表面粗さを小さくすることができる点からダイヤモンドから作られていることが好ましい。より好ましくは刃先51は単結晶ダイヤモンドから作られている。さらに好ましくは結晶学的に言って、天面SD1は{001}面であり、側面SD2およびSD3の各々は{111}面である。この場合、側面SD2およびSD3は、異なる向きを有するものの、結晶学上、互いに等価な結晶面である。 The cutting edge 51 is preferably a diamond point. That is, the cutting edge 51 is preferably made of diamond from the viewpoint that the hardness and the surface roughness can be reduced. More preferably, the cutting edge 51 is made of single crystal diamond. More preferably, crystallographically, the top surface SD1 is a {001} plane, and each of the side surfaces SD2 and SD3 is a {111} plane. In this case, although the side surfaces SD2 and SD3 have different orientations, they are crystal surfaces that are equivalent to each other in terms of crystallography.
 なお単結晶でないダイヤモンドが用いられてもよく、たとえば、CVD(Chemical Vapor Deposition)法で合成された多結晶体ダイヤモンドが用いられてもよい。あるいは、微粒のグラファイトや非グラファイト状炭素から、鉄族元素などの結合材を含まずに焼結された多結晶体ダイヤモンド粒子を鉄族元素などの結合材によって結合させた焼結ダイヤモンドが用いられてもよい。 Diamond that is not a single crystal may be used. For example, polycrystalline diamond synthesized by a CVD (Chemical Vapor Deposition) method may be used. Alternatively, sintered diamond obtained by bonding polycrystalline diamond particles, which are sintered from fine graphite or non-graphitic carbon without containing a binder such as an iron group element, with a binder such as an iron group element is used. May be.
 シャンク52は軸方向AXに沿って延在している。刃先51は、天面SD1の法線方向が軸方向AXにおおよそ沿うようにシャンク52に取り付けられることが好ましい。 The shank 52 extends along the axial direction AX. The blade edge 51 is preferably attached to the shank 52 so that the normal direction of the top surface SD1 is approximately along the axial direction AX.
 カッティング器具50を用いてトレンチラインTL(図3(A))を形成するためには、ガラス基板4の上面SF1に、刃先51の突起部PPおよび側部PSが、ガラス基板4が有する厚さ方向DTへ押し付けられる。次に側部PSを上面SF1上に射影した方向におおよそ沿って、刃先51が上面SF1上を摺動させられる。これにより上面SF1上に、垂直クラックを伴わない溝状のトレンチラインTLが形成される。トレンチラインTLはガラス基板4の塑性変形によって生じるが、この際にガラス基板4が若干削れてもよい。ただしこのような削れは微細な破片を生じ得ることから、なるべく少ないことが好ましい。 In order to form the trench line TL (FIG. 3 (A)) using the cutting tool 50, the protrusion PP and the side PS of the blade edge 51 on the upper surface SF1 of the glass substrate 4 have a thickness that the glass substrate 4 has. Pressed in the direction DT. Next, the blade edge 51 is slid on the upper surface SF1 substantially along the direction in which the side portion PS is projected onto the upper surface SF1. As a result, a groove-like trench line TL without a vertical crack is formed on the upper surface SF1. Although the trench line TL is generated by plastic deformation of the glass substrate 4, the glass substrate 4 may be slightly shaved at this time. However, since such scraping can generate fine fragments, it is preferable that the amount is as small as possible.
 刃先51の摺動によって、トレンチラインTLおよびクラックラインCL(図3(B))が同時に形成される場合と、トレンチラインTLのみが形成される場合とがある。クラックラインCLは、トレンチラインTLのくぼみから厚さ方向DTに伸展したクラックであり、上面SF1上においては線状に延びている。後述する方法によれば、トレンチラインTLのみが形成された後、それに沿ってクラックラインCLを形成することができる。 There are cases where the trench line TL and the crack line CL (FIG. 3B) are formed simultaneously by sliding of the blade edge 51, or only the trench line TL is formed. The crack line CL is a crack extending in the thickness direction DT from the recess of the trench line TL, and extends linearly on the upper surface SF1. According to the method described later, after only the trench line TL is formed, the crack line CL can be formed along the trench line TL.
 次に、ガラス基板4の分断方法について、以下に説明する。 Next, a method for dividing the glass substrate 4 will be described below.
 図6(A)を参照して、ステップS10(図4)にて、まずガラス基板4が準備される。ガラス基板4は平坦な上面SF1を有する。上面SF1を囲む縁は、互いに対向する辺ED1(第1の辺)および辺ED2(第2の辺)を含む。図6(A)で示す例においては、縁は長方形状である。よって辺ED1およびED2は互いに平行な辺である。また図6(A)で示す例においては辺ED1およびED2は長方形の短辺である。またガラス基板4は、上面SF1に垂直な厚さ方向DT(図5(A))を有する。 Referring to FIG. 6A, glass substrate 4 is first prepared in step S10 (FIG. 4). The glass substrate 4 has a flat upper surface SF1. The edge surrounding the upper surface SF1 includes a side ED1 (first side) and a side ED2 (second side) that face each other. In the example shown in FIG. 6A, the edges are rectangular. Therefore, the sides ED1 and ED2 are sides parallel to each other. In the example shown in FIG. 6A, the sides ED1 and ED2 are rectangular short sides. The glass substrate 4 has a thickness direction DT (FIG. 5A) perpendicular to the upper surface SF1.
 次に、ステップS20(図4)にて、上面SF1に刃先51が位置N1で押し付けられる。位置N1の詳細は後述する。刃先51の押し付けは、図5(A)を参照して、ガラス基板4の上面SF1上で刃先51の突起部PPが辺ED1および側部PSの間に配置されるように、かつ刃先51の側部PSが突起部PPと辺ED2の間に配置されるように行なわれる。 Next, in step S20 (FIG. 4), the blade edge 51 is pressed against the upper surface SF1 at the position N1. Details of the position N1 will be described later. With reference to FIG. 5A, the cutting edge 51 is pressed such that the projection PP of the cutting edge 51 is disposed between the side ED1 and the side portion PS on the upper surface SF1 of the glass substrate 4 and the cutting edge 51 is pressed. The side PS is arranged between the protrusion PP and the side ED2.
 次に、ステップS30(図4)にて、上面SF1上に複数のトレンチラインTL(図中では5つのライン)が形成される。トレンチラインTLの形成は、位置N1(第1の位置)および位置N3の間で行なわれる。位置N1およびN3の間には位置N2(第2の位置)が位置する。よってトレンチラインTLは、位置N1およびN2の間と、位置N2およびN3の間とに形成される。 Next, in step S30 (FIG. 4), a plurality of trench lines TL (five lines in the figure) are formed on the upper surface SF1. The formation of the trench line TL is performed between the position N1 (first position) and the position N3. A position N2 (second position) is located between the positions N1 and N3. Therefore, trench line TL is formed between positions N1 and N2 and between positions N2 and N3.
 位置N1およびN3は、図6(A)に示すようにガラス基板4の上面SF1の縁から離れて位置してもよく、あるいは、その一方または両方が上面SF1の縁に位置してもよい。形成されるトレンチラインTLは、前者の場合はガラス基板4の縁から離れており、後者の場合はガラス基板4の縁に接している。 The positions N1 and N3 may be located away from the edge of the upper surface SF1 of the glass substrate 4 as shown in FIG. 6A, or one or both of them may be located at the edge of the upper surface SF1. The formed trench line TL is separated from the edge of the glass substrate 4 in the former case, and is in contact with the edge of the glass substrate 4 in the latter case.
 位置N1およびN2のうち位置N1の方が辺ED1により近く、また位置N1およびN2のうち位置N2の方が辺ED2により近い。なお図6(A)に示す例では、位置N1は辺ED1およびED2のうち辺ED1に近く、位置N2は辺ED1およびED2のうち辺ED2に近いが、位置N1およびN2の両方が辺ED1またはED2のいずれか一方の近くに位置してもよい。 Among the positions N1 and N2, the position N1 is closer to the side ED1, and the position N2 is closer to the side ED2 among the positions N1 and N2. In the example shown in FIG. 6A, the position N1 is close to the side ED1 of the sides ED1 and ED2, and the position N2 is close to the side ED2 of the sides ED1 and ED2, but both the positions N1 and N2 are the side ED1 or It may be located near either one of ED2.
 トレンチラインTLが形成される際には、本実施の形態においては、位置N1から位置N2へ刃先51が変位させられ、さらに位置N2から位置N3へ変位させられる。すなわち、図5(A)を参照して、刃先51が、辺ED1から辺ED2へ向かう方向である方向DAへ変位させられる。方向DAは、刃先51から延びる軸AXを上面SF1上へ射影した方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を引き摺られる。 When the trench line TL is formed, in the present embodiment, the blade edge 51 is displaced from the position N1 to the position N2, and is further displaced from the position N2 to the position N3. That is, referring to FIG. 5A, the blade edge 51 is displaced in a direction DA that is a direction from the side ED1 toward the side ED2. The direction DA corresponds to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is dragged on the upper surface SF <b> 1 by the shank 52.
 図6(B)を参照して、次に、実施の形態1で説明したクラックレス状態(図3(A))が所望の時間に渡って維持される。その間に、ステップS40(図4)として、実施の形態1と同様に積層材11が設けられる。積層材11は、上面SF1上において積層材11の部分の間からトレンチラインTLが辺ED2に向かって突出するように設けられる。 Referring to FIG. 6B, next, the crackless state (FIG. 3A) described in the first embodiment is maintained for a desired time. In the meantime, as step S40 (FIG. 4), the laminated material 11 is provided as in the first embodiment. The laminated material 11 is provided on the upper surface SF1 so that the trench line TL protrudes from between the portions of the laminated material 11 toward the side ED2.
 次にステップS50(図4)にて、トレンチラインTLに沿って位置N2から位置N1の方へ(図中、破線矢印参照)、厚さ方向DT(図3(B))におけるガラス基板4のクラックを伸展させることによってクラックラインCLが形成される。クラックラインCLの形成は、アシストラインALおよびトレンチラインTLが位置N2で互いに交差することによって開始される。この目的で、トレンチラインTLを形成した後にアシストラインALが形成される。アシストラインALは、厚さ方向DTにおけるクラックをともなう通常のスクライブラインであり、トレンチラインTL付近の内部応力の歪みを解放するものである。アシストラインALの形成方法は、特に限定されないが、図6(B)に示すように、上面SF1の縁を基点として形成されてもよい。 Next, in step S50 (FIG. 4), the position of the glass substrate 4 in the thickness direction DT (FIG. 3B) from the position N2 to the position N1 along the trench line TL (see the broken line arrow in the figure). A crack line CL is formed by extending the crack. Formation of the crack line CL is started when the assist line AL and the trench line TL intersect each other at the position N2. For this purpose, the assist line AL is formed after the trench line TL is formed. The assist line AL is a normal scribe line with a crack in the thickness direction DT, and releases internal stress distortion in the vicinity of the trench line TL. The method of forming the assist line AL is not particularly limited, but may be formed using the edge of the upper surface SF1 as a base point as shown in FIG. 6B.
 なお位置N2から位置N1への方向に比して、位置N2から位置N3への方向へは、クラックラインCLが形成されにくい。つまりクラックラインCLの伸展のしやすさには方向依存性が存在する。よってクラックラインCLが位置N1およびN2の間には形成され位置N2およびN3の間には形成されないという現象が生じ得る。本実施の形態は位置N1およびN2間に沿ったガラス基板4の分断を目的としており、位置N2およびN3間に沿ったガラス基板4の分離は目的としていない。よって位置N1およびN2間でクラックラインCLが形成されることが必要である一方で、位置N2およびN3間でのクラックラインCLの形成されにくさは問題とはならない。 Note that the crack line CL is less likely to be formed in the direction from the position N2 to the position N3 than in the direction from the position N2 to the position N1. That is, the ease of extension of the crack line CL has a direction dependency. Therefore, the phenomenon that the crack line CL is formed between the positions N1 and N2 but not between the positions N2 and N3 may occur. The present embodiment is intended to divide the glass substrate 4 along the positions N1 and N2, and is not intended to separate the glass substrate 4 along the positions N2 and N3. Therefore, while it is necessary to form the crack line CL between the positions N1 and N2, the difficulty of forming the crack line CL between the positions N2 and N3 is not a problem.
 次に、ステップS60(図4)にて、クラックラインCLに沿ってガラス基板4が分断される。具体的にはブレーク工程が行なわれる。なおクラックラインCLがその形成時に厚さ方向DTに完全に進行した場合は、クラックラインCLの形成とガラス基板4の分断とが同時に生じ得る。この場合、ブレーク工程を省略し得る。 Next, in step S60 (FIG. 4), the glass substrate 4 is divided along the crack line CL. Specifically, a break process is performed. Note that, when the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 may occur at the same time. In this case, the break process can be omitted.
 以上によりガラス基板4の分断が行なわれる。 Thus, the glass substrate 4 is divided.
 次に、上記分断方法の第1~第3の変形例について、以下に説明する。 Next, first to third modifications of the above dividing method will be described below.
 図7(A)を参照して、第1の変形例は、アシストラインALとトレンチラインTLとの交差が、クラックラインCL(図6(B))の形成開始のきっかけとして不十分な場合に関するものである。図7(B)を参照して、ガラス基板4へ、曲げモーメントなどを発生させる外力を加えることで、アシストラインALに沿ってガラス基板4が分離される。これによりクラックラインCLの形成が開始される。 Referring to FIG. 7A, the first modified example relates to a case where the intersection of the assist line AL and the trench line TL is insufficient as a trigger for starting the formation of the crack line CL (FIG. 6B). Is. With reference to FIG. 7B, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started.
 なお、図7(A)においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面SF2上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 7A, the assist line AL is formed on the upper surface SF1 of the glass substrate 4. However, the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF2 of the glass substrate 4. Good. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 また第1の変形例においては、ガラス基板4の分離によりトレンチラインTL付近の内部応力の歪みが解放され、それによりクラックラインCLの形成が開始される。したがってアシストラインAL自身が、トレンチラインTLに応力を加えることで形成されたクラックラインCLであってもよい。 In the first modification, the internal stress distortion in the vicinity of the trench line TL is released by the separation of the glass substrate 4, thereby starting the formation of the crack line CL. Therefore, the assist line AL itself may be a crack line CL formed by applying stress to the trench line TL.
 図8を参照して、第2の変形例においては、ステップS20(図4)にて、ガラス基板4の上面SF1に刃先51が位置N3で押し付けられる。ステップS30(図4)にて、トレンチラインTLが形成される際には、本変形例においては、位置N3から位置N2へ刃先51が変位させられ、さらに位置N2から位置N1へ変位させられる。すなわち、図5を参照して、刃先51が、辺ED2から辺ED1へ向かう方向である方向DBへ変位させられる。方向DBは、刃先51から延びる軸AXを上面SF1上へ射影した方向と反対方向に対応している。この場合、刃先51はシャンク52によって上面SF1上を押し進められる。 Referring to FIG. 8, in the second modification, the blade edge 51 is pressed against the upper surface SF1 of the glass substrate 4 at the position N3 in step S20 (FIG. 4). In step S30 (FIG. 4), when the trench line TL is formed, in the present modification, the blade edge 51 is displaced from the position N3 to the position N2, and is further displaced from the position N2 to the position N1. That is, referring to FIG. 5, the blade edge 51 is displaced in the direction DB that is the direction from the side ED2 toward the side ED1. The direction DB corresponds to a direction opposite to the direction in which the axis AX extending from the blade edge 51 is projected onto the upper surface SF1. In this case, the blade edge 51 is pushed forward on the upper surface SF 1 by the shank 52.
 図9を参照して、第3の変形例においては、ステップS30(図4)にてトレンチラインTLが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな力で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLの荷重が、位置N1に比して、トレンチラインTLの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 9, in the third modification, when the trench line TL is formed in step S30 (FIG. 4), the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 relative to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 本実施の形態によれば、トレンチラインTLからクラックラインCLを、より確実に形成することができる。 According to the present embodiment, the crack line CL can be more reliably formed from the trench line TL.
 また、後述する実施の形態3と異なり本実施の形態においては、トレンチラインTLが形成された時点(図6(A))ではアシストラインALは未だ形成されていない。よってクラックレス状態を、アシストラインALからの影響なく、より安定的に維持することができる。なお、クラックレス状態の安定性が問題とならない場合は、アシストラインALが形成されていない図6(A)の状態の代わりに、アシストラインALが形成された図7(A)の状態で積層材11が設けられてもよい。 Further, unlike the third embodiment described later, in the present embodiment, the assist line AL has not yet been formed at the time when the trench line TL is formed (FIG. 6A). Therefore, the crackless state can be maintained more stably without being affected by the assist line AL. If stability in the crackless state is not a problem, lamination is performed in the state of FIG. 7A where the assist line AL is formed instead of the state of FIG. 6A where the assist line AL is not formed. A material 11 may be provided.
 (実施の形態3)
 本実施の形態における脆性基板の分断方法について、図10~図12を用いつつ、以下に説明する。
(Embodiment 3)
A method for dividing a brittle substrate in the present embodiment will be described below with reference to FIGS.
 図10を参照して、本実施の形態においてはアシストラインALがトレンチラインTLの形成前に形成される。アシストラインALの形成方法自体は、図6(B)(実施の形態2)と同様である。 Referring to FIG. 10, in the present embodiment, assist line AL is formed before formation of trench line TL. The method of forming the assist line AL is the same as that in FIG. 6B (Embodiment 2).
 図11を参照して、次に、ステップS20(図4)にて上面SF1に刃先51が押し付けられ、そしてステップS30(図4)にて、トレンチラインTLが形成される。トレンチラインTLの形成方法自体は、図6(A)(実施の形態2)と同様である。アシストラインALおよびトレンチラインTLは位置N2で互いに交差する。次に、実施の形態2と同様、ステップS40(図4)が行なわれる。 Referring to FIG. 11, next, the blade edge 51 is pressed against the upper surface SF1 in step S20 (FIG. 4), and the trench line TL is formed in step S30 (FIG. 4). The formation method itself of the trench line TL is the same as that in FIG. 6A (Embodiment 2). The assist line AL and the trench line TL intersect each other at the position N2. Next, step S40 (FIG. 4) is performed as in the second embodiment.
 図12を参照して、次に、ステップS40(図4)として実施の形態2と同様に積層材11が設けられる。次に、ガラス基板4へ曲げモーメントなどを発生させる外力を加える通常のブレーク工程によって、アシストラインALに沿ってガラス基板4が分離される。これにより、ステップS50(図5)として、実施の形態1と同様のクラックラインCLの形成が開始される(図中、破線矢印参照)。なお、図10においてはアシストラインALがガラス基板4の上面SF1上に形成されるが、ガラス基板4を分離するためのアシストラインALはガラス基板4の下面SF2上に形成されてもよい。この場合、アシストラインALおよびトレンチラインTLは、平面レイアウト上、位置N2で互いに交差するが、互いに直接接触はしない。 Referring to FIG. 12, next, as step S40 (FIG. 4), the laminated material 11 is provided as in the second embodiment. Next, the glass substrate 4 is separated along the assist line AL by a normal break process in which an external force that generates a bending moment or the like is applied to the glass substrate 4. Thereby, as step S50 (FIG. 5), formation of the crack line CL similar to that of the first embodiment is started (see the broken line arrow in the figure). In FIG. 10, the assist line AL is formed on the upper surface SF <b> 1 of the glass substrate 4, but the assist line AL for separating the glass substrate 4 may be formed on the lower surface SF <b> 2 of the glass substrate 4. In this case, the assist line AL and the trench line TL intersect each other at the position N2 in the planar layout, but do not directly contact each other.
 なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the second embodiment described above.
 図13(A)を参照して、第1の変形例においては、アシストラインALはガラス基板4の下面SF2上に形成される。そして、図8(実施の形態2)と同様に、トレンチラインTLの形成が位置N3から位置N1へ行なわれる。図13(B)を参照して、積層材11が設けられた後、ガラス基板4へ曲げモーメントなどを発生させる外力を加えることで、アシストラインALに沿ってガラス基板4が分離される。これによりクラックラインCLの形成が開始される(図中、破線矢印参照)。 Referring to FIG. 13A, in the first modification, assist line AL is formed on lower surface SF2 of glass substrate 4. Then, as in FIG. 8 (Embodiment 2), trench line TL is formed from position N3 to position N1. Referring to FIG. 13B, after the laminated material 11 is provided, the glass substrate 4 is separated along the assist line AL by applying an external force that generates a bending moment or the like to the glass substrate 4. Thereby, formation of the crack line CL is started (see the broken line arrow in the figure).
 図14を参照して、第2の変形例においては、ステップS30(図4)にてトレンチラインTLが形成される際に、刃先51はガラス基板4の上面SF1に位置N1に比して位置N2でより大きな力で押し付けられる。具体的には、位置N4を位置N1およびN2の間の位置として、トレンチラインTLの形成が位置N4に至った時点で、刃先51の荷重が高められる。言い換えれば、トレンチラインTLの荷重が、位置N1に比して、トレンチラインTLの終端部である位置N4およびN3の間で高められる。これにより、終端部以外での荷重を軽減しつつ、位置N2からのクラックラインCLの形成を誘起されやすくすることができる。 Referring to FIG. 14, in the second modification, when the trench line TL is formed in step S30 (FIG. 4), the blade edge 51 is positioned on the upper surface SF1 of the glass substrate 4 relative to the position N1. Pressed with greater force at N2. Specifically, the load on the blade edge 51 is increased when the position of the trench line TL reaches the position N4 with the position N4 as the position between the positions N1 and N2. In other words, the load on the trench line TL is increased between the positions N4 and N3, which are the end portions of the trench line TL, as compared with the position N1. Thereby, formation of the crack line CL from the position N2 can be easily induced while reducing a load at a portion other than the terminal portion.
 (実施の形態4)
 図15(A)を参照して、本実施の形態における脆性基板の分断方法においては、ステップS30(図4)にて、位置N1から位置N2を経由して辺ED2へ達するトレンチラインTLが形成される。
(Embodiment 4)
Referring to FIG. 15A, in the method for dividing a brittle substrate in the present embodiment, a trench line TL reaching from the position N1 to the side ED2 via the position N2 is formed in step S30 (FIG. 4). Is done.
 図15(B)を参照して、次に、実施の形態2と同様、ステップS40(図4)として積層材11が設けられる。次に位置N2と辺ED2との間に、トレンチラインTL付近の内部応力の歪みを解放させるような応力が加えられる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される(図4:ステップS50)。 Referring to FIG. 15B, next, as in Embodiment 2, the laminated material 11 is provided as step S40 (FIG. 4). Next, a stress is applied between the position N2 and the side ED2 so as to release the distortion of the internal stress near the trench line TL. This induces formation of a crack line along the trench line TL (FIG. 4: step S50).
 応力の印加として具体的には、上面SF1上において位置N2と辺ED2との間(図中、破線および辺ED2の間の領域)で、押し付けられた刃先51が摺動させられる。この摺動は辺ED2に達するまで行なわれる。刃先51は好ましくは最初に形成されたトレンチラインTLの軌道に交差するように、より好ましくは最初に形成されたトレンチラインTLの軌道に重なるように摺動される。この再度の摺動の長さは、たとえば0.5mm程度である。またこの再度の摺動は、複数のトレンチラインTL(図15(A))が形成された後にそれぞれに対して行なわれてもよく、あるいは、1つのトレンチラインTLの形成および再度の摺動を行なう工程がトレンチラインTLごとに順次行なわれてもよい。 Specifically, as the application of stress, the pressed blade edge 51 is slid between the position N2 and the side ED2 (the region between the broken line and the side ED2 in the drawing) on the upper surface SF1. This sliding is performed until the side ED2 is reached. The cutting edge 51 is preferably slid so as to intersect the track of the trench line TL formed first, and more preferably to overlap the track of the trench line TL formed first. The length of this second sliding is, for example, about 0.5 mm. This re-sliding may be performed on each of the plurality of trench lines TL (FIG. 15A) after they are formed, or the formation and re-sliding of one trench line TL may be performed. The process to be performed may be sequentially performed for each trench line TL.
 変形例として、位置N2と辺ED2との間に応力を加えるために、上述した刃先51の再度の摺動に代えて、上面SF1上において位置N2と辺ED2との間にレーザ光が照射されてもよい。これにより生じた熱応力によっても、トレンチラインTL付近の内部応力の歪みが解放され、それによりクラックラインの形成開始を誘起することができる。 As a modification, in order to apply a stress between the position N2 and the side ED2, a laser beam is irradiated between the position N2 and the side ED2 on the upper surface SF1 instead of the sliding of the cutting edge 51 described above. May be. Due to the thermal stress generated thereby, the distortion of the internal stress in the vicinity of the trench line TL is released, thereby inducing the start of formation of the crack line.
 なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the second embodiment described above.
 (実施の形態5)
 図16(A)を参照して、本実施の形態における脆性基板の分断方法においては、ステップS30(図4)にて、位置N1から位置N2へ、そしてさらに位置N3へ刃先51を変位させることによって、上面SF1の縁から離れたトレンチラインTLが形成される。トレンチラインTLの形成方法自体は図6(A)(実施の形態2)とほぼ同様である。
(Embodiment 5)
Referring to FIG. 16 (A), in the brittle substrate cutting method according to the present embodiment, in step S30 (FIG. 4), blade edge 51 is displaced from position N1 to position N2, and further to position N3. Thus, a trench line TL separated from the edge of the upper surface SF1 is formed. The method of forming the trench line TL itself is almost the same as that in FIG. 6A (Embodiment 2).
 図16(B)を参照して、次に、実施の形態2と同様、ステップS40(図4)として積層材11が設けられる。次に、図15(B)(実施の形態4またはその変形例)と同様の応力印加が行なわれる。これによりトレンチラインTLに沿ったクラックラインの形成が誘起される(図4:ステップS50)。 Referring to FIG. 16B, next, as in Embodiment 2, the laminated material 11 is provided as step S40 (FIG. 4). Next, stress application similar to that in FIG. 15B (Embodiment 4 or a modification thereof) is performed. This induces formation of a crack line along the trench line TL (FIG. 4: step S50).
 図17を参照して、図16(A)の工程の変形例として、トレンチラインTLの形成において、刃先51が位置N3から位置N2へそして位置N2から位置N1へ変位させられてもよい。 Referring to FIG. 17, as a modification of the process of FIG. 16A, the blade edge 51 may be displaced from the position N3 to the position N2 and from the position N2 to the position N1 in the formation of the trench line TL.
 なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じである。 The configuration other than the above is almost the same as the configuration of the second embodiment described above.
 (実施の形態6)
 図18(A)および(B)を参照して、上記各実施の形態において、刃先51(図5(A)および(B))に代わり、刃先51vが用いられてもよい。刃先51vは、頂点と、円錐面SCとを有する円錐形状を有する。刃先51vの突起部PPvは頂点で構成されている。刃先の側部PSvは頂点から円錐面SC上に延びる仮想線(図18(B)における破線)に沿って構成されている。これにより側部PSvは、線状に延びる凸形状を有する。
(Embodiment 6)
Referring to FIGS. 18A and 18B, in each of the embodiments described above, blade edge 51v may be used instead of blade edge 51 (FIGS. 5A and 5B). The blade edge 51v has a conical shape having a vertex and a conical surface SC. The protruding part PPv of the blade edge 51v is constituted by a vertex. The side part PSv of the blade edge is configured along a virtual line (broken line in FIG. 18B) extending from the apex to the conical surface SC. Thereby, the side part PSv has a convex shape extending linearly.
 上記各実施の形態においてはガラス基板の縁の第1および第2の辺が長方形の短辺であるが、第1および第2の辺は長方形の長辺であってもよい。また縁の形状は長方形に限定されるものではなく、たとえば正方形であってもよい。また第1および第2の辺は直線状のものに限定されるものではなく曲線状であってもよい。また上記各実施の形態においてはガラス基板の面が平坦であるが、ガラス基板の面は湾曲していてもよい。 In the above-described embodiments, the first and second sides of the edge of the glass substrate are rectangular short sides, but the first and second sides may be rectangular long sides. The shape of the edge is not limited to a rectangle, and may be a square, for example. Further, the first and second sides are not limited to being linear, and may be curved. In each of the above embodiments, the surface of the glass substrate is flat, but the surface of the glass substrate may be curved.
 上述した分断方法に特に適した脆性基板としてガラス基板が用いられるが、脆性基板はガラス基板に限定されるものではない。脆性基板は、ガラス以外に、たとえば、セラミックス、シリコン、化合物半導体、サファイア、または石英から作られ得る。 Although a glass substrate is used as the brittle substrate particularly suitable for the above-described cutting method, the brittle substrate is not limited to the glass substrate. In addition to glass, the brittle substrate can be made of, for example, ceramics, silicon, compound semiconductors, sapphire, or quartz.
 本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 4 ガラス基板(脆性基板)
 11 積層材(部材)
 50 カッティング器具
 51,51v 刃先
 52 シャンク
 AL アシストライン
 CL クラックライン
 ED1 辺(第1の辺)
 ED2 辺(第2の辺)
 N1 位置(第1の位置)
 N2 位置(第2の位置)
 SF1 上面(表面)
 SF2 下面
 TL トレンチライン
 PP,PPv 突起部
 PS,PSv 側部
4 Glass substrate (brittle substrate)
11 Laminate (member)
50 Cutting tool 51, 51v Cutting edge 52 Shank AL Assist line CL Crack line ED1 side (first side)
ED2 side (second side)
N1 position (first position)
N2 position (second position)
SF1 Upper surface (surface)
SF2 Lower surface TL Trench line PP, PPv Protrusion PS, PSv Side

Claims (5)

  1.  表面を有し、前記表面に垂直な厚さ方向を有する脆性基板を準備する工程と、
     前記脆性基板の前記表面に刃先を押し付ける工程と、
     前記押し付ける工程によって押し付けられた前記刃先を前記脆性基板の前記表面上で摺動させることによって前記脆性基板の前記表面上に塑性変形を発生させることで、溝形状を有するトレンチラインを形成する工程とを備え、前記トレンチラインを形成する工程は、前記トレンチラインの直下において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように行なわれ、さらに
     前記トレンチラインを形成する工程の後、前記表面上に部材を設ける工程を備え、前記部材は、前記表面上において前記トレンチラインを介して互いに分離した部分を有し、さらに
     前記部材を配置する工程の後に、前記トレンチラインに沿って前記厚さ方向における前記脆性基板のクラックを伸展させることによって、クラックラインを形成する工程を備え、前記クラックラインによって前記トレンチラインの直下において前記脆性基板は前記トレンチラインと交差する方向において連続的なつながりが断たれており、さらに
     前記クラックラインに沿って前記脆性基板を分断する工程を備える、脆性基板の分断方法。
    Providing a brittle substrate having a surface and having a thickness direction perpendicular to the surface;
    Pressing the blade edge against the surface of the brittle substrate;
    Forming a trench line having a groove shape by causing plastic deformation on the surface of the brittle substrate by sliding the blade edge pressed by the pressing step on the surface of the brittle substrate; The step of forming the trench line is performed so as to obtain a crackless state in which the brittle substrate is continuously connected in a direction intersecting the trench line immediately below the trench line, Further, after the step of forming the trench line, a step of providing a member on the surface is provided, and the member has portions separated from each other via the trench line on the surface, and further arranges the member After the process, the brittle substrate is cracked in the thickness direction along the trench line. A step of forming a crack line by extending the fragile substrate, and the brittle substrate is disconnected from the crack line immediately below the trench line in a direction intersecting the trench line. A method for dividing a brittle substrate, comprising a step of dividing the brittle substrate along a line.
  2.  前記部材を設ける工程は、前記表面上において、互いに分離した前記部分の間から前記トレンチラインが突出するように行なわれる、請求項1に記載の脆性基板の分断方法。 2. The method for dividing a brittle substrate according to claim 1, wherein the step of providing the member is performed such that the trench line protrudes between the portions separated from each other on the surface.
  3.  前記部材を設ける工程において、前記部分は前記脆性基板の前記表面上に前記トレンチラインを介して100μm以下の間隔で配置される、請求項1または2に記載の脆性基板の分断方法。 3. The method for dividing a brittle substrate according to claim 1, wherein, in the step of providing the member, the portions are arranged on the surface of the brittle substrate at intervals of 100 μm or less via the trench lines.
  4.  前記脆性基板を準備する工程において、前記脆性基板はガラスから作られている、請求項1から3のいずれか1項に記載の脆性基板の分断方法。 The method for cutting a brittle substrate according to any one of claims 1 to 3, wherein in the step of preparing the brittle substrate, the brittle substrate is made of glass.
  5.  前記脆性基板を準備する工程において、前記表面は、互いに対向する第1および第2の辺を含む縁に囲まれており、
     前記刃先を押し付ける工程において、前記刃先は、突起部と、前記突起部から延びかつ凸形状を有する側部とを有し、前記刃先を押し付ける工程は前記脆性基板の前記表面上で前記刃先の前記側部が前記突起部と前記第2の辺の間に配置されるように行なわれ、
     前記トレンチラインを形成する工程において、前記トレンチラインは、第1の位置と、前記第1の位置より前記第2の辺に近い第2の位置との間で形成され、
     前記クラックラインを形成する工程は、前記トレンチラインに沿って前記第2の位置から前記第1の位置の方へ、前記厚さ方向における前記脆性基板のクラックを伸展させることによって行なわれる、
    請求項1から4のいずれか1項に記載の脆性基板の分断方法。
    In the step of preparing the brittle substrate, the surface is surrounded by edges including first and second sides facing each other,
    In the step of pressing the blade edge, the blade edge has a protrusion and a side portion extending from the protrusion and having a convex shape, and the step of pressing the blade edge includes the step of pressing the blade edge on the surface of the brittle substrate. A side portion is disposed between the protrusion and the second side;
    In the step of forming the trench line, the trench line is formed between a first position and a second position closer to the second side than the first position;
    The step of forming the crack line is performed by extending a crack of the brittle substrate in the thickness direction from the second position toward the first position along the trench line.
    The method for dividing a brittle substrate according to any one of claims 1 to 4.
PCT/JP2015/062223 2014-05-30 2015-04-22 Method for splitting brittle substrate WO2015182298A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580028975.8A CN106715347B (en) 2014-05-30 2015-04-22 The method for dividing of brittle base
JP2016523384A JP6288260B2 (en) 2014-05-30 2015-04-22 Method for dividing brittle substrate
KR1020167033459A KR101856558B1 (en) 2014-05-30 2015-04-22 Method for splitting brittle substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-112648 2014-05-30
JP2014112648 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182298A1 true WO2015182298A1 (en) 2015-12-03

Family

ID=54698639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062223 WO2015182298A1 (en) 2014-05-30 2015-04-22 Method for splitting brittle substrate

Country Status (5)

Country Link
JP (1) JP6288260B2 (en)
KR (1) KR101856558B1 (en)
CN (1) CN106715347B (en)
TW (1) TWI647080B (en)
WO (1) WO2015182298A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107538627A (en) * 2016-06-29 2018-01-05 三星钻石工业股份有限公司 The cutting-off method of brittle base
JP2020019693A (en) * 2018-08-03 2020-02-06 日本電気硝子株式会社 Tubular glass cutting method, and tubular glass
WO2021182095A1 (en) * 2020-03-12 2021-09-16 日本電気硝子株式会社 Method for manufacturing glass plate and apparatus for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008201629A (en) * 2007-02-21 2008-09-04 Epson Imaging Devices Corp Manufacturing method of electrooptical device, separating method of substrate, and substrate separating device
JP2012000793A (en) * 2010-06-14 2012-01-05 Mitsuboshi Diamond Industrial Co Ltd Method for scribing brittle material substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074143B2 (en) 1995-11-06 2000-08-07 三星ダイヤモンド工業株式会社 Glass cutter wheel
CN100346498C (en) * 2001-06-14 2007-10-31 三星宝石工业株式会社 Production device and production method for organic EL dispaly
KR101247571B1 (en) * 2010-06-14 2013-03-26 미쓰보시 다이야몬도 고교 가부시키가이샤 Method for scribing brittle material substrate
TWI498293B (en) * 2011-05-31 2015-09-01 Mitsuboshi Diamond Ind Co Ltd Scribe method, diamond point and scribe apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008201629A (en) * 2007-02-21 2008-09-04 Epson Imaging Devices Corp Manufacturing method of electrooptical device, separating method of substrate, and substrate separating device
JP2012000793A (en) * 2010-06-14 2012-01-05 Mitsuboshi Diamond Industrial Co Ltd Method for scribing brittle material substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107538627A (en) * 2016-06-29 2018-01-05 三星钻石工业股份有限公司 The cutting-off method of brittle base
JP2020019693A (en) * 2018-08-03 2020-02-06 日本電気硝子株式会社 Tubular glass cutting method, and tubular glass
JP7095471B2 (en) 2018-08-03 2022-07-05 日本電気硝子株式会社 Tubular glass cutting method
WO2021182095A1 (en) * 2020-03-12 2021-09-16 日本電気硝子株式会社 Method for manufacturing glass plate and apparatus for manufacturing same
JP2021143093A (en) * 2020-03-12 2021-09-24 日本電気硝子株式会社 Method and apparatus for manufacturing glass plate
JP7425966B2 (en) 2020-03-12 2024-02-01 日本電気硝子株式会社 Glass plate manufacturing method and its manufacturing device
US12139432B2 (en) 2020-03-12 2024-11-12 Nippon Electric Glass Co., Ltd. Method for manufacturing glass plate and apparatus for manufacturing same

Also Published As

Publication number Publication date
JPWO2015182298A1 (en) 2017-04-20
KR20160147982A (en) 2016-12-23
CN106715347A (en) 2017-05-24
CN106715347B (en) 2019-08-27
JP6288260B2 (en) 2018-03-07
TW201601889A (en) 2016-01-16
TWI647080B (en) 2019-01-11
KR101856558B1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6288258B2 (en) Method for dividing brittle substrate
JP6288260B2 (en) Method for dividing brittle substrate
JP6555354B2 (en) Method for dividing brittle substrate
JP6350669B2 (en) Method for dividing brittle substrate
JP6288259B2 (en) Method for dividing brittle substrate
CN107108322B (en) Method for dividing brittle substrate
JP2017065007A (en) Method of segmenting brittle substrate
KR20170038149A (en) Method for dividing brittle substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167033459

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799615

Country of ref document: EP

Kind code of ref document: A1