Nothing Special   »   [go: up one dir, main page]

WO2015180416A1 - 半导体微波炉及其半导体微波源 - Google Patents

半导体微波炉及其半导体微波源 Download PDF

Info

Publication number
WO2015180416A1
WO2015180416A1 PCT/CN2014/090428 CN2014090428W WO2015180416A1 WO 2015180416 A1 WO2015180416 A1 WO 2015180416A1 CN 2014090428 W CN2014090428 W CN 2014090428W WO 2015180416 A1 WO2015180416 A1 WO 2015180416A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
power
signal
semiconductor
source
Prior art date
Application number
PCT/CN2014/090428
Other languages
English (en)
French (fr)
Inventor
张斐娜
唐相伟
杜贤涛
刘民勇
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410232874.XA external-priority patent/CN104676671A/zh
Priority claimed from CN201410232381.6A external-priority patent/CN104676670A/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Priority to JP2017514758A priority Critical patent/JP2017525121A/ja
Priority to US15/314,060 priority patent/US10588182B2/en
Priority to EP14893395.5A priority patent/EP3151636B1/en
Priority to CA2950450A priority patent/CA2950450C/en
Publication of WO2015180416A1 publication Critical patent/WO2015180416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to the field of microwave oven technology, and in particular to a semiconductor microwave oven and a semiconductor microwave source of a semiconductor microwave oven.
  • a microwave oven is a commonly used appliance for heating or cooking food.
  • the principle is to use a microwave source to generate microwaves, which cause high frequency oscillations of water molecules of the food, thereby rubbing heat to heat or cook the food.
  • microwave ovens include power supplies, microwave sources, cavities, furnace doors, and the like.
  • the microwave source is a core component that generates microwaves, which are excited by a high voltage power source to generate microwaves, and then the microwaves are transmitted through the waveguides and coupled to the cavity in which the food is placed.
  • the microwave source of the conventional microwave oven uses a magnetron to generate microwaves, and the working voltage of the magnetron is about 4000 volts. Therefore, there is a safety hazard of power consumption, and the loss is also large. The volume of the magnetron is too large, so that the shape of the microwave oven is also greatly affected. Great limit.
  • semiconductor microwave technology has developed rapidly.
  • the efficiency of semiconductor microwave generation is increasing, the cost is getting lower, the weight is getting lighter, and the power density per unit volume is getting larger and larger, which will make the application of semiconductor microwave technology in microwave ovens possible.
  • the semiconductor microwave source is limited by the semiconductor device, and its output power level is relatively low, so it is difficult to meet the high power output required by the microwave oven.
  • the semiconductor microwave oven of the related art generates microwaves by using a plurality of independent semiconductor microwave sources.
  • the microwaves respectively generated by the plurality of independent semiconductor microwave sources are synthesized into high-power microwaves required by the microwave oven by the power combiner, and finally the synthesized high-power microwaves are fed into the cavity to The microwave oven achieves a better heating effect;
  • FIG. 1B multiple sets of independent semiconductor microwave sources respectively generate microwaves, and then microwaves are respectively fed into the cavity through the corresponding waveguide boxes to realize high-power microwave output. In order to achieve a better heating effect of the microwave oven.
  • the independent semiconductor microwave sources operate at different frequencies, they will cause frequency synthesis, thereby reducing the conversion efficiency. Even if the frequency of each set of semiconductor microwave sources is set to the same frequency point, the semiconductor devices of each set of semiconductor microwave sources There are differences in itself, so it is difficult to ensure that the actual operating frequencies of the sets of semiconductor microwave sources are consistent, so that the energy efficiency is greatly reduced when multi-source feeding.
  • the object of the present invention is to solve at least the above technical drawbacks to some extent.
  • Another object of the present invention is to provide a semiconductor microwave source for a semiconductor microwave oven.
  • a semiconductor microwave oven includes: a body having a chamber; a microwave input device, the microwave input device being in communication with the chamber; and a semiconductor microwave source;
  • the semiconductor microwave source includes: a signal source for generating a first microwave signal; a power divider having a first input end and N output ends, the first of the power splitters The input end is connected to the signal source, and the power splitter allocates power of the first microwave signal according to a preset ratio to generate N second microwave signals with the same frequency, and the N frequency is the same second
  • the microwave signal is output corresponding to the N output terminals, wherein N is an integer greater than or equal to 2; N driving amplifiers, the N driving amplifiers are correspondingly connected to the N output terminals, and each of the driving amplifiers is used
  • An in-device is delivered to the chamber; a control device for
  • the second microwave signals of the same frequency outputted by the N output ends of the power splitter share a signal source to ensure that the same frequency is operated, thereby achieving high-efficiency power output and ensuring the heating effect.
  • the structure of the semiconductor microwave oven of the embodiment of the invention is simpler and more compact, and the cost is saved.
  • the microwave input device comprises at least one waveguide box, the at least one waveguide box being disposed on the body.
  • the semiconductor microwave source further comprises a power combiner
  • the microwave input device further comprising a microwave conversion device
  • the power combiner has N inputs And a first output end, the N input ends are correspondingly connected to the N driving amplifiers
  • the microwave converting device is respectively connected to the first output end and the one waveguide box
  • the power synthesizer is used Combining the N drive-amplified second microwave signals into a third microwave signal, and outputting through the first output end
  • the microwave conversion device is configured to feed the third microwave signal to the one waveguide In the cartridge to transfer the third microwave signal into the chamber.
  • the microwave input device when the number of the waveguide boxes is N, the microwave input device further includes N microwave conversion devices, the N microwave conversion devices and the N drive amplifiers and the N Each of the waveguide boxes is connected in a one-to-one correspondence, and each of the microwave conversion devices feeds the drive-amplified second microwave signal outputted by the corresponding driver amplifier into a corresponding waveguide box to amplify the N driving outputs.
  • the subsequent second microwave signal is delivered to the chamber.
  • the power splitter and the power combiner may be any one of a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T or a directional coupler.
  • the driving amplifier further includes: a driving module, configured to drive amplify the second microwave signal to generate a fourth microwave signal; an amplifying module, the amplifying module and the The driving module is connected, and the amplifying module is configured to perform secondary amplification on the fourth microwave signal to generate the second microwave signal that is driven and amplified.
  • the power of the first microwave signal is greater than the power of the second microwave signal
  • the power of the fourth microwave signal is greater than the power of the second microwave signal
  • the power of the second microwave signal after the amplification is driven Greater than the power of the fourth microwave signal.
  • the semiconductor microwave source further includes: N phase shifters, wherein the N phase shifters are correspondingly connected between the N output terminals and the N driving amplifiers, wherein Each of the phase shifters performs phase adjustment on a second microwave signal outputted by a corresponding one of the N output terminals under the control of the control device.
  • the phase shifter is any one of a PIN diode phase shifter, a ferrite phase shifter, a vector modulation phase shifter, a load line phase shifter or a switch line phase shifter.
  • a PIN diode phase shifter PIN diode phase shifter
  • a ferrite phase shifter a vector modulation phase shifter
  • a load line phase shifter or a switch line phase shifter.
  • a semiconductor microwave source of a semiconductor microwave oven includes: a signal source for generating a first microwave signal; and a power divider having a first input end and an N output end, the first input end of the power splitter is connected to the signal source, and the power splitter allocates power of the first microwave signal according to a preset ratio to generate N a second microwave signal having the same frequency, wherein the N second microwave signals having the same frequency are output corresponding to the N output terminals, wherein N is an integer greater than or equal to 2; N driving amplifiers, the N driving An amplifier is connected to the N output ends, each of the driving amplifiers is configured to drive and amplify the corresponding second microwave signal, and respectively input the N driving amplified second microwave signals into the semiconductor microwave oven a microwave input device for passing through the microwave input device to a chamber of the semiconductor microwave oven; wherein the signal source is controlled by the semiconductor microwave oven The first microwave signal is generated under the control of the device.
  • the second microwave signals of the same frequency output from the N output terminals of the power splitter share a signal source, thereby ensuring that the semiconductor microwave oven operates at the same frequency to achieve high-efficiency power output.
  • the structure of the semiconductor microwave oven is made simpler and more compact, and the cost is saved.
  • the microwave input device comprises at least one waveguide box, the at least one waveguide box is disposed on the body, wherein when the waveguide box is one, the semiconductor microwave source is further included Including a power combiner, the microwave input device further includes a microwave conversion device, wherein the power combiner has N inputs and a first output, and the N inputs are correspondingly connected to the N drive amplifiers, The microwave conversion device is respectively connected to the first output end and the one waveguide box, and the power combiner is configured to synthesize the N drive amplified second microwave signals into a third microwave signal, and pass the An output is output, the microwave conversion device is configured to feed the third microwave signal into the one waveguide box to transmit the third microwave signal into the chamber; when the waveguide When the number of boxes is N, the microwave input device further includes N microwave conversion devices, and the N microwave conversion devices are respectively connected to the N drive amplifiers and the N waveguide boxes in a one-to-one correspondence, each of the The microwave conversion device feeds the drive-amplified
  • the power splitter and the power combiner may be any one of a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T or a directional coupler.
  • the driving amplifier further includes: a driving module, configured to drive amplify the second microwave signal to generate a fourth microwave signal; an amplifying module, the amplifying module and the The driving module is connected, and the amplifying module is configured to perform secondary amplification on the fourth microwave signal to generate the second microwave signal that is driven and amplified.
  • the power of the first microwave signal is greater than the power of the second microwave signal
  • the power of the fourth microwave signal is greater than the power of the second microwave signal
  • the power of the second microwave signal after the amplification is driven Greater than the power of the fourth microwave signal.
  • the semiconductor microwave source of the semiconductor microwave oven further includes: N phase shifters, wherein the N phase shifters are correspondingly connected to the N output terminals and the N driving amplifiers. Between the two, wherein each of the phase shifters performs phase adjustment on a second microwave signal outputted by a corresponding one of the N output terminals under the control of the control device.
  • the phase shifter is any one of a PIN diode phase shifter, a ferrite phase shifter, a vector modulation phase shifter, a load line phase shifter or a switch line phase shifter.
  • a PIN diode phase shifter PIN diode phase shifter
  • a ferrite phase shifter a vector modulation phase shifter
  • a load line phase shifter or a switch line phase shifter.
  • 1A is a schematic structural view of a semiconductor microwave oven in the related art
  • 1B is a schematic structural view of another semiconductor microwave oven in the related art
  • FIG. 2A is a schematic structural view of a semiconductor microwave oven according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural view of a semiconductor microwave oven according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a power splitter according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power combiner according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a T-junction power splitter according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a Wilkinson power splitter according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a directional coupler according to still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of three-way distribution of a power splitter according to a first embodiment of the present invention.
  • FIG. 9 is a schematic diagram of four-way distribution of a power splitter according to a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an eight-way distribution of a power splitter according to a third embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a twelve-way distribution of a power splitter according to a fourth embodiment of the present invention.
  • FIG. 12A is a schematic structural view of a semiconductor microwave oven according to an embodiment of the present invention.
  • FIG. 12B is a schematic structural view of a semiconductor microwave oven according to another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a load line phase shifter in accordance with one embodiment of the present invention.
  • Figure 14 is a schematic illustration of a series-type switch-line phase shifter in accordance with one embodiment of the present invention.
  • 15 is a schematic diagram of a parallel type switching line phase shifter according to an embodiment of the present invention.
  • Figure 16 is a schematic diagram of a parallel type switching line phase shifter in accordance with another embodiment of the present invention.
  • first feature described below on the "on" of the second feature may include an embodiment in which the first and second features are formed in direct contact, or Embodiments are formed that include additional features between the first and second features such that the first and second features may not be in direct contact.
  • the semiconductor microwave oven includes a body 1, a waveguide box 2, a semiconductor microwave source 3, a control device 4, and a microwave conversion device 5.
  • the body 1 has a chamber 10 on which the waveguide box 2 is disposed.
  • the semiconductor microwave source 3 includes a signal source 31, a power divider 32, N drive amplifiers 33, and a power combiner 34.
  • the signal source 31 is configured to generate a first microwave signal, such as a low power microwave signal;
  • the power splitter 32 has a first input terminal 6 and N output terminals 7, a first input terminal 6 of the power splitter 32 and a signal source 31.
  • the power splitter 32 allocates the power of the first microwave signal according to a preset ratio to generate N second microwave signals having the same frequency, and the N second microwave signals having the same frequency correspond to the N outputs.
  • N is an integer greater than or equal to 2; the N driving amplifiers 33 are correspondingly connected to the N output terminals 7, and each of the driving amplifiers 33 is configured to drive and amplify the corresponding second microwave signal; the power combiner 34 Having N input terminals 8 and a first output terminal 9 , the N input terminals 8 are correspondingly connected to the N driving amplifiers 33, and the power combiner is configured to synthesize the N driving amplified second microwave signals into a third microwave signal, and The output is made via the first output 9.
  • the structure of the power splitter 32 and the power combiner 34 is illustrated by FIGS. 3 and 4.
  • the power splitter 32 allocates the power of the first microwave signal provided by the signal source 31 according to a preset ratio, that is, the power of the second microwave signal outputted by each output end of the power splitter 32 is in a predetermined proportional relationship.
  • the preset ratio is 1, the power splitter 32 equally divides the power of the first microwave signal provided by the signal source 31, that is, the power of the second microwave signal at each output of the power splitter 32 is equal.
  • power splitter 32 can be used as power combiner 34, and power combiner 34 can also be used as power splitter 32, requiring only the position of the input and output terminals to be swapped.
  • the power splitter 32 and the power combiner 34 may be a waveguide type power splitter or a microstrip type power splitter, and the power splitter 32 and the power combiner 34 may be a T-junction power splitter and a Wilkinson power splitter. Any of the power distribution or synthesis of the device, the waveguide magic T, the directional coupler, the branch line hybrid network, etc. Types of. Therefore, both the power splitter 32 and the power combiner 34 can be any one of a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T, or a directional coupler.
  • the microwave conversion device 5 is connected to the first output end 9 of the power combiner 34 and the waveguide box 2, respectively, and the microwave conversion device 5 is configured to feed the third microwave signal into the waveguide box 2 to
  • the third microwave signal is transmitted to the chamber 10, wherein the microwave conversion device 5 can be a feeding device such as a probe, an antenna, etc.; the control device 4 is configured to control the signal source 31 to generate the first microwave signal. That is to say, the signal source 31 generates a low-power microwave signal, that is, a first microwave signal, under the control of the control device 4, and then is divided into N second microwave signals by the power divider 32, respectively input to the respective drive amplifiers 33, and driven.
  • the amplifier 33 drives the amplified second microwave signals to be input to the power combiner 34, respectively, and after the power is synthesized, the microwaves are fed into the waveguide box 2 through the microwave converting device 5, and finally transferred to the chamber 10.
  • the semiconductor microwave oven includes: a body 1, N waveguide boxes 2, a semiconductor microwave source 3, a control device 4, and N microwave conversion devices 5, wherein N is an integer greater than or equal to 2.
  • the body 1 has a chamber 10, and N waveguide boxes 2 are respectively disposed on the body 1, as shown in FIG. 2B, N is equal to 2, and two waveguide boxes are respectively disposed on the left and right sides of the body 1.
  • the semiconductor microwave source 3 includes a signal source 31, a power divider 32, and N drive amplifiers 33.
  • the signal source 31 is configured to generate a first microwave signal, such as a low power microwave signal;
  • the power splitter 32 has a first input terminal 6 and N output terminals 7, a first input terminal 6 of the power splitter 32 and a signal source 31.
  • the power splitter 32 allocates the power of the first microwave signal according to a preset ratio to generate N second microwave signals having the same frequency, and the N second microwave signals having the same frequency correspond to the N outputs.
  • the terminals perform output; N driving amplifiers 33 are correspondingly connected to the N output terminals 7, and each of the driving amplifiers 33 is configured to drive amplify the corresponding second microwave signals.
  • the power splitter 32 allocates the power of the first microwave signal provided by the signal source 31 according to a preset ratio, that is, the power of the second microwave signal outputted by each output end of the power splitter 32 is in a predetermined proportional relationship.
  • the preset ratio is 1, the power splitter 32 equally divides the power of the first microwave signal provided by the signal source 31, that is, the power of the second microwave signal at each output of the power splitter 32 is equal.
  • the power splitter 32 can be a waveguide type power splitter or a microstrip type power splitter, and the power splitter 32 can be a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T, a directional coupler, Any type of power distribution that can be implemented by a branch line hybrid network or the like.
  • power splitter 32 can be any of a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T, or a directional coupler.
  • the N microwave conversion devices 5 are respectively connected to the N drive amplifiers 33 and the N waveguide boxes 2 in a one-to-one correspondence, and each of the microwave conversion devices drives the corresponding drive amplifier output to drive the amplified second microwave signals. Feeding into the corresponding waveguide box, so that the N drive-amplified second microwave signals are transmitted into the chamber, and integrated into a high-power microwave in the chamber, wherein, similarly, the microwave conversion device 5 can Feeding device for probe, antenna, etc.; control device 4 is for controlling signal source 31 to generate said first microwave signal.
  • the signal source 31 generates a low-power microwave signal, that is, a first microwave signal, under the control of the control device 4, and then is divided into N second microwave signals by the power divider 32, respectively input to the respective drive amplifiers 33, and driven.
  • the amplifier 33 drives the amplification to generate the second microwave signal that is driven and amplified, and then input to the corresponding microwave conversion device 5, respectively, and feeds the second microwave signal that is driven and amplified by the microwave conversion device 5 to the waveguide box 2, and transmits the same.
  • the waveguide box 2 and the microwave conversion device 5 constitute a microwave input device, and the waveguide case 2 is at least one.
  • the microwave input device includes at least one waveguide box 2, and at least one waveguide box 2 is disposed on the body 1.
  • the semiconductor microwave source 3 further includes a power combiner 34
  • the microwave input device further includes a microwave conversion device 5, wherein the power combiner has N inputs and a first output end, the N input ends are correspondingly connected to the N driving amplifiers, the microwave converting device is respectively connected to the first output end and the one waveguide box, and the power synthesizer is used for N Driving the amplified second microwave signal into a third microwave signal, and outputting through the first output end, the microwave converting device is configured to feed the third microwave signal into the one waveguide box And transmitting the third microwave signal into the chamber.
  • the microwave input device further includes N microwave conversion devices 5, the N microwave conversion devices and the N drive amplifiers and the N waveguides
  • the boxes are respectively connected one by one, and each of the microwave converting devices feeds the driven amplified second microwave signal outputted by the corresponding driving amplifier into a corresponding waveguide box, so that the N driving units are amplified.
  • a second microwave signal is delivered to the chamber.
  • the semiconductor microwave oven of the embodiment of the invention includes: a body, a microwave input device, a semiconductor microwave source, and a control device.
  • the body has a chamber, and the microwave input device is in communication with the chamber.
  • the semiconductor microwave source includes: a signal source, a power divider, and N driving amplifiers, the signal source is configured to generate a first microwave signal, the power divider has a first input end and N output ends, the power a first input end of the distributor is connected to the signal source, and the power splitter allocates power of the first microwave signal according to a preset ratio to generate N second microwave signals with the same frequency, the N a second microwave signal having the same frequency is output corresponding to the N output terminals, wherein N is an integer greater than or equal to 2, and the N driving amplifiers
  • the N output terminals are connected to each other, and each of the driving amplifiers is configured to drive and amplify the corresponding second microwave signals, and respectively input N driving and amplified second microwave signals to the microwave input device, to Transfer to the
  • the drive amplifier 33 further includes a drive module 331, that is, a drive stage and an amplification module 332, that is, a final stage.
  • the driving module 331 is configured to drive and amplify the second microwave signal to generate a fourth microwave signal
  • the amplifying module 332 is connected to the driving module 331, and the amplifying module 332 is configured to perform secondary amplification on the fourth microwave signal to generate a driving.
  • the amplified second microwave signal is also, as shown in FIG. 2A, the number of the driving modules 331 and the number of the amplifying modules 332 are equal to the number of outputs of the power divider 32 and the number of inputs of the power combiner 34.
  • the power of the first microwave signal is greater than the power of the second microwave signal
  • the power of the fourth microwave signal is greater than the power of the second microwave signal
  • the power of the second microwave signal after the amplification is driven Greater than the power of the fourth microwave signal.
  • the power splitter 32 when the power splitter 32 is a T-junction power splitter, as shown in FIG. 5, the low-power first microwave signal generated by the signal source 31 is input through the first input terminal 6, and two segments are set.
  • the 1/4 wavelength ( ⁇ ) impedance conversion line 322 has characteristic impedances of Z02 and Z03, respectively. By setting the impedance values of Z02 and Z03, different power distributions of the output second microwave signals are realized, and the second microwave signals after the distribution are passed. Two outputs 7 are output.
  • the T-junction power splitter can be used as the power combiner 34 in turn.
  • the power splitter 32 when the power splitter 32 is a Wilkinson power splitter, as shown in FIG. 6, the low power first microwave signal generated by the signal source 31 passes through the input of the Wilkinson power splitter. 6 input, set two 1/4 wavelength impedance conversion line 322, the characteristic impedance is Z02, Z03, respectively, and then an isolation resistor 321 is provided to ensure that the two output terminals 7 of the Wilkinson power divider are isolated.
  • an isolation resistor 321 is provided to ensure that the two output terminals 7 of the Wilkinson power divider are isolated.
  • the two output terminals 7 respectively pass through the 1/4 wavelength impedance conversion line 323 to achieve power distribution.
  • the Wilkinson power splitter can in turn be used as the power combiner 34.
  • the power splitter 32 when the power splitter 32 is a directional coupler, as shown in FIG. 7, it is composed of two parallel conductive strips 324, which are coupled by two branch conduction strips 325, and the branch conduction strips 325.
  • the length and interval are both 1/4 wavelength.
  • the low power first microwave signal generated by the signal source 31 is input from the input port 61.
  • the port 61 input is non-reflective, the input power is output by the ports 72, 73, and the port 64 has no output, that is, the port 61 and the port 64 are isolated from each other.
  • the characteristic impedance of the branch conduction band is the same as the input and output lines, and the characteristic impedance of the parallel conduction band is the input and output line.
  • the directional coupler can in turn be used as the power combiner 34.
  • the output of the power splitter 32 when the output of the power splitter 32 is greater than two outputs, multiple levels of impedance variation are required.
  • the low-power first microwave signal generated by the signal source 31 is input from the first input terminal 6, and is divided into three signals after the first-order impedance conversion, and then After the two-stage impedance transformation, respectively, the three second microwave signals are output through three output ends.
  • the low-power first microwave signal generated by the signal source 31 is input from the first input terminal 6, and is divided into two signals after the first-order impedance transformation, and then two signals are obtained. After the two-stage impedance transformation, the three-stage impedance transformation is divided into four signals, and finally four output second-wave signals are correspondingly output through the four output terminals.
  • the low-power first microwave signal generated by the signal source 31 is input from the first input terminal 6, and is divided into two signals after the first-order impedance transformation, and then two signals are obtained. After the two-stage impedance transformation, the three-stage impedance transformation is divided into four signals, and then the four signals are divided into eight signals by four-stage impedance transformation, and finally the eight-channel second microwave signals are output through the eight output terminals.
  • the low-power first microwave signal generated by the signal source 31 is input from the first input terminal 6, and is divided into two signals after the first-order impedance transformation, and then two signals are obtained.
  • the three-stage impedance transformation is divided into six signals, and then the six signals are divided into twelve signals by four-stage impedance transformation, and finally twelve ultrasonic signals are output through twelve output terminals. .
  • the small power first microwave signal generated by the signal source 31 is input from the input terminal 6 and divided into two or three paths after the first-order impedance transformation, and then redistributed through the second-order impedance transformation. If the number of microwave sources cannot be met, the three-stage, four-stage impedance transformation is performed, and finally output from the plurality of output terminals 7.
  • the semiconductor microwave source 3 further includes: N phase shifters 35, and N phase shifters 35 are correspondingly connected to the N output terminals 7 and N. Between the drive amplifiers 33, wherein each phase shifter 35 performs phase adjustment on the second microwave signal outputted from the corresponding one of the N output terminals under the control of the control device 4, thereby making the efficiency of the semiconductor power source improve.
  • the phase shifter 35 can be any one of the types of phase shifters suitable for the microwave thermal frequency band, such as a PIN diode phase shifter, a ferrite phase shifter or a vector modulation phase shifter. Of course, the phase shifter 35 can also be any one of a load line phase shifter or a switch line phase shifter.
  • phase shifter 35 When the phase shifter 35 is a load line phase shifter, as shown in FIG. 13, the load line phase shifter is uniformly transmitted.
  • a controllable reactance element 352 is provided on the line 351.
  • the reactance element 352 and the transmission line 351 may be connected in parallel or in series, wherein a phase shift amount is introduced by controlling the reactance value of the adjustment reactance element by the control device 4.
  • phase shifter 35 is a switch line phase shifter, as shown in FIG. 14 or FIG. Wherein, the phase shifter shown in FIG. 14 is a series-type switch-line phase shifter.
  • the switches S1 and S4 are closed, and S2 and S3 are disconnected, the second microwave signal is transmitted through the transmission path l1; when the switch states are opposite, When S1 and S4 are disconnected, when S2 and S3 are closed, the second microwave signal is transmitted through the transmission path 12, and the change of the transmission path realizes the phase change.
  • the phase shifter shown in FIG. 15 is a parallel-type switch-line phase shifter.
  • the signal source for generating the microwave signal is one. Therefore, the multiple semiconductor power sources share the same signal source, thereby ensuring that the multiple semiconductor power sources operate at the same frequency. In order to achieve high efficiency power output, the heating effect of the semiconductor microwave oven is ensured.
  • the second microwave signals of the same frequency outputted by the N output ends of the power splitter share a signal source to ensure that the same frequency is operated, thereby achieving high-efficiency power output and ensuring the heating effect.
  • the structure of the semiconductor microwave oven of the embodiment of the invention is simpler and more compact, and the cost is saved.
  • embodiments of the present invention also provide a semiconductor microwave source for a semiconductor microwave oven comprising: a signal source, a power divider, and N drive amplifiers.
  • the signal source is for generating a first microwave signal;
  • the power splitter has a first input end and N output ends, a first input end of the power splitter is connected to the signal source, the power splitter
  • the power of the first microwave signal is allocated according to a preset ratio to generate N second microwave signals having the same frequency, and the N second microwave signals having the same frequency are output corresponding to the N output ends, where N is an integer greater than or equal to 2;
  • the N driving amplifiers are correspondingly connected to the N output terminals, and each of the driving amplifiers is configured to drive and amplify the corresponding second microwave signals, and respectively amplify the N driving signals
  • the latter second microwave signal is input to the microwave input device of the semiconductor microwave oven for transmission to the chamber of the semiconductor microwave oven through the microwave input device.
  • the signal source generates the first microwave signal under the control
  • the microwave input device includes at least one waveguide box, and the at least one waveguide box is disposed on the body, wherein when the waveguide box is one, the semiconductor microwave source further includes a power combiner, the microwave input device further comprising a microwave conversion device, wherein the power combiner has N inputs and a first output, and the N inputs are correspondingly connected to the N drive amplifiers
  • the microwave conversion device is respectively connected to the first output end and the one waveguide box, and the power combiner is configured to synthesize the N drive amplified second microwave signals into a third microwave signal, and pass the first Output output,
  • the microwave conversion device is configured to feed the third microwave signal into the one waveguide box to transmit the third microwave signal into the chamber; when the waveguide box is N,
  • the microwave input device further includes N microwave conversion devices, wherein the N microwave conversion devices are respectively connected in one-to-one correspondence with the N drive amplifiers and the N waveguide boxes, and each of the microwave conversion devices will have a corresponding drive The drive-amplified second microwave signal
  • the semiconductor microwave source 3 of the above-mentioned semiconductor microwave oven includes: a signal source 31, a power divider 32, and N drive amplifiers. 33 and power combiner 34.
  • the signal source 31 is configured to generate a first microwave signal, such as a low power microwave signal;
  • the power splitter 32 has a first input terminal 6 and N output terminals 7, a first input terminal 6 of the power splitter 32 and a signal source 31.
  • the power splitter 32 allocates the power of the first microwave signal according to a preset ratio to generate N second microwave signals having the same frequency, and the N second microwave signals having the same frequency correspond to the N outputs.
  • the output is performed, wherein N is an integer greater than or equal to 2; the N driving amplifiers 33 are correspondingly connected to the N output terminals 7, and each of the driving amplifiers 33 is configured to drive and amplify the corresponding second microwave signal; the power combiner 34 Having N input terminals 8 and a first output terminal 9 , the N input terminals 8 are correspondingly connected to the N driving amplifiers 33, and the power combiner is configured to synthesize the N driving amplified second microwave signals into a third microwave signal, and Outputting to the microwave conversion device 5 of the semiconductor microwave oven through the first output terminal 9, the third microwave signal is fed into the waveguide box 2 by the microwave conversion device 5, so that the third microwave signal is transmitted to the chamber 10 .
  • the signal source 31 generates the first microwave signal under the control of the control device 4 of the semiconductor microwave oven.
  • the semiconductor microwave source 3 of the above-mentioned semiconductor microwave oven includes: a signal source 31 and a power distributor 32. And N drive amplifiers 33.
  • the signal source 31 is for generating a first microwave signal, such as a low power microwave signal;
  • the power splitter 32 has a first input 6 and N outputs 7, and the first input 6 of the power splitter 32 is connected to the signal source 31,
  • the power splitter 32 allocates power of the first microwave signal according to a preset ratio to generate N second microwave signals with the same frequency, and the N second microwave signals with the same frequency are corresponding to the N output ends.
  • N is an integer greater than or equal to 2; N drive amplifiers 33 are associated with N output terminals 7, each drive amplifier 33 is for driving amplifying a corresponding second microwave signal, and N drive amplifiers 33 Correspondingly transmitting the second microwave signals amplified by the N drivers to the N microwave conversion devices 5 of the semiconductor microwave oven, and respectively feeding the corresponding second amplified microwave signals to the corresponding ones by the N microwave conversion devices 5 In the waveguide box 2, the second microwave signal amplified by the driving is transmitted into the chamber 10.
  • the signal source 31 generates the first microwave signal under the control of the control device 4 of the semiconductor microwave oven.
  • the power splitter 32 and the power combiner 34 may be a waveguide type power splitter or a microstrip type power splitter, and the power splitter 32 and the power combiner 34 may be a T-junction power splitter and a Wilkinson power splitter. Any type of power distribution or synthesis that can be implemented, such as a waveguide, a waveguide magic T, a directional coupler, and a branch line hybrid network. Therefore, both the power splitter 32 and the power combiner 34 can be any one of a T-junction power splitter, a Wilkinson power splitter, a waveguide magic T, or a directional coupler.
  • the drive amplifier 33 further includes a driving module 331 and an amplification module 332.
  • the driving module 331 is configured to drive and amplify the second microwave signal to generate a fourth microwave signal
  • the amplifying module 332 is connected to the driving module 331, and the amplifying module 332 is configured to perform secondary amplification on the fourth microwave signal to generate a driving.
  • the amplified second microwave signal is also, as shown in FIG. 2A, the number of the driving modules 331 and the number of the amplifying modules 332 are equal to the number of outputs of the power divider 32 and the number of inputs of the power combiner 34.
  • the power of the first microwave signal is greater than the power of the second microwave signal
  • the power of the fourth microwave signal is greater than the power of the second microwave signal
  • the power of the second microwave signal after the amplification is driven Greater than the power of the fourth microwave signal.
  • the semiconductor microwave source of the semiconductor microwave oven further includes: N phase shifters 35, and N phase shifters 35 are correspondingly connected to the N outputs. Between the terminal 7 and the N driving amplifiers 33, wherein each phase shifter 35 performs phase adjustment on the second microwave signal outputted from the corresponding one of the N output terminals under the control of the control device 4, thereby The efficiency of the semiconductor power source is increased.
  • phase shifter is any one of a PIN diode phase shifter, a ferrite phase shifter, a vector modulation phase shifter, a load line phase shifter or a switch line phase shifter.
  • the second microwave signals of the same frequency output from the N output terminals of the power splitter share a signal source, thereby ensuring that the semiconductor microwave oven operates at the same frequency to achieve high-efficiency power output.
  • the structure of the semiconductor microwave oven is made simpler and more compact, and the cost is saved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

一种半导体微波炉及其半导体微波源,其中半导体微波炉包括:本体(1)、微波输入装置、半导体微波源(3)、功率分配器(32)、N个驱动放大器(33)和控制装置(4)。微波输入装置与腔室(10)相连通。半导体微波源(3)包括用于产生第一微波信号的信号源(31)。功率分配器(32)的第一输入端(6)与信号源(31)相连,功率分配器(32)按照预设比例对第一微波信号的功率进行分配以生成N个频率相同的第二微波信号以对应N个输出端(7)进行输出。每个驱动放大器(33)用于将对应的第二微波信号进行驱动放大,并分别将其输入到微波输入装置并传递到腔室(10)中。控制装置(4)用于控制信号源(31)产生第一微波信号。该微波炉共用一个信号源(31),保证工作在同一个频率,从而实现高效率的功率输出。

Description

半导体微波炉及其半导体微波源 技术领域
本发明涉及微波炉技术领域,特别涉及一种半导体微波炉以及一种半导体微波炉的半导体微波源。
背景技术
微波炉是用来加热或烹饪食物的常用器具,其原理是利用微波源产生微波,微波使食物的水分子产生高频振荡,从而摩擦生热来加热或烹饪食物的。
传统微波炉包括电源、微波源、腔体、炉门等部件。其中,微波源是产生微波的核心部件,其受高压电源的激励而产生微波,然后微波通过波导传输并耦合至放置食物的腔体内。传统微波炉的微波源采用磁控管产生微波,磁控管的工作电压为4000伏特左右,因此,存在用电安全隐患,并且损耗也大,磁控管的体积太大使得微波炉的形状也受到很大限制。
目前,半导体微波技术得到了迅速发展。半导体产生微波的效率越来越高、成本越来越低、重量越来越轻、单位体积功率密度越来越大,这都将使得半导体微波技术在微波炉上应用成为可能。然而,半导体微波源受半导体器件的限制,其输出功率等级比较低,因此,很难满足微波炉需要的大功率输出。
发明内容
本申请是基于发明人对以下问题和事实的认识发现作出的:
如图1A和图1B所示,相关技术中的半导体微波炉采用多套独立的半导体微波源分别产生微波的。其中,如图1A所示,多套独立的半导体微波源分别产生的微波再通过功率合成器合成为微波炉所需的大功率微波,最后将合成得到的大功率微波馈入到腔体中,以使微波炉达到更好的加热效果;如图1B所示,多套独立的半导体微波源分别产生微波后,然后再将微波分别通过相应的波导盒馈入到腔体中,实现大功率的微波输出,以使微波炉达到更好的加热效果。
但是,各自独立的半导体微波源如果工作在不同的频率会引起频率合成,从而降低转换效率,即使将每套半导体微波源的频率设定为同一频点,但由于每套半导体微波源的半导体器件本身存在差异性,因此很难保证各套半导体微波源的实际工作频率一致,从而在多源馈入时能效大大降低。
本发明的目的旨在至少从一定程度上解决上述的技术缺陷。
为此,本发明的一个目的在于提出一种能够共用一个信号源的半导体微波炉。
本发明的另一个目的在于提出一种半导体微波炉的半导体微波源。
为达到上述目的,本发明一方面实施例提出的一种半导体微波炉,包括:本体,所述本体具有腔室;微波输入装置,所述微波输入装置与所述腔室相连通;半导体微波源,所述半导体微波源包括:信号源,所述信号源用于产生第一微波信号;功率分配器,所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;N个驱动放大器,所述N个驱动放大器与所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述微波输入装置,以通过所述微波输入装置传递到所述腔室中;控制装置,所述控制装置用于控制所述信号源产生所述第一微波信号。
根据本发明实施例的半导体微波炉,功率分配器的N个输出端输出的频率相同的第二微波信号共用一个信号源,保证工作在同一个频率,从而实现高效率的功率输出,保证加热效果。并且,本发明实施例的半导体微波炉的结构更加简单紧凑,节约成本。
根据本发明的一个实施例,所述微波输入装置包括至少一个波导盒,所述至少一个波导盒设置在所述本体上。
根据本发明的一个实施例,当所述波导盒为一个时,所述半导体微波源还包括功率合成器,所述微波输入装置还包括微波转换装置,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中。
根据本发明的另一个实施例,当所述波导盒为N个时,所述微波输入装置还包括N个微波转换装置,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
根据本发明的一个实施例,所述功率分配器与所述功率合成器均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
根据本发明的一个实施例,所述驱动放大器进一步包括:驱动模块,所述驱动模块用于对所述第二微波信号进行驱动放大以生成第四微波信号;放大模块,所述放大模块与所述驱动模块相连,所述放大模块用于对所述第四微波信号进行二次放大以生成所述驱动放大后的第二微波信号。
其中,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
根据本发明的一个实施例,所述半导体微波源还包括:N个移相器,所述N个移相器对应连接在所述N个输出端和所述N个驱动放大器之间,其中,每个所述移相器在所述控制装置的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节。
根据本发明的一个实施例,所述移相器为PIN二极管移相器、铁氧体移相器、矢量调制移相器、加载线式移相器或开关线式移相器中的任意一种。
为达到上述目的,本发明另一方面实施例提出的一种半导体微波炉的半导体微波源,包括:信号源,所述信号源用于产生第一微波信号;功率分配器,所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;N个驱动放大器,所述N个驱动放大器与所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述半导体微波炉的微波输入装置,以通过所述微波输入装置传递到所述半导体微波炉的腔室中;其中,所述信号源在所述半导体微波炉的控制装置的控制下产生所述第一微波信号。
根据本发明实施例的半导体微波炉的半导体微波源,功率分配器N个输出端输出的频率相同的第二微波信号共用一个信号源,可保证半导体微波炉工作在同一个频率,实现高效率的功率输出,保证半导体微波炉的加热效果。并且,使得半导体微波炉的结构更加简单紧凑,节约成本。
根据本发明的一个实施例,所述微波输入装置包括至少一个波导盒,所述至少一个波导盒设置在所述本体上,其中,当所述波导盒为一个时,所述半导体微波源还包 括功率合成器,所述微波输入装置还包括微波转换装置,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中;当所述波导盒为N个时,所述微波输入装置还包括N个微波转换装置,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
根据本发明的一个实施例,所述功率分配器与所述功率合成器均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
根据本发明的一个实施例,所述驱动放大器进一步包括:驱动模块,所述驱动模块用于对所述第二微波信号进行驱动放大以生成第四微波信号;放大模块,所述放大模块与所述驱动模块相连,所述放大模块用于对所述第四微波信号进行二次放大以生成所述驱动放大后的第二微波信号。
其中,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
根据本发明的一个实施例,所述的半导体微波炉的半导体微波源,还包括:N个移相器,所述N个移相器对应连接在所述N个输出端和所述N个驱动放大器之间,其中,每个所述移相器在所述控制装置的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节。
根据本发明的一个实施例,所述移相器为PIN二极管移相器、铁氧体移相器、矢量调制移相器、加载线式移相器或开关线式移相器中的任意一种。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1A为相关技术中的一种半导体微波炉的结构示意图;
图1B为相关技术中的另一种半导体微波炉的结构示意图;
图2A为根据本发明一个实施例的半导体微波炉的结构示意图;
图2B为根据本发明另一个实施例的半导体微波炉的结构示意图;
图3为根据本发明一个实施例的功率分配器的结构示意图;
图4为根据本发明一个实施例的功率合成器的结构示意图;
图5为根据本发明一个实施例的T型结功率分配器的结构示意图;
图6为根据本发明另一个实施例的威尔金森功率分配器的结构示意图;
图7为根据本发明又一个实施例的定向耦合器的结构示意图;
图8为根据本发明第一实施例的功率分配器的三路分配示意图;
图9为根据本发明第二实施例的功率分配器的四路分配示意图;
图10为根据本发明第三实施例的功率分配器的八路分配示意图;
图11为根据本发明第四实施例的功率分配器的十二路分配示意图;
图12A为根据本发明一个具体实施例的半导体微波炉的结构示意图;
图12B为根据本发明另一个具体实施例的半导体微波炉的结构示意图;
图13为根据本发明一个实施例的加载线式移相器的示意图;
图14为根据本发明一个实施例的串联型的开关线式移相器的示意图;
图15为根据本发明一个实施例的并联型的开关线式移相器的示意图;以及
图16为根据本发明另一个实施例的并联型的开关线式移相器的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可 以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面参照附图来描述根据本发明实施例的半导体微波炉以及半导体微波炉的半导体微波源。
图2A为根据本发明一个实施例的半导体微波炉的结构示意图。如图2A所示,该半导体微波炉包括:本体1、波导盒2、半导体微波源3、控制装置4和微波转换装置5。其中,本体1具有腔室10,波导盒2设置在本体1上。
进一步地,如图2A、图3和图4所示,半导体微波源3包括:信号源31、功率分配器32、N个驱动放大器33和功率合成器34。其中,信号源31用于产生第一微波信号例如小功率的微波信号;功率分配器32具有第一输入端6和N个输出端7,功率分配器32的第一输入端6与信号源31相连,功率分配器32按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;N个驱动放大器33与N个输出端7对应相连,每个驱动放大器33用于将对应的第二微波信号进行驱动放大;功率合成器34具有N个输入端8和第一输出端9,N个输入端8与N个驱动放大器33对应相连,功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过第一输出端9进行输出。
在本发明的实施例中,功率分配器32和功率合成器34的结构由如图3和图4示意。其中,功率分配器32按照预设比例对信号源31提供的第一微波信号的功率进行分配,即功率分配器32每个输出端输出第二微波信号的功率成预设比例关系。当预设比例为1时,功率分配器32对信号源31提供的第一微波信号的功率进行等分,即功率分配器32的每个输出端的第二微波信号的功率相等。如图3和图4所示,功率分配器32都可用作功率合成器34,功率合成器34也都可用作功率分配器32,只需要把输入端和输出端的位置调换即可。
其中,功率分配器32及功率合成器34可以为波导型功率分配器或微带型功率分配器,并且功率分配器32及功率合成器34可以为T型结功率分配器、威尔金森功率分配器、波导魔T、定向耦合器、分支线混合网络等任意可以实现功率分配或合成的 类型。因此说,功率分配器32与功率合成器34均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
如图2A所示,微波转换装置5与功率合成器34的第一输出端9和波导盒2分别相连,微波转换装置5用于将所述第三微波信号馈入到波导盒2中,以使所述第三微波信号传递到腔室10中,其中,微波转换装置5可以为探针、天线等馈入装置;控制装置4用于控制信号源31产生所述第一微波信号。也就是说,信号源31在控制装置4的控制下产生小功率的微波信号即第一微波信号,然后经过功率分配器32分为N路第二微波信号,分别输入各个驱动放大器33,经过驱动放大器33驱动放大后的第二微波信号再分别输入到功率合成器34,经过功率合成后通过微波转换装置5将微波馈入到波导盒2,最后传送到腔室10。
图2B为根据本发明另一个实施例的半导体微波炉的结构示意图。如图2B所示,该半导体微波炉包括:本体1、N个波导盒2、半导体微波源3、控制装置4和N个微波转换装置5,其中,N为大于等于2的整数。
本体1具有腔室10,N个波导盒2分别设置在本体1上,如图2B所示,N等于2,两个波导盒分别设置在本体1的左右两侧。
进一步地,如图2B和图3所示,半导体微波源3包括:信号源31、功率分配器32和N个驱动放大器33。其中,信号源31用于产生第一微波信号例如小功率的微波信号;功率分配器32具有第一输入端6和N个输出端7,功率分配器32的第一输入端6与信号源31相连,功率分配器32按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出;N个驱动放大器33与N个输出端7对应相连,每个驱动放大器33用于将对应的第二微波信号进行驱动放大。
在本实施例中,功率分配器32的结构由如图3示意。其中,功率分配器32按照预设比例对信号源31提供的第一微波信号的功率进行分配,即功率分配器32每个输出端输出第二微波信号的功率成预设比例关系。当预设比例为1时,功率分配器32对信号源31提供的第一微波信号的功率进行等分,即功率分配器32的每个输出端的第二微波信号的功率相等。
其中,功率分配器32可以为波导型功率分配器或微带型功率分配器,并且功率分配器32可以为T型结功率分配器、威尔金森功率分配器、波导魔T、定向耦合器、分支线混合网络等任意可以实现功率分配的类型。因此说,功率分配器32可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
如图2B所示,N个微波转换装置5与N个驱动放大器33和N个波导盒2分别一一对应相连,每个微波转换装置将对应的驱动放大器输出的驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个驱动放大后的第二微波信号传递到所述腔室中,在腔室里整合成大功率的微波,其中,同样地,微波转换装置5可以为探针、天线等馈入装置;控制装置4用于控制信号源31产生所述第一微波信号。也就是说,信号源31在控制装置4的控制下产生小功率的微波信号即第一微波信号,然后经过功率分配器32分为N路第二微波信号,分别输入各个驱动放大器33,经过驱动放大器33驱动放大后生成驱动放大后的第二微波信号,然后再分别输入到相应的微波转换装置5,通过微波转换装置5将驱动放大后的第二微波信号馈入到波导盒2,并传送到腔室10,最后在腔室里整合成大功率的微波。
其中,波导盒2和微波转换装置5构成微波输入装置,并且,波导盒2为至少一个。
也就是说,微波输入装置包括至少一个波导盒2,至少一个波导盒2设置在本体1上。其中,如图2A所示,当波导盒2为一个时,半导体微波源3还包括功率合成器34,微波输入装置还包括微波转换装置5,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中。如图2B所示,当波导盒2为N个例如两个时,微波输入装置还包括N个微波转换装置5,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
因此,本发明实施例的半导体微波炉包括:本体、微波输入装置、半导体微波源和控制装置。其中,所述本体具有腔室,所述微波输入装置与所述腔室相连通。所述半导体微波源包括:信号源、功率分配器和N个驱动放大器,所述信号源用于产生第一微波信号,所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数,所述N个驱动放大器与 所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述微波输入装置,以通过所述微波输入装置传递到所述腔室中。并且,所述控制装置用于控制所述信号源产生所述第一微波信号。
根据本发明的一个实施例,如图2A或图2B所示,驱动放大器33进一步包括:驱动模块331即驱动级和放大模块332即末级。驱动模块331用于对所述第二微波信号进行驱动放大以生成第四微波信号,放大模块332与驱动模块331相连,放大模块332用于对所述第四微波信号进行二次放大以生成驱动放大后的第二微波信号。并且,如图2A所示,驱动模块331的数量、放大模块332的数量与功率分配器32的输出端的数量、功率合成器34的输入端的数量相等。
其中,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
根据本发明的一个实施例,当功率分配器32为T型结功率分配器时,如图5所示,信号源31产生的小功率第一微波信号经第一输入端6输入,设置两段1/4波长(λ)阻抗变换线322,其特性阻抗分别为Z02、Z03,通过设置Z02、Z03的阻抗值来实现输出的第二微波信号不同的功率分配,分配后的第二微波信号通过两个输出端7进行输出。其中,该T型结功率分配器反过来可用作功率合成器34。
根据本发明的另一个实施例,当功率分配器32为威尔金森功率分配器时,如图6所示,信号源31产生的小功率第一微波信号经威尔金森功率分配器的输入端6输入,设置两段1/4波长阻抗变换线322,其特性阻抗分别为Z02、Z03,然后再设置一隔离电阻321,以保证威尔金森功率分配器的两个输出端7隔离。其中,如果任意一个输出端7失配,将有电流流过隔离电阻321,其功率消耗在隔离电阻321上,从而不影响另一个输出端7的输出。两个输出端7分别再经过1/4波长阻抗变换线323,实现功率分配。当功率为等分时,输入端特性阻抗为Z0,则
Figure PCTCN2014090428-appb-000001
阻抗变换线323的特性阻抗为Z0。同样地,该威尔金森功率分配器反过来也可用作功率合成器34。
根据本发明的又一个实施例,当功率分配器32为定向耦合器时,如图7所示,它由两根平行导带324组成,通过两条分支导带325实现耦合,分支导带325的长度及其间隔均为1/4波长。信号源31产生的小功率第一微波信号从输入端口61输入,理想情况下端口61输入无反射,输入的功率由端口72、73输出,端口64无输出,即端口 61、端口64相互隔离。对于功率平分的情况,分支导带的特性阻抗与输入输出线相同,而平行导带的特性阻抗为输入输出线的
Figure PCTCN2014090428-appb-000002
同样地,该定向耦合器反过来可用作功率合成器34。
在本发明的实施例中,当功率分配器32的输出大于两路输出时,需要做多级阻抗变化。例如,根据本发明的第一实施例,如图8所示,信号源31产生的小功率第一微波信号从第一输入端6输入,经过一级阻抗变换后分为三路信号,然后再分别经过二级阻抗变换后通过三个输出端对应输出三路第二微波信号。
根据本发明的第二实施例,如图9所示,信号源31产生的小功率第一微波信号从第一输入端6输入,经过一级阻抗变换后分为两路信号,然后两路信号分别经过二级阻抗变换后再经过三级阻抗变换分为四路信号,最后通过四个输出端对应输出四路第二微波信号。
根据本发明的第三实施例,如图10所示,信号源31产生的小功率第一微波信号从第一输入端6输入,经过一级阻抗变换后分为两路信号,然后两路信号分别经过二级阻抗变换后再经过三级阻抗变换分为四路信号,接着四路信号分别经过四级阻抗变换分为八路信号,最后通过八个输出端对应输出八路第二微波信号。
根据本发明的第四实施例,如图11所示,信号源31产生的小功率第一微波信号从第一输入端6输入,经过一级阻抗变换后分为两路信号,然后两路信号分别经过二级阻抗变换后再经过三级阻抗变换分为六路信号,接着六路信号分别经过四级阻抗变换分为十二路信号,最后通过十二个输出端对应输出十二路第二微波信号。
由如图8至图11可以看出,信号源31产生的小功率第一微波信号从输入端6输入,经过一级阻抗变换后分为两路或三路,再经过二级阻抗变换再分配,如果还不能满足微波源数目需求,则再经过三级、四级阻抗变换,最后从多个输出端7输出。
根据本发明的一个实施例,如图12A或图12B所示,上述的半导体微波源3还包括:N个移相器35,N个移相器35对应连接在N个输出端7和N个驱动放大器33之间,其中,每个移相器35在控制装置4的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节,从而使得半导体功率源的效率提高。
其中,移相器35可以为PIN二极管移相器、铁氧体移相器或者矢量调制移相器等任意适用于微波热频段的移相器类型中的任意一种。当然,移相器35还可以是加载线式移相器或开关线式移相器中的任意一种。
当移相器35为加载线式移相器时,如图13所示,该加载线式移相器在均匀传输 线351上设置可控的电抗元件352,电抗元件352与传输线351可以是并联或串联,其中,通过控制装置4控制调节电抗元件的电抗值来引入一个相移量。
当移相器35为开关线式移相器时,如图14或图15所示。其中,图14所示的移相器为串联型的开关线式移相器,当开关S1、S4闭合,S2、S3断开时,第二微波信号通过传输路径l1传输;当开关状态相反,S1、S4断开,S2、S3闭合时,第二微波信号通过传输路径l2传输,传输路径的变化实现了相位的变化。图15所示的移相器为并联型的开关线式移相器,当开关S1、S4接通将传输线l1短路,开关S2、S3断开时,第二微波信号通过l2传输,反之则由l1传输,其中,开关也可以用二极管代替,如图16所示。
综上所述,在本发明实施例的半导体微波炉中,产生微波信号的信号源为一个,因此,多路半导体功率源共用同一个信号源,这样能够保证多路半导体功率源工作在同一个频率,从而实现高效率的功率输出,保证半导体微波炉的加热效果。
根据本发明实施例的半导体微波炉,功率分配器的N个输出端输出的频率相同的第二微波信号共用一个信号源,保证工作在同一个频率,从而实现高效率的功率输出,保证加热效果。并且,本发明实施例的半导体微波炉的结构更加简单紧凑,节约成本。
此外,本发明的实施例还提出了一种半导体微波炉的半导体微波源,其包括:信号源、功率分配器和N个驱动放大器。所述信号源用于产生第一微波信号;所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;所述N个驱动放大器与所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述半导体微波炉的微波输入装置,以通过所述微波输入装置传递到所述半导体微波炉的腔室中。其中,所述信号源在所述半导体微波炉的控制装置的控制下产生所述第一微波信号。
在本发明的实施例中,所述微波输入装置包括至少一个波导盒,所述至少一个波导盒设置在所述本体上,其中,当所述波导盒为一个时,所述半导体微波源还包括功率合成器,所述微波输入装置还包括微波转换装置,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所 述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中;当所述波导盒为N个时,所述微波输入装置还包括N个微波转换装置,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
具体地,根据本发明的一个实施例,如图2A所示,当所述波导盒为一个时,上述的半导体微波炉的半导体微波源3包括:信号源31、功率分配器32、N个驱动放大器33和功率合成器34。其中,信号源31用于产生第一微波信号例如小功率的微波信号;功率分配器32具有第一输入端6和N个输出端7,功率分配器32的第一输入端6与信号源31相连,功率分配器32按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;N个驱动放大器33与N个输出端7对应相连,每个驱动放大器33用于将对应的第二微波信号进行驱动放大;功率合成器34具有N个输入端8和第一输出端9,N个输入端8与N个驱动放大器33对应相连,功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过第一输出端9输出至所述半导体微波炉的微波转换装置5,由微波转换装置5将所述第三微波信号馈入到波导盒2中,以使所述第三微波信号传递到腔室10中。其中,信号源31在所述半导体微波炉的控制装置4的控制下产生所述第一微波信号。
根据本发明的另一个实施例,当波导盒为N个时,例如如图2B所示,波导盒为2个时,上述的半导体微波炉的半导体微波源3包括:信号源31、功率分配器32和N个驱动放大器33。信号源31用于产生第一微波信号例如小功率的微波信号;功率分配器32具有第一输入端6和N个输出端7,功率分配器32的第一输入端6与信号源31相连,功率分配器32按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;N个驱动放大器33与N个输出端7对应相连,每个驱动放大器33用于将对应的第二微波信号进行驱动放大,并且N个驱动放大器33将N个驱动放大后的第二微波信号对应发送至所述半导体微波炉的N个微波转换装置5,由N个微波转换装置5分别将对应的驱动放大后的第二微波信号馈入到对应的波导盒2中,以使驱动放大后的第二微波信号传递到腔室10中。其中,信号源31在所述半导体微波炉的控制装置4的控制下产生所述第一微波信号。
其中,功率分配器32及功率合成器34可以为波导型功率分配器或微带型功率分配器,并且功率分配器32及功率合成器34可以为T型结功率分配器、威尔金森功率分配器、波导魔T、定向耦合器、分支线混合网络等任意可以实现功率分配或合成的类型。因此说,功率分配器32与功率合成器34均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
根据本发明的一个实施例,如图2A或图2B所示,驱动放大器33进一步包括:驱动模块331和放大模块332。驱动模块331用于对所述第二微波信号进行驱动放大以生成第四微波信号,放大模块332与驱动模块331相连,放大模块332用于对所述第四微波信号进行二次放大以生成驱动放大后的第二微波信号。并且,如图2A所示,驱动模块331的数量、放大模块332的数量与功率分配器32的输出端的数量、功率合成器34的输入端的数量相等。
其中,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
进一步地,根据本发明的一个实施例,如图12A或图12B所示,上述的半导体微波炉的半导体微波源还包括:N个移相器35,N个移相器35对应连接在N个输出端7和N个驱动放大器33之间,其中,每个移相器35在控制装置4的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节,从而使得半导体功率源的效率提高。
其中,所述移相器为PIN二极管移相器、铁氧体移相器、矢量调制移相器、加载线式移相器或开关线式移相器中的任意一种。
根据本发明实施例的半导体微波炉的半导体微波源,功率分配器N个输出端输出的频率相同的第二微波信号共用一个信号源,可保证半导体微波炉工作在同一个频率,实现高效率的功率输出,保证半导体微波炉的加热效果。并且,使得半导体微波炉的结构更加简单紧凑,节约成本。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以 理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (16)

  1. 一种半导体微波炉,其特征在于,包括:
    本体,所述本体具有腔室;
    微波输入装置,所述微波输入装置与所述腔室相连通;
    半导体微波源,所述半导体微波源包括:
    信号源,所述信号源用于产生第一微波信号;
    功率分配器,所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;
    N个驱动放大器,所述N个驱动放大器与所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述微波输入装置,以通过所述微波输入装置传递到所述腔室中;
    控制装置,所述控制装置用于控制所述信号源产生所述第一微波信号。
  2. 如权利要求1所述的半导体微波炉,其特征在于,所述微波输入装置包括至少一个波导盒,所述至少一个波导盒设置在所述本体上。
  3. 如权利要求2所述的半导体微波炉,其特征在于,当所述波导盒为一个时,所述半导体微波源还包括功率合成器,所述微波输入装置还包括微波转换装置,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中。
  4. 如权利要求2所述的半导体微波炉,其特征在于,当所述波导盒为N个时,所述微波输入装置还包括N个微波转换装置,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
  5. 如权利要求3所述的半导体微波炉,其特征在于,所述功率分配器与所述功率 合成器均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
  6. 如权利要求1所述的半导体微波炉,其特征在于,所述驱动放大器进一步包括:
    驱动模块,所述驱动模块用于对所述第二微波信号进行驱动放大以生成第四微波信号;
    放大模块,所述放大模块与所述驱动模块相连,所述放大模块用于对所述第四微波信号进行二次放大以生成所述驱动放大后的第二微波信号。
  7. 如权利要求6所述的半导体微波炉,其特征在于,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
  8. 如权利要求1-7中任一项所述的半导体微波炉,其特征在于,所述半导体微波源还包括:
    N个移相器,所述N个移相器对应连接在所述N个输出端和所述N个驱动放大器之间,其中,每个所述移相器在所述控制装置的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节。
  9. 如权利要求8所述的半导体微波炉,其特征在于,所述移相器为PIN二极管移相器、铁氧体移相器、矢量调制移相器、加载线式移相器或开关线式移相器中的任意一种。
  10. 一种半导体微波炉的半导体微波源,其特征在于,包括:
    信号源,所述信号源用于产生第一微波信号;
    功率分配器,所述功率分配器具有第一输入端和N个输出端,所述功率分配器的第一输入端与所述信号源相连,所述功率分配器按照预设比例对所述第一微波信号的功率进行分配以生成N个频率相同的第二微波信号,所述N个频率相同的第二微波信号对应所述N个输出端进行输出,其中,N为大于等于2的整数;
    N个驱动放大器,所述N个驱动放大器与所述N个输出端对应相连,每个所述驱动放大器用于将对应的第二微波信号进行驱动放大,并分别将N个驱动放大后的第二微波信号输入到所述半导体微波炉的微波输入装置,以通过所述微波输入装置传递到所述半导体微波炉的腔室中;
    其中,所述信号源在所述半导体微波炉的控制装置的控制下产生所述第一微波信号。
  11. 如权利要求10所述的半导体微波炉的半导体微波源,其特征在于,所述微波 输入装置包括至少一个波导盒,所述至少一个波导盒设置在所述本体上,其中,
    当所述波导盒为一个时,所述半导体微波源还包括功率合成器,所述微波输入装置还包括微波转换装置,其中,所述功率合成器具有N个输入端和第一输出端,所述N个输入端与所述N个驱动放大器对应相连,所述微波转换装置与所述第一输出端和所述一个波导盒分别相连,所述功率合成器用于将N个驱动放大后的第二微波信号合成为第三微波信号,并通过所述第一输出端进行输出,所述微波转换装置用于将所述第三微波信号馈入到所述一个波导盒中,以使所述第三微波信号传递到所述腔室中;
    当所述波导盒为N个时,所述微波输入装置还包括N个微波转换装置,所述N个微波转换装置与所述N个驱动放大器和所述N个波导盒分别一一对应相连,每个所述微波转换装置将对应的驱动放大器输出的所述驱动放大后的第二微波信号馈入到对应的波导盒中,以使N个所述驱动放大后的第二微波信号传递到所述腔室中。
  12. 如权利要求11所述的半导体微波炉的半导体微波源,其特征在于,所述功率分配器与所述功率合成器均可为T型结功率分配器、威尔金森功率分配器、波导魔T或定向耦合器中的任意一种。
  13. 如权利要求10所述的半导体微波炉的半导体微波源,其特征在于,所述驱动放大器进一步包括:
    驱动模块,所述驱动模块用于对所述第二微波信号进行驱动放大以生成第四微波信号;
    放大模块,所述放大模块与所述驱动模块相连,所述放大模块用于对所述第四微波信号进行二次放大以生成所述驱动放大后的第二微波信号。
  14. 如权利要求13所述的半导体微波炉的半导体微波源,其特征在于,所述第一微波信号的功率大于所述第二微波信号的功率,所述第四微波信号的功率大于所述第二微波信号的功率,所述驱动放大后的第二微波信号的功率大于所述第四微波信号的功率。
  15. 如权利要求10-14中任一项所述的半导体微波炉的半导体微波源,其特征在于,还包括:
    N个移相器,所述N个移相器对应连接在所述N个输出端和所述N个驱动放大器之间,其中,每个所述移相器在所述控制装置的控制下对所述N个输出端中相应的输出端输出的第二微波信号进行相位调节。
  16. 如权利要求15所述的半导体微波炉的半导体微波源,其特征在于,所述移相 器为PIN二极管移相器、铁氧体移相器、矢量调制移相器、加载线式移相器或开关线式移相器中的任意一种。
PCT/CN2014/090428 2014-05-28 2014-11-06 半导体微波炉及其半导体微波源 WO2015180416A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017514758A JP2017525121A (ja) 2014-05-28 2014-11-06 半導体電子レンジ及びその半導体マイクロ波源
US15/314,060 US10588182B2 (en) 2014-05-28 2014-11-06 Semiconductor microwave oven and semiconductor microwave source thereof
EP14893395.5A EP3151636B1 (en) 2014-05-28 2014-11-06 Semiconductor microwave oven and semiconductor microwave source thereof
CA2950450A CA2950450C (en) 2014-05-28 2014-11-06 Semiconductor microwave oven and semiconductor microwave source thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410232381.6 2014-05-28
CN201410232874.XA CN104676671A (zh) 2014-05-28 2014-05-28 半导体微波炉及其半导体微波源
CN201410232874.X 2014-05-28
CN201410232381.6A CN104676670A (zh) 2014-05-28 2014-05-28 半导体微波炉及其半导体微波源

Publications (1)

Publication Number Publication Date
WO2015180416A1 true WO2015180416A1 (zh) 2015-12-03

Family

ID=54698009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090428 WO2015180416A1 (zh) 2014-05-28 2014-11-06 半导体微波炉及其半导体微波源

Country Status (5)

Country Link
US (1) US10588182B2 (zh)
EP (1) EP3151636B1 (zh)
JP (1) JP2017525121A (zh)
CA (1) CA2950450C (zh)
WO (1) WO2015180416A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3498056B1 (en) 2016-08-09 2020-06-03 John Bean Technologies Corporation Radio frequency processing apparatus and method
US20180323091A1 (en) * 2017-05-03 2018-11-08 Applied Materials, Inc. Method and apparatus for uniform thermal distribution in a microwave cavity during semiconductor processing
DE102017111319A1 (de) * 2017-05-24 2018-11-29 Miele & Cie. Kg Einrichtung zur Erzeugung und Transmission von Hochfrequenzwellen (HF-Wellen)
EP3448121B1 (de) * 2017-08-23 2020-12-23 Vorwerk & Co. Interholding GmbH Mikrowelleneinspeisevorrichtung an einem mikrowellenherd
CN111023176B (zh) * 2019-12-31 2022-12-09 广东美的厨房电器制造有限公司 微波烹饪设备及其控制装置
TWI786015B (zh) * 2022-04-22 2022-12-01 宏碩系統股份有限公司 單源微波加熱裝置
DE102022131525A1 (de) 2022-11-29 2024-05-29 Tq-Systems Gmbh Verstärkerschaltung für Mikrowellensignale sowie Mikrowellenvorrichtung
DE102022131522A1 (de) 2022-11-29 2024-05-29 Topinox Sarl Verstärkerschaltung für Mikrowellensignale sowie Gargerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357583A (ja) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp 電子レンジ
JP2008269794A (ja) * 2007-04-16 2008-11-06 Matsushita Electric Ind Co Ltd マイクロ波処理装置
CN101502170B (zh) * 2006-08-08 2012-01-25 松下电器产业株式会社 微波处理装置
CN101743778B (zh) * 2007-07-13 2012-11-28 松下电器产业株式会社 微波加热装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150589A (en) 1979-05-12 1980-11-22 Sharp Kk Electronic range
JPS56132793A (en) * 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPS5826487A (ja) 1981-08-07 1983-02-16 松下電器産業株式会社 高周波加熱器
ES2354477T3 (es) * 2007-05-30 2011-03-15 Eurokeg B.V. Válvula de cierre y recipiente que comprende la misma.
CN101828427A (zh) 2007-10-18 2010-09-08 松下电器产业株式会社 微波加热装置
JP2008269784A (ja) 2008-07-03 2008-11-06 Matsushita Electric Ind Co Ltd 半導体記憶装置
KR20110057134A (ko) * 2008-09-17 2011-05-31 파나소닉 주식회사 마이크로파 가열 장치
RU2011151722A (ru) * 2009-05-19 2013-06-27 Панасоник Корпорэйшн Устройство микроволнового нагрева и способ микроволнового нагрева
CN102474925B (zh) 2009-07-10 2013-11-06 松下电器产业株式会社 微波加热装置以及微波加热控制方法
JP5588989B2 (ja) 2009-09-16 2014-09-10 パナソニック株式会社 マイクロ波加熱装置
CN102474924B (zh) 2009-09-29 2013-08-14 松下电器产业株式会社 高频加热装置以及高频加热方法
CN101979923A (zh) 2010-11-17 2011-02-23 美的集团有限公司 微波炉
CN102374557B (zh) * 2011-10-31 2016-08-03 广东美的厨房电器制造有限公司 半导体微波炉的微波馈入结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357583A (ja) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp 電子レンジ
CN101502170B (zh) * 2006-08-08 2012-01-25 松下电器产业株式会社 微波处理装置
JP2008269794A (ja) * 2007-04-16 2008-11-06 Matsushita Electric Ind Co Ltd マイクロ波処理装置
CN101743778B (zh) * 2007-07-13 2012-11-28 松下电器产业株式会社 微波加热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151636A4 *

Also Published As

Publication number Publication date
CA2950450C (en) 2020-08-25
US10588182B2 (en) 2020-03-10
EP3151636B1 (en) 2022-01-05
EP3151636A4 (en) 2018-02-07
JP2017525121A (ja) 2017-08-31
EP3151636A1 (en) 2017-04-05
US20170188417A1 (en) 2017-06-29
CA2950450A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2015180416A1 (zh) 半导体微波炉及其半导体微波源
CN104676670A (zh) 半导体微波炉及其半导体微波源
JP4992525B2 (ja) マイクロ波処理装置
JP4940922B2 (ja) マイクロ波処理装置
US7595688B2 (en) High power commutating multiple output amplifier system
US20150318600A1 (en) Radio Frequency Power Combiner
CN101979923A (zh) 微波炉
JP2014110492A (ja) 可変位相装置、半導体集積回路及び位相可変方法
US3480885A (en) High power microwave switch
CN104676671A (zh) 半导体微波炉及其半导体微波源
CN103730711A (zh) 差相移式脉冲大功率波导环行器
JP2008021493A5 (zh)
CN102484909A (zh) 微波加热装置
US20200212566A1 (en) Dual band beam generator
CN106685371B (zh) 一种分合路器及Ku波段大功率固态功率放大器
JP2013090166A (ja) バラン
CN103081222B (zh) 具有并行分配图案构造的n端口馈电系统以及其中的馈电元件
Kasparek et al. High-power microwave diplexers for advanced ECRH systems
Tariq et al. Orbital angular momentum orthogonality based crosstalk reduction
Holzer et al. 1-to-$ N $ Ring Power Combiners With Common Delta Ports
CN205509995U (zh) 一种波段可选的双路输出功率放大发射单元
WO2016209525A3 (en) Solid state traveling wave amplifier for space applications
KR102671024B1 (ko) 고출력 마이크로파 신호 생성 구조체
CN215871376U (zh) 一种p波段高频率射频电路及装置
CN108008357A (zh) 一种用于雷达天线的方位面合成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314060

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2950450

Country of ref document: CA

Ref document number: 2017514758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014893395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893395

Country of ref document: EP