WO2015180316A1 - 内嵌式触摸屏及显示装置 - Google Patents
内嵌式触摸屏及显示装置 Download PDFInfo
- Publication number
- WO2015180316A1 WO2015180316A1 PCT/CN2014/087007 CN2014087007W WO2015180316A1 WO 2015180316 A1 WO2015180316 A1 WO 2015180316A1 CN 2014087007 W CN2014087007 W CN 2014087007W WO 2015180316 A1 WO2015180316 A1 WO 2015180316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- disposed
- substrate
- self
- touch panel
- common electrode
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13338—Input devices, e.g. touch panels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/046—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/006—Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134345—Subdivided pixels, e.g. for grey scale or redundancy
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134372—Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
Definitions
- Embodiments of the present invention relate to an in-cell touch panel and display device.
- the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
- the touch screen can be divided into an Add-on Mode Touch Panel, an On-Cell Touch Panel, and an In-Cell Touch Panel.
- the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
- the external touch screen has high manufacturing cost, low light transmittance, and mode.
- the group is thicker.
- the in-cell touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by major panel manufacturers.
- an in-cell touch screen utilizes the principle of mutual capacitance or self-capacitance to detect the touch position of a finger.
- a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other can be disposed in the touch screen.
- the capacitance of the respective capacitor electrodes is a fixed value
- the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance.
- the touch detection chip can determine the touch position by detecting a change in the capacitance value of each capacitor electrode during the touch period.
- the human body capacitance can act on all self-capacitances, the body capacitance can only act on the projection capacitance in the mutual capacitance, and the touch change caused by the human body touching the screen is greater than the touch screen produced by the mutual capacitance principle, so The mutual capacitance touch screen can effectively improve the signal-to-noise ratio of the touch, thereby improving the accuracy of the touch sensing.
- At least one embodiment of the present invention provides an in-cell touch panel and a display device for reducing the production cost of the in-cell touch panel and improving production efficiency.
- At least one embodiment of the present invention provides an in-cell touch panel including: a first substrate and a second substrate disposed opposite to each other, and a plurality of strips disposed on a side of the second substrate facing the first substrate a common electrode layer of the slit, and a touch detection chip; wherein the common electrode layer is divided into a plurality of independent self-capacitance electrodes along the strip slit and a direction intersecting the strip slit;
- the touch detection chip is configured to load a common electrode signal on the respective capacitor electrodes during the display period, and determine the touch position by detecting a change in the capacitance value of each of the self-capacitance electrodes during the touch period.
- a display device includes the above-described in-cell touch panel provided by the embodiment of the present invention.
- FIG. 1 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
- FIG. 2 is a schematic top view of an in-cell touch panel according to an embodiment of the present invention.
- 3a and 3b are schematic diagrams showing driving timings of an in-cell touch panel according to an embodiment of the present invention.
- FIG. 4 and FIG. 5 are respectively a schematic top view of the in-cell touch panel according to an embodiment of the present invention.
- FIG. 6 and FIG. 7 are respectively a schematic top view of the in-cell touch panel according to an embodiment of the present invention.
- 8a and 8b are schematic structural views showing the opposite sides of adjacent self-capacitance electrodes in the in-cell touch panel provided as fold lines, respectively.
- the inventors have found that in the structural design of the capacitive in-cell touch panel, it is necessary to add a new film layer inside the display panel, which leads to the need to add a new process in the production of the panel, which increases the production cost and is not conducive to improving the production efficiency.
- liquid crystal display technology capable of realizing wide viewing angle mainly includes an in-plane switch (IPS, In-Plane Switch technology and advanced Super Dimension Switch (ADS) technology.
- the ADS technology forms a multi-dimensional electric field by the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer, so that all the aligned liquid crystal molecules between the slit electrodes in the liquid crystal cell and directly above the electrode can be The rotation is generated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
- Advanced super-dimensional field conversion technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, push mura, etc. advantage.
- the common electrode layer is located as a plate electrode in the lower layer (closer to the substrate substrate), and the pixel electrode layer is located as the slit electrode in the upper layer (closer to the liquid crystal layer) in the pixel electrode layer.
- An insulating layer is provided between the common electrode layer and the common electrode layer.
- the pixel electrode layer is located as a plate electrode on the lower layer (closer to the substrate substrate), and the common electrode layer is located as the slit electrode on the upper layer (more Adjacent to the liquid crystal layer, an insulating layer is provided between the pixel electrode layer and the common electrode layer.
- the embodiment of the present invention proposes a new capacitive in-cell touch screen structure based on an important improvement method of the ADS technology, H-ADS (high aperture ratio-advanced super-dimensional field switch).
- each film layer in the drawings do not reflect the true scale, and are merely intended to illustrate the present invention.
- An in-cell touch panel provided by at least one embodiment of the present invention, as shown in FIG. 1 , includes an opposite first substrate 01 and a second substrate 02 disposed on a side of the second substrate 02 facing the first substrate 01
- the common electrode layer 03 having a strip slit and the touch detection chip (IC) 04.
- the common electrode layer 03 is divided into a plurality of mutually independent self-capacitance electrodes 05 along the strip-shaped slit a and the direction intersecting the strip-shaped slit a. That is, the common electrode layer 03 includes a plurality of mutually independent self-capacitance electrodes 05 distributed along the strip-shaped slit a and the direction intersecting the strip-shaped slit a.
- the touch detection chip 04 is configured to apply a common electrode signal to the respective capacitor electrodes 05 during the display period, and determine the touch position by detecting a change in the capacitance value of the respective capacitor electrodes 05 during the touch period.
- the touch detection chip 04 is disposed on the second substrate 02, but the invention is not limited thereto, and may be disposed on the first substrate 01 or connected to the second substrate 02 through a flexible printed circuit board. Wait.
- the above-mentioned in-cell touch panel provided by at least one embodiment of the present invention multiplexes the common electrode layer 03 as a self-capacitance electrode 05 by the principle of self-capacitance, and designs the common electrode layer 03 pattern.
- the common electrode layer 03 is divided into a plurality of independent self-capacitance electrodes 05 in the direction of the strip-shaped slits in the common electrode layer 03 and the strip-shaped slits; the touch detection chip 04 detects the respective capacitor electrodes during the touch time period.
- the change in the capacitance value of 05 can determine the touch position.
- the touch screen provided by at least one embodiment of the present invention divides the structure of the common electrode layer 03 into the self-capacitance electrode 05, on the basis of the preparation process of the array substrate, no additional process is required, the production cost is saved, and the production cost is improved. Productivity. Further, when the common electrode layer 03 is divided, the common electrode layer 03 is divided in accordance with the strip slits existing in the common electrode layer 03, thereby avoiding the problem of light leakage caused by cutting the common electrode layer 03 and affecting the normal display effect.
- the above-mentioned touch screen provided by at least one embodiment of the present invention is multiplexed with the common electrode layer 03 as the self-capacitance electrode 05.
- a touch-time and display-stage driving method can be adopted.
- the display driver chip and the touch detection chip can be integrated into one chip, thereby further reducing the production cost.
- the time of displaying each frame (V-sync) of the touch screen is divided into a display period (Display) and a touch period (Touch), the driving shown.
- the time of displaying one frame of the touch screen is 16.7 ms, 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
- the duration of the two chips can be adjusted according to the processing capability of the IC chip. This is not specifically limited.
- a gate scan signal is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gate n in the touch screen, and a gray scale signal is applied to the data signal line Data, and the respective capacitor electrodes Cx1 ... Cx n
- the connected touch detection chip respectively applies a common electrode signal to the respective capacitance electrodes Cx1 . . . Cx n to realize a liquid crystal display function.
- the touch detection chips connected to the respective capacitance electrodes Cx1 . . . Cx n simultaneously apply driving signals to the respective capacitance electrodes Cx1 . . . Cx n while receiving the respective capacitance electrodes.
- the touch detection chip connected to the respective capacitor electrodes Cx1 ... Cx n sequentially applies driving signals to the respective capacitor electrodes Cx1 ... Cxn, respectively receiving respective capacitors
- the feedback signals of the electrodes Cx1 . . . Cx n are not limited herein, and the touch signal is realized by analyzing the feedback signal to determine whether a touch occurs.
- the density of the touch screen is usually on the order of millimeters. Therefore, the density and the occupied area of the respective capacitor electrodes 05 can be selected according to the required touch density to ensure the required touch density.
- the respective capacitor electrodes 05 are designed to be 5 mm*. Square electrode of about 5mm.
- the density of the display screen is usually on the order of micrometers. Therefore, generally one self-capacitance electrode 05 corresponds to a plurality of pixels in the display screen.
- the above-mentioned in-cell touch panel provided by at least one embodiment is a common electrode layer 03 on which the entire layer is disposed on the second substrate 02, and is divided into a plurality of self along the original strip slit and the direction intersecting the strip slit.
- Capacitor electrode 05 since there is no pattern of the common electrode layer 03 at the strip slit, the division gap is not affected by the division gap in the strip slit; when the gap is formed in the direction intersecting the strip slit, The normal display function is not affected, and the division gap in the direction intersecting the strip slit should be avoided in the open area of the display, and set in the pattern area of the black matrix layer.
- the touch screen provided by the embodiment of the present invention may further include: a side disposed on the first substrate 01 facing the second substrate 02, or a black disposed on a side of the second substrate 02 facing the first substrate 01. Matrix layer 07.
- the division gap b in the direction intersecting the strip slit a is located in the region where the pattern of the black matrix layer 07 is located in the orthographic projection of the second substrate 02.
- each self-capacitance electrode 05 needs to be connected to the touch detection chip 04 through a separate wire 06, which is generally included in the touch screen for self-capacitance electrodes.
- 05 is connected to a plurality of wires 06 of the touch detection chip 04.
- the pattern of the wire 06 and the self-capacitance electrode 05 may be disposed in the same film layer, that is, the pattern of the self-capacitance electrode 05 and the wire 06 may be disposed in the common electrode layer 03; or the pattern of the wire 06 and the self-capacitance electrode 05 may be
- the different layer setting that is, the pattern of the wire 06 is made by a separate patterning process. Setting the wire 06 and the self-capacitance electrode 05 in the same layer can avoid adding a new patterning process.
- the self-capacitance electrode 05 and the wire 06 are arranged in the same layer to form a touch dead zone, and a plurality of self-capacitance electrodes are connected in the touch blind zone.
- the wire 06 of 05 passes through the touch dead zone. Therefore, the signal in the touch blind zone is relatively turbulent, that is, the touch performance in the area cannot be guaranteed. Based on the above considerations, for example, the wire 06 and the self-capacitance electrode 05 can be disposed in different layers.
- the pattern of each wire 06 is generally set such that the orthographic projection of the second substrate 02 is located in the black matrix.
- the pattern of layer 07 is in the area.
- a pixel electrode 08 is provided between the second substrate 02 and the common electrode layer 03.
- the layer of the wire 06 connected to the self-capacitance electrode 05 in the common electrode layer 03 may be disposed between the pixel electrode 08 and the common electrode layer 03, or the wire may be disposed in the same layer as the pixel electrode 08, that is, by using the pixel electrode 08 and
- the insulating layer between the common electrode layers 03 isolates the wires 06 and the self-capacitance electrodes 05 which are not connected to each other, and uses the insulation. Vias in the layers connect the corresponding wires 06 to the self-capacitor electrodes 05.
- a pattern of the wire 06 is formed after the pattern of the pixel electrode 08 is formed, or a pattern of the pixel electrode 08 and the wire 06 is simultaneously formed, and then a pattern of the insulating layer and the common electrode layer 03 is sequentially formed.
- the pattern of each wire 06 may be set as a horizontal strip structure, or may be set as a longitudinal strip structure, or may be arranged as a horizontal and vertical interlaced mesh structure, as shown in FIG. 2, which may be designed according to actual parameters, and is not Make a limit.
- the gate may be disposed on the side of the second substrate 02 facing the first substrate 01.
- the pole signal line 09 and the data signal line 10, the adjacent two gate signal lines 09 and the data signal line 10 enclose a sub-pixel.
- Each of the sub-pixels further includes a thin film transistor as a switching element, for example, a drain of the thin film transistor is electrically connected to a pixel electrode of the sub-pixel.
- the gate signal line 09, the data signal line 10, and a thin film transistor constitute an array structure.
- the extension direction of the wire 06 is generally set to be the same as the gate signal line 09 or the same as the data signal line 10. That is, generally, the extending directions of the respective wires 06 are uniform.
- the wire 06 connected to the self-capacitance electrode 05 can be connected. It is disposed in the same layer as the gate signal line 09 or in the same layer as the data signal line 10.
- each adjacent two rows of pixels is a pixel group, and two gate signal lines are disposed between the two rows of pixels.
- 09 provides a gate scan signal for the two rows of pixels, respectively.
- the position of the gate signal line 09 between adjacent pixel groups can be saved.
- the wire 06 can be disposed at a gap between adjacent pixel groups and disposed in the same layer as the gate signal line 09.
- the wire 06 is electrically connected to the corresponding self-capacitance electrode 05 through the via.
- FIG. 5 Another exemplary embodiment is as follows: as shown in FIG. 5, a double gate structure is adopted, and on the second substrate 02, two gate signal lines 09 are disposed between pixels of adjacent rows; and each adjacent The two columns of pixels are set as one pixel group, sharing a data signal line 10 between the two columns of pixels. By increasing the number of gate signal lines 09, the position of the data signal lines 10 between adjacent groups of pixels can be saved.
- the wires 06 can be disposed at the gaps between adjacent pixel groups and disposed in the same layer as the data signal lines 10.
- the wire 06 and the corresponding self-capacitance electrode 05 are electrically connected through the via hole Pick up.
- the pixel electrode layer is generally made of an ITO material, and the resistance of the ITO material is high, in order to minimize the resistance and increase the signal-to-noise ratio of the electrical signal transmitted by the respective capacitor electrode 05, the self-capacitance electrode 05 and the corresponding wire can be used.
- 06 is electrically connected through a plurality of vias, as shown in FIG. 6. This is equivalent to parallel connection of the ITO electrode and a plurality of metal resistors composed of wires, so that the overall resistance of the electrode can be minimized, thereby improving the signal-to-noise ratio when the electrode transmits signals.
- each of the wires 06 when designing each of the wires 06, as shown in FIG. 7, after the wires 06 and the corresponding self-capacitance electrodes 05 are electrically connected, the original wire can be penetrated.
- the entire wire of the entire panel is broken, forming a wire 06 and a plurality of metal wires 11 disposed in the same layer as the wire 06 and insulated from each other; each of the metal wires 11 and the wires 06 are in the same straight line, and a self-capacitor overlapping
- the electrodes 05 are connected in parallel, that is, electrically connected through the via holes.
- the above design can make full use of the gap between adjacent groups of pixels, while ensuring the aperture ratio of the touch screen, using the redundant portion of the wire, setting a metal wire with a lower resistance value, and a metal having a lower resistance value
- the line is connected in parallel with the respective capacitor electrodes with higher resistance values to minimize the resistance of the respective capacitor electrodes.
- the human body capacitance acts on the self-capacitance of the respective capacitor electrodes 05 by direct coupling, when the human body touches the screen, the self-capacitance electrode only under the touch position
- the capacitance value of 05 has a large change amount, and the capacitance value of the self-capacitance electrode 05 adjacent to the self-capacitance electrode 05 under the touch position is very small, so that the area where the self-capacitance electrode 05 is located cannot be determined when sliding on the touch screen. Touch coordinates within.
- the opposite sides of the adjacent two self-capacitance electrodes 05 may be set as a fold line to increase the self located below the touch position.
- the amount of change in the capacitance value of the self-capacitance electrode 05 adjacent to the capacitor electrode 05 may be set as a fold line to increase the self located below the touch position.
- the overall shape of the respective capacitor electrodes 05 may be set in one or a combination of the following two ways:
- the sides of the adjacent two self-capacitance electrodes 05 which are opposite to each other, may be arranged in a stepped structure, and the two stepped structures have the same shape and match each other, as shown in FIG. 8a, and FIG. 8a shows 2 * 2 self-capacitor electrodes 05;
- the sides of the adjacent two self-capacitance electrodes 05 which are opposite to each other, may be arranged in a concave-convex structure, and the two concave-convex structures have the same shape and match each other, as shown in FIG. 8b, and FIG. 8b shows 2 * 2 self-capacitance electrodes 05.
- each film layer on the second substrate 02 can be fabricated by any existing composition process, for example, 8 patterning processes can be used: gate and gate line patterning ⁇ active layer Composition ⁇ first insulating layer patterning ⁇ data line and source and drain patterning ⁇ resin layer patterning ⁇ pixel electrode patterning ⁇ second insulating layer patterning ⁇ common electrode layer patterning; of course, according to the actual design, 7 patterning processes, 6 times The patterning process or the five-time patterning process is not limited herein.
- At least one embodiment of the present invention further provides a display device, including the in-cell touch panel described above, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.
- a display device including the in-cell touch panel described above, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc.
- a product or part that has a display function For the implementation of the display device, reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
- the common electrode layer is multiplexed as a self-capacitance electrode by the principle of self-capacitance, and the common electrode layer pattern is designed along the strip gap in the common electrode layer and
- the common electrode layer is divided into a plurality of independent self-capacitance electrodes in a direction intersecting with the strip-shaped slits; the touch detection chip can determine the touch position by detecting a change in the capacitance value of the respective capacitor electrodes during the touch time period. Since the touch screen provided by the embodiment of the present invention divides the common electrode layer into self-capacitance electrodes, on the basis of the array substrate preparation process, no additional process is required, the production cost is saved, and the production efficiency is improved.
- the common electrode layer is divided, the common electrode layer is divided according to the original strip-shaped slit in the common electrode layer, thereby avoiding the light leakage problem caused by cutting the common electrode layer and affecting the normal display effect.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Position Input By Displaying (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
一种内嵌式触摸屏及显示装置,利用自电容的原理复用公共电极层(03)作为自电容电极(05),将公共电极层(03)图形进行设计,沿着公共电极层(03)中条状缝隙以及与条状缝隙交叉的方向,将公共电极层(03)分割成多个相互独立的自电容电极(05);触控侦测芯片(04)在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。所述内嵌式触摸屏能够节省生产成本,提高生产效率。并且可以避免因切割公共电极层而造成漏光,从而影响显示效果。
Description
本发明的实施例涉及一种内嵌式触摸屏及显示装置。
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add-on Mode Touch Panel)、覆盖表面式触摸屏(On-Cell Touch Panel)、以及内嵌式触摸屏(In-Cell Touch Panel)。外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏,外挂式触摸屏制作成本较高、光透过率较低、模组较厚。而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家青睐。
目前,内嵌(In-cell)式触摸屏是利用互电容或自电容的原理实现检测手指触摸位置。利用自电容的原理可以在触摸屏中设置多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,对应的自电容电极所承受的电容为固定值叠加人体电容。触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中的投射电容,由人体碰触屏幕所引起的触控变化量会大于利用互电容原理制作出的触摸屏,因此相对于互电容的触摸屏能有效提高触控的信噪比,从而提高触控感应的准确性。
发明内容
本发明至少一实施例提供了一种内嵌式触摸屏及显示装置,用以降低内嵌式触摸屏的生产成本、提高生产效率。
本发明至少一实施例提供一种内嵌式触摸屏,包括:相对而置的第一基板和第二基板,设置于所述第二基板面向所述第一基板的一侧的具有多个条
状缝隙的公共电极层,以及触控侦测芯片;其中,所述公共电极层沿着所述条状缝隙以及与所述条状缝隙交叉的方向分割成多个相互独立的自电容电极;所述触控侦测芯片用于在显示时间段对各自电容电极加载公共电极信号,在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置。
本发明至少一实施例提供的一种显示装置,包括本发明实施例提供的上述内嵌式触摸屏。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的内嵌式触摸屏的结构示意图;
图2为本发明实施例提供的内嵌式触摸屏的俯视示意图之一;
图3a和图3b分别为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图4和图5分别为本发明实施例提供的内嵌式触摸屏的俯视示意图之二;
图6和图7分别为本发明实施例提供的内嵌式触摸屏的俯视示意图之三;
图8a和图8b分别为本发明实施例提供的内嵌式触摸屏中相邻的自电容电极相对的侧边设置为折线的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明人发现,在电容式内嵌触摸屏的结构设计中,需要在显示面板内部增加新的膜层,导致在制作面板时需要增加新的工艺,使生产成本增加,不利于提高生产效率。
目前,能够实现宽视角的液晶显示技术主要包括平面内开关(IPS,
In-Plane Switch)技术和高级超维场开关(ADS,Advanced Super Dimension Switch)技术。ADS技术通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都能够产生旋转,从而提高了液晶工作效率并增大了透光效率。高级超维场转换技术可以提高TFT-LCD产品的画面品质,具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差、无挤压水波纹(push Mura)等优点。
例如,传统ADS型液晶面板的第二基板上,公共电极层作为板状电极位于下层(更靠近衬底基板),像素电极层作为狭缝电极位于上层(更靠近液晶层),在像素电极层和公共电极层之间设有绝缘层。而高开口率-高级超维场开关(HADS)型液晶面板的第二基板上,像素电极层作为板状电极位于下层(更靠近衬底基板),公共电极层作为狭缝电极位于上层(更靠近液晶层),在像素电极层和公共电极层之间设有绝缘层。
本发明实施例基于ADS技术的重要改进方式H-ADS(高开口率-高级超维场开关),提出了新的电容式内嵌触摸屏结构。
在附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本发明至少一实施例提供的一种内嵌式触摸屏,如图1所示,包括相对而置的第一基板01和第二基板02,设置于第二基板02面向第一基板01的一侧的具有条状缝隙的公共电极层03,以及触控侦测芯片(IC)04。
如图2所示,公共电极层03沿着条状缝隙a以及与条状缝隙a交叉的方向分割成多个相互独立的自电容电极05。即,公共电极层03包括沿着条状缝隙a以及与条状缝隙a交叉的方向分布的多个相互独立的自电容电极05。
触控侦测芯片04用于在显示时间段对各自电容电极05加载公共电极信号,在触控时间段通过检测各自电容电极05的电容值变化以判断触控位置。在图1中,触控侦测芯片04设置在第二基板02上,但是本发明不限于此,其还可以设置在第一基板01上,或者通过柔性印刷电路板连接到第二基板02上等。
本发明至少一实施例提供的上述内嵌式触摸屏,利用自电容的原理复用公共电极层03作为自电容电极05,将公共电极层03图形进行设计,沿着公
共电极层03中条状缝隙以及与条状缝隙交叉的方向,将公共电极层03分割成多个相互独立的自电容电极05;触控侦测芯片04在触控时间段通过检测各自电容电极05的电容值变化可以判断出触控位置。
由于本发明至少一个实施例提供的触摸屏是将公共电极层03的结构分割成自电容电极05,因此,在阵列基板制备工艺的基础上,不需要增加额外的工艺,节省了生产成本,提高了生产效率。并且,在分割公共电极层03时,是按照公共电极层03中原有的条状缝隙将公共电极层03进行分割,可以避免因切割公共电极层03而造成漏光问题,以及影响正常的显示效果。
由于本发明至少一实施例提供的上述触摸屏采用公共电极层03复用作为自电容电极05,为了减少显示和触控信号之间的相互干扰,可以采用触控和显示阶段分时驱动的方式。在一个具体实施例时,还可以将显示驱动芯片和触控侦测芯片整合为一个芯片,进一步降低生产成本。
例如,如图3a和图3b所示的驱动时序图中,将触摸屏显示每一帧(V-sync)的时间分成显示时间段(Display)和触控时间段(Touch),该所示的驱动时序图中触摸屏的显示一帧的时间为16.7ms,选取其中5ms作为触控时间段,其他的11.7ms作为显示时间段,当然也可以根据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。在显示时间段(Display),对触摸屏中的每条栅极信号线Gate1,Gate2……Gate n依次施加栅扫描信号,对数据信号线Data施加灰阶信号,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n分别施加公共电极信号,以实现液晶显示功能。在触控时间段(Touch),如图3a所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n同时施加驱动信号,同时接收各自电容电极Cx1……Cx n的反馈信号;也可以如图3b所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cxn依次施加驱动信号,分别接收各自电容电极Cx1……Cx n的反馈信号,在此不做限定,通过对反馈信号的分析判断是否发生触控,以实现触控功能。
一般地,触摸屏的密度通常在毫米级,因此,可以根据所需的触控密度选择各自电容电极05的密度和所占面积以保证所需的触控密度,通常各自电容电极05设计为5mm*5mm左右的方形电极。而显示屏的密度通常在微米级,因此,一般一个自电容电极05会对应显示屏中的多个像素。并且,本发
明至少一实施例提供的上述内嵌式触摸屏是将整层设置在第二基板02上的公共电极层03,沿着原有的条状缝隙以及与条状缝隙交叉的方向分割成多个自电容电极05;由于条状缝隙处原本没有公共电极层03的图形,因此,在条状缝隙处设置分割间隙不会影响正常的显示;在设置与条状缝隙交叉的方向的分割间隙时,为了不影响正常的显示功能,该与条状缝隙交叉的方向的分割间隙应避开显示的开口区域,设置在黑矩阵层的图形区域。
如图1所示,本发明实施例提供的上述触摸屏还可以包括:设置于第一基板01面向第二基板02的一侧,或设置于第二基板02面向第一基板01的一侧的黑矩阵层07。
在公共电极层03中,与条状缝隙a交叉的方向的分割间隙b在第二基板02的正投影均位于黑矩阵层07的图形所在区域内。
在采用自电容原理设计触摸屏时,如图2所示,一般每一个自电容电极05需要通过单独的导线06与触控侦测芯片04连接,即一般在触摸屏中还包括用于将自电容电极05连接至触控侦测芯片04的多条导线06。
例如,可以将导线06与自电容电极05的图形设置在同一膜层,即可以在公共电极层03内设置自电容电极05和导线06的图形;也可以将导线06与自电容电极05的图形异层设置,即采用单独的构图工艺制作导线06的图形。将导线06和自电容电极05同层设置虽然可以避免增加新的构图工艺,但是,将自电容电极05和导线06同层设置会形成触控盲区,在触控盲区内连接多个自电容电极05的导线06均经过该触控盲区。因此,在这个触控盲区内的信号相对比较紊乱,也就是在该区域内的触控性能无法保证。基于上述考虑,例如,可将导线06和自电容电极05异层设置。
在具体实施时,在第二基板02设置导线06时,如图2所示,为了不影响显示区域的开口率,一般将各导线06的图形设置为在第二基板02的正投影位于黑矩阵层07的图形所在区域内。
本发明至少一实施例提供的上述触摸屏中,如图1所示,在第二基板02与公共电极层03之间设有像素电极08。例如,与公共电极层03中的自电容电极05连接的导线06所在层可以设置于像素电极08与公共电极层03之间,或者将导线与像素电极08同层设置,即利用像素电极08与公共电极层03之间的绝缘层隔离相互没有连接关系的导线06和自电容电极05,利用绝缘
层中的过孔使对应的导线06和自电容电极05相连。例如,在制作完像素电极08的图形之后制作导线06的图形,或者同时制作像素电极08和导线06的图形,然后依次制作绝缘层和公共电极层03的图形。各导线06的图形可以设置成横向条状结构,也可以设置成纵向条状结构,还可以设置成横纵交错的网状结构,如图2所示,可以根据实际参数进行设计,在此不做限定。
进一步地,在本发明至少一实施例提供的上述触摸屏中,如图4和图5所示,还可以包括:设置于第二基板02面向第一基板01的一侧的相互交叉而置的栅极信号线09和数据信号线10,相邻的两条栅极信号线09和数据信号线10围成一亚像素。每个亚像素还包括作为开关元件的薄膜晶体管,例如薄膜晶体管的漏极与亚像素的像素电极电连接。栅极信号线09、数据信号线10和薄膜晶体管等构成阵列结构。
为了便于通过导线06将自电容电极05与触控侦测芯片04连接,一般导线06的延伸方向设置为与栅极信号线09相同,或与数据信号线10相同。即一般各导线06的延伸方向均一致。
进一步地,在本发明至少一实施例提供的触摸屏中,为了尽可能的不增加新的膜层,保证生产效率和降低生产成本,在具体实施时,可以将与自电容电极05连接的导线06与栅极信号线09同层设置,或与数据信号线10同层设置。
一种示例性的实施方式为:如图4所示,在第二基板02上,以每相邻的两行像素为一个像素组,在该两行像素之间设置有两条栅极信号线09分别为该两行像素提供栅极扫描信号。通过变更相邻两行像素之间的栅极信号线09和TFT开关的位置,可以节省出相邻像素组之间栅极信号线09的位置。这样,如图4所示,就可以将导线06设置在相邻的像素组之间的间隙处,且与栅极信号线09同层设置。导线06与对应的自电容电极05通过过孔电连接。
另一种示例性的实施方式为:如图5所示,采用双栅结构,在第二基板02上,在相邻行的像素之间均设置两条栅极信号线09;且每相邻的两列像素设为一个像素组,共用一条位于该两列像素之间的数据信号线10。通过增加一倍栅极信号线09的数量,可以节省出相邻像素组之间数据信号线10的位置。这样,如图5所示,就可以将导线06设置在相邻的像素组之间的间隙处,且与数据信号线10同层设置。导线06与对应的自电容电极05通过过孔电连
接。
由于像素电极层一般由ITO材料制成,而ITO材料的电阻较高,为了最大限度的降低其电阻,提高各自电容电极05传递电信号的信噪比,可以将自电容电极05与对应的导线06通过多个过孔电性相连,如图6所示。这相当于将ITO电极和多个由导线组成的金属电阻并联,这样能最大限度的减少电极的整体电阻,从而提高电极传递信号时的信噪比。
进一步地,为了更加降低自电容电极05的整体电阻,在设计各条导线06时,如图7所示,在满足各导线06与对应的自电容电极05电性连接后,还可以将原来贯穿整个面板的整条的导线断开,形成导线06和与导线06同层设置且相互绝缘的多条金属线11;各金属线11与各导线06位于同一直线,且与交叠的一自电容电极05并联,即通过过孔电性相连。上述这种设计能充分利用相邻组像素之间的间隙,在保证触摸屏的开口率的同时,利用了导线的冗余部分,设置电阻值较低的金属线,并将电阻值较低的金属线与电阻值较高的各自电容电极并联,能最大程度的降低各自电容电极的电阻。
在本发明至少一实施例提供的内嵌式触摸屏中,由于人体电容通过直接耦合的方式作用于各自电容电极05的自电容,因此,人体触碰屏幕时,仅在触摸位置下方的自电容电极05的电容值有较大的变化量,与触摸位置下方的自电容电极05相邻的自电容电极05的电容值变化量非常小,这样在触摸屏上滑动时,不能确定自电容电极05所在区域内的触控坐标。为解决此问题,在本发明至少一实施例提供的上述内嵌式触摸屏中,可以将相邻的两个自电容电极05相对的侧边均设置为折线,以便增大位于触摸位置下方的自电容电极05相邻的自电容电极05的电容值变化量。
例如,可以采用如下两种方式之一或组合的方式设置各自电容电极05的整体形状:
1、可以将相邻的两个自电容电极05相对的为折线的侧边均设置为阶梯状结构,两阶梯状结构形状一致且相互匹配,如图8a所示,图8a中示出了2*2个自电容电极05;
2、可以将相邻的两个自电容电极05相对的为折线的侧边均设置为凹凸状结构,两凹凸状结构形状一致且相互匹配,如图8b所示,图8b中示出了2*2个自电容电极05。
例如,本发明实施例提供的上述触摸屏中,可以采用现有的任意种构图流程制作第二基板02上的各膜层,例如可以采用8次构图工艺:栅极和栅线构图→有源层构图→第一绝缘层构图→数据线和源漏极构图→树脂层构图→像素电极构图→第二绝缘层构图→公共电极层构图;当然也可以根据实际设计,采用7次构图工艺、6次构图工艺或5次构图工艺,在此不做限定。
本发明至少一实施例还提供了一种显示装置,包括上述所述的内嵌式触摸屏,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
本发明至少一实施例提供的上述内嵌式触摸屏及显示装置,利用自电容的原理复用公共电极层作为自电容电极,将公共电极层图形进行设计,沿着公共电极层中条状缝隙以及与条状缝隙交叉的方向,将公共电极层分割成多个相互独立的自电容电极;触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于本发明实施例提供的触摸屏是将公共电极层分割成自电容电极,因此,在阵列基板制备工艺的基础上,不需要增加额外的工艺,节省了生产成本,提高了生产效率。
并且,在分割公共电极层时,是按照公共电极层中原有的条状缝隙将公共电极层进行分割,可以避免因切割公共电极层而造成漏光问题,以及影响正常的显示效果。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年5月30日递交的中国专利申请第201410241132.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
Claims (13)
- 一种内嵌式触摸屏,包括:相对而置的第一基板和第二基板,设置于所述第二基板面向所述第一基板的一侧的具有多个条状缝隙的公共电极层,以及触控侦测芯片;其中,所述公共电极层包括沿着所述条状缝隙以及与所述条状缝隙交叉的方向布置的多个相互独立的自电容电极;所述触控侦测芯片用于在显示时间段对各自电容电极加载公共电极信号,在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置。
- 如权利要求1所述的内嵌式触摸屏,还包括:设置于所述第一基板面向所述第二基板的一侧,或设置于所述第二基板面向所述第一基板的一侧的黑矩阵层;在所述公共电极层中,与所述条状缝隙交叉的方向的分割间隙在所述第二基板的正投影均位于所述黑矩阵层的图形所在区域内。
- 如权利要求2所述的内嵌式触摸屏,还包括:将所述自电容电极连接至所述触控侦测芯片的多条导线。
- 如权利要求3所述的内嵌式触摸屏,其中,所述导线与所述自电容电极异层设置。
- 如权利要求3或4所述的内嵌式触摸屏,其中,各所述导线的图形在所述第二基板的正投影位于所述黑矩阵层的图形所在区域内。
- 如权利要求4所述的内嵌式触摸屏,还包括:设置于所述第二基板与所述公共电极层之间的像素电极;其中,所述导线所在层设置在所述像素电极与所述公共电极层之间,或与所述像素电极同层设置。
- 如权利要求4所述的内嵌式触摸屏,还包括:设置于所述第二基板面向所述第一基板的一侧的相互交叉而置的栅极信号线和数据信号线;其中,相邻的两条栅极信号线和数据信号线围成一像素;所述导线的延伸方向与所述栅极信号线相同,或与所述数据信号线相同。
- 如权利要求7所述的内嵌式触摸屏,其中,以每相邻的两行像素为一个像素组,在该两行像素之间设置有两条栅极信号线分别为该两行像素提供 栅极扫描信号;所述导线设置在相邻的像素组之间的间隙处,且与所述栅极信号线同层设置。
- 如权利要求7所述的内嵌式触摸屏,其中,相邻行的像素之间设置有两条栅极信号线;且每相邻的两列像素为一个像素组,共用一条位于该两列像素之间的数据信号线;所述导线设置在相邻的像素组之间的间隙处,且与所述数据信号线同层设置。
- 如权利要求1-9任一所述的内嵌式触摸屏,其中,相邻的两个自电容电极相对的侧边均设置为折线。
- 如权利要求10所述的内嵌式触摸屏,其中,所述折线的侧边设置为阶梯状结构,两阶梯状结构形状一致且相互匹配。
- 如权利要求10所述的内嵌式触摸屏,其中,所述折线的侧边设置为凹凸状结构,两凹凸状结构形状一致且相互匹配。
- 一种显示装置,包括如权利要求1-12任一项所述的内嵌式触摸屏。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14861116.3A EP3153951B1 (en) | 2014-05-30 | 2014-09-20 | Embedded touchscreen and display apparatus |
US14/443,286 US9678594B2 (en) | 2014-05-30 | 2014-09-20 | In-cell touch panel and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410241132.3A CN104035640B (zh) | 2014-05-30 | 2014-05-30 | 一种内嵌式触摸屏及显示装置 |
CN201410241132.3 | 2014-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015180316A1 true WO2015180316A1 (zh) | 2015-12-03 |
Family
ID=51466435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/087007 WO2015180316A1 (zh) | 2014-05-30 | 2014-09-20 | 内嵌式触摸屏及显示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9678594B2 (zh) |
EP (1) | EP3153951B1 (zh) |
CN (1) | CN104035640B (zh) |
WO (1) | WO2015180316A1 (zh) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104020909B (zh) | 2014-05-30 | 2017-06-30 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104035640B (zh) * | 2014-05-30 | 2017-10-27 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
US9933899B2 (en) * | 2014-05-30 | 2018-04-03 | Boe Technology Group Co., Ltd. | Capacitive touch structure, in-cell touch panel, display device and scanning method |
CN104020905B (zh) | 2014-05-30 | 2017-06-16 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020907B (zh) | 2014-05-30 | 2017-02-15 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020891A (zh) | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104503647B (zh) | 2014-12-31 | 2017-12-08 | 京东方科技集团股份有限公司 | 一种触摸显示屏的基板及其制造方法、触摸屏及显示装置 |
CN104461209B (zh) | 2015-01-09 | 2017-12-19 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN105843433B (zh) | 2015-01-30 | 2019-01-18 | 乐金显示有限公司 | 触摸显示设备 |
CN104571768B (zh) * | 2015-01-30 | 2018-03-20 | 京东方科技集团股份有限公司 | 一种阵列基板、内嵌式触摸屏和显示装置 |
CN104657024A (zh) | 2015-03-13 | 2015-05-27 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
TWI765634B (zh) | 2015-03-27 | 2022-05-21 | 日商半導體能源研究所股份有限公司 | 觸控面板 |
CN104881167B (zh) * | 2015-03-31 | 2018-01-12 | 深圳市华星光电技术有限公司 | 一种触控面板和显示装置 |
CN104793827B (zh) * | 2015-05-08 | 2018-03-27 | 厦门天马微电子有限公司 | 一种阵列基板和自电容式触控显示装置 |
CN104898888B (zh) | 2015-06-23 | 2017-09-19 | 京东方科技集团股份有限公司 | 一种内嵌式触摸显示屏、其驱动方法及显示装置 |
CN105093736A (zh) * | 2015-07-14 | 2015-11-25 | 京东方科技集团股份有限公司 | Ips阵列基板及其制作方法、显示器件 |
CN106681571A (zh) | 2015-10-15 | 2017-05-17 | 京东方科技集团股份有限公司 | 一种触摸屏、显示装置及其驱动方法 |
US10175838B2 (en) * | 2017-01-10 | 2019-01-08 | Semiconductor Components Industries, Llc | Methods and apparatus for a touch sensor |
CN108628045B (zh) * | 2017-03-21 | 2022-01-25 | 京东方科技集团股份有限公司 | 阵列基板、显示面板和显示装置 |
CN107958240A (zh) * | 2018-01-03 | 2018-04-24 | 京东方科技集团股份有限公司 | 一种指纹识别模块及其制作方法、显示装置 |
CN108388375B (zh) * | 2018-03-01 | 2021-10-22 | 京东方科技集团股份有限公司 | 一种触控传感器和触控显示装置 |
CN108682368B (zh) * | 2018-05-18 | 2021-06-25 | 青岛海信医疗设备股份有限公司 | 一种显示屏漏光检测方法、系统及显示器 |
CN109326221B (zh) * | 2018-09-25 | 2021-09-28 | 上海天马微电子有限公司 | 显示装置和显示装置的触觉反馈显示方法 |
CN109491547B (zh) * | 2018-12-25 | 2024-04-12 | 福建华佳彩有限公司 | 一种自容In-cell显示屏触控结构 |
US10817111B1 (en) | 2019-04-10 | 2020-10-27 | Semiconductor Components Industries, Llc | Methods and apparatus for a capacitive touch sensor |
US11775125B2 (en) * | 2019-07-26 | 2023-10-03 | Chongqing Boe Optoelectronics Technology Co., Ltd. | Touch electrode structure, touch screen and touch display device |
WO2024221139A1 (zh) * | 2023-04-23 | 2024-10-31 | 京东方科技集团股份有限公司 | 触控显示基板及其驱动方法、触控显示装置 |
CN118605058A (zh) * | 2024-08-09 | 2024-09-06 | 惠科股份有限公司 | 一种显示面板和显示装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100214247A1 (en) * | 2009-02-20 | 2010-08-26 | Acrosense Technology Co., Ltd. | Capacitive Touch Panel |
CN103279245A (zh) * | 2013-06-06 | 2013-09-04 | 敦泰科技有限公司 | 触控显示装置 |
CN103793120A (zh) * | 2014-01-28 | 2014-05-14 | 北京京东方光电科技有限公司 | 一种内嵌式触摸屏及显示装置 |
US20140132560A1 (en) * | 2012-11-14 | 2014-05-15 | Orise Technology Co., Ltd. | In-cell multi-touch I display panel system |
CN104020891A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020909A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104035640A (zh) * | 2014-05-30 | 2014-09-10 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4816668B2 (ja) | 2008-03-28 | 2011-11-16 | ソニー株式会社 | タッチセンサ付き表示装置 |
US8217913B2 (en) * | 2009-02-02 | 2012-07-10 | Apple Inc. | Integrated touch screen |
US7995041B2 (en) * | 2009-02-02 | 2011-08-09 | Apple Inc. | Integrated touch screen |
JP5140018B2 (ja) | 2009-02-24 | 2013-02-06 | 株式会社ジャパンディスプレイイースト | 入力機能付き液晶表示装置 |
CN102812425B (zh) | 2009-10-27 | 2016-05-04 | 感知像素股份有限公司 | 投射式电容触摸感应 |
TWI512575B (zh) | 2009-11-09 | 2015-12-11 | Sitronix Technology Corp | Single layer touch sensing device |
US8901944B2 (en) * | 2010-01-15 | 2014-12-02 | Cypress Semiconductor Corporation | Lattice structure for capacitance sensing electrodes |
CN102314248A (zh) | 2010-06-29 | 2012-01-11 | 瀚宇彩晶股份有限公司 | 触控面板及其像素阵列 |
KR20120017587A (ko) | 2010-08-19 | 2012-02-29 | 삼성모바일디스플레이주식회사 | 터치스크린패널 일체형 액정표시장치 |
CN102650916B (zh) * | 2011-02-25 | 2014-11-26 | 乐金显示有限公司 | 集成触摸传感器的显示设备 |
WO2013094527A1 (ja) | 2011-12-19 | 2013-06-27 | シャープ株式会社 | タッチセンサ内蔵型表示パネル、それを備えた表示装置、およびタッチセンサ内蔵型表示パネルの駆動方法 |
KR101466556B1 (ko) * | 2012-03-29 | 2014-11-28 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 제조방법 |
CN103383612B (zh) | 2012-05-02 | 2016-05-18 | 嘉善凯诺电子有限公司 | 自身电容型触控装置与其操作方法 |
CN103472961B (zh) | 2012-06-06 | 2016-12-14 | 群康科技(深圳)有限公司 | 电容式触控面板及具有该电容式触控面板的电子装置 |
JP6050728B2 (ja) | 2012-07-24 | 2016-12-21 | 株式会社ジャパンディスプレイ | タッチセンサ付き液晶表示装置、及び電子機器 |
JP5971708B2 (ja) | 2012-08-27 | 2016-08-17 | 株式会社ジャパンディスプレイ | タッチパネル内蔵型表示装置 |
CN102841718B (zh) | 2012-08-31 | 2016-04-06 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN103677454B (zh) | 2012-09-04 | 2016-09-14 | 晨星软件研发(深圳)有限公司 | 自容式触控面板 |
CN202854779U (zh) * | 2012-10-15 | 2013-04-03 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN102955635B (zh) | 2012-10-15 | 2015-11-11 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN102937852B (zh) * | 2012-10-19 | 2015-08-05 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏、其驱动方法及显示装置 |
CN102955637B (zh) * | 2012-11-02 | 2015-09-09 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏、其驱动方法及显示装置 |
CN202887154U (zh) * | 2012-11-02 | 2013-04-17 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN202976049U (zh) * | 2012-12-13 | 2013-06-05 | 北京京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
CN103293785B (zh) | 2012-12-24 | 2016-05-18 | 上海天马微电子有限公司 | Tn型液晶显示装置及其触控方法 |
JP6131071B2 (ja) | 2013-03-14 | 2017-05-17 | 株式会社ジャパンディスプレイ | タッチパネル内蔵型表示装置 |
CN103186307B (zh) | 2013-03-26 | 2015-10-14 | 合肥京东方光电科技有限公司 | 一种电容式内嵌触摸屏及显示装置 |
US9152283B2 (en) | 2013-06-27 | 2015-10-06 | Synaptics Incorporated | Full in-cell sensor |
US20150091842A1 (en) * | 2013-09-30 | 2015-04-02 | Synaptics Incorporated | Matrix sensor for image touch sensing |
TWI522875B (zh) | 2013-10-22 | 2016-02-21 | Focaltech Systems Ltd | Since the capacitance change detecting method for a touch panel and a self-capacitance sensing means |
CN203606816U (zh) | 2013-11-22 | 2014-05-21 | 敦泰科技有限公司 | 能够减少引出线的单层互电容触碰输入装置 |
EP2937767A1 (en) * | 2014-03-27 | 2015-10-28 | LG Display Co., Ltd. | Touch panel, display device and method of driving the same |
CN104020907B (zh) * | 2014-05-30 | 2017-02-15 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020912B (zh) | 2014-05-30 | 2017-02-15 | 京东方科技集团股份有限公司 | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 |
CN104020906B (zh) | 2014-05-30 | 2016-09-07 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏以及显示装置 |
CN104020910B (zh) | 2014-05-30 | 2017-12-15 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020893B (zh) | 2014-05-30 | 2017-01-04 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
-
2014
- 2014-05-30 CN CN201410241132.3A patent/CN104035640B/zh active Active
- 2014-09-20 WO PCT/CN2014/087007 patent/WO2015180316A1/zh active Application Filing
- 2014-09-20 US US14/443,286 patent/US9678594B2/en active Active
- 2014-09-20 EP EP14861116.3A patent/EP3153951B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100214247A1 (en) * | 2009-02-20 | 2010-08-26 | Acrosense Technology Co., Ltd. | Capacitive Touch Panel |
US20140132560A1 (en) * | 2012-11-14 | 2014-05-15 | Orise Technology Co., Ltd. | In-cell multi-touch I display panel system |
CN103279245A (zh) * | 2013-06-06 | 2013-09-04 | 敦泰科技有限公司 | 触控显示装置 |
CN103793120A (zh) * | 2014-01-28 | 2014-05-14 | 北京京东方光电科技有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020891A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104020909A (zh) * | 2014-05-30 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104035640A (zh) * | 2014-05-30 | 2014-09-10 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US9678594B2 (en) | 2017-06-13 |
EP3153951A1 (en) | 2017-04-12 |
US20160274715A1 (en) | 2016-09-22 |
CN104035640A (zh) | 2014-09-10 |
EP3153951B1 (en) | 2021-04-14 |
CN104035640B (zh) | 2017-10-27 |
EP3153951A4 (en) | 2018-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015180316A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180303A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180312A1 (zh) | 内嵌式触摸屏及显示装置 | |
US9665222B2 (en) | In-cell touch panel and display device with self-capacitance electrodes | |
WO2015180318A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180313A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2016119445A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2016145784A1 (zh) | 一种内嵌式触摸屏及显示装置 | |
US10198130B2 (en) | In-cell touch panel and display device | |
WO2015180322A1 (zh) | 内嵌式触摸屏以及显示装置 | |
WO2015180356A1 (zh) | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 | |
WO2016110104A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180321A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180311A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2016110016A1 (zh) | 一种内嵌式触摸屏及显示装置 | |
WO2016112693A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180359A1 (zh) | 阵列基板及其制作方法、以及显示装置 | |
EP2720124A2 (en) | A capacitive in cell touch panel and display device | |
WO2016110045A1 (zh) | 内嵌式触摸屏及显示装置 | |
WO2015180315A1 (zh) | 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法 | |
WO2016112683A1 (zh) | 内嵌式触摸屏及显示装置 | |
US20180275809A1 (en) | In-cell touch screen and display device | |
WO2014166260A1 (zh) | 电容式内嵌触摸屏及显示装置 | |
WO2015135289A1 (zh) | 内嵌式触摸屏及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14443286 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014861116 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014861116 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14861116 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |