WO2015174501A1 - 全周動画配信システム、全周動画配信方法、画像処理装置、通信端末装置およびそれらの制御方法と制御プログラム - Google Patents
全周動画配信システム、全周動画配信方法、画像処理装置、通信端末装置およびそれらの制御方法と制御プログラム Download PDFInfo
- Publication number
- WO2015174501A1 WO2015174501A1 PCT/JP2015/063934 JP2015063934W WO2015174501A1 WO 2015174501 A1 WO2015174501 A1 WO 2015174501A1 JP 2015063934 W JP2015063934 W JP 2015063934W WO 2015174501 A1 WO2015174501 A1 WO 2015174501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- round
- video
- live
- data
- around
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 181
- 238000012545 processing Methods 0.000 title claims description 104
- 238000000034 method Methods 0.000 title claims description 83
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 238000013507 mapping Methods 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 10
- 238000011161 development Methods 0.000 claims description 6
- 230000008929 regeneration Effects 0.000 claims 2
- 238000011069 regeneration method Methods 0.000 claims 2
- 230000018109 developmental process Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 description 79
- 238000010586 diagram Methods 0.000 description 45
- 230000006835 compression Effects 0.000 description 44
- 238000007906 compression Methods 0.000 description 44
- 230000008569 process Effects 0.000 description 31
- 230000006870 function Effects 0.000 description 29
- 230000005540 biological transmission Effects 0.000 description 22
- 230000008859 change Effects 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 8
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000010365 information processing Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 101000969688 Homo sapiens Macrophage-expressed gene 1 protein Proteins 0.000 description 1
- 108010039622 Livex Proteins 0.000 description 1
- 102100021285 Macrophage-expressed gene 1 protein Human genes 0.000 description 1
- 241000278713 Theora Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/472—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
- H04N21/4728—End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for selecting a Region Of Interest [ROI], e.g. for requesting a higher resolution version of a selected region
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/06—Topological mapping of higher dimensional structures onto lower dimensional surfaces
- G06T3/073—Transforming surfaces of revolution to planar images, e.g. cylindrical surfaces to planar images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/218—Source of audio or video content, e.g. local disk arrays
- H04N21/2187—Live feed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/27—Server based end-user applications
- H04N21/278—Content descriptor database or directory service for end-user access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/431—Generation of visual interfaces for content selection or interaction; Content or additional data rendering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/485—End-user interface for client configuration
- H04N21/4852—End-user interface for client configuration for modifying audio parameters, e.g. switching between mono and stereo
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/81—Monomedia components thereof
- H04N21/816—Monomedia components thereof involving special video data, e.g 3D video
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
Definitions
- the present invention relates to a technique that enables the distribution of all-round video acquired by a all-round camera.
- Patent Document 1 discloses a technique for generating an all-around video based on an image taken by an all-around camera including a plurality of cameras.
- Patent Document 2 discloses a technique for reproducing an all-around moving image from an all-around camera including one image sensor.
- An object of the present invention is to provide a technique for solving the above-described problems.
- the all-around video distribution system is: An all-around camera, An all-round image generating means for acquiring all-round video captured by the all-around camera and generating time-series all-around frame image data; Encircling the time-series all-round frame image data, and generating all-round video data generating means for generating all-round video data in a format that can be reproduced in real time in the communication terminal device; A distribution server for distributing the all-round video data uploaded from the all-round video data generating means to the communication terminal device; An all-round video reproduction means for reproducing the all-round video data distributed from the distribution server in real time and displaying a video image in a range in accordance with an instruction of a line of sight by a user; Is provided.
- the all-around video distribution method is: An all-round image generating step, wherein the all-around image generating means acquires an all-around moving image captured by the all-around camera and generates time-series all-around frame image data; All-round video data generation means that encodes the time-series full-frame frame image data to generate all-round video data in a format that can be reproduced in real time in the communication terminal device Steps, A distribution step in which the distribution server distributes the uploaded all-round video data to the communication terminal device; The communication terminal device reproduces the all-around moving image data distributed from the distribution server in real time, and displays a moving image image in a range corresponding to a gaze instruction by a user; and including.
- an image processing apparatus provides: An all-around image generating means for acquiring all-around video captured by the all-around camera and generating time-series all-around frame image data; Encircling the time-series all-round frame image data, and generating all-round video data generating means for generating all-round video data in a format that can be reproduced in real time in the communication terminal device; Upload means for uploading the all-round video data to a distribution server; Is provided.
- a method for controlling an image processing apparatus includes: An all-round image generating step, wherein the all-around image generating means acquires an all-around moving image captured by the all-around camera and generates time-series all-around frame image data; All-round video data generation means that encodes the time-series full-frame frame image data to generate all-round video data in a format that can be reproduced in real time in the communication terminal device Steps, An uploading means for uploading the all-round video data to a distribution server; including.
- a control program for an image processing apparatus provides: An all-round image generation step of acquiring a whole-round video imaged by the all-round camera and generating time-series all-round frame image data; An all-round video data generating step for encoding the time-series all-round frame image data and generating all-round video data in a format that can be reproduced in real time in the communication terminal device; An uploading step of uploading the all-round video data to a distribution server; Is executed on the computer.
- a communication terminal device provides: All-round video data receiving means for receiving all-round video data in a format reproducible in real time in the communication terminal device from a distribution server that distributes all-round video; An all-round moving image developing unit that decodes the received all-round moving image data and expands in real time on a mapping solid including a viewpoint in a unit of a whole frame image, In accordance with a user's instruction, an all-around moving image reproduction means for displaying a display range in the developed all-around frame image; Is provided.
- a communication terminal device control method includes: An all-round video data receiving means for receiving all-round video data in a format reproducible in real time in the communication terminal device from a distribution server that distributes the all-round video, An all-round moving image developing means for decoding the received all-round moving image data and developing it in real time on a mapping solid including a viewpoint in units of all-round frame images, An all-round video playback means for displaying a display range in the developed all-round frame image in accordance with a user instruction, including.
- a communication terminal device control program provides: An all-round video data receiving step for receiving all-round video data in a format reproducible in real time in a communication terminal device from a distribution server that distributes the all-round video; An all-round video development step for decoding the received all-round video data and developing in real time on a mapping solid including a viewpoint in units of a full-frame image, An all-round video playback step for displaying a display range in the developed all-round frame image in accordance with a user instruction; Is executed on the computer.
- “data” indicates raw information that has not been processed for communication between devices.
- “video data” is imaged by a camera and digitally quantized, and pixel processing or image processing.
- it is video information that has been vectorized.
- the “voice data” is voice information that is collected by a microphone, digitally quantized, voice-processed, or vectorized.
- the “moving image data” is moving image information including “video data” and “audio data” in time series.
- the “message” is data that communicates with a header including a communication source / destination that is allowed by a desired protocol that defines communication between devices in order to communicate these “data” between devices. , Including compression coding and encryption if necessary) It is the information which gave.
- the “message” in this specification is different from a so-called “file” that represents a single video content, image, or video content, and is a format of fragmented real-time data for providing live distribution. Shows the converted information. Further, “all-round” used in “all-round camera”, “all-round video”, “all-round frame”, etc. represents the entire area surrounding the viewpoint (imaging position).
- the information processing apparatus 100 is an apparatus that performs live reproduction of the all-round video.
- the information processing apparatus 100 includes an omnidirectional camera 110, an omnidirectional image generation unit 121, an omnidirectional video data generation unit 122, a live distribution server 130, a video live reproduction unit 140, including.
- the all-around camera 110 captures all-around video.
- the omnidirectional image generation unit 121 acquires the omnidirectional video captured by the omnidirectional camera 110 and generates time-series omnidirectional frame image data.
- the all-round moving image data generation unit 122 performs encoding on the time-series all-round frame image data, and generates all-round moving image data in a format that can be reproduced in real time by the communication terminal device 150.
- the live distribution server 130 distributes the all-round video data uploaded from the all-round video data generation unit 122 to the communication terminal device 150.
- the moving image live reproduction unit 140 reproduces the all-around moving image data distributed from the live distribution server 130 in real time, and displays a moving image image in a range corresponding to a gaze instruction from the user.
- the user can view the all-round video live.
- the omnidirectional video live distribution system of this embodiment generates omnidirectional image data in units of frames from a video shot by a omnidirectional camera, generates data in a format that allows video live playback on a communication terminal, and Upload to a live distribution server.
- the moving image live delivery server delivers a message in real time using a protocol that can be received by the communication terminal.
- the communication terminal performs live playback of the all-round video from the distributed message, and displays the all-round video in a desired direction live according to a user instruction.
- the audio corresponding to the display direction of the all-round video is played back live in three-dimensional audio.
- the 3D audio corresponding to the live display of the all-round video is not limited to the live audio collected by the stereo microphone, but other 3D audio related to the all-around video displayed live or the 3D audio generated artificially. It may be.
- an example of stereo sound output based on stereo sound data is shown as the stereo sound.
- stereo sound based on 5.1 channel stereo sound data may be used.
- FIG. 2A is a diagram illustrating an outline of processing of the all-around moving image live delivery system 200 according to the present embodiment.
- an all-round moving image live distribution system 200 six-direction moving images are simultaneously generated by an all-round camera including five imaging sensors that capture images in five directions around the entire periphery and one imaging sensor that captures images directly above. Take a picture. Therefore, this all-around camera is also called an all-sky camera. Note that the number of imaging sensors of the all-around camera is not limited to this example.
- an image 210 is an image directly above, and images 211 to 215 are images covering the entire circumference.
- image adjustment is performed to match the overlapping portions of the images, and an all-round image frame 220 in which all the circumferences are combined is generated.
- the image data in the predetermined distance area 225 from the lower side 222 of the all-round image frame 220 is data that complements the area under the entire circumference camera that cannot be photographed.
- the live video composed of the all-round image frame 220 is converted into data in a format in which the all-round video can be played back live on the communication terminal 240.
- the FLV (Flash Video) format is preferably used, but is not limited thereto.
- stream data conversion to the FLV format is not necessarily required, and in this case, conversion to the FLV format may be deleted.
- the all-round moving image converted into the FLV format is played by the communication terminal 240 on which the all-round moving image live reproduction player of the present embodiment operates via a live video distribution server according to a predetermined moving image distribution protocol.
- communication terminal 240 of FIG. 2A first, all-round image frame 220 is projected onto sphere 230.
- the upper side 221 of the all-round image frame 220 is projected on the vertex 231 of the sphere.
- the lower side 222 of the all-round image frame 220 is projected onto the bottom 232 of the sphere. Note that the section from the cut circle 235 to the bottom 232 below corresponds to a region directly below that cannot be captured by the all-around camera.
- the moving image in the area corresponding to the line of sight in the all-round moving image is played live on the communication terminal 240.
- the all-round moving image reproduced live is rotated in the direction of the all-round moving image like images 241 to 244 according to the slide of the user's touch 251 to 254.
- the viewpoint has been described as the center 233 of the sphere 230.
- zooming in and zooming out can be achieved by enlarging or reducing the video image without changing the position of the viewpoint.
- stereo sound is not shown in FIG. 2A.
- a stereo microphone is arranged at the same position as the all-around camera, stereo sound is collected in synchronization with the all-round video, and stereo sound is output in synchronization with live distribution and reproduction of the all-round video. If this all-round video and stereo sound are played live in synchronization, the sound will change by changing the line of sight and viewpoint at events such as outdoor festivals or live concerts and exhibition halls in the indoor area. You can watch live video that is more realistic. That is, it is possible to listen to stereo sound (stereoscopic sound) that changes in response to the viewing direction of the all-round video and zoom in / zoom out.
- stereo sound stereo sound
- the solid for projecting the entire image frame is not limited to a sphere, and may be an ellipsoid, a cylinder, a polyhedron, or the like.
- FIG. 2B is a diagram showing an outline of the operation of the all-around moving image live distribution system 200 according to the present embodiment.
- the service desired by the user is selected from the service menu.
- the “all-round video live viewing” service is selected.
- a homepage of “all-around video live viewing” is launched, and a plurality of all-around video live programs are displayed.
- baseball broadcast is selected from a plurality of all-around video live programs.
- the communication terminal 240 acquires a URL (Uniform Resource Locator) for obtaining the all-round video live from the live video distribution server based on the HTML tag of the baseball broadcast from the data distribution server, and all the baseball relays on the live video distribution server. Access Zhou Movie Live.
- an all-around live start screen 263 is displayed. In response to the instruction to start the all-around live, the all-around live video and the all-around camera position 264 are displayed.
- the outline of the operation in FIG. 2B is an example, and the present invention is not limited to this.
- FIG. 3A is a block diagram showing the configuration of the all-around moving image live distribution system 200 according to the present embodiment.
- the all-round video live distribution system 200 includes an all-round camera 310, an optional stereo microphone 370, a photographing distribution personal computer (hereinafter referred to as a PC) 320, a live video distribution server 330, communication terminals 341 to 343, including.
- the all-around moving image live distribution system 200 includes a data distribution server 350. Note that the live video distribution server 330 and the data distribution server 350 are connected to the photographing distribution PC 320 and the communication terminals 341 to 343 via the network 360.
- the all-around camera 310 shoots an all-sky video with the six imaging sensors as described above. Adjustments such as distortion and brightness using a lens or the like are performed by the omnidirectional camera 310, and each digital image frame is output to the imaging / delivery PC 320.
- the stereo microphone 370 collects three-dimensional sound synchronized with the moving image shot by the all-around camera 310. In FIG. 3A, the audio from the stereo microphone 370 is combined into one data stream and input to the imaging / delivery PC 320. However, the combining processing may be performed in the imaging / distribution PC 320. Further, if no sound is required, the stereo microphone 370 may not be connected.
- the imaging / delivery PC 320 based on the moving image data of the six imaging sensors from the omnidirectional camera 310, the boundary of each image is taken and the omnidirectional image data is generated for each frame.
- compression encoding is performed on the all-round image data, and the all-round moving image is converted into FLV format data that can be played live. If there is stereo sound to synchronize, compression encoding is performed and added to the data in the FLV format.
- the FLV format data is uploaded to the live video distribution server 330 according to RTMP (Real Time Messaging Protocol).
- RTMP Real Time Messaging Protocol
- the live video distribution server 330 for example, it is stored in a storage location secured so that it can be referred to by a URL from an HTML (Hyper Text Markup Language) tag embedded in a Web page in advance.
- HTML Hyper Text Markup Language
- the live video distribution server 330 performs encoding or encryption that can be decrypted by each of the communication terminals 341 to 343.
- the web that provides the viewing service for the live reproduction of the all-round video according to the data distribution server (Web server) 350 and HTTP (Hypertext Transfer Protocol). Open the page.
- the live video distribution server 330 performs live distribution of the all-round video that is sequentially stored in the secured storage position.
- the live distribution destination of the all-round video is a smartphone or tablet of the portable terminal 342 or 343
- the distribution standard is distributed by converting to HLS (HTTP Live Streaming).
- the live distribution destination of the all-round video is the PC of the communication terminal 341, it is distributed as RTMP, or is distributed by converting the distribution standard to HLS or HDS (HTTP Dynamic Streaming).
- FIG. 3B is a diagram illustrating an operation example of the all-around moving image live delivery system 200 according to the present embodiment. Note that FIG. 3B visually illustrates the operation of embedding the HTML tag in FIG. 3A.
- the data conversion unit and the flash media server correspond to the live video distribution server 330 in FIG. 3A.
- An HTML tag for each live content or event is pasted on the home page 371 or 372, the live video distribution server 330 is accessed from here, the live data from the all-around camera is accessed, and the all-round video is live on the communication terminal 340. Watch the playback.
- the live video distribution server 330 includes communication terminals 341 to 341. It is also possible to directly access from 343 and view live reproduction of the all-round video.
- FIG. 3C is a sequence diagram showing an operation procedure of the all-around moving image live delivery system 200 according to the present embodiment.
- the steps of the user PC 341 and the portable terminals 342 and 343 are illustrated in the same box, but this is another step for avoiding complexity.
- processing such as user authentication is omitted.
- an authentication server is provided to register a user or a communication terminal, and authentication is performed.
- step S311 the imaging / delivery PC 320 performs adjustment control of the camera or microphone.
- the omnidirectional camera 310 adjusts the camera according to the control of the imaging / delivery PC 320.
- step S303 the omnidirectional camera 310 acquires the omnidirectional video with the six imaging sensors, adds the position IDs of the imaging sensors, and transmits them to the photographic distribution PC 320.
- the microphone is adjusted in step S305, and in step S307, the three-dimensional sound is acquired, added with the microphone ID, and transmitted to the photographing delivery PC 320.
- step S313 the imaging / delivery PC 320 acquires video data captured by the six imaging sensors from the all-around camera 310.
- step S315 the imaging / delivery PC 320 combines the acquired video data to generate an all-round image frame.
- step S317 the imaging / delivery PC 320 creates all-round video data for live delivery.
- H.C. H.264 video compression is performed. Note that video compression is H.264 It is not limited to H.264. However, a compression method that can be expanded by players of many communication terminals is desirable.
- H.264 H.263, WMV, DivX, VP6, VP7, VP8, VP9, Theora, WebM, MPEG1, MPEG2, MPEG4, DV, and the like can be used as the moving image compression method.
- the imaging / delivery PC 320 acquires audio data from the stereo microphone in step S319.
- the imaging / delivery PC 320 creates audio data for live delivery.
- audio compression is not limited to MP3.
- a compression method that can be expanded by players of many communication terminals is desirable.
- AAC, HE-AAC, Vorbis, FLAC, Nellymoser, Speex, Apple Lossless, uncompressed WAV, etc. can be used in addition to MP3.
- step S323 the imaging / delivery PC 320 generates live video distribution data so that the all-round moving image data and audio data subjected to the desired compression processing can be synchronously reproduced.
- the above-mentioned FLV format data is generated.
- step S325 the generated FLV format data is uploaded to the live video distribution server 330 by the live video distribution message in accordance with RTMP in step S325.
- step S331 the live video distribution server 330 determines a live video distribution URL and secures a live video distribution area.
- the data distribution server 350 attaches the all-around moving image live distribution tag to the Web page. Then, it is assumed that the communication terminals 341 to 343 issue an instruction to view all-around video live from the Web page in step S361 or S381.
- step S353 the data distribution server 350 acquires viewing instructions from the communication terminals 341 to 343, and notifies the live video distribution source to the communication terminals 341 to 343 in step S355.
- an all-round video live playback player for live playback of the all-round video is transmitted to the communication terminals 341 to 343. That is, the player URL is actually specified by the all-around video live delivery tag, and the live video delivery URL is embedded in the player itself, acquired separately by the player, or included in the all-around video live delivery tag. You can also.
- step S363 or S383 the communication terminals 341 to 343 acquire the live video distribution source, receive the all-round moving image live reproduction player, and activate the all-round moving image live reproduction player in step S365 or S385. Then, in step S367 or S387, the communication terminals 341 to 343 request the live video distribution server 330 to view the live reproduction of the all-round video by designating a URL corresponding to each communication terminal.
- the live video distribution server 330 acquires the all-round live video distribution data in the live video storage area in step S335. Hold temporarily.
- the live video distribution server 330 converts the all-around live video distribution message into a smartphone or tablet format (for example, HLS) and temporarily holds the converted message. If another format is required, the format is converted and temporarily stored.
- the live video distribution server 330 performs live distribution of the all-round video to the distribution-destination communication terminal 341 according to RTMP in step S339. In this case, if there are a plurality of delivery destinations, they are delivered simultaneously by unicast.
- the communication terminal 341 receives the all-around live moving image delivery message, and in step S371, the communication terminal 341 performs live reproduction of the all-around moving image and the three-dimensional sound.
- RT MFP Real Time Media Flow Protocol
- the distribution destination of the all-around live video is the smartphone or tablet of the mobile terminal 342 or 343
- the live video distribution server 330 performs live streaming of the all-round video to the distribution-destination mobile terminal 342 or 343 by HLS in step S341.
- the portable terminal 342 or 343 receives the all-around live moving image distribution message, and in step S391, the portable terminal 342 or 343 performs live reproduction of the all-around moving image and the three-dimensional audio.
- the procedure for conversion for smartphones and tablets has been described in the stage of being uploaded to the live video distribution server 330.
- protocols such as RTMP, HLS, HDS, RTSP, MMS, Microsoft Smooth Streaming, and MPEG-DASH are used. Many. However, it is also possible to use a protocol different from these or a proprietary protocol.
- FIG. 4A is a block diagram illustrating a functional configuration of the omnidirectional camera 310 according to the present embodiment.
- the all-around camera 310 includes a plurality of image sensors 411, an A / D conversion and gain adjustment unit 412, a pixel processing unit 413, an image processing unit 414, and an optional transfer compression unit 415.
- the plurality of image sensors 411 are the above-described six image sensors in this example.
- the A / D conversion and gain adjustment unit 412 converts the analog signal of the video output from the plurality of imaging sensors 411 into digital data and adjusts the gain to an appropriate gain so that the analog signal is not saturated.
- the pixel processing unit 413 performs adjustment in units of pixels.
- the image processing unit 414 adjusts the brightness and darkness of the entire image.
- An optional transfer compression unit 415 is a compression unit for transferring video data from the plurality of imaging sensors 411 output from the all-round camera 310 at high speed in real time.
- the video data whose distortion has been compensated for by the components and structure of the all-round camera 310 is output to the outside through, for example, an IEEE-1394b cable or a USB cable.
- video data is transmitted by being connected to the imaging / delivery PC 320.
- FIG. 4B is a diagram for explaining a structural example of the all-round camera 310 according to the present embodiment.
- FIG. 4B shows the specific structure of the all-round camera 310.
- FIG. 4B shows the imaging position 430 of the imaging sensor in FIG. 4B indicates the positional relationship between the six imaging sensors of the all-around camera 310 and the direction in which they are imaged.
- FIG. 5 is a diagram showing a data configuration 500 of the omnidirectional camera 310 according to the present embodiment.
- a data configuration 500 in FIG. 5 is a configuration of imaging data output from the all-around camera 310 to the outside. Note that the data structure is not limited to FIG.
- the data structure 500 includes a sensor number 501 for identifying which image sensor has captured the image data, a time stamp 502 indicating the time of image capture, and video data 503 and is stored in the all-round camera 310 ( (See 210-215 in FIG. 2A). Note that the video data 503 may be compressed data.
- FIG. 6 is a block diagram showing a functional configuration of the imaging / delivery PC 320 according to the present embodiment.
- the imaging / delivery PC 320 is a general PC on which the software for imaging / delivery according to this embodiment is installed.
- the imaging / delivery PC 320 includes a communication control unit 601 and an input interface 602. Further, the imaging / delivery PC 320 includes an omnidirectional video data acquisition unit 603, an omnidirectional image generation unit 604, an omnidirectional video compression unit 605, a stereoscopic audio data acquisition unit 606, and a stereoscopic audio compression unit 607. .
- the imaging / delivery PC 320 includes a live video delivery data generation unit 608, a live video delivery message transmission unit 609, a display unit 610, and an operation unit 611.
- the communication control unit 601 communicates with the live video distribution server 330 and the external communication device via the network.
- the input interface 602 controls input of video data from the all-round camera 310 and / or audio data from the stereo microphone.
- the all-round video data acquisition unit 603 acquires video data obtained by imaging the entire circumference from the all-around camera 310.
- the omnidirectional image generation unit 604 compensates for the distortion of the boundary regions of the six video data acquired by the omnidirectional video data acquisition unit 603 and adjusts them to generate an omnidirectional image for each frame (FIG. 2A). 220).
- the omnidirectional video compression unit 605 distributes the omnidirectional live video data composed of the omnidirectional images for each frame generated by the omnidirectional image generation unit 604 and can play the omnidirectional video live. Generate compressed image data.
- the all-around live moving image data is compression-coded by a desired method in units of a predetermined length.
- H.264 is used as the moving image compression method.
- the present invention is not limited to this. Other usable video compression schemes have been described above.
- the stereo audio data acquisition unit 606 acquires stereo audio data from the stereo microphone. Then, the stereo sound compression unit 607 generates stereo sound compression data in a format in which stereo sound can be reproduced by distributing the stereo sound data acquired by the stereo sound data acquisition unit 606. In this case, the stereoscopic audio data is compression-coded by a desired method in units of a predetermined length. In this example, MP3 is used as the audio compression method, but the present invention is not limited to this. Other usable audio compression schemes have been described above.
- the stereo audio data acquisition unit 606 and the stereo audio compression unit 607 function as a stereo audio data generation unit.
- the live video distribution data generation unit 608 is a live distribution data for live distribution of the all-round video compression data generated by the all-round video compression unit 605 and the three-dimensional audio compression data generated by the three-dimensional audio compression unit 607. Is generated. At this time, the all-round video and the three-dimensional audio can be synchronized and reproduced.
- the FLV format is used, but the present invention is not limited to this. For example, it may be Windows (registered trademark) Media, Real Media (registered trademark), Quick Time (registered trademark), or the like.
- the live video distribution message transmission unit 609 uploads the live video distribution data generated by the live video distribution data generation unit 608 to the live video distribution server 330 using the live video distribution message.
- the display unit 610 displays the operation status of the imaging / delivery PC 320.
- the operation unit 611 instructs activation and control of each of the storage configuration units.
- FIG. 7A is a diagram showing a video data configuration 710 of the imaging / delivery PC 320 according to the present embodiment.
- the video data configuration 710 in FIG. 7A is a storage configuration that generates all-round image data from video data acquired from the all-around camera 310.
- the shooting time stamp 712, the video data 713 acquired from the all-around camera 310, and all the processed to be combined with the all-around image are associated with the sensor number 711 of the image sensor.
- Circumferential processing data 714 is stored.
- all-round image data 715 obtained by combining the image data of the six imaging sensors is stored (see 220 in FIG. 2A).
- FIG. 7B is a diagram showing an audio data configuration 720 of the imaging / delivery PC 320 according to the present embodiment.
- the audio data configuration 720 in FIG. 7B is a configuration for storing audio data acquired from a stereo microphone.
- the time stamp 722 of the sound collection time and the audio data 723 are stored in association with the microphone number 721.
- FIG. 7C is a diagram showing a live delivery data format 730 and live video delivery data 740 of the shooting delivery PC 320 according to the present embodiment.
- the live delivery data format 730 is a table that specifies a live delivery data format to be generated.
- the live video distribution data 740 is data generated according to the live distribution data format 730.
- the live distribution data format 730 stores a moving image compression method 732 and an audio compression method 733 to be used in correspondence with the live moving image distribution format 731.
- the live video distribution data 740 stores live video distribution data including the all-round video compression data 741 and the stereoscopic audio compression data 742 compressed and generated in accordance with the live distribution data format 730 so as to be capable of synchronous reproduction.
- FLV is used as a live moving image distribution message format.
- FIG. 8 is a block diagram showing a functional configuration of the live video distribution server 330 according to the present embodiment.
- the live video distribution server 330 includes a communication control unit 801, a live video distribution message reception unit 802, a distribution data format conversion unit 803, and a live video distribution data storage unit 804.
- the live video distribution server 330 includes a live video distribution request receiving unit 805, a distribution data acquisition unit 806, and a live video distribution message transmission unit 807.
- the communication control unit 801 controls reception of live distribution messages uploaded from the imaging / distribution PC 320 and transmission of live distribution messages to the communication terminals 341 to 343 via the network.
- the live video delivery message receiving unit 802 receives a live delivery message uploaded from the imaging / delivery PC 320.
- the distribution data format conversion unit 803 converts the live distribution message into the HLS format when the distribution destination is a smartphone / tablet. If another format is required, format conversion is performed.
- the live video delivery data storage unit 804 temporarily holds the live delivery data so that the data that has not been format-converted and the data that has been converted can be identified.
- Each live distribution data is associated with a URL from a distribution source and a distribution request destination.
- the live video distribution data storage unit 804 may be a temporary storage memory or a storage medium such as a disk.
- the live video distribution request receiving unit 805 receives a request for a live distribution message from the communication terminal, and notifies the acquisition area of the distribution data acquisition unit 806 and the transmission destination of the live video distribution message transmission unit 807.
- the distribution data acquisition unit 806 acquires live distribution data from the storage area of the live video distribution data storage unit 804 corresponding to the URL from the communication terminal.
- the live video distribution message transmission unit 807 transmits the data for live distribution by unicast to the communication terminal requested by the live video distribution message. As described above, multicasting is also possible when the distribution destination is a PC.
- FIG. 9 is a diagram showing a URL configuration 900 and data conversion 910 for the live video distribution server 330 according to the present embodiment.
- the URL configuration 900 of this embodiment basically includes an IP address of the live video distribution server 330, a distribution source (or event) identifier, a live video storage area identifier, and a data format identifier. .
- data conversion 910 in the live video distribution server 330 of this embodiment will be described.
- data conversion in the live video distribution server 330 is not limited to this example.
- the server name or IP address of the live video distribution server 330 is 192.0.2.1.
- the RTMP format is identified by “stream” and the HLS format is identified by “stream.m3u8”.
- Live video data is transmitted to the URL “rtmp: //192.0.2.1/event1/live/stream” on the live video distribution server 330 from the photographing distribution PC 320.
- the live video distribution server 330 confirms that the received live video data is from a regular distribution source, and stores it in the buffer area.
- the live video distribution server 330 sequentially creates HLS format files (serial number files) from the live video data in the buffer area and stores them in a temporary area on the HDD. This temporary area can be accessed by URL “http://192.0.2.1/event1/live1/stream.m3u8” or “http://192.0.2.1/event1/live2/stream.m3u8”. .
- a communication terminal that receives live video data in the RTMP format has a URL “rtmp: //192.0.2.1/event1/live1/stream” on the live video distribution server 330 or “rtmp: //192.0. Access 2.1 / event1 / live2 / stream ”.
- the live video distribution server 330 distributes the live video data in the buffer area according to (5) above to the communication terminal.
- a communication terminal that receives live video data in the HLS format accesses the data distribution server 350 and acquires a “master.m3u8” file.
- a URL indicating a file in a temporary area for HLS on the live video distribution server 330 is described.
- the communication terminal that receives the data in the HLS format analyzes the acquired “master.m3u8” file according to the normal video playback procedure of the HLS format, and in the temporary area for the HLS on the live video distribution server 330, The URL “http://192.0.2.1/event1/live1/stream.m3u8” or “http://192.0.2.1/event1/live2/stream.m3u8” is accessed.
- the live video distribution server 330 distributes the file in the temporary area according to the request URL from the communication terminal.
- the live video distribution server 330 deletes the live video data after a predetermined time from the buffer area. (13) The live video distribution server 330 deletes the HLS format file after a certain period of time from the temporary area.
- the process (6) is the same as the process (2).
- a plurality of all-round live moving images are distributed via the live video distribution server 330, they can be distinguished from each other by changing the “eventX” portion of each URL.
- FIG. 10 is a block diagram showing a functional configuration of the communication terminals 341 to 343 according to the present embodiment.
- the communication terminals 341 to 343 will be collectively referred to as the communication terminal 340.
- the communication terminal 340 is a general PC or smartphone / tablet.
- the communication terminal 340 includes a communication control unit 1001, an all-round video live playback player 1010, a display unit 1021, an operation unit 1022, and an audio output unit 1023.
- the communication control unit 1001 controls communication with the live video distribution server 330 and the data distribution server (Web server) 350 via the network.
- the all-around moving image live reproduction player 1010 is an application that reproduces an image or a moving image from a distributed image or moving image message. In this embodiment, the application is a live reproduction of the all-round video.
- the all-around moving image live playback player 1010 includes an all-around moving image message receiving unit 1011, an all-around moving image developing unit 1012, a display range control unit 1013, a display direction instruction receiving unit 1014, and a three-dimensional audio control unit 1015. .
- the omnidirectional video message receiving unit 1011 for receiving the omnidirectional video data receives the omnidirectional video message distributed from the live video distribution server 330.
- the all-around moving image developing unit 1012 performs live development of the all-around moving image from the all-around moving image data of the distributed all-around moving image message.
- the display range control unit 1013 performs control so as to display a moving image in a direction received from the all-around moving image developed live by the all-around moving image developing unit 1012.
- the display direction instruction receiving unit 1014 receives an instruction for the display direction of the all-round video by the user.
- the three-dimensional audio control unit 1015 performs control so as to output stereo sound corresponding to the display direction of the all-round video.
- a display range instruction that is, a zoom-in / zoom-out instruction is also received by the display direction instruction receiving unit 1014 or a similar functional component, and corresponds to the moving image display of the received instruction range and the instruction range. Control to output stereo sound.
- Display unit 1021 displays data including a live display of all-round video.
- the operation unit 1022 instructs driving or control of each functional component.
- the audio output unit 1023 outputs stereo sound.
- FIG. 11A is a diagram for explaining development of the all-around live video in the communication terminal 340 according to the present embodiment.
- each omnidirectional image frame of the omnidirectional video included in the distributed omnidirectional video data is sequentially pasted so as to cover the sphere surface.
- images 1102, 1103 and 1105 obtained by projecting the all-round image frame covering the sphere 1100 from the internal viewpoint 1101 onto the display plane showing the screen of the communication terminal are displayed on the display screen of the communication terminal. If the viewing direction from the viewpoint 1101 rotates around the axis of the sphere 1100, the image 1102 also rotates as the viewing direction rotates. If the viewpoint 1101 moves up and down, the range of the image 1102 also rises and falls according to the top and bottom of the viewpoint 1101.
- zooming in and zooming out can be realized not only by moving the viewpoint 1104 but also by enlarging or reducing the display image displayed on the screen.
- the reproduction direction and reproduction range (zoom-in / zoom-out) with the three-dimensional sound can be synchronized based on the intersection of the line-of-sight vector and the sphere 1100 in FIG. 11A and the distance from the viewpoint to the intersection. That is, the three-dimensional audio corresponding to zoom in and zoom out can be realized by the strength corresponding to the distance from the viewpoint to the intersection.
- another sphere may be provided and an image may be pasted on the sphere.
- another sphere may be provided inside the sphere 1100.
- another sphere may be provided outside the sphere 1100.
- the difference in distance from the viewpoint to the sphere can be expressed as depth. Note that the same processing can be performed when the solid that projects the entire image frame is an ellipse or a cylinder.
- FIG. 11B is a diagram illustrating live playback information 1110, video data configuration 1120, and audio data configuration 1130 of the all-round video of the communication terminal 340 according to the present embodiment.
- the live playback information 1110 in FIG. 11B is information for realizing the all-round video live playback from the home page.
- the video data configuration 1120 in FIG. 11B is a storage configuration for all-around live video.
- the audio data configuration 1130 in FIG. 11B is a three-dimensional audio storage structure.
- the live playback information 1110 stores an HTML tag 1111 pasted on a home page and a URL 1112 for accessing live video data acquired from the data distribution server 350 based on the HTML tag 1111.
- the live reproduction information 1110 further stores an all-round moving image live reproduction player 1113 used for performing all-round moving image live reproduction on the communication terminal 340.
- the video data configuration 1120 stores live display data 1123 selected from the all-around live video 1121 pasted on the sphere 1100 in FIG. 11A according to the user instruction direction (gaze direction) 1122.
- the audio data configuration 1130 stores live audio data 1133 in which the mixing ratio is changed from the distributed stereo live audio 1131 in accordance with the user instruction direction (gaze direction) 1122.
- synchronization between live video display and live audio output can be realized by using a time stamp. If there is a user instruction for a display range by zooming in or zooming out, the user indicating range (zoom in / zoom out) is stored, and the live display data 1123 and the live audio data 1133 correspond to the user indicating direction and the user indicating range. The stored data is stored.
- FIG. 12 is a block diagram showing a hardware configuration of the imaging / delivery PC 320 according to the present embodiment.
- a CPU 1210 is a processor for arithmetic control, and realizes a functional configuration unit of the imaging / delivery PC 320 of FIG. 6 by executing a program.
- a ROM (Read Only Memory) 1220 stores initial data and fixed data such as a program.
- the communication control unit 601 communicates with other communication terminals and servers via a network. Note that the number of CPUs 1210 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing. Further, it is desirable that the communication control unit 601 has a CPU independent of the CPU 1210 and write or read transmission / reception data in the RAM 1240 area.
- the input / output interface 1260 preferably includes a CPU independent of the CPU 1210 and writes or reads input / output data to / from the RAM 1240 area. Therefore, the CPU 1210 recognizes that the data has been received or transferred to the RAM 1240 and processes the data. Further, the CPU 1210 prepares the processing result in the RAM 1240, and leaves the subsequent transmission or transfer to the communication control unit 601, the DMAC, or the input / output interface 1260.
- the RAM 1240 is a random access memory that the CPU 1210 uses as a work area for temporary storage.
- the RAM 1240 has an area for storing data necessary for realizing the present embodiment.
- the all-round video data 1241 is video data from the six imaging sensors acquired from the all-round camera 310.
- the all-round image data 715 is one frame of all-round data generated from the all-round video data 1241.
- the all-round moving image compressed data 741 is moving image data obtained by performing predetermined compression encoding that enables live reproduction of the all-round image data 715.
- the three-dimensional audio data 1244 is audio data acquired from a plurality of microphones.
- the stereo audio compression data 742 is audio data obtained by performing predetermined compression encoding on the stereo audio data 1244 that can be reproduced live.
- the live video distribution data 740 includes distribution data in a format capable of live distribution, including all-round video compression data 741 and stereoscopic audio compression data 742.
- the transmission / reception message 1247 is a message transmitted / received via the communication control unit 601.
- the input / output data 1248 is data input / output via the input / output interface 1260.
- the storage 1250 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
- the live video distribution data storage unit 1251 is a database that stores the live video distribution data 740 to be uploaded to the live video distribution server 330 in an identifiable manner.
- the live video upload destination server 1252 is an address of the live video distribution server 330 to which the video distribution PC 320 uploads the live video distribution data 740.
- the storage 1250 stores the following programs.
- the imaging / delivery PC control program 1253 is a control program for controlling the entire imaging / delivery PC 320.
- the omnidirectional video data acquisition module 1254 is a module that acquires the omnidirectional video data 1241 from the omnidirectional camera 310.
- the omnidirectional image data generation module 1255 is a module that generates omnidirectional image data for each frame based on the acquired omnidirectional video data 1241.
- the all around moving image compression module 1256 is a module that compresses all around moving image composed of all around image data.
- the stereo sound compression module 1257 is a module that generates stereo sound compression data 742 based on the stereo sound data 1244 acquired from the stereo microphone.
- the live video distribution data generation module 1258 is a module that generates live video distribution data 740 that can be distributed live, including all-round video compression data 741 and stereoscopic audio compression data 742.
- the live video delivery message transmission module 1259 is a module for uploading the generated live video delivery data 740 to the live video delivery server 330 using the live video delivery destination server 1252 information in the live video delivery message. is there.
- the input / output interface 1260 interfaces input / output data with input / output devices.
- the input / output interface 1260 has an IEEE-1394b connector or USB connector for connecting to the all-round camera 310, and a connector to which a stereo microphone can be connected.
- a display unit 610 and an operation unit 611 are connected to the input / output interface 1260.
- a speed sensor 1266 that measures the moving speed may be connected.
- FIG. 12 shows a configuration in which video data from the all-around camera 310, audio data from the stereo microphone, or information such as GPS position information and a speed sensor is acquired via the input / output interface 1260.
- the information may be acquired by communication via the communication control unit 601.
- the RAM 1240 and the storage 1250 in FIG. 12 do not show programs and data related to general-purpose functions and other realizable functions of the imaging / delivery PC 320.
- FIG. 13 is a flowchart showing a processing procedure of the imaging / delivery PC 320 according to this embodiment. This flowchart is executed by the CPU 1210 of FIG. 12 using the RAM 1240, and implements the functional configuration unit of FIG.
- step S1311 the imaging / delivery PC 320 determines whether or not video data has been received from the all-around camera 310. If the video data is received, the imaging / delivery PC 320 generates one frame of all-round image data from the received six video data in step S1313. In step S ⁇ b> 1315, the imaging / delivery PC 320 holds the length of the all-round image data that can be live-distributed as an all-round video in the order of frames. If no video data is received from the omnidirectional camera 310, the imaging / delivery PC 320 proceeds to step S1321 and determines voice input.
- the imaging / delivery PC 320 determines whether or not the audio data is received from the stereo microphone 370 in step S1321. If the audio data is received, the imaging / delivery PC 320 holds the received 3D audio data in a length capable of live distribution in step S1323. Note that the length to be held is desirably a length corresponding to the frame length of the all-round image data. If no audio data is received, the imaging / delivery PC 320 proceeds to step S1331.
- step S1331 the imaging / delivery PC 320 determines whether it is the transmission timing of the live video delivery message. If it is not the transmission timing of the live video delivery message that enables live video delivery, the imaging / delivery PC 320 returns to step S1311 to receive and hold video data or audio data. If it is the transmission timing of the live moving image distribution message that enables live moving image distribution, the photographing distribution PC 320 generates an all-round moving image message from the held all-round moving image data in step S1333. Next, in step S1335, the imaging / delivery PC 320 generates a 3D audio message from the stored 3D audio data.
- step S1337 the imaging / delivery PC 320 generates a live video delivery message including the all-round video message and the three-dimensional audio message.
- step S ⁇ b> 1339 the imaging / delivery PC 320 uploads the generated live video distribution message to the live video distribution server 330.
- step S1341 the imaging / delivery PC 320 determines whether or not the live delivery is finished. If the live distribution is not finished, the photographing distribution PC 320 returns to step S1311 and repeats the reception of the all-round camera data and the live moving image distribution.
- FIG. 14 is a block diagram showing a hardware configuration of the live video distribution server 330 according to the present embodiment.
- a CPU 1410 is a processor for arithmetic control, and implements a functional configuration unit of the live video distribution server 330 of FIG. 8 by executing a program.
- the ROM 1420 stores fixed data such as initial data and programs.
- the communication control unit 801 communicates with a communication terminal and an imaging / delivery PC via a network.
- the CPU 1410 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing.
- the communication control unit 801 preferably includes a CPU independent of the CPU 1410 and writes or reads transmission / reception data in an area of the RAM 1440.
- the RAM 1440 is a random access memory used by the CPU 1410 as a work area for temporary storage.
- the RAM 1440 has an area for storing data necessary for realizing the present embodiment.
- the live video distribution data 1441 for PC is data that is uploaded from the shooting distribution PC 320 and distributed to the PC.
- Live video distribution data 1442 for mobile terminals is data that is uploaded from the imaging distribution PC 320 and distributed to mobile terminals.
- the live video distribution data 1441 for PC is the same as that uploaded from the PC 320 for shooting distribution, and the live video distribution data 1442 for mobile terminals is converted into the HLS format.
- the URL (distribution source / distribution destination) 1443 associates the URL from the distribution source that is the photographing distribution PC 320 and the URL from the distribution destination that is the communication terminals 341 to 343 with the storage location of the live video distribution data 1441 or 1442. Information.
- the transmission / reception message 1444 is a message transmitted / received via the communication control unit 801.
- the storage 1450 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
- the live video distribution data storage unit 1451 is an area for storing live video distribution data uploaded from the photographing distribution PC 320 so as to be accessible by URL.
- the distribution data conversion algorithm 1452 is an algorithm for converting live video distribution data into the HLS format.
- the storage 1450 stores the following programs.
- the live video distribution server control program 1455 is a control program that controls the entire live video distribution server 330.
- the distribution data conversion module 1456 is a module that changes the compression encoding method of live video distribution data and converts it to the HLS format when the distribution destination is a portable terminal such as a smartphone or a tablet.
- the live video distribution module 1457 is a module for distributing a live video distribution message to a distribution destination.
- RAM 1440 and the storage 1450 in FIG. 14 do not show programs and data related to general-purpose functions and other realizable functions that the live video distribution server 330 has.
- FIG. 15 is a flowchart showing a processing procedure of the live video distribution server 330 according to this embodiment. This flowchart is executed by the CPU 1410 of FIG. 14 using the RAM 1440, and implements the functional configuration unit of FIG.
- step S1511 the live video distribution server 330 determines whether it is a request for uploading live video distribution data from the distribution camera 320 for shooting distribution. If the request is for uploading live video distribution data from the distribution source, the live video distribution server 330 acquires a live video distribution message in step S1513. In step S1515, the live video distribution server 330 holds the live video distribution data as it is as live video distribution data for the PC based on the URL. Next, in step S1517, the live video distribution server 330 generates live video distribution data in a different format corresponding to another model. The live video distribution data generated based on the URL is held as live video distribution data for the mobile terminal.
- the live video delivery server 330 determines in step S1521 whether or not the live video delivery message delivery request is received from the communication terminal 340 as the delivery destination. judge. If it is a distribution request for a live video distribution message from the communication terminal 340 as a distribution destination, the live video distribution server 330 acquires the storage location of the live video distribution data from the URL in step S1523. In step S1525, the live video distribution server 330 reads live video distribution data. In step S1527, the live video distribution server 330 distributes the live video distribution message to the distribution destination by unicast.
- FIG. 16 is a block diagram illustrating a hardware configuration of the communication terminal 340 according to the present embodiment.
- a CPU 1610 is a processor for arithmetic control, and implements the functional components of the communication terminal 340 of FIG. 10 by executing a program.
- the ROM 1620 stores initial data and fixed data such as programs.
- the communication control unit 1001 communicates with other communication terminals and servers via a network.
- the CPU 1610 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing.
- the communication control unit 1001 has a CPU independent of the CPU 1610 and writes or reads transmission / reception data in the area of the RAM 1640. Further, it is desirable to provide a DMAC for transferring data between the RAM 1640 and the storage 1650 (not shown).
- the input / output interface 1660 preferably includes a CPU independent of the CPU 1610 and writes or reads input / output data to / from the RAM 1640 area. Therefore, the CPU 1610 recognizes that the data has been received or transferred to the RAM 1640 and processes the data. Further, the CPU 1610 prepares the processing result in the RAM 1640, and leaves the subsequent transmission or transfer to the communication control unit 1001, the DMAC, or the input / output interface 1660.
- the RAM 1640 is a random access memory that the CPU 1610 uses as a work area for temporary storage.
- the RAM 1640 has an area for storing data necessary for realizing the present embodiment.
- the live video distribution data 1641 is data distributed from the live video distribution server 330.
- the reproduced all-around live video 1121 is a live image reproduced from the live image distribution data 1641 and corresponds to the all-around live image in FIG. 11B.
- the reproduced stereo live sound 1131 is live sound reproduced from the live video distribution data 1641.
- the user instruction direction 1122 is a viewing direction of the user's all-round video instructed from the operation unit 1022.
- the live display data 1123 in the designated direction is display data selected and displayed in accordance with the user designated direction 1122 from the reproduced all-round live video 1121.
- the live audio data 1133 in the designated direction is audio data that has been mixed and changed in accordance with the user designated direction 1122 from the reproduced stereo live audio 1131.
- the transmission / reception message 1648 is a message transmitted / received via the communication control unit 1001.
- the input / output data 1649 is data input / output via the input / output interface 1660.
- the user instruction range is stored in the RAM 1640 for changing the display range (zoom-in / zoom-out), and the live display data 1123 in the specified direction includes live display data in the specified direction and the specified range.
- the live audio data in the designated direction is stored in the live audio data 1133 in the designated direction.
- the storage 1650 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
- the user authentication data 1651 is user authentication data that is used to activate the all-round moving image live playback player from the communication terminal 340 or to determine whether or not the live video itself can be accessed.
- the terminal authentication data 1652 is terminal authentication data for starting the all-round moving image live reproduction player from the communication terminal 340.
- the storage 1650 stores the following programs.
- the communication terminal control program 1653 is a control program that controls the entire communication terminal 340.
- the all-round video live playback player 1655 is an application for live playback of the all-round video distributed from the live video distribution server 330.
- the all-around video live playback player 1655 includes a distribution data acquisition module 1656, an all-around video playback module 1657, a three-dimensional audio playback module 1658, and a user instruction control module 1659.
- the distribution data acquisition module 1656 is a module for acquiring data distributed from the live video distribution server 330.
- the all-around moving image playback module 1657 is a module for playing back the entire periphery moving image live from the distributed data.
- the three-dimensional sound reproduction module 1658 is a module that reproduces three-dimensional sound from the distributed data in synchronization with live reproduction of the all-round video.
- the user instruction control module 1659 is a module that controls the display direction and display range (zoom-in / zoom-out) of the all-around moving image in accordance with a user instruction.
- the input / output interface 1660 interfaces input / output data with input / output devices.
- a display unit 1021, an operation unit 1022, and an audio output unit 1023 are connected to the input / output interface 1660.
- a voice input unit 1664 and a GPS position determination unit 1665 are connected.
- RAM 1640 and storage 1650 in FIG. 16 do not show programs and data related to general-purpose functions and other realizable functions of the communication terminal 340.
- FIG. 17A is a flowchart showing a processing procedure of the communication terminal 340 according to the present embodiment. This flowchart is executed by the CPU 1610 of FIG. 16 using the RAM 1640, and implements the functional configuration unit of FIG.
- step S1711 the communication terminal 340 determines whether it is a homepage access. If the access is to the home page, the communication terminal 340 activates the browser in step S1713. Then, the communication terminal 340 connects to the data distribution server 350 in step S1715.
- the communication terminal 340 determines whether or not the HTML tag is acquired in step S1721. In this example, it is assumed that the HTML tag pasted on the home page of the desired site is clicked, but the operation of the reproduction request is not limited.
- step S1725 the communication terminal 340 determines whether the acquired content is an all-around live video content. If it is the all-around live moving image content, the communication terminal 340 determines in step S1727 whether there is an appropriate player for reproducing the all-around live moving image content in real time. If there is a suitable player, the communication terminal 340 proceeds to step S1731 and activates the all-round video live playback player. On the other hand, if there is no appropriate player, the communication terminal 340 acquires an all-round video live playback player having a function corresponding to the all-around live video content to be played back in step S1729.
- the correspondence between the all-around live video content and the player is not limited to one.
- a player that can use the information of the all-around live video content to the maximum extent is associated.
- the user may select the player to be used.
- step S1731 the communication terminal 340 activates the acquired all-round video live playback player.
- the all-round video live playback player started on the communication terminal 340 receives the desired all-around live video content from the live video distribution server 330 and the data distribution server 350 based on the HTML tag, and is played live all around.
- a moving image in a direction corresponding to a user instruction is output from the moving image.
- the communication terminal 340 performs other processing in step S1741.
- FIG. 17B is a flowchart showing a detailed procedure of process S1731 of the all-round moving image live playback player 1010 according to the present embodiment. This flowchart is also executed by the CPU 1610 of FIG. 16 using the RAM 1640. Hereinafter, the processing procedure of the all-round moving image live reproduction player 1010 will be described.
- the all-round video live playback player 1010 acquires all-round live video data from the live video distribution server 330 in step S1741. Then, in step S1743, the all-round moving image live reproduction player 1010 expands the all-round image of each frame of the all-round moving image in the acquired all-around live video data on a sphere surrounding the user viewpoint 360 degrees. Next, in step S1745, the all-round video live playback player 1010 acquires the display direction of the all-round video instructed by the user. Then, in step S1747, the all-round moving image live playback player 1010 displays a live image in the display direction instructed by the user of the all-round image sequence developed on the sphere.
- the all-round video live playback player 1010 adjusts to 3D audio in the display direction in synchronization with the live video in the display direction instructed by the user in step S1749. And output. If there is an instruction for the display range (zoom-in / zoom-out), the all-round video live playback player 1010 further acquires the display range of the all-round video instructed by the user in step S1745, and in step S1747, The live video of the designated display direction and designated range is displayed, and in step S1749, it is adjusted to a three-dimensional sound corresponding to the display direction and display range and output in synchronization with the displayed live video.
- step S1751 the all-round moving image live playback player 1010 determines whether the live is finished (player stopped). If the live is not finished, the all-round moving image live reproduction player 1010 returns to step S1741 and repeats the live reproduction of the all-round moving image.
- the present embodiment it is possible to perform live distribution of the all-round video from the all-round camera, and by changing the display direction according to the user's gaze direction instruction, the user can view the all-round video according to the gaze direction. By watching live, you can watch the video full of realism.
- the all-around moving image live delivery system according to the present embodiment is different from the second embodiment in that the all-around moving image is live-distributed while the all-around camera and the imaging / delivery PC move.
- an all-around camera is installed in a companion vehicle chasing a runner in a marathon event and distributed from a photographing distribution PC. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 18 is a diagram showing an outline of processing of the all-around moving image live distribution system 1800 according to the present embodiment.
- FIG. 18 the same components as those in FIG. 3A or FIG.
- the all-around camera 310 and the imaging / delivery PC 320 are installed in a vehicle and are moving.
- FIG. 18 shows an example in which live shooting is performed along with a marathon runner.
- the microphone is not illustrated in FIG. 18, live sound using a stereo microphone may be collected.
- the all-round moving image live playback player 1810 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range as in FIG.
- the all-round video live playback player 1810 is a player that replaces the all-round video live playback player 1010 shown in FIG. Note that the all-round video live playback player 1810 in FIG. 18 shows functional components related to processing unique to this embodiment, and in order to avoid complexity, the all-round video live playback player 1810 in FIG. Illustrations of the functional components of the player 1010 are omitted.
- Each of the communication terminals selects the all-around moving image live reproduction player 1010 and the all-around moving image live reproduction player 1810 corresponding to the all-around moving image content selected or viewed by the user.
- the omnidirectional video live playback player 1010 and the omnidirectional video live playback player 1810 having only the functions of FIG. 18 may be activated together to cooperate.
- the all-round video live playback player 1810 includes a video matching processing unit 1811 and a display screen generating unit 1812.
- the video matching processing unit 1811 obtains a video of a known marathon course that is the moving route of the all-around camera 310 from the data distribution server 350. Then, the video matching processing unit 1811 matches the all-around live marathon image captured by the all-around camera 310 and distributed via the live image distribution server 330 with the image of the marathon course, Determine the current position.
- the display screen generation unit 1812 acquires marathon course map data from the data distribution server 350. Then, the display screen generation unit 1812 adds the current position to the marathon course map data based on the current position information from the video matching processing unit 1811 and the gaze direction of the live video displayed by the user. To do.
- Live video 1841 is a video ahead of the accompanying car.
- the live video 1842 is a video of the road from the accompanying vehicle through the runner.
- Live video 1843 is a video of the next runner who follows the back of the accompanying vehicle.
- FIG. 19 is a diagram showing a configuration of processing data 1900 of the communication terminal according to the present embodiment.
- the processing data 1900 is data for determining the current position where the all-around live video is captured and displaying the current position and the line-of-sight direction on the map.
- the communication terminal also uses the data illustrated in FIG. 11B.
- the additional audio data is not shown in FIG. 19, the audio can be similarly added.
- the processing data 1900 is distributed from the live video delivery message delivered from the live video delivery server 330, the all-around live video 1901, the feature value 1902 of the all-around live video 1901, and the data delivery server 350.
- the marathon course video feature quantity 1903 is stored.
- the processing data 1900 stores the current position 1904 and the line-of-sight direction 1905 designated by the user, determined from matching between the feature value 1902 of the all-around live video 1901 and the feature value 1903 of the marathon course video.
- the processing data 1900 stores live display data 1906 in the line-of-sight direction 1905 specified by the user and course map display data 1907 in which the current position 1904 is displayed on the map.
- the processing data 1900 also stores data of the user instruction range.
- FIG. 20 is a flowchart showing a detailed procedure of process S1731 of the all-round moving image live playback player 1810 according to the present embodiment. This flowchart is also executed by the CPU 1610 of FIG. 16 using the RAM 1640. Hereinafter, the processing procedure of the all-round moving image live reproduction player 1810 will be described.
- the all-round video live playback player 1810 acquires map data of the marathon course from the data distribution server 350 in step S2001. Next, the all-round video live playback player 1810 acquires the marathon course video from the data distribution server 350 in step S2003.
- the feature quantity calculated in advance by the data distribution server 350 may be acquired, or the video may be acquired and the feature quantity may be calculated by the communication terminal.
- the all-round video live playback player 1810 acquires all-round live video data from the live video distribution server 330 in step S2005.
- step S2007 the all-round moving image live reproduction player 1810 expands the all-round image of each frame of the all-round moving image in the acquired all-around live video data on a sphere surrounding the user viewpoint 360 degrees. Further, the all-around moving image live reproduction player 1810 extracts the feature amount of the all-around image of each frame of the all-around moving image in the acquired all-around live video data.
- step S2009 the all-round video live playback player 1810 matches the feature amount of the marathon course video with the feature amount of the all-round image to determine the current position where the all-around camera 310 is shooting. To do. Note that the current position is not determined by all communication terminals, but the current position is determined by the shooting distribution PC or the current position determination player, and data obtained by associating the acquired position with the time stamp is distributed as data. You may deliver to each communication terminal from a server.
- step S2011 the all-round video live playback player 1810 acquires the display direction of the all-round video instructed by the user. Then, in step S2013, the all-round video live playback player 1810 displays a live image in the display direction instructed by the user of the all-round image sequence developed on the sphere, and if there is a three-dimensional audio synchronized output, Synchronize with the video and output stereo sound when facing the display direction. At the same time, in step S2015, the all-round video live playback player 1810 displays a marathon course map displaying the current position of the all-around camera 310 and the line-of-sight instruction direction.
- the all-round video live playback player 1810 further acquires the display range of the all-round video instructed by the user in step S2011, and in step S2013.
- a live image in the designated display direction and designated range is displayed, and a three-dimensional sound corresponding to the display direction and the displayed range is output.
- step S2017 the all-round moving image live reproduction player 1810 determines whether or not the live end (player stop). If the live is not finished, the all-round video live playback player 1810 returns to step S2005 and repeats the live playback of the all-round video.
- the present embodiment by determining the current position of the moving all-around camera and displaying it on the map, it is possible to view a video with a sense of realism, and also to view a live video without a GPS or the like. You can know the position and viewing direction.
- the all-round video live delivery system according to the present embodiment has a plurality of all-around cameras arranged at a plurality of points, and a user can select all-around from the all-around camera. It is different in that a video can be selected. Since other configurations and operations are the same as those of the second embodiment and the third embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 21A is a diagram showing an outline of processing of the all-around moving image live delivery system 2101 according to the present embodiment. 21A, the same reference numerals are given to the same components as those in FIG. 3A, FIG. 10, or FIG.
- Each of the communication terminals corresponds to the all-around video live playback player 1010, the all-around video live playback player 1810, and the all-around video live distribution system 2101 corresponding to the all-around video content to be selected or viewed by the user. select.
- FIG. 21A a plurality of omnidirectional cameras 311 to 313 and a plurality of shooting distribution PCs 321 to 323 corresponding to the omnidirectional cameras are arranged at a plurality of points to enable the user to selectively view a plurality of omnidirectional videos.
- FIG. 21A shows an example in which a canoe competition is shot live at multiple points on the course.
- the microphone is not illustrated in FIG. 21A, live sound by a stereo microphone may be collected.
- the all-round moving image live reproduction player 2110 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range as in FIG.
- the all-around video live playback player 2110 is a player that replaces the all-around video live playback player 1010 in FIG. 10 and the all-around video live playback player 1810 in FIG. Note that the all-round video live playback player 2110 in FIG. 21A shows functional components related to processing unique to this embodiment, and in order to avoid complexity, the all-round video live playback player in FIG. Illustrations of the functional components of the player 1010 and the all-round video live playback player 1810 in FIG. 18 are omitted.
- the all-around video live playback player 2110 includes a video selection unit 2111.
- the video selection unit 2111 selects the all-around live canoe image A, the all-around live canoe image B, and the all-around live canoe image C according to the user's selection instruction and distributes them to the communication terminal.
- the all-around live canoe image A is a live image that is captured by the all-around camera 311 and distributed via the live image distribution server 330.
- the all-around live canoe image B is an image captured by the all-around camera 312 and distributed via the live image distribution server 330.
- the all-around live canoe image C is an image captured by the all-around camera 313 and distributed via the live image distribution server 330.
- the live video 2141 is a video in the direction of the canoe player 2151 imaged from the all-around camera 311.
- the live video 2142 is a video of the direction of the canoe player 2152 imaged from the all-around camera 312.
- the live video 2143 is a video in the direction of the canoe player 2153 imaged from the all-around camera 313. The user can select an all-around video to be viewed from three live videos.
- FIG. 21B is a diagram showing an overview of the processing of the all-around video live delivery system 2102 according to the present embodiment.
- Each of the communication terminals corresponds to the all-around video live playback player 1010, the all-around video live playback player 1810, and the all-around video live distribution system 2102 corresponding to the all-around video content to be selected or viewed by the user. select.
- FIG. 21B a plurality of all-around cameras 311 to 313 are arranged at a plurality of points to allow the user to selectively view a plurality of all-around videos.
- FIG. 21B shows an example in which a game at a baseball field is shot live at a plurality of points.
- illustration of the imaging / delivery PC is omitted.
- a microphone is not shown in FIG. 21B, live sound from a stereo microphone may be collected.
- the all-round moving image live reproduction player 2110 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range as in FIG.
- the all-around video live playback player 2110 is a player that replaces the all-around video live playback player 1010 in FIG. 10 and the all-around video live playback player 1810 in FIG. Note that the all-round video live playback player 2110 in FIG. 21B shows functional components related to processing unique to this embodiment, and in order to avoid complexity, the all-round video live playback player in FIG. Illustrations of the functional components of the player 1010 and the all-round video live playback player 1810 in FIG. 18 are omitted.
- the all-around video live playback player 2110 includes a video selection unit 2111.
- the video selection unit 2111 selects the all-around live baseball image A, the all-around live baseball image B, and the all-around live baseball image C according to the user's selection instruction and distributes them to the communication terminal.
- the all-around live baseball image A is a live image from behind the back net, which is captured by the all-around camera 311 and distributed via the live image distribution server 330.
- the all-around live baseball image B is an image from the back screen that is captured by the all-around camera 312 and distributed via the live image distribution server 330.
- the all-around live baseball image C is an image from the dome ceiling that is imaged by the all-around camera 313 and distributed via the live image distribution server 330.
- the live video 2144 is a video taken from the all-around camera 311.
- the live video 2145 is a video taken from the omnidirectional camera 312.
- a live video 2146 is a video taken from the all-around camera 313. The user can select an all-around video to be viewed from three live videos.
- FIG. 22 is a diagram showing a configuration of processing data 2200 of the communication terminal according to the present embodiment.
- the processing data 2200 indicates data for selecting a plurality of all-round images used in the canoe competition of FIG. 21A.
- FIG. 22 does not show about a three-dimensional audio
- the processing data 2200 stores an all-round video acquisition source 2201 and a selection flag 2202 from which the user has selected the acquisition source. Further, the processing data 2200 stores the all-around live video 2203 reproduced from the live video distribution message distributed from the live video distribution server 330 and the line-of-sight direction 2204 designated by the user. Further, the processing data 2200 stores live display data 2205 in the line-of-sight direction 2204 instructed by the user, and course map display data 2206 in which the selected all-around camera position is displayed on the map. When zooming in or out, the processing data 2200 also stores data of the user instruction range.
- FIG. 23 is a flowchart showing a detailed procedure of process S1731 of the all-round moving image live playback player 2110 according to the present embodiment. This flowchart is also executed by the CPU 1610 of FIG. 16 using the RAM 1640. Hereinafter, the processing procedure of the all-round moving image live reproduction player 2110 will be described.
- FIG. 23 shows a flowchart in the canoe competition of FIG. 21A.
- the all-round video live playback player 2110 acquires the map data of the canoe competition course from the data distribution server 350 in step S2301.
- step S2303 the all-around moving image live playback player 2110 acquires an instruction to select the all-around video distribution source from the user.
- step S2305 the all-round moving image live playback player 2110 connects to the live video from the distribution source instructed to be selected.
- step S2307 the all-around moving image live playback player 2110 acquires the selected distribution source all-around live video data from the live video distribution server 330 and develops it on the sphere.
- the all-round moving image live playback player 2110 acquires the display direction of the all-round moving image instructed by the user in step S2309.
- step S2311 the all-round video live playback player 2110 displays live video in the display direction instructed by the user of the all-round image sequence developed on the sphere, and if there is a three-dimensional audio synchronized output, Synchronize with the video and output stereo sound when facing the display direction.
- the all-round video live playback player 2110 displays a canoe course map that displays the selected all-around camera and the line-of-sight instruction direction. If there is an instruction for the display range (zoom-in / zoom-out), the all-round video live playback player 2110 further acquires the display range of the all-round video instructed by the user in step S2309, and in step S2311 A live image in the designated display direction and designated range is displayed, and a three-dimensional sound corresponding to the display direction and the displayed range is output.
- step S2315 the all-around moving image live playback player 2110 determines whether or not there is an instruction to change the distribution source of the all-around video from the user. If there is an instruction to change the distribution source of the all-round video, the all-round video live playback player 2110 returns to step S2303 and displays the all-round video from the new distribution source.
- the all-round video live playback player 2110 determines whether or not the live is ended (player stop) in step S2317. If the live is not finished, the all-round video live playback player 2110 returns to step S2307 and repeats the live playback of the all-round video.
- the all-round moving image live delivery system according to this embodiment is different from the second to fourth embodiments in that desired information is added to live reproduction of the all-round moving image.
- a telop is added by finding a target in an all-round moving image during live reproduction is shown.
- the present embodiment is not limited to the addition of telops, and can be variously applied as a technique for additionally displaying other information in the all-round video live reproduction. Since other configurations and operations are the same as those in the second to fourth embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 24 is a diagram showing an outline of processing of the all-around moving image live distribution system 2400 according to the present embodiment. 24, the same reference numerals are given to the same components as those in FIG. 3A, FIG. 10, FIG. 18, FIG. 21A, or FIG. Further, each of the communication terminals corresponds to the all-round video content to be selected or viewed by the user, and the all-round video live playback player 1010, the all-round video live playback player 1810, and the all-round video live distribution systems 2101 and 2102. And the all-around moving image live distribution system 2400 are selected. Alternatively, the all-around video live playback player 1010, the all-around video live playback player 1810 having only the functions of FIG.
- the all-around moving image live distribution system 2400 having only the above function may be activated and cooperated.
- feature points are not determined by all communication terminals, but are captured or distributed by a shooting distribution PC or determination player, and data associated with the presence / absence of a search target and a time stamp is transmitted from the data distribution server to each communication. You may distribute to a terminal.
- the all-around camera 310 and the imaging / delivery PC 320 are installed in a vehicle and are moving.
- FIG. 24 shows an example of live shooting while moving around the city. Note that although a microphone is not shown in FIG. 24, live audio from a stereo microphone may be collected. In that case, the all-round moving image live reproduction player 2410 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range similar to FIG.
- the all-around video live playback player 2410 is a player that replaces each of the all-around video live playback players of the above-described embodiment. Note that the all-round video live playback player 2410 in FIG. 24 shows functional components related to processing unique to this embodiment, and in order to avoid complexity, the all-round video live playback player 2410 in FIG. The illustration of the functional component of the playback player is omitted.
- the all-round video live playback player 2410 includes a telop insertion unit 2411.
- the telop insertion unit 2411 acquires telop data to be added to the all-round video live reproduction from the data distribution server 350. Then, the telop insertion unit 2411 superimposes the telop acquired from the data distribution server 350 on a predetermined position of the live video in the all-around town that is captured by the all-around camera 310 and distributed via the live video distribution server 330. indicate.
- the feature amount of the target object to which the telop is added may be acquired from the data distribution server 350 and matched with the feature amount of the all-around video to find the target object.
- the live video 2441 is additionally displayed with a telop 2451 for the store A.
- a telop 2452 for the store B is additionally displayed.
- a telop 2453 for the store C is additionally displayed.
- the description of the store is additionally displayed, but the additional information is not limited.
- the additional information is not limited to display information and may be audio information.
- FIG. 25 is a diagram showing a configuration of processing data 2500 of the communication terminal according to the present embodiment.
- the processing data 2500 is used to add additional data such as a telop to the all-around live video.
- additional audio data is not shown, but the audio data can be added by processing in the same manner as the live video.
- the processing data 2500 includes live display data of the all-around live video 2501 reproduced from the live video delivery message delivered from the live video delivery server 330, the gaze direction 2502 designated by the user, and the gaze direction 2502 designated by the user. 2503 is stored. Further, the processing data 2500 stores one or a plurality of search object feature quantities 2504, additional data 2505, and additional positions 2506 for each of the all-around live video 2501. The processing data 2500 stores a feature amount match flag 2507 and all-around live additional display data 2508 to which additional data is added. Note that when zooming in or out, the processing data 2500 also stores data of the user instruction range.
- FIG. 26 is a flowchart showing a detailed procedure of step S1731 of the all-round moving image live playback player 2410) according to this embodiment. This flowchart is also executed by the CPU 1610 of FIG. 16 using the RAM 1640. Hereinafter, the processing procedure of the all-round moving image live reproduction player 2410 will be described.
- the all-around moving image live playback player 2410 acquires information on the search target from the data distribution server 350 in step S2601.
- the information may be a feature amount of the object.
- step S2603 the all-around moving image live reproduction player 2410 acquires the selected distribution source all-around live image data from the live image distribution server 330 and develops it on the sphere.
- the all-around moving image live playback player 2410 acquires the display direction of the all-around moving image instructed by the user in step S2605.
- step S2607 the all-round moving image live reproduction player 2410 determines whether or not there is an object in the direction designated by the user, by matching feature amounts. If it is determined that there is an object, the all-round moving image live reproduction player 2410 adds related information (telop) to the object of the all-round live display data in the indicated direction in step S2609. Then, in step S2611, the all-round video live playback player 2410 displays the live video in the display direction instructed by the user of the all-round image sequence developed on the sphere together with the attached telop, and synchronizes the three-dimensional audio. If there is an output, the three-dimensional sound is output in the direction of display in synchronization with the live video.
- related information telop
- step S2607 If it is determined in step S2607 that there is no object, the all-round moving image live playback player 2410 proceeds to step S2611. If there is an instruction for the display range (zoom-in / zoom-out), the all-round video live playback player 2410 further acquires the display range of the all-round video instructed by the user in step S2605, and in step S2607, It is determined whether or not there is an object in the designated display direction and designated range. If it is determined that there is an object, in step S2609, related information (telop) is added to the object of the all-round live display data in the specified direction and range, and in step S2611, the live video with the telop attached is displayed. The three-dimensional audio corresponding to the display direction and display range is output in synchronization with the displayed live video.
- related information telop
- step S2613 the all-round moving image live playback player 2410 determines whether or not the search target has been changed. If there is a change in the search object, the all-around moving image live playback player 2410 returns to step S2601 and displays the all-around video with the new search object added.
- the all-round video live playback player 2410 determines in step S2615 whether or not the live has ended (player stop). If the live is not finished, the all-round moving image live reproduction player 2410 returns to step S2603 and repeats the live reproduction of the all-round moving image.
- the present embodiment by adding information corresponding to the object to the display of the all-round video captured by the all-round camera, it is possible to display the all-round video full of realism from the user's desired position. Can be viewed including the information of.
- the all-around moving image live delivery system according to this embodiment is different from the second to fifth embodiments in that a desired object is selected and displayed from live reproduction of the all-around moving image.
- the target player is selected from the all-around video of soccer and played live.
- the characteristics of the target person (object) include a face, clothes, ornaments, and patterns (including a sportsman's back number) for a person, and shapes, colors, patterns, etc. for an object.
- the present invention is not limited to this. Since other configurations and operations are the same as those in the second to fifth embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 27A is a diagram showing an outline of processing of the all-around moving image live distribution system 2700 according to the present embodiment.
- each of the communication terminals corresponds to the all-round video content to be selected or viewed by the user, and the all-round video live playback player 1010, the all-round video live playback player 1810, and the all-round video live distribution systems 2101 and 2102.
- the all-around moving image live distribution system 2400 and the all-around moving image live distribution system 2700 are selected.
- the all-around moving image live distribution system 2400 having only the above function and the all-around moving image live distribution system 2700 having only the function of FIG. 27A may be activated in combination for cooperation.
- the feature point is not determined by all communication terminals, but by a shooting distribution PC or a determination player, and data in which all player data and time stamps are linked from the data distribution server. You may distribute to a viewing terminal.
- FIG. 27A a plurality of omnidirectional cameras 314 to 317 are arranged at a plurality of points so that the user can selectively view a plurality of omnidirectional videos.
- FIG. 27A shows an example in which a live shooting of a game on a soccer field is performed at a plurality of points. Note that in FIG. 27A, the imaging distribution PC is not shown.
- a microphone is not shown in FIG. 27A, live sound from a stereo microphone may be collected.
- the all-round moving image live reproduction player 2710 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range as in FIG.
- the all-around video live playback player 2710 is a player that replaces the all-around video live playback player of the above embodiment. Note that the all-round video live playback player 2710 in FIG. 27A shows functional components related to processing unique to this embodiment, and in order to avoid complexity, the all-round video live playback player 2710 of FIG. The illustration of the functional component of the playback player is omitted.
- the all-round video live playback player 2710 includes a player identification unit 2711.
- the player identifying unit 2711 finds a player by matching the player selection data acquired from the data distribution server 350 with the all-around video captured by the all-around cameras 314 to 317, and the all-around video showing the player.
- the predetermined direction is preferably zoomed in / out and displayed.
- all-around cameras 314 to 317 are installed in the soccer field.
- the all-around camera 314 is disposed on the front stand.
- the all-around camera 315 is installed behind one goal.
- the all-round camera 316 is disposed behind the other goal.
- the all-around camera 317 images the entire soccer field from the stadium hollow.
- the live video 2741 is a video obtained by zooming in on the target player 2751 from the all-around camera 314.
- the live moving image 2742 is a moving image obtained by zooming in on the target player 2751 from the all-around camera 317.
- the live video 2743 is a video captured by zooming out the target player 2751 from the omnidirectional camera 316.
- the user can automatically select and track the all-around video of the player who wants to watch. Note that when the same target player 2751 is imaged by a plurality of all-round cameras among the all-round cameras 314 to 317, the size of the tracking target and the high reliability of the feature determination as described below, etc. Select the all-round video to be displayed under conditions.
- an all-round image with the largest spine number is selected, and when tracking is performed based on the facial features of the target player 2751, all faces are close to the front. Select a circle image.
- the user may specify the feature to be tracked and the selection condition, and select an all-round image with high reliability of the feature determination. These selection conditions may be applied individually or may be applied in combination with a plurality of selection conditions in consideration of weights and the like.
- FIG. 27B is a diagram showing an outline of the operation of the all-around moving image live delivery system 2700 according to the present embodiment.
- the left diagram of FIG. 27B shows a screen transition of an operation for selecting a tracking player in the all-round moving image live reproduction player 2710.
- the right diagram in FIG. 27B shows an example in which the all-round video live playback is played back and displayed on a part of the screen instead of the entire screen. Note that the screen transition and partial display in FIG. 27B are the same in other embodiments.
- the upper left column in FIG. 27B is a screen showing the live video 2741 in FIG. 27A.
- Operation UIs 2761 and 2762 are displayed as shown in the second row on the left by a user-specified operation such as a mouse, a touch panel, or a terminal button.
- the operation UIs 2761 and 2762 include a tracking target selection menu display / non-display button 2762.
- the operation UI 2761 is for selecting and displaying the all-around camera and the line of sight.
- a tracking target selection menu 2763 is displayed as shown in the third row on the left.
- the tracking target selection menu display / non-display button 2762 indicates that the button is pressed and the menu is displayed. A special shortcut operation for transitioning to this state may be prepared.
- the tracking target selection menu 2763 displays a list of selectable targets (in this case, players, managers, referees, etc.). If the tracking target has already been selected, the corresponding item is selected. (4) A tracking target is selected by a user operation. As shown in the lowermost figure on the left, the selected item is changed in color or displayed with a special mark so that it can be seen that it is in a selected state. In addition, the selected tracking target image, number, name, and the like may be simply displayed on the operation UI. Enable the automatic tracking function and reflect the result in the video being played in the video area.
- the user can search for a favorite angle while sequentially switching the tracking target in the same manner as switching a television channel.
- a tracking target in a selected state is canceled by a user operation, the display of the target item is returned to normal and the tracking target display is erased from the operation UI, contrary to (2) to (4). . Disable the automatic tracking function and reflect the result in the video being played in the video area.
- the tracking target selection menu display / non-display button 2762 on the operation UI is operated, the tracking target selection menu 2763 is deleted.
- the tracking target selection menu display / non-display button 2762 is canceled to indicate that the menu is not displayed.
- the operation UIs 2761 and 2762 are deleted.
- FIG. 27B shows an example in which a tracking target selection menu 2863 is displayed outside the moving image area when the moving image is not displayed on the entire screen of the communication terminal.
- FIG. 28 is a diagram showing a configuration of processing data 2800 of the communication terminal according to the present embodiment.
- the processing data 2800 tracks the target person (object) desired by the user, selects the all-around video, determines its display direction, zooms in / out if necessary, and selects the target person (object). Used for tracking display.
- the stereoscopic audio data is not shown, but can be reproduced by processing in the same manner as a live video.
- the processing data 2800 stores a feature amount 2801 of the tracking target, an all-around live video 2802 in which the subject was found as a result of matching, and a direction 2803 in which the subject was found. Further, the processing data 2800 stores all-around live display data 2804 in the direction 2803 in the all-around live video 2802 and zoom-in / zoom-out 2805.
- FIG. 29 is a flowchart showing a detailed procedure of process S1731 of the all-round moving image live playback player 2710) according to the present embodiment. This flowchart is also executed by the CPU 1610 of FIG. 16 using the RAM 1640. Hereinafter, the processing procedure of the all-round moving image live reproduction player 2710 will be described.
- the all-around moving image live reproduction player 2710 acquires the tracking target information from the data distribution server 350 in step S2901.
- the information may be a feature amount of the object.
- step S 2903 the all-around moving image live playback player 2710 acquires the plurality of selected distribution source all-around live video data from the live video distribution server 330 and develops it on the sphere.
- step S2905 the all-around moving image live playback player 2710 determines whether or not there is an object in the all-around moving image by feature amount matching. If it is determined that there is an object, the all-around moving image live reproduction player 2710 selects the all-around live distribution source in which the tracking target is shown in step S2907. Next, in step S2909, the all-around moving image live reproduction player 2710 selects the all-around live direction in which the tracking target is shown. Then, in step S2911, the all-round video live playback player 2710 displays the selection direction of the all-round live in which the tracking target is reflected. If there is a three-dimensional audio synchronization output, the display direction is synchronized with the live video.
- step S2905 If it is determined in step S2905 that there is no object, the all-round video live playback player 2710 maintains the all-round live video data currently being output and the current display direction in step S2917, and performs the all-round live Continue to output. Then, the all-round moving image live playback player 2710 proceeds to step S2913. Note that the selection of the all-around live distribution source (or all-around camera) in step S2907 and the selection of the all-around live direction in step S2909 are not separate processes, and the selection of the all-around live distribution source and direction is not performed.
- the following conditions such as the size of the tracking object and the high reliability of feature determination Select the all-round live distribution source to be displayed. For example, if the tracked object is a player on the stadium, select the target player or the all-around live image with the largest number, or if tracking is performed according to the face characteristics of the tracked person Selects the all-around image close to the front.
- the user may specify the feature to be tracked and the selection condition, and select an all-round image with high reliability of the feature determination.
- These selection conditions may be applied individually or may be applied in combination with a plurality of selection conditions in consideration of weights and the like.
- step S2913 the all-around moving image live playback player 2710 determines whether or not the tracking target has been changed. If there is a change in the tracking object, the all-around moving image live playback player 2710 returns to step S2901 and displays an all-around video showing the new tracking object.
- the all-round video live playback player 2710 determines in step S2915 whether or not the live has ended (player stopped). If the live is not finished, the all-round video live playback player 2710 returns to step S2903 and repeats the live playback of the all-round video.
- the user by playing live a moving image showing a tracking object among all-round videos captured by the all-round camera, the user can feel the presence including the desired tracking target person (thing). You can watch an overflowing all-around video.
- the player tracking display during live viewing of a soccer game has been described as an example. However, for example, in a system for tracking and viewing his or her child at a daycare or nursery, a nursing facility, etc. It can also be effectively applied to systems that track and watch elderly people.
- the all-around moving image live delivery system according to the present embodiment is different from the second to sixth embodiments in that the all-around moving image can be live-distributed and viewed on a television. Since other configurations and operations are the same as those in the second to sixth embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted. In the following description, descriptions of zoom-in / zoom-out processing and stereoscopic sound reproduction processing are omitted, but the same processing as in the above embodiment can be applied.
- FIG. 30 is a diagram illustrating an outline of processing of the all-around moving image live delivery system 3000 according to the present embodiment.
- the same components as those in FIGS. 3A, 10, 18, 21, 21A, 21B, 24, and 27A are denoted by the same reference numerals, and the description thereof is omitted.
- the live video distribution server 330 performs live distribution of the all-round video to the television station 3070, and the television station 3070 broadcasts the all-round video to the television receiver 3040 live.
- the television receiver 3040 receives the all-round moving image of the present embodiment by a television broadcast signal.
- the television station 3070 includes a television video transmission unit 3071 and a television screen conversion unit 3072.
- the TV screen conversion unit 3072 converts the all-around live moving image data distributed from the live video distribution server 330 into TV screen data that can be broadcast all-around live. Then, the television video transmission unit 3071 transmits the converted television screen data capable of live broadcasting all around.
- the television receiver 3040 thins out all-round video if necessary depending on the amount of data, and transmits the all-round video using a television broadcast signal.
- the television receiver 3040 restores the all-round video from the video data of the received television broadcast signal. Then, the restored all-round image is projected onto the sphere 3030. Then, an image corresponding to the user's line-of-sight direction instruction of the all-round image projected on the sphere 3030 is selected, projected onto the television screen, and scanned and output.
- Television video screens 3041 to 3043 show selection display of the user instruction direction of the all-round video.
- FIG. 31 is a diagram showing conversion of processing data in the television station 3070 according to the present embodiment.
- the all-around video imaged by the all-around camera is, for example, 15 frames / second, it is distributed from the live image distribution server 330 to the television station 3070 at 15 frames / second.
- the all-around video captured by the all-around camera is divided in half and broadcast at 30 frames / second in the current digital broadcasting. Further, the all-around video imaged by the all-around camera is divided into 1 ⁇ 4 and broadcast at 60 frames / second in the current digital broadcasting.
- the broadcast bit rate and the corresponding resolution are sufficient for transferring all-around live video data, it is not necessary to divide all-around video and frame complement processing (repeating the same frame or synthesizing intermediate frames) According to the above, conversion to 30 frames / second or 60 frames / second or a frame rate used in other broadcasting may be performed.
- the frame rate conversion process can be performed by any of the shooting distribution PC, the live video distribution server, and the television station.
- the all-round video is restored and the frames in between are complemented. Then, from the reproduced all-round live image, the line of sight is changed according to the user's instruction, and television video screens 3041 to 3043 are respectively displayed.
- the user can view the all-around video full of realism on the television by live-playing the all-around video captured by the all-around camera on the television receiver by television broadcasting.
- the all-round video live delivery system according to the present embodiment views live playback of the all-round video on a head mounting display (hereinafter, HMD), particularly three-dimensional viewing. It is different in point to do. Since other configurations and operations are the same as those in the second to seventh embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- HMD head mounting display
- FIG. 32 is a diagram showing an outline of processing of the all-around moving image live delivery system 3200 according to the present embodiment.
- the same components as those in FIGS. 3A, 10, 18, 21, 21A, 21B, 24, and 27A are denoted by the same reference numerals, and the description thereof is omitted.
- the all-around video live distribution system 3200 shows an example of the all-around video of the marathon in FIG.
- a user 3241 is viewing an all-round video with the HMD 3240.
- the line-of-sight direction is changed according to the change in the orientation of the head of the user 3241 by the acceleration sensor of the HMD 3240. Therefore, when the user 3241 makes one rotation, the entire circumference moving image can be viewed.
- the imaging / delivery PC is not shown.
- the microphone is not shown in FIG. 32, live sound from a stereo microphone may be collected.
- the all-round moving image live playback player 1810 includes a three-dimensional sound control unit that controls the output of the three-dimensional sound corresponding to the designated direction and designated range as in FIG.
- the user by viewing an all-round moving image captured by the all-round camera with an HMD having a sensor that detects the rotation of the head, the user overflows with a sense of reality that matches the user's own movement rather than a finger instruction. You can watch all-around video on TV.
- the all-round camera has been described as a camera having five cameras that capture 360 degrees around and one camera that captures the sky.
- the number of cameras is not limited to this example. What is necessary is just to determine from the precision (resolution) of a video, the processing speed for live, etc.
- the lens of the all-round camera is composed of one super wide-angle lens or the like, it is not necessary to combine the all-round image.
- the all-round image generation processing is different from that of the present embodiment.
- the present invention can be applied regardless of the structure of the all-around camera, and these are also included in the scope of the present invention.
- mapping solid is not limited to a sphere, and may be cylindrical mapping or polyhedral mapping.
- polyhedral mapping an image corresponding to each surface is cut out on the distribution side or server side (or player side).
- the photographic distribution PC acquires the video, image, and feature amount from the data distribution server, selects the all-around camera, tracks the target person (thing), adds telop, audio, etc.
- the result may be distributed to a user's communication terminal via a live video distribution server or a data distribution server.
- the shadow distribution PC performs data distribution as shown by broken lines in FIGS. 3A, 18, 21A and 21B (data distribution server is omitted), FIGS. 24, 27A, 30 and 32. Acquire video, images, and feature values from the server.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
本発明のシステムは、臨場感のある全周動画を視聴する全周動画配信システムである。この全周動画配信システムは、全周カメラと、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成部と、時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成部と、全周動画データ生成部からアップロードされた全周動画データを、通信端末装置に配信する配信用サーバと、配信用サーバから配信された全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生部と、を備える。
Description
本発明は、全周カメラで取得した全周動画の配信を可能とする技術に関する。
上記技術分野において、特許文献1には、複数のカメラからなる全周カメラで撮影した映像に基づいて、全周ビデオを生成するための技術が開示されている。また、特許文献2には、1つの撮像センサからなる全周カメラから全周動画を再生するための技術が開示されている。
しかしながら、上記文献に記載の技術では、臨場感のある全周動画を視聴することができなかった。
本発明の目的は、上述の課題を解決する技術を提供することにある。
上記目的を達成するため、本発明に係る全周動画配信システムは、
全周カメラと、
前記全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データ生成手段からアップロードされた前記全周動画データを、前記通信端末装置に配信する配信用サーバと、
前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生手段と、
を備える。
全周カメラと、
前記全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データ生成手段からアップロードされた前記全周動画データを、前記通信端末装置に配信する配信用サーバと、
前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生手段と、
を備える。
上記目的を達成するため、本発明に係る全周動画配信方法は、
全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
配信用サーバが、アップロードされた前記全周動画データを、前記通信端末装置に配信する配信ステップと、
前記通信端末装置が、前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生ステップと、
を含む。
全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
配信用サーバが、アップロードされた前記全周動画データを、前記通信端末装置に配信する配信ステップと、
前記通信端末装置が、前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生ステップと、
を含む。
上記目的を達成するため、本発明に係る画像処理装置は、
全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データを配信用サーバにアップロードするアップロード手段と、
を備える。
全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データを配信用サーバにアップロードするアップロード手段と、
を備える。
上記目的を達成するため、本発明に係る画像処理装置の制御方法は、
全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
アップロード手段が、前記全周動画データを配信用サーバにアップロードするアップロードステップと、
を含む。
全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
アップロード手段が、前記全周動画データを配信用サーバにアップロードするアップロードステップと、
を含む。
上記目的を達成するため、本発明に係る画像処理装置の制御プログラムは、
全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
前記全周動画データを配信用サーバにアップロードするアップロードステップと、
をコンピュータに実行させる。
全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
前記全周動画データを配信用サーバにアップロードするアップロードステップと、
をコンピュータに実行させる。
上記目的を達成するため、本発明に係る通信端末装置は、
全周動画を配信する配信用サーバから、本通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信手段と、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開手段と、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生手段と、
を備える。
全周動画を配信する配信用サーバから、本通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信手段と、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開手段と、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生手段と、
を備える。
上記目的を達成するため、本発明に係る通信端末装置の制御方法は、
全周動画データ受信手段が、全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
全周動画展開手段が、受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
全周動画再生手段が、ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
を含む。
全周動画データ受信手段が、全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
全周動画展開手段が、受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
全周動画再生手段が、ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
を含む。
上記目的を達成するため、本発明に係る通信端末装置の制御プログラムは、
全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
をコンピュータに実行させる。
全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
をコンピュータに実行させる。
本発明によれば、臨場感のある全周動画を視聴することができる。
以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素は単なる例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。
本明細書において、「データ」は、装置間の通信用に処理をされていない生の情報を示し、例えば、「映像データ」は、カメラで撮像してデジタル量子化し、画素処理や画像処理、あるいはベクトル化などをした映像の情報である。また、「音声データ」は、マイクで集音してデジタル量子化し、音声処理、あるいはベクトル化などをした音声の情報である。そして、「動画データ」は、「映像データ」と「音声データ」を時系列に同期して含む動画の情報である。また、「メッセージ」は、これら「データ」を装置間で通信するために、装置間の通信を規定する所望のプロトコルが許容する所定のフォーマット化(通信元/通信先を含むヘッダと通信するデータ、必要であれば、圧縮符号化や暗号化を含む)
を施した情報である。なお、本明細書における「メッセージ」は、1つのまとまった映像コンテンツや画像あるいは動画コンテンツを表現する、いわゆる「ファイル」とは異なり、ライブ配信を提供するための断片的な実時間のデータをフォーマット化した情報を示す。また、「全周カメラ」「全周動画」「全周フレーム」などで使用する「全周」は、視点(撮像位置)を囲む全域を表わす。
を施した情報である。なお、本明細書における「メッセージ」は、1つのまとまった映像コンテンツや画像あるいは動画コンテンツを表現する、いわゆる「ファイル」とは異なり、ライブ配信を提供するための断片的な実時間のデータをフォーマット化した情報を示す。また、「全周カメラ」「全周動画」「全周フレーム」などで使用する「全周」は、視点(撮像位置)を囲む全域を表わす。
[第1実施形態]
本発明の第1実施形態としての情報処理装置100について、図1を用いて説明する。情報処理装置100は、全周動画をライブ再生する装置である。
本発明の第1実施形態としての情報処理装置100について、図1を用いて説明する。情報処理装置100は、全周動画をライブ再生する装置である。
図1に示すように、情報処理装置100は、全周カメラ110と、全周画像生成部121と、全周動画データ生成部122と、ライブ配信用サーバ130と、動画ライブ再生部140と、を含む。全周カメラ110は、全周映像を撮影する。全周画像生成部121は、全周カメラ110で撮影された全周動画を取得して時系列の全周フレーム画像データを生成する。全周動画データ生成部122は、時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置150において実時間で再生可能なフォーマットの全周動画データを生成する。ライブ配信用サーバ130は、全周動画データ生成部122からアップロードされた全周動画データを、通信端末装置150に配信する。動画ライブ再生部140は、ライブ配信用サーバ130から配信された全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する。
本実施形態によれば、全周カメラからの全周動画をライブ配信可能に構成したことにより、ユーザが全周動画をライブで視聴することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態の全周動画ライブ配信システムは、全周カメラで撮影した動画からフレーム単位の全周画像データを生成して、通信端末において動画ライブ再生が可能なフォーマットのデータを生成して、動画ライブ配信サーバにアップロードする。動画ライブ配信サーバは、通信端末が受信可能なプロトコルでメッセージを実時間に配信する。通信端末は、配信されたメッセージから全周動画をライブ再生し、ユーザの指示に従って所望の方向の全周動画をライブ表示する。また、全周動画の表示方向に対応する音声を立体音声でライブ再生する。なお、全周動画のライブ表示に対応する立体音声は、ステレオマイクで集音したライブ音声に限定されず、ライブ表示された全周動画に関連する他の立体音声や人工的に生成した立体音声であってもよい。また、本実施形態では立体音声として、ステレオ音声データに基づくステレオ音声の出力例を示すが、5.1チャネルの立体音声データに基づく立体音声であってもよい。
次に、本発明の第2実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態の全周動画ライブ配信システムは、全周カメラで撮影した動画からフレーム単位の全周画像データを生成して、通信端末において動画ライブ再生が可能なフォーマットのデータを生成して、動画ライブ配信サーバにアップロードする。動画ライブ配信サーバは、通信端末が受信可能なプロトコルでメッセージを実時間に配信する。通信端末は、配信されたメッセージから全周動画をライブ再生し、ユーザの指示に従って所望の方向の全周動画をライブ表示する。また、全周動画の表示方向に対応する音声を立体音声でライブ再生する。なお、全周動画のライブ表示に対応する立体音声は、ステレオマイクで集音したライブ音声に限定されず、ライブ表示された全周動画に関連する他の立体音声や人工的に生成した立体音声であってもよい。また、本実施形態では立体音声として、ステレオ音声データに基づくステレオ音声の出力例を示すが、5.1チャネルの立体音声データに基づく立体音声であってもよい。
《全周動画ライブ配信システム》
図2A乃至図3Cを参照して、本実施形態の全周動画ライブ配信システムの処理を説明する。
図2A乃至図3Cを参照して、本実施形態の全周動画ライブ配信システムの処理を説明する。
(処理の概要)
図2Aは、本実施形態に係る全周動画ライブ配信システム200の処理の概要を示す図である。
図2Aは、本実施形態に係る全周動画ライブ配信システム200の処理の概要を示す図である。
全周動画ライブ配信システム200においては、全周の5方向の映像を撮影する5つの撮像センサと、真上の映像を撮影する1つの撮像センサからなる全周カメラにより、6方向の動画を同時に撮影する。したがって、この全周カメラを全天空カメラとも言う。なお、全周カメラの撮像センサの数は本例に限定されない。図2Aにおいて、映像210は真上の映像、映像211~215は全周をカバーする映像である。本実施形態においては、映像210~215に基づいて、各映像の重なり部分を整合する画像調整を行なって全周を結合した全周画像フレーム220を生成する。なお、全周画像フレーム220の下辺222から所定距離領域225の画像データは、全周カメラの下方の撮影不可能な直下領域を補完するデータである。
この全周画像フレーム220からなるライブ動画は、全周動画が通信端末240においてライブ再生可能なフォーマットのデータに変換される。例えば、FLV(Flash Video)フォーマットが使用されるのが望ましいが、限定されるわけではない。また、送信するデータ(いわゆる、ストリームデータ)のパターンによっては、FLVフォーマットへの変換が必ず必要なわけではなく、その場合はFLVフォーマットへの変換は削除されてもよい。
FLVフォーマットに変換された全周動画は、所定の動画配信プロトコルに従ってライブ映像配信サーバを中継して、本実施形態の全周動画ライブ再生プレーヤが動作する通信端末240で再生される。図2Aの通信端末240において、まず、全周画像フレーム220が、球体230に投影される。全周画像フレーム220の上辺221は、球体の頂点231に投影される。全周画像フレーム220の下辺222は、球体の底232に投影される。なお、切断円235から下方の底232までは、全周カメラでは撮影できない直下領域に相当する。球体230に投影された全周動画を球体230の中心233から平面234に投射すると、通信端末240に全周動画中の視線に応じた領域の動画がライブ再生される。ライブ再生された全周動画はユーザのタッチ251~254のスライドに従って、映像241~244のように全周動画の方向が回転する。図2Aでは視点を球体230の中心233として説明したが、視点の位置を変えることにより、ライブ再生する領域やサイズを変更して、ズームインやズームアウトができる。また、ズームインやズームアウトは、視点の位置を変えなくても、映像画像の拡大や縮小によっても達成される。
なお、図2Aには、ステレオ音響については図示されていない。例えは、全周カメラと同じ位置にステレオマイクを配置して、全周動画と同期してステレオ音響を集音して、全周動画のライブ配信および再生に同期してステレオ音響を出力する。かかる、全周動画とステレオ音響とを同期させてライブ再生すれば、野外でのお祭りなどのイベント、あるいは屋内でのライブコンサートや展示会場などで、視線および視点を変えることで音声も変化するのでより臨場感にあふれたライブ動画を視聴できる。すなわち、全周動画の視聴方向やズームイン/ズームアウトに対応して変化するステレオ音響(立体音声)を聴くことができる。また、ライブ音声とは異なる美術館の絵画の解説などのステレオ音響を、全周動画のライブ再生と同期させることもできる。また、全周画像フレームを投影する立体は球体に限定されず、楕円体や円筒、多面体などであってもよい。
(動作の概要)
図2Bは、本実施形態に係る全周動画ライブ配信システム200の動作の概要を示す図である。
図2Bは、本実施形態に係る全周動画ライブ配信システム200の動作の概要を示す図である。
通信端末240において、画面261では、サービスメニューからユーザが所望するサービスを選択する。本例では、「全周動画ライブ視聴」のサービスを選択する。画面262には、「全周動画ライブ視聴」のホームページが立ち上がり、複数の全周動画ライブの番組が表示されている。本例では、複数の全周動画ライブの番組から野球中継が選択されている。通信端末240は、データ配信サーバから野球中継のHTMLタグに基づいて、ライブ映像配信サーバから全周動画ライブを得るURL(Uniform Resource Locator)を取得して、ライブ映像配信サーバ上の野球中継の全周動画ライブにアクセスする。通信端末240には、全周ライブ開始の画面263が表示される。全周ライブ開始の指示に応じて、全周ライブの動画と全周カメラの位置264が表示される。なお、図2Bの動作の概要は、一例であってこれに限定されない。
(システム構成)
図3Aは、本実施形態に係る全周動画ライブ配信システム200の構成を示すブロック図である。
図3Aは、本実施形態に係る全周動画ライブ配信システム200の構成を示すブロック図である。
全周動画ライブ配信システム200は、全周カメラ310と、オプションとしてのステレオマイク370と、撮影配信用パーソナルコンピュータ(以降、PC)320と、ライブ映像配信サーバ330と、通信端末341~343と、を含む。また、全周動画ライブ配信システム200は、データ配信サーバ350を含む。なお、ライブ映像配信サーバ330やデータ配信サーバ350は、ネットワーク360を介して、撮影配信用PC320や通信端末341~343と通信接続する。
全周カメラ310は、前述のように6つの撮像センサにより全天動画を撮影する。レンズなどによる歪みや明暗などの調整は、全周カメラ310で行なわれて、各デジタル画像フレームを撮影配信用PC320に出力する。ステレオマイク370は、全周カメラ310で撮影する動画に同期した立体音声を集音する。なお、図3Aでは、ステレオマイク370の音声は1つのデータストリームに結合されて撮影配信用PC320に入力されているが、撮影配信用PC320において結合処理がされてもよい。また、音声が必要なければ、ステレオマイク370は接続しなくてもよい。
撮影配信用PC320では、まず、全周カメラ310からの6つの撮像センサの動画データに基づいて、各画像の境の整合性を取ってそれぞれ全周画像データをフレーム単位で生成する。次に、全周画像データに対して圧縮符号化を行なって、全周動画がライブ再生可能なFLVフォーマットのデータに変換される。同期するステレオ音響があれば、圧縮符号化を行なって、FLVフォーマットのデータに追加される。
次に、FLVフォーマットのデータは、RTMP(Real Time Messaging Protocol)に従って、ライブ映像配信サーバ330にアップロードされる。ライブ映像配信サーバ330においては、例えば、あらかじめHTML(Hyper Text Markup Language)タグでWebページに埋め込まれたものから、URLで参照できるように確保された格納位置に格納される。ライブ映像配信サーバ330は、必要であれば、各通信端末341~343で復号可能な符号化あるいは暗号化を行なう。
一方、全周動画のライブ再生を視聴する通信端末341~343からは、まず、データ配信サーバ(Webサーバ)350とHTTP(Hypertext Transfer Protocol)に従い全周動画のライブ再生の視聴サービスを提供するWebページを開く。そのWebページに埋め込まれた全周動画ライブ配信タグが指示されると、ライブ映像配信サーバ330の該当IPアドレスにアクセスする。ライブ映像配信サーバ330は、確保された格納位置に順次に格納される全周動画をライブ配信する。ただし、全周動画のライブ配信先が携帯端末342や343のスマートフォンやタブレットの場合は、配信規格をHLS(HTTP Live Streaming)に変換することにより配信する。一方、全周動画のライブ配信先が通信端末341のPCの場合は、RTMPのまま配信、あるいは配信規格をHLSやHDS(HTTP Dynamic Streaming)に変換することにより配信する。
(動作例)
図3Bは、本実施形態に係る全周動画ライブ配信システム200の動作例を示す図である。なお、図3Bは、図3AにおけるHTMLタグを埋め込む操作を可視的に図示したものである。
図3Bは、本実施形態に係る全周動画ライブ配信システム200の動作例を示す図である。なお、図3Bは、図3AにおけるHTMLタグを埋め込む操作を可視的に図示したものである。
図3Bにおいて、データ変換部とフラッシュメディアサーバとが、図3Aのライブ映像配信サーバ330に相当する。ホームページ371、372にライブコンテンツごとあるいはイベントごとのHTMLタグを貼り付け、ここからライブ映像配信サーバ330にアクセスして、全周カメラからのライブデータをアクセスし、通信端末340で全周動画のライブ再生を視聴する。
なお、本実施形態においては、ホームページ371、372にライブコンテンツごとあるいはイベントごとのHTMLタグを貼り付けて、全周動画をライブ再生する例を示したが、ライブ映像配信サーバ330に通信端末341~343から直接アクセスして、全周動画のライブ再生を視聴することも可能である。
(動作手順)
図3Cは、本実施形態に係る全周動画ライブ配信システム200の動作手順を示すシーケンス図である。なお、図3Cにおいては、ユーザPC341と携帯端末342、343とのステップを同じボックスで図示した部分があるが、煩雑さを避けるためであって別のステップである。また、図3Cにおいては、ユーザ認証などの処理は省略している。ユーザ認証を行なうためには、他に認証サーバを設けてユーザあるいは通信端末を登録しておき、認証を行なう。
図3Cは、本実施形態に係る全周動画ライブ配信システム200の動作手順を示すシーケンス図である。なお、図3Cにおいては、ユーザPC341と携帯端末342、343とのステップを同じボックスで図示した部分があるが、煩雑さを避けるためであって別のステップである。また、図3Cにおいては、ユーザ認証などの処理は省略している。ユーザ認証を行なうためには、他に認証サーバを設けてユーザあるいは通信端末を登録しておき、認証を行なう。
撮影配信用PC320は、ステップS311において、カメラあるいはマイクの調整制御を行なう。全周カメラ310は、ステップS301において、撮影配信用PC320の制御に従って、カメラの調整を行なう。そして、全周カメラ310は、ステップS303において、6つの撮影センサにより全周映像を取得して、撮像センサの位置IDを付加して撮影配信用PC320に送信する。なお、ステレオマイク370においても、ステップS305において、マイクが調整され、ステップS307において、立体音声を取得して、マイクIDを付加して撮影配信用PC320に送信する。
撮影配信用PC320は、ステップS313において、全周カメラ310から6つの撮影センサが撮影した映像データを取得する。そして、撮影配信用PC320は、ステップS315において、取得した映像データを結合して全周画像フレームを生成する。次に、撮影配信用PC320は、ステップS317において、ライブ配信するための全周動画データを作成する。この時に、例えば、H.264による動画圧縮を行なう。なお、動画圧縮はH.264に限定されない。しかしながら、多くの通信端末のプレーヤで伸張可能な圧縮方式が望ましい。動画圧縮方式としては、H.264の外に、H.263、WMV、DivX、VP6、VP7、VP8、VP9、Theora、WebM、MPEG1、MPEG2、MPEG4、DV等が使用可能である。
一方、音声について、撮影配信用PC320は、ステップS319において、ステレオマイクから音声データを取得する。次に、撮影配信用PC320は、ステップS321において、ライブ配信するための音声データを作成する。この時に、例えば、MP3による音声圧縮を行なう。なお、音声圧縮はMP3に限定されない。しかしながら、多くの通信端末のプレーヤで伸張可能な圧縮方式が望ましい。音声圧縮方式としては、MP3の外に、AAC、HE-AAC、Vorbis、FLAC、Nellymoser、Speex、Apple Lossless、非圧縮のWAV等が使用可能である。
撮影配信用PC320は、ステップS323において、所望の圧縮処理をされた全周動画データと音声データとを同期再生可能に、ライブ映像配信用データを生成する。本例では、前述のFLVフォーマットのデータを生成する。生成したFLVフォーマットのデータは、撮影配信用PC320により、ステップS325において、本例では、RTMPに従ったライブ映像配信メッセージによりライブ映像配信サーバ330にアップロードされる。
一方、ライブ映像配信サーバ330は、ステップS331において、ライブ映像配信URLを決定してライブ映像配信エリアを確保する。データ配信サーバ350では、ステップS351において、Webページに全周動画ライブ配信用タグが貼り付けられる。そして、通信端末341~343から、ステップS361またはS381において、Webページから全周動画ライブ視聴の指示があるとする。データ配信サーバ350は、ステップS353において、通信端末341~343からの視聴指示を取得して、ステップS355において、ライブ映像配信元を通信端末341~343に通知する。この時に、全周動画をライブ再生するための全周動画ライブ再生プレーヤが、通信端末341~343に送信される。すなわち、実際はプレーヤURLを、全周動画ライブ配信用タグで指定し、ライブ映像配信URLはプレーヤ自体に埋め込まれたり、プレーヤが別途取得したり、あるいは、全周動画ライブ配信用タグに含ませることもできる。
通信端末341~343は、ステップS363またはS383において、ライブ映像配信元を取得すると共に、全周動画ライブ再生プレーヤを受信して、ステップS365またはS385において、全周動画ライブ再生プレーヤを起動させる。そして、通信端末341~343は、ステップS367またはS387において、通信端末ごとに対応したURLを指定することで全周動画のライブ再生の視聴をライブ映像配信サーバ330に要求する。
RTMPに従った撮影配信用PC320からの全周ライブ映像配信用データのアップロードがあると、ライブ映像配信サーバ330は、ステップS335において、全周ライブ映像配信用データを取得してライブ動画記憶領域に一時保持する。そして、ライブ映像配信サーバ330は、ステップS337において、全周ライブ動画配信用メッセージをスマートフォンやタブレット用のフォーマット(例えば、HLS)に変換して一時保持する。さらに他のフォーマットが必要であれば、フォーマット変換して一時保持しておく。
全周ライブ映像の配信先が通信端末341のPCであれば、ライブ映像配信サーバ330は、ステップS339において、全周動画をRTMPに従って配信先の通信端末341にライブ配信する。この場合に、複数の配信先があればユニキャストにより同時に配信される。通信端末341は、ステップS369において、全周ライブ動画配信用メッセージを受信し、ステップS371において、全周動画および立体音声をライブ再生する。なお、PC向けには、RTMFP(Real Time Media Flow Protocol)プロトコルによるマルチキャストも可能である。
一方、全周ライブ映像の配信先が携帯端末342または343のスマートフォンやタブレットであれば、ライブ映像配信サーバ330は、ステップS341において、全周動画をHLSにより配信先の携帯端末342または343にライブ配信する。この場合に、複数の配信先があればユニキャストにより順次に配信される。携帯端末342または343は、ステップS389において、全周ライブ動画配信用メッセージを受信し、ステップS391において、全周動画および立体音声をライブ再生する。
上記例では、スマートフォン、タブレット向けの変換はライブ映像配信サーバ330にアップロードされた段階で行われる手順を説明したが、携帯端末342または343からアクセスされてから変換を行なうことも可能である。この場合には、再生が開始されるまでに余分に時間がかかるが、スマートフォン、タブレットからのアクセスがない場合に処理負荷を押さえることができる。また、ライブ映像配信サーバ330から通信端末341~343へのライブ映像配信メッセージとしては、一般的に、RTMP、HLS、HDS、RTSP、MMS、Microsoft Smooth Streaming、MPEG-DASHのプロトコルが用いられることが多い。しかし、これらとは異なるプロトコルや、独自開発のプロトコルを利用することも可能である。
《全周カメラの機能構成》
図4Aは、本実施形態に係る全周カメラ310の機能構成を示すブロック図である。
図4Aは、本実施形態に係る全周カメラ310の機能構成を示すブロック図である。
全周カメラ310は、複数の撮像センサ411と、A/D変換およびゲイン調整部412と、画素処理部413と、画像処理部414と、オプションとしての転送用圧縮部415と、を有する。
複数の撮像センサ411は、本例では前述の6つの撮像センサである。A/D変換およびゲイン調整部412は、複数の撮像センサ411から出力される映像のアナログ信号をデジタルデータに変換すると共に、アナログ信号が飽和しないように適切なゲインに調整する。画素処理部413は、画素単位の調整を行なう。画像処理部414は、画像全体の明暗などの調整を行なう。オプションとしての転送用圧縮部415は、全周カメラ310から出力される複数の撮像センサ411からの映像データを実時間で高速に転送するための圧縮部である。全周カメラ310の構成部品や構造により歪みを補償された映像データは、例えば、IEEE-1394bケーブルやUSBケーブルなどにより外部に出力される。本実施形態においては、撮影配信用PC320に接続されて映像データが送信される。
図4Bは、本実施形態に係る全周カメラ310の構造例を説明する図である。
図4Bの全周カメラ外観420は、全周カメラ310の具体的な構造を示している。また、図4Bの撮像センサの撮像位置430は、全周カメラ310の6つの撮像センサの位置関係と、それらが撮像する方向とを示したものである。
(データ構成)
図5は、本実施形態に係る全周カメラ310のデータ構成500を示す図である。図5のデータ構成500は、全周カメラ310から外部に出力される撮像データの構成である。なお、データ構成は、図5に限定されない。
図5は、本実施形態に係る全周カメラ310のデータ構成500を示す図である。図5のデータ構成500は、全周カメラ310から外部に出力される撮像データの構成である。なお、データ構成は、図5に限定されない。
データ構成500は、どの撮像センサで撮影した撮像データかを識別するセンサ番号501と、撮像した時刻を示すタイムスタンプ502と、映像データ503と、を有し、全周カメラ310に記憶される(図2Aの210~215参照)。なお、映像データ503は、圧縮されたデータであってもよい。
《撮影配信用PCの機能構成》
図6は、本実施形態に係る撮影配信用PC320の機能構成を示すブロック図である。なお、撮影配信用PC320は、本実施形態の撮影配信のためのソフトウェアを搭載する一般的なPCである。
図6は、本実施形態に係る撮影配信用PC320の機能構成を示すブロック図である。なお、撮影配信用PC320は、本実施形態の撮影配信のためのソフトウェアを搭載する一般的なPCである。
撮影配信用PC320は、通信制御部601と、入力インタフェース602とを備える。また、撮影配信用PC320は、全周映像データ取得部603と、全周画像生成部604と、全周動画圧縮部605と、立体音声データ取得部606と、立体音声圧縮部607、とを備える。また、撮影配信用PC320は、ライブ映像配信用データ生成部608と、ライブ映像配信用メッセージ送信部609と、表示部610と、操作部611と、を備える。
通信制御部601は、ネットワークを介してライブ映像配信サーバ330および外部通信機器と通信する。入力インタフェース602は、全周カメラ310からの映像データおよび/またはステレオマイクからの音声データを入力制御する。
全周映像データ取得部603は、全周カメラ310から全周を撮像した映像データを取得する。全周画像生成部604は、全周映像データ取得部603が取得した6つの映像データの境界領域の歪みを補償し、お互いに調整して、1フレームごとの全周画像を生成する(図2Aの220参照)。そして、全周動画圧縮部605は、全周画像生成部604で生成された1フレームごとの全周画像からなる全周ライブ動画データを配信して全周動画がライブ再生できる形式の、全周画像圧縮データを生成する。この場合に、全周ライブ動画データは所定長単位に所望方式で圧縮符号化される。本例では、動画圧縮方式としてH.264を使用しているが、これに限定されない。他の使用可能な動画圧縮方式については、前述した。
立体音声データ取得部606は、ステレオマイクからの立体音声データを取得する。そして、立体音声圧縮部607は、立体音声データ取得部606が取得した立体音声データを配信してステレオ音響が再生できる形式の、立体音声圧縮データを生成する。この場合に、立体音声データは所定長単位に所望方式で圧縮符号化される。本例では、音声圧縮方式としてMP3を使用しているが、これに限定されない。他の使用可能な音声圧縮方式については、前述した。かかる立体音声データ取得部606と立体音声圧縮部607とが、立体音声データ生成部として機能する。
ライブ映像配信用データ生成部608は、全周動画圧縮部605が生成した全周動画圧縮データと、立体音声圧縮部607が生成した立体音声圧縮データとを、ライブ配信するためのライブ配信用データを生成する。この時に、全周動画と立体音声とが同期再生できるようにする。本例では、FLVフォーマットを使用するが、これに限定されない。例えば、Windows(登録商標) Media、Real Media(登録商標)、Quick Time(登録商標)などであってもよい。ライブ映像配信用メッセージ送信部609は、ライブ映像配信用データ生成部608が生成したライブ映像配信用データを、ライブ映像配信用メッセージによりライブ映像配信サーバ330にアップロードする。
表示部610は、撮影配信用PC320の動作状況を表示する。また、操作部611は、上記各記憶構成部の起動や制御などを指示する。
(データ構成)
図7Aは、本実施形態に係る撮影配信用PC320の映像データ構成710を示す図である。図7Aの映像データ構成710は、全周カメラ310から取得した映像データから全周画像データを生成する記憶構成である。
図7Aは、本実施形態に係る撮影配信用PC320の映像データ構成710を示す図である。図7Aの映像データ構成710は、全周カメラ310から取得した映像データから全周画像データを生成する記憶構成である。
映像データ構成710においては、映像センサのセンサ番号711に対応付けて、撮影時刻のタイムスタンプ712と、全周カメラ310から取得した映像データ713と、全周画像に結合するために処理された全周処理データ714と、を記憶する。そして、6つの撮像センサの映像データを結合した全周画像データ715を記憶する(図2Aの220参照)。
図7Bは、本実施形態に係る撮影配信用PC320の音声データ構成720を示す図である。図7Bの音声データ構成720は、ステレオマイクから取得した音声データを記憶する構成である。
音声データ構成720においては、マイク番号721に対応付けて、集音時刻のタイムスタンプ722と、音声データ723とを記憶する。
図7Cは、本実施形態に係る撮影配信用PC320のライブ配信用データ形式730およびライブ映像配信用データ740を示す図である。ライブ配信用データ形式730は、生成するライブ配信用データ形式を指定するテーブルである。ライブ映像配信用データ740は、ライブ配信用データ形式730に従って生成されたデータである。
ライブ配信用データ形式730は、ライブ動画配信フォーマット731に対応して、使用する動画圧縮方式732と音声圧縮方式733とを記憶する。ライブ映像配信用データ740は、ライブ配信用データ形式730に従って圧縮生成された全周動画圧縮データ741と立体音声圧縮データ742とを同期再生可能に含むライブ動画配信用データを記憶する。本例では、ライブ動画配信用メッセージ形式としてFLVを使用する。
《ライブ映像配信サーバの機能構成》
図8は、本実施形態に係るライブ映像配信サーバ330の機能構成を示すブロック図である。
図8は、本実施形態に係るライブ映像配信サーバ330の機能構成を示すブロック図である。
ライブ映像配信サーバ330は、通信制御部801と、ライブ映像配信メッセージ受信部802と、配信データフォーマット変換部803と、ライブ映像配信用データ格納部804と、を備える。また、ライブ映像配信サーバ330は、ライブ映像配信要求受信部805と、配信データ取得部806と、ライブ映像配信メッセージ送信部807と、を備える。
通信制御部801は、ネットワークを介して、撮影配信用PC320からアップロードされたライブ配信用メッセージの受信、および、通信端末341~343に対するライブ配信用メッセージの送信を制御する。ライブ映像配信メッセージ受信部802は、撮影配信用PC320からアップロードされたライブ配信用メッセージを受信する。配信データフォーマット変換部803は、ライブ配信用メッセージを、配信先がスマートフォン・タブレットの場合のためにHLSフォーマットに変換する。さらに他のフォーマットが必要であれば、フォーマット変換する。ライブ映像配信用データ格納部804は、ライブ配信用データを、フォーマット変換されないものと変換されたものとを識別可能に一時保持する。それぞれのライブ配信用データは、配信元および配信要求先からのURLに対応付けられる。なお、ライブ映像配信用データ格納部804は、一時記憶のメモリ内であってもディスクなどの記憶媒体であってもよい。
ライブ映像配信要求受信部805は、通信端末からのライブ配信用メッセージの要求を受信して、配信データ取得部806の取得領域とライブ映像配信メッセージ送信部807の送信先とを通知する。配信データ取得部806は、通信端末からのURLに対応してライブ映像配信用データ格納部804の格納領域からライブ配信用データを取得する。ライブ映像配信メッセージ送信部807は、ライブ配信用データをライブ映像配信メッセージで要求した通信端末にユニキャストで送信する。なお、配信先がPCである場合に、マルチキャストも可能であることは前述した。
(URLおよびデータ変換)
図9は、本実施形態に係るライブ映像配信サーバ330へのURLの構成900およびデータ変換910を示す図である。
図9は、本実施形態に係るライブ映像配信サーバ330へのURLの構成900およびデータ変換910を示す図である。
本実施形態のURLの構成900は、基本的に、ライブ映像配信サーバ330のIPアドレスと、配信元(あるいはイベント)識別子と、ライブ動画記憶領域識別子と、データフォーマット識別子と、を有している。
さらに具体的に、本実施形態のライブ映像配信サーバ330におけるデータ変換910を説明する。なお、ライブ映像配信サーバ330におけるデータ変換は本例に限定されない。なお、ライブ映像配信サーバ330のサーバ名またはIPアドレスを192.0.2.1として説明する。また、複数の全周動画ライブの配信元あるいはイベントを“eventX”で識別し、元の全周動画ライブデータを“live”、変換により派生した全周動画ライブデータを“liveX”で識別し、RTMP形式を“stream”、HLS形式を“stream.m3u8”で識別する。
<配信元の認証を行い、受信したライブ動画データをバッファに格納する手順>
(1)撮影配信用PC320からライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live/stream”に対して、ライブ動画データを送信する。
(2)ライブ映像配信サーバ330は、受信したライブ動画データが正規の配信元からのものであることを確認し、バッファ領域に格納する。
(1)撮影配信用PC320からライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live/stream”に対して、ライブ動画データを送信する。
(2)ライブ映像配信サーバ330は、受信したライブ動画データが正規の配信元からのものであることを確認し、バッファ領域に格納する。
<各端末で再生可能な形式にバッファのライブ動画データを変換する手順>
(3)ライブ映像配信サーバ330内にて、“rtmp://192.0.2.1/event1/live/stream”からライブ動画データを読み込み、ライブ映像配信サーバ330のURL“rtmp://192.0.2.1/event1/live1/stream”に再入力する。
(4)ライブ映像配信サーバ330内にて“rtmp://192.0.2.1/event1/live/stream”からライブ動画データを読み込み、コード変換を行って動画解像度を縮小し、ライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live2/stream”に再入力する。
(5)上記(3)(4)に対し、ライブ映像配信サーバ330は、受信したライブ動画データが正規の配信元(=ライブ映像配信サーバ330自身)からのものであることを確認し、バッファ領域に格納する。
(6)上記(3)(4)に対し、ライブ映像配信サーバ330は、バッファ領域のライブ動画データからHLS形式のファイル(連番ファイル)を順次作成し、HDD上の一時領域に保存する。この一時領域には、URL“http://192.0.2.1/event1/live1/stream.m3u8”、または、“http://192.0.2.1/event1/live2/stream.m3u8”等でアクセス可能である。
(3)ライブ映像配信サーバ330内にて、“rtmp://192.0.2.1/event1/live/stream”からライブ動画データを読み込み、ライブ映像配信サーバ330のURL“rtmp://192.0.2.1/event1/live1/stream”に再入力する。
(4)ライブ映像配信サーバ330内にて“rtmp://192.0.2.1/event1/live/stream”からライブ動画データを読み込み、コード変換を行って動画解像度を縮小し、ライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live2/stream”に再入力する。
(5)上記(3)(4)に対し、ライブ映像配信サーバ330は、受信したライブ動画データが正規の配信元(=ライブ映像配信サーバ330自身)からのものであることを確認し、バッファ領域に格納する。
(6)上記(3)(4)に対し、ライブ映像配信サーバ330は、バッファ領域のライブ動画データからHLS形式のファイル(連番ファイル)を順次作成し、HDD上の一時領域に保存する。この一時領域には、URL“http://192.0.2.1/event1/live1/stream.m3u8”、または、“http://192.0.2.1/event1/live2/stream.m3u8”等でアクセス可能である。
<通信端末からの配信要求に対してバッファのライブ動画データをRTMP形式で配信する手順>
(7)RTMP形式にてライブ動画データを受信する通信端末は、ライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live1/stream”、または、“rtmp://192.0.2.1/event1/live2/stream”にアクセスする。
(8)ライブ映像配信サーバ330は、通信端末に対して、上記(5)によるバッファ領域のライブ動画データを配信する。
(7)RTMP形式にてライブ動画データを受信する通信端末は、ライブ映像配信サーバ330上のURL“rtmp://192.0.2.1/event1/live1/stream”、または、“rtmp://192.0.2.1/event1/live2/stream”にアクセスする。
(8)ライブ映像配信サーバ330は、通信端末に対して、上記(5)によるバッファ領域のライブ動画データを配信する。
<通信端末からの配信要求に対してバッファのライブ動画データをHLS形式で配信する手順>
(9)HLS形式にてライブ動画データを受信する通信端末は、データ配信サーバ350にアクセスし、“master.m3u8”ファイルを取得する。このファイルには、ライブ映像配信サーバ330上のHLS向け一時領域のファイルを指し示すURLが記載されている。
(10)HLS形式にてデータを受信する通信端末は、通常のHLS形式の動画再生手順に従い、取得した“master.m3u8”ファイルを解析し、ライブ映像配信サーバ330上のHLS向け一時領域に、URL“http://192.0.2.1/event1/live1/stream.m3u8”、または、“http://192.0.2.1/event1/live2/stream.m3u8”のファイルにアクセスする。
(11)ライブ映像配信サーバ330は、通信端末からの要求URLに応じて、一時領域のファイルを配信する。
(9)HLS形式にてライブ動画データを受信する通信端末は、データ配信サーバ350にアクセスし、“master.m3u8”ファイルを取得する。このファイルには、ライブ映像配信サーバ330上のHLS向け一時領域のファイルを指し示すURLが記載されている。
(10)HLS形式にてデータを受信する通信端末は、通常のHLS形式の動画再生手順に従い、取得した“master.m3u8”ファイルを解析し、ライブ映像配信サーバ330上のHLS向け一時領域に、URL“http://192.0.2.1/event1/live1/stream.m3u8”、または、“http://192.0.2.1/event1/live2/stream.m3u8”のファイルにアクセスする。
(11)ライブ映像配信サーバ330は、通信端末からの要求URLに応じて、一時領域のファイルを配信する。
<配信後の手順>
(12)ライブ映像配信サーバ330は、一定時間経過したライブ動画データをバッファ領域から削除する。
(13)ライブ映像配信サーバ330は、一定時間経過したHLS形式のファイルを一時領域から削除する。
(12)ライブ映像配信サーバ330は、一定時間経過したライブ動画データをバッファ領域から削除する。
(13)ライブ映像配信サーバ330は、一定時間経過したHLS形式のファイルを一時領域から削除する。
なお、動画解像度やコーデック等の変換を行なわず、単にRTMP形式をHLS形式に変換するだけであれば、上記(3)~(5)の処理は不要である。この場合、上記(6)の処理は、上記(2)に対するものとなる。ここで、複数の全周ライブ動画を、ライブ映像配信サーバ330を介して配信する場合は、各URLの“eventX”の部分を変更することでそれぞれを区別することができる。
《通信端末の機能構成》
図10は、本実施形態に係る通信端末341~343の機能構成を示すブロック図である。以下、通信端末341~343を総称して、通信端末340として説明する。なお、通信端末340は、一般的なPCやスマートフォン・タブレットである。
図10は、本実施形態に係る通信端末341~343の機能構成を示すブロック図である。以下、通信端末341~343を総称して、通信端末340として説明する。なお、通信端末340は、一般的なPCやスマートフォン・タブレットである。
通信端末340は、通信制御部1001と、全周動画ライブ再生プレーヤ1010と、表示部1021と、操作部1022と、音声出力部1023と、を備える。
通信制御部1001は、ネットワークを介して、ライブ映像配信サーバ330やデータ配信サーバ(Webサーバ)350などとの通信を制御する。全周動画ライブ再生プレーヤ1010は、配信された画像あるいは動画メッセージから画像あるいは動画を再生するアプリケーションである。本実施形態においては、全周動画をライブ再生するアプリケーションである。全周動画ライブ再生プレーヤ1010は、全周動画メッセージ受信部1011と、全周動画展開部1012と、表示範囲制御部1013と、表示方向指示受付部1014と、立体音声制御部1015と、を有する。
全周動画データ受信のための全周動画メッセージ受信部1011は、ライブ映像配信サーバ330から配信された全周動画メッセージを受信する。全周動画展開部1012は、配信された全周動画メッセージの全周動画データから全周動画をライブ展開する。表示範囲制御部1013は、全周動画展開部1012がライブ展開した全周動画から指定を受けた方向の動画を表示するように制御する。表示方向指示受付部1014は、ユーザによる全周動画の表示方向の指示を受け付ける。立体音声制御部1015は、全周動画の表示方向に応じたステレオ音響を出力するように制御する。なお、図示しないが、表示範囲の指示、すなわちズームインやズームアウトの指示も、表示方向指示受付部1014または同様の機能構成部が受け付けて、受け付けた指示範囲の動画表示と、指示範囲に対応するステレオ音響とを出力するように制御する。
表示部1021は、全周動画のライブ表示を含むデータを表示する。操作部1022は、各機能構成部の駆動あるいは制御を指示する。音声出力部1023は、ステレオ音響を出力する。
(全周ライブ映像の展開)
図11Aは、本実施形態に係る通信端末340における全周ライブ映像の展開を説明する図である。
図11Aは、本実施形態に係る通信端末340における全周ライブ映像の展開を説明する図である。
図11Aにおいて、球体1100には、配信された全周動画データが含む全周動画の、各全周画像フレームを、球体面を覆うように順次に貼り付ける。そして、内部の視点1101から球体1100を覆った全周画像フレームを、通信端末の画面を示す表示平面に投影した画像1102、1103および1105が、通信端末の表示画面に表示される。視点1101からの視線方向が球体1100の軸を中心に回転すれば、画像1102も視線方向の回転につれて回転する。また、視点1101が上下に移動すれば、画像1102の範囲も視点1101の上下に応じて上下する。また、視線方向が上向き/下向きになると、見上げた画面/見下ろした画面となる。また、視点1101が球体の中心から視点1104に離れると、球体1100に近づいた方向ではズームインとなり、球体1100から離れた方向ではズームアウトとなる。なお、ズームインやズームアウトは、視点1104の移動に限らず、画面に表示する表示画像の拡大や縮小によっても実現できる。
このように、視点位置と視線方向とを変化させることで、全周動画のライブ再生を見渡すことができて、臨場感にあふれる全周動画のライブ視聴が可能となる。なお、立体音声との再生方向および再生範囲(ズームイン/ズームアウト)の同期は、図11Aの視線ベクトルと球体1100の交点と、視点から交点までの距離とに基づいて実現できる。すなわち、ズームインやズームアウトに対応する立体音声は、視点から交点までの距離に対応する強弱によって実現できる。さらに、再生範囲という観点から同期させるためには、表示範囲外の音声を絞り、表示範囲内の中心部分の音声をより強調することにより、臨場感を高めることができる。また、ライブ映像とは異なる人工的な映像を合成するには、他の球体を設けてその球体に画像を貼り付ければよい。例えば、ライブ映像の上に人工画像を表示する場合は、球体1100の内部に他の球体を設ければよい。一方、人工背景を付加する場合には、球体1100の外に他の球体を設ければよい。3次元映像においては、視点から球体への距離の違いを奥行きとして表現することができる。なお、全周画像フレームを投影する立体が楕円や円筒などである場合にも、同様の処理が可能である。
(データ構成)
図11Bは、本実施形態に係る通信端末340の全周動画のライブ再生用情報1110、映像データ構成1120および音声データ構成1130を示す図である。図11Bのライブ再生用情報1110は、ホームページから全周動画ライブ再生を実現するための情報である。また、図11Bの映像データ構成1120は、全周ライブ映像の記憶構成である。また、図11Bの音声データ構成1130は、立体音声の記憶構造である。
図11Bは、本実施形態に係る通信端末340の全周動画のライブ再生用情報1110、映像データ構成1120および音声データ構成1130を示す図である。図11Bのライブ再生用情報1110は、ホームページから全周動画ライブ再生を実現するための情報である。また、図11Bの映像データ構成1120は、全周ライブ映像の記憶構成である。また、図11Bの音声データ構成1130は、立体音声の記憶構造である。
ライブ再生用情報1110は、ホームページに貼り付けられたHTMLタグ1111と、HTMLタグ1111に基づいてデータ配信サーバ350から取得したライブ動画データにアクセスするためのURL1112と、を記憶する。ライブ再生用情報1110は、さらに、通信端末340において全周動画ライブ再生するために使用する全周動画ライブ再生プレーヤ1113、を記憶する。映像データ構成1120は、図11Aの球体1100に貼り付けられた全周ライブ映像1121から、ユーザ指示方向(視線方向)1122に対応して選択された、ライブ表示データ1123を記憶する。音声データ構成1130は、配信されたステレオライブ音声1131から、ユーザ指示方向(視線方向)1122に対応して混合比率を変えた、ライブ音声データ1133を記憶する。
なお、詳細な説明は省略するが、ライブ映像表示とライブ音声出力との同期は、タイムスタンプを使用すれば実現できる。また、ズームインやズームアウトによる表示範囲のユーザ指示がある場合は、ユーザ指示範囲(ズームイン/ズームアウト)が記憶され、ライブ表示データ1123やライブ音声データ1133にはユーザ指示方向およびユーザ指示範囲に対応したデータが記憶される。
《撮影配信用PCのハードウェア構成》
図12は、本実施形態に係る撮影配信用PC320のハードウェア構成を示すブロック図である。
図12は、本実施形態に係る撮影配信用PC320のハードウェア構成を示すブロック図である。
図12で、CPU1210は演算制御用のプロセッサであり、プログラムを実行することで図6の撮影配信用PC320の機能構成部を実現する。ROM(Read Only Memory)1220は、初期データおよびプログラムなどの固定データを記憶する。また、通信制御部601は、ネットワークを介して他の通信端末や各サーバと通信する。なお、CPU1210は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPUを含んでもよい。また、通信制御部601は、CPU1210とは独立したCPUを有して、RAM1240の領域に送受信データを書き込みあるいは読み出しするのが望ましい。また、RAM1240とストレージ1250との間でデータを転送するDMACを設けるのが望ましい(図示なし)。さらに、入出力インタフェース1260は、CPU1210とは独立したCPUを有して、RAM1240の領域に入出力データを書き込みあるいは読み出しするのが望ましい。したがって、CPU1210は、RAM1240にデータが受信あるいは転送されたことを認識してデータを処理する。また、CPU1210は、処理結果をRAM1240に準備し、後の送信あるいは転送は通信制御部601やDMAC、あるいは入出力インタフェース1260に任せる。
RAM1240は、CPU1210が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM1240には、本実施形態の実現に必要なデータを記憶する領域が確保されている。全周映像データ1241は、全周カメラ310から取得した6つの撮像センサからの映像データである。全周画像データ715は、全周映像データ1241から生成された1フレームの全周データである。全周動画圧縮データ741は、全周画像データ715をライブ再生が可能な所定の圧縮符号化した動画データである。立体音声データ1244は、複数のマイクから取得した音声データである。立体音声圧縮データ742は、立体音声データ1244をライブ再生が可能な所定の圧縮符号化した音声データである。ライブ映像配信用データ740は、全周動画圧縮データ741と立体音声圧縮データ742とを含み、ライブ配信可能なフォーマットの配信用データである。送受信メッセージ1247は、通信制御部601を介して送受信されるメッセージである。入出力データ1248は、入出力インタフェース1260を介して入出力されるデータである。
ストレージ1250には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。ライブ映像配信用データ格納部1251は、ライブ映像配信サーバ330にアップロードするためのライブ映像配信用データ740をそれぞれ識別可能に格納するデータベースである。ライブ映像アップロード先サーバ1252は、撮影配信用PC320がライブ映像配信用データ740をアップロードする先のライブ映像配信サーバ330のアドレスである。
ストレージ1250には、以下のプログラムが格納される。撮影配信用PC制御プログラム1253は、本撮影配信用PC320の全体を制御する制御プログラムである。全周映像データ取得モジュール1254は、全周カメラ310から全周映像データ1241を取得するモジュールである。全周画像データ生成モジュール1255は、取得した全周映像データ1241に基づいてフレーム単位の全周画像データを生成するモジュールである。全周動画圧縮モジュール1256は、全周画像データからなる全周動画を圧縮するモジュールである。立体音声圧縮モジュール1257は、ステレオマイクから取得した立体音声データ1244に基づいて立体音声圧縮データ742を生成するモジュールである。ライブ映像配信用データ生成モジュール1258は、全周動画圧縮データ741と立体音声圧縮データ742とを含む、ライブ配信可能なライブ映像配信用データ740を生成するモジュールである。ライブ映像配信用メッセージ送信モジュール1259は、生成されたライブ映像配信用データ740を、ライブ映像配信用メッセージでライブ映像アップロード先サーバ1252の情報を使用して、ライブ映像配信サーバ330にアップロードするモジュールである。
入出力インタフェース1260は、入出力機器との入出力データをインタフェースする。入出力インタフェース1260は、全周カメラ310と接続するためのIEEE-1394b用コネクタあるいはUSBコネクタや、ステレオマイクを接続可能なコネクタを有する。入出力インタフェース1260には、表示部610、操作部611、が接続される。また、GPS位置判定部1265や、例えば、全周カメラ310が移動して撮影配信用PC320も移動する場合に、移動速度を測定する速度センサ1266を接続してもよい。
なお、図12においては、全周カメラ310からの映像データやステレオマイクからの音声データ、あるいは、GPS位置情報や速度センサなどの情報を、入出力インタフェース1260を介して取得する構成を示した。しかし、これらの情報を、通信制御部601を介して通信により取得する構成であってもよい。また、図12のRAM1240やストレージ1250には、撮影配信用PC320が有する汎用の機能や他の実現可能な機能に関連するプログラムやデータは図示されていない。
《撮影配信用PCの処理手順》
図13は、本実施形態に係る撮影配信用PC320の処理手順を示すフローチャートである。このフローチャートは、図12のCPU1210がRAM1240を使用しながら実行し、図6の機能構成部を実現する。
図13は、本実施形態に係る撮影配信用PC320の処理手順を示すフローチャートである。このフローチャートは、図12のCPU1210がRAM1240を使用しながら実行し、図6の機能構成部を実現する。
撮影配信用PC320は、ステップS1311において、全周カメラ310からの映像データの受信か否かを判定する。映像データの受信であれば、撮影配信用PC320は、ステップS1313において、受信した6つの映像データから1フレームの全周画像データを生成する。そして、撮影配信用PC320は、ステップS1315において、全周画像データのライブ配信可能な長さをフレーム順に全周動画として保持する。全周カメラ310からの映像データの受信がなければ、撮影配信用PC320は、ステップS1321に進んで、音声入力の判定を行なう。
次に、撮影配信用PC320は、ステップS1321において、ステレオマイク370からの音声データの受信か否かを判定する。音声データの受信であれば、撮影配信用PC320は、ステップS1323において、受信した立体音声データをライブ配信可能な長さ保持する。なお、保持する長さは、全周画像データのフレーム長に対応する長さとするのが望ましい。音声データの受信がなければ、撮影配信用PC320は、ステップS1331に進む。
そして、撮影配信用PC320は、ステップS1331において、ライブ動画配信用メッセージの送信タイミングであるか否かを判定する。ライブ動画配信を可能とするライブ動画配信用メッセージの送信タイミングでなければ、撮影配信用PC320は、ステップS1311に戻って、映像データまたは音声データを受信して保持する。ライブ動画配信を可能とするライブ動画配信用メッセージの送信タイミングであれば、撮影配信用PC320は、ステップS1333において、保持した全周動画データから全周動画メッセージを生成する。次に、撮影配信用PC320は、ステップS1335において、保持した立体音声データから立体音声メッセージを生成する。次に、撮影配信用PC320は、ステップS1337において、全周動画メッセージと立体音声メッセージとを含む、ライブ動画配信用メッセージを生成する。そして、撮影配信用PC320は、ステップS1339において、生成したライブ動画配信用メッセージをライブ映像配信サーバ330にアップロードする。撮影配信用PC320は、ステップS1341において、ライブ配信の終了か否かを判定する。ライブ配信の終了でなければ、撮影配信用PC320は、ステップS1311に戻って、全周カメラデータの受信とライブ動画配信を繰り返す。
《ライブ映像配信サーバのハードウェア構成》
図14は、本実施形態に係るライブ映像配信サーバ330のハードウェア構成を示すブロック図である。
図14は、本実施形態に係るライブ映像配信サーバ330のハードウェア構成を示すブロック図である。
図14で、CPU1410は演算制御用のプロセッサであり、プログラムを実行することで図8のライブ映像配信サーバ330の機能構成部を実現する。ROM1420は、初期データおよびプログラムなどの固定データを記憶する。また、通信制御部801は、ネットワークを介して通信端末や撮影配信用PCと通信する。なお、CPU1410は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPUを含んでもよい。また、通信制御部801は、CPU1410とは独立したCPUを有して、RAM1440の領域に送受信データを書き込みあるいは読み出しするのが望ましい。また、RAM1440とストレージ1450との間でデータを転送するDMACを設けるのが望ましい(図示なし)。したがって、CPU1410は、RAM1440にデータが受信あるいは転送されたことを認識してデータを処理する。また、CPU1410は、処理結果をRAM1440に準備し、後の送信あるいは転送は通信制御部801やDMACに任せる。
RAM1440は、CPU1410が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM1440には、本実施形態の実現に必要なデータを記憶する領域が確保されている。PC向けライブ映像配信用データ1441は、撮影配信用PC320からアップロードされて、PC向けに配信されるデータである。携帯端末向けライブ映像配信用データ1442は、撮影配信用PC320からアップロードされて、携帯端末向けに配信されるデータである。本実施形態においては、PC向けライブ映像配信用データ1441は、撮影配信用PC320からアップロードされたそのままであり、携帯端末向けライブ映像配信用データ1442は、HLSフォーマットに変換されたものである。URL(配信元/配信先)1443は、撮影配信用PC320である配信元からのURL、通信端末341~343である配信先からのURLを、ライブ映像配信用データ1441あるいは1442の格納位置と関連付ける情報である。送受信メッセージ1444は、通信制御部801を介して送受信されるメッセージである。
ストレージ1450には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。ライブ映像配信用データ格納部1451は、撮影配信用PC320からアップロードされたライブ映像配信用データをそれぞれURLでアクセス可能に格納する領域である。配信用データ変換アルゴリズム1452は、ライブ映像配信用データをHLSフォーマットに変換するアルゴリズムである。
ストレージ1450には、以下のプログラムが格納される。ライブ映像配信サーバ制御プログラム1455は、本ライブ映像配信サーバ330の全体を制御する制御プログラムである。配信用データ変換モジュール1456は、配信先がスマートフォンやタブレットなどの携帯端末の場合に、ライブ映像配信用データの圧縮符号化方式を変更し、HLSフォーマットに変換するモジュールである。ライブ映像配信モジュール1457は、ライブ映像配信用メッセージを配信先に配信するためのモジュールである。
なお、図14のRAM1440やストレージ1450には、ライブ映像配信サーバ330が有する汎用の機能や他の実現可能な機能に関連するプログラムやデータは図示されていない。
《ライブ映像配信サーバの処理手順》
図15は、本実施形態に係るライブ映像配信サーバ330の処理手順を示すフローチャートである。このフローチャートは、図14のCPU1410がRAM1440を使用しながら実行し、図8の機能構成部を実現する。
図15は、本実施形態に係るライブ映像配信サーバ330の処理手順を示すフローチャートである。このフローチャートは、図14のCPU1410がRAM1440を使用しながら実行し、図8の機能構成部を実現する。
ライブ映像配信サーバ330は、ステップS1511において、配信元の撮影配信用PC320からのライブ映像配信用データのアップロード要求か否かを判定する。配信元からのライブ映像配信用データのアップロード要求であれば、ライブ映像配信サーバ330は、ステップS1513において、ライブ映像配信用メッセージを取得する。そして、ライブ映像配信サーバ330は、ステップS1515において、URLに基づいてそのままのライブ映像配信用データをPC向けライブ映像配信用データとして保持する。次に、ライブ映像配信サーバ330は、ステップS1517において、他の機種に対応する異なるフォーマットのライブ映像配信用データを生成する。そして、URLに基づいて生成したライブ映像配信用データを携帯端末向けライブ映像配信用データとして保持する。
配信元の撮影配信用PC320からのライブ映像配信用メッセージの受信でない場合、ライブ映像配信サーバ330は、ステップS1521において、配信先の通信端末340からのライブ映像配信用メッセージの配信要求か否かを判定する。配信先の通信端末340からのライブ映像配信用メッセージの配信要求であれば、ライブ映像配信サーバ330は、ステップS1523において、URLからライブ映像配信用データの格納場所を取得する。ライブ映像配信サーバ330は、ステップS1525において、ライブ映像配信用データを読み出す。そして、ライブ映像配信サーバ330は、ステップS1527において、ライブ映像配信用メッセージを配信先にユニキャストで配信する。
《通信端末のハードウェア構成》
図16は、本実施形態に係る通信端末340のハードウェア構成を示すブロック図である。
図16は、本実施形態に係る通信端末340のハードウェア構成を示すブロック図である。
図16で、CPU1610は演算制御用のプロセッサであり、プログラムを実行することで図10の通信端末340の機能構成部を実現する。ROM1620は、初期データおよびプログラムなどの固定データを記憶する。また、通信制御部1001は、ネットワークを介して他の通信端末や各サーバと通信する。なお、CPU1610は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPUを含んでもよい。また、通信制御部1001は、CPU1610とは独立したCPUを有して、RAM1640の領域に送受信データを書き込みあるいは読み出しするのが望ましい。また、RAM1640とストレージ1650との間でデータを転送するDMACを設けるのが望ましい(図示なし)。さらに、入出力インタフェース1660は、CPU1610とは独立したCPUを有して、RAM1640の領域に入出力データを書き込みあるいは読み出しするのが望ましい。したがって、CPU1610は、RAM1640にデータが受信あるいは転送されたことを認識してデータを処理する。また、CPU1610は、処理結果をRAM1640に準備し、後の送信あるいは転送は通信制御部1001やDMAC、あるいは入出力インタフェース1660に任せる。
RAM1640は、CPU1610が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM1640には、本実施形態の実現に必要なデータを記憶する領域が確保されている。ライブ映像配信用データ1641は、ライブ映像配信サーバ330から配信されたデータである。再生した全周ライブ映像1121は、ライブ映像配信用データ1641から再生したライブ映像であり、図11Bの全周ライブ映像に相当する。再生したステレオライブ音声1131は、ライブ映像配信用データ1641から再生したライブ音声である。ユーザ指示方向1122は、操作部1022から指示されたユーザの全周動画の視聴方向である。指示方向のライブ表示データ1123は、再生した全周ライブ映像1121からユーザ指示方向1122に従い選択表示された表示データである。指示方向のライブ音声データ1133は、再生したステレオライブ音声1131からユーザ指示方向1122に従い混合変更された音声データである。送受信メッセージ1648は、通信制御部1001を介して送受信されるメッセージである。入出力データ1649は、入出力インタフェース1660を介して入出力されるデータである。なお、図示しないが、表示範囲(ズームイン/ズームアウト)の変化のために、RAM1640には、ユーザ指示範囲が記憶され、指示方向のライブ表示データ1123には指示方向および指示範囲のライブ表示データが記憶され、指示方向のライブ音声データ1133には指示方向および指示範囲のライブ音声データが記憶されることになる。
ストレージ1650には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。ユーザ認証データ1651は、本通信端末340から全周動画ライブ再生プレーヤを起動させるため、あるいは、ライブ映像自体へのアクセス可否にも利用されるユーザの認証データである。端末認証データ1652は、本通信端末340から全周動画ライブ再生プレーヤを起動させるための端末の認証データである。
ストレージ1650には、以下のプログラムが格納される。通信端末制御プログラム1653は、本通信端末340の全体を制御する制御プログラムである。全周動画ライブ再生プレーヤ1655は、ライブ映像配信サーバ330から配信された全周動画をライブ再生するためのアプリケーションである。全周動画ライブ再生プレーヤ1655は、配信用データ取得モジュール1656と、全周動画再生モジュール1657と、立体音声再生モジュール1658と、ユーザ指示制御モジュール1659と、を含む。配信用データ取得モジュール1656は、ライブ映像配信サーバ330から配信されたデータを取得するモジュールである。全周動画再生モジュール1657は、配信されたデータから全周動画をライブ再生するモジュールである。立体音声再生モジュール1658は、配信されたデータから、全周動画のライブ再生に同期して立体音声を再生するモジュールである。ユーザ指示制御モジュール1659は、ユーザの指示に応じて全周動画の表示方向および表示範囲(ズームイン/ズームアウト)を制御するモジュールである。
入出力インタフェース1660は、入出力機器との入出力データをインタフェースする。入出力インタフェース1660には、表示部1021、操作部1022、音声出力部1023が接続される。また、音声入力部1664や、GPS位置判定部1665が接続される。
なお、図16のRAM1640やストレージ1650には、通信端末340が有する汎用の機能や他の実現可能な機能に関連するプログラムやデータは図示されていない。
《通信端末の処理手順》
図17Aは、本実施形態に係る通信端末340の処理手順を示すフローチャートである。このフローチャートは、図16のCPU1610がRAM1640を使用しながら実行し、図10の機能構成部を実現する。
図17Aは、本実施形態に係る通信端末340の処理手順を示すフローチャートである。このフローチャートは、図16のCPU1610がRAM1640を使用しながら実行し、図10の機能構成部を実現する。
通信端末340は、ステップS1711において、ホームページのアクセスか否かを判定する。ホームページのアクセスであれば、通信端末340は、ステップS1713において、ブラウザを起動する。そして、通信端末340は、ステップS1715において、データ配信サーバ350と接続する。
ホームページのアクセスでない場合、通信端末340は、ステップS1721において、HTMLタグの取得であるか否かを判定する。本例においては、所望サイトのホームページに貼り付けられたHTMLタグをクリックしたものとするが、再生要求の操作は限定されない。
HTMLタグの取得であれば、通信端末340は、ステップS1723において、HTMLタグに対応するコンテンツを取得する。次に、通信端末340は、ステップS1725において、取得したコンテンツが全周ライブ動画コンテンツであるか否かを判定する。全周ライブ動画コンテンツであれば、通信端末340は、ステップS1727において、全周ライブ動画コンテンツを実時間再生するために適切なプレーヤの有無を判定する。適切なプレーヤを有する場合は、通信端末340は、ステップS1731に進んで、全周動画ライブ再生プレーヤを起動する。一方、適切なプレーヤを持たない場合は、通信端末340は、ステップS1729において、再生する全周ライブ動画コンテンツに対応する機能を持った全周動画ライブ再生プレーヤを取得する。なお、全周ライブ動画コンテンツとプレーヤとの対応は1つに限定されるのもではない。当該通信端末において、全周ライブ動画コンテンツの情報が最大限に使用可能なプレーヤが対応付けられるのが望ましい。ただし、上述のように、最適なプレーヤが端末内にインストールされているものである場合は、プレーヤを新たに取得する必要はない。また、使用するプレーヤをユーザに選択させてもよい。
そして、通信端末340は、ステップS1731において、取得した全周動画ライブ再生プレーヤを起動する。そして、通信端末340で起動した全周動画ライブ再生プレーヤは、HTMLタグに基づきライブ映像配信サーバ330およびデータ配信サーバ350から所望の全周ライブ動画コンテンツの配信を受けて、ライブ再生された全周動画からユーザの指示に対応する方向の動画を出力する。
ホームページのアクセスでなくHTMLタグの取得でなければ、あるいは、全周ライブ動画コンテンツでなければ、通信端末340は、ステップS1741において、他の処理を行なう。
(全周動画ライブ再生プレーヤの処理手順)
図17Bは、本実施形態に係る全周動画ライブ再生プレーヤ1010の処理S1731の詳細な手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ1010の処理手順として説明する。
図17Bは、本実施形態に係る全周動画ライブ再生プレーヤ1010の処理S1731の詳細な手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ1010の処理手順として説明する。
全周動画ライブ再生プレーヤ1010は、ステップS1741において、ライブ映像配信サーバ330から全周ライブ映像データを取得する。そして、全周動画ライブ再生プレーヤ1010は、ステップS1743において、取得した全周ライブ映像データ中の全周動画の各フレームの全周画像を、ユーザ視点を360度取り巻く球体上に展開する。次に、全周動画ライブ再生プレーヤ1010は、ステップS1745において、ユーザから指示された全周動画の表示方向を取得する。そして、全周動画ライブ再生プレーヤ1010は、ステップS1747において、球体上に展開された全周画像列のユーザから指示された表示方向のライブ映像を表示する。また、立体音声の同期出力があれば、全周動画ライブ再生プレーヤ1010は、ステップS1749において、ユーザから指示された表示方向のライブ映像に同期して、表示方向に向いた場合の立体音声に調整して出力する。なお、表示範囲(ズームイン/ズームアウト)の指示がある場合、全周動画ライブ再生プレーヤ1010は、ステップS1745において、さらに、ユーザから指示された全周動画の表示範囲を取得し、ステップS1747において、指示された表示方向および指示範囲のライブ映像を表示し、ステップS1749において、表示されたライブ映像に同期して、表示方向および表示範囲に対応した立体音声に調整して出力することになる。
全周動画ライブ再生プレーヤ1010は、ステップS1751において、ライブ終了(プレーヤ停止)か否かを判定する。ライブ終了でなければ、全周動画ライブ再生プレーヤ1010は、ステップS1741に戻って、全周動画のライブ再生を繰り返す。
本実施形態によれば、全周カメラからの全周動画をライブ配信可能に構成し、ユーザの視線方向指示に応じて表示方向を変更することにより、ユーザが全周動画を視線方向に応じてライブで視聴することにより、臨場感にあふれた映像視聴ができる。
[第3実施形態]
次に、本発明の第3実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態と比べると、全周カメラと撮影配信用PCとが移動しながら全周動画をライブ配信する点で異なる。なお、本実施形態では、例えば、マラソン競技でランナーを追いかける伴走車に、全周カメラを設置して撮影配信用PCから配信する例を説明する。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に、本発明の第3実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態と比べると、全周カメラと撮影配信用PCとが移動しながら全周動画をライブ配信する点で異なる。なお、本実施形態では、例えば、マラソン競技でランナーを追いかける伴走車に、全周カメラを設置して撮影配信用PCから配信する例を説明する。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
《全周動画ライブ配信システム》
図18は、本実施形態に係る全周動画ライブ配信システム1800の処理の概要を示す図である。なお、図18において、図3Aまたは図10と同様な構成要素には同じ参照番号を付して、説明は省略する。
図18は、本実施形態に係る全周動画ライブ配信システム1800の処理の概要を示す図である。なお、図18において、図3Aまたは図10と同様な構成要素には同じ参照番号を付して、説明は省略する。
図18においては、全周カメラ310および撮影配信用PC320は、車両に配備されて移動している。図18では、マラソンランナーに伴走してライブ撮影している例を示す。なお、図18にはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ1810には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
全周動画ライブ再生プレーヤ1810は、図10の全周動画ライブ再生プレーヤ1010に代わるプレーヤである。なお、図18の全周動画ライブ再生プレーヤ1810には、本実施形態に特有の処理に関連する機能構成部を図示しており、煩雑さを回避するために、図10の全周動画ライブ再生プレーヤ1010の機能構成部などの図示は省かれている。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810とを共に起動し、協働させてもよい。
全周動画ライブ再生プレーヤ1810は、映像マッチング処理部1811と表示画面生成部1812とを含む。映像マッチング処理部1811は、データ配信サーバ350から全周カメラ310の移動経路である既知のマラソンコースの映像を取得する。そして、映像マッチング処理部1811は、全周カメラ310により撮影されて、ライブ映像配信サーバ330を介して配信された全周ライブマラソン映像を、マラソンコースの映像とマッチングして、全周カメラ310の現在位置を判定する。表示画面生成部1812は、データ配信サーバ350からマラソンコースの地図データを取得する。そして、表示画面生成部1812は、映像マッチング処理部1811からの現在位置の情報に基づいて、マラソンコースの地図データに現在位置と、ユーザにより指示されて表示されたライブ動画の視線方向とを付加する。
ライブ動画1841は、伴走車から前方の動画である。ライブ動画1842は、伴走車からランナー越しの沿道の動画である。ライブ動画1843は、伴走車の後方を追走する次のランナーの動画である。
(通信端末の処理データ)
図19は、本実施形態に係る通信端末の処理データ1900の構成を示す図である。処理データ1900は、全周ライブ映像を撮像している現在位置を判定して、地図上にその現在位置と視線方向とを表示するためのデータである。なお、通信端末は、図11Bに図示したデータも使用する。図19には、付加音声データについては図示していないが、音声についても同様に付加が可能である。
図19は、本実施形態に係る通信端末の処理データ1900の構成を示す図である。処理データ1900は、全周ライブ映像を撮像している現在位置を判定して、地図上にその現在位置と視線方向とを表示するためのデータである。なお、通信端末は、図11Bに図示したデータも使用する。図19には、付加音声データについては図示していないが、音声についても同様に付加が可能である。
処理データ1900は、ライブ映像配信サーバ330から配信されたライブ映像配信用メッセージから再生された全周ライブ映像1901と、その全周ライブ映像1901の特徴量1902と、データ配信サーバ350から配信されたマラソンコース映像の特徴量1903と、を記憶する。また、処理データ1900は、全周ライブ映像1901の特徴量1902とマラソンコース映像の特徴量1903とのマッチングから判定された、現在位置1904と、ユーザが指示した視線方向1905と、を記憶する。さらに、処理データ1900は、ユーザが指示した視線方向1905のライブ表示データ1906と、現在位置1904を地図上に表示したコース地図表示データ1907と、を記憶する。なお、ズームインやズームアウトを行なう場合は、処理データ1900は、ユーザ指示範囲のデータも記憶する。
《全周動画ライブ再生プレーヤの処理手順》
図20は、本実施形態に係る全周動画ライブ再生プレーヤ1810の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ1810の処理手順として説明する。
図20は、本実施形態に係る全周動画ライブ再生プレーヤ1810の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ1810の処理手順として説明する。
全周動画ライブ再生プレーヤ1810は、ステップS2001において、データ配信サーバ350からマラソンコースの地図データを取得する。次に、全周動画ライブ再生プレーヤ1810は、ステップS2003において、データ配信サーバ350からマラソンコースの映像を取得する。なお、あらかじめデータ配信サーバ350で算出された特徴量を取得しても、映像を取得して通信端末で特徴量を算出してもよい。
全周動画ライブ再生プレーヤ1810は、ステップS2005において、ライブ映像配信サーバ330から全周ライブ映像データを取得する。次に、全周動画ライブ再生プレーヤ1810は、ステップS2007において、取得した全周ライブ映像データ中の全周動画の各フレームの全周画像を、ユーザ視点を360度取り巻く球体上に展開する。また、全周動画ライブ再生プレーヤ1810は、取得した全周ライブ映像データ中の全周動画の各フレームの全周画像の特徴量を抽出する。次に、全周動画ライブ再生プレーヤ1810は、ステップS2009において、マラソンコースの映像の特徴量と、全周画像の特徴量とをマッチングして、全周カメラ310が撮影している現在位置を判定する。なお、現在位置の判定は全ての通信端末で行うのではなく、現在位置の判定を撮影配信用PCまたは現在位置判定用プレーヤで行い、取得した位置とタイムスタンプを紐付けたデータを、データ配信サーバから各通信端末に配信してもよい。
次に、全周動画ライブ再生プレーヤ1810は、ステップS2011において、ユーザから指示された全周動画の表示方向を取得する。そして、全周動画ライブ再生プレーヤ1810は、ステップS2013において、球体上に展開された全周画像列のユーザから指示された表示方向のライブ映像を表示し、立体音声の同期出力があれば、ライブ映像に同期して、表示方向に向いた場合の立体音声を出力する。同時に、全周動画ライブ再生プレーヤ1810は、ステップS2015において、全周カメラ310の現在位置と視線指示方向とを表示したマラソンコース地図を表示する。なお、表示範囲(ズームイン/ズームアウト)の指示がある場合、全周動画ライブ再生プレーヤ1810は、ステップS2011において、さらに、ユーザから指示された全周動画の表示範囲を取得し、ステップS2013において、指示された表示方向および指示範囲のライブ映像を表示し、表示方向および表示範囲に対応した立体音声を出力することになる。
全周動画ライブ再生プレーヤ1810は、ステップS2017において、ライブ終了(プレーヤ停止)か否かを判定する。ライブ終了でなければ、全周動画ライブ再生プレーヤ1810は、ステップS2005に戻って、全周動画のライブ再生を繰り返す。
本実施形態によれば、移動する全周カメラの現在位置を判定して、地図上に表示することにより、臨場感にあふれた映像視聴ができる上に、GPSなどがなくてもライブ動画の視聴位置と視聴方向とを知ることができる。
[第4実施形態]
次に、本発明の第4実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態および第3実施形態と比べると、複数地点に配置された複数の全周カメラからユーザが所望の全周カメラからの全周動画を選択できる点で異なる。その他の構成および動作は、第2実施形態、第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に、本発明の第4実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態および第3実施形態と比べると、複数地点に配置された複数の全周カメラからユーザが所望の全周カメラからの全周動画を選択できる点で異なる。その他の構成および動作は、第2実施形態、第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
《全周動画ライブ配信システム》
図21Aは、本実施形態に係る全周動画ライブ配信システム2101の処理の概要を示す図である。なお、図21Aにおいて、図3A、図10または図18と同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aの機能のみを有する全周動画ライブ配信システム2101とを組み合わせて起動し、協働させてもよい。
図21Aは、本実施形態に係る全周動画ライブ配信システム2101の処理の概要を示す図である。なお、図21Aにおいて、図3A、図10または図18と同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aの機能のみを有する全周動画ライブ配信システム2101とを組み合わせて起動し、協働させてもよい。
図21Aにおいては、複数の全周カメラ311~313および全周カメラに対応する複数の撮影配信用PC321~323を、複数地点に配置してユーザが複数の全周動画の選択視聴を可能としている。図21Aでは、カヌー競技をコースの複数地点でライブ撮影している例を示す。なお、図21Aにはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ2110には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
全周動画ライブ再生プレーヤ2110は、図10の全周動画ライブ再生プレーヤ1010や図18の全周動画ライブ再生プレーヤ1810に代わるプレーヤである。なお、図21Aの全周動画ライブ再生プレーヤ2110には、本実施形態に特有の処理に関連する機能構成部を図示しており、煩雑さを回避するために、図10の全周動画ライブ再生プレーヤ1010や図18の全周動画ライブ再生プレーヤ1810の機能構成部などの図示は省かれている。
全周動画ライブ再生プレーヤ2110は、映像選択部2111を含む。映像選択部2111は、全周ライブカヌー映像Aと、全周ライブカヌー映像Bと、全周ライブカヌー映像Cと、をユーザの選択指示に従って選択して通信端末に配信する。全周ライブカヌー映像Aは、全周カメラ311が撮像してライブ映像配信サーバ330を介して配信されるライブ映像である。全周ライブカヌー映像Bは、全周カメラ312が撮像してライブ映像配信サーバ330を介して配信される映像である。全周ライブカヌー映像Cは、全周カメラ313が撮像してライブ映像配信サーバ330を介して配信される映像である。
ライブ動画2141は、全周カメラ311から撮像したカヌー選手2151の方向の動画である。ライブ動画2142は、全周カメラ312から撮像したカヌー選手2152の方向の動画である。ライブ動画2143は、全周カメラ313から撮像したカヌー選手2153の方向の動画である。ユーザは、視聴したい全周動画を3つのライブ動画から選択可能である。
図21Bは、本実施形態に係る全周動画ライブ配信システム2102の処理の概要を示す図である。なお、図21Bにおいて、図3A、図10、図18または図21Aと同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2102とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Bの機能のみを有する全周動画ライブ配信システム2102とを組み合わせて起動し、協働させてもよい。
図21Bにおいては、複数の全周カメラ311~313を複数地点に配置してユーザが複数の全周動画の選択視聴を可能としている。図21Bでは、野球場での試合を複数地点でライブ撮影している例を示す。なお、図21Bでは、撮影配信用PCの図示は省略している。また、図21Bにはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ2110には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
全周動画ライブ再生プレーヤ2110は、図10の全周動画ライブ再生プレーヤ1010や図18の全周動画ライブ再生プレーヤ1810に代わるプレーヤである。なお、図21Bの全周動画ライブ再生プレーヤ2110には、本実施形態に特有の処理に関連する機能構成部を図示しており、煩雑さを回避するために、図10の全周動画ライブ再生プレーヤ1010や図18の全周動画ライブ再生プレーヤ1810の機能構成部などの図示は省かれている。
全周動画ライブ再生プレーヤ2110は、映像選択部2111を含む。映像選択部2111は、全周ライブ野球映像Aと、全周ライブ野球映像Bと、全周ライブ野球映像Cと、をユーザの選択指示に従って選択して通信端末に配信する。全周ライブ野球映像Aは、全周カメラ311が撮像してライブ映像配信サーバ330を介して配信される、バックネット裏からのライブ映像である。全周ライブ野球映像Bは、全周カメラ312が撮像してライブ映像配信サーバ330を介して配信される、バックスクリーンからの映像である。全周ライブ野球映像Cは、全周カメラ313が撮像してライブ映像配信サーバ330を介して配信される、ドーム天井からの映像である。
ライブ動画2144は、全周カメラ311から撮像した動画である。ライブ動画2145は、全周カメラ312から撮像した動画である。ライブ動画2146は、全周カメラ313から撮像した動画である。ユーザは、視聴したい全周動画を3つのライブ動画から選択可能である。
(通信端末の処理データ)
図22は、本実施形態に係る通信端末の処理データ2200の構成を示す図である。処理データ2200は、図21Aのカヌー競技に使用する複数の全周映像を選択するデータを示す。なお、図22には、立体音声について図示されていないが、ライブ映像と同様に処理することで再生可能である。
図22は、本実施形態に係る通信端末の処理データ2200の構成を示す図である。処理データ2200は、図21Aのカヌー競技に使用する複数の全周映像を選択するデータを示す。なお、図22には、立体音声について図示されていないが、ライブ映像と同様に処理することで再生可能である。
処理データ2200は、全周映像の取得元2201と、ユーザが取得元を選択した選択フラグ2202と、を記憶する。また、処理データ2200は、ライブ映像配信サーバ330から配信されたライブ映像配信用メッセージから再生された全周ライブ映像2203と、ユーザが指示した視線方向2204と、を記憶する。また、処理データ2200は、ユーザが指示した視線方向2204のライブ表示データ2205と、選択した全周カメラ位置を地図上に表示したコース地図表示データ2206と、を記憶する。なお、ズームインやズームアウトを行なう場合は、処理データ2200は、ユーザ指示範囲のデータも記憶する。
《全周動画ライブ再生プレーヤの処理手順》
図23は、本実施形態に係る全周動画ライブ再生プレーヤ2110の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2110の処理手順として説明する。なお、図23は、図21Aのカヌー競技におけるフローチャートを示す。
図23は、本実施形態に係る全周動画ライブ再生プレーヤ2110の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2110の処理手順として説明する。なお、図23は、図21Aのカヌー競技におけるフローチャートを示す。
全周動画ライブ再生プレーヤ2110は、ステップS2301において、データ配信サーバ350からカヌー競技コースの地図データを取得する。
全周動画ライブ再生プレーヤ2110は、ステップS2303において、ユーザによる全周映像の配信元の選択指示を取得する。全周動画ライブ再生プレーヤ2110は、ステップS2305において、選択指示された配信元からのライブ映像に接続する。
全周動画ライブ再生プレーヤ2110は、ステップS2307において、ライブ映像配信サーバ330から選択配信元の全周ライブ映像データを取得して球体上に展開する。次に、全周動画ライブ再生プレーヤ2110は、ステップS2309において、ユーザから指示された全周動画の表示方向を取得する。そして、全周動画ライブ再生プレーヤ2110は、ステップS2311において、球体上に展開された全周画像列のユーザから指示された表示方向のライブ映像を表示し、立体音声の同期出力があれば、ライブ映像に同期して、表示方向に向いた場合の立体音声を出力する。同時に、全周動画ライブ再生プレーヤ2110は、ステップS2313において、選択された全周カメラと視線指示方向とを表示したカヌーコース地図を表示する。なお、表示範囲(ズームイン/ズームアウト)の指示がある場合、全周動画ライブ再生プレーヤ2110は、ステップS2309において、さらに、ユーザから指示された全周動画の表示範囲を取得し、ステップS2311において、指示された表示方向および指示範囲のライブ映像を表示し、表示方向および表示範囲に対応した立体音声を出力することになる。
全周動画ライブ再生プレーヤ2110は、ステップS2315において、ユーザから全周映像の配信元の変更指示があったか否かを判定する。全周映像の配信元の変更指示があった場合、全周動画ライブ再生プレーヤ2110は、ステップS2303に戻って、新たな配信元からの全周映像を表示する。
全周映像の配信元の変更指示がなかった場合、全周動画ライブ再生プレーヤ2110は、ステップS2317において、ライブ終了(プレーヤ停止)か否かを判定する。ライブ終了でなければ、全周動画ライブ再生プレーヤ2110は、ステップS2307に戻って、全周動画のライブ再生を繰り返す。
本実施形態によれば、複数の全周カメラから選択して、撮像位置を地図上に表示することにより、ユーザの所望の位置からの臨場感にあふれた全周映像を視聴ができる。
[第5実施形態]
次に、本発明の第5実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第4実施形態と比べると、全周動画のライブ再生に対して所望の情報を付加する点で異なる。本実施形態においては、ライブ再生中の全周動画内の対象を見付けてテロップを付加する例を示す。なお、本実施形態はテロップの付加に限定されず、全周動画ライブ再生に他の情報を付加表示する技術として種々適用が可能である。その他の構成および動作は、第2実施形態から第4実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に、本発明の第5実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第4実施形態と比べると、全周動画のライブ再生に対して所望の情報を付加する点で異なる。本実施形態においては、ライブ再生中の全周動画内の対象を見付けてテロップを付加する例を示す。なお、本実施形態はテロップの付加に限定されず、全周動画ライブ再生に他の情報を付加表示する技術として種々適用が可能である。その他の構成および動作は、第2実施形態から第4実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
《全周動画ライブ配信システム》
図24は、本実施形態に係る全周動画ライブ配信システム2400の処理の概要を示す図である。なお、図24において、図3A、図10、図18、図21Aまたは図21Bと同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101や2102と、全周動画ライブ配信システム2400とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aや図21Bの機能のみを有する全周動画ライブ配信システム2101や2102と、図24の機能のみを有する全周動画ライブ配信システム2400とを組み合わせて起動し、協働させてもよい。例えば、特徴点との判定は全ての通信端末で行なうのではなく、撮影配信用PCまたは判定用プレーヤで行い、検索対象の有無とタイムスタンプとを紐付けたデータを、データ配信サーバから各通信端末に配信してもよい。
図24は、本実施形態に係る全周動画ライブ配信システム2400の処理の概要を示す図である。なお、図24において、図3A、図10、図18、図21Aまたは図21Bと同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101や2102と、全周動画ライブ配信システム2400とを選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aや図21Bの機能のみを有する全周動画ライブ配信システム2101や2102と、図24の機能のみを有する全周動画ライブ配信システム2400とを組み合わせて起動し、協働させてもよい。例えば、特徴点との判定は全ての通信端末で行なうのではなく、撮影配信用PCまたは判定用プレーヤで行い、検索対象の有無とタイムスタンプとを紐付けたデータを、データ配信サーバから各通信端末に配信してもよい。
図24においては、全周カメラ310および撮影配信用PC320は、車両に配備されて移動している。図24では、街中を移動しながらライブ撮影している例を示す。なお、図24にはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ2410には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
全周動画ライブ再生プレーヤ2410は、上記実施形態の各全周動画ライブ再生プレーヤに代わるプレーヤである。なお、図24の全周動画ライブ再生プレーヤ2410には、本実施形態に特有の処理に関連する機能構成部を図示しており、煩雑さを回避するために、上記実施形態の全周動画ライブ再生プレーヤの機能構成部などの図示は省かれている。
全周動画ライブ再生プレーヤ2410は、テロップ挿入部2411を含む。テロップ挿入部2411は、データ配信サーバ350から全周動画ライブ再生に付加するテロップデータを取得する。そして、テロップ挿入部2411は、全周カメラ310により撮影されて、ライブ映像配信サーバ330を介して配信された全周街中のライブ映像の所定位置に、データ配信サーバ350から取得したテロップを重ねて表示する。なお、所望の位置にテロップを付加するために、データ配信サーバ350からテロップ付加の対象物の特徴量を取得して、全周映像の特徴量とマッチングして、対象物を見つけ出してもよい。
ライブ動画2441は、店舗Aのためのテロップ2451が付加表示される。ライブ動画2442は、店舗Bのためのテロップ2452が付加表示される。ライブ動画2443は、店舗Cのためのテロップ2453が付加表示される。なお、図24には、店舗の説明が付加表示されたが、付加情報に制限はない。例えば、付加情報は、表示情報に限定されず音声情報であってもよい。
(通信端末の処理データ)
図25は、本実施形態に係る通信端末の処理データ2500の構成を示す図である。処理データ2500は、全周ライブ映像にテロップなどの付加用データを付加するために使用する。なお、図25には、付加用音声データについて図示されていないが、ライブ映像と同様に処理することで音声データの付加が可能である。
図25は、本実施形態に係る通信端末の処理データ2500の構成を示す図である。処理データ2500は、全周ライブ映像にテロップなどの付加用データを付加するために使用する。なお、図25には、付加用音声データについて図示されていないが、ライブ映像と同様に処理することで音声データの付加が可能である。
処理データ2500は、ライブ映像配信サーバ330から配信されたライブ映像配信用メッセージから再生された全周ライブ映像2501と、ユーザが指示した視線方向2502と、ユーザが指示した視線方向2502のライブ表示データ2503と、を記憶する。また、処理データ2500は、各全周ライブ映像2501に対して、1つまたは複数の検索対象物の特徴量2504と、付加用データ2505と、付加位置2506と、を記憶する。そして、処理データ2500は、特徴量の合致フラグ2507と、付加用データを付加した全周ライブ付加表示データ2508と、を記憶する。なお、ズームインやズームアウトを行なう場合は、処理データ2500は、ユーザ指示範囲のデータも記憶する。
《全周動画ライブ再生プレーヤの処理手順》
図26は、本実施形態に係る全周動画ライブ再生プレーヤ2410)の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2410の処理手順として説明する。
図26は、本実施形態に係る全周動画ライブ再生プレーヤ2410)の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2410の処理手順として説明する。
全周動画ライブ再生プレーヤ2410は、ステップS2601において、データ配信サーバ350から検索対象物の情報を取得する。情報は対象物の特徴量であってもよい。
全周動画ライブ再生プレーヤ2410は、ステップS2603において、ライブ映像配信サーバ330から選択配信元の全周ライブ映像データを取得して球体上に展開する。次に、全周動画ライブ再生プレーヤ2410は、ステップS2605において、ユーザから指示された全周動画の表示方向を取得する。
全周動画ライブ再生プレーヤ2410は、ステップS2607において、ユーザの指示した方向に対象物があるか否かを特徴量のマッチングで判定する。対象物があると判定した場合、全周動画ライブ再生プレーヤ2410は、ステップS2609において、指示方向の全周ライブ表示データの対象物に関連情報(テロップ)を付加する。そして、全周動画ライブ再生プレーヤ2410は、ステップS2611において、球体上に展開された全周画像列のユーザから指示された表示方向のライブ映像を、添付されたテロップと共に表示し、立体音声の同期出力があれば、ライブ映像に同期して、表示方向に向いた場合の立体音声を出力する。ステップS2607において対象物がないと判定した場合、全周動画ライブ再生プレーヤ2410は、ステップS2611に進む。なお、表示範囲(ズームイン/ズームアウト)の指示がある場合、全周動画ライブ再生プレーヤ2410は、ステップS2605において、さらに、ユーザから指示された全周動画の表示範囲を取得し、ステップS2607において、指示された表示方向および指示範囲に対象物があるか否かを判定する。そして、対象物があると判定した場合、ステップS2609において、指示方向および指示範囲の全周ライブ表示データの対象物に関連情報(テロップ)を付加し、ステップS2611において、テロップを添付したライブ映像を表示し、表示されたライブ映像に同期して、表示方向および表示範囲に対応した立体音声を出力することになる。
全周動画ライブ再生プレーヤ2410は、ステップS2613において、検索対象物の変更があったか否かを判定する。検索対象物の変更があった場合、全周動画ライブ再生プレーヤ2410は、ステップS2601に戻って、新たな検索対象物を付加した全周映像を表示する。
検索対象物の変更がなかった場合、全周動画ライブ再生プレーヤ2410は、ステップS2615において、ライブ終了(プレーヤ停止)か否かを判定する。ライブ終了でなければ、全周動画ライブ再生プレーヤ2410は、ステップS2603に戻って、全周動画のライブ再生を繰り返す。
本実施形態によれば、全周カメラで撮像した全周動画の表示に、対象物に対応する情報を付加することにより、ユーザの所望の位置からの臨場感にあふれた全周映像を対象物の情報を含めて視聴ができる。
[第6実施形態]
次に、本発明の第6実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第5実施形態と比べると、全周動画のライブ再生から所望の対象物を選別して表示する点で異なる。本実施形態においては、サッカーの全周動画から対象選手を選別してライブ再生する。なお、対象者(物)の特徴は、人物であれば顔や服装、装飾品、模様(スポーツ選手の背番号などを含む)を含み、物体であれば、形状、色、模様などを含むが、これに限定されない。その他の構成および動作は、第2実施形態から第5実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に、本発明の第6実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第5実施形態と比べると、全周動画のライブ再生から所望の対象物を選別して表示する点で異なる。本実施形態においては、サッカーの全周動画から対象選手を選別してライブ再生する。なお、対象者(物)の特徴は、人物であれば顔や服装、装飾品、模様(スポーツ選手の背番号などを含む)を含み、物体であれば、形状、色、模様などを含むが、これに限定されない。その他の構成および動作は、第2実施形態から第5実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
《全周動画ライブ配信システム》
(処理の概要)
図27Aは、本実施形態に係る全周動画ライブ配信システム2700の処理の概要を示す図である。なお、図27Aにおいて、図3A、図10、図18、図21A、図21Bまたは図24と同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101や2102と、全周動画ライブ配信システム2400と、全周動画ライブ配信システム2700を選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aや図21Bの機能のみを有する全周動画ライブ配信システム2101や2102と、図24の機能のみを有する全周動画ライブ配信システム2400と、図27Aの機能のみを有する全周動画ライブ配信システム2700とを組み合わせて起動し、協働させてもよい。例えば、特徴点との判定は全ての通信端末で行なうのではなく、撮影配信用PCまたは判定用プレーヤで行い、全選手分のデータとタイムスタンプとを紐付けたデータを、データ配信サーバから各視聴端末に配信してもよい。
(処理の概要)
図27Aは、本実施形態に係る全周動画ライブ配信システム2700の処理の概要を示す図である。なお、図27Aにおいて、図3A、図10、図18、図21A、図21Bまたは図24と同様な構成要素には同じ参照番号を付して、説明は省略する。また、通信端末の各々は、ユーザの選択あるいは視聴する全周動画コンテンツに対応して、全周動画ライブ再生プレーヤ1010と、全周動画ライブ再生プレーヤ1810と、全周動画ライブ配信システム2101や2102と、全周動画ライブ配信システム2400と、全周動画ライブ配信システム2700を選択する。あるいは、全周動画ライブ再生プレーヤ1010と、図18の機能のみを有する全周動画ライブ再生プレーヤ1810と、図21Aや図21Bの機能のみを有する全周動画ライブ配信システム2101や2102と、図24の機能のみを有する全周動画ライブ配信システム2400と、図27Aの機能のみを有する全周動画ライブ配信システム2700とを組み合わせて起動し、協働させてもよい。例えば、特徴点との判定は全ての通信端末で行なうのではなく、撮影配信用PCまたは判定用プレーヤで行い、全選手分のデータとタイムスタンプとを紐付けたデータを、データ配信サーバから各視聴端末に配信してもよい。
図27Aにおいては、複数の全周カメラ314~317を複数地点に配置してユーザが複数の全周動画の選択視聴を可能としている。図27Aでは、サッカー場での試合を複数地点でライブ撮影している例を示す。なお、図27Aでは、撮影配信用PCの図示は省略している。また、図27Aにはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ2710には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
全周動画ライブ再生プレーヤ2710は、上記実施形態の全周動画ライブ再生プレーヤに代わるプレーヤである。なお、図27Aの全周動画ライブ再生プレーヤ2710には、本実施形態に特有の処理に関連する機能構成部を図示しており、煩雑さを回避するために、上記実施形態の全周動画ライブ再生プレーヤの機能構成部などの図示は省かれている。
全周動画ライブ再生プレーヤ2710は、選手識別部2711を含む。選手識別部2711は、データ配信サーバ350から取得した選手選択用データと、全周カメラ314~317が撮像した全周映像とのマッチングにより、選手を見つけて、その選手が映っている全周動画の所定方向を、望ましくはズームイン/ズームアウトして表示する。
本実施形態において、サッカー場には、全周カメラ314~317が設置されている。全周カメラ314は、正面スタンドに配置されている。全周カメラ315は、一方のゴール背後に設置されている。全周カメラ316は、他方のゴール背後に配置されている。全周カメラ317は、競技場中空からサッカー場全体を撮像している。
ライブ動画2741は、全周カメラ314から対象選手2751をズームインして撮像した動画である。ライブ動画2742は、全周カメラ317から対象選手2751をズームインして撮像した動画である。ライブ動画2743は、全周カメラ316から対象選手2751をズームアウトして撮像した動画である。ユーザは、視聴したい選手の全周動画を自動選択して追跡することが可能である。なお、全周カメラ314~317の内の複数の全周カメラに同じ対象選手2751が撮像されている場合には、以下のような追跡対象物の大きさや特徴判定の信頼度の高さなどの条件で表示する全周動画を選択する。例えば、対象選手2751の背番号により追跡する場合は背番号が一番大きく撮像されている全周画像を選択する、また、対象選手2751の顔の特徴により追跡する場合は顔が正面に近い全周画像を選択する。また、追跡する特徴や選択条件をユーザが指定してその特徴判定の信頼度が高い全周画像を選択してもよい。これらの選択条件はそれぞれ単独で適用されても、複数の選択条件を重みなども考慮して組み合わせて適用されてもよい。
(動作の概要)
図27Bは、本実施形態に係る全周動画ライブ配信システム2700の動作の概要を示す図である。図27Bの左図には、全周動画ライブ再生プレーヤ2710において、追跡選手を選択する操作の画面遷移を示す。また、図27Bの右図には、全周動画ライブ再生を画面全体ではなく、画面の一部に再生表示する例を示す。なお、図27Bの画面遷移や一部表示は、他の実施形態においても同様である。
図27Bは、本実施形態に係る全周動画ライブ配信システム2700の動作の概要を示す図である。図27Bの左図には、全周動画ライブ再生プレーヤ2710において、追跡選手を選択する操作の画面遷移を示す。また、図27Bの右図には、全周動画ライブ再生を画面全体ではなく、画面の一部に再生表示する例を示す。なお、図27Bの画面遷移や一部表示は、他の実施形態においても同様である。
<画面遷移>
(1)図27Bの左最上段は、図27Aのライブ動画2741を示す画面である。
(2)マウス、タッチパネル、端末のボタン等ユーザによる規定の操作により、左図2段目のように、操作用UI2761および2762を表示する。操作用UI2761および2762には、追跡対象選択メニュー表示/非表示ボタン2762が含まれている。操作用UI2761は、全周カメラと視線との選択・表示である。
(3)操作用UI上の追跡対象選択メニュー表示/非表示ボタン2762のクリックにより、左図3段目のように、追跡対象選択メニュー2763を表示する。追跡対象選択メニュー表示/非表示ボタン2762は、ボタンが押され、メニューが表示されている状態であることを示す。この状態に遷移するための、特別なショートカット操作を用意してもよい。追跡対象選択メニュー2763には、選択可能な対象(この場合は選手、監督、審判等)の一覧が表示される。既に追跡対象が選択されている場合は、該当項目を選択状態とする。
(4)ユーザ操作により追跡対象を選択する。選択された項目は、左図最下段のように、色を変更する、特別なマークを表示する等して、選択状態であることがわかるようにする。また、操作用UI上に、選択された追跡対象の画像、番号、名前等を簡易表示してもよい。自動追跡機能を有効とし、結果を動画エリアで再生中の映像に反映させる。これにより、ユーザはテレビのチャンネルを切り替えるのと同様の感覚で、順次追跡対象を切り替えながら、好みのアングルを探すことが可能となる。
(5)ユーザ操作により選択状態にある追跡対象を解除する場合、(2)~(4)とは逆に、対象項目の表示を通常に戻し、操作用UI上から追跡対象の表示を消去する。自動追跡機能を無効とし、結果を動画エリアで再生中の映像に反映させる。
(6)操作用UI上の追跡対象選択メニュー表示/非表示ボタン2762が操作された場合、追跡対象選択メニュー2763を消去する。追跡対象選択メニュー表示/非表示ボタン2762は解除され、メニューが表示されていない状態であることを示す。ユーザによる操作が一定時間ない場合、操作用UI2761および2762を消去する。
(1)図27Bの左最上段は、図27Aのライブ動画2741を示す画面である。
(2)マウス、タッチパネル、端末のボタン等ユーザによる規定の操作により、左図2段目のように、操作用UI2761および2762を表示する。操作用UI2761および2762には、追跡対象選択メニュー表示/非表示ボタン2762が含まれている。操作用UI2761は、全周カメラと視線との選択・表示である。
(3)操作用UI上の追跡対象選択メニュー表示/非表示ボタン2762のクリックにより、左図3段目のように、追跡対象選択メニュー2763を表示する。追跡対象選択メニュー表示/非表示ボタン2762は、ボタンが押され、メニューが表示されている状態であることを示す。この状態に遷移するための、特別なショートカット操作を用意してもよい。追跡対象選択メニュー2763には、選択可能な対象(この場合は選手、監督、審判等)の一覧が表示される。既に追跡対象が選択されている場合は、該当項目を選択状態とする。
(4)ユーザ操作により追跡対象を選択する。選択された項目は、左図最下段のように、色を変更する、特別なマークを表示する等して、選択状態であることがわかるようにする。また、操作用UI上に、選択された追跡対象の画像、番号、名前等を簡易表示してもよい。自動追跡機能を有効とし、結果を動画エリアで再生中の映像に反映させる。これにより、ユーザはテレビのチャンネルを切り替えるのと同様の感覚で、順次追跡対象を切り替えながら、好みのアングルを探すことが可能となる。
(5)ユーザ操作により選択状態にある追跡対象を解除する場合、(2)~(4)とは逆に、対象項目の表示を通常に戻し、操作用UI上から追跡対象の表示を消去する。自動追跡機能を無効とし、結果を動画エリアで再生中の映像に反映させる。
(6)操作用UI上の追跡対象選択メニュー表示/非表示ボタン2762が操作された場合、追跡対象選択メニュー2763を消去する。追跡対象選択メニュー表示/非表示ボタン2762は解除され、メニューが表示されていない状態であることを示す。ユーザによる操作が一定時間ない場合、操作用UI2761および2762を消去する。
<部分表示>
図27Bの右図には、動画を通信端末の全画面に表示しない場合に、動画エリアの外部に追跡対象選択メニュー2763を表示する例が示されている。
図27Bの右図には、動画を通信端末の全画面に表示しない場合に、動画エリアの外部に追跡対象選択メニュー2763を表示する例が示されている。
(通信端末の処理データ)
図28は、本実施形態に係る通信端末の処理データ2800の構成を示す図である。処理データ2800は、ユーザが望む対象者(物)を追跡して、全周映像を選択してその表示方向を決定し、必要であればズームイン/ズームアウトをして、対象者(物)を追跡表示するために使用される。なお、図28には、立体音声データについて図示されていないが、ライブ映像と同様に処理することで再生可能である。
図28は、本実施形態に係る通信端末の処理データ2800の構成を示す図である。処理データ2800は、ユーザが望む対象者(物)を追跡して、全周映像を選択してその表示方向を決定し、必要であればズームイン/ズームアウトをして、対象者(物)を追跡表示するために使用される。なお、図28には、立体音声データについて図示されていないが、ライブ映像と同様に処理することで再生可能である。
処理データ2800は、追跡対象物の特徴量2801と、マッチングの結果、対象者が見付かった全周ライブ映像2802と、対象者が見付かった方向2803と、を記憶する。また、処理データ2800は、全周ライブ映像2802内の方向2803の全周ライブ表示データ2804と、ズームイン/ズームアウト2805と、を記憶する。
《全周動画ライブ再生プレーヤの処理手順》
図29は、本実施形態に係る全周動画ライブ再生プレーヤ2710)の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2710の処理手順として説明する。
図29は、本実施形態に係る全周動画ライブ再生プレーヤ2710)の処理S1731の詳細手順を示すフローチャートである。このフローチャートも、図16のCPU1610がRAM1640を使用しながら実行するものであるが、以下、全周動画ライブ再生プレーヤ2710の処理手順として説明する。
全周動画ライブ再生プレーヤ2710は、ステップS2901において、データ配信サーバ350から追跡対象物の情報を取得する。情報は対象物の特徴量であってもよい。
全周動画ライブ再生プレーヤ2710は、ステップS2903において、ライブ映像配信サーバ330から複数の選択配信元の全周ライブ映像データを取得して球体上に展開する。
全周動画ライブ再生プレーヤ2710は、ステップS2905において、全周動画に対象物があるか否かを特徴量のマッチングで判定する。対象物があると判定した場合、全周動画ライブ再生プレーヤ2710は、ステップS2907において、追跡対象物が映っている全周ライブの配信元を選択する。次に、全周動画ライブ再生プレーヤ2710は、ステップS2909において、追跡対象物が映っている全周ライブの方向を選択する。そして、全周動画ライブ再生プレーヤ2710は、ステップS2911において、追跡対象物の映っている全周ライブの選択方向を表示し、立体音声の同期出力があれば、ライブ映像に同期して、表示方向に向いた場合の立体音声を出力する。その時に、必要であれば、ズームイン/ズームアウトの処理を行ない、ズームイン/ズームアウトに対応した立体音声の出力を行なう。ステップS2905において対象物がないと判定した場合、全周動画ライブ再生プレーヤ2710は、ステップS2917において、今まで出力中の全周ライブ映像データと、現在の表示方向とを維持して、全周ライブの出力を継続する。そして、全周動画ライブ再生プレーヤ2710は、ステップS2913に進む。なお、ステップS2907の全周ライブの配信元(あるいは全周カメラ)の選択とステップS2909の全周ライブの方向の選択とは、別個の処理ではなく、全周ライブの配信元および方向の選択は特徴量のマッチングにより同時に実現される。また、複数の配信元からの全周ライブに同じ対象物が撮像されていると判定された場合には、以下のような追跡対象物の大きさや特徴判定の信頼度の高さなどの条件で表示する全周ライブの配信元を選択する。例えば、追跡対象物が競技場での選手の場合、対象選手あるいはその背番号が一番大きく撮像されている全周ライブを選択する、また、追跡対象者の顔の特徴により追跡する場合は顔が正面に近い全周画像を選択する。また、追跡する特徴や選択条件をユーザが指定してその特徴判定の信頼度が高い全周画像を選択してもよい。これらの選択条件はそれぞれ単独で適用されても、複数の選択条件を重みなども考慮して組み合わせて適用されてもよい。
全周動画ライブ再生プレーヤ2710は、ステップS2913において、追跡対象物の変更があったか否かを判定する。追跡対象物の変更があった場合、全周動画ライブ再生プレーヤ2710は、ステップS2901に戻って、新たな追跡対象物が映った全周映像を表示する。
追跡対象物の変更がなかった場合、全周動画ライブ再生プレーヤ2710は、ステップS2915において、ライブ終了(プレーヤ停止)か否かを判定する。ライブ終了でなければ、全周動画ライブ再生プレーヤ2710は、ステップS2903に戻って、全周動画のライブ再生を繰り返す。
本実施形態によれば、全周カメラで撮像した全周動画の内で、追跡対象物が映っている動画をライブ再生することにより、ユーザの所望の追跡対象者(物)を含む臨場感にあふれた全周映像を視聴ができる。なお、本実施形態においては、サッカー試合のライブ視聴での選手の追跡表示を例に説明したが、例えば、託児所や保育園などで自分の子供を追跡して視聴するシステムや、介護施設などで高齢者を追跡して視聴するシステムなどにも効果的に適用ができる。
[第7実施形態]
次に、本発明の第7実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第6実施形態と比べると、全周動画をテレビにライブ配信して視聴可能とする点で異なる。その他の構成および動作は、第2実施形態から第6実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、以下の説明では、ズームイン/ズームアウトの処理や立体音声の再生処理についての説明を省略するが、上記実施形態と同様の処理が適用できる。
次に、本発明の第7実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第6実施形態と比べると、全周動画をテレビにライブ配信して視聴可能とする点で異なる。その他の構成および動作は、第2実施形態から第6実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、以下の説明では、ズームイン/ズームアウトの処理や立体音声の再生処理についての説明を省略するが、上記実施形態と同様の処理が適用できる。
《全周動画ライブ配信システム》
図30は、本実施形態に係る全周動画ライブ配信システム3000の処理の概要を示す図である。なお、図30において、図3A、図10、図18、図21A、図21B、図24または図27Aと同様な構成要素には同じ参照番号を付して、説明は省略する。
図30は、本実施形態に係る全周動画ライブ配信システム3000の処理の概要を示す図である。なお、図30において、図3A、図10、図18、図21A、図21B、図24または図27Aと同様な構成要素には同じ参照番号を付して、説明は省略する。
ライブ映像配信サーバ330は、テレビ局3070に対して全周動画をライブ配信し、テレビ局3070は、テレビ受像機3040に対して全周動画をライブ放送する。テレビ受像機3040は、テレビ放送信号により本実施形態の全周動画を受信する。
テレビ局3070は、テレビ映像送信部3071と、テレビ画面変換部3072と、を有する。テレビ画面変換部3072は、ライブ映像配信サーバ330から配信された全周ライブ動画データを、全周ライブ放送可能なテレビ画面データに変換する。そして、テレビ映像送信部3071は、変換された全周ライブ放送可能なテレビ画面データを送信する。
テレビ受像機3040には、データ量により必要であれば全周映像を間引きして、テレビ放送信号により全周映像を送信する。テレビ受像機3040では、受信したテレビ放送信号の映像データから全周映像を復元する。そして、復元された全周映像を球体3030に投影する。そして、球体3030に投影された全周映像のユーザの視線方向指示に応じた映像を選択して、テレビ画面に投射して走査出力する。
テレビ映像画面3041~3043は、全周動画のユーザ指示方向の選択表示を示す。
(テレビ局における処理データ)
図31は、本実施形態に係るテレビ局3070における処理データの変換を示す図である。
図31は、本実施形態に係るテレビ局3070における処理データの変換を示す図である。
全周カメラで撮像された全周映像が、例えば、15フレーム/秒であれば、ライブ映像配信サーバ330からテレビ局3070へも15フレーム/秒で配信される。全周カメラで撮像された全周映像は半分に分割されて、現在のデジタル放送における30フレーム/秒で放送される。また、全周カメラで撮像された全周映像は1/4に分割されて、現在のデジタル放送における60フレーム/秒で放送される。ただし、放送ビットレートおよび対応解像度が全周ライブ動画データの転送に十分であれば、全周映像の分割を行なう必要はなくフレーム補完処理(同じフレームを繰り返す、または、中間フレームを合成する)
によって、30フレーム/秒または60フレーム/秒またはその他放送で使用されるフレームレートへの変換を行ってもよい。なお、フレームレートの変換処理は、撮影配信用PC、ライブ映像配信サーバ、テレビ局のいずれでも行なうことが可能であるが、テレビ局内設備において行なうことが最も効率的だと思われる。
によって、30フレーム/秒または60フレーム/秒またはその他放送で使用されるフレームレートへの変換を行ってもよい。なお、フレームレートの変換処理は、撮影配信用PC、ライブ映像配信サーバ、テレビ局のいずれでも行なうことが可能であるが、テレビ局内設備において行なうことが最も効率的だと思われる。
テレビ受像機3040においては、全周映像が復元されると共に、間のフレームが補完される。そして、再生した全周ライブ画像から、ユーザの指示に応じて視線を変化させ、テレビ映像画面3041~3043がそれぞれ表示される。
本実施形態によれば、全周カメラで撮像した全周動画をテレビ放送によりテレビ受像機にライブ再生することにより、ユーザが臨場感にあふれた全周映像をテレビ視聴できる。
[第8実施形態]
次に、本発明の第8実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第7実施形態と比べると、全周動画のライブ再生をヘッドマウンティングディスプレイ(以下、HMD)で視聴する、特に3次元視聴する点で異なる。その他の構成および動作は、第2実施形態から第7実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に、本発明の第8実施形態に係る全周動画ライブ配信システムについて説明する。本実施形態に係る全周動画ライブ配信システムは、上記第2実施形態乃至第7実施形態と比べると、全周動画のライブ再生をヘッドマウンティングディスプレイ(以下、HMD)で視聴する、特に3次元視聴する点で異なる。その他の構成および動作は、第2実施形態から第7実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
《全周動画ライブ配信システム》
図32は、本実施形態に係る全周動画ライブ配信システム3200の処理の概要を示す図である。なお、図32において、図3A、図10、図18、図21A、図21B、図24および図27Aと同様な構成要素には同じ参照番号を付して、説明は省略する。
図32は、本実施形態に係る全周動画ライブ配信システム3200の処理の概要を示す図である。なお、図32において、図3A、図10、図18、図21A、図21B、図24および図27Aと同様な構成要素には同じ参照番号を付して、説明は省略する。
全周動画ライブ配信システム3200は、図18のマラソンの全周動画の例を示している。図32において、ユーザ3241はHMD3240によって全周動画を視聴している。そして、その視線方向は、HMD3240が有する加速度センサによるユーザ3241の頭の向きの変化に応じて変更される。したがって、ユーザ3241が1回転すると全周動画全体を視聴できることとなる。なお、図32では、撮影配信用PCの図示は省略している。また、図32にはマイクは図示していないが、ステレオマイクによるライブ音声を収集してもよい。その場合には、全周動画ライブ再生プレーヤ1810には、図10と同様の指示方向や指示範囲に対応する立体音声の出力を制御する立体音声制御部が含まれる。
本実施形態によれば、全周カメラで撮像した全周動画を頭の回転を検知するセンサを有するHMDで視聴することにより、ユーザが指の指示でなく自分の動きに合致した臨場感にあふれた全周映像をテレビ視聴できる。
[他の実施形態]
なお、上記実施形態では、全周カメラを、周囲360度を撮影する5つのカメラと天空を撮影する1つのカメラとを有するカメラとして、説明した。しかしながら、カメラの数は本例に限定されない。映像の精度(解像度)やライブのための処理速度などから決定されればよい。また、全周カメラのレンズが1つの超広角レンズ等からなる場合は、全周画像の合成処理が不要となる。また、全周カメラのレンズが1つで鏡面撮影方式により円錐状の鏡面を撮影して、全周動画を取得する場合は、全周画像の生成処理は本実施形態と異なったものとなる。本発明は、全周カメラの構造によらず適用が可能であり、それらも本発明の範疇に含まれる。
なお、上記実施形態では、全周カメラを、周囲360度を撮影する5つのカメラと天空を撮影する1つのカメラとを有するカメラとして、説明した。しかしながら、カメラの数は本例に限定されない。映像の精度(解像度)やライブのための処理速度などから決定されればよい。また、全周カメラのレンズが1つの超広角レンズ等からなる場合は、全周画像の合成処理が不要となる。また、全周カメラのレンズが1つで鏡面撮影方式により円錐状の鏡面を撮影して、全周動画を取得する場合は、全周画像の生成処理は本実施形態と異なったものとなる。本発明は、全周カメラの構造によらず適用が可能であり、それらも本発明の範疇に含まれる。
また、上記実施形態においては、プレーヤにおけるマッピング用立体上への展開として、球体マッピングを行なう例を示したが、マッピング用立体は球体に限定されず、円筒マッピングや多面体マッピングであってもよい。そして、多面体マッピングの場合には、各面に対応する画像を、配信側またはサーバ側(またはプレーヤ側)で切り出すことになる。
また、上記実施形態においては、全周カメラの撮像位置や全周動画中から対象者(物)を見付けるためのマッチング、あるいは、再生する全周動画にテロップや音声などを付加するためのマッチングを、全周動画ライブ再生プレーヤで実現する例を示した。しかしながら、撮影配信用PCがデータ配信サーバから映像や画像、その特徴量を取得して、全周カメラの選択や、対象者(物)の追跡、テロップや音声などの付加を実行して、その結果を、ライブ映像配信サーバまたはデータ配信サーバを介してユーザの通信端末に配信する構成であってもよい。その場合には、図3A、図18、図21Aおよび図21B(データ配信サーバは省略)、図24、図27A、図30および図32に破線で示したように、影配信用PCがデータ配信サーバから映像や画像、その特徴量を取得する。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。
この出願は、2014年05月16日に出願された日本国特許出願 特願2014-102673号、および、2014年10月6日に出願された日本国特許出願 特願2014-205993号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (19)
- 全周カメラと、
前記全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データ生成手段からアップロードされた前記全周動画データを、前記通信端末装置に配信する配信用サーバと、
前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生手段と、
を備える全周動画配信システム。 - 前記配信用サーバは、前記通信端末装置に対応するフォーマットに前記フォーマットを変換するフォーマット変換手段を有する請求項1に記載の全周動画配信システム。
- 前記全周カメラは、少なくとも2つの固定された全周カメラであって、
前記全周動画再生手段は、前記全周カメラからの全周動画の前記配信用サーバにおける配信元を、ユーザの指示に従って選択する映像選択手段を有する請求項1または2に記載の全周動画配信システム。 - 前記全周カメラは、移動する全周カメラであって、
前記全周動画の特徴量と、既知の位置からあらかじめ撮影された画像の特徴量とのマッチングに基づいて、前記全周動画を撮影した位置を判定する位置判定手段、をさらに備え、
前記全周動画再生手段は、前記ユーザによる視線の指示に応じた範囲の動画映像と、前記位置判定手段が判定した位置とを表示する請求項1乃至3のいずれか1項に記載の全周動画配信システム。 - 前記全周動画に対応する立体音声を取得して立体音声データを生成する立体音声データ生成手段、をさらに備え、
前記全周動画データ生成手段は、前記全周動画データと前記立体音声データとを時系列に対応付けて、前記配信用サーバにアップロードし、
前記配信用サーバは、アップロードされた前記全周動画データと前記立体音声データとを時系列に対応付けて配信し、
前記全周動画再生手段は、前記立体音声データに基づいて、前記ユーザによる視線の指示に応じた範囲の動画映像に応じた立体音声を出力する請求項1乃至4のいずれか1項に記載の全周動画配信システム。 - 全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
配信用サーバが、アップロードされた前記全周動画データを、前記通信端末装置に配信する配信ステップと、
前記通信端末装置が、前記配信用サーバから配信された前記全周動画データを実時間で再生し、ユーザによる視線の指示に応じた範囲の動画映像を表示する全周動画再生ステップと、
を含む全周動画配信方法。 - 全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成手段と、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成手段と、
前記全周動画データを配信用サーバにアップロードするアップロード手段と、
を備える画像処理装置。 - 前記全周動画に対応する立体音声を取得して立体音声データを生成する立体音声データ生成手段、をさらに備え、
前記全周動画データ生成手段は、前記全周動画データと前記立体音声データとを時系列に対応付け、
前記アップロード手段は、時系列に対応付けられた前記全周動画データと前記立体音声データとを前記配信用サーバにアップロードする請求項7に記載の画像処理装置。 - 全周画像生成手段が、全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
全周動画データ生成手段が、前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
アップロード手段が、前記全周動画データを配信用サーバにアップロードするアップロードステップと、
を含む画像処理装置の制御方法。 - 全周カメラで撮影された全周動画を取得して時系列の全周フレーム画像データを生成する全周画像生成ステップと、
前記時系列の全周フレーム画像データに対して符号化を行なって、通信端末装置において実時間で再生可能なフォーマットの全周動画データを生成する全周動画データ生成ステップと、
前記全周動画データを配信用サーバにアップロードするアップロードステップと、
をコンピュータに実行させる画像処理装置の制御プログラム。 - 全周動画を配信する配信用サーバから、本通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信手段と、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開手段と、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生手段と、
を備える通信端末装置。 - 少なくとも2つの固定された全周カメラからの全周動画の前記配信用サーバにおける配信元を、ユーザの指示に従って選択する映像選択手段をさらに備える請求項11に記載の通信端末装置。
- 前記全周動画の特徴量と、既知の位置からあらかじめ撮影された画像の特徴量とのマッチングに基づいて、前記全周動画を撮影した全周カメラの位置を判定する位置判定手段、をさらに備え、
前記全周動画再生手段は、前記ユーザによる視線の指示に応じた範囲の動画映像と、前記位置判定手段が決定した位置とを表示する請求項11または12に記載の通信端末装置。 - 前記全周動画データ受信手段は、前記全周動画データと時系列に対応付けられた立体音声データを、前記配信用サーバから受信し、
前記全周動画再生手段は、前記立体音声データに基づいて、前記ユーザによる視線の指示に応じた範囲の動画映像に対応する立体音声を出力する請求項11乃至13のいずれか1項に記載の通信端末装置。 - 既知の対象物に対応する情報を取得する取得手段と、
前記ユーザによる視線の指示に応じた範囲の全周映像データの特徴量と、前記既知の対象物の画像データの特徴量とのマッチングに基づいて、前記全周映像データに前記既知の対象物があるか否かを判定する判定手段と、
をさらに備え、
前記全周動画再生手段は、前記全周映像データに前記既知の対象物がある場合に、前記既知の対象物に対応して前記情報を合成して、前記全周動画を出力する請求項11乃至14のいずれか1項に記載の通信端末装置。 - 前記情報は、表示情報または音声情報である請求項15に記載の通信端末装置。
- 前記全周動画再生手段は、ヘッドマウンティングディスプレイを有する請求項11乃至16のいずれか1項に記載の通信端末装置。
- 全周動画データ受信手段が、全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
全周動画展開手段が、受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
全周動画再生手段が、ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
を含む通信端末装置の制御方法。 - 全周動画を配信する配信用サーバから、通信端末装置において実時間で再生可能なフォーマットの全周動画データを受信する全周動画データ受信ステップと、
受信した前記全周動画データを復号して全周フレーム画像の単位で、視点を内部に含むマッピング用立体上に実時間で展開する全周動画展開ステップと、
ユーザの指示に応じて、展開された前記全周フレーム画像の中の表示範囲を表示する全周動画再生ステップと、
をコンピュータに実行させる通信端末装置の制御プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15792343.4A EP3145199A4 (en) | 2014-05-16 | 2015-05-14 | 360-degree video-distributing system, 360-degree video distribution method, image-processing device, and communications terminal device, as well as control method therefor and control program therefor |
US15/311,458 US9741091B2 (en) | 2014-05-16 | 2015-05-14 | All-around moving image distribution system, all-around moving image distribution method, image processing apparatus, communication terminal apparatus, and control methods and control programs of image processing apparatus and communication terminal apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014102673A JP5777185B1 (ja) | 2014-05-16 | 2014-05-16 | 全周動画配信システム、全周動画配信方法、通信端末装置およびそれらの制御方法と制御プログラム |
JP2014-102673 | 2014-05-16 | ||
JP2014-205993 | 2014-10-06 | ||
JP2014205993A JP6002191B2 (ja) | 2014-10-06 | 2014-10-06 | 全周動画配信システム、全周動画配信方法、通信端末装置およびそれらの制御方法と制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015174501A1 true WO2015174501A1 (ja) | 2015-11-19 |
Family
ID=54480037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063934 WO2015174501A1 (ja) | 2014-05-16 | 2015-05-14 | 全周動画配信システム、全周動画配信方法、画像処理装置、通信端末装置およびそれらの制御方法と制御プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US9741091B2 (ja) |
EP (1) | EP3145199A4 (ja) |
WO (1) | WO2015174501A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108024094A (zh) * | 2016-11-04 | 2018-05-11 | 安华高科技通用Ip(新加坡)公司 | 用对象跟踪进行360度视频记录与回放 |
WO2018102205A1 (en) * | 2016-11-29 | 2018-06-07 | Microsoft Technology Licensing, Llc | Re-projecting flat projections of pictures of panoramic video for rendering by application |
WO2018131832A1 (ko) * | 2017-01-10 | 2018-07-19 | 엘지전자 주식회사 | 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치 |
US10242714B2 (en) | 2016-12-19 | 2019-03-26 | Microsoft Technology Licensing, Llc | Interface for application-specified playback of panoramic video |
US10244200B2 (en) | 2016-11-29 | 2019-03-26 | Microsoft Technology Licensing, Llc | View-dependent operations during playback of panoramic video |
CN110709920A (zh) * | 2017-06-08 | 2020-01-17 | 佳能株式会社 | 图像处理设备及其控制方法 |
CN111133763A (zh) * | 2017-09-26 | 2020-05-08 | Lg 电子株式会社 | 360视频系统中的叠加处理方法及其设备 |
US10666863B2 (en) | 2018-05-25 | 2020-05-26 | Microsoft Technology Licensing, Llc | Adaptive panoramic video streaming using overlapping partitioned sections |
US10764494B2 (en) | 2018-05-25 | 2020-09-01 | Microsoft Technology Licensing, Llc | Adaptive panoramic video streaming using composite pictures |
CN113055721A (zh) * | 2019-12-27 | 2021-06-29 | 中国移动通信集团山东有限公司 | 一种视频内容分发方法、装置、存储介质和计算机设备 |
US20220311970A1 (en) * | 2021-03-23 | 2022-09-29 | Kenichiro Morita | Communication management device, image communication system, communication management method, and recording medium |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9712733B2 (en) * | 2009-08-17 | 2017-07-18 | Jianhua Cao | Method and apparatus for live capture image-live streaming camera |
US11132099B2 (en) * | 2015-09-14 | 2021-09-28 | Sony Corporation | Information processing device and information processing method |
JP6532393B2 (ja) * | 2015-12-02 | 2019-06-19 | 株式会社ソニー・インタラクティブエンタテインメント | 表示制御装置及び表示制御方法 |
KR102482595B1 (ko) * | 2015-12-17 | 2022-12-30 | 삼성전자주식회사 | 지도 정보 제공 방법 및 이를 지원하는 전자 장치 |
US10575030B2 (en) * | 2016-06-22 | 2020-02-25 | DeNA Co., Ltd. | System, method, and program for distributing video |
WO2018003081A1 (ja) | 2016-06-30 | 2018-01-04 | 株式会社オプティム | 全天球カメラ撮像画像表示システム、方法及びプログラム |
KR102598082B1 (ko) * | 2016-10-28 | 2023-11-03 | 삼성전자주식회사 | 영상 표시 장치, 모바일 장치 및 그 동작방법 |
WO2018123801A1 (ja) * | 2016-12-28 | 2018-07-05 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 三次元モデル配信方法、三次元モデル受信方法、三次元モデル配信装置及び三次元モデル受信装置 |
JP7212611B2 (ja) * | 2017-02-27 | 2023-01-25 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 画像配信方法、画像表示方法、画像配信装置及び画像表示装置 |
US10958890B2 (en) * | 2017-03-31 | 2021-03-23 | Samsung Electronics Co., Ltd. | Method and apparatus for rendering timed text and graphics in virtual reality video |
JP7154789B2 (ja) * | 2018-03-27 | 2022-10-18 | キヤノン株式会社 | 表示制御装置、その制御方法、プログラム及び記憶媒体 |
US11119331B2 (en) * | 2018-03-28 | 2021-09-14 | Disney Enterprises, Inc. | Method for dampening projector vibration |
US20200004489A1 (en) * | 2018-06-29 | 2020-01-02 | Microsoft Technology Licensing, Llc | Ultrasonic discovery protocol for display devices |
US11216149B2 (en) | 2019-03-15 | 2022-01-04 | Samsung Electronics Co., Ltd. | 360° video viewer control using smart device |
WO2022137606A1 (ja) | 2020-12-22 | 2022-06-30 | 株式会社エイリアンミュージックエンタープライズ | 管理サーバ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955925A (ja) * | 1995-08-11 | 1997-02-25 | Nippon Telegr & Teleph Corp <Ntt> | 画像システム |
JP2003153250A (ja) * | 2001-11-16 | 2003-05-23 | Sony Corp | 全方位映像における被写体の自動追尾表示システム及び自動追尾表示方法,全方位映像の配信システム及び配信方法,全方位映像の視聴システム,全方位映像の自動追跡表示用記録媒体 |
JP2003219389A (ja) * | 2002-01-18 | 2003-07-31 | Nippon Telegr & Teleph Corp <Ntt> | 映像配信方法及びシステム及び装置及びユーザ端末及び映像配信プログラム及び映像配信プログラムを格納した記憶媒体 |
JP2004191339A (ja) * | 2002-12-13 | 2004-07-08 | Sharp Corp | 位置情報検索方法、位置情報検索装置、位置情報検索端末、及び、位置情報検索システム |
JP2005192057A (ja) * | 2003-12-26 | 2005-07-14 | D Link Corp | 空間画像の切出し表示方法及び装置 |
JP2005217536A (ja) * | 2004-01-27 | 2005-08-11 | Sony Corp | 映像配信システム |
JP2010218371A (ja) * | 2009-03-18 | 2010-09-30 | Olympus Corp | サーバシステム、端末装置、プログラム、情報記憶媒体及び画像検索方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8622571D0 (en) | 1986-09-19 | 1986-10-22 | Surrey University Of | Particulate material flow control |
US6330486B1 (en) * | 1997-07-16 | 2001-12-11 | Silicon Graphics, Inc. | Acoustic perspective in a virtual three-dimensional environment |
JP2000132673A (ja) | 1998-10-28 | 2000-05-12 | Sharp Corp | 画像システム |
US6788333B1 (en) * | 2000-07-07 | 2004-09-07 | Microsoft Corporation | Panoramic video |
JP4759851B2 (ja) | 2000-07-13 | 2011-08-31 | ソニー株式会社 | 伝送信号処理装置及び信号伝送方法 |
JP2003125389A (ja) | 2001-10-19 | 2003-04-25 | Nippon Telegraph & Telephone West Corp | 映像配信装置及びその方法 |
JP3983108B2 (ja) | 2002-06-05 | 2007-09-26 | ディー・リンク株式会社 | 画像の表示方法 |
JP2004048546A (ja) | 2002-07-15 | 2004-02-12 | Sony Corp | 情報処理装置および方法、表示装置および方法、並びにプログラム |
JP2005303796A (ja) | 2004-04-14 | 2005-10-27 | Kazumasa Sasaki | 放送システムおよび画像再生装置 |
WO2009047572A1 (en) * | 2007-10-09 | 2009-04-16 | Analysis Systems Research High-Tech S.A. | Integrated system, method and application for the synchronized interactive play-back of multiple spherical video content and autonomous product for the interactive play-back of prerecorded events. |
WO2012011466A1 (ja) | 2010-07-20 | 2012-01-26 | シャープ株式会社 | 中継装置、中継方法、通信システム、中継制御プログラム、および記録媒体 |
US9078031B2 (en) | 2010-10-01 | 2015-07-07 | Sony Corporation | Reception apparatus, reception method, and program |
US9179198B2 (en) | 2010-10-01 | 2015-11-03 | Sony Corporation | Receiving apparatus, receiving method, and program |
CN103119960B (zh) | 2010-10-01 | 2016-10-26 | 索尼公司 | 信息处理装置、信息处理方法和程序 |
US8908103B2 (en) | 2010-10-01 | 2014-12-09 | Sony Corporation | Content supplying apparatus, content supplying method, content reproduction apparatus, content reproduction method, program and content viewing system |
US8872888B2 (en) | 2010-10-01 | 2014-10-28 | Sony Corporation | Content transmission apparatus, content transmission method, content reproduction apparatus, content reproduction method, program and content delivery system |
JP5707185B2 (ja) | 2011-03-14 | 2015-04-22 | 株式会社トプコン | マルチカメラのキャリブレーション用全周フィールド |
JP6267961B2 (ja) | 2012-08-10 | 2018-01-24 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 映像提供方法および送信装置 |
US9179232B2 (en) * | 2012-09-17 | 2015-11-03 | Nokia Technologies Oy | Method and apparatus for associating audio objects with content and geo-location |
-
2015
- 2015-05-14 US US15/311,458 patent/US9741091B2/en active Active
- 2015-05-14 WO PCT/JP2015/063934 patent/WO2015174501A1/ja active Application Filing
- 2015-05-14 EP EP15792343.4A patent/EP3145199A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0955925A (ja) * | 1995-08-11 | 1997-02-25 | Nippon Telegr & Teleph Corp <Ntt> | 画像システム |
JP2003153250A (ja) * | 2001-11-16 | 2003-05-23 | Sony Corp | 全方位映像における被写体の自動追尾表示システム及び自動追尾表示方法,全方位映像の配信システム及び配信方法,全方位映像の視聴システム,全方位映像の自動追跡表示用記録媒体 |
JP2003219389A (ja) * | 2002-01-18 | 2003-07-31 | Nippon Telegr & Teleph Corp <Ntt> | 映像配信方法及びシステム及び装置及びユーザ端末及び映像配信プログラム及び映像配信プログラムを格納した記憶媒体 |
JP2004191339A (ja) * | 2002-12-13 | 2004-07-08 | Sharp Corp | 位置情報検索方法、位置情報検索装置、位置情報検索端末、及び、位置情報検索システム |
JP2005192057A (ja) * | 2003-12-26 | 2005-07-14 | D Link Corp | 空間画像の切出し表示方法及び装置 |
JP2005217536A (ja) * | 2004-01-27 | 2005-08-11 | Sony Corp | 映像配信システム |
JP2010218371A (ja) * | 2009-03-18 | 2010-09-30 | Olympus Corp | サーバシステム、端末装置、プログラム、情報記憶媒体及び画像検索方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3145199A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108024094B (zh) * | 2016-11-04 | 2021-01-15 | 安华高科技股份有限公司 | 用对象跟踪进行360度视频记录与回放 |
CN108024094A (zh) * | 2016-11-04 | 2018-05-11 | 安华高科技通用Ip(新加坡)公司 | 用对象跟踪进行360度视频记录与回放 |
WO2018102205A1 (en) * | 2016-11-29 | 2018-06-07 | Microsoft Technology Licensing, Llc | Re-projecting flat projections of pictures of panoramic video for rendering by application |
US10244200B2 (en) | 2016-11-29 | 2019-03-26 | Microsoft Technology Licensing, Llc | View-dependent operations during playback of panoramic video |
US10244215B2 (en) | 2016-11-29 | 2019-03-26 | Microsoft Technology Licensing, Llc | Re-projecting flat projections of pictures of panoramic video for rendering by application |
US10242714B2 (en) | 2016-12-19 | 2019-03-26 | Microsoft Technology Licensing, Llc | Interface for application-specified playback of panoramic video |
WO2018131832A1 (ko) * | 2017-01-10 | 2018-07-19 | 엘지전자 주식회사 | 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치 |
US11263999B2 (en) | 2017-06-08 | 2022-03-01 | Canon Kabushiki Kaisha | Image processing device and control method therefor |
CN110709920A (zh) * | 2017-06-08 | 2020-01-17 | 佳能株式会社 | 图像处理设备及其控制方法 |
CN111133763A (zh) * | 2017-09-26 | 2020-05-08 | Lg 电子株式会社 | 360视频系统中的叠加处理方法及其设备 |
CN111133763B (zh) * | 2017-09-26 | 2022-05-10 | Lg 电子株式会社 | 360视频系统中的叠加处理方法及其设备 |
US11575869B2 (en) | 2017-09-26 | 2023-02-07 | Lg Electronics Inc. | Overlay processing method in 360 video system, and device thereof |
US10666863B2 (en) | 2018-05-25 | 2020-05-26 | Microsoft Technology Licensing, Llc | Adaptive panoramic video streaming using overlapping partitioned sections |
US10764494B2 (en) | 2018-05-25 | 2020-09-01 | Microsoft Technology Licensing, Llc | Adaptive panoramic video streaming using composite pictures |
CN113055721A (zh) * | 2019-12-27 | 2021-06-29 | 中国移动通信集团山东有限公司 | 一种视频内容分发方法、装置、存储介质和计算机设备 |
CN113055721B (zh) * | 2019-12-27 | 2022-12-09 | 中国移动通信集团山东有限公司 | 一种视频内容分发方法、装置、存储介质和计算机设备 |
US20220311970A1 (en) * | 2021-03-23 | 2022-09-29 | Kenichiro Morita | Communication management device, image communication system, communication management method, and recording medium |
US11877092B2 (en) * | 2021-03-23 | 2024-01-16 | Ricoh Company, Ltd. | Communication management device, image communication system, communication management method, and recording medium |
Also Published As
Publication number | Publication date |
---|---|
EP3145199A4 (en) | 2018-04-25 |
US9741091B2 (en) | 2017-08-22 |
EP3145199A1 (en) | 2017-03-22 |
US20170169540A1 (en) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5777185B1 (ja) | 全周動画配信システム、全周動画配信方法、通信端末装置およびそれらの制御方法と制御プログラム | |
WO2015174501A1 (ja) | 全周動画配信システム、全周動画配信方法、画像処理装置、通信端末装置およびそれらの制御方法と制御プログラム | |
JP6002191B2 (ja) | 全周動画配信システム、全周動画配信方法、通信端末装置およびそれらの制御方法と制御プログラム | |
CN110832883B9 (zh) | 以计算机为中介的现实系统的混阶立体混响(moa)音频数据 | |
US9591349B2 (en) | Interactive binocular video display | |
KR100739686B1 (ko) | 영상 코딩 방법, 코딩 장치, 영상 디코딩 방법 및 디코딩장치 | |
US20170257414A1 (en) | Method of creating a media composition and apparatus therefore | |
US10296281B2 (en) | Handheld multi vantage point player | |
US20150124171A1 (en) | Multiple vantage point viewing platform and user interface | |
US20150058709A1 (en) | Method of creating a media composition and apparatus therefore | |
KR20170015938A (ko) | 콘텐트를 전달 및/또는 콘텐트를 재생하기 위한 방법들 및 장치 | |
US10156898B2 (en) | Multi vantage point player with wearable display | |
US20200329266A1 (en) | Information processing apparatus, method for processing information, and storage medium | |
US20180227501A1 (en) | Multiple vantage point viewing platform and user interface | |
US10664225B2 (en) | Multi vantage point audio player | |
CN113891117B (zh) | 沉浸媒体的数据处理方法、装置、设备及可读存储介质 | |
US20150304724A1 (en) | Multi vantage point player | |
JP6860485B2 (ja) | 情報処理装置、および情報処理方法、並びにプログラム | |
KR20150105058A (ko) | 온라인을 이용한 혼합현실형 가상 공연 시스템 | |
KR101830786B1 (ko) | 스크립트 생성 장치, 동영상 재생 장치 및 360도 동영상에 대한 화면 제어 방법 | |
CN107835435B (zh) | 一种赛事宽视角直播设备和相关联的直播系统和方法 | |
US9338429B2 (en) | Video processing apparatus capable of reproducing video content including a plurality of videos and control method therefor | |
WO2013116163A1 (en) | Method of creating a media composition and apparatus therefore | |
US20180227504A1 (en) | Switchable multiple video track platform | |
KR20190129865A (ko) | 정보 처리 장치 및 정보 처리 방법, 그리고 프로그램 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15792343 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15311458 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015792343 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015792343 Country of ref document: EP |